10,000 Matching Annotations
  1. Nov 2025
    1. Reviewer #1 (Public review):

      The manuscript by Ivan et al aimed to identify epitopes on the Abeta peptide for a large set of anti-Abeta antibodies, including clinically relevant antibodies. The experimental work was well done and required a major experimental effort including peptide mutational scanning, affinity determinations, molecular dynamics simulations, IP-MS, WB and IHC. The first part of the work is focused on an assay in which peptides (15-18-mers) based on the human Abeta sequence, including some containing known PTMs, are immobilized, thus preventing aggregation and for this reason provide limited biologically-relevant information. Although some results are in agreement with previous experimental structural data (e.g. for 3D6), and some responses to disease-associated mutations were different when compared to wild-type sequences (e.g. in the case of Aducanumab) - which may have implications for personalized treatment. On the other hand, the contribution of conformation (as in oligomers and large aggregates) in antibody recognition patterns was took into consideration in the second part of the study, in which both full-length Abeta in monomeric or aggregated forms and human CSF was employed to investigate the differential epitope interaction between Aducanumab, donanemab and lecanemab. Interestingly, these results confirmed the expected preference of these antibodies for aggregated Abeta. Overall, I understand that the work is of interest to the field.

      Comments on revisions:

      I have no additional recommendations.

    1. Reviewer #1 (Public review):

      Summary:

      This paper describes experiments with alpha-synuclein (aS) with acetylated lysines (acK) at various positions. Their findings on how to use non-canonical amino acid (ncAA) mutagenesis to generate aS with acetylated lysines are valuable. The paper then continues with a range of experiments to characterise the acetylated alpha-synuclein constructs at different positions, with the aim of providing insights into which sites are relevant to disease or their function inside cells. The paper concludes these experiments with the suggestion that inhibiting the Zn2+-dependent histone deacetylase HDAC8 to potentially increase acetylation at lysine 80 may have therapeutic benefit. However, the relevance of most of these experiments is unclear, mainly as the filaments that form from these constructs are different from those observed in human disease (but see below for more details). Moreover, using the recombinantly produced acetylated versions of alpha-synuclein to normalise mass-spectrometry data, the authors themselves report that acetylation of alpha-synuclein does not differ between individuals with Parkinson's disease or healthy controls.

      Strengths:

      The authors report difficulties with chemical synthesis, and then decide to make these constructs using non-canonical amino acid (ncAA) mutagenesis, which seems to work reasonably well (yields vary somewhat). In the Conclusion section, the authors report that they used these recombinant proteins to obtain quantitative insights into the levels of acetylation of lysines in individuals with PD versus healthy controls, for which they find no significant differences. This part of the work is valuable.

      Weaknesses:

      The authors then use circular dichroism to show that aSyn with acK at position 43 has less alpha-helical content. From this result, they deduce that "only this site could potentially perturb aS function in neurotransmitter trafficking", but no experiments on neurotransmitter trafficking were performed.

      Subsequently, they measure the aggregation speed of the variants in seeded aggregation experiments with preformed fibrils (PFFs) from WT aSyn, and conclude that acK at positions 12, 43, and 80 yields slower aggregation. They reach similar conclusions when measuring seeded aggregation in primary cultures. As far as I understand it, the seeding experiments in cells use seeds that are assembled from partially acetylated alpha-synuclein, but that are made of non-acetylated wildtype alpha-synuclein, and the alpha-synuclein that is endogenous in the cells is also non-acetylated (or at least not beyond what happens in these cells at endogenous levels). It is therefore unclear how the cellular seeding experiments relate to the in vitro aggregation assays with (partially) acetylated substrates. Anyway, both aggregation experiments ignore that the structures of aSyn filaments in Parkinson's disease (PD) or multiple system atrophy (MSA) are different from those formed in these experiments, and that, therefore, the observed aggregation kinetics are likely irrelevant for the speed with which disease-relevant filaments form in the brain.

      NMR and FCS experiments show that acK at positions 12 and 43 may reduce binding to vesicles, which then leaves only acK80.

      Finally, the authors describe the cryo-EM structure of mixtures of acK80:WT aSyn filaments, which are predominantly made of WT aSyn, with a previously described structure. Filaments made of only acK80 aSyn have a modified arrangement of this structure, where the now neutral side chain of residue 80 packs inside a hydrophobic pocket. The authors discuss differences between the acK80 structures and those of other structures from in vitro assembled aSyn filaments, none of which are the same as those observed from PD or MSA brains, nor are any attempts made to transfer observations from the in vitro experiments to the structures of disease. The relevance of the cryo-EM structures for human disease, therefore, remains unclear.

      The Conclusion on p.20 mentions an interesting and valuable result: the authors used the acetylated recombinant proteins to determine the extent of acetylation within human protein samples by quantitative liquid chromatography MS (SI, Figures S41-S49). Their conclusion is that "The level of acetylation was variable - no clear trend was observed between healthy control and patients - nor between patients of different diseases (SI, Table S4, Supplementary Data 1)" This result implies that acetylation of aS is not directly related to its pathogenicity, which again adds doubts on the disease-relevance of the results described in the rest of the paper.

    2. Reviewer #2 (Public review):

      Summary:

      Shimogawa et al. studied the effect of lysine acetylation at different sites in the alpha-synuclein (aS) sequence on the protein-membrane affinity, seeding capacity in the test tube and in cells, and on the structure of fibrils, using a range of biophysical methods. They use non-canonical amino acid (ncAA) mutagenesis to prepare aS lysine acetylated variant at different sites.

      Strengths:

      The major strength of this paper is the approach used for the production of site-specific lysine acetylated variants of aS using ncAA mutagenesis, as well as the combination of a range of biophysical methods together with cellular assays and structure biology to decipher the effect of lysine acetylation on aS-membrane binding, seeding propensity, and fibril structure. This approach allowed the author to find that lysine acetylation at positions 12, 43, and 80 led to lower seeding capacity of aS in the test tube and in cells, but only acetylation at lysine 80 did not affect aS-membrane interaction. These results suggest that lysine acetylation at position 80 may be protective against aggregation without perturbing the proposed functional role of aS in synaptic plasticity.

      Weaknesses:

      SDS is not a good membrane model to investigate the effect of lysine acetylation on aS membrane-binding because it is a harsh detergent and solubilizes membranes. Negatively charged vesicles or vesicles made of a mixture of lipids mimicking the lipid composition of synaptic vesicles are more accepted in the field to study aS-membrane interactions. The authors used such vesicles for the FCS experiments, and they could be used for the initial screening of the 12 lysine acetylated variants of aS.

      It would help the reader to have the experimental details (e.g., buffer, protein/lipid concentrations) for the different assays written in the figure legend.

      The authors use an assay consisting of mixing 10% fibrils + 90% monomer to investigate the effect of lysine acetylation on aS. However, the assay only probes fibril elongation and/or secondary processes. The current wording can be misleading, and the term aggregation could be replaced by seeding capacity for clarity. For example, the authors state that lysine acetylation at sites 12, 43, and 80 each inhibits aggregation, but this statement is not supported by the data. Instead, the data show that the acetylation at these sites slows down the fibril elongation and thus decreases the seeding capacity of aS fibrils. In order to state that lysine acetylation has an effect on aS aggregation, fibril formation, the author should use an assay where the de novo formation of fibrils is assessed, such as in the presence of lipid vesicles or under shaking conditions.

      It is not clear from the EM data that the structures of the different lysine acetylated variants are different, unlike what is stated in the text.

    3. Reviewer #3 (Public review):

      Shimogawa et al. describe the generation of acetylated aSyn variants by genetic code expansion to elucidate effects on vesicle binding, aggregation, and seeding effects. The authors compared a semi-synthetic approach to obtain acetylated aSyn variants with genetic code expansion and concluded that the latter was more efficient in generating all 12 variants studied here, despite the low yields for some of them. Selected acetylated variants were used in advanced NMR, FCS, and cryo-EM experiments to elucidate structural and functional changes caused by acetylation of aSyn. Finally, site-specific differences in deacetylation by HDAC 8 were identified.

      The study is of high scientific quality, andthe results are convincingly supported by the experimental data provided. The challenges the authors report regarding semi-synthetic access to aSyn are somewhat surprising, as this protein has been made by a variety of different semi-synthesis strategies in satisfactory yields and without similar problems being reported.

      The role of PTMs such as acetylation in neurodegenerative diseases is of high relevance for the field, and a particular strength of this study is the use of authentic acetylated aSyn instead of acetylation-mimicking mutations. The finding that certain lysine acetylations can slow down aggregation even when present only at 10-25% of total aSyn is exciting and bears some potential for diagnostics and therapeutic intervention.

    1. Reviewer #1 (Public review):

      Summary:

      The study by Akita B. Jaykumar et al. explored an interesting and relevant hypothesis whether serine/threonine With-No-lysine (K) kinases (WNK)-1, -2, -3, and -4 engage in insulin-dependent glucose transporter-4 (GLUT4) signaling in the murine central nervous system. The authors especially focused on the hippocampus as this brain region exhibits high expression of insulin and GLUT4. Additionally, disrupted glucose metabolism in the hippocampus has been associated with anxiety disorders, while impaired WNK signaling has been linked to hypertension, learning disabilities, psychiatric disorders or Alzheimer's disease. The study took advantage of selective pan-WNK inhibitor WNK 643 as the main tool to manipulate WNK 1-4 activity both in vivo by daily, per-oral drug administration to wild-type mice, and in vitro by treating either adult murine brain synaptosomes, hippocampal slices, primary cortical cultures, and human cell lines (HEK293, SH-SY5Y). Using a battery of standard behavior paradigms such as open field test, elevated plus maze test, and fear conditioning, the authors convincingly demonstrate that the inhibition of WNK1-4 results in behavior changes, especially in enhanced learning and memory of WNK643-treated mice. To shed light on the underlying molecular mechanism, the authors implemented multiple biochemical approaches including immunoprecipitation, glucose-uptake assay, surface biotylination assay, immunoblotting, and immunofluorescence. The data suggest that simultaneous insulin stimulation and WNK1-4 inhibition results in increased glucose uptake and the activity of insulin's downstream effectors, phosphorylated Akt and phosphorylated AS160. Moreover, the authors demonstrate that insulin treatment enhances the physical interaction of the WNK effector OSR1/SPAK with Akt substrate AS160. As a result, combined treatment with insulin and the WNK643 inhibitor synergistically increases the targeting of GLUT4 to the plasma membrane. Collectively, these data strongly support the initial hypothesis that neuronal insulin- and WNK-dependent pathways do interact and engage in cognitive functions.

      In response to our initial comments, the authors mildly revised the manuscript, which did not improve the weaknesses to a sufficient level. Our follow-up comments are labeled under "Revisions 1".

      Strengths:

      The insulin-dependent signaling in the central nervous system is relatively understudied. This explorative study delves into several interesting and clinically relevant possibilities, examining how insulin-dependent signaling and its crosstalk with WNK kinases might affect brain circuits involved in memory formation and/or anxiety. Therefore, these findings might inspire follow-up studies performed in disease models for disorders that exhibit impaired glucose metabolism, deficient memory, or anxiety, such as Diabetes mellitus, Alzheimer's disease, or most of psychiatric disorders.

      The graphical presentation of the figures is of high quality, which helps the reader to obtain a good overview and to easily understand the experimental design, results, and conclusions.

      The behavioral studies are well conducted and provide valuable insights into the role of WNK kinases in glucose metabolism and their effect on learning and memory. Additionally, the authors evaluate the levels of basal and induced anxiety in Figures 1 and 2, enhancing our understanding of how WNK signaling might engage in cognitive function and anxiety-like behavior, particularly in the context of altered glucose metabolism.

      The data presented in Figures 3 and 4 are notably valuable and robust. The authors effectively utilize a variety of in vivo and in vitro models, combining different treatments in a clear manner. The experimental design is well-controlled, efficiently communicated, and well-executed, providing the reader with clear objectives and conclusions. Overall, these data represent particularly solid and reproducible evidence on the enhanced glucose uptake, GLUT4 targeting, and downstream effectors' activation upon insulin and WNK/OSR1 signaling crosstalk.

      Weaknesses:

      (1) The study used a WNK643 inhibitor as the only tool to manipulate WNK1-4 activity. This inhibitor seems selective; however, it has been reported that it exhibits different efficiency in inhibiting the individual WNK kinases among each other (e.g. PMID: 31017050, PMID: 36712947). Additionally, the authors do not analyze nor report the expression profiles or activity levels of WNK1, WNK2, WNK3, and WNK4 within the relevant brain regions (i.e. hippocampus, cortex, amygdala). Combined, these weaknesses raise concerns about the direct involvement of WNK kinases within the selected brain regions and behavior circuits. It would be beneficial if the authors provided gene profiling for WNK1, 2, 3, and -4 (e.g. using Allen brain atlas). To confirm the observations, the authors should either add results from using other WNK inhibitors or, preferentially, analyze knock-down or knock-out animals/tissue targeting the single kinases.

      Revisions 1: The authors added Fig. S1A during the revisions to show expression of Wnt1-4. While the expression data from humans is interesting, the experimental part of the study is performed in mice. It would be more informative for the authors to add expression profiles from mice or overview the expression pattern with suitable references in the introduction to address this point. The authors did not add data from knock down or knockout tissue targeting the single kinases.

      (2) The authors do not report any data on whether the global inhibition of WNKs affects insulin levels as such. Since the authors demonstrate the synergistic effect of simultaneous insulin treatment and WNK1-4 inhibition, such data are missing.

      Revisions 1: The authors added Fig. S5A to address this point. It is appreciated that authors performed the needed experiment. Unfortunately, no significant change was found, therefore, the authors still cannot conclude that they demonstrate a synergistic effect of simultaneous insulin treatment and WNT1-4 inhibition. It is a missed opportunity that the authors did not measure insulin in the CSF or tissue lysate to support the data.

      (3) The study discovered that the Sortilin receptor binds to OSR1, leading the authors to speculate that Sortilin may be involved in the insulin-dependent GLUT4 surface trafficking. The authors conclude in the result section that "WNK/OSR1/SPAK influences insulin-sensitive GLUT4 trafficking by balancing GLUT4 sequestration in the TGN via regulation of Sortilin with GLUT4 release from these vesicles upon insulin stimulation via regulation of AS160." However, the authors do not provide any evidence supporting Sortilin's involvement in such regulation, thus, this conclusion should be removed from the section. Accordingly, the first paragraph of the discussion should be also rephrased or removed.

      Revisions 1: The authors added Fig. 5M-N to address this point. The new experiment is appreciated. However, the authors still do not show that sortilin is involved in insulin or WNK-dependent GLUT4 trafficking in their set up since the authors do not demonstrate any changes in GLUT4 sorting or binding. The conclusions should therefore be rephrased or included purely in the discussion. Moreover, the discussion was not adjusted either, leading to over interpretation based on the available data.

      (4) The background relevant to Figure 5, as well as the results and conclusions presented in Figure 5 are quite challenging to follow due to the lack of a clear introduction to the signaling pathways. Consequently, understanding the conclusions drawn from the data is also difficult. It would be beneficial if the authors addressed this issue with either reformulations or additional sections in the introduction. Furthermore, the pulldown experiments in this figure lack some of the necessary controls.

      Revisions 1: The Authors insufficiently addressed this point during the revisions and did not rewrite the introduction as suggested.

      (5) The authors lack proper independent loading controls (e.g. GAPDH levels) in their immunoblots throughout the paper, and thus their quantifications lack this important normalization step. The authors also did not add knock-out or knock-down controls in their co-IPs. This is disappointing since these improvements were central and suggested during the revision process.

      (6) The schemes that represent only hypotheses (Fig. 1K, 4A) are unnecessary and confusing and thus should be omitted or placed at the end of each figure if the conclusions align.

      (7) Low-quality images, such as Fig. 5H should be replaced with high-resolution photos, moved to the supplementary, or omitted.

    2. Reviewer #2 (Public review):

      This study by Jaykumar and colleagues seeks to expand the field's appreciation of insulin responses in the brain, specifically by implicating WNK kinase function in various neuronal responses, ranging from behavioral / memory changes to GLUT4 trafficking to the cell surface with subsequent glucose uptake. This revised study is now comprehensive and presents a logical and reasonably documented cascade of molecular interactions responsible in part for GLUT4 trafficking under the regulation of WKK and insulin. Additional data allow the authors to dissect a plausible WNK/OSR1/SPAK-sortilin pathway for the modulation of GLUT4 trafficking, in part by capitalizing on a overlay of various techniques and systems. The data - much of it in vivo or ex vivo - showing a potential role for WNK function in brain glucose utilization remains a compelling part of the story, with the dissection of the signaling cascade and a potential role for sortilin in mediating WNK function via effects on GLUT4 cellular localization now more convincing.

      Initially, the group shows that oral WNK463 treatment - an inhibitor of WNKs broadly - in mice augments a number of memory readouts. These findings fit within the context of the overall story the authors present: that WNK function is critical to brain glucose utilization, which impacts learning. Multiple approaches are used to show that WNK463 treatment, i.e. inhibition of WNKs, increases glucose uptake, including labeled 2-deoxyglucose uptake in vivo in the brain and in isolated synaptosome, and uptake in ex vivo hippocampal slices. These findings are solid and consistent. With the exception of some relatively minor comments regarding the data presentation made to the authors and now fully addressed, the findings showing that WNK463 treatment increases GLUT4-mediated glucose uptake and surface localization of GLUT4 are reasonable, with the hippocampal slice data being particularly relevant.

      While the details of the WNK signaling cascade is dense, in the revised application one clearly appreciates the molecular interrogation and interactions the group is dissecting, supported by the use of multiple models. With the additional findings, these systems and the data now reinforce each other, presenting a strongly documented overall story.

      A limitation of the study with the initial submission was the authors' reliance upon a single pharmacological tool (WNK463) to inhibit WNK kinases. WNK463 apparently has substantial specificity for WNKs and WNK463 treatment lessened OSR1 phosphorylation (a WNK substrate). Nevertheless, the cohesiveness of the findings in terms of the broader pathway engagement (GLUT4 trafficking, glucose uptake) is consistent with the author's proposed mechanisms and conclusions. The authors have additionally addressed this concern in the revised manuscript with more information supporting the specificity of WNK463 as well as the multiple approaches to confirm the effect of WNK463 on the WNK signaling pathway of interest.

      The final few paragraphs of the discussion that weave the author's findings into the field more broadly, including Sortilin function and neurological disorders, are appreciated. Additional clarity in the Methods section is also helpful.

    1. Reviewer #1 (Public review):

      Summary:

      This study identifies HSD17B7 as a cholesterol biosynthesis gene enriched in sensory hair cells, with demonstrated importance for auditory behavior and potential involvement in mechanotransduction. Using zebrafish knockdown and rescue experiments, the authors show that loss of hsd17b7 reduces cholesterol levels and impairs hearing behavior. They also report a heterozygous nonsense variant in a patient with hearing loss. The gene mutation has a complex and somewhat inconsistent phenotype, appearing to mislocalize, reduce mRNA and protein levels, and alter cholesterol distribution, supporting HSD17B7 as a potential deafness gene.

      While the study presents an interesting candidate and highlights an underexplored role for cholesterol in hair cell function, several important claims are insufficiently supported, and the mechanistic interpretations remain somewhat murky.

      Strengths:

      (1) HSD17B7 is a new candidate deafness gene with plausible biological relevance.

      (2) Cross-species RNAseq convincingly shows hair-cell enrichment.

      (3) Lipid metabolism, particularly cholesterol homeostasis, is an emerging area of interest in auditory function.

      (4) The connection between cholesterol levels and MET is potentially impactful and, if substantiated, would represent a significant advance.

      Weaknesses:

      (1) The pathogenic mechanism of the E182STOP variant is unclear: The mutant protein presumably does not affect WT protein localization, arguing against a dominant-negative effect. Yet, overexpression of HSD17B7-E182* alone causes toxicity in zebrafish, and it binds and mislocalizes cholesterol in HEI-OC1 cells, suggesting some gain-of-function or toxic effect. In addition, the mRNA of the variant has a low expression level, suggesting nonsense-mediated decay. This complexity and inconsistency need clearer explanation.

      (2) The link to human deafness is based on a single heterozygous patient with no syndromic features. Given that nearly all known cholesterol metabolism disorders are syndromic, this raises concerns about causality or specificity. The term "novel deafness gene" is premature without additional cases or segregation data.

      (3) The localization of HSD17B7 should be clarified better: In HEI-OC1 cells, HSD17B7 localizes to the ER, as expected. In mouse hair cells, the staining pattern is cytosolic and almost perfectly overlaps with the hair cell marker used, Myo7a. This needs to be discussed. Without KO tissue, HSD17B7 antibody specificity remains uncertain.

    2. Reviewer #2 (Public review):

      A summary of what the authors were trying to achieve.

      The authors aim to determine whether the gene Hsb17b7 is essential for hair cell function and, if so, to elucidate the underlying mechanism, specifically the HSB17B7 metabolic role in cholesterol biogenesis. They use animal, tissue, or data from zebrafish, mouse, and human patients.

      Strengths:

      (1) This is the first study of Hsb17b7 in the zebrafish (a previous report identified this gene as a hair cell marker in the mouse utricle).

      (2) The authors demonstrate that Hsb17b7 is expressed in hair cells of zebrafish and the mouse cochlea.

      (3) In zebrafish larvae, a likely KO of the Hsb17b7 gene causes a mild phenotype in an acoustic/vibrational assay, which also involves a motor response.

      (4) In zebrafish larvae, a likely KO of the Hsb17b7 gene causes a mild reduction in lateral line neuromast hair cell number and a mild decrease in the overall mechanotransduction activity of hair cells, assayed with a fluorescent dye entering the mechanotransduction channels.

      (5) When HSB17B7 is overexpressed in a cell line, it goes to the ER, and an increase in Cholesterol cytoplasmic puncta is detected. Instead, when a truncated version of HSB17B7 is overexpressed, HSB17B7 forms aggregates that co-localize with cholesterol.

      (6) It seems that the level of cholesterol in crista and neuromast hair cells decreases when Hsb17b7 is defective (but see comment below).

      Weakness:

      (1) The statement that HSD17B7 is "highly" expressed in sensory hair cells in mice and zebrafish seems incorrect for zebrafish:

      (a) The data do not support the notion that HSB17B7 is "highly expressed" in zebrafish. Compared to other genes (TMC1, TMIE, and others), the HSB17B7 level of expression in neuromast hair cells is low (Figure 1F), and by extension (Figure 1C), also in all hair cells. This interpretation is in line with the weak detection of an mRNA signal by ISH (Figure 1G I"). On this note, the staining reported in I" does not seem to label the cytoplasm of neuromast hair cells. An antisense probe control, along with a positive control (such as TMC1 or another), is necessary to interpret the ISH signal in the neuromast.

      (b) However, this is correct for mouse cochlear hair cells, based on single-cell RNA-seq published databases and immunostaining performed in the study. However, the specificity of the anti-HSD17B7 antibody used in the study (in immunostaining and western blot) is not demonstrated. Additionally, it stains some supporting cells or nerve terminals. Was that expression expected?

      (2) A previous report showed that HSD17B7 is expressed in mouse vestibular hair cells by single-cell RNAseq and immunostaining in mice, but it is not cited:

      Spatiotemporal dynamics of inner ear sensory and non-sensory cells revealed by single-cell transcriptomics.

      Jan TA, Eltawil Y, Ling AH, Chen L, Ellwanger DC, Heller S, Cheng AG.

      Cell Rep. 2021 Jul 13;36(2):109358. doi: 10.1016/j.celrep.2021.109358.

      (3) Overexpressed HSD17B7-EGFP C-terminal fusion in zebrafish hair cells shows a punctiform signal in the soma but apparently does not stain the hair bundles. One limitation is the consequence of the C-terminal EGFP fusion to HSD17B7 on its function, which is not discussed.

      (4) A mutant Zebrafish CRISPR was generated, leading to a truncation after the first 96 aa out of the 340 aa total. It is unclear why the gene editing was not done closer to the ATG. This allele may conserve some function, which is not discussed.

      (5) The hsd17b7 mutant allele has a slightly reduced number of genetically labeled hair cells (quantified as a 16% reduction, estimated at 1-2 HC of the 9 HC present per neuromast). On a note, it is unclear what criteria were used to select HC in the picture. Some Brn3C:mGFP positive cells are apparently not included in the quantifications (Figure 2F, Figure 5A).

      (6) The authors used FM4-64 staining to evaluate the hair cell mechanotransduction activity indirectly. They found a 40% reduction in labeling intensity in the HCs of the lateral line neuromast. Because the reduction of hair cell number (16%) is inferior to the reduction of FM4-64 staining, the authors argue that it indicates that the defect is primarily affecting the mechanotransduction function rather than the number of HCs. This argument is insufficient. Indeed, a scenario could be that some HC cells died and have been eliminated, while others are also engaged in this path and no longer perform the MET function. The numbers would then match. If single-cell staining can be resolved, one could determine the FM4-64 intensity per cell. It would also be informative to evaluate the potential occurrence of cell death in this mutant. On another note, the current quantification of the FM4-64 fluorescence intensity and its normalization are not described in the methods. More importantly, an independent and more direct experimental assay is needed to confirm this point. For example, using a GCaMP6-T2A-RFP allele for Ca2+ imaging and signal normalization.

      (7) The authors used an acoustic startle response to elicit a behavioral response from the larvae and evaluate the "auditory response". They found a significative decrease in the response (movement trajectory, swimming velocity, distance) in the hsd17b7 mutant. The authors conclude that this gene is crucial for the "auditory function in zebrafish".

      This is an overstatement:

      (a) First, this test is adequate as a screening tool to identify animals that have lost completely the behavioral response to this acoustic and vibrational stimulation, which also involves a motor response. However, additional tests are required to confirm an auditory origin of the defect, such as Auditory Evoked Potential recordings, or for the vestibular function, the Vestibulo-Ocular Reflex.

      (b) Secondly, the behavioral defects observed in the mutant compared to the control are significantly different, but the differences are slight, contained within the Standard Deviation (20% for velocity, 25% for distance). To this point, the Figure 2 B and C plots are misleading because their y-axis do not start at 0.

      (8) Overexpression of HSD17B7 in cell line HEI-OC1 apparently "significantly increases" the intensity of cholesterol-related signal using a genetically encoded fluorescent sensor (D4H-mCherry). However, the description of this quantification (per cell or per surface area) and the normalization of the fluorescent signal are not provided.

      (9) When this experiment is conducted in vivo in zebrafish, a reduction in the "DH4 relative intensity" is detected (same issue with the absence of a detailed method description). However, as the difference is smaller than the standard deviation, this raises questions about the biological relevance of this result.

      (10) The authors identified a deaf child as a carrier of a nonsense mutation in HSB17B7, which is predicted to terminate the HSB17B7 protein before the transmembrane domain. However, as no genetic linkage is possible, the causality is not demonstrated.

      (11) Previous results obtained from mouse HSD17B7-KO (citation below) are not described in sufficient detail. This is critical because, in this paper, the mouse loss-of-function of HSD17B7 is embryonically lethal, whereas no apparent phenotype was reported in heterozygotes, which are viable and fertile. Therefore, it seems unlikely that heterozygous mice exhibit hearing loss or vestibular defects; however, it would be essential to verify this to support the notion that the truncated allele found in one patient is causal.

      Hydroxysteroid (17beta) dehydrogenase 7 activity is essential for fetal de novo cholesterol synthesis and for neuroectodermal survival and cardiovascular differentiation in early mouse embryos.

      Jokela H, Rantakari P, Lamminen T, Strauss L, Ola R, Mutka AL, Gylling H, Miettinen T, Pakarinen P, Sainio K, Poutanen M.<br /> Endocrinology. 2010 Apr;151(4):1884-92. doi: 10.1210/en.2009-0928. Epub 2010 Feb 25.

      (12) The authors used this truncated protein in their startle response and FM4-64 assays. First, they show that contrary to the WT version, this truncated form cannot rescue their phenotypes when overexpressed. Secondly, they tested whether this truncated protein could recapitulate the startle reflex and FM4-64 phenotypes of the mutant allele. At the homozygous level (not mentioned by the way), it can apparently do so to a lesser degree than the previous mutant. Again, the differences are within the Standard Deviation of the averages. The authors conclude that this mutation found in humans has a "negative effect" on hearing, which is again not supported by the data.

      (13) The authors looked at the distribution of the HSB17B7 in a cell line. The WT version goes to the ER, while the truncated one forms aggregates. An interesting experiment consisted of co-expressing both constructs (Figure S6) to see whether the truncated version would mislocalize the WT version, which could be a mechanism for a dominant phenotype. However, this is not the case.

      (14) Through mass spectrometry of HSB17B7 proteins in the cell line, they identified a protein involved in ER retention, RER1. By biochemistry and in a cell line, they show that truncated HSB17B7 prevents the interaction with RER1, which would explain the subcellular localization.

      Hydroxysteroid (17beta) dehydrogenase 7 activity is essential for fetal de novo cholesterol synthesis and for neuroectodermal survival and cardiovascular differentiation in early mouse embryos.

      Jokela H, Rantakari P, Lamminen T, Strauss L, Ola R, Mutka AL, Gylling H, Miettinen T, Pakarinen P, Sainio K, Poutanen M.<br /> Endocrinology. 2010 Apr;151(4):1884-92. doi: 10.1210/en.2009-0928. Epub 2010 Feb 25.

      (15) Information and specificity validation of the HSB17B7 antibody are not presented. It seems that it is the same used on mice by IF and on zebrafish by Western. If so, the antibody could be used on zebrafish by IF to localize the endogenous protein (not overexpression as done here). Secondly, the specificity of the antibody should be verified on the mutant allele. That would bring confidence that the staining on the mouse is likely specific.

    1. Reviewer #1 (Public review):

      This work by Antonnen et al. was triggered by claims of auditory-mediated effects on altricial avian embryos, which were published without any direct evidence that the relevant parental vocalizations were actually heard. I agree with Anttonen et al. that, based on the available evidence about avian auditory development, those claims are highly speculative and therefore necessitate more direct experimental verification.

      Attonen et al. have embarked on a comprehensive series of experiments to:

      (1) Better characterize acoustically the relevant parental vocalizations (heat whistles; in a separate preprint, not reviewed here)

      (2) Characterize the auditory sensitivity of zebra finches at various stages of their posthatching development. Despite the long-standing importance of the zebra finch as a songbird model in neuroethology of learned vocalizations, the auditory development of the species has not been studied so far.

      (3) Explore an alternative hypothesis of how the parental vocalizations might be perceived.

      The principal method used here is the non-invasive recording of ABR (auditory brainstem response), a standard neurophysiological method in auditory research. The click-evoked ABR provides a quick and objective assessment of basic hearing sensitivity that does not require animal training. Weaknesses of the technique include its limited frequency specificity and low signal-to-noise ratio. The authors are experienced with ABR measurements and well aware of those issues. ABR responses in zebra finches are shown to gradually appear during the first week posthatching and to mature in subsequent weeks, consistent with the auditory development in other altricial bird species studied previously. When matching the acoustic properties of parental heat whistles and auditory sensitivities, hearing of the parental heat whistles by zebra finch hatchlings was convincingly excluded. Although not directly measured, this also convincingly extrapolates to zebra finch embryos. Finally, the authors tested the hypothesis that parental heat whistles could induce perceptible vibrations of the egg and thus stimulate the embryo via a different modality. The method used here was laser doppler vibrometry, an appropriate, state-of-the-art technique that the authors also have proven experience with. The induced vibrations were shown to be several orders of magnitude below known vibrotactile sensitivities in mammals and birds. Thus, although zebra finch vibrotactile thresholds were not obtained directly, the hypothesis of vibrotactile perception of parental heat whistles by zebra finch embryos could also be rejected convincingly.

      In summary, even when considering some weaknesses of the techniques (which the authors are aware of), the conclusions of the paper are well supported: Auditory and/or vibration perception of parental heat whistles can be excluded as an explanation for previous reports of developmental programming for high ambient temperatures. As a constructive suggestion towards resolving the apparent paradox, the authors recommend repeating some of the crucial, previous playback experiments at lower sound levels that better match the natural parental vocalizations.

    2. Reviewer #2 (Public review):

      This study by Anttonen, Christensen-Dalsgaard, and Elemans describes the development of hearing thresholds in an altricial songbird species, the zebra finch. The results are very clear and along what might have been expected for altricial birds: at hatch (2 days post-hatch), the chicks are functionally deaf. Auditory evoked activity in the form of auditory brainstem responses (ABR) can start to be detected at 4 days post-hatch, but only at very loud sound levels. The study also shows that ABR response matures rapidly and reaches adult-like properties around 25 days post-hatch. The functional development of the auditory system is also frequency dependent, with a low-to-high frequency time course. All experiments are very well performed. The careful study throughout development and with the use of multiple time-points early in development is important to further ensure that the negative results found right after hatching are not the result of the experimental manipulation. The results themselves could be classified as somewhat descriptive, but, as the authors point out, they are particularly relevant and timely. Since 2016, there have been a series of studies published in high-profile journals that have presumably shown the importance of prenatal acoustic communication in altricial birds, mostly in zebra finches. This early acoustic communication would serve various adaptive functions. Although acoustic communication between embryos in the egg and parents has been shown in precocial birds (and crocodiles), finding an important function for prenatal communication in altricial birds came as a surprise. Unfortunately, none of those studies performed a careful assessment of the chicks' hearing abilities. This is done here, and the results are clear: zebra finches at 2 and 6 days post-hatch are functionally deaf. Since it is highly improbable that the hearing in the egg is more developed than at birth, one can only conclude that zebra finches in the egg (or at birth) cannot hear the heat whistles. The paper also ruled out the detection on egg vibrations as an alternative path. The prior literature will have to be corrected, or further studies conducted to solve the discrepancies. For this purpose, the "companion" paper on bioRxiv that studies the bioacoustical properties of heat calls from the same group will be particularly useful. Researchers from different groups will be able to precisely compare their stimuli.

      Beyond the quality of the experiments, I also found that the paper was very well written. The introduction was particularly clear and complete (yet concise).

      Weaknesses:

      My only minor criticism is that the authors do not discuss potential differences between behavioral audiograms and ABRs. Optimally, one would need to repeat the work of Okanoya and Dooling with your setup and using the same calibration. The ~20dB difference might be real, or it might be due to SPL measured with different instruments, at different distances, etc. Either way, you could add a sentence in the discussion that states that even with the 20 dB difference in audiogram heat whistles would not be detected during the early days post-hatch. But adding a (novel) behavioral assay in young birds could further resolve the issue.

      More Minor Points:

      (1) As mentioned in the main text, the duration of pips (from pips to bursts) affects the effective bandwidth of the stimulus. I believe that the authors could give an estimate of this effective bandwidth, given what is known from bird auditory filters. I think that this estimate could be useful to compare to the effective bandwidth of the heat-call, which can now also be estimated.

      (2) Figure 5b. Label the green and pink areas as song and heat-call spectrum. Also note that in the legend the authors say: "Green and red areas display the frequency windows related to the best hearing sensitivity of zebra finches and to heat calls, respectively". I don't think this is what they meant. I agree that 1-4 kHz is the best frequency sensitivity of zebra finches, but they probably meant green == "song frequency spectrum" and pink == "heat call spectrum". In either case, the figure and the legend need clarification.

      (3) Figure 5c. Here also, I would change the song and heat-call labels to "song spectrum", "heat call spectrum". The authors would not want readers to think that they used song and heat calls in these experiments (maybe next time?). For the same reason, maybe in 5a you could add a cartoon of the oscillogram of a frequency sweep next to your speaker.

      (4) Methods. In the description of the stimulus, the authors describe "5ms long tone bursts", but these are the tone pips in the main part of the manuscript. Use the same terms.

    3. Reviewer #3 (Public review):

      Summary

      Following recent findings that exposure to natural sounds and anthropogenic noise before hatching affects development and fitness in an altricial songbird, this study attempts to estimate the hearing capacities of zebra finch nestlings and the perception of high frequencies in that species. It also tries to estimate whether airborne sound can make zebra finch eggs vibrate, although this is not relevant to the question.

      Strength

      That prenatal sounds can affect the development of altricial birds clearly challenges the long-held assumption that altricial avian embryos cannot hear. However, there is currently no data to support that expectation. Investigating the development of hearing in songbirds is therefore important, even though technically challenging. More broadly, there is accumulating evidence that some bird species use sounds beyond their known hearing range (especially towards high frequencies), which also calls for a reassessment of avian auditory perception.

      Weaknesses

      Rather than following validated protocols, the study presents many experimental flaws and two major methodological mistakes (see below), which invalidate all results on responses to frequency-specific tones in nestlings and those on vibration transmission to eggs, as well as largely underestimating hearing sensitivity. Accordingly, the study fails to detect a response in the majority of individuals tested with tones, including adults, and the results are overall inconsistent with previous studies in songbirds. The text throughout the preprint is also highly inaccurate, often presenting only part of the evidence or misrepresenting previous findings (both qualitatively and quantitatively; some examples are given below), which alters the conclusions.

      Conclusion and impact

      The conclusion from this study is not supported by the evidence. Even if the experiment had been performed correctly, there are well-recognised limitations and challenges of the method that likely explain the lack of response. The preprint fails to acknowledge that the method is well-known for largely underestimating hearing threshold (by 20-40dB in animals) and that it may not be suitable for a 1-gram hatchling. Unlike what is claimed throughout, including in the title, the failure to detect hearing sensitivity in this study does not invalidate all previous findings documenting the impacts of prenatal sound and noise on songbird development. The limitations of the approach and of this study are a much more parsimonious explanation. The incorrect results and interpretations, and the flawed representation of current knowledge, mean that this preprint regrettably creates more confusion than it advances the field.

      Detailed assessment

      For brevity, only some references are included below as examples, using, when possible, those cited in the preprint (DOI is provided otherwise). A full review of all the studies supporting the points below is beyond the scope of this assessment.

      (A) Hearing experiment

      The study uses the Auditory Brainstem Response (ABR), which measures minute electrical signals transmitted to the surface of the skull from the auditory nerve and nuclei in the brainstem. ABR is widely used, especially in humans, because it is non-invasive. However, ABR is also a lot less sensitive than other methods, and requires very specific experimental precautions to reliably detect a response, especially in extremely small animals and with high-frequency sounds, as here.

      (1) Results on nestling frequency sensitivity are invalid, for failing to follow correct protocols:

      The results on frequency testing in nestlings are invalid, since what might serve as a positive control did not work: in adults, no response was detected in a majority of individuals, at the core of their hearing range, with loud 95dB sounds (Figure S1), when testing frequency sensitivity with "tone burst".

      This is mostly because the study used a stimulation duration 5 times larger than the norm. It used 25ms tone bursts, when all published avian studies (in altricial or precocial birds) used stimulation of 5ms or less (when using subdermal electrodes as here; e.g., cited: Brittan-Powell et al 2004; not cited: Brittan-Powell et al 2002 (doi: 10.1121/1.1494807), Henry & Lucas 2008 (doi: 10.1016/j.anbehav.2008.08.003)). Long stimulations do not make sense and are indeed known to interfere with the detection of an ABR response, especially at high frequencies, as, for example, explicitly tested and stated in Lauridsen et al 2021 (cited).

      Adult response was then re-tested with a correct 5ms tone duration ("tone-pip"), which showed that, for the few individuals that responded to 25ms tones, thresholds were abnormally high (c.a. by 30dB; Figure 2C).<br /> Yet, no nestlings were retested with a correct protocol. There is therefore no valid data to support any conclusion on nestling frequency hearing. Under these circumstances, the fact that some nestlings showed a response to 25ms tones from day 8 would argue against them having very low sensitivity to sound.

      (2) Responses to clicks underestimate hearing onset by several days:

      Without any valid nestling responses to tones (see # 1), establishing the onset of hearing is not possible based on responses to clicks only, since responses to clicks occur at least 4 days after responses to tones during development (Saunders et al, 1973). Here, 60% of 4-day-old individuals responding to clicks means most would have responded to tones at and before 2 days post-hatch, had the experiment been done correctly.<br /> Responses to tones are indeed observed in other songbirds at 1day post-hatch (see #6).

      In budgerigars, hearing onset occurs before 5 days post hatch, since responses to both clicks and tones were detectable at the first age tested at 5dph (Brittan-Powell et al, 2004).

      (3) Experimental parameters chosen lower ABR detectability, specifically in younger birds:

      Very fast stimulus repetition rate inhibits the ABR response, especially in young:

      (a) The stimulus presentation rate (25 stim/ sec) is 6 times faster than zebra finch heat-calls, and 5 to 25 times faster than most previous studies in young birds (e.g., cited: Saunders et al 1973, 1974: 1 stim/sec or less; Katayama 1985: 3.3 clicks/sec; Brittan-Powell et al 2004: 4 stim/sec). Faster rates saturate the neurons and accordingly are known to decrease ABR amplitude and increase ABR latency, especially in younger animals with an immature nervous system. In birds, this occurs especially in the range from 5 to 30 stim/sec (e.g., cited: Saunder et al 1973, Brittan-Powell et al 2004). Values here with 25 rather than 1-4 stim/min are therefore underestimating true sensitivity.

      (b) Averaging over only 400 measures is insufficient to reliably detect weak ABR signals:

      The study uses 2 to 3 times fewer measures per stimulation type than the recommended value of 1,000 (e.g., Brittan-Powell et al 2002, 2024; Henry & Lucas 2008). This specifically affects the detection of weak signals, as in small hatchlings with tiny brains (adult zebra finches are 12-14g).

      (c) Body temperature is not specified and strongly affects the ABR:

      Controlling the body temperature of hatchlings of 1-4 grams (with a temperature probe under a 5mm-wide wing) would be very challenging. Low body temperature entirely eliminates the ABR, and even slight deviance from optimal temperature strongly increases wave latency and decreases wave amplitude (e.g., cited: Katayama 1985).

      (d) Other essential information is missing on parameters known to affect the ABR:

      This includes i) the weight of the animals, ii) whether and how the response signal was amplified and filtered, iii) how the automatised S/N>2 criteria compared to visual assessment for wave detection, and iv) what measures were taken to allow the correct placement of electrodes on hatchlings less than 5 grams.

      (4) Results in adults largely underestimate sensitivity at high frequencies, and are not the correct reference point:

      (a) Thresholds measured here at high frequencies for adults (using the correct stimulus duration, only done on adults) are 10-30dB higher than in all 3 other published ABR studies in adult zebra finches (cited: Zevin et al 2004; Amin et al 2007; not cited: Noirot et al 2011 (10.1121/1.3578452)), for both 4 and 6 kHz tone pips.

      (b) The underlying assumption used throughout the preprint that hearing must be adult-like to be functional in nestlings does not make sense. Slower and smaller neural responses are characteristic of immature systems, but it does not mean signals are not being perceived.

      (5) Failure to account for ABR underestimation leads to false conclusions:

      (a) Whether the ABR method is suitable to assess hearing in very small hatchlings is unknown. No previous avian study has used ABR before 5 days post-hatch, and all have used larger bird species than the zebra finch.

      (b) Even when performed correctly on large enough animals, the ABR systematically underestimates actual auditory sensitivity by 20-40 dB, especially at high frequencies, compared to behavioural responses (e.g., none cited: Brittan-Powell et al 2002, Henry & Lucas 2008, Noirot et al 2011). Against common practice, the preprint fails to account for this, leading to wrong interpretations. For example, in Figure 1G (comparing to heat call levels), actual hearing thresholds would be 30-40dB below those displayed. In addition, the "heat whistle" level displayed here (from the same authors) is 15dB lower than their second measure that they do not mention, and than measures obtained by others (unpublished data). When these two corrections are made - or even just the first one - the conclusion that heat-call sound levels are below the zebra finch hearing threshold does not hold.

      (c) Rather than making appropriate corrections, the preprint uses a reference in humans (L180), where ABR is measured using a much more powerful method (multi-array EEG) than in animals, and from a larger brain. The shift of "10-20dB" obtained in humans is not applicable to animals.

      (6) Results are inconsistent with previous findings in developing songbirds:

      As expected from all of the above, results and conclusions in the preprint are inconsistent with findings in other songbirds, which, using other methods, show for example, auditory sensitivity in:

      (a) zebra finch embryos, in response to song vs silence (not cited: Rivera et al 2018, doi: 10.1097/WNR.0000000000001187)

      (b) flycatcher hatchlings at 2-3d post hatch (first age tested), across a wide range of frequencies (0.3 to 5kHz), at low to moderate sound levels (45-65dB) (cited: Aleksandrov and Dmitrieva 1992, not cited: Korneeva et al 2006 (10.1134/S0022093006060056)).

      (c) songbird nestlings at 2-6d post hatch, which discriminate and behaviourally respond to relevant parental calls or even complex songs. This level of discrimination requires good hearing across frequencies (e.g., not cited: Korneeva et al 2006; Schroeder & Podos 2023 (doi: 10.1016/j.anbehav.2023.06.015)).

      (d) zebra finch nestlings at 13d post-hatch, which show adult-like processing of songs in the auditory cortex (CNM) (Schroeder & Remage‐Healey 2021, doi: 10.1002/dneu.22802).

      (e) zebra finch juveniles, which are able to perceive and learn song syllables at 5-7kHz (fundamental frequency) with very similar acoustic properties to heat calls, and also produced during inspiration (Goller & Daley 2001, doi: 10.1098/rspb.2001.1805).

      NONE of these results - which contradict results and claims in the preprint - are mentioned. Instead, the preprint focuses on very slow-developing species (parrots and owls), which take 2-4 times longer than songbirds to fledge (cited: Brittan-Powell et al 2004; Köppl & Nickel 2007; Kraemer et al 2017).

      (7) Results in figures are misreported in the text, and conclusions in the abstract and headers are not supported by the data:

      For example:

      (a) The data on Figure 1E shows that at 4 days old, 8 out of 13 nestlings (60%) responded to clicks, but the text says only 5/13 responded (L89). When 60% (4dph) and 90% (6dph) of individuals responded, the correct term would be that "most animals", rather than "some animals" responded (L89). Saying that ABR to loud sound appeared "in the majority only after one week" (L93) is also incorrect, given the data. It follows that the title of the paragraph is also erroneous.

      (b) The hearing threshold is underestimated by 40dB at 6 and 8Kz on Fig 2C, not by "10-20dB" as reported in the text (L178).

      (B) Egg vibration experiment

      (8) Using airborne sound to vibrate eggs is biologically irrelevant:

      The measurement of airborne sound levels to vibrate eggs misunderstands bone conduction hearing and is not biologically meaningful: zebra finch parents are in direct contact with the eggs when producing heat calls during incubation, not hovering in front of the nest. This misunderstanding affects all extrapolations from this study to findings in studies on prenatal communication.

      (C) Misrepresentation of current knowledge

      (9) Values from published papers are misreported, which reverses the conclusions:

      Most critical examples:

      (a) Preprint: "Zebra finch most sensitive hearing range of 1-to-4 kHz (Amin et al., 2007; Okanoya and Dooling, 1987; Yeh et al., 2023)" (L173).<br /> Actual values in the studies cited are:

      1-to-7kHz, in Amin et al 2007 (threshold [=50dB with ABR] is the same at 7kHz and 1KHz).

      1-to-6 kHz, in Okanoya and Dooling (the threshold [=30dB with behaviour] is actually lower at 6kHz than at 1KHz).

      1-to-7kHz, in Yeh et al (threshold [=35-38dB with behaviour] is the same at 7kHz and 1KHz).

      Note that zebra finch nestlings' begging calls peaking at 6kHz (Elie & Theunissen 2015, doi: 10.1007/s10071-015-0933-6), would fall 2kHz above the parents' best hearing range if it were only up to 4kHz.

      (b) The preprint incorrectly states throughout (e.g., L139, L163, L248) that heat-calls are 7-10kHz, when the actual value is 6-10kHz in the paper cited (Katsis et al, 2018).

      (c) Using the correct values from these studies, and heat-calls at 45 dB SLP (as measured by others (unpublished data), or as measured by the authors themselves, but which is not reported here (Anttonen et a,l 2025), the correct conclusion is that heat calls fall within the known zebra finch hearing range.

      (10) Published evidence towards high-frequency hearing, including in early development, is systematically omitted:

      (a) Other studies showing birds use high frequencies above the known avian hearing range are ignored. This includes oilbirds (7-23kHz; Brinklov et al 2017; by 1 of the preprint authors, doi: 10.1098/rsos.170255) and hummingbirds (10-20kHz; Duque et al 2020, doi: 10.1126/sciadv.abb9393), and in a lesser extreme, zebra finches' inspiratory song syllables at 5-7kHz (Goller & Dalley, 2001).

      (b) The discussion of anatomical development (L228-241) completely omits the well-known fact that the avian basilar papilla develops from high to low frequencies (i.e., base to apex), which - as many have pointed out - is opposite to the low-to-high development of sensitivity (e.g., cited: Cohen & Fermin 1978; Caus Capdevila et al 2021).

      (c) High frequency hearing in songbirds at hatching is several orders of magnitude better than in chickens and ducks at the same age, even though songbirds are altricial (e.g., at 4kHz, flycatcher: 47dB, chicken-duck: 90dB; at 5kHz, flycatcher: 65dB, chicken-duck: 115dB; Korneeva et al 2006, Saunders et al 1974). That is because Galliformes are low-frequency specialists, according to both anatomical and ecological evidence, with calls peaking at 0.8 to 1.2kHz rather than 2-6kHz in songbirds. It is incorrect to conclude that altricial embryos cannot perceive high frequencies because low-frequency specialist precocial birds do not (L250;261).

      The references used to support the statement on a very high threshold for precocial birds above 6kHz are also wrong (L250). Katayama 1985 did not test embryos, nor frequency tones. Neither of these two references tested ducks.

      (11) Incorrect statements do not reflect findings from the references cited

      For example:

      (a) "in altricial bird species hearing typically starts after hatching" (L12, in abstract), "with little to no functional hearing during embryonic stages (Woolley, 2017)." (L33).

      There is no evidence, in any species, to support these statements. This is only a - commonly repeated - assumption, not actually based on any data. On the contrary, the extremely limited evidence to date shows the opposite, with zebra finch embryos showing ZENK activation in the auditory cortex in response to song playback (Rivera et al, 2018, not cited).

      The book chapter cited (Woolley 2017) acknowledges this lack of evidence, and, in the context of song learning, provides as only references (prior to 2018), 2 studies showing that songbirds do not develop a normal song if the song tutor is removed before 10d post-hatch. That nestlings cannot memorise (to later reproduce) complex signals heard before d10 does not mean that they are deaf to any sound before day 10.

      Studies showing hearing in young songbird nestlings (see point 6 above) also contradict these statements.

      (b) "Zebra finch embryos supposedly are epigenetically guided to adapt to high temperatures by their parents high-frequency "heat calls" " (L36 and L135).

      This is an extremely vague and meaningless description of these results, which cannot be assessed by readers, even though these results are presented as a major justification for the present study. Rather than giving an interpretation of what "supposedly" may occur, it would be appropriate to simply synthesize the empirical evidence provided in these papers. They showed that embryonic exposure to heat-calls, as opposed to control contact calls, alters a suite of physiological and behavioural traits in nestlings, including how growth and cellular physiology respond to high temperatures. This also leads to carry-over effects on song learning and reproductive fitness in adulthood.

      (c) "The acoustic communication in precocial mallard ducks depends specifically on the low-frequency auditory sensitivity of the embryo (Gottlieb, 1975)" (L253)

      The study cited (Gottlieb, 1975) demonstrates exactly the opposite of this statement: it shows that duckling embryos, not only perceive high frequency sounds (relative to the species frequency range), but also NEED this exposure to display normal audition and behaviour post-hatch. Specifically, it shows that duckling embryos deprived of exposure to their own high-frequency calls (at 2 kHz), failed to identify maternal calls post-hatch because of their abnormal insensitivity to higher frequencies, which was later confirmed by directly testing their auditory perception of tones (Dimitrieva & Gottlieb, 1994).

      (12) Considering all of the mistakes and distortions highlighted above, it would be very premature to conclude, based on these results and statements, that altricial avian embryos are not sensitive to sound. This study provides no actual scientific ground to support this conclusion.

    1. Reviewer #1 (Public review):

      Summary:

      Dorrego-Rivas et al. investigated two different DA neurons and their neurotransmitter release properties in the main olfactory bulb. They found that the two different DA neurons in mostly glomerular layers have different morphologies as well as electrophysiological properties. The anaxonic DA neurons are able to self-inhibit but the axon-bearing ones are not. The findings are interesting and important to increase the understanding both of the synaptic transmissions in the main olfactory bulb and the DA neuron diversity. However, there are some major questions that the authors need to address to support their conclusions.

      (1) It is known that there are two types of DA neurons in the glomerular layer with different diameters and capacitances (Kosaka and Kosaka, 2008; Pignatelli et al., 2005; Angela Pignatelli and Ottorino Belluzzi, 2017). In this manuscript, the authors need to articulate better which layer the imaging and ephys recordings took place, all glomerular layers or with an exception. Meanwhile, they have to report the electrophysiological properties of their recordings, including capacitances, input resistance, etc.

      (2) It is understandable that recording the DA neurons in the glomerular layer is not easy. However, the authors still need to increase their n's and repeat the experiments at least three times to make their conclusion more solid. For example (but not limited to), Fig 3B, n=2 cells from 1 mouse. Fig.4G, the recording only has 3 cells.

      (3) The statistics also use pseudoreplicates. It might be better to present the biology replicates, too.

      (4) In Figure 4D, the authors report the values in the manuscript. It is recommended to make a bar graph to be more intuitive.

      (5) In Figure 4F and G, although the data with three cells suggest no phenotype, the kinetics looked different. So, the authors might need to explore that aside from increasing the n.

      (6) Similarly, for Figure 4I and J, L and M, it is better to present and analyze it like F and G, instead of showing only the after-antagonist effect.

      Comments on revisions:

      In the rebuttal, the authors argued that it had been extremely hard to obtain recordings stable enough for before-and-after effects on the same cell. Alternatively, they could perform the before-and-after comparison on different cells.

    2. Reviewer #2 (Public review):

      Summary:

      This study provides novel insights into the neurotransmitter release mechanisms employed by two distinct subclasses of dopaminergic neurons in the olfactory bulb (OB). The findings suggest that anaxonic neurons primarily release neurotransmitters through their dendrites, whereas axon-bearing neurons predominantly release neurotransmitters via their axons. Furthermore, the study reveals that anaxonic neurons exhibit self-inhibitory behavior, indicating that closely related neuronal subclasses may possess specialized roles in sensory processing.

      Strengths:

      This study introduces a novel and significant concept, demonstrating that two closely related neuron subclasses can exhibit distinct patterns of neurotransmitter release. Therefore, this finding establishes a valuable framework for future investigations into the functional diversity of neuronal subclasses and their contributions to sensory processing. Furthermore, these findings offer fundamental insights into the neural circuitry of the olfactory bulb, enhancing our understanding of sensory information processing within this critical brain region.

      Weaknesses:

      The reliance on synaptophysin-based presynaptic structures raises minor concerns about whether these structures represent functional synapses.

      Comments on revisions:

      Most of the concerns have been addressed by the authors, and there are no further comments about this manuscript.

    1. Reviewer #1 (Public review):

      Summary:

      This paper investigates the physical mechanisms underlying cell intercalation, which then enables collective cell flows in confluent epithelia. The authors show that T1 transitions (the topological transitions responsible for cell intercalation) correspond to the unbinding of groups of hexatic topological defects. Defect unbinding, and hence cell intercalation and collective cell flows, are possible when active stresses in the tissue are extensile. This result helps to rationalize the observation that many epithelial cell layers have been found to exhibit extensile active nematic behavior.

      Strengths:

      The authors obtain their results based on a combination of active hexanematic hydrodynamics and a multiphase field (MPF) model for epithelial layers, whose connection is a strength of the paper. With the hydrodynamic approach, the authors find the active flow fields produced around hexatic topological defects, which can drive defect unbinding. Using the MPF simulations, the authors show that T1 transitions tend to localize close to hexatic topological defects.

    2. Reviewer #2 (Public review):

      Summary:

      This paper studies the role of hexatic defects in the collective migration of epithelia. The authors emphasize that epithelial migration is driven by cell intercalation events and not just isolated T1 events, and analyze this through the lens of hexatic topological defects. Finally, the authors study the effect of active and passive forces on the dynamics of hexatic defects using analytical results, and numerical results in both continuum and phase-field models. The results are very interesting, and highlight new ways of studying epithelial cell migration through the analysis of the binding and unbinding of hexatic defects.

      Strengths:

      (1) The authors convincingly argue that intercalation events are responsible for collective cell migration, and that these events are accompanied by the formation and unbinding of hexatic topological defects. (2) The authors clearly explain the dynamics of hexatic defects during T1 transitions, and demonstrate the importance of active and passive forces during cell migration. (3) The paper thorougly studies the T1 transition throught the viewpoint of hexatic defects. A continuum model approach to study T1 transitions in cell layers is novel and can lead to valuable new insights.

    1. Reviewer #1 (Public Review):

      Summary:

      This study by Park and colleagues uses longitudinal saliva viral load data from two cohorts (one in the US and one in Japan from a clinical trial) in the pre-vaccine era to subset viral shedding kinetics and then use machine learning to attempt to identify clinical correlates of different shedding patterns. The stratification method identifies three separate shedding patterns discriminated by peak viral load, shedding duration, and clearance slope. The authors also assess micro-RNAs as potential biomarkers of severity but do not identify any clear relationships with viral kinetics.

      Strengths:

      The cohorts are well developed, the mathematical model appears to capture shedding kinetics fairly well, the clustering seems generally appropriate, and the machine learning analysis is a sensible, albeit exploratory approach. The micro-RNA analysis is interesting and novel.

    2. Reviewer #2 (Public Review):

      Summary:

      This study argues it has found that it has stratified viral kinetics for saliva specimens into three groups by the duration of "viral shedding"; the authors could not identify clinical data or microRNAs that correlate with these three groups.

      Strengths:

      The question of whether there is a stratification of viral kinetics is interesting.

    3. Reviewer #3 (Public Review):

      The article presents a comprehensive study on the stratification of viral shedding patterns in saliva among COVID-19 patients. The authors analyze longitudinal viral load data from 144 mildly symptomatic patients using a mathematical model, identifying three distinct groups based on the duration of viral shedding. Despite analyzing a wide range of clinical data and micro-RNA expression levels, the study could not find significant predictors for the stratified shedding patterns, highlighting the complexity of SARS-CoV-2 dynamics in saliva. The research underscores the need for identifying biomarkers to improve public health interventions and acknowledges several limitations, including the lack of consideration of recent variants, the sparsity of information before symptom onset, and the focus on symptomatic infections.

      The manuscript is well-written, with the potential for enhanced clarity in explaining statistical methodologies. This work could inform public health strategies and diagnostic testing approaches.

      Comments on the revised version from the editor:

      The authors comprehensively addressed the concerns of all 3 reviewers. We are thankful for their considerable efforts to do so. Certain limitations remain unavoidable such as the lack of immunologic diversity among included study participants and lack of contemporaneous variants of concern.

      One remaining issue is the continued use of the target cell limited model which is sufficient in most cases, but misses key datapoints in certain participants. In particular, viral rebound is poorly described by this model. Even if viral rebound does not place these cases in a unique cluster, it is well understood that viral rebound is of clinical significance.

      In addition, the use of microRNAs as a potential biomarker is still not fully justified. In other words, are there specific microRNAs that have a pre-existing mechanistic basis for relating to higher or lower viral loads? As written it still feels like microRNA was included in the analysis simply because the data existed.

    1. Reviewer #2 (Public review):

      This study investigated the impact of early HIV specific CD8 T cell responses on the viral reservoir size after 24 weeks and 3 years of follow up in individuals who started ART during acute infection. Viral reservoir quantification showed that total and defective HIV DNA, but not intact, declined significantly between 24 weeks and 3 years post-ART. The authors also showed that functional HIV-specific CD8⁺ T-cell responses persisted over three years and that early CD8⁺ T-cell proliferative capacity was linked to reservoir decline, supporting early immune intervention in the design of curative strategies.

      The paper is well written, easy to read, and the findings are clearly presented. The study is novel as it demonstrates the effect of HIV specific CD8 T cell responses on different states of the HIV reservoir, that is HIV-DNA (intact and defective), the transcriptionally active and inducible reservoir. Although small, the study cohort was relevant and well-characterized as it included individuals who initiated ART during acute infection, 12 of whom were followed longitudinally for 3 years, providing unique insights into the beneficial effects of early treatment on both immune responses and the viral reservoir. The study uses advanced methodology. I enjoyed reading the paper.

      The study's limitations are minor and well acknowledged. While the cohort included only male participants-potentially limiting generalizability-the authors have clarified this limitation in the discussion. Although a chronic infection control group was not yet available, the authors explained that their protocol includes plans to add this comparison in future studies. These limitations are appropriately addressed and do not undermine the strength or validity of the study's conclusions.

    1. Reviewer #1 (Public review):

      Summary:

      The authors attempt to study how oocyte incomplete cytokinesis occurs in the mouse ovary.

      Strengths:

      The finding that UPR components are highly expressed during zygotene is an interesting result that has broad implications for how germ cells navigate meiosis. The findings that proteasome activity increases in germ cells compared to somatic cells suggest that the germline might have a quantitatively different response for protein clearance.

      Weaknesses:

      (1) The microscopy images look saturated, for example, Figure 1a, b, etc? Is this a normal way to present fluorescent microscopy?

      (2) The authors should ensure that all claims regarding enrichment/lower vs lower values have indicated statistical tests.

      (a) In Figure 2f, the authors should indicate which comparison is made for this test. Is it comparing 2 vs 6 cyst numbers?

      (b) Figures 4d and 4e do not have a statistical test indicated.

      (3) Because the system is developmentally dynamic, the major conclusions of the work are somewhat unclear. Could the authors be more explicit about these and enumerate them more clearly in the abstract?

      (4) The references for specific prior literature are mostly missing (lines 184-195, for example).

      (5) The authors should define all acronyms when they are first used in the text (UPR, EGAD, etc).

      (6) The jumping between topics (EMA, into microtubule fragmentation, polarization proteins, UPR/ERAD/EGAD, GCNA, ER, balbiani body, etc) makes the narrative of the paper very difficult to follow.

      (7) The heading title "Visham participates in organelle rejuvenation during meiosis" in line 241 is speculative and/or not supported. Drawing upon the extensive, highly rigorous Drosophila literature, it is safe to extrapolate, but the claim about regeneration is not adequately supported.

    2. Reviewer #2 (Public review):

      This study identifies Visham, an asymmetric structure in developing mouse cysts resembling the Drosophila fusome, an organelle crucial for oocyte determination. Using immunofluorescence, electron microscopy, 3D reconstruction, and lineage labeling, the authors show that primordial germ cells (PGCs) and cysts, but not somatic cells, contain an EMA-rich, branching structure that they named Visham, which remains unbranched in male cysts. Visham accumulates in regions enriched in intercellular bridges, forming clusters reminiscent of fusome "rosettes." It is enriched in Golgi and endosomal vesicles and partially overlaps with the ER. During cell division, Visham localizes near centrosomes in interphase and early metaphase, disperses during metaphase, and reassembles at spindle poles during telophase before becoming asymmetric. Microtubule depolymerization disrupts its formation.

      Cyst fragmentation is shown to be non-random, correlating with microtubule gaps. The authors propose that 8-cell (or larger) cysts fragment into 6-cell and 2-cell cysts. Analysis of Pard3 (the mouse ortholog of Par3/Baz) reveals its colocalization with Visham during cyst asymmetry, suggesting that mammalian oocyte polarization depends on a conserved system involving Par genes, cyst formation, and a fusome-like structure.

      Transcriptomic profiling identifies genes linked to pluripotency and the unfolded protein response (UPR) during cyst formation and meiosis, supported by protein-level reporters monitoring Xbp1 splicing and 20S proteasome activity. Visham persists in meiotic germ cells at stage E17.5 and is later transferred to the oocyte at E18.5 along with mitochondria and Golgi vesicles, implicating it in organelle rejuvenation. In Dazl mutants, cysts form, but Visham dynamics, polarity, rejuvenation, and oocyte production are disrupted, highlighting its potential role in germ cell development.

      Overall, this is an interesting and comprehensive study of a conserved structure in the germline cells of both invertebrate and vertebrate species. Investigating these early stages of germ cell development in mice is particularly challenging. Although primarily descriptive, the study represents a remarkable technical achievement. The images are generally convincing, with only a few exceptions.

      Major comments:

      (1) Some titles contain strong terms that do not fully match the conclusions of the corresponding sections.

      (1a) Article title "Mouse germline cysts contain a fusome-like structure that mediates oocyte development":

      The term "mediates" could be misleading, as the functional data on Visham (based on comparing its absence to wild-type) actually reflects either a microtubule defect or a Dazl mutant context. There is no specific loss-of-function of visham only.

      (1b) Result title, "Visham overlaps centrosomes and moves on microtubules":

      The term "moves" implies dynamic behavior, which would require live imaging data that are not described in the article.

      (1c) Result title, "Visham associates with Golgi genes involved in UPR beginning at the onset of cyst formation":

      The presented data show that the presence of Visham in the cyst coincides temporally with the expression and activity of the UPR response; the term "associates" is unclear in this context.

      (1d) Result title, "Visham participates in organelle rejuvenation during meiosis":

      The term "participates" suggests that Visham is required for this process, whereas the conclusion is actually drawn from the Dazl mutant context, not a specific loss-of-function of visham only.

      (2) The authors aim to demonstrate that Visham is a fusome-like structure. I would suggest simply referring to it as a "fusome-like structure" rather than introducing a new term, which may confuse readers and does not necessarily help the authors' goal of showing the conservation of this structure in Drosophila and Xenopus germ cells. Interestingly, in a preprint from the same laboratory describing a similar structure in Xenopus germ cells, the authors refer to it as a "fusome-like structure (FLS)" (Davidian and Spradling, BioRxiv, 2025).

    3. Reviewer #3 (Public review):

      This manuscript provides evidence that mice have a fusome, a conserved structure most well studied in Drosophila that is important for oocyte specification. Overall, a myriad of evidence is presented demonstrating the existence of a mouse fusome that the authors term visham. This work is important as it addresses a long-standing question in the field of whether mice have fusomes and sheds light on how oocytes are specified in mammals. Concerns that need to be addressed revolve around several conclusions that are overstated or unclear and are listed below.

      (1) Line 86 - the heading for this section is "PGCs contain a Golgi-rich structure known as the EMA granule" but there is nothing in this section that shows it is Golgi-rich. It does show that the structure is asymmetric and has branches.

      (2) Line 105-106, how do we know if what's seen by EM corresponds to the EMA1 granule?

      (3) Line 106-107-states "Visham co-stained with the Golgi protein Gm130 and the recycling endosomal protein Rab11a1". This is not convincing as there is only one example of each image, and both appear to be distorted.

      (4) Line 132-133---while visham formation is disrupted when microtubules are disrupted, I am not convinced that visham moves on microtubules as stated in the heading of this section.

      (5) Line 156 - the heading for this section states that Visham associates with polarity and microtubule genes, including pard3, but only evidence for pard3 is presented.

      (6) Lines 196-210 - it's strange to say that UPR genes depend on DAZ, as they are upregulated in the mutants. I think there are important observations here, but it's unclear what is being concluded.

      (7) Line 257-259---wave 1 and 2 follicles need to be explained in the introduction, and how this fits with the observations here clarified.

    1. Reviewer #1 (Public review):

      Summary:

      In this paper, the authors conduct both experiments and modeling of human cytomegalovirus (HCMV) infection in vitro to study how the infectivity of the virus (measured by cell infection) scales with the viral concentration in the inoculum. A naïve thought would be that this is linear in the sense that doubling the virus concentration (and thus the total virus) in the inoculum would lead to doubling the fraction of infected cells. However, the authors show convincingly that this is not the case for HCMV, using multiple strains, two different target cells, and repeated experiments. In fact, they find that for some regimens (inoculum concentration), infected cells increase faster than the concentration of the inoculum, which they term "apparent cooperativity". The authors then provided possible explanations for this phenomenon and constructed mathematical models and simulations to implement these explanations. They show that these ideas do help explain the cooperativity, but they can't be conclusive as to what the correct explanation is. In any case, this advances our knowledge of the system, and it is very important when quantitative experiments involving MOI are performed.

      Strengths:

      Careful experiments using state-of-the-art methodologies and advancing multiple competing models to explain the data.

      Weaknesses:

      There are minor weaknesses in explaining the implementation of the model. However, some specific assumptions, which to this reviewer were unclear, could have a substantial impact on the results. For example, whether cell infection is independent or not. This is expanded below.

      Suggestions to clarify the study:

      (1) Mathematically, it is clear what "increase linearly" or "increase faster than linearly" (e.g., line 94) means. However, it may be confusing for some readers to then look at plots such as in Figure 2, which appear linear (but on the log-log scale) and about which the authors also say (line 326) "data best matching the linear relationship on a log-log scale".

      (2) One of the main issues that is unclear to me is whether the authors assume that cell infection is independent of other cells. This could be a very important issue affecting their results, both when analyzing the experimental data and running the simulations. One possible outcome of infection could be the generation of innate mediators that could protect (alter the resistance) of nearby cells. I can imagine two opposite results of this: i) one possibility is that resistance would lead to lower infection frequencies and this would result in apparent sub-linear infection (contrary to the observations); or ii) inoculums with more virus lead to faster infection, which doesn't allow enough time for the "resistance" (innate effect) to spread (potentially leading to results similar to the observations, supra-linear infection).

      (3) Another unclear aspect of cell infection is whether each cell only has one chance to be infected or multiple chances, i.e., do the authors run the simulation once over all the cells or more times?

      (4) On the other hand, the authors address the complementary issue of the virus acting independently or not, with their clumping model (which includes nice experimental measurements). However, it was unclear to me what the assumption of the simulation is in this case. In the case of infection by a clump of virus or "viral compensation", when infection is successful (the cell becomes infected), how many viruses "disappear" and what happens to the rest? For example, one of the viruses of the clump is removed by infection, but the others are free to participate in another clump, or they also disappear. The only thing I found about this is the caption of Figure S10, and it seems to indicate that only the infected virus is removed. However, a typical assumption, I think, is that viruses aggregate to improve infection, but then the whole aggregate participates in infection of a single cell, and those viruses in the clump can't participate in other infections. Viral cooperativity with higher inocula in this case would be, perhaps, the result of larger numbers of clumps for higher inocula. This seems in agreement with Figure S8, but was a little unclear in the interpretation provided.

      (5) In algorithm 1, how does P_i, as defined, relate to equation 1?

      (6) In line 228, and several other places (e.g., caption of Table S2), the authors refer to the probability of a single genome infecting a cell p(1)=exp(-lambda), but shouldn't it be p(1)=1-exp(-lambda) according to equation 1?

      (7) In line 304, the accrued damage hypothesis is defined, but it is stated as a triggering of an antiviral response; one would assume that exposure to a virion should increase the resistance to infection. Otherwise, the authors are saying that evolution has come up with intracellular viral resistance mechanisms that are detrimental to the cell. As I mentioned above, this could also be a mechanism for non-independent cell infection. For example, infected cells signal to neighboring cells to "become resistance" to infection. This would also provide a mechanism for saturation at high levels.

      (8) In Figure 3, and likely other places, t-tests are used for comparisons, but with only an n=5 (experiments). Many would prefer a non-parametric test.

    2. Reviewer #2 (Public review):

      In their article, Peterson et al. wanted to show to what extent the classical "single hit" model of virion infection, where one virion is required to infect a cell, does not match empirical observations based on human cytomegalovirus in vitro infection model, and how this would have practical impacts in experimental protocols.

      They first used a very simple experimental assay, where they infected cells with serially diluted virions and measured the proportion of infected cells with flow cytometry. From this, they could elegantly show how the proportion of infected cells differed from a "single hit" model, which they simulated using a simple mathematical model ("powerlaw model"), and better fit a model where virions need to cooperate to infect cells. They then explore which mechanism could explain this apparent cooperation:

      (1) Stochasticity alone cannot explain the results, although I am unsure how generalizable the results are, because the mathematical model chosen cannot, by design, explain such observations only by stochasticity.

      (2) Virion clumping seemed not to be enough either to generally explain such a pattern. For that, they first use a mathematical model showing that the apparent cooperation would be small. However, I am unsure how extreme the scenario of simulated virion clumping is. They then used dynamic light scattering to measure the distribution of the sizes of clumps. From these estimates, they show that virion clumps cannot reproduce the observed virion cooperation in serial dilution assays. However, the authors remain unprecise on how the uncertainty of these clumps' size distribution would impact the results, as most clumps have a size smaller than a single virion, leaving therefore a limited number of clumps truly containing virions.

      The two models remain unidentifiable from each other but could explain the apparent virion cooperativity: either due to an increase in susceptibility of the cell each time a virion tries to infect it, or due to viral compensation, where lesser fit viruses are able to infect cells in co-infection with a better fit virion. Unfortunately, the authors here do not attempt to fit their mathematical model to the experimental data but only show that theoretical models and experimental data generate similar patterns regarding virion apparent cooperation.

      Finally, the authors show that this virions cooperation could make the relationship between the estimated multiplicity of infection and viruses/cell deviate from the 1:1 relationship. Consequently, the dilution of a virion stock would lead to an even stronger decrease in infectivity, as more diluted virions can cooperate less for infection.

      Overall, this work is very valuable as it raises the general question of how the estimate of infectivity can be biased if extrapolated from a single virus titer assay. The observation that HCMV virions often cooperate and that this cooperation varies between contexts seems robust. The putative biological explanations would require further exploration.

      This topic is very well known in the case of segmented viruses and the semi-infectious particles, leading to the idea of studying "sociovirology", but to my knowledge, this is the first time that it was explored for a nonsegmented virus, and in the context of MOI estimation.

    3. Reviewer #3 (Public review):

      Summary:

      The authors dilute fluorescent HCMV stocks in small steps (df ≈ 1.3-1.5) across 23 points, quantify infections by flow cytometry at 3 dpi, and fit a power-law model to estimate a cooperativity parameter n (n > 1 indicates apparent cooperativity). They compare fibroblasts vs epithelial cells and multiple strains/reporters, and explore alternative mechanisms (clumping, accrued damage, viral compensation) via analytical modeling and stochastic simulations. They discuss implications for titer/MOI estimation and suggest a method for detecting "apparent cooperativity," noting that for viruses showing this behavior, MOI estimation may be biased.

      Strengths:

      (1) High-resolution titration & rigor: The small-step dilution design (23 serial dilutions; tailored df) improves dose-response resolution beyond conventional 10× series.

      (2) Clear quantitative signal: Multiple strain-cell pairs show n > 1, with appropriate model fitting and visualization of the linear regime on log-log axes.

      (3) Mechanistic exploration: Side-by-side modeling of clumping vs accrued damage vs compensation frames testable hypotheses for cooperativity.

      Weaknesses:

      (1) Secondary infection control: The authors argue that 3 dpi largely avoids progeny-mediated secondary infection; this claim should be strengthened (e.g., entry inhibitors/control infections) or add sensitivity checks showing results are robust to a small secondary-infection contribution.

      (2) Discriminating mechanisms: At present, simulations cannot distinguish between accrued damage and viral compensation. The authors should propose or add a decisive experiment (e.g., dual-color coinfection to quantify true coinfection rates versus "priming" without coinfection; timed sequential inocula) and outline expected signatures for each mechanism.

      (3) Decline at high genomes/cell: Several datasets show a downturn at high input. Hypotheses should be provided (cytotoxicity, receptor depletion, and measurement ceiling) and any supportive controls.

      (4) Include experimental data: In Figure 6, please include the experimentally measured titers (IU/mL), if available.

      (5) MOI guidance: The practical guidance is important; please add a short "best-practice box" (how to determine titer at multiple genomes/cell and cell densities; when single-hit assumptions fail) for end-users.

    1. Reviewer #1 (Public review):

      Summary:

      The authors use high-resolution ribosome profiling (Ezra-seq) and eRF1 pulldown-based ribosome profiling (eRF1-seq) developed in their lab to identify a GA rich sequence motif located upstream of the stop codon responsible for translation termination pausing. They then perform a massively parallel assay with randomly generated sequences to further characterize this motif. Using mouse tissues, they show that termination pausing signatures can be tissue-specific. They use a series of published ribosome structures and 18S rRNA mutants, and eS26 knockdown experiments to propose that the GA rich sequence interacts with the 3′-end of the 18S rRNA.

      Strengths:

      (1) Robust ribosome profiling data and clear analyses clarify the subtle behavior of terminating ribosomes near the stop codon.

      (2) Novel termination or "false termination" sites revealed by eRF1-seq in the 5′-UTR, 3′-UTR, and CDS highlight a previously underappreciated facet of translation dynamics.

      Weakness:

      (1) Modest effects seen in ABCE1 knockdown do not seem to add up to the level of regulation. The authors state "ABCE1 regulates terminating ribosomes independent of the sequence context" on pg 9, and "ABCE1 modulates termination pausing independent of the mRNA sequence context" in the figure caption for Figure S4. Given the modest effect of the knockdown, such phrasing is most likely not supported. Further clarification of "ABCE1 plays a generic role in translation termination" is necessary.

      (2) The authors propose that the GA rich sequence element upstream of the stop codon on the mRNA could potentially base pair with the 3′-end of the 18S rRNA. In the PDBs the authors reference in their paper and also in 3JAG, 3JAH, 3JAI (structures of terminating ribosomes with the stop codon in the A-site and eRF1), the mRNA exiting the ribosome and the 3′-end of the 18S rRNA are about 25-30 A apart. In addition, a segment of eS26 is wedged in between these two RNA segments. This reviewer noted this arrangement in a random sampling of 5 other PDBs of mammalian and human ribosome 80S structures. How do the authors anticipate the base pairing they have proposed to occur in light of these steric hindrances? RpsS26 is known to be released by Tsr2 in yeast during very specific stresses. Is it their expectation that termination pausing in human/mammalian cells happens during stressful conditions only?

      (3) The authors say, "It is thus likely that mRNA undergoes post-decoding scanning by 18S rRNA." (pg. 10). It is unclear what the authors mean by "scanning." Do they mean that the mRNA gets scanned in a manner similar to scanning during initiation? There is no evidence presented to support that particular conclusion.

      (4) Role of termination pausing in the testis is highly speculative. The authors state: "It is thus conceivable that the wide range of ribosome density at stop codons in testis facilitates functional division of ribosome occupancy beyond the coding region." It is unclear what type of functional division they are referring to.

    2. Reviewer #2 (Public review):

      Summary:

      This paper presents results interpreted to indicate that sequences upstream of stop codons capable of base-pairing with the 3' end of 18S rRNA prolong the dwell time of 80S ribosomes at stop codons in a manner impeded by Rps26 in the 40S subunit exit channel, which leads to the proper completion of termination and ribosome recycling and prevents spurious translation of 3'UTR sequences by one or more unconventional mechanisms.

      Strengths:

      The standard 80S and selective eRF1 80S ribosome profiling data obtained using EZRA-Seq are of high quality, allowing the authors to detect an enrichment for purine-rich sequences upstream of stop codons at sites where termination is relatively slow and ribosomal complexes are paused with eRF1 still engaged in the A site.

      Weaknesses:

      There are many weaknesses in the experimental design, interpretation of results, and description of assay design and assumptions, the data obtained, and the interpretation of results, all of which detract from the scientific quality and significance of this work. In fact, a large proportion of paragraphs in the text and figure panels present some difficulty either in understanding how the experiment or data analysis was conducted or what the authors wish to conclude from the results, or that stem from an overinterpretation of findings or failure to consider other equally likely explanations.

    3. Reviewer #3 (Public review):

      Summary:

      This study from Jia et al carried out a variety of analyses of terminating ribosomes, including the development of eRF1-seq to map termination sites, identification of a GA-rich motif that promotes ribosome pausing, characterization of tissue-specific termination dynamics, and elucidation of the regulatory roles of 18S rRNA and RPS26. Overall, the study is thoughtfully designed, and its biological conclusions are well supported by complementary experiments. The tools and datasets generated provide valuable resources for researchers investigating the mechanisms of RNA translation.

      Strengths:

      (1) The study introduces eRF1-seq, a novel approach for mapping translation termination sites, providing a methodological advance for studying ribosome termination.

      (2) Through integrative bioinformatic analyses and complementary MPRA experiments, the authors demonstrate that GA-rich motifs promote ribosome pausing at termination sites and reveal possible regulatory roles of 18S rRNA in this process.

      (3) The study characterizes tissue-specific ribosome termination dynamics, showing that the testis exhibits stronger ribosome pausing at stop codons compared to other tissues. Follow-up experiments suggest that RPS26 may contribute to this tissue specificity.

      Weaknesses:

      The biological significance of ribosome pausing regulation at translation termination sites or of translational readthrough, for example, across different tissue types, remains unclear. Nevertheless, this question lies beyond the primary scope of the current study.

    4. Reviewer #4 (Public review):

      Summary:

      This manuscript by Qian and colleagues utilizes ribosome profiling, and reporter assays to dissect translation termination. Unfortunately, the data do not support the conclusions of the paper, controls are missing and several assays are not well validated and do not reproduce previous findings from others.

      Specific comments:

      • Translation termination has been studied in several organisms including mammalian cells and yeast. In those cases what is analyzed is not the peak height at the stop codon, but rather the difference in the ribosome density before and after the stop. Thus, analyzing peak height is not validated. I understand that this is relevant only for the ribosome profiling experiments (and Ezra-seq) not the RF1 profiling. But much of the data was acquired that way.

      • Moreover, the data do not reproduce previous findings and no effort is made to connect them to previous data. Previous data has shown that stop codon efficacy varies. This is not reproduced (S1C). Similarly, an effect from the +1 residue is not reproduced. The data isn't even stratified by different stop codons as previous work has shown that different surrounding residues have different effects in the context of different stop codons. Thus, none of the sequencing data is validated or trusted and does not reproduce previous findings.

      • The GA-rich sequence identified by Ezra-Seq and RF1 seq is not the same and it differs from previous sequences (Wangen &Green).

      • The authors claim that the majority of Rf1 peaks is at stop codons, but that is not true. It is only about 30% of the peaks. Also, not all mRNAs have peaks at the stop codons. That is at best problematic. Finally, there are mRNAs that are known to "suffer" from NMD, what do these look like in the Ezra-Seq and RF1-Seq? How about mRNAs that have programmed frameshifts? This raises questions on the validity of the eRF1 data.

      • Figure 4: First, instead of M/P ratio, one should analyze M/M+P, to normalize out differences in the loading and effects from collisions, which are guaranteed to occur here, but not considered or analyzed. Second, the data are analyzed as if what matters are codons in the P and E site (and beyond, where there are definitely NOT recognized codons). While there is evidence for some interactions, one would think that an additional analysis based on sequence would be helpful. Also, the supplemental data indicates that very rarely are there reciprocal changes (as should be the case), and as seen for stop codons.

      • Regarding the HiBit reporter assay: The two sequecnes clearly have effects on translation without considering stop codon context (Figure 4C), which need to be taken into account. Also, the effect from the sequences varies in the context of the assay in 4C and 4D (2-fold vs .5 fold), further questioning the assay. Moreover, the authors claim that re-initiation cannot account for Hibit levels, but that is clearly incorrect. The western in Figure 4E does not reproduce the data in 4D. While Hibit goes up (as in 4D, the putative GFP-fusion goes down. Finally, while the second reading frame should be more efficient is not explained and further argues for an artifact. Previous work (and work herein) suggests that read-through occurs equally in each reading frame. No controls for these assays are presented: e.g. stimulation by antibiotics, ABCE1 depletion, etc.

      • Figure 5 has similar problems. I don't understand how the Figure in 5A is made, but when you overlay the cited structures on Rps26, the molecules are identical. I guess the authors used some fantasy to build non-existing sequences differently into the structure. There is no basis for that. In panel C and the same in Figure 7, the number of analyzed mRNAs varies. This could influence the outcome and the EXACT same set of mRNAs should be analyzed. But the main problem here is that the authors need to analyze readthrough and not peak height as detailed above. Essential controls are missing that show what fraction of the 18S rRNA is mutated. Previous work has shown that 2 nt truncated 18S rRNA is actively degraded. It is hard to believe how 15% of altered ribosomes can abolish 100% of the effect from the C-rich sequences. Important validation is missing: the authors should analyze rRNA sequences in their ribo-seq dataset to demonstrate that they have the mutated rRNAs, and that these enrich and de-enrich as predicted.

      • In Figure 5-7 the authors develop a model that the sequence selectivity arises from base pairing between 18S rRNA and the mRNA. If so, then they should really stratify the data by number of WC pairs that can be formed. And only WC pairs, as GU pairs have a totally different geometry that will likely be discriminated against in this context. Also, the mutation is in a part of the helix that has no effect (Figure S3G). Thus, the data within the manuscript are inconsistent.

      • Figure 6 does not agree with published data (Li et al., Nature 2022). Previous work did not show testis-depletion of Rps26 in purified ribosomes. This is the critical difference as the authors here did not purify ribosomes. Also, another Rps is an essential control, even if purified ribosomes are used. The validity of this dataset is thus questionable . Depletion from polysomes is hard to believe, as overall there is less signal in the polysomes.

      • Figure 7 has similar problems as figure 5. Different pools of mRNAs are analyzed; peak height is not validated. Overexpression of Rps26 is not shown, as only Myc is shown, not Rps26. Beyond that, increased occupancy in ribosomes needs to be shown for the effect to come from ribosomes. Given how sick the cells are it is most likely that all effects are secondary and arise from whatever else is going on in the overexpression or depletion of Rps26. No controls are presented to show specific effects from Rps26.

      • The authors need to check Rli1/ABCE levels in their cells. Their data have features that are indicative of low ABCE1 levels. These include a very small effect from ABCE1 depletion. These could be responsible for some of the effects they observe.

    1. Reviewer #1 (Public review):

      Microglia are mononuclear phagocytes in the CNS and play essential roles in physiology and pathology. In some conditions, circulating monocytes may infiltrate in the CNS and differentiated into microglia or microglia-like cells. However, the specific mechanism is large unknown. In this study, the authors explored the epigenetic regulation of this process. The quality of this study will be significantly improved if a few questions are addressed.

      (1) The capacity of circulating myeloid cell-derived microglia are controversial. In this study, the authors utilized CX3CR1-GFP/CCR2-DsRed (hetero) mice as a lineage tracing line. However, this animal line is not an appropriate approach for this purpose. For example, when the CX3CR1-GFP/CCR2-DsRed as the undifferentiated donor cell, they are GFP+ and DsRed+. When the cell fate has been changed to microglia, they will change into GFP+ and DsRed- cells. However, this process is mediated with busulfan and artificially introduced bone marrow cells in the circulating cell, which is not existed in physiological and pathological conditions. These artifacts will potentially bring in artifacts and confound the conclusion, as the classical wrong text book knowledge of the bone marrow derived microglia theory and subsequently corrected by Fabio Rossi lab1,2. This is the most risk for drawing this conclusion. The top evidence is from the parabiosis animal model. Therefore, A parabiosis study before making this conclusion, combining a CX3CR1-GFP (hetero) mouse with a WT mouse without busulfan conditioning and looking at whether there are GFP+ microglia in the GFP- WT mouse brain. If there are no GFP+ microglia, the author should clarify this is not a physiological or pathological condition, but a defined artificial host condition, as previously study did3.

      (2) In some conditions, peripheral myeloid cells can infiltrate and replace the brain microglia4,5. Discuss it would be helpful to better understand the mechanism of microglia replacement.

      References:

      (1) Ajami, B., Bennett, J.L., Krieger, C., Tetzlaff, W., and Rossi, F.M. (2007). Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nature neuroscience 10, 1538-1543. 10.1038/nn2014.

      (2) Ajami, B., Bennett, J.L., Krieger, C., McNagny, K.M., and Rossi, F.M.V. (2011). Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nature neuroscience 14, 1142-1149. http://www.nature.com/neuro/journal/v14/n9/abs/nn.2887.html#supplementary-information.

      (3) Mildner, A., Schmidt, H., Nitsche, M., Merkler, D., Hanisch, U.K., Mack, M., Heikenwalder, M., Bruck, W., Priller, J., and Prinz, M. (2007). Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nature neuroscience 10, 1544-1553. 10.1038/nn2015.

      (4) Wu, J., Wang, Y., Li, X., Ouyang, P., Cai, Y., He, Y., Zhang, M., Luan, X., Jin, Y., Wang, J., et al. (2025). Microglia replacement halts the progression of microgliopathy in mice and humans. Science 389, eadr1015. 10.1126/science.adr1015.

      (5) Xu, Z., Rao, Y., Huang, Y., Zhou, T., Feng, R., Xiong, S., Yuan, T.F., Qin, S., Lu, Y., Zhou, X., et al. (2020). Efficient strategies for microglia replacement in the central nervous system. Cell reports 32, 108041. 10.1016/j.celrep.2020.108041.

    2. Reviewer #2 (Public review):

      Mouse fate mapping studies have established that the bulk of microglia derives from cells that seed the brain early during development. However, monocytes were also shown to give rise to parenchymal CNS macrophages and thus are potential candidates for microglia replacement therapy. Whether monocyte-derived cells adopt bona fide microglia identities has remained under debate. The study of Liu et al addresses this important outstanding question, focusing on the retina.

      Specifically, the authors investigate monocyte-derived macrophages that arise upon challenges in the murine retina using scRNAseq and ATACseq analyses, combined with flow cytometry and histology. They complement this approach with an analysis of BM chimeras and analyses of the latter. The authors conclude that monocyte-derived cells acquire markers that have originally been proposed to be microglia-specific, including P2ry12, Tmem119, and Fcrls.

      In 2018, four comprehensive independent studies reported the analyses of monocyte-derived CNS macrophages (PMID 30451869, 30523248, 29643186, 29861285). Following transcriptome and epigenome analyses, these teams came to the collective conclusion that HSC-derived cells remain distinct from microglia. Using advanced fate mapping and better isolation and profiling tools, a more recent study, however, concluded that, if given sufficient time of CNS residence, most monocyte-derived macrophages can, at the transcriptome level, become essentially identical to microglia (PMID 40279248, https://www.biorxiv.org/content/10.1101/2023.11.16.567402v1).

      Given this controversy, the study of Paschalis and colleagues, which focuses largely on retinal monocyte-derived cells, could have been a valuable resource and complement for clarification. Indeed, interestingly, their data suggest that microglia adaptation of monocyte-derived macrophages might be faster in the retina than in the CNS. However, for the reasons outlined below, the study falls in its present form short of providing significant new insight and is a missed opportunity.

      Comments:

      The major shortcoming of the study is that the authors decided to focus on a very limited number of genes to make their case, rather than performing a more informative, unbiased, and detailed global analysis. In contrast to what the authors state, much of the microglia community is, I believe, aware of experimental limitations and the problem with markers. Showing gain of microglia marker expression on monocyte-derived cells, or loss of monocyte markers, such as Ly6C, is not novel.

      This is highlighted Fig. 3F. No one argues today that monocyte-derived tissue macrophages differ from blood monocytes (although the authors repeatedly emphasize this as novelty). However, the heatmap shows that the engrafted cells clearly differ from naïve and injured microglia. What are these genes, their associated pathways ?

      Also, how about expression of the Sall1 gene that encodes a repressor that is considered important to maintain microglia identity (PMID37322178, 27776109). Somewhat surprisingly, Sall1 was recently also shown to be expressed by monocyte-derived CNS macrophages (PMID 40279248). It would be valuable information if the authors can corroborate this finding.

      The authors state in their discussion that monocyte-derived macrophages seem 'hardwired for inflammatory responses'. While this is an interesting suggestion, the NFkB motif enrichment is insufficient and should be complemented with a target list. Again, it would be important to be aware of heterogeneity.

      A critical factor when analyzing CNS macrophages is the exclusion of perivascular CNS border-associated cells, which also holds for the retina (see PMID 38596358). This should be addressed. Can the authors discriminate BAM from microglia in their scRNAseq data set, for instance, by their CD206 expression or other markers ? BAM have been shown to display distinct transcriptomes and even as a contamination could introduce significant bias.

      Even for the genes the authors focus on, it is hard to understand from the way the authors present the data what fraction of cells are positive. This would be critical information since there could be some heterogeneity. Flowcytometry analysis, including double staining for P2ry12, Tmem119, and Fcrls to see correlations, would here be valuable.

      The authors state in their title that 'epigenetic adaptation drives monocyte differentiation'. However, since all gene expression is governed by the epigenome, this is trivial. I would argue that to gain meaningful insight and justify such a statement, it would require an in-depth global comparative analysis of the chromatin status of yolk sac microglia and monocyte-derived CNS macrophages, including CUT&RUN analysis for specific histone marks and methylation patterns.

      Please cite and discuss PMID 30451869, 30523248, 29643186, 29861285, and in particular the more recent highly relevant study PMID 40279248.

    1. Reviewer #1 (Public review):

      This paper investigates how heparan sulfate (HS) engagement functions in the cellular entry of SARS-CoV-2. A prevailing model that has been developed over the last five years by work from many laboratories using a variety of biochemical, structural, and microscopic approaches is that HS acts a co-receptor for SARS-CoV-2; its binding to SARS-CoV-2 both concentrates virus on the surface of target cells and allosterically alters the spike protein to promote an "up/open" RBD conformation that enables engagement of the proteinaceous receptor human ACE2 on the cell surface (PMID: 32970989, 35926454, 38055954, 39401361, 40548749). These two events enable plasma membrane fusion (after a cleavage event promoted by plasma membrane TMPSS2) or endocytosis and subsequent pH-dependent fusion (which requires a cathepsin L-mediated cleavage of the spike).

      The authors in this study used a series of microscopy techniques, labeled pseudoviruses and authentic SARS-CoV-2 strains, and cells lacking or expressing HS and/or hACE2 to re-examine the specific stage(s) HS and hACE2 function in the entry process. They suggest that HS mediates SARS-CoV-2 cell-surface attachment and endocytosis, and that hACE2 functions "downstream" of this to facilitate productive infection. Their results also suggest that SARS-CoV-2 binds clusters of HS molecules projecting 60-410 nm, which act as docking sites for viral attachment. Blocking HS binding with pixantrone, a drug under clinical evaluation for cancer (due to its anti-topoisomerase II activity), inhibited SARS-CoV-2 Omicron JN.1 variant from attaching to and infecting human airway cells. The authors conclude that their work establishes a revised entry paradigm in which HS clusters mediate SARS-CoV-2 attachment and endocytosis, with ACE2 acting at some stage downstream. They speculate this idea might apply broadly to other viruses known to engage HS and has translational implications for developing antiviral agents that target HS interactions.

      The strengths of the interesting and technically well-executed study include the use of multiple high-resolution microscopy modalities, the tracking of labelled viruses, the use of both pseudoviruses and authentic SARS-CoV-2, and the use of primary airway cells. Nonetheless, there are issues that need to be addressed to buttress the proposed model compared to earlier ones. These include: (a) the distinction between macropinocytosis and receptor-mediated endocytosis and what this might mean for productive SARS-CoV-2 infection; (b) the need to account for TMPRSS2 expression and plasma membrane fusion; (c) addition of genetic studies in which hACE2 is expressed in cells lacking HS; (d) an unclear picture of exactly where downstream hACE2 functions; and (e) and a need for comparative/additional study of earlier SARS-CoV-2 variants, which preferentially fuse at the plasma membrane.

    2. Reviewer #2 (Public review):

      In this manuscript by Han et al, the authors assess the binding of SARS-CoV-2 to heparan sulfate clusters via advanced light microscopy of viral particles. The authors claim that the SARS-CoV-2 spike (in the context of pseudovirus and in authentic virus) engages heparan sulfate clusters on the cell surface, which then promotes endocytosis and subsequent infection. The finding that HSPGs are important for SARS-CoV-2 entry in some cell types is well-described, but the authors attempt to make the claim here that HS represents an alternative "receptor" and that HS engagement is far more important than the field appreciates. The data itself appears to be of appropriate quality and would be of interest to the field, but the overly generalized conclusions lack adequate experimental support. This significantly diminishes enthusiasm for this manuscript as written. The manuscript is imprecise and far overstates the actual findings shown by the data. Additional controls would be of great benefit.

      Further, it is this reviewer's opinion that the findings do not represent a novel paradigm as claimed. HS has been well described for SARS-CoV-2 and other viruses to serve as attachment factors to promote initial virus attachment. While the manuscript provides new insight into the details of this process, the manuscript attempts to oversell this finding by applying new words rather than new molecular details. The authors would be better served by presenting a more balanced and nuanced view of their interesting data. In this reviewer's opinion, the salesmanship significantly detracts from the data and manuscript.

      Major Comments:

      The authors need to rigorously define a "receptor" vs an "attachment factor." They also should avoid ambiguous terms such as "receptor underlying ...attachment" and "attachment receptor" (or at least clearly define them). Much of their argument hinges on the specific definition of these terms. This reviewer would argue that a receptor is a host factor that is necessary and sufficient for active promotion of viral entry (genome release into the cytoplasm), while an attachment factor is a host factor that enhances initial viral attachment/endocytosis but is neither necessary nor sufficient. The evidence does NOT implicate HS as a receptor under this fairly textbook definition. This is proven in Figure 1 (and elsewhere) in which ACE2 is absolutely required for viral entry.

      The authors should genetically perturb HS biosynthesis in their key assays to demonstrate necessity. HS biosynthesis genes have been shown to be important for SARS-CoV-2 entry into some cells but not others (Huh7.5 cells PMID 33306959, but not in Vero cells PMID 33147444, Calu3 cells 35879413, A549 cells 33574281, and others 36597481. The authors need to discuss this important information and reconcile it with their data and model if they want to claim that HS is broadly important.

      Is targeting HS really a compelling anti-viral strategy? The data show a ~5-fold reduction, which likely won't excite a drug company. The strengths and limitations of HS targeting should be presented in a more balanced discussion. Animal data showing anti-viral activity of PIX is warranted. This would enhance this claim and also provide key evidence of a relevant role for HS in a more physiologic model.

      The authors provide little discussion of the fact that these studies rely exclusively on cell lines (which also happen to be TMPRSS2-deficient). The role of proteases in the role of HS should be tested in the cell lines and primary cells used, as protease expression is a key determinant of the site of fusion.

      The claim that "SARS-CoV2 JN.1 variant binds to heparan sulfate, not hACE2, in primary human airway cells" is extraordinary and thus requires extraordinary evidence.

      First, PIX reduces attachment by 5-fold, which is not the same as "nearly abolished." Also, anti-ACE2 "nearly abolished" entry in 7D, while PIX did not. If the authors want to make these claims, an alternative method to disrupt HS (other than PIX) is needed in primary airway cells. A genetic approach would be much more convincing. The authors should also demonstrate whether entry in their primary cell assays is TMPRSS2 vs Cathepsin L dependent (using E64d and camostat, for instance) as mentioned above.

      Each figure should clearly state how many independent experiments and replicates per experiment were performed. What does "3 experiments" mean? Are these three independent experiments or three wells on one day?

    3. Reviewer #3 (Public review):

      Summary:

      In this manuscript, the authors define a new paradigm for the attachment and endocytosis of SARS-CoV-2 in which cell surface heparan sulfate (HS) is the primary receptor, with ACE2 having a downstream role within endocytic vesicles. This has implications for the importance of targeting virion-HS interactions as a therapeutic strategy.

      Strengths:

      The authors show that viruses are internalized via dynamin-dependent endocytosis and that endocytic internalization is the major pathway for pseudotyped SARS-CoV-2 genome expression. They show that HS-mediated viral attachment is a critical step preceding viral endocytosis and also subsequent genome expression. Further, they show that hACE2 acts downstream of endocytosis to promote viral infection, and may be co-internalised with virions after HS attachment. Pseudotyped virus and authentic SARS-CoV-2 provide similar results. In addition, the authors demonstrate that remarkable clusters of multiple HS chains exist on the cell surface, visualised by a number of elegant microscopy methods, and that these represent the docking sites for virions. These visualisations are an important general contribution in themselves to understanding the nanoscale interactions of HS at the cell surface.

      The use of a complementary range of methods, virus constructs, and cell models is a strength, and the results clearly support the conclusions.

      Overall, the results convincingly demonstrate a different model to the currently accepted mechanism in which the ACE2 protein is regarded as the cell surface receptor for SARS-CoV-2. Here, the authors provide compelling evidence that cell surface clusters of HS are the primary docking site, with ACE2 interactions occurring later, after endocytosis (whilst still being essential for viral genome expression). This is an exciting and important landmark evidence which supports the view that HS-virion interactions should be viewed as a key site for anti-viral drug targeting, likely in strategies that also target the downstream ACE2-based mechanism of viral entry within endosomes.

      Weaknesses:

      This reviewer identified only minor points regarding citing and discussing other studies and typos, which can be corrected.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Bisht et al address the hypothesis that protein folding chaperones may be implicated in aggregopathies and in particular Tau aggregation, as a means to identify novel therapeutic routes for these largely neurodegenerative conditions.

      The authors conducted a genetic screen in the Drosophila eye, which facilitates identification of mutations that either enhance or suppress a visible disturbance in the nearly crystalline organization of the compound eye. They screened by RNA-interference all 64 known Drosophila chaperones and revealed that mutations in 20 of them exaggerate the Tau-dependent phenotype, while 15 ameliorated it. The enhancer of degeneration group included 2 subunits of the typically heterohexameric prefoldin complex and other co-translational chaperones.

      The authors characterized in depth one of the prefoldin subunits, Pfdn5 and convincingly demonstrated that this protein functions in regulation of microtubule organization, likely due to its regulation of proper folding of tubulin monomers. They demonstrate convincingly using both immunohistochemistry in larval motor neurons and microtubule binding assays that Pfdn5 is a bona fide microtubule associated protein contributing to the stability of the axonal microtubule cytoskeleton, which is significantly disrupted in the mutants.

      Similar phenotypes were observed in larvae expressing the Frontotemporal dementia with Parkinsonism on chromosome 17-associated mutations of the human Tau gene V377M and R406W. On the strength of the phenotypic evidence and the enhancement of the TauV377M-induced eye degeneration they demonstrate that loss of Pfdn5 exaggerates the synaptic deficits upon expression of the Tau mutants. Conversely, overexpression of Pfdn5 or Pfdn6 ameliorates the synaptic phenotypes in the larvae, the vacuolization phenotypes in the adult, even memory defects upon TauV377M expression.

      Strengths:

      The phenotypic analyses of the mutant and its interactions with TauV377M at the cell biological, histological, and behavioral levels are precise, extensive, and convincing and achieve the aims of characterization of a novel function of Pfdn5.

      Regarding this memory defect upon V377M tau expression. Kosmidis et al (2010) pmid: 20071510, demonstrated that pan-neuronal expression of TauV377M disrupts the organization of the mushroom bodies, the seat of long-term memory in odor/shock and odor/reward conditioning. If the novel memory assay the authors use depends on the adult brain structures, then the memory deficit can be explained in this manner.

      If the mushroom bodies are defective upon TauV377M expression does overexpression of Pfdn5 or 6 reverse this deficit? This would argue strongly in favor of the microtubule stabilization explanation.

      The discovery that Pfdn5 (and 6 most likely) affect tauV377M toxicity is indeed a novel and important discovery for the Tauopathies field. It is important to determine whether this interaction affects only the FTDP-17-linked mutations, or also WT Tau isoforms, which are linked to the rest of the Tauopathies. Also, insights on the mode(s) that Pfdn5/6 affect Tau toxicity, such as some of the suggestions above are aiming at, will likely be helpful towards therapeutic interventions.

      Weaknesses:

      What is unclear however is how Pfdn5 loss or even overexpression affects the pathological Tau phenotypes.

      Does Pfdn5 (or 6) interact directly with TauV377M? Colocalization within tissues is a start, but immunoprecipitations would provide additional independent evidence that this is so.

      Does Pfdn5 loss exacerbate TauV377M phenotypes because it destabilizes microtubules, which are already at least partially destabilized by Tau expression?<br /> Rescue of the phenotypes by overexpression of Pfdn5 agrees with this notion.

      However, Cowan et al (2010) pmid: 20617325 demonstrated that wild-type Tau accumulation in larval motor neurons indeed destabilizes microtubules in a Tau phosphorylation-dependent manner.

      So, is TauV377M hyperphosphorylated in the larvae?? What happens to TauV377M phosphorylation when Pfdn5 is missing and presumably more Tau is soluble and subject to hyperphosphorylation as predicted by the above?

      Expression of WT human Tau (which is associated with most common Tauopathies other than FTDP-17) as Cowan et al suggest has significant effects on microtubule stability, but such Tau-expressing larvae are largely viable. Will one mutant copy of the Pfdn5 knockout enhance the phenotype of these larvae?? Will it result in lethality? Such data will serve to generalize the effects of Pfdn5 beyond the two FDTP-17 mutations utilized.

      Does the loss of Pfdn5 affect TauV377M (and WTTau) levels?? Could the loss of Pfdn5 simply result in increased Tau levels? And conversely, does overexpression of Pfdn5 or 6 reduce Tau levels?? This would explain the enhancement and suppression of TauV377M (and possibly WT Tau) phenotypes. It is an easily addressed, trivial explanation at the observational level, which if true begs for a distinct mechanistic approach.

      Finally, the authors argue that TauV377M forms aggregates in the larval brain based on large puncta observed especially upon loss of Pfdn5. This may be so, but protocols are available to validate this molecularly the presence of insoluble Tau aggregates (for example, pmid: 36868851) or soluble Tau oligomers as these apparently differentially affect Tau toxicity. Does Pfdn5 loss exaggerate the toxic oligomers and overexpression promotes the more benign large aggregates??

      Comments on revisions:

      In the revised manuscript Βisht et al have provided extensive new experimental evidence in support of previously more tenuous claims. These fully satisfy my comments and suggestions, and in my view, have significantly strengthened the manuscript with compelling new evidence.

    2. Reviewer #2 (Public review):

      Bisht et al detail a novel interaction between the chaperone, Prefoldin 5, microtubules, and tau-mediated neurodegeneration, with potential relevance for Alzheimer's disease and other tauopathies. Using Drosophila, the study shows that Pfdn5 is a microtubule-associated protein, which regulates tubulin monomer levels and can stabilize microtubule filaments in the axons of peripheral nerves. The work further suggests that Pfdn5/6 may antagonize Tau aggregation and neurotoxicity. While the overall findings may be of interest to those investigating the axonal and synaptic cytoskeleton, the detailed mechanisms for the observed phenotypes remain unresolved and the translational relevance for tauopathy pathogenesis is yet to be established. Further, a number of key controls and important experiments are missing that are needed to fully interpret the findings.

      The strength of this study is the data showing that Pfdn5 localizes to axonal microtubules and the loss-of-function phenotypic analysis revealing disrupted synaptic bouton morphology. The major weakness relates to the experiments and claims of interactions with Tau-mediated neurodegeneration. In particular, it is unclear whether knockdown of Pfdn5 may cause eye phenotypes independent of Tau. Further, the GMR>tau phenotype appears to have been incorrectly utilized to examine age-dependent, neurodegeneration.

      This manuscript argues that its findings may be relevant to thinking about mechanisms and therapies applicable to tauopathies; however, this is premature given that many questions remain about the interactions from Drosophila, the detailed mechanisms remain unresolved, and absent evidence that tau and Pfdn may similarly interact in the mammalian neuronal context. Therefore, this work would be strongly enhanced by experiments in human or murine neuronal culture or supportive evidence from analyses of human data.

      Comments on revisions:

      The revision adequately addresses most of the previously raised concerns, resulting in a significantly improved manuscript.

    1. Reviewer #2 (Public review):

      Summary:

      The role of PRC2 in post neural crest induction was not well understood. This work developed an elegant mouse genetic system to conditionally deplete EED upon SOX10 activation. Substantial developmental defects were identified for craniofacial and bone development. The authors also performed extensive single-cell RNA sequencing to analyze differentiation gene expression changes upon conditional EED disruption.

      Strengths:

      (1) Elegant genetic system to ablate EED post neural crest induction.

      (2) Single-cell RNA-seq analysis is extremely suitable for studying the cell type specific gene expression changes in developmental systems.

      Original Weaknesses:

      (1) Although this study is well designed and contains state-of-art single cell RNA-seq analysis, it lacks the mechanistic depth in the EED/PRC2-mediated epigenetic repression. This is largely because no epigenomic data was shown.

      (2) The mouse model of conditional loss of EZH2 in neural crest has been previously reported, as the authors pointed out in the discussion. What is novelty in this study to disrupt EED? Perhaps a more detailed comparison of the two mouse models would be beneficial.

      (3) The presentation of the single-cell RNA-seq data may need improvement. The complexity of the many cell types blurs the importance of which cell types are affected the most by EED disruption.

      (4) While it's easy to identify PRC2/EED target genes using published epigenomic data, it would be nice to tease out the direct versus indirect effects in the gene expression changes (e.g Fig. 4e)

      Comments on latest version:

      The authors have addressed weaknesses 2 and 3 of my previous comment very well. For weaknesses 1 and 4, the authors have added a main Fig 5 and its associated supplemental materials, which definitely strengthen the mechanistic depth of the story. However, I think the audience would appreciate if the following questions/points could be further addressed regarding the Cut&Tag data (mostly related to main Figure 5):

      (1) The authors described that Sox10-Cre would be expressed at E8.75, and in theory, EED-FL would be ablated soon after that. Why would E16.5 exhibit a much smaller loss in H3K27me3 compared to E12.5? Shouldn't a prolong loss of EED lead to even worse consequence?

      (2) The gene expression change at E12.5 upon loss of EED (shown in Fig. 4h) seems to be massive, including many PRC2-target genes. However, the H3K27me3 alteration seems to be mild even at E12.5. Does this infer a PRC2 or H3K27 methylation - independent role of EED? To address this, I suggest the authors re-consider addressing my previously commented weakness #4 regarding the RNA-seq versus Cut&Tag change correlation. For example, a gene scatter plot with X-axis of RNA-seq changes versus Y-axis of H3K27me3 level changes.

      (3) The CUT&Tag experiments seem to contain replicates according to the figure legend, but no statistical analysis was presented including the new supplemental tables. Also, for Fig. 5c-d, instead of showing the MRR in individual conditions, I think the audience would really want to know the differential MRR between Fl/WT and Fl/Fl. In other words, how many genes/ MRR have statistically lower H3K27me3 level upon EED loss.

    1. Reviewer #1 (Public review):

      Summary:

      The authors validate the contribution of RAP2A to GB progression. RAp2A participates in asymetric cell division, and the localization of several cell polarity markers including cno and Numb.

      Strengths:

      The use of human data, Drosophila models and cell culture or neurospheres is a good scenario to validate the hypothesis using complementary systems.

      Moreover, the mechanisms that determine GB progression, and in particular glioma stem cells biology, are relevant for the knowledge on glioblastoma and opens new possibilities to future clinical strategies.

      Weaknesses:

      While the manuscript presents a well-supported investigation into RAP2A's role in GBM, some methodological aspects could benefit from further validation. The major concern is the reliance on a single GB cell line (GB5), including multiple GBM lines, particularly primary patient-derived 3D cultures with known stem-like properties, would significantly enhance the study's robustness.

      Several specific points raised in previous reviews have improved this version of the manuscript:

      • The specificity of Rap2l RNAi has been further confirmed by using several different RNAi tools.

      • Quantification of phenotypic penetrance and survival rates in Rap2l mutants would help determine the consistency of ACD defects. The authors have substantially increased the number of samples analyzed including three different RNAi lines (both the number of NB lineages and the number of different brains analyzed) to confirm the high penetrance of the phenotype.

      • The observations on neurosphere size and Ki-67 expression require normalization (e.g., Ki-67+ cells per total cell number or per neurosphere size). This is included in the manuscript and now clarified in the text.

      • The discrepancy in Figures 6A and 6B requires further discussion. The authors have included a new analysis and further explanations and they can conclude that in 2 cell-neurospheres there are more cases of asymmetric divisions in the experimental condition (RAP2A) than in the control.

      • Live imaging of ACD events would provide more direct evidence. Live imaging was not done due to technical limitations. Despite being a potential contribution to the manuscript, the current conclusions of the manuscript are supported by the current data, and live experiments can be dispensable

      • Clarification of terminology and statistical markers (e.g., p-values) in Figure 1A would improve clarity. This has been improved.

      Comments on revisions:

      The manuscript has improved the clarity in general, and I think that it is suitable for publication. However, for future experiments and projects, I would like to insist in the relevance of validating the results in vivo using xenografts with 3D-primary patient-derived cell lines or GB organoids.

    2. Reviewer #2 (Public review):

      This study investigates the role of RAP2A in regulating asymmetric cell division (ACD) in glioblastoma stem cells (GSCs), bridging insights from Drosophila ACD mechanisms to human tumor biology. They focus on RAP2A, a human homolog of Drosophila Rap2l, as a novel ACD regulator in GBM is innovative, given its underexplored role in cancer stem cells (CSCs). The hypothesis that ACD imbalance (favoring symmetric divisions) drives GSC expansion and tumor progression introduces a fresh perspective on differentiation therapy. However, the dual role of ACD in tumor heterogeneity (potentially aiding therapy resistance) requires deeper discussion to clarify the study's unique contributions against existing controversies.

      Comments on revisions:

      More experiments as suggested in the original assessment of the submission are needed to justify the hypothesis drawn in the manuscript.

    1. Reviewer #1 (Public review):

      Summary:

      This study builds on previous work demonstrating that several beta connexins (Cx26, Cx30 and Cx32) have a carbamylation motif which renders them sensitive to CO2. In response to CO2, hemichannels composed of these connexins open, enabling diffusion of small molecules (such as ATP) between the cytosol and extracellular environment. Here, the authors have identified that an alpha connexin, Cx43, also contains a carbamylation motif, and they demonstrate that CO2 opens Cx43 hemichannels. Most of the study involves using transfected cells expressing wild-type and mutant Cx43 to define amino acids required for CO2 sensitivity. Hippocampal tissue slices in culture were used to show that CO2-induced synaptic transmission was affected by Cx43 hemichannels, providing a physiological context. The authors point out that the Cx43 gene significantly diverges from the beta connexins that are CO2 sensitive, suggesting that the conserved carbamylation motif was present before the alpha and beta connexin genes diverged.

      Strengths:

      The molecular analysis defining the amino acids which contribute to the CO2 sensitivity of Cx43 is a major strength of the study. The rigor of analysis was strengthened by using three independent assays for hemichannel opening: dye uptake, patch clamp channel measurements and ATP secretion. The resulting analysis identified key lysines in Cx43 that were required for CO2-mediated hemichannel opening. A double K to E Cx43 mutant produced a construct that produced hemichannels that were constitutively open, which further strengthened the analysis.

      Using hippocampal tissue sections to demonstrate that CO2 can influence field excitatory postsynaptic potentials (fEPSPs) provides a native context for CO2 regulation of Cx43 hemichannels. Cx43 mutations associated with Oculodentodigital Dysplasia (ODDD) inhibited CO2-induced hemichannel opening, although the mechanism by which this occurs was not elucidated.

      Cytosolic pH was measured and it was further demonstrated that Cx43 hemichannels composed of untagged Cx43 are sensitive to CO2.

      A molecular phylogenetic survey was performed which identified several other non-beta connexins that have a putative carbamylation motif. How this relates to connexin evolution was added to the discussion.

      Weaknesses:

      Cultured cells are typically grown in incubators containing 5% CO2 which is ~40 mmHg. Determining compensatory mechanisms that enable the cells to be viable if Cx43 hemichannels are open at this PCO2 would strengthen the study.

      Experiments using Gap26 to inhibit Cx43 hemichannels in fEPSP measurements used a scrambled peptide as a control. Including gap peptides specifically targeting Cx26, Cx30 and Cx32 as additional controls would strengthen the study, since the tissue sections have a complex pattern of connexin expression.

    2. Reviewer #2 (Public review):

      Summary:

      This paper examines the CO2 sensitivity of Cx43 hemichannels and gap junctional channels in transiently transfected Hela cells using several different assays including ethidium dye uptake, ATP release, whole cell patch clamp recordings and an imaging assay of gap junctional dye transfer. The results show that raising pCO2 from 20 to 70 mmHg (at a constant pH of 7.3) cause an increase in opening of Cx43 hemichannels but did not block Cx43 gap junctions. This study also showed that raising pCO2 from 20 to 35 mm Hg resulted in an increase in synaptic strength in hippocampal rat brain slices, presumably due to downstream ATP release, suggesting that the CO2 sensitivity of Cx43 may be physiologically relevant. As a further test of the physiological relevance of the CO2 sensitivity of Cx43, it was shown that two pathological mutations of Cx43 that are associated with ODDD caused loss of Cx43 CO2-sensitivity. Cx43 has a potential carbamylation motif that is homologous to the motif in Cx26. To understand the structural changes involved in CO2 sensitivity, a number of mutations were made in Cx43 sites thought to be the equivalent of those known to be involved in the CO2 sensitivity of Cx26 and the CO2 sensitivity of these mutants was investigated.

      Strengths:

      This study shows that the apparent lack of functional Cx43 hemichannels observed in a number of previous in vitro function studies may be due to the use of HEPES to buffer the external pH. When Cx43 hemichannels were studied in external solutions in which CO2/bicarbonate was used to buffer pH instead of HEPES, Cx43 hemichannels showed significantly higher levels of dye uptake, ATP release, and ionic conductance. These findings may have major physiological implications since Cx43 hemichannels are found in many organs throughout the body including the brain, heart and immune system.

      Weaknesses:

      Interpretation of the site-directed mutation studies is complicated. Although Cx43 has a potential carbamylation motif that is homologous to the motif in Cx26, the results of site-directed mutation studies were inconsistent with a simple model in which K144 and K105 interact following carbamylation to cause the opening of Cx43 hemichannels.

      Secondly, although it is shown that two Cx43 ODDD associated mutations show a loss of CO2 sensitivity, there is no evidence that the absence of CO2 sensitivity is involved in the pathology of ODDD.

    3. Reviewer #3 (Public review):

      In this paper, authors aimed to investigate carbamylation effects on the function of Cx43-based hemichannels. Such effects have previously been characterized for other connexins, e.g. for Cx26, which display increased hemichannel (HC) opening and closure of gap junction channels upon exposure to increased CO2 partial pressure (accompanied by increased bicarbonate to keep pH constant). The authors used HeLa cells transiently transfected with Cx43 to investigate CO2-dependent carbamylation effects on Cx43 HC function. In contrast to Cx43-based gap junction channels that are here reported to be insensitive to PCO2 alterations, they provide evidence that Cx43 HC opening is highly dependent on the PCO2 pressure in the bath solution, over a range of 20 up to 70 mmHg encompassing the physiologically normal resting level of around 40 mmHg. They furthermore identified several Cx43 residues involved in Cx43 HC sensitivity to PCO2: K105, K109, K144 & K234; mutation of 2 or more of these AAs is necessary to abolish CO2 sensitivity. The subject is interesting and the results indicate that a fraction of HCs is open at a physiological 40 mmHg PCO2, which differs from the situation under HEPES buffered solutions where HCs are mostly closed under resting conditions. The mechanism of HC opening with CO2 gassing is linked to carbamylation and authors pinpointed several Lys residues involved in this process. Overall, the work is interesting as it shows that Cx43 HCs have a significant open probability under resting conditions of physiological levels of CO2 gassing, probably applicable to/relevant for brain, heart and other Cx43 expressing organs. The paper gives a detailed account on various experiments performed (dye uptake, electrophysiology, ATP release to assess HC function) and results concluded from those. They further consider many candidate carbamylation sites by mutating them to negatively charged Glu residues. The paper finalizes with hippocampal slice work showing evidence for connexin-dependent increases of the EPSP amplitude that could be inhibited by HC inhibition with Gap26 (Fig. 10). Another line of evidence comes from the Cx43-linked ODDD genetic disease whereby L90V as well as the A44V mutations of Cx43 prevented the CO2 induced hemichannel opening response (Fig. 11). Although the paper is interesting, in its present state it suffers from (i) a problematic Fig. 3, precluding interpretation of the data shown, and (ii) the poor use of hemichannel inhibitors that are necessary to strengthen the evidence in the crucial experiment of Fig. 2 and others.

      Comments on revisions:

      The traces in Fig.2B show that the HC current is inward at 20 mmHg PCO2, while it switches to an outward current at 55mmHg PCO2. HCs are non-selective channels, so their current should switch direction around 0 mV but not around -50 mV. As such, the -50 mV switching point indicates involvement of another channel distinct from non-selective Cx43 hemichannels. In the revised version, this problem has not been solved nor addressed. Additionally, I identified another problem in that the experimental traces shown lack a trace at the baseline condition of PCO2 35mmHg, while the summary graph depicts a data point. Not showing a trace at baseline PCO2 35mmHg renders data interpretation in the summary graph questionable.

    1. Reviewer #1 (Public review):

      Summary:

      The work by Pinon et al describes the generation of a microvascular model to study Neisseria meningitidis interactions with blood vessels. The model uses a novel and relatively high throughput fabrication method that allows full control over the geometry of the vessels. The model is well characterized from the vascular standpoint and shows improvements when exposed to flow. The authors show that Neisseria binds to the 3D model in a similar geometry that in the animal xenograft model, induces an increase in permeability short after bacterial perfusion, and endothelial cytoskeleton rearrangements including a honeycomb actin structure. Finally, the authors show neutrophil recruitment to bacterial microcolonies and phagocytosis of Neisseria.

      Strengths:

      The article is overall well written, and it is a great advancement in the bioengineering and sepsis infection field. The authors achieved their aim at establishing a good model for Neisseria vascular pathogenesis and the results support the conclusions. I support the publication of the manuscript. I include below some clarifications that I consider would be good for readers.

      One of the most novel things of the manuscript is the use of a relatively quick photoablation system. Could this technique be applied in other laboratories? While the revised manuscript includes more technical details as requested, the description remains difficult to follow for readers from a biology background. I recommend revising this section to improve clarity and accessibility for a broader scientific audience.

      The authors suggest that in the animal model, early 3h infection with Neisseria do not show increase in vascular permeability, contrary to their findings in the 3D in vitro model. However, they show a non-significant increase in permeability of 70 KDa Dextran in the animal xenograft early infection. As a bioengineer this seems to point that if the experiment would have been done with a lower molecular weight tracer, significant increases in permeability could have been detected. I would suggest to do this experiment that could capture early events in vascular disruption.

      One of the great advantages of the system is the possibility of visualizing infection-related events at high resolution. The authors show the formation of actin of a honeycomb structure beneath the bacterial microcolonies. This only occurred in 65% of the microcolonies. Is this result similar to in vitro 2D endothelial cultures in static and under flow? Also, the group has shown in the past positive staining of other cytoskeletal proteins, such as ezrin in the ERM complex. Does this also occur in the 3D system?

      Significance:

      The manuscript is comprehensive, complete and represents the first bioengineered model of sepsis. One of the major strengths is the carful characterization and benchmarking against the animal xenograft model. Beyond the technical achievement, the manuscript is also highly quantitative and includes advanced image analysis that could benefit many scientists. The authors show a quick photoablation method that would be useful for the bioengineering community and improved the state-of-the-art providing a new experimental model for sepsis.

      My expertise is on infection bioengineered models.

      Comments on revised version:

      The authors have addressed all my concerns.

    2. Reviewer #2 (Public review):

      Pinon and colleagues have developed a Vessel-on-Chip model showcasing geometrical and physical properties similar to the murine vessels used in the study of systemic infections. The authors succeed on their aim of developing an complex, humanized, in vitro model that can faithfully recapitulate the hallmarks of systemic infections.

      The vessel was created via highly controllable laser photoablation in a collagen matrix, subsequent seeding of human endothelial cells, and flow perfusion to induce mechanical cues. This model could be infected with Neisseria meningitidis as a model of systemic infection. In this model, microcolony formation and dynamics, and effects on the host were very similar to those described for the human skin xenograft mouse model (the current gold standard for systemic studies) and were consistent with observations made in patients. The model could also recapitulate the neutrophil response upon N. meningitidis systemic infection.

      The claims and the conclusions are supported by the data, the methods are properly presented, and the data is analyzed adequately. The most important strength of this manuscript is the technology developed to build this model, which is impressive and very innovative. The Vessel-on-Chip can be tuned to acquire complex shapes and, according to the authors, the process has been optimized to produce models very quickly. This is a great advancement compared with the technologies used to produce other equivalent models. This model proves to be equivalent to the most advanced model used to date (skin xenograft mouse model). The human skin xenograft mouse model requires complex surgical techniques and has the practical and ethical limitations associated with the use of animals. However, the Vessel-on-chip model is free of ethical concerns, can be produced quickly, and allows to precisely tune the vessel's geometry and to perform higher resolution microscopy. Both models were comparable in terms of the hallmarks defining the disease, suggesting that the presented model can be an effective replacement of the animal use in this area. In addition, the Vessel-on-Chip allows to perform microscopy with higher resolution and ease, which can in turn allow more complex and precise image-based analysis. The authors leverage the image-based analysis to obtain further insights into the infection, highlighting the capabilities of the model in this aspect.

      A limitation of this model is that it lacks the multicellularity that characterizes other similar models, which could be useful to research disease more extensively. However, the authors discuss the possibilities of adding other cells to the model, for example, fibroblasts. The methodology would allow for integrating many different types of cells into the model, which would increase the scope of scientific questions that can be addressed. In addition, the technology presented in the current paper is also difficult to adapt for standard biology labs. The methodology is complex and requires specialized equipment and personnel, which might hinder its widespread utilization of this model by researchers in the field.

      This manuscript will be of interest for a specialized audience focusing on the development of microphysiological models. The technology presented here can be of great interest to researchers whose main area of interest is the endothelium and the blood vessels, for example, researchers on the study of systemic infections, atherosclerosis, angiogenesis, etc. This manuscript can have great applications for a broad audience focusing on vasculature research. Due to the high degree of expertise required to produce these models, this paper can present an interesting opportunity to begin collaborations with researchers dealing with a wide range of diseases, including atherosclerosis, cancer (metastasis), and systemic infections of all kinds.

    3. Reviewer #3 (Public review):

      Summary:

      In this manuscript Pinon et al. describe the development of a 3D model of human vasculature within a microchip to study Neisseria meningitidis (Nm)- host interactions and validate it through its comparison to the current gold-standard model consisting of human skin engrafted onto a mouse. There is a pressing need for robust biomimetic models with which to study Nm-host interactions because Nm is a human-specific pathogen for which research has been primarily limited to simple 2D human cell culture assays. Their investigation relies primarily on data derived from microscopy and its quantitative analysis, which support the authors' goal of validating their Vessel-on-Chip (VOC) as a useful tool for studying vascular infections by Nm, and by extension, other pathogens associated with blood vessels.

      Strengths:

      • Introduces a novel human in vitro system that promotes control of experimental variables and permits greater quantitative analysis than previous models<br /> • The VOC model is validated by direct comparison to the state-of-the-art human skin graft on mouse model<br /> • The authors make significant efforts to quantify, model, and statistically analyze their data<br /> • The laser ablation approach permits defining custom vascular architecture<br /> • The VOC model permits the addition and/or alteration of cell types and microbes added to the model<br /> • The VOC model permits the establishment of an endothelium developed by shear stress and active infusion of reagents into the system

      Weaknesses:

      • The VOC model contains one cell type, human umbilical cord vascular endothelial cells (HUVECs), while true vasculature contains a number of other cell types that associate with and affect the endothelium, such as smooth muscle cells, pericytes, and components of the immune system. However, adding such complexity may be a future goal of this VOC model.

      Impact:

      The VOC model presented by Pinon et al. is an exciting advancement in the set of tools available to study human pathogens interacting with the vasculature. This manuscript focuses on validating the model, and as such sets the foundation for impactful research in the future. Of particular value is the photoablation technique that permits the custom design of vascular architecture without the use of artificial scaffolding structures described in previously published works.

      Comments on revised version:

      The authors have nicely addressed my (and other reviewers') comments.

    1. Reviewer #1 (Public review):

      The manuscript by Choi and colleagues investigates the impact of variation in cortical geometry and growth on cortical surface morphology. Specifically, the study uses physical gel models and computational models to evaluate the impact of varying specific features/parameters of the cortical surface. The study makes use of this approach to address the topic of malformations of cortical development and finds that cortical thickness and cortical expansion rate are the drivers of differences in morphogenesis.

      The study is composed of two main sections. First, the authors validate numerical simulation and gel model approaches against real cortical postnatal development in the ferret. Next, the study turns to modelling malformations in cortical development using modified tangential growth rate and cortical thickness parameters in numerical simulations. The findings investigate three genetically linked cortical malformations observed in the human brain to demonstrate the impact of the two physical parameters on folding in the ferret brain.

      This is a tightly presented study that demonstrates a key insight into cortical morphogenesis and the impact of deviations from normal development. The dual physical and computational modeling approach offers the potential for unique insights into mechanisms driving malformations. This study establishes a strong foundation for further work directly probing the development of cortical folding in the ferret brain.

    2. Reviewer #2 (Public review):

      Summary:

      Based on MRI data of the ferret (a gyrencephalic non-primate animal, in whom folding happens postnatally), the authors create in vitro physical gel models and in silico numerical simulations of typical cortical gyrification. They then use genetic manipulations of animal models to demonstrate that cortical thickness and expansion rate are primary drivers of atypical morphogenesis. These observations are then used to explain cortical malformations in humans.

      Strengths:

      The paper is very interesting and original, and combines physical gel experiments, numerical simulations, as well as observations in MCD. The figures are informative, and the results appear to have good overall face validity.

      Comment on the revised version from the Reviewing Editor:

      The reviewers are happy with the authors replies and the eLife Assessment has been amended accordingly.

    1. Reviewer #1 (Public review):

      The authors investigated tactile spatial perception on the breast using discrimination, categorization, and direct localization tasks. They reach four main conclusions:

      (1) The breast has poor tactile spatial resolution.

      This conclusion is based on comparing just noticeable differences, a marker of tactile spatial resolution, across four body regions, two on the breast. The data compellingly support the conclusion; the study outshines other studies on tactile spatial resolution that tend to use problematic measures of tactile resolution, such as two-point-discrimination thresholds. The result will interest researchers in the field and possibly in other fields due to the intriguing tension between the finding and the sexually arousing function of touching the breast.

      The manuscript incorrectly describes the result as poor spatial acuity. Acuity measures the average absolute error, and acuity is good when response biases are absent. Precision relates to the error variance. It is common to see high precision with low acuity or vice versa. Just noticeable differences assess precision or spatial resolution, while points of subjective equality evaluate acuity or bias. Similar confusions between these terms appear throughout the manuscript.<br /> A paragraph within the next section seems to follow up on this insight by examining the across-participant consistency of the differences in tactile spatial resolution between body parts. To this aim, pairwise rank correlations between body sites are conducted. This analysis raises red flags from a statistical point of view. 1) An ANOVA and its follow-up tests assume no variation in the size of the tested effect but varying base values across participants. Thus, if significant differences between conditions are confirmed by the original statistical analysis, most participants will have better spatial resolution in one condition than the other condition, and the difference between body sites will be similar across participants. 2) Correlations are power-hungry, and non-parametric tests are power-hungry. Thus, the number of participants needed for a reliable rank correlation analysis far exceeds that of the study. In sum, a correlation should emerge between body sites associated with significantly different tactile JNDs; however, these correlations might only be significant for body sites with pronounced differences due to the sample size.

      (2) Larger breasts are associated with lower tactile spatial resolution

      This conclusion is based on a strong correlation between participants' JNDs and the size of their breasts. The depicted correlation convincingly supports the conclusion. The sample size is below that recommended for correlations based on power analyses, but simulations show that spurious correlations of the reported size are extremely unlikely at N=18. Moreover, visual inspection rules out that outliers drive these correlations. Thus, they are convincing. This result is of interest to the field, as it aligns with the hypothesis that nerve fibers are more sparsely distributed across larger body parts.

      (3) The nipple is a unit

      The data do not support this conclusion. The conclusion that the nipple is perceived as a unit is based on poor tactile localization performance for touches on the nipple compared to the areola. The problem is that the localization task is a quadrant identification task with the center being at the nipple. Quadrants for the areola could be significantly larger due to the relative size of the areola and the nipple; the results section seems to suggest this was accounted for when placing the tactile stimuli within the quadrants, but the methods section suggests otherwise. Additionally, the areola has an advantage because of its distance from the nipple, which leads to larger Euclidean distances between the centers of the quadrants than for the nipple. Thus, participants should do better for the areola than for the nipple even if both sites have the same tactile resolution.

      To justify the conclusion that the nipple is a unit, additional data would be required. 1) One could compare psychometric curves with the nipple as the center and psychometric curves with a nearby point on the areola as the center. 2) Performance in the quadrant task could be compared for the nipple and an equally sized portion of the areola and tactile locations that have the same distance to the border between quadrants in skin coordinates. 3) Tactile resolution could be directly measured for both body sites using a tactile orientation task with either a two-dot probe or a haptic grating.

      Categorization accuracy in each area was tested against chance using a Monte Carlo test, which is fine, though the calculation of the test statistic, Z, should be reported in the Methods section, as there are several options. Localization accuracies are then compared between areas using a paired t-test. It is a bit confusing that once a distribution-approximating test is used, and once a test that assumes Gaussian distributions when the data is Bernoulli/Binomial distributed. Sampling-based and t-tests are very robust, so these surprising choices should have hardly any effect on the results.

      A correlation based on N=4 participants is dangerously underpowered. A quick simulation shows that correlation coefficients of randomly sampled numbers are uniformly distributed at such a low sample size. This likely spurious correlation is not analyzed, but quite prominently featured in a figure and discussed in the text, which is worrisome.

      (4) Localization of tactile events on the breast is biased towards the nipple

      The conclusion that tactile percepts are drawn toward the nipple is based on localization biases for tactile stimuli on the breast compared to the back. Unfortunately, the way participants reported the tactile locations introduces a major confound. Participants indicated the perceived locations of the tactile stimulus on 3D models of these body parts. The nipple is a highly distinctive and cognitively represented landmark, far more so than the scapula, making it very likely that responses were biased toward the nipple regardless of the actual percepts. One imperfect but better alternative would have been to ask participants to identify locations on a neutral grey patch and help them relate this patch to their skin by repeatedly tracing its outline on the skin.

      Participants also saw their localization responses for the previously touched locations. This is unlikely to induce bias towards the nipple, but it renders any estimate of the size and variance of the errors unreliable. Participants will always make sure that the marked locations are sufficiently distant from each other.

      The statistical analysis is again a homebrew solution and hard to follow. It remains unclear why standard and straightforward measures of bias, such as regressing reported against actual locations, were not used.

      Null-hypothesis significance testing only lets scientists either reject the null hypothesis or not. The latter does NOT mean the Null hypothesis is true, i.e., it can never be concluded that there is no effect. This rule applies to every NHST test. However, it raises particular concerns with distribution tests. The only conclusion possible is that the data are unlikely from a population with the tested distribution; these tests do not provide insight into the actual distribution of the data, regardless of whether the result is significant or not.

    2. Reviewer #2 (Public review):

      Summary:

      The authors tested tactile acuity on the breast of females using several tasks.

      Results:

      Tactile acuity, assessed by just-noticeable differences in judging whether a touch was above or below a comparison stimulus, was lower on both the lateral and medial breast than on the hand and back. Acuity also scaled inversely with breast size, echoing earlier findings that larger hands exhibit lower acuity, presumably because a similar number of tactile receptors must be distributed over larger or smaller body surfaces. Observing this principle in the breast as on the hand strengthens the view that fixed innervation is a general organizing principle of the tactile system. Both methodology and analysis appear sound.

      Most participants were unable to localize touch to a specific quadrant of the nipple, suggesting it is perceived as a single tactile unit. However, the study does not address whether touches to the nipple and areola are confused; conceptualizing the nipple as a perceptual (landmark) unit would suggest that such confusion should not take place. Aside from this limitation, the methodology and analysis appear sound.

      Absolute touch localization, assessed by asking participants to indicate locations on a 3D rendering of their own torso, revealed a bias toward the nipple. The authors interpret this as evidence that the nipple serves as a landmark attracting perceived touch. However, as reviewers noted during review, alternative explanations cannot be fully ruled out: because the stimulus array was centered on the nipple, the observed bias may stem from stimulus distribution rather than landmark status. Aside from this caveat, the methodology and analysis appear sound.

      Overall assessment:

      The study offers a welcome exception to the prevailing bias in tactile research that limits investigation to the hand and arm. Its support for the fixed innervation hypothesis and its suggestion that the nipple may serve as a potential landmark-though requiring further scrutiny-illustrate the value of extending research to other body regions. By employing multiple tasks, the authors address several key aspects of tactile perception and create links to earlier findings.

    1. Reviewer #1 (Public review):

      General assessment of the work:

      In this manuscript, Mohr and Kelly show that the C1 component of the human VEP is correlated with binary choices in a contrast discrimination task, even when the stimulus is kept constant and confounding variables are considered in the analysis. They interpret this as evidence for the role V1 plays during perceptual decision formation. Choice-related signals in single sensory cells are enlightening because they speak to the spatial (and temporal) scale of the brain computations underlying perceptual decision-making. However, similar signals in aggregate measures of neural activity offer a less direct window and thus less insight into these computations. For example, although I am not a VEP specialist, it seems doubtful that the measurements are exclusively picking up (an unbiased selection of) V1 spikes. Moreover, although this is not widely known, there is in fact a long history to this line of work. In 1972, Campbell and Kulikowski ("The Visual Evoked Potential as a function of contrast of a grating pattern" - Journal of Physiology) already showed a similar effect in a contrast detection task (this finding inspired the original Choice Probability analyses in the monkey physiology studies conducted in the early 1990's). Finally, it is not clear to me that there is an interesting alternative hypothesis that is somehow ruled out by these results. Should we really consider that simple visual signals such as spatial contrast are *not* mediated by V1? This seems to fly in the face of well-established anatomy and function of visual circuits. Or should we be open to the idea that VEP measurements are almost completely divorced from task-relevant neural signals? Why would this be an interesting technique then? In sum, while this work reports results in line with several single-cell and VEP studies and perhaps is technically superior in its domain, I find it hard to see how these findings would meaningfully impact our thinking about the neural and computational basis of spatial contrast discrimination.

      Summary of substantive concerns:

      (1) The study of choice probability in V1 cells is more extensive than portrayed in the paper's introduction. In recent years, choice-related activity in V1 has also been studied by Nienborg & Cumming (2014), Goris et al (2017), Jasper et al (2019), Lange et al (2023), and Boundy-Singer et al (2025). These studies paint a complex picture (a mixture of positive, absent, and negative results), but should be mentioned in the paper's introduction.

      (2) The very first study to conduct an analysis of stimulus-conditioned neural activity during a perceptual decision-making task was, in fact, a VEP study: Campbell and Kulikowski (1972). This study never gained the fame it perhaps deserves. But it would be appropriate to weave it into the introduction and motivation of this paper.

      (3) What are interesting alternative hypotheses to be considered here? I don't understand the (somewhat implicit) suggestion here that contrast representations late in the system can somehow be divorced from early representations. If they were, they would not be correlated with stimulus contrast.

      (4) I find the arguments about the timing of the VEP signals somewhat complex and not very compelling, to be honest. It might help if you added a simulation of a process model that illustrated the temporal flow of the neural computations involved in the task. When are sensory signals manifested in V1 activity informing the decision-making process, in your view? And how is your measure of neural activity related to this latent variable? Can you show in a simulation that the combination of this process and linking hypothesis gives rise to inverted U-shaped relationships, as is the case for your data?

    2. Reviewer #2 (Public review):

      Summary:

      Mohr and Kelly report a high-density EEG study in healthy human volunteers in which they test whether correlations between neural activity in the primary visual cortex and choice behavior can be measured non-invasively. Participants performed a contrast discrimination task on large arrays of Gabor gratings presented in the upper left and lower right quadrants of the visual field. The results indicate that single-trial amplitudes of C1, the earliest cortical component of the visual evoked potential in humans, predict forced-choice behavior over and beyond other behavioral and electrophysiological choice-related signals. These results constitute an important advance for our understanding of the nature and flexibility of early visual processing.

      Strengths:

      (1) The findings suggest a previously unsuspected role for aggregate early visual cortex activity in shaping behavioral choices.

      (2) The authors extend well-established methods for assessing covariation between neural signals and behavioral output to non-invasive EEG recordings.

      (3) The effects of initial afferent information in the primary visual cortex on choice behavior are carefully assessed by accounting for a wide range of potential behavioral and electrophysiological confounds.

      (4) Caveats and limitations are transparently addressed and discussed.

      Weaknesses:

      (1) It is not clear whether integration of contrast information across relatively large arrays is a good test case for decision-related information in C1. The authors raise this issue in the Discussion, and I agree that it is all the more striking that they do find C1 choice probability. Nevertheless, I think the choice of task and stimuli should be explained in more detail.

      (2) In a similar vein, while C1 has canonical topographical properties at the grand-average level, these may differ substantially depending on individual anatomy (which the authors did not assess). This means that task-relevant information will be represented to different degrees in individuals' single-trial data. My guess is that this confound was mitigated precisely by choosing relatively extended stimulus arrays. But given the authors' impressive track record on C1 mapping and modeling, I was surprised that the underlying rationale is only roughly outlined. For example, given the topographies shown and the electrode selection procedure employed, I assume that the differences between upper and lower targets are mainly driven by stimulus arms on the main diagonal. Did the authors run pilot experiments with more restricted stimulus arrays? I do not mean to imply that such additional information needs to be detailed in the main article, but it would be worth mentioning.

      (3) Also, the stimulus arrangement disregards known differences in conduction velocity between the upper and lower visual fields. While no such differences are evident from the maximal-electrode averages shown in Figure 1B, it is difficult to assess this issue without single-stimulus VEPs and/or a dedicated latency analysis. The authors touch upon this issue when discussing potential pre-C1 signals emanating from the magnocellular pathway.

      (4) I suspect that most of these issues are at least partly related to a lack of clarity regarding levels of description: the authors often refer to 'information' contained in C1 or, apparently interchangeably, to 'visual representations' before, during, or following C1. However, if I understand correctly, the signal predicting (or predicted by) behavioral choice is much cruder than what an RSA-primed readership may expect, and also cruder than the other choice-predictive signals entered as control variables: namely, a univariate difference score on single-trial data integrated over a 10 ms window determined on the basis of grand-averaged data. I think it is worth clarifying and emphasizing the nature of this signal as the difference of aggregate contrast responses that *can* only be read out at higher levels of the visual system due to the limited extent of horizontal connectivity in V1. I do not think that this diminishes the importance of the findings - if anything, it makes them more remarkable.

      (5) Arguably even more remarkable is the finding that C1 amplitudes themselves appear to be influenced by choice history. The authors address this issue in the Discussion; however, I'm afraid I could not follow their argument regarding preparatory (and differential?) weighting of read-outs across the visual hierarchy. I believe this point is worth developing further, as it bears on the issue of whether C1 modulations are present and ecologically relevant when looking (before and) beyond stimulus-locked averages.

    1. Reviewer #1 (Public review):

      Summary:

      CCK is the most abundant neuropeptide in the brain, and many studies have investigated the role of CCK and inhibitory CCK interneurons in modulating neural circuits, especially in the hippocampus. The manuscript presents interesting questions regarding the role of excitatory CCK+ neurons in the hippocampus, which has been much less studied compared to the well-known roles of inhibitory CCK neurons in regulating network function. The authors adopt several methods, including transgenic mice and viruses, optogenetics, chemogenetics, RNAi, and behavioral tasks to explore these less-studied roles of excitatory CCK neurons in CA3. They find that the excitatory CCK neurons are involved in hippocampal-dependent tasks such as spatial learning and memory formation, and that CCK-knockdown impairs these tasks.

      However, these questions are very dependent on ensuring that the study is properly targeting excitatory CCK neurons (and thus their specific contributions to behavior).

      There needs to be much more characterization of the CCK transgenic mice and viruses to confirm the targeting. Without this, it is unclear whether the study is looking at excitatory CCK neurons or a more general heterogeneous CCK neuron population.

      Strengths:

      This field has focused mainly on inhibitory CCK+ interneurons and their role in network function and activity, and thus, this manuscript raises interesting questions regarding the role of excitatory CCK+ neurons, which have been much less studied.

      Weaknesses:

      (1a) This manuscript is dependent on ensuring that the study is indeed investigating the role of excitatory CCK-expressing neurons themselves and their specific contribution to behavior. There needs to be much more characterization of the CCK-expressing mice (crossed with Ai14 or transduced with various viruses) to confirm the excitatory-cell targeting. Without this, it is unclear whether the study is looking at excitatory CCK neurons or a more general heterogeneous CCK neuron population.

      (1b) For the experiments that use a virus with the CCK-IRES-Cre mouse, there is no information or characterization on how well the virus targets excitatory CCK-expressing neurons. (Additionally, it has been reported that with CaMKIIa-driven protein expression, using viruses, can be seen in both pyramidal and inhibitory cells.)

      (2) The methods and figure legends are extremely sparse, leading to many questions regarding methodology and accuracy. More details would be useful in evaluating the tools and data. More details would be useful in evaluating the tools and data. Additionally, further quantification would be useful-e.g. in some places, only % values are noted, or only images are presented.

      (3) It is unclear whether the reduced CCK expression is correlated, or directly causing the impairments in hippocampal function. Does the CCK-shRNA have any additional detrimental effects besides affecting CCK-expression (e.g., is the CCK-shRNA also affecting some other essential (but not CCK-related) aspect of the neuron itself?)? Is there any histology comparison between the shRNA and the scrambled shRNA?

    2. Reviewer #2 (Public review):

      Summary:

      In this study, the authors have demonstrated, through a comprehensive approach combining electrophysiology, chemogenetics, fiber photometry, RNA interference, and multiple behavioral tasks, the necessity of projections from CCK+ CAMKIIergic neurons in the hippocampal CA3 region to the CA1 region for regulating spatial memory in mice. Specifically, authors have shown that CA3-CCK CAMKIIergic neurons are selectively activated by novel locations during a spatial memory task. Furthermore, authors have identified the CA3-CA1 pathway as crucial for this spatial working memory function, thereby suggesting a pivotal role for CA3 excitatory CCK neurons in influencing CA1 LTP. The data presented appear to be well-organized and comprehensive.

      Strengths:

      (1) This work combined various methods to validate the excitatory CCK neurons in the CA3 area; these data are convincing and solid.

      (2) This study demonstrated that the CA3-CCK CAMKIIergic neurons are involved in the spatial memory tasks; these are interesting findings, which suggest that these neurons are important targets for manipulating the memory-related diseases.

      (3) This manuscript also measured the endogenous CCK from the CA3-CCK CAMKIIergic neurons; this means that CCK can be released under certain conditions.

      Weaknesses:

      (1) The authors do not mention which receptors of the CCK modulate these processes.

      (2) This author does not test the CCK gene knockout mice or the CCK receptor knockout mice in these neural processes.

      (3) The author does not test the source of CCK release during the behavioral tasks.

    3. Reviewer #3 (Public review):

      Summary:

      Fengwen Huang et al. used multiple neuroscience techniques (transgenetic mouse, immunochemistry, bulk calcium recording, neural sensor, hippocampal-dependent task, optogenetics, chemogenetics, and interfer RNA technique) to elucidate the role of the excitatory cholecystokinin-positive pyramidal neurons in the hippocampus in regulating the hippocampal functions, including navigation and neuroplasticity.

      Strengths:

      (1) The authors provided the distribution profiles of excitatory cholecystokinin in the dorsal hippocampus via the transgenetic mice (Ai14::CCK Cre mice), immunochemistry, and retrograde AAV.

      (2) The authors used the neural sensor and light stimulation to monitor the CCK release from the CA3 area, indicating that CCK can be secreted by activation of the excitatory CCK neurons.

      (3) The authors showed that the activity of the excitatory CCK neurons in CA3 is necessary for navigation learning.

      (4) The authors demonstrated that inhibition of the excitatory CCK neurons and knockdown of the CCK gene expression in CA3 impaired the navigation learning and the neuroplasticity of CA3-CA1 projections.

      Weaknesses:

      (1) The causal relationship between navigation learning and CCK secretion?

      (2) The effect of overexpression of the CCK gene on hippocampal functions?

      (3) What are the functional differences between the excitatory and inhibitory CCK neurons in the hippocampus?

      (4) Do CCK sources come from the local CA3 or entorhinal cortex (EC) during the high-frequency electrical stimulation?

    1. Reviewer #1 (Public review):

      Summary:

      The study by Lemen et al. represents a comprehensive and unique analysis of gene networks in rat models of opioid use disorder, using multiple strains and both sexes. It provides a time-series analysis of Quantitative Trait Loci (QTLs) in response to morphine exposure.

      Strengths:

      A key finding is the identification of a previously unknown morphine-sensitive pathway involving Oprm1 and Fgf12, which activates a cascade through MAPK kinases in D1 medium spiny neurons (MSNs). Strengths include the large-scale, multi-strain, sex-inclusive design, the time-series QTL mapping provides dynamic insights, and the discovery of an Oprm1-Fgf12-MAPK signaling pathway in D1 MSNs, which is novel and relevant.

      Weaknesses:

      (1) The proposed involvement of Nav1.2 (SCN2A) as a downstream target of the Oprm1-Fgf12 pathway requires further analysis/evidence. Is Nav1.2 (SCN2A) expressed in D1 neurons?

      The authors mentioned that SCN8A (Nav1.6) was tested as a candidate mediator of Oprm1-Fgf12 loci and variation in locomotor activity. However, the proposed model supports SCN2A as a target rather than SCN8A. This is somewhat unexpected since SCN8A is highly abundant in MSN.

      Can the authors provide expression data for SCN2A, Oprm1, and Fgf12 in D1 vs. D2 MSNs?

      (2) The authors should consider adding a reference to FGF12 in Schizophrenia (PMC8027596) in the Introduction.

      (3) There is recent evidence supporting the druggability of other intracellular FGFs, such as FGF14 (PMC11696184) and FGF13 (PMC12259270), through their interactions with Nav channels. What are the implications of these findings for drug discovery in the context of the present study? Could FGF12 be considered a potential druggable therapeutic target for opioid use disorder (OUD)?

    2. Reviewer #2 (Public review):

      Summary:

      This highly novel and significant manuscript re-analyzes behavioral QTL data derived from morphine locomotor activity in the BXD recombinant inbred panel. The combination of interacting behavioral-pharmacology (morphine and naltrexone) time course data, high-resolution mouse genetic analyses, genetic analysis of gene expression (eQTLs), cross-species analysis with human gene expression and genetic data, and molecular modeling approaches with Bayesian network analysis produces new information on loci modulating morphine locomotor activity.

      Furthermore, the identification of time-wise epistatic interactions between the Oprm1 and Fgf12 loci is highly novel and points to methodological approaches for identifying other epistatic interactions using animal model genetic studies.

      Strengths:

      (1) Use of state-of-the art genetic tools for mapping behavioral phenotypes in mouse models.

      (2) Adequately powered analysis incorporating both sexes and time course analyses.

      (3) Detection of time and sex-dependent interactions of two QTL loci modulating morphine locomotor activity.

      (4) Identification of putative candidate genes by combined expression and behavioral genetic analyses.

      (5) Use of Bayesian analysis to model causal interactions between multiple genes and behavioral time points.

      Weaknesses:

      (1) There is a need for careful editing of the text and figures to eliminate multiple typographical and other compositional errors.

      (2) There are multiple examples of overstating the possible significance of results that should be corrected or at least directly pointed out as weaknesses in the Discussion. These include:

      a) Assumption that the Oprm1 gene is the causal candidate gene for the major morphine locomotor Chr10 QTL at the early time epochs. Oprm1 is 400,000 bp away from the support interval of the Mor10a QTL locus, and there is no mention as to whether the Oprm1 mRNA eQTL overlaps with Mor10a.

      b) Although the Bayesian analysis of possible complex interactions between Oprm1, Fgf12, other interacting genes, and behaviors is very innovative and produces testable hypotheses, a more straightforward mediation analysis of causal relationships between genotype, gene expression, and phenotype would have added strength to the arguments for the causal role of these individual genes.

      c) The GWAS data analysis for Oprm1 and Fgf12 is incomplete in not mentioning actual significance levels for Oprm1 and perhaps overstating the nominal significance findings for Fgf12.

      Appraisal:

      The authors largely succeeded in reaching goals with novel findings and methodology.

      Significance of Findings:

      This study will likely spur future direct experimental studies to test hypotheses generated by this complex analysis. Additionally, the broad methodological approach incorporating time course genetic analyses may encourage other studies to identify epistatic interactions in mouse genetic studies.

    3. Reviewer #3 (Public review):

      Summary:

      This is a clearly written paper that describes the reanalysis of data from a BXD study of the locomotor response to morphine and naloxone. The authors detect significant loci and an epistatic interaction between two of those loci. Single-cell data from outbred rats is used to investigate the interaction. The authors also use network methods and incorporate human data into their analysis.

      Strengths:

      One major strength of this work is the use of granular time-series data, enabling the identification of time-point-specific QTL. This allowed for the identification of an additional, distinct QTL (the Fgf12 locus) in this work compared to previously published analysis of these data, as well as the identification of an epistatic effect between Oprm1 (driving early stages of locomotor activation) and Fgf12 (driving later stages).

      Weaknesses:

      (1) What criteria were used to determine whether the epistatic interaction was significant? How many possible interactions were explored?

      (2) Results are presented for males and females separately, but the decision to examine the two sexes separately was never explained or justified. Since it is not standard to perform GWAS broken down by sex, some initial explanation of this decision is needed. Perhaps the discussion could also discuss what (if anything) was learned as a result of the sex-specific analysis. In the end, was it useful?

      (3) The confidence intervals for the results were not well described, although I do see them in one of the tables. The authors used a 1.5 support interval, but didn't offer any justification for this decision. Is that a 95% confidence interval? If not, should more consideration have been given to genes outside that interval? For some of the QTLs that are not the focus of this paper, the confidence intervals were very large (>10 Mb). Is that typical for BXDs?

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript provides an open-source tool including hardware and software, and dataset to facilitate and standardize behavioral classification in laboratory mice. The hardware for behavioral phenotyping was extensively tested for safety. The software is GUI based facilitating the usage of this tool across the community of investigators that do not have a programming background. The behavioral classification tool is highly accurate, and the authors deposited a large dataset of annotations and pose tracking for many strains of mice. This tool has great potential for behavioral scientists that use mice across many fields, however there are many missing details that currently limit the impact of this tool and publication.

      Strengths:

      Software-hardware integration for facilitating cross-lab adaptation of the tool and minimizing the need to annotate new data for behavioral classification.

      Data from many strains of mice was included in the classification and genetic analyses in this manuscript.

      Large dataset annotated was deposited for the use of the community

      GUI based software tool decreases barriers of usage across users with limited coding experience.

      Weaknesses:

      The GUI requires pose tracking for classification but, the software provided in JABS does not do pose tracking, so users must do pose tracking using a separate tool. The pose tracking quality directly impacts the classification quality, given that it is used for the feature calculation

      Comments on revisions:

      The authors addressed all my concerns.

    2. Reviewer #2 (Public review):

      Summary:

      This manuscript presents the JAX Animal Behavior System (JABS), an integrated mouse phenotyping platform that includes modules for data acquisition, behavior annotation, and behavior classifier training and sharing. The manuscript provides details and validation for each module, demonstrating JABS as a useful open-source behavior analysis tool that removes barriers to adopting these analysis techniques by the community. In particular, with the JABS-AI module users can download and deploy previously trained classifiers on their own data, or annotate their own data and train their own classifiers. The JABS-AI module also allows users to deploy their classifiers on the JAX strain survey dataset and receive an automated behavior and genetic report.

      Strengths:

      (1) The JABS platform addresses the critical issue of reproducibility in mouse behavior studies by providing an end-to-end system from rig setup to downstream behavioral and genetic analyses. Each step has clear guidelines, and the GUIs are an excellent way to encourage best practices for data storage, annotation, and model training. Such a platform is especially helpful for labs without prior experience in this type of analysis.

      (2) A notable strength of the JABS platform is its reuse of large amounts of previously collected data at JAX Labs, condensing this into pretrained pose estimation models and behavioral classifiers. JABS-AI also provides access to the strain survey dataset through automated classifier analyses, allowing large-scale genetic screening based on simple behavioral classifiers. This has the potential to accelerate research for many labs by identifying particular strains of interest.

      (3) The ethograph analysis will be a useful way to compare annotators/classifiers beyond the JABS platform.

      Weaknesses:

      (1) The manuscript contains many assertions that lack references in both the Introduction and Discussion. For example, in the Discussion, the assertion "published research demonstrates that keypoint detection models maintain robust performance despite the presence of headstages and recording equipment" lacks reference.

      (2) The provided GUIs lower the barrier to entry for labs that are just starting to collect and analyze mouse open field behavior data. However, users must run pose estimation themselves outside of the provided GUIs, which introduces a key bottleneck in the processing pipeline, especially for users without strong programming skills. The authors have provided pretrained pose estimation models and an example pipeline, which is certainly to be commended, but I believe the impact of these tools could be greatly magnified by an additional pose estimation GUI (just for running inference, not for labeling/training).

      (3) While the manuscript does a good job of laying out best practices, there is an opportunity to further improve reproducibility for users of the platform. The software seems likely to perform well with perfect setups that adhere to the JABS criteria, but it is very likely there will be users with suboptimal setups - poorly constructed rigs, insufficient camera quality, etc. It is important, in these cases, to give users feedback at each stage of the pipeline so they can understand if they have succeeded or not. Quality control (QC) metrics should be computed for raw video data (is the video too dark/bright? are there the expected number of frames? etc.), pose estimation outputs (do the tracked points maintain a reasonable skeleton structure; do they actually move around the arena?), and classifier outputs (what is the incidence rate of 1-3 frame behaviors? a high value could indicate issues). In cases where QC metrics are difficult to define (they are basically always difficult to define), diagnostic figures showing snippets of raw data or simple summary statistics (heatmaps of mouse location in the open field) could be utilized to allow users to catch glaring errors before proceeding to the next stage of the pipeline, or to remove data from their analyses if they observe critical issues.

      Comments on revisions:

      I thank the authors for taking the time to address my comments. They have provided a lot of important context in their responses. My only remaining recommendation is to incorporate more of this text into the manuscript itself, as this context will also be interesting/important for readers (and potential users) to consider. Specifically:

      the quality control/user feedback features that have already been implemented (these are extremely important, and unfortunately, not standard practice in many labs)

      top-down vs bottom-up imaging trade-offs (you make very good points!)

      video compression, spatial and temporal resolution trade-offs

      more detail on why the authors chose pose-based rather than pixel-based classifiers

      I believe the proposed system can be extremely useful for behavioral neuroscientists, especially since the top-down freely moving mouse paradigm is one of the most ubiquitous in the field. Many labs have reinvented the wheel here, and as a field it makes sense to coalesce around a set of pipelines and best practices to accelerate the science we all want to do. I make the above recommendation with this in mind: bringing together (properly referenced) observations and experiences of the authors themselves, as well as others in the field, provides a valuable resource for the community. Obviously, the main thrust of the manuscript should be about the tools themselves; it should not turn into a review paper, so I'm just suggesting some additional sentences/references sprinkled throughout as motivation for why the authors made the choices that they did.

      Intro typo: "one link in the chainDIY rigs"

    1. Reviewer #1 (Public review):

      This paper by Poverlein et al reports the substantial membrane deformation around the oxidative phosphorylation super complex, proposing that this deformation is a key part of super complex formation. I found the paper interesting and well-written.

      * Analysis of the bilayer curvature is challenging on the fine lengthscales they have used and produces unexpectedly large energies (Table 1). Additionally, the authors use the mean curvature (Eq. S5) as input to the (uncited, but it seems clear that this is Helfrich) Helfrich Hamiltonian (Eq. S7). If an errant factor of one half has been included with curvature, this would quarter the curvature energy compared to the real energy, due to the squared curvature. The bending modulus used (ca. 5 kcal/mol) is small on the scale of typically observed biological bending moduli. This suggests the curvature energies are indeed much higher even than the high values reported. Some of this may be due to the spontaneous curvature of the lipids and perhaps the effect of the protein modifying the nearby lipids properties.

      * It is unclear how CDL is supporting SC formation if its effect stabilizing the membrane deformation is strong or if it is acting as an electrostatic glue. While this is a weakness for a definite quantification of the effect of CDL on SC formation, the study presents an interesting observation of CDL redistribution and could be an interesting topic for future work.

      In summary, the qualitative data presented are interesting (especially the combination of molecular modeling with simpler Monte Carlo modeling aiding broader interpretation of the results). The energies of the membrane deformations are quite large. This might reflect the roles of specific lipids stabilizing those deformations, or the inherent difficulty in characterizing nanometer-scale curvature.

    2. Reviewer #3 (Public review):

      Summary:

      In this contribution, the authors report atomistic, coarse-grained and lattice simulations to analyze the mechanism of supercomplex (SC) formation in mitochondria. The results highlight the importance of membrane deformation as one of the major driving forces for the SC formation, which is not entirely surprising given prior work on membrane protein assembly, but certainly of major mechanistic significance for the specific systems of interest.

      Strengths:

      The combination of complementary approaches, including an interesting (re)analysis of cryo-EM data, is particularly powerful, and might be applicable to the analysis of related systems. The calculations also revealed that SC formation has interesting impacts on the structural and dynamical (motional correlation) properties of the individual protein components, suggesting further functional relevance of SC formation. In the revision, the authors further clarified and quantified their analysis of membrane responses, leading to further insights into membrane contributions. They have also toned down the decomposition of membrane contributions into enthalpic and entropic contributions, which is difficult to do. Overall, the study is rather thorough, highly creative and the impact on the field is expected to be significant.

      Weaknesses:

      Upon revision, I believe the weakness identified in previous work has been largely alleviated.

    1. Reviewer #1 (Public review):

      Circannual timing is a phylogenetically widespread phenomenon in long-lived organisms and is central to the seasonal regulation of reproduction, hibernation, migration, fur color changes, body weight, and fat deposition in response to photoperiodic changes. Photoperiodic control of thyroid hormone T3 levels in the hypothalamus dictates this timing. However, the mechanisms that regulate these changes are not fully understood. The study by Stewart et al. reports that hypothalamic iodothyronine deiodinase 3 (Dio3), the major inactivator of the biologically active thyroid hormone T3, plays a critical role in circannual timing in the Djungarian hamster. Overall, the study yields important results for the field and is well-conducted, with the exception of the CRISPR/Cas9 manipulation.

      Comments on revisions:

      The authors have satisfactorily addressed all my comments. I no longer have concerns about the CRISPR/Cas9 experiments which have been conducted properly and are now reported appropriately.

    2. Reviewer #2 (Public review):

      Summary:

      Several animals and plants adjust their physiology and behavior to seasons. These changes are timed to precede the seasonal transitions, maximizing chances of survival and reproduction. The molecular mechanisms used for this process are still unclear. Studies in mammals and birds have shown that the expression of deiodinase type-1, 2, and 3 (Dio1, 2, 3) in the hypothalamus spikes right before the transition to winter phenotypes. Yet, whether this change is required or an unrelated product of the seasonal changes has not been shown, particularly because of the genetic intractability of the animal models used to study seasonality. Here, the authors show for the first time a direct link between Dio3 expression and the modulation of circannual rhythms.

      The work is concise and presents the data in a clear manner. The data is, for the most part, solid and supports the author's main claims. The use of CRISPR is a clear advancement in the field. This is, to my knowledge, the first study showing a clear (i.e., causal) role of Dio3 in the circannual rhythms in mammals. Having established a clear component of the circannual timing and a clean approach to address causality, this study could serve as a blueprint to decipher other components of the timing mechanism. It could also help to enlighten the elusive nature of the upstream regulators, in particular, on how the integration of day length takes place, maybe within the components in the Pars tuberalis, and the regulation of tanycytes.

      Comments on revisions:

      The authors have provided an improved version of the manuscript, particularly clarifying the methodology for their CRISPR manipulations. I am satisfied with their response and commend the authors for their work.

    1. Reviewer #1 (Public review):

      Summary:

      The goal of the manuscript was to determine if strenuous exercise negatively impacted regeneration. Indeed, the major conclusion of the manuscript is that elevated exercise during the early stages of regeneration compromises the regenerative process. The authors further conclude that regeneration is disrupted due to defects in blastema formation, which is caused by impaired HA deposition and reduced active (nuclear) Yap.

      Strengths:

      (1) The paradigm of elevated exercise disrupting ECM and regeneration is significant, and provides an experimental model to better understand connections between the ECM and cell/tissue activities.

      (2) The conclusion that exercise intensity correlates with defects in regeneration is supported.

      (3) The demonstration for the requirement for HA is well supported via transcriptomics and multiple independent strategies to manipulate HA levels.

      (4) The demonstration that nuclear Yap depends on the amount of HA is well-supported.

      Weaknesses:

      (1) The authors conclude throughout the manuscript that "blastema formation" is disrupted, but they do not provide any insights into how blastema formation is disrupted (reduced de-differentiation? reduced cell migration? both?). While they show that there are fewer dividing cells, the timing of exercise is prior to outgrowth. So, the effect of dividing cells is likely secondary, which is not considered (or not clearly explained).

      (2) The authors conclude that patterning is affected, but their analyses of patterns (bifurcations) are very limited. It is also not clear if patterning is believed to be affected by a common exercise-induced mechanism or a different exercise-induced mechanism (or by a secondary mechanism).

      (3) The significance of HA in regeneration has been shown before in zebrafish fins, as well as in a handful of other models of regeneration. Although largely cited, explaining some of this work in more detail would give the reader a better picture of how HA is believed to promote regeneration. It may also highlight some emerging questions about the role of HA in regeneration that would permit a richer story and specific future directions.

      (4) In general, parts of the text lack specificity/clarity, and in other cases, there seems to be contradictory information.

      (5) Overall, many of the conclusions were well supported by the data, and this study is likely to provide a foundation for future research on the role of the ECM in tissue repair and regeneration. The main limitations were in connecting the experimental details with the specific processes required for regeneration, and in clearly explaining the findings.

    2. Reviewer #2 (Public review):

      In this study, Lewis et al. established a forced swimming paradigm to investigate how mechanical loading influences caudal fin regeneration. They found that forced exercise impaired the normally robust regeneration process, particularly in the peripheral/lateral ray regions. Transcriptomic profiling of exercised fish further revealed that extracellular matrix (ECM) gene programs were affected, and the authors provided evidence that disruption of hyaluronic acid (HA) synthesis may underlie this impairment. While the question of how mechanical loading impacts tissue regeneration is rather intriguing and the study nicely demonstrates a role for HA in fin regeneration, I have some concerns regarding the specificity of forced exercise as a model for mechanical loading, and thus the causal link between mechanical loading and HA synthesis disruption.

      Major concerns:

      (1) Forced exercise as a model for mechanical loading.

      Is it possible that the forced exercise paradigm imposes greater shear stress on the peripheral/lateral ray regions, thereby disrupting the fragile wound epidermis at this early stage and consequently affecting the regeneration program and phenotypes? The wound epidermis appears visibly torn or disrupted (Figure 1A, right panel, 2 dpa image). Given the critical role of the wound epidermis in blastema establishment and fin regeneration (PMID: 11002347; PMID: 34038742; PMID: 26305099), could this be a simpler explanation to consider, instead of the proposed role of mechanical loading and cryptic mechanical sensors?

      (2) The general effect of HA on fin regeneration.

      While the authors convincingly show that exogenous HA can ameliorate fin regeneration defects caused by forced exercise (Figure S7), it would be important to include a control examining the effect of HA supplementation in non-exercised animals. Does HA act as a general enhancer of fin regeneration even in the absence of forced exercise? Additionally, please consider merging Figure S7 (HA supplement) with Figure 5 (HA depletion) to improve clarity for readers.

      (3) Proper annotation of the investigated ray regions.

      As the authors clearly demonstrate that peripheral and central rays respond differently to forced exercise, it is important to explicitly define the regions corresponding to these rays. Do the peripheral rays refer to the dorsal-most and ventral-most rays among the 18-20 rays across the amputation plane? Which rays are considered central? Please clarify.

    3. Reviewer #3 (Public review):

      Summary:

      In the submitted article by Lewis et al., the authors investigate how mechanical stimulation influences organ regeneration using the well-characterized zebrafish caudal fin regeneration model. Using a swim flume and a 30min/day exercise regime, the authors found that exercise during the establishment of the blastema reduced regeneration and led to skeletal deformations. Transcriptional profiling of regenerated caudal fin tissue revealed reduced expression of extracellular matrix-associated genes, which were found to be expressed by blastemal fibroblast and osteoblast lineage cells.

      Downregulated genes included hyaluronic acid synthases 1 and 2; accordingly, hyaluronic acid levels were found to be reduced in regenerating fins exposed to exercise. The link between regeneration and HA was further confirmed through HA depletion and HA overexpression experiments, which showed a reduction in blastema size and partial rescue of blastema formation, respectively. The authors further show that HA levels, as well as the extent of mechanical loading correlate with nuclear localization of the mechanotransducer Yap and conclude that biomechanical forces play a significant role during regeneration through regulation of HA levels in the ECM and therewith regulation of YAP downstream signaling.

      This work expands our understanding of the biochemical signaling connecting biomechanical forces with tissue regeneration. The conclusions are well supported by the data.

      Strengths:

      (1) Analysis is performed in multiple replicate experimental groups and shows the robust response to the experimental conditions.

      (2) The link of HA levels to blastema formation was confirmed through HA overexpression and two different HA depletion experiments.

      (3) The use of a previously established fin regeneration single cell dataset does elegantly show the correlation of changes in gene expression levels and specific tissue types, which was further confirmed by in vivo imaging of cell type-specific transgenic lines.

      Weaknesses:

      Tissue sections stained with hematoxylin and eosin would be helpful to show the changes in tissue architecture more clearly.

    1. Reviewer #1 (Public review):

      In this manuscript, Qin and colleagues aim to delineate a neural mechanism by which the internal satiety levels modulate the intake of sugar solution. They identified a three-step neuropeptidergic system that downregulates the sensitivity of sweet-sensing gustatory sensory neurons in sated flies. First, neurons that release a neuropeptide Hugin (which is an insect homolog of vertebrate Neuromedin U (NMU)) are in an active state when the concentration of glucose is high. This activation does not require synaptic inputs, suggesting that Hugin-releasing neurons sense hemolymph glucose levels directly. Next, the Hugin neuropeptides activate Allatostatin A (AstA)-releasing neurons via one of Hugin's receptors, PK2-R1. Finally, the released AstA neuropeptide suppresses sugar response in sugar-sensing Gr5a-expressing gustatory sensory neurons through AstA-R1 receptor. Suppression of sugar response in Gr5a-expressing neurons reduces the fly's sugar intake motivation (measured by proboscis extension reflex). They also found that NMU-expressing neurons in the ventromedial hypothalamus (VMH) of mice (which project to the rostral nucleus of the solitary tract (rNST)) are also activated by high concentrations of glucose, independent of synaptic transmission, and that injection of NMU reduces the glucose-induced activity in the downstream of NMU-expressing neurons in rNST. These data suggest that the function of Hugin neuropeptide in the fly is analogous to the function of NMU in the mouse.

      Generally, their central conclusions are well-supported by multiple independent approaches. The parallel study in mice adds a unique comparative perspective that makes the paper interesting to a wide range of readers. It is easier said than done: the rigor of this study, which effectively combined pharmacological and genetic approaches to provide multiple lines of behavioral and physiological evidence, deserves recognition and praise.

      A perceived weakness is that the behavioral effects of the manipulations of Hugin and AstA systems are modest compared to a dramatic shift of sugar solution-induced PER (the behavioral proxy of sugar sensitivity) induced by hunger, as presented in Figure 1B and E. It is true that the mutation of tyrosine hydroxylase (TH), which synthesizes dopamine, does not completely abolish the hunger-induced PER change, but the remaining effect is small. Moreover, the behavioral effect of the silencing of the Hugin/AstA system (Figure Supplement 13B, C) is difficult to interpret, leaving a possibility that this system may not be necessary for shifting PER in starved flies. These suggest that the Hugin-AstA system accounts for only a minor part of the behavioral adaptation induced by the decreased sugar levels. Their aim to "dissect out a complete neural pathway that directly senses internal energy state and modulates food-related behavioral output in the fly brain" is likely only partially achieved. While this outcome is not a shortcoming of a study per se, the depth of discussion on the mechanism of interactions between the Hugin/AstA system and the other previously characterized molecular circuit mechanisms mediating hunger-induced behavioral modulation is insufficient for readers to appreciate the novelty of this study and future challenges in the field. In this context, authors are encouraged to confront a limitation of the study due to the lack of subtype-level circuit characterization, despite their intriguing finding that only a subtype of Hugin- and AstA-releasing neurons are responsive to the elevated level of bath-applied glucose.

    2. Reviewer #2 (Public review):

      Summary:

      The question of how caloric and taste information interact and consolidate remains both active and highly relevant to human health and cognition. The authors of this work sought to understand how nutrient sensing of glucose modulates sweet sensation. They found that glucose intake activates hugin signaling to AstA neurons to suppress feeding, which contributes to our mechanistic understanding of nutrient sensation. They did this by leveraging the genetic tools of Drosophila to carry out nuanced experimental manipulations and confirmed the conservation of their main mechanism in a mammalian model. This work builds on previous studies examining sugar taste and caloric sensing, enhancing the resolution of our understanding.

      Strengths:

      Fully discovering neural circuits that connect body state with perception remains central to understanding homeostasis and behavior. This study expands our understanding of sugar sensing, providing mechanistic evidence for a hugin/AstA circuit that is responsive to sugar intake and suppresses feeding. In addition to effectively leveraging the genetic tools of Drosophila, this study further extends their findings into a mammalian model with the discovery that NMU neural signaling is also responsive to sugar intake.

      Weaknesses:

      The effect of Glut1 knockdown on PER in hugin neurons is modest, and does not show a clear difference between fed and starved flies as might be expected if this mechanism acts as a sensor of internal energy state. This could suggest that glucose intake through Glut1 may only be part of the mechanism.

    3. Reviewer #3 (Public review):

      Summary:

      This study identifies a novel energy-sensing circuit in Drosophila and mice that directly regulates sweet taste perception. In flies, hugin+ neurons function as a glucose sensor, activated through Glut1 transport and ATP-sensitive potassium channels. Once activated, hugin neurons release hugin peptide, which stimulates downstream Allatostatin A (AstA)+ neurons via PK2-R1 receptors. AstA+ neurons then inhibit sweet-sensing Gr5a+ gustatory neurons through AstA peptide and its receptor AstA-R1, reducing sweet sensitivity after feeding. Disrupting this pathway enhances sweet taste and increases food intake, while activating the pathway suppresses feeding.

      The mammalian homolog of neuromedin U (NMU) was shown to play an analogous role in mice. NMU knockout mice displayed heightened sweet preference, while NMU administration suppressed it. In addition, VMH NMU+ neurons directly sense glucose and project to rNST Calb2+ neurons, dampening sweet taste responses. The authors suggested a conserved hugin/NMU-AstA pathway that couples energy state to taste perception.

      Strengths:

      Interesting findings that extend from insects to mammals. Very comprehensive.

      Weaknesses:

      Coupling energy status to taste sensitivity is not a new story. Many pathways appear to be involved, and therefore, it raises a question as to how this hugin-AstA pathway is unique.

    1. Reviewer #1 (Public review):

      This study extends the previous interesting work of this group to address the potentially differential control of movement and posture. Their earlier work explored a broad range of data to make the case for a downstream neural integrator hypothesized to convert descending velocity movement commands into postural holding commands. Included in that data were observations from people with hemiparesis due to stroke. The current study uses similar data, but pushes into a different, but closely related direction, suggesting that these data may address the independence of these two fundamental components of motor control. The study makes observations about the different expression movement deficits during postural fixation and movement, and the different effect of force perturbations during these periods, consistent with their hypothesis that movement and postural control are separate motor functions. They speculate that the appearance of the stereotypic flexor synergies characteristic of stroke, are the result of a breakdown of this normal separation between the two control modes.

      Comments on revisions:

      I had only two very trivial comments in the previous version. One was simply a figure that was mistakenly not updated, and the other was the use of the terms "proximal" and "distal" to describe the location of a target. Both have been corrected.

    2. Reviewer #2 (Public review):

      The reported findings by Hadjiosif and colleagues address an important question in sensorimotor neuroscience related to the idea that movement and postural control are regulated by unique circuits. To explain the reported compromised postural control for stroke patients, the authors propose a conceptual framework that differentially weights corticospinal tract and reticulospinal tract for neurologically intact and stroke patients. Based on the currently reported findings and experimental design, the interpretation of the authors provides support to this idea.

      The authors have done well to include a limitations paragraph in their discussion. While it is difficult to truly compare across many of the experimental conditions to draw any strong conclusions, the authors have included additional analyses and a limitations paragraph highlighting some weaknesses in the paper.

    1. Reviewer #1 (Public review):

      Summary:

      In this submitted manuscript, Lu, Tang, and colleagues implement a novel serial perturbation paradigm during speech to isolate the effects of sensory and motor processes on compensation. They perform three main studies: in the first study, they validate their method by randomly perturbing pitch in a series of produced vowels. They demonstrate that the amount of perturbation is driven (in part) by the previous trial's amount of motor compensation applied as opposed to the sensory perturbation. In the second experiment, they found that this effect carries over to single vowel words, but the effect was much weaker when different words were produced. Thirdly, the authors reproduce these findings in a more linguistically relevant way (during sentences) and show that the previously shown compensation effect only occurs within syntactic structures and not across them, suggesting an interplay between sensorimotor systems and linguistic structure processing.

      Strengths:

      Overall, this is a very unique study and strikes me as being potentially quite impactful. The authors have performed a large number of experiments to validate their findings that provide novel insights into the processes underlying compensation during speech production. These findings are also likely to produce new avenues for studying the neural mechanisms that support these processes.

      Weaknesses:

      While the authors go to great lengths to disassociate the serial effects of sensory and motor compensation, which is commendable, one weakness is that they are intrinsically linked (motor actions produce sensory consequences). Therefore, there is no obvious way to decouple them for the purposes of investigation. It would be beneficial to discuss future research that could further disentangle these factors.

    2. Reviewer #2 (Public review):

      This study aims to disentangle the contribution of sensory and motor processes (mapped onto the inverse and forward components of speech motor control models like DIVA) to production changes as a result of altered auditory feedback. After five experiments, the authors conclude that it is the motor compensation on the previous trial, and not the sensory error, that drives compensatory responses in subsequent trials.

      Assessment:

      The goal of this paper is great, and the question is timely. Quite a bit of work has gone into the study, and the technical aspects are sound. That said, I just don't understand how the current design can accomplish what the authors have set as their goal. This may, of course, be a misunderstanding on my part, so I'll try to explain my confusion below. If it is indeed my mistake, then I encourage the authors to dedicate some space to unpacking the logic in the Introduction, which is currently barely over a page long. They should take some time to lay out the logic of the experimental design and the dependent and independent variables, and how this design disentangles sensory and motor influences. Then clearly discuss the opposing predictions supporting sensory-driven vs. motor-driven changes. Given that I currently don't understand the logic and, consequently, the claims, I will focus my review on major points for now.

      Main issues

      (1) Measuring sensory change. As acknowledged by the authors, making a motor correction as a function of altered auditory feedback is an interactive process between sensory and motor systems. However, one could still ask whether it is primarily a change to perception vs. a change to production that is driving the motor correction. But to do this, one has to have two sets of measurements: (a) perceptual change, and (b) motor change. As far as I understand, the study has the latter (i.e., C), but not the former. Instead, the magnitude of perceptual change is estimated through the proxy of the magnitude of perturbation (P), but the two are not the same; P is a physical manipulation; perceptual change is a psychological response to that physical manipulation. It is theoretically possible that a physical change does not cause a psychological change, or that the magnitude of the two does not match. So my first confusion centers on the absence of any measure of sensory change in this study.

      To give an explicit example of what I mean, consider a study like Murphy, Nozari, and Holt (2024; Psychonomic Bulletin & Review). This work is about changes to production as a function of exposure to other talkers' acoustic properties - rather than your own altered feedback - but the idea is that the same sensory-motor loop is involved in both. When changing the acoustic properties of the input, the authors obtain two separate measures: (a) how listeners' perception changes as a function of this physical change in the acoustics of the auditory signal, and (b) how their production changes. This allows the authors to identify motor changes above and beyond perceptual changes. Perhaps making a direct comparison with this study would help the reader understand the parallels better.

      (2) A more fundamental issue for me is a theoretical one: Isn't a compensatory motor change ALWAYS a consequence of a perceptual change? I think it makes sense to ask, "Does a motor compensation hinge on a previous motor action or is sensory change enough to drive motor compensation?" This question has been asked for changed acoustics for self-produced speech (e.g., Hantzsch, Parrell, & Niziolek, 2022) and other-produced speech (Murphy, Holt, & Nozari, 2025), and in both cases, the answer has been that sensory changes alone are, in fact, sufficient to drive motor changes. A similar finding has been reported for the role of cerebellum in limb movements (Tseng et al., 2007), with a similar answer (note that in that study, the authors explicitly talk about "the addition" of motor corrections to sensory error, not one vs. the other as two independent factors. So I don't understand a sentence like "We found that motor compensation, rather than sensory errors, predicted the compensatory responses in the subsequent trials", which views motor compensations and sensory errors as orthogonal variables affecting future motor adjustments.

      In other words, there is a certain degree of seriality to the compensation process, with sensory changes preceding motor corrections. If the authors disagree with this, they should explain how an alternative is possible. If they mean something else, a comparison with the above studies and explaining the differences in positions would greatly help.

      (3) Clash with previous findings. I used the examples in point 2 to bring up a theoretical issue, but those examples are also important in that all three of them reach a conclusion compatible with one another and different from the current study. The authors do discuss Tseng et al.'s findings, which oppose their own, but dismiss the opposition based on limb vs. articulator differences. I don't find the authors reasoning theoretically convincing here, but more importantly, the current claims also oppose findings from speech motor studies (see citations in point 2), to which the authors' arguments simply don't apply. Strangely, Hantzsch et al.'s study has been cited a few times, but never in its most important capacity, which is to show that speech motor adaptation can take place after a single exposure to auditory error. Murphy et al. report a similar finding in the context of exposure to other talkers' speech.

      If the authors can convincingly justify their theoretical position in 2, the next step would be to present a thorough comparison with the results of the three studies above. If indeed there is no discrepancy, this comparison would help clarify it.

      References

      Hantzsch, L., Parrell, B., & Niziolek, C. A. (2022). A single exposure to altered auditory feedback causes observable sensorimotor adaptation in speech. eLife, 11, e73694.

      Murphy, T. K., Nozari, N., & Holt, L. L. (2024). Transfer of statistical learning from passive speech perception to speech production. Psychonomic Bulletin & Review, 31(3), 1193-1205.

      Murphy, T. K., Holt, L. L. & Nozari, N. (2025). Exposure to an Accent Transfers to Speech Production in a Single Shot. Preprint available at: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5196109.

      Tseng, Y. W., Diedrichsen, J., Krakauer, J. W., Shadmehr, R., & Bastian, A. J. (2007). Sensory prediction errors drive cerebellum-dependent adaptation of reaching. Journal of neurophysiology, 98(1), 54-62.

    1. Reviewer #1 (Public review):

      Summary:

      Calle-Schuler et. al. reconstruct all the pre- and post-synaptic neurons to the bristle mechanosensory neurons on the adult fly head to understand how neural circuits determine the sequential motor patterns during fly grooming. They find that most presynaptic neurons, interneurons, and excitatory postsynaptic neurons are also somatotopically organized, such that each neuron is more connected to bristles mechanosensory neurons that are closer on the head and less connected to bristles mechanosensory neurons that are further away. These include the direct BMN-BMN circuits, excitatory interneurons, as well as the inhibitory networks. They also identify that the entire hemi-lineage 23b forms excitatory postsynaptic circuits with BMNs, highlighting how these circuits and hence their function could be developmentally determined.

      Strengths:

      This is a complete map of all the neurons that make 5 or more pre- and post-synaptic connections of the fly head BMNs. Using this, the authors have identified various trends, such as ascending neurons providing most of the GABAergic inhibitory input, which could provide the presynaptic inhibition essential for the parallel model for sequential grooming generation. Moreover, they identified that the entire cholinergic hemilineage 23b is postsynaptic to BMNs.

      Weaknesses:

      Although the somatotropic organization is an elegant mechanism to generate sequential motor sequences during grooming, none of the analyses in the paper directly demonstrate that this somatotropic connectivity is sufficient to generate hierarchical suppression and reconstruct the grooming sequence. If somatotropic organization is sufficient, then hierarchical clustering should recover the grooming sequence. Their detailed connectome enables the authors to test if some networks are more crucial for grooming sequence than others: to what extent can each network individually (ascending neurons-BMN alone) or a combination (BMN-BMN, ascending-BMN, BMN-descending, etc.) recover the sequence observed during grooming. If all the pre- and post-synaptic neurons put together cannot explain the sequence, then the sequence is probably determined by individual synaptic strengths or other key downstream neurons.

    2. Reviewer #2 (Public review):

      Summary:

      Schuler et al. present an extensive analysis of the synaptic connectivity of mechanosensory head bristles in the brain of Drosophila melanogaster. Based on the previously described set of bristle afferent neurons, (BMNs), located on the head, the study aims to provide a complete, quantitative assessment of all synaptic partners in the ventral brain. Activation of head bristles induces grooming behavior, which is hierarchically organized, and hypothesized to be grounded in a parallel cellular architecture in the central brain. The authors found evidence that, at the synaptic level, neurons downstream of the BMN afferents, namely the postsynaptic LB23 interneurons and recurrent GABAergic neurons (involved in sensory gain control), are organized in parallel, following the somatotopic organization described for the BMN afferents. This study, therefore, represents an important step towards a better understanding of the cellular circuits that govern the hierarchical order of sequentially organized grooming behavior in Drosophila melanogaster.

      The study is well done, the images are well designed and extensive in number, but the account is challenging to read and digest for the reader outside the Drosophila /connectome community. It is amazing what can be done with the connectome nowadays using the up-to-date FAFB dataset, the analytical and visual tools (as in FlyWire), in combination with known anatomy/physiology/behavior in DM. I suggest that the authors provide more detail on hemilineages, their relationship to the FAB connectome, the predicted neurotransmitter identity, and the use of statistical CatMAID tools used in some of the Figures.

      A graphical summary at the end of the study would be very useful to highlight the important findings focusing on neuron populations identified in this study and their position in the hypothesized parallel central circuitry of BMNs.

    3. Reviewer #3 (Public review):

      Summary:

      The authors set out to extend their previous mapping of Drosophila head mechanosensory neurons (Eichler et al., 2024) by reconstructing their full second-order connectome. Their aim is to reveal how bristle mechanosensory neurons (BMNs) interface with excitatory and inhibitory partners to generate location-specific grooming movements, and to identify the circuit motifs and developmental lineages that support this transformation.

      Strengths:

      The strengths of this work are clear. The authors present a comprehensive synaptic-resolution connectome for BMNs, identifying nearly all of their pre- and postsynaptic partners. This dataset reveals important circuit motifs:

      (1) BMNs provide feedforward excitation to descending neurons, feedforward inhibition to interneurons, and are themselves strongly regulated by GABAergic presynaptic inhibition.

      (2) These motifs together support the idea that BMN activity is locally gated and hierarchically suppressed, fitting well with known behavioural sequences of grooming.

      (3) The study also shows that connectivity preserves somatotopy, such that BMNs from neighbouring bristle populations converge onto shared partners, while distant BMNs remain segregated.

      (4) A developmental analysis reveals both primary and secondary partners, suggesting a layered scaffold plus adult-specific elaborations.

      (5) Finally, the identification of hemilineage 23b (LB23) as a core postsynaptic pathway - incorporating previously described antennal grooming neurons (aBN2) - provides a striking link between developmental lineage, anatomical connectivity, and behavioral output.

      (6) Together, the dataset represents a valuable resource for the neuroscience community and a foundation for future functional studies.

      Weaknesses:

      There are also some weaknesses that mostly only limit clarity.

      (1) The writing is dense, with results often presented in a cryptic fashion and the functional implications deferred to the discussion. As a result, the significance of circuit motifs such as BMN→motor or reciprocal inhibitory loops is sometimes buried, rather than highlighted when first described.

      (2) Some assumptions require more explanation for non-specialist readers - for example, how bristle identity is inferred in EM in the absence of cuticular structures, or what is meant by "ascending" and "descending" in a dataset that does not include the ventral nerve cord. While some of this comes from the earlier paper, it would help readers of this one to explain this.

      (3) Visualization choices also sometimes obscure key conclusions: network graphs can be visually appealing but do not clearly convey somatotopy or BMN-type differences; heatmaps or region-level matrices would make the parallel, block-like organization of the circuit more evident.

      (4) The data might also speak to roles beyond grooming (e.g., mechanosensory modulation of posture or feeding), and a brief acknowledgement of this would broaden the impact.

      (5) The restriction to one hemisphere should be explicitly acknowledged as a limitation when framing this as a 'comprehensive' connectome.

      Overall, the authors achieve their main goal: they convincingly show that BMNs connect into parallel, somatotopically organized pathways, with LB23 providing a key lineage-based link from sensory input to grooming output. The dataset is carefully analyzed, and while the presentation could be streamlined, the connectome will be a valuable resource for researchers studying sensory processing, motor control, and the logic of circuit organization.

    1. Reviewer #1 (Public review):

      The manuscript presents a compelling new in vitro system based on isogenic co-cultures of human iPSC-derived hepatocytes and macrophages, enabling the modelling of hepatic immune responses with unprecedented physiological relevance. The authors show that co-culture leads to enhanced maturation of hepatocytes and tissue-resident macrophage identity, which cannot be achieved through conditioned media alone. Using this system, they functionally validate immune-driven hepatotoxic responses to a panel of drugs and compare the system's predictive power to that of monocyte-derived macrophages. The results underscore the necessity of macrophage-hepatocyte crosstalk for accurate modelling of liver inflammation and drug toxicity in vitro.

      The manuscript is clearly written and addresses a key limitation in liver organoid systems: the lack of immune complexity and tissue-specific macrophage imprinting. Nevertheless, several conclusions would benefit from a more careful interpretation of the data, and some important controls or explanations are missing, particularly in the flow cytometry gating strategies, stress marker validation, and cluster interpretations.

      Strengths:

      (1) Novelty and Relevance: The study presents a highly innovative co-culture system based on isogenic human iPSCs, addressing an unmet need in modelling immune-mediated hepatotoxicity.

      (2) Mechanistic Insight: The reciprocal reprogramming between iHeps and iMacs, including induction of KC-specific pathways and hepatocyte maturation markers, is convincingly demonstrated.

      (3) Functional Readouts: The application of the model to detect IL-6 responses to hepatotoxic compounds enhances its translational relevance.

      Weaknesses:

      (1) Several key claims, particularly those derived from PCA plots and DEG analyses, are overinterpreted and require more conservative language or further validation.

      (2) The purity of sorted hepatocytes and macrophages is not convincingly demonstrated; contamination across gates may confound transcriptomic readouts.

      (3) Stress response genes and ER stress/apoptosis signatures are not properly assessed, despite being potentially activated in the system.

      (4) Some figure panels and legends lack statistical annotations, and microscopy validation of morphological changes is missing.

      (5) The co-culture model with monocyte-derived macrophages is not fully characterised, making comparisons less informative.

    2. Reviewer #2 (Public review):

      Summary:

      This study builds on work by Glass and Guilliams showing that mouse Kupffer cells depend on the surrounding cells, including endothelium, hepatocytes, and stellate cells, for their identity. Herein, the authors extend the work to human systems. It nicely highlights why taking monocyte-derived macrophages and pretending they are Kupffer cells is simply misleading.

      Strengths:

      Many, including human cells, difficult culture assays, and important new data.

      Weaknesses:

      This reviewer identified minor queries only, rather than 'weaknesses' as such.

    3. Reviewer #3 (Public review):

      Summary:

      In this study, the authors establish a human in vitro liver model by co-culturing induced hepatocyte-like cells (iHEPs) with induced macrophages (iMACs). Through flow cytometry-based sorting of cell populations at days 3 and 7 of co-culture, followed by bulk RNA sequencing, they demonstrate that bidirectional interactions between these two cell types drive functional maturation. Specifically, the presence of iMACs accelerates the hepatic maturation program of iHEPs, while contact-dependent cues from iHEPs enhance the acquisition of Kupffer cell identity in iMACs, indicating that direct cell-cell interactions are critical for establishing tissue-resident macrophage characteristics.

      Functionally, the authors show that iMAC-derived Kupffer-like cells respond to pathological stimuli by producing interleukin-6 (IL-6), a hallmark cytokine of hepatic immune activation. When exposed to a panel of clinically relevant hepatotoxic drugs, the co-culture system exhibited concentration-dependent modulation of IL-6 secretion consistent with reported drug-induced liver injury (DILI) phenotypes. Notably, this response was absent when hepatocytes were co-cultured with monocyte-derived macrophages from peripheral blood, underscoring the liver-specific phenotype and functional relevance of the iMAC-derived Kupffer-like cells. Collectively, the study proposes this co-culture platform as a more physiologically relevant model for interrogating macrophage-hepatocyte crosstalk and assessing immune-mediated hepatotoxicity in vitro.

      Strengths:

      A major strength of this study lies in its systematic dissection of cell-cell interactions within the co-culture system. By isolating each cell type following co-culture and performing comprehensive transcriptomic analyses, the authors provide direct evidence of bidirectional crosstalk between iMACs and iHEPs. The comparison with single-culture controls is particularly valuable, as it clearly demonstrates how co-culture enhances functional maturation and lineage-specific gene expression in both cell types. This approach allows for a more mechanistic understanding of how hepatocyte-macrophage interactions contribute to the acquisition of tissue-specific phenotypes.

      Weaknesses:

      (1) Overreliance on bulk RNA-seq data:

      The primary evidence supporting cell maturation is derived from bulk RNA sequencing, which has inherent limitations in resolving heterogeneous cellular states and functional maturation. The conclusions regarding hepatocyte maturation are based largely on increased expression of a subset of CYP genes and decreased AFP levels - markers that, while suggestive, are insufficient on their own to substantiate functional maturation. Additional phenotypic or functional assays (e.g., metabolic activity, protein-level validation) would significantly strengthen these claims.

      (2) Insufficient characterization of input cell populations:

      The manuscript lacks adequate validation of the cellular identities prior to co-culture. Although the authors reference previously published protocols for generating iHEPs and iMACs, it remains unclear whether the cells used in this study faithfully retain expected lineage characteristics. For example, hepatocyte preparations should be characterized by flow cytometry for ALB and AFP expression, while iMACs should be assessed for canonical macrophage markers such as CD45, CD11b, and CD14 before co-culture. Without these baseline data, it is difficult to interpret the magnitude or significance of any co-culture-induced changes.

      (3) Quantitative assessment of IL-6 production is insufficient:

      The analysis of drug-induced IL-6 responses is based primarily on relative changes compared to control conditions. However, percentage changes alone are inadequate to capture the biological relevance of these responses. Absolute cytokine production levels - particularly in response to LPS stimulation - should be reported and directly compared to PBMC-derived macrophages to determine whether iMAC-derived Kupffer-like cells exhibit enhanced cytokine output. Moreover, the Methods section should clearly describe how ELISA results were normalized or corrected to account for potential differences in cell number, viability, or culture conditions.

      (4) Unclear mechanistic interpretation of IL-6 modulation:

      The observed changes in IL-6 production upon drug treatment cannot be interpreted solely as evidence of Kupffer cell-specific functionality. For instance, IL-6 suppression by NSAIDs such as diclofenac is well known to result from altered prostaglandin synthesis due to COX inhibition, while leflunomide's effects are linked to metabolite-induced modulation of immune cell proliferation and broader cytokine networks. These mechanisms are distinct from Kupffer cell identity and may not directly reflect liver-specific macrophage function. Consequently, changes in IL-6 secretion alone - particularly without additional mechanistic evidence or analysis of other cytokines - are insufficient to conclude that co-culture with hepatocytes drives the acquisition of bona fide Kupffer cell maturity.

    1. Reviewer #1 (Public review):

      Summary:

      The presented study by Centore and colleagues investigates the inhibition of BAF chromatin remodeling complexes. The study is well written and includes comprehensive datasets, including compound screens, gene expression analysis, epigenetics, as well as animal studies. This is an important piece of work for the uveal melanoma research field, and sheds light on a new inhibitor class, as well as a mechanism that might be exploited to target this deadly cancer for which no good treatment options exist.

      Strengths:

      This is a comprehensive and well-written study.

    2. Reviewer #2 (Public review):

      Summary:

      The authors generate an optimized small molecule inhibitor of SMARCA2/4 and test it in a panel of cell lines. All uveal melanoma (UM) cell lines in the panel are growth inhibited by the inhibitor making the focus of the paper. This inhibition is correlated with loss of promoter occupancy of key melanocyte transcription factors e.g. SOX10. SOX10 overexpression and a point mutation in SMARCA4 can rescue growth inhibition exerted by the SMARCA2/4 inhibitor. Treatment of a UM xenograft model results in growth inhibition and regression which correlates with reduced expression of SOX10 but not discernible toxicity in the mice. Collectively, the data suggest a novel treatment of uveal melanoma.

      Strengths:

      There are many strengths of the study, including the strong challenge of the on-target effect, the assays used and the mechanistic data. The results are compelling as are the effects of the inhibitor. The in vivo data is dose-dependent and doses are low enough to be meaningful and associated with evidence of target engagement.

    3. Reviewer #3 (Public review):

      Summary:

      This manuscript reports the discovery of new compounds that selectively inhibit SMARCA4/SMARCA2 ATPase activity and have pronounced effects on uveal melanoma cell proliferation. They induce apoptosis and suppress tumor growth, with no toxicity in vivo. The report provides biological significance by demonstrating that the drugs alter chromatin accessibility at lineage specific gene enhancer regions and decrease expression of lineage specific genes, including SOX10 and SOX10 target genes.

      Strengths:

      The study provides compelling evidence for the therapeutic use of these compounds and does a thorough job at elucidating the mechanisms by which the drugs work. The study will likely have a high impact on the chromatin remodeling and cancer fields. The datasets will be highly useful to these communities.

      [Editors' note: The authors have addressed all of the outstanding issues.]

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, the authors performed an integration of 48 scRNA-seq public datasets and created a single-cell transcriptomic atlas for AML (222 samples comprising 748,679 cells). This is important since most AML scRNA-seq studies suffer from small sample size coupled with high heterogeneity. They used this atlas to further dissect AML with t(8;21) (AML-ETO/RUNX1-RUNX1T1), which is one of the most frequent AML subtypes in young people. In particular, they were able to predict Gene Regulatory Networks in this AML subtype using pySCENIC, which identified the paediatric regulon defined by a distinct group of hematopoietic transcription factors (TFs) and the adult regulon for t(8;21). They further validated this in bulk RNA-seq with AUCell algorithm and inferred prenatal signature to 5 key TFs (KDM5A, REST, BCLAF1, YY1, and RAD21), and the postnatal signature to 9 TFs (ENO1, TFDP1, MYBL2, KLF1, TAGLN2, KLF2, IRF7, SPI1, and YXB1). They also used SCENIC+ to identify enhancer-driven regulons (eRegulons), forming an eGRN, and found that prenatal origin shows a specific HSC eRegulon profile, while a postnatal shows a GMP profile. They also did an in silico perturbation and found AP-1 complex (JUN, ATF4, FOSL2), P300 and BCLAF1 as important TFs to induce differentiation. Overall, I found this study very important in creating a comprehensive resource for AML research.

      Strengths:

      • The generation of an AML atlas integrating multiple datasets with almost 750K cells will further support the community working on AML

      • Characterisation of t(8;21) AML proposes new interesting leads.

      • The t(8;21) TFs/regulons identified from any of the single dataset are not complete and now the authors showed that the increase in the number of cells that allowed identification of novel ones.

      Comments on revisions:

      In the revised version of the manuscript, the authors addressed all my comments.

    1. Reviewer #1 (Public review):

      Summary:

      Noell et al have presented a careful study of the dissociation kinetics of Kinesin (1,2,3) classes of motors moving in vitro on a microtubule. These motors move against the opposing force from a ~1 micron DNA strand (DNA tensiometer) that is tethered to the microtubule and also bound to the motor via specific linkages (Figure 1A). The authors compare the time for which motors remain attached to the microtubule when they are tethered to the DNA, versus when they are not. If the former is longer, the interpretation is that the force on the motor from the stretched DNA (presumed to be working solely along the length of the microtubule) causes the motor's detachment rate from the microtubule to be reduced. Thus, the specific motor exhibits "catch-bond" like behaviour.

      Strengths:

      The motivation is good - to understand how kinesin competes against dynein through the possible activation of a catch bond. Experiments are well done, and there is an effort to model the results theoretically.

      Weaknesses:

      The motivation of these studies is to understand how kinesin (1/2/3) motors would behave when they are pitted in a tug of war against dynein motors as they transport cargo in a bidirectional manner on microtubules. Earlier work on dynein and kinesin motors using optical tweezers has suggested that dynein shows a catch bond phenomenon, whereas such signatures were not seen for kinesin. Based on their data with the DNA tensiometer, the authors would like to claim that (i) Kinesin1 and Kinesin2 also show catch-bonding and (ii) the earlier results using optical traps suffer from vertical forces, which complicates the catch-bond interpretation.

      While the motivation of this work is reasonable, and the experiments are careful, I find significant issues that the authors have not addressed:

      (1) Figure 1B shows the PREDICTED force-extension curve for DNA based on a worm-like chain model. Where is the experimental evidence for this curve? This issue is crucial because the F-E curve will decide how and when a catch-bond is induced (if at all it is) as the motor moves against the tensiometer. Unless this is actually measured by some other means, I find it hard to accept all the results based on Figure 1B.

      (2) The authors can correct me on this, but I believe that all the catch-bond studies using optical traps have exerted a load force that exceeds the actual force generated by the motor. For example, see Figure 2 in reference 42 (Kunwar et al). It is in this regime (load force > force from motor) that the dissociation rate is reduced (catch-bond is activated). Such a regime is never reached in the DNA tensiometer study because of the very construction of the experiment. I am very surprised that this point is overlooked in this manuscript. I am therefore not even sure that the present experiments even induce a catch-bond (in the sense reported for earlier papers).

      (3) I appreciate the concerns about the Vertical force from the optical trap. But that leads to the following questions that have not at all been addressed in this paper:

      (i) Why is the Vertical force only a problem for Kinesins, and not a problem for the dynein studies?

      (ii) The authors state that "With this geometry, a kinesin motor pulls against the elastic force of a stretched DNA solely in a direction parallel to the microtubule". Is this really true? What matters is not just how the kinesin pulls the DNA, but also how the DNA pulls on the kinesin. In Figure 1A, what is the guarantee that the DNA is oriented only in the plane of the paper? In fact, the DNA could even be bending transiently in a manner that it pulls the kinesin motor UPWARDS (Vertical force). How are the authors sure that the reaction force between DNA and kinesin is oriented SOLELY along the microtubule?

      (4) For this study to be really impactful and for some of the above concerns to be addressed, the data should also have included DNA tensiometer experiments with Dynein. I wonder why this was not done?

      While I do like several aspects of the paper, I do not believe that the conclusions are supported by the data presented in this paper for the reasons stated above.

    2. Reviewer #2 (Public review):

      Summary:

      To investigate the detachment and reattachment kinetics of kinesin-1, 2, and 3 motors against loads oriented parallel to the microtubule, the authors used a DNA tensiometer approach comprising a DNA entropic spring attached to the microtubule on one end and a motor on the other. They found that for kinesin-1 and kinesin-2, the dissociation rates at stall were smaller than the detachment rates during unloaded runs. With regard to the complex reattachment kinetics found in the experiments, the authors argue that these findings were consistent with a weakly-bound 'slip' state preceding motor dissociation from the microtubule. The behavior of kinesin-3 was different and (by the definition of the authors) only showed prolonged "detachment" rates when disregarding some of the slip events. The authors performed stochastic simulations that recapitulate the load-dependent detachment and reattachment kinetics for all three motors. They argue that the presented results provide insight into how kinesin-1, -2, and -3 families transport cargo in complex cellular geometries and compete against dynein during bidirectional transport.

      Strengths:

      The present study is timely, as significant concerns have been raised previously about studying motor kinetics in optical (single-bead) traps where significant vertical forces are present. Moreover, the obtained data are of high quality, and the experimental procedures are clearly described.

      Weaknesses:

      However, in the present version of the manuscript, the conclusions drawn from the experiments, the overall interpretation of the results, and the novelty over previous reports appear less clear.

      Major comments:

      (1) The use of the term "catch bond" is misleading, as the authors do not really mean consistently a catch bond in the classical sense (i.e., a protein-protein interaction having a dissociation rate that decreases with load). Instead, what they mean is that after motor detachment (i.e., after a motor protein dissociating from a tubulin protein), there is a slip state during which the reattachment rate is higher as compared to a motor diffusing in solution. While this may indeed influence the dynamics of bidirectional cargo transport (e.g., during tug-of-war events), the used terms (detachment (with or without slip?), dissociation, rescue, ...) need to be better defined and the results discussed in the context of these definitions. It is very unsatisfactory at the moment, for example, that kinesin-3 is at first not classified as a catch bond, but later on (after tweaking the definitions) it is. In essence, the typical slip/catch bond nomenclature used for protein-protein interaction is not readily applicable for motors with slippage.

      (2) The authors define the stall duration as the time at full load, terminated by >60 nm slips/detachments. Isn't that a problem? Smaller slips are not detected/considered... but are also indicative of a motor dissociation event, i.e., the end of a stall. What is the distribution of the slip distances? If the slip distances follow an exponential decay, a large number of short slips are expected, and the presented data (neglecting those short slips) would be highly distorted.

      (3) Along the same line: Why do the authors compare the stall duration (without including the time it took the motor to reach stall) to the unloaded single motor run durations? Shouldn't the times of the runs be included?

      (4) At many places, it appears too simple that for the biologically relevant processes, mainly/only the load-dependent off-rates of the motors matter. The stall forces and the kind of motor-cargo linkage (e.g., rigid vs. diffusive) do likely also matter. For example: "In the context of pulling a large cargo through the viscous cytoplasm or competing against dynein in a tug-of-war, these slip events enable the motor to maintain force generation and, hence, are distinct from true detachment events." I disagree. The kinesin force at reattachment (after slippage) is much smaller than at stall. What helps, however, is that due to the geometry of being held close to the microtubule (either by the DNA in the present case or by the cargo in vivo) the attachment rate is much higher. Note also that upon DNA relaxation ,the motor is likely kept close to the microtubule surface, while, for example, when bound to a vesicle, the motor may diffuse away from the microtubule quickly (e.g., reference 20).

      (5) Why were all motors linked to the neck-coil domain of kinesin-1? Couldn't it be that for normal function, the different coils matter? Autoinhibition can also be circumvented by consistently shortening the constructs.

      (6) I am worried about the neutravidin on the microtubules, which may act as roadblocks (e.g. DOI: 10.1039/b803585g), slip termination sites (maybe without the neutravidin, the rescue rate would be much lower?), and potentially also DNA-interaction sites? At 8 nM neutravidin and the given level of biotinylation, what density of neutravidin do the authors expect on their microtubules? Can the authors rule out that the observed stall events are predominantly the result of a kinesin motor being stopped after a short slippage event at a neutravidin molecule?

      (7) Also, the unloaded runs should be performed on the same microtubules as in the DNA experiments, i.e., with neutravidin. Otherwise, I do not see how the values can be compared.

      (8) If, as stated, "a portion of kinesin-3 unloaded run durations were limited by the length of the microtubules, meaning the unloaded duration is a lower limit." corrections (such as Kaplan-Meier) should be applied, DOI: 10.1016/j.bpj.2017.09.024.

      (9) Shouldn't Kaplan-Meier also be applied to the ramp durations ... as a ramp may also artificially end upon stall? Also, doesn't the comparison between ramp and stall duration have a problem, as each stall is preceded by a ramp ...and the (maximum) ramp times will depend on the speed of the motor? Kinesin-3 is the fastest motor and will reach stall much faster than kinesin-1. Isn't it obvious that the stall durations are longer than the ramp duration (as seen for all three motors in Figure 3)?

      (10) It is not clear what is seen in Figure S6A: It looks like only single motors (green, w/o a DNA molecule) are walking ... Note: the influence of the attached DNA onto the stepping duration of a motor may depend on the DNA conformation (stretched and near to the microtubule (with neutravidin!) in the tethered case and spherically coiled in the untethered case).

      (11) Along this line: While the run time of kinesin-1 with DNA (1.4 s) is significantly shorter than the stall time (3.0 s), it is still larger than the unloaded run time (1.0 s). What do the authors think is the origin of this increase?

      (12) "The simplest prediction is that against the low loads experienced during ramps, the detachment rate should match the unloaded detachment rate." I disagree. I would already expect a slight increase.

      (13) Isn't the model over-defined by fitting the values for the load-dependence of the strong-to-weak transition and fitting the load dependence into the transition to the slip state?

      (14) "When kinesin-1 was tethered to a glass coverslip via a DNA linker and hydrodynamic forces were imposed on an associated microtubule, kinesin-1 dissociation rates were relatively insensitive to loads up to ~3 pN, inconsistent with slip-bond characteristics (37)." This statement appears not to be true. In reference 37, very similar to the geometry reported here, the microtubules were fixed on the surface, and the stepping of single kinesin motors attached to large beads (to which defined forces were applied by hydrodynamics) via long DNA linkers was studied. In fact, quite a number of statements made in the present manuscript have been made already in ref. 37 (see in particular sections 2.6 and 2.7), and the authors may consider putting their results better into this context in the Introduction and Discussion. It is also noteworthy to discuss that the (admittedly limited) data in ref. 37 does not indicate a "catch-bond" behavior but rather an insensitivity to force over a defined range of forces.

    3. Reviewer #3 (Public review):

      Summary:

      Several recent findings indicate that forces perpendicular to the microtubule accelerate kinesin unbinding, where perpendicular and axial forces were analyzed using the geometry in a single-bead optical trapping assay (Khataee and Howard, 2019), comparison between single-bead and dumbbell assay measurements (Pyrpassopoulos et al., 2020), and comparison of single-bead optical trap measurements with and without a DNA tether (Hensley and Yildiz, 2025).

      Here, the authors devise an assay to exert forces along the microtubule axis by tethering kinesin to the microtubule via a dsDNA tether. They compared the behavior of kinesin-1, -2, and -3 when pulling against the DNA tether. In line with previous optical trapping measurements, kinesin unbinding is less sensitive to forces when the forces are aligned with the microtubule axis. Surprisingly, the authors find that both kinesin-1 and -2 detach from the microtubule more slowly when stalled against the DNA tether than in unloaded conditions, indicating that these motors act as catch bonds in response to axial loads. Axial loads accelerate kinesin-3 detachment. However, kinesin-3 reattaches quickly to maintain forces. For all three kinesins, the authors observe weakly attached states where the motor briefly slips along the microtubule before continuing a processive run.

      Strengths:

      These observations suggest that the conventional view that kinesins act as slip bonds under load, as concluded from single-bead optical trapping measurements where perpendicular loads are present due to the force being exerted on the centroid of a large (relative to the kinesin) bead, needs to be reconsidered. Understanding the effect of force on the association kinetics of kinesin has important implications for intracellular transport, where the force-dependent detachment governs how kinesins interact with other kinesins and opposing dynein motors (Muller et al., 2008; Kunwar et al., 2011; Ohashi et al., 2018; Gicking et al., 2022) on vesicular cargoes.

      Weaknesses:

      The authors attribute the differences in the behaviour of kinesins when pulling against a DNA tether compared to an optical trap to the differences in the perpendicular forces. However, the compliance is also much different in these two experiments. The optical trap acts like a ~ linear spring with stiffness ~ 0.05 pN/nm. The dsDNA tether is an entropic spring, with negligible stiffness at low extensions and very high compliance once the tether is extended to its contour length (Fig. 1B). The effect of the compliance on the results should be addressed in the manuscript.

      Compared to an optical trapping assay, the motors are also tethered closer to the microtubule in this geometry. In an optical trap assay, the bead could rotate when the kinesin is not bound. The authors should discuss how this tethering is expected to affect the kinesin reattachment and slipping. While likely outside the scope of this study, it would be interesting to compare the static tether used here with a dynamic tether like MAP7 or the CAP-GLY domain of p150glued.

      In the single-molecule extension traces (Figure 1F-H; S3), the kinesin-2 traces often show jumps in position at the beginning of runs (e.g., the four runs from ~4-13 s in Fig. 1G). These jumps are not apparent in the kinesin-1 and -3 traces. What is the explanation? Is kinesin-2 binding accelerated by resisting loads more strongly than kinesin-1 and -3?

      When comparing the durations of unloaded and stall events (Fig. 2), there is a potential for bias in the measurement, where very long unloaded runs cannot be observed due to the limited length of the microtubule (Thompson, Hoeprich, and Berger, 2013), while the duration of tethered runs is only limited by photobleaching. Was the possible censoring of the results addressed in the analysis?

      The mathematical model is helpful in interpreting the data. To assess how the "slip" state contributes to the association kinetics, it would be helpful to compare the proposed model with a similar model with no slip state. Could the slips be explained by fast reattachments from the detached state?

    1. Reviewer #1 (Public review):

      The study addresses the organisation of synaptic connections from the medial to the lateral entorhinal cortex. Classic anatomical work has suggested these connections exist, but very little is known about their identity or functional impact. The manuscript argues that these projections are mediated by glutamatergic neurons, providing excitatory input from MEC to all layers of LEC, and by SST+ve interneurons sending inhibitory projections to L1 of LEC. This appears to be the most likely interpretation of the data, although in my opinion, more could be done to rule out the possible impact of the spread of the virus/tracer from the injection site.

      While this concern might seem overly picky, the importance of this level of detail is nicely shown by the authors' previous work clarifying connectivity from postrhinal to entorhinal cortices through careful analysis of similar types of data (Doan et al. 2019). If additional analyses/data can address the concern here, then I think this will be an important set of fundamental results that will influence thinking about circuit mechanisms for spatial cognition and episodic memory. In particular, it will nicely add to an emerging view that MEC and LEC can interact directly, showing that the organisation of these interactions is asymmetric and identifying a potentially interesting long-range inhibitory pathway.

    2. Reviewer #2 (Public review):

      Summary:

      The manuscript by Nilssen et al. presents a comprehensive study of the circuitry linking the medial and lateral entorhinal cortices (MEC and LEC). Using a combination of anatomical tracing, optogenetics, and in vitro electrophysiology, the authors convincingly demonstrate that the MEC sends both glutamatergic and long-range inhibitory SST+ GABAergic projections to the LEC, with distinct laminar and cell-type-specific targeting. Notably, they reveal that SST+ inhibitory projections selectively suppress the activity of layer IIa neurons, whereas excitatory inputs preferentially engage neurons in layers IIb and III, thereby differentially modulating hippocampal-projecting populations.

      Strengths:

      The experiments are carefully executed, the results are compelling, and the conclusions are well supported by the data. This work will be of broad interest to researchers studying memory circuits, cortical inhibition, and the organization of long-range connectivity.

      Weaknesses:

      Although the in vivo relevance of these connections remains to be determined, this is an important and timely contribution to our understanding of entorhinal-hippocampal interactions.

    1. Reviewer #1 (Public review):

      Fombellida-Lopez and colleagues describe the results of an ART intensification trial in people with HIV infection (PWH) on suppressive ART to determine the effect of increasing the dose of one ART drug, dolutegravir, on viral reservoirs, immune activation, exhaustion, and circulating inflammatory markers. The authors hypothesize that ART intensification will provide clues about the degree to which low-level viral replication is occurring in circulation and in tissues despite ongoing ART, which could be identified if reservoirs decrease and/or if immune biomarkers change. The trial design is straightforward and well-described, and the intervention appears to have been well tolerated. The investigators observed an increase in dolutegravir concentrations in circulation, and to a lesser degree in tissues, in the intervention group, indicating that the intervention has functioned as expected (ART has been intensified in vivo). Several outcome measures changed during the trial period in the intervention group, leading the investigators to conclude that their results provide strong evidence of ongoing replication on standard ART. The results of this small trial are intriguing, and a few observations in particular are hypothesis-generating and potentially justify further clinical trials to explore them in depth.

    2. Reviewer #2 (Public review):

      Summary:

      An intensification study with a double dose of 2nd generation integrase inhibitor with a background of nucleoside analog inhibitors of the HIV retrotranscriptase in 2, and inflammation is associated with the development of co-morbidities in 20 individuals randomized with controls, with an impact on the levels of viral reservoirs and inflammation markers. Viral reservoirs in HIV are the main impediment to an HIV cure, and inflammation is associated with co-morbidities.

      Strengths:

      The intervention that leads to a decrease of viral reservoirs and inflammation is quite straightforward forward as a doubling of the INSTI is used in some individuals with INSTI resistance, with good tolerability.

      This is a very well documented study, both in blood and tissues, which is a great achievement due to the difficulty of body sampling in well-controlled individuals on antiretroviral therapy. The laboratory assays are performed by specialists in the field with state-of-the art quantification assays. Both the introduction and the discussion are remarkably well presented and documented.

      The findings also have a potential impact on the management of chronic HIV infection.

    3. Reviewer #3 (Public review):

      The introduction does a very good job of discussing the issue around whether there is ongoing replication in people with HIV on antiretroviral therapy. Sporadic, non-sustained replication likely occurs in many PWH on ART related to adherence, drug-drug interactions and possibly penetration of antivirals into sanctuary areas of replication and as the authors point out proving it does not occur is likely not possible and proving it does occur is likely very dependent on the population studied and the design of the intervention. Whether the consequences of this replication in the absence of evolution toward resistance have clinical significance challenging question to address.

      It is important to note that INSTI-based therapy may have a different impact on HIV replication events that results in differences in virus release for specific cell type (those responsible for "second phase" decay) by blocking integration in cells that have completed reverse transcription prior to ART initiation but have yet to be fully activated. In a PI or NNRTI-based regimen, those cells will release virus, whereas with an INSTI-based regimen, they will not.

      Given the very small sample size, there is a substantial risk of imbalance between the groups in important baseline measures.

      Comments on the revised version from the editor:

      I appreciate that the authors thoroughly address the reviewer's concerns in the response letter. Most importantly, they acknowledge that "The absence of a pre-specified statistical endpoint or sample size calculation reflects the exploratory nature of the trial." This is vital because the transient impact on total HIV DNA in the intensified versus standard dose arm raises questions about any sustained or meaningful anti-reservoir effect and was also not hypothesized a priori. The authors explanation that HIV DNA may have rebounded due to clonal expansion is interesting but not assessed directly in the trial.

      The greater decrease in intact HIV DNA between days 0 and 84 in the intensified arm are notable but are somewhat limited by small sample size, small effect size and lack of data between these two timepoints.

      Unfortunately, the hypothesis generating nature of the conclusions which is outlined nicely in the author's response letter is only acknowledged in the discussion of the revised paper. The abstract and results are only marginally different than the original version and still read as definitive when the evidence is only hypothesis generating. For these reasons, the level of evidence remains incomplete as before.

    1. Reviewer #1 (Public review):

      Summary:

      Persistence is a phenomenon by which genetically susceptible cells are able to survive exposure to high concentrations of antibiotics. This is especially a major problem when treating infections caused by slow growing mycobacteria such as M. tuberculosis and M. abscessus. Studies on the mechanisms adopted by the persisting bacteria to survive and evade antibiotic killing can potentially lead to faster and more effective treatment strategies.

      To address this, in this study, the authors have used a transposon mutagenesis based sequencing approach to identify the genetic determinants of antibiotic persistence in M. abscessus. To enrich for persisters they employed conditions, that have been reported previously to increase persister frequency - nutrient starvation, to facilitate genetic screening for this phenotype. M.abs transposon library was grown in nutrient rich or nutrient depleted conditions and exposed to TIG/LZD for 6 days, following which Tn-seq was carried out to identify genes involved in spontaneous (nutrient rich) or starvation-induced conditions. About 60% of the persistence hits were required in both the conditions. Pathway analysis revealed enrichment for genes involved in detoxification of nitrosative, oxidative, DNA damage and proteostasis stress. The authors then decided to validate the findings by constructing deletions of 5 different targets (pafA, katG, recR, blaR, Mab_1456c) and tested the persistence phenotype of these strains. Rather surprisingly only 2 of the 5 hits (katG and pafA) exhibited a significant persistence defect when compared to wild type upon exposure to TIG/LZD and this was complemented using an integrative construct. The authors then investigated the specificity of delta-katG susceptibility against different antibiotic classes and demonstrated increased killing by rifabutin. The katG phenotype was shown to be mediated through the production of oxidative stress which was reverted when the bacterial cells were cultured under hypoxic conditions. Interestingly, when testing the role of katG in other clinical strains of Mab, the phenotype was observed only in one of the clinical strains demonstrating that there might be alternative anti-oxidative stress defense mechanisms operating in some clinical strains.

      Strengths:

      While the role of ROS in antibiotic mediated killing of mycobacterial cells have been studied to some extent, this paper presents some new findings with regards to genetic analysis of M. abscessus susceptibility, especially against clinically used antibiotics, which makes it useful. Also, the attempts to validate their observations in clinical isolates is appreciated.

      Weaknesses:

      Amongst the 5 shortlisted candidates from the screen, only 2 showed marginal phenotypes which limits the impact of the screening approach.

      While the role of KatG mediated detoxification of ROS and involvement of ROS in antibiotic killing was well demonstrated, the lack of replication of this phenotype in some of the clinical isolates limits the significance of these findings.

    2. Reviewer #2 (Public review):

      Summary:

      The work set out to better understand the phenomenon of antibiotic persistence in mycobacteria. Three new observations are made using the pathogenic Mycobacterium abscessus as an experimental system: phenotypic tolerance involves suppression of ROS, protein synthesis inhibitors can be lethal for this bacterium, and levofloxacin lethality is unaffected by deletion of catalase, suggesting that this quinolone does not kill via ROS.

      Strengths:

      The ROS experiments are supported in three ways: measurement of ROS by a fluorescent probe, deletion of catalase increases lethality of selected antibiotics, and a hypoxia model suppresses antibiotic lethality. A variety of antibiotics are examined, and transposon mutagenesis identifies several genes involved in phenotypic tolerance, including one that encodes catalase. The methods are adequate for making these statements.

      Weaknesses:

      The work can be improved by a more comprehensive treatment of prior work, especially comparison of E. coli work with mycobacterial studies.<br /> Moreover, the work still has some technical issues to fix regarding description of the methods, supplementary material, and reference formating.

      Overall impact: Showing that ROS accumulation is suppressed during phenotypic tolerance, while expected, adds to the examples of the protective effects of low ROS levels. Moreover, the work, along with a few others, extends the idea of antibiotic involvement with ROS to mycobacteria. These are field-solidifying observations.

      Comments on revisions:

      The authors have moved this paper along nicely. I have a few general thoughts.

      (1) It would be helpful to have more references to specific figures and panels listed in the text to make reading easier.

      (2) I would suggest adding a statement about the importance of the work. From my perspective, the work shows the general nature of many statements derived from work with E. coli. This is important. The abstract says this overall, but a final sentence in the abstract would make it clear to all readers.

      (3) The paper describes properties that may be peculiar to mycobacteria. If the authors agree, I would suggest some stress on the differences from E. coli. Also, I would place more stress on novel findings. This might be done in a section called Concluding Remarks. The paper by Shee 2022 AAC could be helpful in phrasing general properties.

      (4) Several aspects still need work to be of publication quality. Examples are the materials table and the presentation of supplementary material. Reference formatting also needs attention.

    3. Reviewer #3 (Public review):

      Summary:

      The manuscript demonstrates that starvation induces persister formation in M. abscesses. They also utilized Tn-Seq for the identification of genes involved in persistence. They identified the role of catalase-peroxidase KatG in preventing death from translation inhibitors Tigecycline and Linezolid. They further demonstrated that a combination of these translation inhibitors leads to the generation of ROS in PBS-starved cells.

      Strengths:

      The authors used high-throughput genomics-based methods for identification of genes playing a role in persistence.

      Weaknesses:

      The findings could not be validated in clinical strains.

      Comments on revisions: No more comments for the authors.

    1. Reviewer #1 (Public review):

      Pavel et al. analyzed a cohort of atrial fibrillation (AF) patients from the University of Illinois at Chicago, identifying TTN truncating variants (TTNtvs) and TTN missense variants (TTNmvs). They reported a rare TTN missense variant (T32756I) associated with adverse clinical outcomes in AF patients. To investigate its functional significance, the authors modeled the TTN-T32756I variant using human induced pluripotent stem cell-derived atrial cardiomyocytes (iPSC-aCMs). They demonstrated that mutant cells exhibit aberrant contractility, increased activity of the cardiac potassium channel KCNQ1 (Kv7.1), and dysregulated calcium homeostasis. Interestingly, these effects occurred without compromising sarcomeric integrity. The study further identified increased binding of the titin-binding protein Four-and-a-Half Lim domains 2 (FHL2) with KCNQ1 and its modulatory subunit KCNE1 in the TTN-T32756I iPSC-aCMs.

      Comments on revised version:

      This revised manuscript demonstrates significant improvement, notably through the inclusion of new data (Supplementary Figures 5 and 7) and expanded explanations in the main text. These additions strengthen the association between the TTN-T32756I missense variant and electrophysiological phenotypes relevant to atrial fibrillation (AF). The authors are commended for their thorough and thoughtful responses to reviewer feedback, their transparency in acknowledging limitations, and their efforts to provide mechanistic insight into the observed phenotype.

      Nonetheless, several important limitations remain and should be more explicitly addressed when framing the conclusions and selecting the final manuscript title:

      (1) While the data support a functional impact of the TTN-T32756I variant, the evidence does not yet definitively establish causality in the context of AF. Statements asserting a causal relationship should be softened and clearly framed as suggestive, pending further in vivo or patient-specific validation.

      (2) The study models the TTN-T32756I variant in a single healthy iPSC line using CRISPR/Cas9 editing. Although this provides a genetically controlled system, the absence of validation in patient-derived iPSCs or replication across multiple isogenic lines limits the generalizability and reproducibility of the findings.

      (3) The co-localization and co-immunoprecipitation (co-IP) data provide strong support for an interaction between FHL2 and the KCNQ1/KCNE1 complex. However, in the current form, the proposed mechanism remains plausible but not fully validated.

    2. Reviewer #2 (Public review):

      Summary:

      The authors present data from a single-center cohort of African-American and Hispanic/Latinx individuals with atrial fibrillation (AF). This study provides insight into the incidences and clinical impact of missense variants in the Titin (TTN) gene in this population. In addition, the authors identified a single amino acid TTN missense variant (TTN-T32756I) that was further studied using human induced pluripotent stem cell-derived atrial cardiomyocytes (iPSC-aCMs). These studies demonstrated that the Four-and-a-Half Lim domains 2 (FHL2), has increased binding with KCNQ1 and its modulatory subunit KCNE1 in the TTN-T32756I-iPSC-aCMs, enhancing the slow delayed rectifier potassium current (Iks) and is a potential mechanism for atrial fibrillation. Finally, the authors demonstrate that suppression of FHL2 could normalize the Iks current.

      Strengths:

      The strengths of this manuscript/study are listed below:

      (1) This study includes a previously underrepresented population in the study the genetic and mechanistic basis of AF.

      (2) The authors utilize current state-of-the-art methods to investigate the pathogenicity of a specific TTN missense variant identified in this underrepresented patient population.

      (3) The findings of this study identify a potential therapeutic for treating atrial fibrillation.

      Weaknesses:

      (1) The authors do not include a non-AF group when evaluating the incidence and clinical significance of TTN missense variants in AF patients. The authors appropriately acknowledge this as a limitation in their single-center cohort.

      (2) All other concerns from a previous version of this manuscript have been adequately addressed by the authors in this revision.

    1. Reviewer #1 (Public review):

      Summary:

      The NF-kB signaling pathway plays a critical role in the development and survival of conventional alpha beta T cells. Gamma delta T cells are evolutionarily conserved T cells that occupy a unique niche in the host immune system and that develop and function in a manner distinct from conventional alpha beta T cells. Specifically, unlike the case for conventional alpha beta T cells, a large portion of gamma delta T cells acquire functionality during thymic development, after which they emigrate from the thymus and populate a variety of mucosal tissues. Exactly how gamma delta T cells are functionally programmed remains unclear. In this manuscript, Islam et al. use a wide variety of mouse genetic models to examine the influence of the NF-kB signaling pathway on gamma delta T cell development and survival. They find that the inhibitor of kappa B kinase complex (IKK) is critical to the development of gamma delta T1 subsets, but not adaptive/naïve gamma delta T cells. In contrast, IKK-dependent NF-kB activation is required for their long-term survival. They find that caspase 8-deficiency renders gamma delta T cells sensitive to RIPK1-mediated necroptosis, and they conclude that IKK repression of RIPK1 is required for the long-term survival of gamma delta T1 and adaptive/naïve gamma delta T cells subsets. These data will be invaluable in comparing and contrasting the signaling pathways critical for the development/survival of both alpha beta and gamma delta T cells.

      The conclusions of the paper are mostly well-supported by the data, but some aspects need to be clarified.

      (1) The authors appear to be excluding a significant fraction of the TCRlow gamma delta T cells from their analysis in Figure 1A. Since this population is generally enriched in CD25+ gamma delta T cells, this gating strategy could significantly impact their analysis due to the exclusion of progenitor gamma delta T cell populations.

      (2) The overall phenotype of the IKKDeltaTCd2 mice is not described in any great detail. For example, it is not clear if these mice possess altered thymocyte or peripheral T cell populations beyond that of gamma delta T cells. Given that gamma delta T cell development has been demonstrated to be influenced by gamma delta T cells (i.e, trans-conditioning), this information could have aided in the interpretation of the data. Related to this, it would have been helpful if the authors provided a comparison of the frequencies of each of the relevant subsets, in addition to the numbers.

      (3) The manner in which the peripheral gamma delta T cell compartment was analyzed is somewhat unclear. The authors appear to have assessed both spleen and lymph node separately. The authors show representative data from only one of these organs (usually the lymph node) and show one analysis of peripheral gamma delta T cell numbers, where they appear to have summed up the individual spleen and lymph node gamma delta T cell counts. Since gamma deltaT17 and gamma deltaT1 are distributed somewhat differently in these compartments (lymph node is enriched in gamma deltaT17, while spleen is enriched in gamma deltaT1), combining these data does not seem warranted. The authors should have provided representative plots for both organs and calculated and analyzed the gamma delta T cell numbers for both organs separately in each of these analyses.

      (4) The authors make extensive use of surrogate markers in their analysis. While the markers that they choose are widely used, there is a possibility that the expression of some of these markers may be altered in some of their genetic mutants. This could skew their analysis and conclusions. A better approach would have been to employ either nuclear stains (Tbx21, RORgammaT) or intracellular cytokine staining to definitively identify functional gamma deltaT1 or gamma deltaT17 subsets.

      (5) The analysis and conclusion of the data in Figure 3A is not convincing. Because the data are graphed on log scale, the magnitude of the rescue by kinase dead RIPK1 appears somewhat overstated. A rough calculation suggests that in type 1 game delta T cells, there is ~ 99% decrease in gamma delta T cells in the Cre+WT strain and a ~90% decrease in the Cre+KD+ strain. Similarly, it looks as if the numbers for adaptive gamma delta T cells are a 95% decrease and an 85% decrease, respectively. Comparing these data to the data in Figure 5, which clearly show that kinase dead RIPK1 can completely rescue the Caspase 8 phenotype, the conclusion that gamma delta T cells require IKK activity to repress RIPK1-dependent pathways does not appear to be well-supported. In fact, the data seem more in line with a conclusion that IKK has a significant impact on gamma delta T cell survival in the periphery that cannot be fully explained by invoking Caspase8-dependent apoptosis or necroptosis. Indeed, while the authors seem to ultimately come to this latter conclusion in the Discussion, they clearly state in the Abstract that "IKK repression of RIPK1 is required for survival of peripheral but not thymic gamma delta T cells." Clarification of these conclusions and seeming inconsistencies would greatly strengthen the manuscript. With respect to the actual analysis in Figure 3A, it appears that the authors used a succession of non-parametric t-tests here without any correction. It may be helpful to determine if another analysis, such as ANOVA, may be more appropriate.

      (6) The conclusion that the alternative pathway is redundant for the development and persistence of the major gamma delta T cell subsets is at odds with a previous report demonstrating that Relb is required for gamma delta T17 development (Powolny-Budnicka, I., et al., Immunity 34: 364-374, 2011). This paper also reported the involvement of RelA in gamma delta T17 development. The present manuscript would be greatly improved by the inclusion of a discussion of these results.

      (7) The data in Figures 1C and 3A are somewhat confusing in that while both are from the lymph nodes of IKKdeltaTCD2 mice, the data appear to be quite different (In Figure 3A, the frequency of gamma delta T cells increases and there is a near complete loss of the CD27+ subset. In Figure 1A, the frequency of gamma delta T cells is drastically decreased, and there is only a slight loss of the CD27+ subset.)

    2. Reviewer #2 (Public review):

      This study presents a comprehensive genetic dissection of the role of IKK signaling in the development and maintenance of lymphoid gd T cells. By employing a variety of conditional and mutant mouse models, the authors demonstrate that IKK-dependent NF-κB activation is essential for the generation of type 1 gd T cells, while adaptive gd T cells require this pathway primarily for long-term survival. The use of multiple complementary genetic strategies, including IKK deletion and modulation of RIPK1 and CASPASE8 activity, provides robust mechanistic insight into subset-specific regulation of gd T cell homeostasis. Overall, the study provides mechanistic insight for IKK-dependent regulation of gd T cell development and peripheral maintenance. However, additional experiments can be performed to improve this manuscript and its interpretations.

      Specific Concerns:

      (1) All approaches used confer changes to the entire T cell compartment. Therefore, the authors are unable to resolve whether the observations are mediated by direct and/or indirect effects (e.g., disorganized lymphoid architecture impacting maintenance/survival/homing).

      (2) Assessment of factors that impact T cell numbers in the periphery is necessary. Are there observable changes to the proliferation, survival, and migration of gd T cell subsets?

      (3) TCRd chain usage, especially among type 3 gd T cells, should be assessed.

      (4) The functional consequences of IKK signaling on gd T cells were largely unaddressed. Cytokine analyses were performed only in the RIPK1D138N Casp8∆TCD2 model, leaving open the question of how canonical NF-κB-dependent signaling impacts the long-term functionality of gd T cells.

      (5) The authors suggest that Caspase 8 is required for the development and maintenance of type 3 gd T cells. While the authors discussed the limitations of assessing adult mice in interpreting the data, it seems like a relatively straightforward experiment to perform.

      (6) While analyses of Casp8∆TCD2 RIPK1D138N mice suggest that loss of adaptive and type 1 gamma delta T cells in Casp8∆TCD2 animals is due to necroptosis, the contribution of RIPK3 kinase activity remains unexamined. RIPK3 activity determines whether cells die via necroptosis or apoptosis in RIPK1/Caspase8-dependent signaling, and inclusion of this analysis would strengthen mechanistic insights.

      (7) Canonical NF-κB signaling through cRel alone was not evaluated, leaving a gap in the understanding of transcriptional pathways required for gd T cell subsets.

    3. Reviewer #3 (Public review):

      Summary

      The regulation of NF-κB signaling is complex and central to the differentiation and homeostasis of αβT cells, essential to adaptive immunity. γδ T cells are a distinct population that responds to stress/injury-induced cues by producing inflammatory cytokines, representing an important bridge between innate and adaptive immunity. This study from Islam et al. demonstrates that the IKK complex, a central regulator of NF-κB signaling, plays distinct and essential roles in the differentiation and maintenance of γδ T cells. The authors use elegant murine genetic models to generate clear data that disentangle these requirements in vivo.

      Although NF-κB activity was found to be dispensable for specification of γδ T cell progenitors and the generation of adaptive γδ T cells, it was required for both the ontogeny of type 1 γδ T cells and the survival of mature adaptive γδ T cells. Subunit-specific analyses revealed parallels with αβ T cells: RELA was necessary for type 1 γδ T cell development, while maintenance of adaptive γδ T cells relied upon redundancy between REL subunits, with cREL and p50 compensating in the absence of RELA but not vice versa. These findings reflect distinct biological requirements for ontogeny versus maintenance, likely driven by differences in receptor signaling, such as TCR and TNFRSF family members. Moreover, IKK also maintained γδ T cell survival through repression of RIPK1-mediated cell death, echoing its dual role in αβ T cells, where it both prevents TNF-induced apoptosis and provides NF-κB-dependent survival signals.

      Strengths:

      The multiple, unique murine genetic models employed for detailed analysis of in vivo γδ T cell differentiation and homeostasis are a major strength of this paper. NF-κB signaling processes are devilishly complex. The conditional mutants generated for this study disentangle the requirements for the various IKK-regulated pathways in γδ T cell differentiation, cell survival, and homeostasis. Data are clearly presented and suitably interpreted, with a helpful synthesis provided in the Discussion. These data will provide a definitive account of the requirements for NF-κB signaling in γδ T cells and provide new genetic models for the community to further study the upstream signals.

      Weaknesses:

      The paper would benefit greatly from a graphical abstract that could summarize the key findings, making the key findings accessible to the general immunology or biochemistry reader. Ideally, this graphic would distinguish the requirements for NF-κB signals sustaining thymic γδ T cell differentiation from peripheral maintenance, taking into account the various subsets and signaling pathways required. In addition, the authors should consider adding further literature comparing the requirements for NF-κB /necroptosis pathways in regulating other non-conventional T cell populations, such as iNKT, MAIT, or FOXP3+ Treg cells. These data might help position the requirements described here for γδ T cells compared to other subsets, with respect to homeostatic cues and transcriptional states.

      Last and least, there are multiple grammatical errors throughout the manuscript, and it would benefit from further editing. Likewise, there are some minor errors in figures (e.g., Figure 3A, add percentage for plot from IKKDT.RIPK1D138N mouse; Figure 7, "Adative").

    1. Reviewer #1 (Public review):

      It is widely accepted that the number of muscle stem cells (MuSCs) declines with aging, leading to diminished regenerative capacity. In this study, when MuSCs were labeled with YFP at a young age, the authors found that the YFP-positive MuSC population remained stable with aging. However, VCAM1 and Pax7 expression levels were reduced in the YFP-positive MuSCs. These VCAM1-negative/low cells exhibited limited proliferative potential and reduced regenerative ability upon transplantation into MuSC-depleted mice. Furthermore, Vcam1-/low MuSCs were highly sensitive to senolysis and represented the population in which Vcam1 expression could be restored by DHT. Finally, the authors identified CD200 and CD63 as markers capable of detecting the entire geriatric MuSC population, including Vcam1-/low cells. Although numerous studies have reported an age-related decline in MuSC numbers, this study challenges that consensus. Therefore, the conclusions require further careful validation.

      Major comments:

      (1) As mentioned above, numerous studies have reported that the number of MuSCs declines with aging. The authors' claim is valid, as Pax7 and Vcam1 were widely used for these observations. However, age-related differences have also been reported even when using these markers (Porpiglia et al., Cell Stem Cell 2022; Liu et al., Cell Rep 2013). When comparing geriatric Vcam1⁺ MuSCs with young MuSCs in this study, did the authors observe any of the previously reported differences? Furthermore, would increasing the sample size in Figure 1 reveal a statistically significant difference? The lack of significance appears to result from variation within the young group. In addition, this reviewer requests the presentation of data on MuSC frequency in geriatric control mice using CD200 and CD63 in the final figure.

      (2) Can the authors identify any unique characteristics of Pax7-VCAM-1 GER1-MuSCs using only the data generated in this study, without relying on public databases? For example, reduced expression of Vcam1 and Pax7. The results of such analyses should be presented.

      (3) In the senolysis experiment, the authors state that GER1-MuSCs were depleted. However, no data are provided to support this conclusion. Quantitative cell count data would directly address this concern. In addition, the FACS profile corresponding to Figure 4D should be included.

      (4) Figure S4: It remains unclear whether DHT enhances regenerative ability through restoration of the VCAM1 expression in GER1-MuSCs, as DHT also acts on non-MuSC populations. Analyses of the regenerative ability of Senolysis+DHT mice may help to clarify this issue.

      (5) Why are there so many myonuclear transcripts detected in the single-cell RNA-seq data? Was this dataset actually generated using single-nucleus RNA-seq? This reviewer considers it inappropriate to directly compare scRNA-seq and snRNA-seq results.

    2. Reviewer #2 (Public review):

      In this study, Kim et al. explore the heterogeneity within the aged MuSC population using a mouse model that enables lineage tracing of MuSCs throughout life. The questions addressed in the manuscript are highly relevant to the fields of aging and stem cell biology, and the experimental approach overcomes limitations of earlier studies. However, some of the claims would benefit from additional data analysis, and the central claim of the identification of a "previously unrecognized subpopulation" of aged MuSCs should be evaluated in light of prior work that has also examined MuSC heterogeneity in aging.

      Specific points:

      (1) As a general comment that is transversal to multiple figures, several experiments should include a direct comparison to a young cohort. Previous studies have shown that the depletion of subpopulations with aging is observed early in the aging process, for example, the loss of Pax7-high MuSCs is observed already in 18‐month‐old mice (Li, 2019, doi: 10.15252/embj.2019102154). Using only mice at 12-14 months as the control group is therefore insufficient to claim that no changes occur with aging.

      (2) One of the central claims of the manuscript is a challenge to the notion that MuSCs number declines with age. However, the data analysis associated with the quantification of YFP+ cells needs to be expanded to support this conclusion. The authors present YFP+ cells only as a proportion of Lin-neg cells. Since FAP numbers are known to decrease with aging, a stable proportion of YFP+ cells would simply indicate that MuSCs decline at the same rate as FAPs. To more accurately assess changes in MuSC abundance, the authors should report absolute numbers of YFP+ cells normalized to tissue mass (cells/ mg of muscle).

      (3) The authors emphasize that several studies use VCAM1 as a surface marker to identify MuSCs. However, many other groups rely on α7-integrin, and according to Figure 1D, the decline in ITGA7 expression within the YFP+ population is not significant. Therefore, the suggestion that MuSC numbers have been misquantified with aging would apply only to a subset of studies. If the authors can demonstrate that YFP+ cell numbers (normalized per milligram of tissue) remain unchanged in geriatric mice, the discussion should directly address the discrepancies with studies that quantify MuSCs using the Lin−/α7-integrin+ strategy.

      (4) The authors focus their attention on a population of VCAM-low/VCAM-neg subpopulation of MuSCs that is enriched in aging. However, the functional properties of this same population in middle-aged (or young) mice are not addressed. Thus, it remains unclear whether geriatric VCAM-low/VCAM-neg MuSCs lose regenerative potential or whether this subpopulation inherently possesses low regenerative capacity and simply expands during aging.

      (5) According to Figure 1F, the majority of MuSCs appear to fall within the category of VCAM-low or VCAM-neg (over 80% by visual estimate). It would be important to have an exact quantification of these data. As a result, the assays testing the proliferative and regenerative capacity of VCAM-low/negative cells are effectively assessing the performance of more than 80% of geriatric MuSCs, which unsurprisingly show reduced efficiency. Perhaps more interesting is the fact that a population of VCAM-high geriatric MuSCs retains full regenerative potential. However, the existence of MuSCs that preserve regenerative potential into old age has been reported in other studies (Garcia-Prat, 2020, doi: 10.1038/s41556-020-00593-7 ; Li, 2019, doi: 10.15252/embj.2019102154). At this point, the central question is whether the authors are describing the same aging-resistant subpopulations of MuSCs using a new marker (VCAM) or whether this study truly identifies a new subpopulation of MuSCs. The authors should directly compare the YFP+VCAM+ aged cells with other subpopulations that maintain regenerative potential in aging.

      (6) In Figure 3F, it is unclear from the data presentation and figure legend whether the authors are considering the average of fiber sizes in each mouse as a replicate (with three data points per condition), or applied statistical analysis directly to all individual fiber measurements. The very low p-values with n=3 are surprising. It is important to account for the fact that observations from the same mouse are correlated (shared microenvironment, mouse-specific effects) and therefore cannot be considered independent.

      (7) Regarding Figure 5, it is unclear why ITGA7, a classical surface marker for MuSCs that appears unchanged in aged YFP+ MuSCs (Fig. 1F), is considered inadequate for detecting and isolating GERI-MuSCs.

    3. Reviewer #3 (Public review):

      Summary:

      The manuscript by Kim et al. describes a MuSC subpopulation that loses VCam expression in geriatric muscle and shows reduced ability to contribute to muscle regeneration. They propose that this population underlies the reported decline of MuSCs in aged mice, suggesting that these cells remain present in geriatric muscle but are overlooked due to low or absent VCam expression. The identification of a subpopulation that changes with aging would be compelling and of interest to the field.

      Strengths:

      The authors employ a wide range of assays, from in vitro to in vivo systems, to characterize Vcam-low/negative cells from geriatric muscle. The loss of Vcam appears strong in geriatric mice. They further identify CD63 and CD200 as potential surface markers that remain stable with age, thereby enabling the isolation of MuSCs across different age groups.

      Weaknesses:

      Some issues remain before establishing whether this population represents a true functional subset or explains the reported decline in MuSC numbers in aged mice. A stronger fate assessment of Vcam-low/negative cells is needed to assess their propensity for cell death in vitro and in vivo (e.g., engraftment efficiency), and if this plays a role in their conclusions. Comparisons include young, middle-aged, and geriatric mice, but not aged (~24 months) mice, which are needed for direct assessment of previous reports of age-related MuSC decline. The suggestion that the Vcam-low/negative population reflects senescence appears premature, with few consistent markers for this fate, as well as the cells not exhibiting irreversible cell-cycle exit. Finally, validation of CD63 and CD200 as reliable age-independent MuSC markers requires further testing, specifically using the Pax7-YFP tracing model and co-labeling in geriatric mice.

    1. Reviewer #1 (Public review):

      The authors use inducible Fz::mKate2-sfGFP to explore "cell-scale signaling" in PCP. They reach several conclusions. First, they conclude that cell-scale signaling does not depend on limiting pools of core components (other than Fz). Second, they conclude that cell-scale signaling does not depend on microtubule orientation, and third, they conclude that cell-scale signaling is strong relative to cell to cell coupling of polarity.

      There are some interesting inferences that can be drawn from the manuscript, but there are also some significant challenges in interpreting the results and conclusions from the work as presented. I suggest that the authors 1) define "cell-scale signaling," as the precise meaning must be inferred, 2) reconsider some premises upon which some conclusions depend, 3) perform an essential assay validation, and 4) explain some other puzzling inconsistencies.

      Major concerns (first round of review):

      The exact meaning of cell-scale signaling is not defined, but I infer that the authors use this term to describe how what happens on one side of a cell affects another side. The remainder of my critique depends on this understanding of the intended meaning.

      The authors state that any tissue wide directional information comes from pre-existing polarity and its modification by cell flow, such that the de novo signaling paradigm "bypasses" these events and should therefore not be responsive to any further global cues. It is my understanding that this is not a universally accepted model, and indeed, the authors' data seem to suggest otherwise. For example, the image in Fig 5B shows that de novo induction restores polarity orientation to a predominantly proximal to distal orientation. If no global cue is active, how is this orientation explained? The 6 hr condition, that has only partial polarity magnitude, is quite disordered. Do the patterns at 8 and 10 hrs become more proximally-distally oriented? It is stated that they all show swirls, but please provide adult wing images, and the corresponding orientation outputs from QuantifyPolarity to help validate the notion that the global cues are indeed bypassed by this paradigm.

      It is implicit that, in the de novo paradigm, polarization is initiated immediately or shortly after heat shock induction. However, the results should be differently interpreted if the level of available Fz protein does not rise rapidly and then stabilize before the 6 hr time point, and instead continues to rise throughout the experiment. Western blots of the Fz::mKate2-sfGFP at time points after induction should be performed to demonstrate steady state prior to measurements. Otherwise, polarity magnitude could simply reflect the total available pool of Fz at different times after induction. Interpreting stability is complex, and could depend on the same issue, as well as the amount of recycling that may occur. Prior work from this lab using FRAP suggested that turnover occurs, and could result from recycling as well as replenishment from newly synthesized protein.

      From the Fig 3 results, the authors claim that limiting pools of core proteins do not explain cell-scale signaling, a result expected based on the lack of phenotypes in heterozygotes, but of course they do not test the possibility that Fz is limiting. They do note that some other contributing protein could be.

      In Fig 3, it is unclear why the authors chose to test dsh1/+ rather than dsh[null]/+. In any case, the statistically significant effect of Dsh dose reduction is puzzling, and might indicate that the other interpretation is correct. Ideally, a range including larger and smaller reductions would be tested. As is, I don't think limiting Dsh is ruled out.

      The data in Fig 5 are somewhat internally inconsistent, and inconsistent with the authors' interpretation. In both repolarization conditions, the authors claim that repolarization extends only to row 1, and row 1 is statistically different from non-repolarized row 1, but so too is row 3. Row 2 is not. This makes no sense, and suggests either that the statistical tests are inappropriate and/or the data is too sparse to be meaningful. For the related boundary intensity data in Fig 6, the authors need to describe exactly how boundaries were chosen or excluded from the analysis. Ideally, all boundaries would be classified as either meido-lateral (meaning anterior-posterior) or proximal-distal depending on angle.

      If the authors believe their Fig 5 and 6 analyses, how do they explain that hairs are reoriented well beyond where the core proteins are not? This would be a dramatic finding, because as far as I know, when core proteins are polarized, prehair orientation always follows the core protein distribution. Surprisingly, the authors do not so much as comment about this. The authors should age their wings just a bit more to see whether the prehair pattern looks more like the adult hair pattern or like that predicted by their protein orientation results.

    2. Reviewer #2 (Public Review):

      This paper aims to dissect the relative importance of the various cues that establish PCP in the wing disc of Drosophila, which remains a prominent and relevant model for PCP. The authors suggest that one must consider cues at three scales (molecular, cell and tissue) and specifically design tests for the importance of cell-level cues, which they call non-local cell scale signalling. They develop clever experimental approaches that allow them to track complex stability and also to induce polarity at experimentally defined times. In a first set of experiments, they restore PCP after the global cues have disappeared (de novo polarisation) and conclude from the results that another (cell scale) cue must exist. In another set of experiments, they show that de novo repolarization is robust to the dosage of various components of core PCP, leading them to conclude that there must be an underlying cell scale polarity, which, apparently, has nothing to do with microtubule or cell shape polarity. They then describe nice evidence that de novo polarisation is relatively short range both in a polarised and unpolarised field. They conclude that there is a strong cell-intrinsic polarity that remains to be characterised.

      Major concerns (first round of review):

      (1) The first set of repolarisation experiments is performed after the global cell rearrangements that have been shown to act as global signals. However, this approach does not exclude the possible contribution of an unknown diffusible global signal.

      (2) The putative non-local cell scale signal must be more precisely defined (maybe also given a better name). It is not clear to me that one can separate cell-scale from molecular-scale signal. Local signals can redistribute within a cell (or membrane) so local signals are also cell-scale. Without a clear definition, it is difficult to interpret the results of the gene dosage experiments. The link between gene dosage and cell-scale signal is not rigorously stated. Related to this, the concluding statement of the introduction is too cryptic.

      Critique:

      The experiments described in this paper are of high quality with a sophisticated level of design and analysis. However, there needs to be some recalibration of the extent of the conclusions that can be drawn. Moreover, a limitation of this paper is that, despite the quality of their data, they cannot give a molecular hint about the nature of their proposed cell-scale signal.

    3. Reviewer #3 (Public Review):

      The manuscript by Carayon and Strutt addresses the role of cell-scale signaling during the establishment of planar cell polarity (PCP) in the Drosophila pupal wing. The authors induce locally the expression of a tagged core PCP protein, Frizzled, and observe and analyze the de novo establishment of planar cell polarity. Using this system, the authors show that PCP can be established within several hours, that PCP is robust towards variation in core PCP protein levels, that PCP proteins do not orient microtubules, and that PCP is robust towards 'extrinsic' re-polarization. The authors conclude that the polarization at the cell-scale is strongly intrinsic and only weakly affected by the polarity of neighboring cells.

      Major comments (first round of review):

      The data are clearly presented and the manuscript is well written. The conclusions are well supported by the data. 

      (1) The authors use a system to de novo establish PCP, which has the advantage of excluding global cues orienting PCP and thus to focus on the cell-intrinsic mechanisms. At the same time, the system has the limitation that it is unclear to what extent de novo PCP establishment reflects 'normal' cell scale PCP establishment, in particular because the Gal4/UAS expression system that is used to induce Fz expression will likely result in much higher Fz levels compared with the endogenous levels. The authors should briefly discuss this limitation.

      (2) Fig. 3. The authors use heterozygous mutant backgrounds to test the robustness of de novo PCP establishment towards (partial) depletion in core PCP proteins. The authors conclude that de novo polarization is 'extremely robust to variation in protein level'. Since the authors (presumably) lowered protein levels by 50%, this conclusion appears to be somewhat overstated. The authors should tune down their conclusion.

      Significance: 

      The manuscript contributes to our understanding of how planar cell polarity is established. It extends previous work by the authors (Strutt and Strutt, 2002,2007) that already showed that induction of core PCP pathway activity by itself is sufficient to induce de novo PCP. This manuscript further explores the underlying mechanisms. The authors test whether de novo PCP establishment depends on an 'inhibitory signal', as previously postulated (Meinhardt, 2007), but do not find evidence. They also test whether core PCP proteins help to orient microtubules (which could enhance cell intrinsic polarization of core PCP proteins), but, again, do not find evidence, corroborating previous work (Harumoto et al, 2010). The most significant finding of this manuscript, perhaps, is the observation that local de novo PCP establishment does not propagate far through the tissue. A limitation of the study is that the mechanisms establishing intrinsic cell scale polarity remain unknown. The work will likely be of interest to specialists in the field of PCP.

      Summary of comments from the Reviewing Editor on the revised version:

      In the introduction, when you refer to Figure 1, the definition of Molecular, cellular, tissue scale is indeed not too clear to outside readers. For example, when you first refer to 'cell scale' you define it 'non-local', but probably it is not clear to many readers 'non-local' means 'the mechanism that cannot be explained by 'molecular scale'. (because 'molecular scale = local' is only inferred).

      The 'conclusion paragraph' at the end of the Introduction does not have conclusion (only explained 'which question was tested by which method').

      Minor comments that can easily be addressed by textual edits:

      – they do not explain why gene dosage affects constitutive but not de novo polarization. It seems to me that one would expect de novo to be at least as sensitive if not more.

      – Unconventional nomenclature for tissue axes - mediolateral, horizontal - are frequently used. These are sometimes difficult to parse. Please stick with universally accepted anterior, posterior, proximal and distal.

    1. Reviewer #1 (Public Review):

      In this study, Li et al. aim to determine the effect of navigational experience on visual representations of scenes. Participants first learn to navigate within simple virtual environments where navigation is either unrestricted or restricted by an invisible wall. Environments are matched in terms of their spatial layout and instead differ primarily in terms of their background visual features. In a later same/different task, participants are slower to distinguish between pairs of scenes taken from the same navigation condition (i.e. both restricted or both unrestricted) than different navigation conditions. Neural response patterns in the PPA also discriminate between scenes from different navigation conditions. These results suggest that navigational experience influences perceptual representations of scenes. This is an interesting study, and the results and conclusions are clearly explained and easy to follow. There are a few points that I think would benefit from further consideration or elaboration from the authors, which I detail below.

      First, I am a little sceptical of the extent to which the tasks are able to measure navigational or perceptual experience with the scenes. The training procedure seems like it wouldn't require obtaining substantial navigational experience as the environments are all relatively simple and only require participants to follow basic paths, rather than encouraging more active exploration of a more complex environment. Furthermore, in the same/different task, all images show the same view of the environment (meaning they show the exact same image in the "same environment" condition). The task is therefore really a simple image-matching task and doesn't require participants to meaningfully extract the perceptual or spatial features of the scenes. An alternative would have been to present different views of the scenes, which would have prevented the use of image-matching and encouraged further engagement with the scenes themselves. Ultimately, the authors do still find a response time difference between the navigation conditions, but the effect does appear quite small. I wonder if the design choices could be obscuring larger effects, which might have been better evident if the navigational and perceptual tasks had encouraged greater encoding of the spatial and perceptual features of the environment. I think it would be helpful for the authors to explain their reasons for not employing such designs, or to at least give some consideration to alternative designs.

      Figure 1B illustrates that the non-navigable condition includes a more complicated environment than the navigable condition, and requires following a longer path with more turns in it. I guess this is a necessary consequence of the experiment design, as the non-navigable condition requires participants to turn around and find an alternative route. Still, this does introduce spatial and perceptual differences between the two navigation conditions, which could be a confounding factor. What do the response times for the "matched" condition in the same/different task look like if they are broken down by the navigable and non-navigable environments? If there is a substantial difference between them, it could be that this is driving the difference between the matched and mismatched conditions, rather than the matching/mismatching experience itself.

      In both experiments, the authors determined their sample sizes via a priori power analyses. This is good, but a bit more detail on these analyses would be helpful. How were the effect sizes estimated? The authors say it was based on other studies with similar methodologies - does this mean the effect sizes were obtained from a literature search? If so, it would be good to give some details of the studies included in this search, and how the effect size was obtained from these (e.g., it is generally recommended to take a lower bound over studies). Or is the effect size based on standard guidelines (e.g., Cohen's d ≈ 0.5 is a medium effect size)? If so, why are the effect sizes different for the two studies?

    2. Reviewer #2 (Public Review):

      Summary:

      Li and colleagues applied virtual reality (VR) based training to create different navigational experiences for a set of visually similar scenes. They found that participants were better at visually discriminating scenes with different navigational experiences compared to scenes with similar navigational experiences. Moreover, this experience-based effect was also reflected in the fMRI data, with the PPA showing higher discriminability for scenes with different navigational experiences. Together, their results suggest that previous navigational experiences shape visual scene representation.

      Strengths:

      (1) The work has theoretical value as it provides novel evidence to the ongoing debate between visual and non-visual contributions to scene representation. While the idea that visual scene representation can encode navigational affordances is not new (e.g., Bonner & Epstein, 2017, PNAS), this study is one of the first to demonstrate that navigational experiences can causally shape visual scene representation. Thus, it serves as a strong test for the hypothesis that our visual scene representations involve encoding top-down navigational information.

      (2) The training paradigm with VR is novel and has the potential to be used by the broader community to explore the impact of experience on other categorical visual representations.

      (3) The converging evidence from behavioral and fMRI experiments consolidates the work's conclusion.

      Weaknesses:

      (1) While this work attempts to demonstrate the effect of navigational experience on visual scene representation, it's not immediately clear to what extent such an effect necessarily reflects altered visual representations. Given that scenes in the navigable condition were more explored and had distinct contextual associations than scenes in the non-navigable condition (where participants simply turned around), could the shorter response time for a scene pair with mismatched navigability be explained by the facilitation of different contextual associations or scene familiarities, rather than changes in perceptual representations? Especially when the visual similarity of the scenes was high and different visual cues might not have been immediately available to participants, the different contextual associations and/or familiarity could serve as indirect cues to facilitate participants' judgment, even if perceptual representations remained intact.

      (2) Similarly, the above-chance fMRI classification results in the PPA could also be explained by the different contextual associations and/or scene familiarities between navigable and non-navigable scenes, rather than different perceptual processes related to scene identification.

      (3) For the fMRI results, the specificity of the experience effect on the PPA is not strictly established, making the statement "such top-down effect was unique to the PPA" groundless. A significant interaction between navigational conditions and ROIs would be required to make such a claim.

      (4) For the behavioral results, the p-value of the interaction between groups and the navigational conditions was 0.05. I think this is not a convincing p-value to rule out visual confounding for the training group. Moreover, from Figure 2B, there appears to be an outlier participant in the control group who deviates dramatically from the rest of the participants. If this outlier is excluded, will the interaction become even less significant?

      (5) Experiment 1 only consists of 25 participants in each group. This is quite a small sample size for behavioral studies when there's no replication. It would be more convincing if an independent pre-registered replication study with a larger sample size could be conducted.

    1. Reviewer #1 (Public review):

      Summary:

      The authors investigate the role of H3K115ac in mouse embryonic stem cells. They report that H3K115ac localizes to regions enriched for fragile nucleosomes, CpG islands, and enhancers, and that it correlates with transcriptional activity. These findings suggest a potential role for this globular domain modification in nucleosome dynamics and gene regulation. If robust, these observations would expand our understanding of how non-tail histone modifications contribute to chromatin accessibility and transcriptional control.

      Strengths:

      (1) The study addresses a histone PTM in the globular domain, which is relatively unexplored compared to tail modifications.

      (2) The implication of a histone PTM in fragile nucleosome localization is novel and, if substantiated, could represent a significant advance for the field.

      Weaknesses:

      (1) The absence of replicate paired-end datasets limits confidence in peak localization.

      (2) The analyses are primarily correlative, making it difficult to fully assess robustness or to support strong mechanistic conclusions.

      (3) Some claims (e.g., specificity for CpG islands, "dynamic" regulation during differentiation) are not fully supported by the analyses as presented.

      (4) Overall, the study introduces an intriguing new angle on globular PTMs, but additional rigor and mechanistic evidence are needed to substantiate the conclusions.

    2. Reviewer #2 (Public review):

      Summary:

      Kumar et al. aimed to assess the role of the understudied H3K115 acetylation mark, which is located in the nucleosomal core. To this end, the authors performed ChIP-seq experiments of H3K115ac in mouse embryonic stem cells as well as during differentiation into neuronal progenitor cells. Subsequent bioinformatic analyses revealed an association of H3K115ac with fragile nucleosomes at CpG island promoters, as well as with enhancers and CTCF binding sites. This is an interesting study, which provides important novel insights into the potential function of H3K115ac. However, the study is mainly descriptive, and functional experiments are missing.

      Strengths:

      (1) The authors present the first genome-wide profiling of H3K115ac and link this poorly characterized modification to fragile nucleosomes, CpG island promoters, enhancers, and CTCF binding sites.

      (2) The study provides a valuable descriptive resource and raises intriguing hypotheses about the role of H3K115ac in chromatin regulation.

      (3) The breadth of the bioinformatic analyses adds to the value of the dataset

      Weaknesses:

      (1) I am not fully convinced about the specificity of the antibody. Although the experiment in Figure S1A shows a specific binding to H3K115ac-modified peptides compared to unmodified peptides, the authors do not show any experiment that shows that the antibody does not bind to unrelated proteins. Thus, a Western of a nuclear extract or the chromatin fraction would be critical to show. Also, peptide competition using the H3K115ac peptide to block the antibody may be good to further support the specificity of the antibody. Also, I don't understand the experiment in Figure S1B. What does it tell us when the H3K115ac histone mark itself is missing? The KLF4 promoter does not appear to be a suitable positive control, given that hundreds of proteins/histone modifications are likely present at this region.

      It is important to clearly demonstrate that the antibody exclusively recognizes H3K115ac, given that the conclusion of the manuscript strongly depends on the reliability of the obtained ChIP-Seq data.

      (2) The association of H3K115ac with fragile nucleosomes based on MNase-Sensitivity and fragment length, which are indirect methods and can have technical bias. Experiments that support that the H3K115ac modified nucleosomes are indeed more fragile are missing.

      (3) The comparison of H3K115ac with H3K122ac and H3K64ac relies on publicly available datasets. Since the authors argue that these marks are distinct, data generated under identical experimental conditions would be more convincing. At a minimum, the limitations of using external datasets should be discussed.

      (4) The enrichment of H3K115ac at enhancers and CTCF binding sites is notable but remains descriptive. It would be interesting to clarify whether H3K115ac actively influences transcription factor/CTCF binding or is a downstream correlate.

      (5) No information is provided about how H3K115ac may be deposited/removed. Without this information, it is difficult to place this modification into established chromatin regulatory pathways.

      At the very least, the authors should acknowledge these limitations and provide additional validation of antibody specificity.

    3. Reviewer #3 (Public review):

      Summary:

      Kumar et al. examine the H3K115 epigenetic mark located on the lateral surface of the histone core domain and present evidence that it may serve as a marker enriched at transcription start sites (TSSs) of active CpG island promoters and at polycomb-repressed promoters. They also note enrichment of the H3K115ac mark is found on fragile nucleosomes within nucleosome-depleted regions, on active enhancers, and CTCF-bound sites. They propose that these observations suggest that H3K115ac contributes to nucleosome destabilization and so may serve as a marker of functionally important regulatory elements in mammalian genomes.

      Strengths:

      The authors present novel observations suggesting that acetylation of a histone residue in a core (versus on a histone tail) domain may serve a functional role in promoting transcription, in CPG islands and polycomb-repressed promoters. They present a solid amount of confirmatory in silico data using appropriate methodology that supports the idea that the H3K115ac mark may function to destabilize nucleosomes and contribute to regulating ESC differentiation.

      Weaknesses:

      Additional experiments to confirm antibody specificity are needed. The authors use synthetic peptides for other markers (e.g., H3K122) to support the claim that the antibody is specific, but ChIP-ChIP assays are performed under cross-linked, non-denatured conditions, which preserve structure and epitope accessibility differently than synthetic peptides used for dot blots. Does the antibody give a single band in western blots of histones, and can the H3K115ac peptide block western and immunofluorescence signals of the antibody? Given that the antibody is a rabbit polyclonal, specificity is not a trivial consideration.

    1. Reviewer #1 (Public review):

      The manuscript by Bru et al. focuses on the role of vacuoles as a phosphate buffering system for yeast cells. The authors describe here the crosstalk between the vacuole and the cytosol using a combination of in vitro analyses of vacuoles and in vivo assays. They show that the luminal polyphosphatases of the vacuole can hydrolyze polyphosphates to generate inorganic phosphate, yet they are inhibited by high concentrations. This balances the synthesis of polyphosphates against the inorganic phosphate pool. Their data further show that the Pho91 transporter provides a valve for the cytosol as it gets activated by a decline in inositol pyrophosphate levels. The authors thus demonstrate how the vacuole functions as a phosphate buffering system to maintain a constant cytosolic inorganic phosphate pool.

      This is a very consistent and well-written manuscript with a number of convincing experiments, where the authors use isolated vacuoles and cellular read-out systems to demonstrate the interplay of polyphosphate synthesis, hydrolysis, and release. The beauty of this system the authors present is the clear correlation between product inhibition and the role of Pho91 as a valve to release Pi to the cytosol to replenish the cytosolic pool. I find the paper overall an excellent fit.

      Comments on Revision:

      The authors have addressed all my concerns.

    2. Reviewer #3 (Public review):

      Bru et al. investigated how inorganic phosphate (Pi) is buffered in cells using S. cerevisiae as a model. Pi is stored in cells in the form of polyphosphates in acidocalcisomes. In S. cerevisiae, the vacuole, which is the yeast lysosome, also fulfills the function of Pi storage organelle. Therefore, yeast is an ideal system to study Pi storage and mobilization.

      They can recapitulate in their previously established system, using isolated yeast vacuoles, findings from their own and other groups. They integrate the available data and propose a working model of feedback loops to control the level of Pi on the cellular level.

      This is a solid study, in which the biological significance of their findings is not entirely clear. The data analysis and statistical significance need to be improved and included, respectively. The manuscript would have benefited from rigorously testing the model, which would also have increased the impact of the study.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript investigates the effects of oral supplementation with nicotinamide mononucleotide (NMN) on metabolism and inflammation in mice with diet-induced obesity, and whether these effects depend on the NAD⁺-dependent enzyme SIRT1. Using control and inducible SIRT1 knockout mice, the authors show that NMN administration mitigates high-fat diet-induced weight gain, enhances energy expenditure, and normalizes fasting glucose and plasma lipid profiles in a largely SIRT1-dependent manner. However, reductions in fat mass and adipose tissue expansion occur independently of SIRT1. Comprehensive plasma proteomic analyses (O-Link and mass spectrometry) reveal that NMN reverses obesity-induced alterations in metabolic and immune pathways, particularly those related to glucose and cholesterol metabolism. Integrative network and causal analyses identify both SIRT1-dependent and -independent protein clusters, as well as potential upstream regulators such as FBXW7, ADIPOR2, and PRDM16. Overall, the study supports that NMN modulates key metabolic and immune pathways through both SIRT1-dependent and alternative mechanisms to alleviate obesity and dyslipidemia in mice.

      Strengths:

      Well-written manuscript, and state-of-the-art proteomics-based methodologies to assess NMN and SIRT1-dependent effects.

      Weaknesses:

      Unfortunately, the study design, as well as the data analysis approach taken by the authors, are flawed. This limits the authors' ability to make the proposed conclusions.

    2. Reviewer #2 (Public review):

      Summary:

      Majeed and colleagues aimed to evaluate whether the metabolic effects of NMN in the context of a high-fat diet are SIRT1 dependent. For this, they used an inducible SIRT1 KO model (SIRT1 iKO), allowing them to bypass the deleterious effects of SIRT1 ablation during development. In line with previous reports, the authors observed that NMN prevents, to some degree, diet-induced metabolic damage in wild-type mice. When doing similar tests on SIRT1 iKO mice, the authors see that some, but not all, of the effects of NMN are abrogated. The phenotypic studies are complemented by plasma proteomic analyses evaluating the influence of the high-fat diet, SIRT1, and NMN on circulating protein profiles.

      Strengths:

      The mechanistic aspects behind the potential health benefits of NAD+ precursors have been poorly elucidated. This is in part due to the pleiotropic actions of NAD-related molecules on cellular processes. While sirtuins, most notably SIRT1, have been largely hypothesized to be key players in the therapeutic actions of NAD+ boosters, the proof for this in vivo is very limited. In this sense, this work is an important contribution to the field.

      Weaknesses:

      While the authors use a suitable methodology (SIRT1 iKO mice), the results show very early that the iKO mice themselves have some notable phenotypes, which complicate the picture. The actions of NMN in WT and SIRT1 KO mice are most often presented separately. However, this is not the right approach to evaluate and visualize SIRT1 dependency. Indeed, many of the "SIRT1-dependent" effects of NMN are consequent to the fact that SIRT1 deletion itself has a phenotype equivalent to or larger than that induced by NMN in wild-type mice. This would have been very evident if the two genotypes had been systematically plotted together. Consequently, and despite the value of the study, the results obtained with this model might not allow for solidly established claims of SIRT1 dependency on NMN actions. The fact that some of the effects of SIRT1 deletion are similar to those of NMN supplementation also makes it counterintuitive to propose that activation of SIRT1 is a major driver of NMN actions. Unbiasedly, one might as well conclude that NMN could act by inhibiting SIRT1. The fact that readouts for SIRT1 activity are not explored makes it also difficult to test the influence of NMN on SIRT1 in their experimental setting, or whether compensations could exist.

      A second weak point is that the proteomic explorations are interesting, yet feel too descriptive and disconnected from the overall phenotype or from the goal of the manuscript. It would be unreasonable to ask for gain/loss-of-function experiments based on the differentially abundant peptides. Yet, a deeper exploration of whether their altered presence in circulation is consistent with changes in their expression - and, if so, in which tissues - and a clearer discussion on their link to the phenotypes observed would be needed, especially for changes related to SIRT1 and NMN.

      Impact on the field and further significance of the work:

      Despite the fact that, in my opinion, the authors might not have conclusively achieved their main aim, there are multiple valuable aspects in this manuscript:

      (1) It provides independent validation for the potential benefits of NAD+ boosters in the context of diet-induced metabolic complications. Previous efforts using NR or NMN itself have provided contradicting observations. Therefore, additional independent experiments are always valuable to further balance the overall picture.

      (2) The metabolic consequences of deleting SIRT1 in adulthood have been poorly explored in previous works. Therefore, irrespective of the actions of NMN, the phenotypes observed are intriguing, and the proteomic differences are also large enough to spur further research to understand the role of SIRT1 as a therapeutic target.

      (3) Regardless of the influence of SIRT1, NMN promotes some plasma proteomic changes that are very well worth exploring. In addition, they highlight once more that the in vivo actions of NMN, as those of other NAD+ boosters, are pleiotropic. Hence, this work brings into question whether single gene KO models are really a good approach to explore the mechanisms of action of NAD+ precursors.

    1. Reviewer #1 (Public review):

      Summary:

      Fungal survival and pathogenicity rely on the ability to undergo reversible morphological transitions, which are often linked to nutrient availability. In this study, the authors uncover a conserved connection between glycolytic activity and sulfur amino acid biosynthesis that drives morphogenesis in two fungal model systems. By disentangling this process from canonical cAMP signaling, the authors identify a new metabolic axis that integrates central carbon metabolism with developmental plasticity and virulence.

      Strengths:

      The study integrates different experimental approaches, including genetic, biochemical, transcriptomic, and morphological analyses, and convincingly demonstrates that perturbations in glycolysis alter sulfur metabolic pathways and thus impact pseudohyphal and hyphal differentiation. Overall, this work offers new and important insights into how metabolic fluxes are intertwined with fungal developmental programs and therefore opens new perspectives to investigate morphological transitioning in fungi.

      Weaknesses:

      A few aspects could be improved to strengthen the conclusions. Firstly, the striking transcriptomic changes observed upon 2DG treatment should be analyzed in S. cerevisiae adh1 and pfk1 deletion strains, for instance, through qPCR or western blot analyses of sulfur metabolism genes, to confirm that observed changes in 2DG conditions mirror those seen in genetic mutants. Secondly, differences between methionine and cysteine in their ability to rescue the mutant phenotype in both species are not mentioned, nor discussed in more detail. This is especially important as there seem to be differences between S. cerevisiae and C. albicans, which might point to subtle but specific metabolic adaptations.

      The authors are also encouraged to refine several figure elements for clarity and comparability (e.g., harmonized axes in bar plots), condense the discussion to emphasize the conceptual advances over a summary of the results, and shorten figure legends.

    2. Reviewer #2 (Public review):

      Summary:

      This manuscript investigates the interplay between glycolysis and sulfur metabolism in regulating fungal morphogenesis and virulence. Using both Saccharomyces cerevisiae and Candida albicans, the authors demonstrate that glycolytic flux is essential for morphogenesis under nitrogen-limiting conditions, acting independently of the established cAMP-PKA pathway. Transcriptomic and genetic analyses reveal that glycolysis influences the de novo biosynthesis of sulfur-containing amino acids, specifically cysteine and methionine. Notably, supplementation with sulfur sources restores morphogenetic and virulence defects in glycolysis-deficient mutants, thereby linking core carbon metabolism with sulfur assimilation and fungal pathogenicity.

      Strengths:

      The work identifies a previously uncharacterized link between glycolysis and sulfur metabolism in fungi, bridging metabolic and morphogenetic regulation, which is an important conceptual advance and fungal pathogenicity. Demonstrating that adding cysteine supplementation rescues virulence defects in animal models connects basic metabolism to infection outcomes, which adds to biomedical importance.

      Weaknesses:

      The proposed model that glycolytic flux modulates Met30 activity post-translationally remains speculative. While data support Met4 stabilization in met30 deletion strains, the mechanism of Met30 modulation by glycolysis is not demonstrated.

    3. Reviewer #3 (Public review):

      This study investigates the connection between glycolysis and the biosynthesis of sulfur-containing amino acids in controlling fungal morphogenesis, using Saccharomyces cerevisiae and C. albicans as model organisms. The authors identify a conserved metabolic axis that integrates glycolysis with cysteine/methionine biosynthetic pathways to influence morphological transitions. This work broadens the current understanding of fungal morphogenesis, which has largely focused on gene regulatory networks and cAMP-dependent signaling pathways, by emphasizing the contribution of metabolic control mechanisms. However, despite the novel conceptual framework, the study provides limited mechanistic characterization of how the sulfur metabolism and glycolysis blockade directly drive morphological outcomes. In particular, the rationale for selecting specific gene deletions, such as Met32 (and not Met4), or the Met30 deletion used to probe this pathway, is not clearly explained, making it difficult to assess whether these targets comprehensively represent the metabolic nodes proposed to be critical. Further supportive data and experimental validation would strengthen the claims on connections between glycolysis, sulfur amino acid metabolism, and virulence.

      Strengths:

      (1) The delineation of how glycolytic flux regulates fungal morphogenesis through a cAMP-independent mechanism is a significant advancement. The coupling of glycolysis with the de novo biosynthesis of sulfur-containing amino acids, a requirement for morphogenesis, introduces a novel and unexpected layer of regulation.

      (2) Demonstrating this mechanism in both S. cerevisiae and C. albicans strengthens the argument for its evolutionary conservation and biological importance.

      (3) The ability to rescue the morphogenesis defect through exogenous supplementation of sulfur-containing amino acids provides functional validation.

      (4) The findings from the murine Pfk1-deficient model underscore the clinical significance of metabolic pathways in fungal infections.

      Weaknesses:

      (1) While the link between glycolysis and sulfur amino acid biosynthesis is established via transcriptomic and proteomic analysis, the specific regulation connecting these pathways via Met30 remains to be elucidated. For example, what are the expression and protein levels of Met30 in the initial analysis from Figure 2? How specific is this effect on Met30 in anaerobic versus aerobic glycolysis, especially when the pentose phosphate pathway is involved in the growth of the cells when glycolysis is perturbed?

      (2) Including detailed metabolite profiling could have strengthened the metabolic connection and provided additional insights into intermediate flux changes, i.e., measuring levels of metabolites to check if cysteine or methionine levels are influenced intracellularly. Also, it is expected to see how Met30 deletion could affect cell growth. Data on Met30 deletion and its effect on growth are not included, especially given that a viable heterozygous Met30 strain has been established. Measuring the cysteine or methionine levels using metabolomic analysis would further strengthen the claims in every section.

      (3) In comparison with the previous bioRxiv (doi: https://doi.org/10.1101/2025.05.14.654021) of this article in May 2025 to the recent bioRxiv of this article (doi: https://doi.org/10.1101/2025.05.14.654021), there have been some changes, and Met30 deletion has been recently included, and the chemical perturbation of glycolysis has been added as new data. Although the changes incorporated in the recent version of the article improved the illustration of the hypothesis in Figure 6, which connects glycolysis to Sulfur metabolism, the gene expression and protein levels of all genes involved in the illustrated hypothesis are not consistently shown. For example, in some cases, the Met4 expression is not shown (Figure 4), and the Met30 expression is not shown during profiling (gene expression or protein levels) throughout the manuscript. Lack of consistency in profiling the same set of key genes makes understanding more complicated.

      (4) The demonstrated link between glycolysis and sulfur amino acid biosynthesis, along with its implications for virulence in C. albicans, is important for understanding fungal adaptation, as mentioned in the article; however, the Met4 activation was not fully characterized, nor were the data presented when virulence was assessed in Figure 4. Why is Met4 not included in Figure 4D and I? Especially, according to Figure 6, Met4 activation is crucial and guides the differences between glycolysis-active and inactive conditions.

      (5) Similarly, the rationale behind selecting Met32 for characterizing sulfur metabolism is unclear. Deletion of Met32 resulted in a significant reduction in pseudohyphal differentiation; why is this attributed only to Met32? What happens if Met4 is deleted? It is not justified why Met32, rather than Met4, was chosen. Figure 6 clearly hypothesizes that Met4 activation is the key to the mechanism.

      (6) The comparative RT-qPCR in Figure 5 did not account for sulfur metabolism genes, whereas it was focused only on virulence and hyphal differentiation. Is there data to support the levels of sulfur metabolism genes?

      (7) To validate the proposed interlink between sulfur metabolism and virulence, it is recommended that the gene sets (illustrated in Figure 6) be consistently included across all comparative data included throughout the comparisons. Excluding sulfur metabolism genes in Figure 5 prevents the experiment from demonstrating the coordinated role of glycolysis perturbation → sulfur metabolism → virulence. The same is true for other comparisons, where the lack of data on Met30, Met4, etc., makes it hard to connect the hypothesis. It is also recommended to check the gene expression of other genes related to the cAMP pathway and report them to confirm the cAMP-independent mechanism. For example, gap2 deletion was used to confirm the effects of cAMP supplementation, but the expression of this gene was not assessed in the RNA-seq analysis in Figure 2. It would be beneficial to show the expression of cAMP-related genes to completely confirm that they do not play a role in the claims in Figure 2.

      (8) Although the NAC supplementation study is included in the new version of the article compared to the previous version in BioRxiv (May 2025), the link to sulfur metabolism is not well characterized in Figure 5 and their related datasets. The main focus of the manuscript is to delineate the role of sulfur metabolism; hence, it is anticipated that Figure 5 will include sulfur-related metabolic genes and their links to pfk1 deletion, using RT-PCR measurements as shown for the virulence genes.

      (9) The manuscript would benefit from more information added to the introduction section and literature supports for some of the findings reported earlier, including the role of (i) cAMP-PKA and MAPK pathways, (ii) what is known in the literature that reports about the treatment with 2DG (role of Snf1, HXT1, and HXT3), as well as how gpa2 is involved. Some sentences in the manuscripts are repetitive; it would be beneficial to add more relevant sections to the introduction and discussion to clarify the rationale for gene choices.

    1. Reviewer #1 (Public review):

      Summary:

      The study by Yu et al investigated the role of protein N-glycosylation in regulating T-cell activation and functions is an interesting work. By using genome-wide CRISPR/Cas9 screenings, the authors found that B4GALT1 deficiency could activate expression of PD-1 and enhance functions of CD8+ T cells both in vitro and in vivo, suggesting the important roles of protein N-glycosylation in regulating functions of CD8+ T cells, which indicates that B4GALT1 is a potential target for tumor immunotherapy.

      Strengths:

      The strengths of this study are the findings of novel function of B4GALT1 deficiency in CD8 T cells.

      Weaknesses:

      However, authors did not directly demonstrate that B4GALT1 deficiency regulates the interaction between TCR and CD8, as well as functional outcomes of this interaction, such as TCR signaling enhancements.

    2. Reviewer #2 (Public review):

      Summary:

      In this study, the authors identify the N-glycosylation factor B4GALT1 as an important regulator of CD8 T-cell function.

      Strengths:

      (1) The use of complementary ex vivo and in vivo CRISPR screens is commendable and provides a useful dataset for future studies of CD8 T-cell biology.

      (2) The authors perform multiple untargeted analyses (RNAseq, glycoproteomics) to hone their model on how B4GALT1 functions in CD8 T-cell activation.

      (3) B4GALT1 is shown to be important in both in vitro T-cell killing assays and a mouse model of tumor control, reinforcing the authors' claims.

      Weaknesses:

      (1) The authors did not verify the efficiency of knockout in their single-gene KO lines.

      (2) As B4GALT1 is a general N-glycosylation factor, the phenotypes the authors observe could formally be attributable to indirect effects on glycosylation of other proteins.

      (3) The specific N-glycosylation sites of TCR and CD8 are not identified, and would be helpful for site-specific mutational analysis to further the authors' model.

      (4) The study could benefit from further in vivo experiments testing the role of B4GALT1 in other physiological contexts relevant to CD8 T cells, for example, autoimmune disease or infectious disease.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, the authors describe a new computational method (SegPore), which segments the raw signal from nanopore direct RNA-Seq data to improve the identification of RNA modifications. In addition to signal segmentation, SegPore includes a Gaussian Mixture Model approach to differentiate modified and unmodified bases. SegPore uses Nanopolish to define a first segmentation, which is then refined into base and transition blocks. SegPore also includes a modification prediction model that is included in the output. The authors evaluate the segmentation in comparison to Nanopolish and Tombo (RNA002) as well as f5c and Uncalled 4 (RNA004), and they evaluate the impact on m6A RNA modification detection using data with known m6A sites. In comparison to existing methods, SegPore appears to improve the ability to detect m6A, suggesting that this approach could be used to improve the analysis of direct RNA-Seq data.

      Strengths:

      SegPore address an important problem (signal data segmentation). By refining the signal into transition and base blocks, noise appears to be reduced, leading to improved m6A identification at the site level as well as for single read predictions. The authors provide a fully documented implementation, including a GPU version that reduces run time. The authors provide a detailed methods description, and the approach to refine segments appears to be new.

    2. Reviewer #2 (Public review):

      Summary:

      The work seeks to improve detection of RNA m6A modifications using Nanopore sequencing through improvements in raw data analysis. These improvements are said to be in the segmentation of the raw data, although the work appears to position the alignment of raw data to the reference sequence and some further processing as part of the segmentation, and result statistics are mostly shown on the 'data-assigned-to-kmer' level.

      As such, the title, abstract and introduction stating the improvement of just the 'segmentation' does not seem to match the work the manuscript actually presents, as the wording seems a bit too limited for the work involved.

      The work itself shows minor improvements in m6Anet when replacing Nanopolish' eventalign with this new approach, but clear improvements in the distributions of data assigned per kmer. However, these assignments were improved well enough to enable m6A calling from them directly, both at site-level and at read-level.

      A large part of the improvements shown appear to stem from the addition of extra, non-base/kmer specific, states in the segmentation/assignment of the raw data, removing a significant portion of what can be considered technical noise for further analysis. Previous methods enforced assignment of (almost) all raw data, forcing a technically optimal alignment that may lead to suboptimal results in downstream processing as datapoints could be assigned to neighbouring kmers instead, while random noise that is assigned to the correct kmer may also lead to errors in modification detection.

      For an optimal alignment between the raw signal and the reference sequence, this approach may yield improvements for downstream processing using other tools.

      Additionally, the GMM used for calling the m6A modifications provides a useful, simple and understandable logic to explain the reason a modification was called, as opposed to the black models that are nowadays often employed for these types of tasks.

      Appraisal:

      The authors have shown their methods ability to identify noise in the raw signal and remove their values from the segmentation and alignment, reducing its influences for further analyses. Figures directly comparing the values per kmer do show a visibly improved assignment of raw data per kmer. As a replacement for Nanopolish' eventalign it seems to have a rather limited, but improved effect, on m6Anet results. At the single read level modification modification calling this work does appear to improve upon CHEUI.

    3. Reviewer #3 (Public review):

      Summary:

      Nucleotide modifications are important regulators of biological function, however, until recently, their study has been limited by the availability of appropriate analytical methods. Oxford Nanopore direct RNA sequencing preserves nucleotide modifications, permitting their study, however many different nucleotide modifications lack an available base-caller to accurately identify them. Furthermore, existing tools are computationally intensive, and their results can be difficult to interpret.

      Cheng et al. present SegPore, a method designed to improve the segmentation of direct RNA sequencing data and boost the accuracy of modified base detection.

      Strengths:

      This method is well described and has been benchmarked against a range of publicly available base callers that have been designed to detect modified nucleotides.

      Comment from the Reviewing Editor:

      The authors have provided responses to the weaknesses highlighted previously and the reviewers were not asked to comment. The authors have now requested a Version of Record.

    1. Reviewer #1 (Public review):

      Summary:

      This paper investigates how Pten loss influences the development of medulloblastoma using mouse models of Shh-driven MB. Previous studies have shown that Pten heterozygosity can accelerate tumorigenesis in models where the entire GNP compartment has MB-promoting mutations, raising questions about how Pten levels and context interact, especially when cancer-causing mutations are more sporadic. Here, the authors create an allelic series combining sporadic, cell-autonomous induction of SmoM2 with Pten loss in granule neuron progenitors. In their models, Pten heterozygosity does not significantly impact tumor development, whereas complete Pten loss accelerates tumour onset. Notably, Pten-deficient tumours accumulate differentiated cells, reduced cell death, and decreased macrophage infiltration. At early stages, before tumour establishment, they observe EGL hyperplasia and more pre-tumour cells in S phase, leading them to suggest that Pten loss initially drives proliferation but later shifts towards differentiation and accumulation of death-resistant, postmitotic cells. Overall, this is a well-executed and technically elegant study that confirms and extends earlier findings with more refined models. The phenotyping is strong, but the mechanistic insight is limited, especially with respect to dosage effects and macrophage biology.

      Strengths:

      The work is carefully executed, and the models-using sporadic oncogene induction rather than EGL-wide genetic manipulations-represent an advance in experimental design. The deeper phenotyping, including single-cell RNA-seq and target validation, adds rigor.

      Weaknesses:

      The biological conclusions largely confirm findings from previous studies (Castellino et al, 2010; Metcalf et al, 2013), showing that germline or conditional Pten heterozygosity accelerates tumorigenesis, generates tumors with a very similar phenotype, including abundant postmitotic cells, and reduced cell death.

      The second stated goal - to understand why Pten dosage might matter - remains underdeveloped. The difference between earlier models using EGL-wide SmoA1 or Ptch loss versus sporadic cell-autonomous SmoM2 induction and Pten loss in this study could reflect model-specific effects or non-cell-autonomous contributions from Pten-deficient neighbouring cells in the EGL, for example. However, the study does not explore these possibilities. For instance, examining germline Pten loss in the sporadic SmoM2 context could have provided insight into whether dosage effects are cell-autonomous or dependent on the context.

      The observations on macrophages are intriguing but preliminary. The reduction in Iba1+ cells could reflect changes in microglia, barrier-associated macrophages, or infiltrating peripheral macrophages, but these populations are not distinguished. Moreover, the functional relevance of these immune changes for tumor initiation or progression remains unexplored.

    2. Reviewer #2 (Public review):

      The authors sought to answer several questions about the role of the tumor suppressor PTEN in SHH-medulloblastoma formation. Namely, whether Pten loss increases metastasis, understanding why Pten loss accelerates tumor growth, and the effect of single-copy vs double-copy loss on tumorigenesis. Using an elegant mouse model, the authors found that Pten mutations do not increase metastasis in a SmoD2-driven SHH-medulloblastoma mouse model, based on extensive characterization of the presence of spinal cord metastases. Upon examining the cellular phenotype of Pten-null tumors in the cerebellum, the authors made the interesting and puzzling observation that Pten loss increased the differentiation state of the tumor, with fewer cycling cells, seemingly in contrast to the higher penetrance and decreased latency of tumor growth.

      The authors then examined the rate of cell death in the tumor. Interestingly, Pten-null tumors had fewer dying cells, as assessed by TUNEL. In addition, the tumors expressed differentiation markers NeuN and SyP, which are rare in SHH-MB mouse models. This reduction in dying cells is also evident at earlier stages of tumor growth. By looking shortly after Pten-loss induction, the authors found that Pten loss had an immediate impact on increasing the proliferative state of GCPs, followed by enhancing the survival of differentiated cells. These two pro-tumor features together account for the increased penetrance and decreased latency of the model. While heterozygous loss of Pten also promoted proliferation, it did not protect against cell death.

      Interestingly, loss of Pten alone in GCPs caused an increase in cerebellar size throughout development. The authors suggest that Pten normally constrains GCP proliferation, although they did not check whether reduced cell death is also contributing to cerebellum size.

      Lastly, the authors examined macrophage infiltration and found that there was less macrophage infiltration in the Pten-null tumors. Using scRNA-seq, they suggest that the observed reduction in macrophages might be due to an immunosuppressive tumor microenvironment.

      This mouse model will be of high relevance to the medulloblastoma community, as current models do not reflect the heterogeneity of the disease. In addition, the elegant experimentation into Pten function may be relevant to cancer biologists outside of the medulloblastoma field.

      Strengths:

      The in-depth characterisation of the mouse model is a major strength of the study, including multiple time points and quantifications. The single-cell sequencing adds a nice molecular feature, and this dataset may be relevant to other researchers with specific questions of Pten function.

      Weaknesses:

      One weakness of the study was the examination of the macrophage phenotype, which did not include quantification (only single images), so it is difficult to assess whether this reduction of macrophages holds true across multiple samples. Future studies will also be needed to assess whether Pten-mutated patient medulloblastomas also have a differentiation phenotype, but this is difficult to assess given the low number of samples worldwide.

    1. Reviewer #1 (Public review):

      Summary:

      The study by Pinho et al. presents a novel behavioral paradigm for investigating higher-order conditioning in mice. The authors developed a task that creates associations between light and tone sensory cues, driving mediated learning. They observed sex differences in task acquisition, with females demonstrating faster mediated learning compared to males. Using fiber photometry and chemogenetic tools, the study reveals that the dorsal hippocampus (dHPC) plays a central role in encoding mediated learning. These findings are crucial for understanding how environmental cues, which are not directly linked to positive/negative outcomes, contribute to associative learning. Overall, the study is well-designed, with robust results, and the experimental approach aligns with the study's objectives.

      Strengths:

      The authors develop a robust behavioral paradigm to examine higher-order associative learning in mice.

      They discover a sex-specific component influencing mediated learning.

      Using fiber photometry and chemogenetic techniques, the authors identify the dorsal hippocampus but not the ventral hippocampus, plays a crucial for encoding mediated learning.

    2. Reviewer #2 (Public review):

      Pinho et al. developed a new auditory-visual sensory preconditioning procedure in mice. They observed sex differences in this task, with male, but not female mice acquiring preconditioned fear. Using photometry, they observed activation of the dorsal and ventral hippocampus during sensory preconditioning (tone + light) and direct conditioning (light + shock). Finally, the authors combined their sensory preconditioning task with DREADDs. They found that inhibition of CamKII-positive cells in the dorsal hippocampus, but not the ventral hippocampus, during the preconditioning phase impaired the formation of sensory preconditioned fear. However, inhibiting the same cells during phase two (light + shock) had no effect.

      Strengths:

      (1) The authors develop a robust auditory-visual sensory preconditioning protocol in male mice. Research on the neurobiology of sensory preconditioning has primarily used rats as subjects. The development of a mouse protocol will be very beneficial to the field, allowing researchers to take advantage of the many transgenic mouse lines.

      (2) They find sex differences in the acquisition of sensory preconditioning, raising the importance of adapting behavioral procedures to sex

      (3) They identify the dorsal (but not ventral) hippocampus as a key region for the integration of sensory information during the preconditioning phase, furthering our understanding of the role of the hippocampus in integrating experience.

      Comments on the revisions:

      Thank you for addressing my concerns in considerable detail. I have no more suggestions for the authors.

    3. Reviewer #3 (Public review):

      Summary:

      Pinho et al., investigated the role of the dorsal VS ventral hippocampus and gender differences in mediated learning. While previous studies already established the engagement of the hippocampus in sensory preconditioning, the authors here took advantages of freely-moving fiber photometry recording and chemogenetics to observe and manipulate sub-regions of the hippocampus (drosal VS ventral) in a cell-specific manner. Importantly, the authors validated the sensory preconditioning procedure in male mice. The authors found no evidence of sensory preconditioning in female mice, but rather a generalization effect, stressing the importance of gender differences in fear learning. After validation of a sensory preconditioning procedure in male mice using light and tone neutral stimuli and a mild foot shock as the unconditioned stimulus, the authors used fiber photometry to record from all neurons VS parvalbumin_positive_only neurons in the dorsal hippocampus or ventral hippocampus of male mice during both preconditioning and conditioning phases. They found an increased activity of all neurons, PV+_only neurons, and CAMKII+ neurons in both sub-regions of the hippocampus during both preconditioning and conditioning phases. Finally, the authors found that chemogenetic inhibition of CaMKII+ neurons (but not PV+_only neurons) in the dorsal (but not ventral) hippocampus specifically prevented the formation of an association between the two neutral stimuli (i.e., light and tone cues). This manipulation had no effect on the direct association between the light cue and the mild foot shock. This set of data (1) validates sensory preconditioning in male mice, and stresses the importance of taking gender effect into account; (2) validates the recruitment of dorsal and ventral hippocampi during preconditioning and conditioning phases; (3) and further establishes the specific role of CaMKII+ neurons in the dorsal hippocampus, but not ventral hippocampus, in the formation of an association between two neutral stimuli, but not between a neutral-stimulus and a mild foot shock.

      Strengths:

      The authors developed a sensory preconditioning procedure in male mice to investigate mediated learning using light and tone cues as neutral stimuli, and a mild foot shock as the unconditioned stimulus. They provide evidence of a gender effect in the formation of light-cue association. The authors took advantage of fiber-photometry and chemogenetics to target sub-regions of the hippocampus, in a cell-specific manner and investigate their role during different phases of a sensory conditioning procedure, and developed a DeepLabCut-based strategy to assess freezing fear responses.

      Weaknesses:

      The authors went further than previous studies by investigating the role of sub-regions the hippocampus in mediated learning, however, there are a few weaknesses that should be addressed in future studies:

      (1) This study found a generalization effect in female mice only. While the authors attempted to neutralize this effect, the mechanism underlying this gender effect and whether female mice can display evidence for mediated learning has yet to be determined.

      (2) One of the main effects from which derives the conclusion of this study (i.e., deficit of mediated learning in male mice when CAMKII+ neurons are inhibited in the dorsal HPC during the preconditioning phase) lies in the absence of a significant difference of the freezing response before and during the tone cue presentation when CAMKII+ are chemogenetically inhibited during the Probe Test Tone phase (cf. Fig. 4 Panel B, DPCd group). The fear response before the tone cue presentation in this group (DPCd) seems higher than in Controls_d and DPTd groups and could have masked a mediated learning effect.

    1. Reviewer #1 (Public review):

      SMC5/6 is a highly conserved complex able to dynamically alter chromatin structure, playing in this way critical roles in genome stability and integrity that include homologous recombination and telomere maintenance. In the last years, a number of studies have revealed the importance of SMC5/6 in restricting viral expression, which is in part related to its ability to repress transcription from circular DNA. In this context, Oravcova and colleagues recently reported how SMC5/6 is recruited by two mutually exclusive complexes (orthologs of yeast Nse5/6) to SV40 LT-induced PML nuclear bodies (SIMC/SLF2) and DNA lesions (SLF1/2). In this current work, the authors extend this study, providing some new results.

    2. Reviewer #2 (Public review):

      Oracová et al. present data supporting a role for SIMC1/SLF2 in silencing plasmid DNA via the SMC5/6 complex. Their findings are of interest, and they provide further mechanistic detail of how the SMC5/6 complex is recruited to disparate DNA elements. In essence, the present report builds on the author's previous paper in eLife in 2022 (PMID: 36373674, "The Nse5/6-like SIMC1-SLF2 complex localizes SMC5/6 to viral replication centers") by showing the role of SIMC1/SLF2 in localisation of the SMC5/6 complex to plasmid DNA, and the distinct requirements as compared to recruitment to DNA damage foci.

    3. Reviewer #3 (Public review):

      This study by the Boddy and Otomo laboratories further characterizes the roles of SMC5/6 loader proteins and related factors in SMC5/6-mediated repression of extrachromosomal circular DNA. The work shows that mutations engineered at an AlphaFold-predicted protein-protein interface formed between the loader SLF2/SIMC1 and SMC6 (similar to the interface in the yeast counterparts observed by cryo-EM) prevent co-IP of the respective proteins. The mutations in SLF2 also hinder plasmid DNA silencing when expressed in SLF2-/- cell lines, suggesting that this interface is needed for silencing. SIMC1 is dispensable for recruitment of SMC5/6 to sites of DNA damage, while SLF1 is required, thus separating the functions of the two loader complexes. Preventing SUMOylation (with a chemical inhibitor) increases transcription from plasmids but does not in SLF2-deleted cell lines, indicating the SMC5/6 silences plasmids in a SUMOylation dependent manner. Expression of LT is sufficient for increased expression, and again, not additive or synergistic with SIMC1 or SLF2 deletion, indicating that LT prevents silencing by directly inhibiting 5/6. In contrast, PML bodies appear dispensable for plasmid silencing.

    1. Reviewer #2 (Public review):

      Summary:

      Schommartz et al. present a manuscript characterizing neural signatures of reinstatement during cued retrieval of middle-aged children compared to adults. The authors utilize a paradigm where participants learn the spatial location of semantically related item-scene memoranda which they retrieve after short or long delays. The paradigm is especially strong as the authors include novel memoranda at each delayed time point to make comparisons across new and old learning. In brief, the authors find that children show more forgetting than adults, and adults show greater engagement of cortical networks after longer delays as well as stronger item-specific reinstatement. Interestingly, children show more category-based reinstatement, however, evidence supports that this marker may be maladaptive for retrieving episodic details. The question is extremely timely both given the boom in neurocognitive research on the neural development of memory, and the dearth of research on consolidation in this age group. Also, the results provide novel insights into why consolidation processes may be disrupted in children.

      Comments on latest version:

      I carefully reviewed not only the responses to my own reviews as well as those raised by the other reviewers. While they addressed some of the concerns raised in the process, I think many substantive concerns remain.

      While I appreciate the authors sub-sample analysis to control for re-exposure to stimuli in children versus adults, the authors only performed this analysis on memory performance and univariate activation, but they did not run this on the main focus of interest which was the pattern analysis. I think this is critical to run as these measures would be the ones most sensitive to repetition and are the foundation for the major claims of the manuscript.

      Also, I still agree that the authors should do an analysis the subsets the number of trials. While they highlight problems with the loss of statistical power and introduced variability, it is these two very same factors that could be potentially driving these differences.

      As part of their efforts to resolve some concerns about their analysis pipeline, the authors show that similar effects do not emerge for incorrectly remembered items. While this is helpful, it would be important to do direct comparisons of subsequently remembered and forgotten items.

      There is a major concern that the white matter control ROIs are showing session effects, and even the ones that are for the contrasts of interest are marginally significant (p=0.08). This raises significant concerns about the ability to interpret the authors' main signal of interest. While I appreciate many of the other control analyses, this one analysis is quite worrisome.

      Similarly, for the item related analysis, the results should look absolutely different, but the authors are showing effects of p-values that are hovering around significance. Indeed, for these analyses to be true controls, perhaps they should directly control across conditions (i.e., use the item reinstatement as a confound control statistically).

      The across run comparisons are a nice addition to the revision, and although they are similar to within conditions, I would recommend when combining these signals there is a factor included for within versus across run comparisons, and the authors show that there are no interactions with this feature.

    1. Reviewer #1 (Public review):

      Summary:

      In the research manuscript submitted to eLife (Manuscript ID eLife-RP-RA-2024-104545) titled "Therapeutic benefits of maintaining CDK4/6 inhibitors and incorporating CDK2 inhibitors beyond progression in breast cancer" authors identified 1) CDK4/6i treatment attenuates the growth of drug-resistant cell by prolongation of G1 phase; 2) CDK4/6i treatment results in an ineffective Rb inactivation pathways and suppress the growth of drug-resistant tumors; 3) Addition of endocrine therapy augments the efficacy of CDK4/6i maintenance; 4) Addition of CDK2i with CDK4/6 treatment as second-line treatment can suppress the growth of resistant cell; 5) finally role of cyclin E as key driver of resistance to CDK4/6 and CDK2 inhibition.

      Strengths:

      To prove authors complicated proposal, authors employed orchestration of several kinds of live cell markers, timed in situ hybridization, IF and Immono-bloting. The authors strongly recognize the resistance of CDK4/6 + ET therapy and demonstrated how to overcome it.

      Weaknesses:

      None.

      Comments on revisions:

      In response to the reviewers' questions and comments, the authors have revised the manuscript accordingly and sufficiently addressed the differences between their study and previous works on CDK4/6 and CDK2 combination therapy as a second-line approach.

    2. Reviewer #2 (Public review):

      Summary:

      This study elucidated the mechanism underlying drug resistance induced by CDK4/6i as a single agent and proposed a novel and efficacious second-line therapeutic strategy. It highlighted the potential of combining CDK2i with CDK4/6i for the treatment of HR+/HER2- breast cancer.

      Strengths:

      The study demonstrated that CDK4/6 induces drug resistance by impairing Rb activation, which results in diminished E2F activity and a delay in G1 phase progression. It suggests that the synergistic use of CDK2i and CDK4/6i may represent a promising second-line treatment approach. Addressing critical clinical challenges, this study holds substantial practical implications.

      Comments on revisions:

      The author has comprehensively addressed all the questions I raised.

    3. Reviewer #3 (Public review):

      Summary:

      In their manuscript, Armand and colleagues investigate the potential of continuing CDK4/6 inhibitors or combining them with CDK2 inhibitors in the treatment of breast cancer that has developed resistance to initial therapy. Utilizing cellular and animal models, the research examines whether maintaining CDK4/6 inhibition or adding CDK2 inhibitors can effectively control tumor growth after resistance has set in. The key findings from the study indicate that the sustained use of CDK4/6 inhibitors can slow down the proliferation of cancer cells that have become resistant, and the combination of CDK2 inhibitors with CDK4/6 inhibitors can further enhance the suppression of tumor growth. Additionally, the study identifies that high levels of Cyclin E play a significant role in resistance to the combined therapy. These results suggest that continuing CDK4/6 inhibitors along with the strategic use of CDK2 inhibitors could be an effective strategy to overcome treatment resistance in hormone receptor-positive breast cancer. However, several issues need to be addressed before considering its publication.

      Strengths:

      (1) Continuous CDK4/6 Inhibitor Treatment Significantly Suppresses the Growth of Drug-Resistant HR+ Breast Cancer: The study demonstrates that the continued use of CDK4/6 inhibitors, even after disease progression, can significantly inhibit the growth of drug-resistant breast cancer.

      (2) Potential of Combined Use of CDK2 Inhibitors with CDK4/6 Inhibitors: The research highlights the potential of combining CDK2 inhibitors with CDK4/6 inhibitors to effectively suppress CDK2 activity and overcome drug resistance.

      (3) Discovery of Cyclin E Overexpression as a Key Driver: The study identifies overexpression of cyclin E as a key driver of resistance to the combination of CDK4/6 and CDK2 inhibitors, providing insights for future cancer treatments.

      (4) Consistency of In Vitro and In Vivo Experimental Results: The study obtained supportive results from both in vitro cell experiments and in vivo tumor models, enhancing the reliability of the research.

      (5) Validation with Multiple Cell Lines: The research utilized multiple HR+/HER2- breast cancer cell lines (such as MCF-7, T47D, CAMA-1) and triple-negative breast cancer cell lines (such as MDA-MB-231), validating the broad applicability of the results.

      Comments on revisions:

      The authors made a significant effort to improve the manuscript. My comments were sufficiently addressed.

    1. Reviewer #1 (Public review):

      The authors use Flow cytometry and scRNA seq to identify and characterize the defect in gdT17 cell development from HEB f/f, Vav-icre (HEB cKO), and Id3 germline-deficient mice. HEB cKO mice showed defects in the gdT17 program at an early stage, and failed to properly upregulate expression of Id3 along with other genes downstream of TCR signaling. Id3KO mice showed a later defect in maturation. The results together indicate HEB and Id3 act sequentially during gdT17 development. The authors further showed that HEB and TCR signaling synergize to upregulate Id3 expression in the Scid-adh DN3-like T cell line. Analysis of previously published Chi-seq data revealed binding of HEB (and Egr2) at overlapping regulatory regions near Id3 in DN3 cells.

      The study provides insight into mechanisms by which HEB and Id3 act to mediate gdT17 specification and maturation. The work is well performed and clearly presented. We only have minor comments.

    2. Reviewer #2 (Public review):

      Summary:

      The manuscript by Selvaratnam et al. defines how the transcription factor HEB integrates with TCR signaling to regulate Id3 expression in the context of gdT17 maturation in the fetal thymus. Using conditional HEB ablation driven by Vav Cre, flow cytometry, scRNA-seq, and reanalysis of ChIP-seq data the authors, provide evidence for a sequential model in which HEB and TCR-induced Egr2 cooperatively upregulate Id3, enabling gdT17 maturation and limiting diversion to the ab lineages. The work provides an important mechanistic insight into how the E/ID-protein axis coordinates gd T cell specification and effector maturation.

      Strengths include:

      (1) The proposed model that HEB primes, TCR induces, and Id3 stabilizes gdT17 cells in embryonal development is elegant and consistent with the findings.

      (2) The choice of animal models and the study of a precise developmental window.

      (3) The cross-validation of flow, scRNA-seq, and ChIP-seq reanalyses strengthens the conclusions.

      (4) The study clarifies the dual role of Id3, first as an HEB-dependent maturation factor for gdT17 cells, and as a suppressor of diversion to the ab lineages.

      Weaknesses:

      (1) The ChIP-seq reanalysis indicates overlapping HEB, E2A, and Egr2 peaks ~60 kb upstream of Id3. Given that the Egr2 data are not generated using the same thymocyte subsets, some form of validation should be considered for the co-binding of HEB and Egr2, potentially ChIP-qPCR in sorted gdT17 progenitors.

      (2) E2A expression is not affected in HEB-deficient cells, raising the question of partial compensation, a point that should be specifically discussed.

      (3) All experiments are done at E18, when fetal gdT17 development predominates. The discussion could address whether these mechanisms extend to neonatal or adult gdT17 subsets.

    3. Reviewer #3 (Public review):

      Summary:

      The authors of this manuscript have addressed a key concept in T cell development: how early thymus gd T cell subsets are specified and the elements that govern gd T17 versus other gd T cell subsets or ab T cell subsets are specified. They show that the transcriptional regulator HEB/Tcf12 plays a critical role in specifying the gd T17 lineage and, intriguingly, that it upregulates the inhibitor Id3, which is later required for further gd T17 maturation.

      Strengths:

      The conclusions drawn by the authors are amply supported by a detailed analysis of various stages of T cell maturation in WT and KO mouse strains at the single cell level, both phenotypically, by flow cytometry for various diagnostic surface markers, and transcriptionally, by single cell sequencing. Their conclusions are balanced and well supported by the data and citations of previous literature.

      Weaknesses:

      I actually found this work to be quite comprehensive. I have a few suggestions for additional analyses the authors could explore that are unrelated to the predominant conclusions of the manuscript, but I failed to find major flaws in the current work.

      I note that HEB is expressed in many hematopoietic lineages from the earliest progenitors and throughout T cell development. It is also noteworthy that abortive gamma and delta TCR rearrangements have been observed in early NK cells and ILCs, suggesting that, particularly in early thymic development, specification of these lineages may have lower fidelity. It might prove interesting to see whether their single-cell sequencing or flow data reveal changes in the frequency of these other T-cell-related lineages. Is it possible that HEB is playing a role not only in the fidelity of gdT17 cell specification, but also perhaps in the separation of T cells from NK cells and ILCs or the frequency of DN1, DN2, and DN3 cells? Perhaps their single-cell sequencing data or flow analyses could examine the frequency of these cells? That minor caveat aside, I find this to be an extremely exciting body of work.

    1. Reviewer #1 (Public review):

      Summary:

      Drosophila larval type II neuroblasts generate diverse types of neurons by sequentially expressing different temporal identity genes during development. Previous studies have shown that the transition from early temporal identity genes (such as Chinmo and Imp) to late temporal identity genes (such as Syp and Broad) depends on the activation of the expression of EcR by Seven-up (Svp) and progression through the G1/S transition of the cell cycle. In this study, Chaya and Syed examined whether the expression of Syp and EcR is regulated by cell cycle and cytokinesis by knocking down CDK1 or Pav, respectively, throughout development or at specific developmental stages. They find that knocking down CDK1 or Pav either in all type II neuroblasts throughout development or in single-type neuroblast clones after larval hatching consistently leads to failure to activate late temporal identity genes Syp and EcR. To determine whether the failure of the activation of Syp and EcR is due to impaired Svp expression, they also examined Svp expression using a Svp-lacZ reporter line. They find that Svp is expressed normally in CDK1 RNAi neuroblasts. Further, knocking down CDK1 or Pav after Svp activation still leads to loss of Syp and EcR expression. Finally, they also extended their analysis to type I neuroblasts. They find that knocking down CDK1 or Pav, either at 0 hours or at 42 hours after larval hatching, also results in loss of Syp and EcR expression in type I neuroblasts. Based on these findings, the authors conclude that cycle and cytokinesis are required for the transition from early to late temporal identity genes in both types of neuroblasts. These findings add mechanistic details to our understanding of the temporal patterning of Drosophila larval neuroblasts.

      Strengths:

      The data presented in the paper are solid and largely support their conclusion. Images are of high quality. The manuscript is well-written and clear.

      Weaknesses:

      The quantifications of the expression of temporal identity genes and the interpretation of some of the data could be more rigorous.

      (1) Expression of temporal identity genes may not be just positive or negative. Therefore, it would be more rigorous to quantify the expression of Imp, Syp, and EcR based on the staining intensity rather than simply counting the number of neuroblasts that are positive for these genes, which can be very subjective. Or the authors should define clearly what qualifies as "positive" (e.g., a staining intensity at least 2x background).

      (2) The finding that inhibiting cytokinesis without affecting nuclear divisions by knocking down Pav leads to the loss of expression of Syp and EcR does not support their conclusion that nuclear division is also essential for the early-late gene expression switch in type II NSCs (at the bottom of the left column on page 5). No experiments were done to specifically block the nuclear division in this study. This conclusion should be revised.

      (3) Knocking down CDK1 in single random neuroblast clones does not make the CDK1 knockdown neuroblast develop in the same environment (except still in the same brain) as wild-type neuroblast lineages. It does not help address the concern whether "type 2 NSCS with cell cycle arrest failed to undergo normal temporal progression is indirectly due to a lack of feedback signaling from their progeny", as discussed (from the bottom of the right column on page 9 to the top of the left column on page 10). The CDK1 knockdown neuroblasts do not divide to produce progeny and thus do not receive a feedback signal from their progeny as wild-type neuroblasts do. Therefore, it cannot be ruled out that the loss of Syp and EcR expression in CDK1 knockdown neuroblasts is due to the lack of the feedback signal from their progeny. This part of the discussion needs to be clarified.

      (4) In Figure 2I, there is a clear EcR staining signal in the clone, which contradicts the quantification data in Figure 2J that EcR is absent in Pav RNAi neuroblasts. The authors should verify that the image and quantification data are consistent and correct.

    2. Reviewer #2 (Public review):

      Summary:

      Neural stem cells produce a wide variety of neurons during development. The regulatory mechanisms of neural diversity are based on the spatial and temporal patterning of neural stem cells. Although the molecular basis of spatial patterning is well-understood, the temporal patterning mechanism remains unclear. In this manuscript, the authors focused on the roles of cell cycle progression and cytokinesis in temporal patterning and found that both are involved in this process.

      Strengths:

      They conducted RNAi-mediated disruption on cell cycle progression and cytokinesis. As they expected, both disruptions affected temporal patterning in NSCs.

      Weaknesses:

      Although the authors showed clear results, they needed to provide additional data to support their conclusion sufficiently.

      For example, they need to identify type II NSCs using molecular markers (Ase/Dpn).

      The authors are encouraged to provide a more detailed explanation of each experiment. The current version of the manuscript is difficult for non-expert readers to understand.

    3. Reviewer #3 (Public review):

      Summary:

      The manuscript by Chaya and Syed focuses on understanding the link between cell cycle and temporal patterning in central brain type II neural stem cells (NSCs). To investigate this, the authors perturb the progression of the cell cycle by delaying the entry into M phase and preventing cytokinesis. Their results convincingly show that temporal factor expression requires progression of the cell cycle in both Type 1 and Type 2 NSCs in the Drosophila central brain. Overall, this study establishes an important link between the two timing mechanisms of neurogenesis.

      Strengths:

      The authors provide solid experimental evidence for the coupling of cell cycle and temporal factor progression in Type 2 NSCs. The quantified phenotype shows an all-or-none effect of cell cycle block on the emergence of subsequent temporal factors in the NSCs, strongly suggesting that both nuclear division and cytokinesis are required for temporal progression. The authors also extend this phenotype to Type 1 NSCs in the central brain, providing a generalizable characterization of the relationship between cell cycle and temporal patterning.

      Weaknesses:

      One major weakness of the study is that the authors do not explore the mechanistic relationship between the cell cycle and temporal factor expression. Although their results are quite convincing, they do not provide an explanation as to why Cdk1 depletion affects Syp and EcR expression but not the onset of svp. This result suggests that at least a part of the temporal cascade in NSCs is cell-cycle independent, which isn't addressed or sufficiently discussed.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript by Hensley and Yildez studies the mechanical behavior of kinesin under conditions where the z-component of the applied force is minimized. This is accomplished by tethering the kinesin to the trapped bead with a long double-stranded DNA segment as opposed to directly binding the kinesin to the large bead. It complements several recent studies that have used different approaches to looking at the mechanical properties of kinesin under low z-force loads. The study shows that much of the mechanical information gleaned from the traditional "one bead" with attached kinesin approach was probably profoundly influenced by the direction of the applied force. The authors speculate that when moving small vesicle cargos (particularly membrane-bound ones), the direction of resisting force on the motor has much less of a z-component than might be experienced if the motor were moving large organelles like mitochondria.

      Strengths:

      The approach is sound and provides an alternative method to examine the mechanics of kinesin under conditions where the z-component of the force is lessened. The data show that kinesin has very different mechanical properties compared to those extensively reported using the "single-bead" assay, where the molecule is directly coupled to a large bead, which is then trapped.

      Weaknesses:

      My primary concern is that in some of the studies, there are not enough data points to be totally convincing. This is particularly apparent in the low z-force condition of Figure 1C and in Figure 2B.

      The substoichiometric binding of kinesins to multivalent DNA complicates the interpretation of the data.

    2. Reviewer #2 (Public review):

      This short report by Hensley and Yildiz explores kinesin-1 motility under more physiological load geometries than previous studies. Large Z-direction (or radial) forces are a consequence of certain optical trap experimental geometries, and likely do not occur in the cell. Use of a long DNA tether between the motor and the bead can alleviate Z-component forces. The authors perform three experiments. In the first, they use two assay geometries - one with kinesin attached directly to a bead and the other with kinesin attached via a 2 kbp DNA tether - with a constant-position trap to determine that reducing the Z component of force leads to a difference in stall time but not stall force. In the second, they use the same two assay geometries with a constant-force trap to replicate the asymmetric slip bond of kinesin-1; reducing the Z component of force leads to a small but uniform change in the run lengths and detachment rates under hindering forces but not assisting forces. In the third, they connect two or three kinesin molecules to each DNA, and measure a stronger scaling in stall force and time when the Z component of force is reduced. They conclude that kinesin-1 is a more robust motor than previously envisaged, where much of its weakness came from the application of axial force. If forces are instead along the direction of transport, kinesin can hold on longer and work well in teams. The experiments are rigorous, and the data quality is very high. There is little to critique or discuss. The improved dataset will be useful for modeling and understanding multi-motor transport. The conclusions complement other recent works that used different approaches to low-Z component kinesin force spectroscopy, and provide strong value to the kinesin field.

      Major comments:

      (1) Kinesin-1 is covalently bound to a DNA oligo, which then attaches to the DNA chassis by hybridization. This oligo is 21 nt with a relatively low GC%. At what force does this oligo unhybridize? Can the authors verify that their stall force measurements are not cut short by the oligo detaching from the chassis?

      (2) Figure 1, a justification or explanation should be provided for why events lower than 1.5 pN were excluded. It appears arbitrary.

      (3) Figure 2b, is the difference in velocity statistically significant?

      (4) The number of measurements for each experimental datapoint in the corresponding figure caption should be provided. SEM is used without, but N is not reported in the caption.

    3. Reviewer #3 (Public review):

      Summary:

      Hensley et al. present an important study into the force-detachment behaviour of kinesin-1, the most well-characterised motor protein. One of the key techniques used to characterise kinesins is in vitro optical trapping of purified proteins, which has provided remarkable insights into the biochemical and mechanical mechanisms of motor proteins under single- and multi-motor conditions. This study presents an adapted (from Urbanska et al.) methodological approach of DNA-tethering kinesin-1 to a bead, both under single- and multi-motor conditions, which is then trapped to characterise the run length, processivity, and stall behaviour under unloaded and loaded (both assisting and hindering) conditions. The new approach reduces the vertical or z-force and thus provides insights into the role of horizontal or x-forces acting on the motor. Based on their method of imposing dominant horizontal forces on the motor and their data, they conclude that kinesin-1 exhibits a higher asymmetry in its force-detachment kinetics, is less slippery, and exhibits slip-bond behaviour, particularly under hindering loads. Under assisting loads, similar slip-bond kinetics ensue, but detachment from the microtubule is far more sensitive. To demonstrate the implications of their method and data, they conduct a multi-motor assay and show that multiple kinesin-1 motors can generate significantly higher forces, almost proportional to motor number. Overall, this is important work, and the data are compelling.

      Strengths:

      The method of DNA-tethered motor trapping is effective in reducing vertical forces and can be easily optimised for other motors and protein characterisation. The major strength of the paper is characterising kinesin-1 under low z-forces, which is likely to reflect the physiological scenario. They report that kinesin-1 is more robust and less prone to premature detachment. The motors exhibit higher stall rates and times. Under hindering and assisting loads, kinesin-1 detachment is more asymmetric and sensitive, and with low z-force shows that slip-behaviour kinetics prevail. Another achievement of this paper is the demonstration of the multi-motor kinesin-1 assay using their low-z force method, showing that multiple kinesin-1 motors are capable of generating higher forces (up to 15 pN, and nearly proportional to motor number), thus opening an avenue to study multiple motor coordination.

      Weaknesses:

      The method of DNA-tethered motor trapping to enable low z-force is not entirely novel, but adapted from Urbanska (2021) for use in conventional optical trapping laboratories without reliance on microfluidics. However, I appreciate that they have fully established it here to share with the community. The authors could strengthen their methods section by being transparent about protein weight, protein labelling, and DNA ladders shown in the supplementary information. What organism is the protein from? Presumably human, but this should be specified in the methods. While the figures show beautiful data and exemplary traces, the total number of molecules analysed or events is not consistently reported. Overall, certain methodological details should be made sufficient for reproducibility.

      The major limitation the study presents is overarching generalisability, starting with the title. I recommend that the title be specific to kinesin-1. The study uses two constructs: a truncated K560 for conventional high-force assays, and full-length Kif5b for the low z-force method. However, for the multi-motor assay, the authors use K560 with the rationale of preventing autoinhibition due to binding with DNA, but that would also have limited characterisation in the single-molecule assay. Overall, the data generated are clear, high-quality, and exciting in the low z-force conditions. But why have they not compared or validated their findings with the truncated construct K560? This is especially important in the force-feedback experiments and in comparison with Andreasson et al. and Carter et al., who use Drosophila kinesin-1. Could kinesin-1 across organisms exhibit different force-detachment kinetics? It is quite possible. Similarly, the authors test backward slipping of Kif5b and K560 and measure dwell times in multi-motor assays. Why not detail the backward slippage kinetics of Kif5b and any step-size impact under low z-forces? For instance, with the traces they already have, the authors could determine slip times, distances, and frequency in horizontal force experiments. Overall, the manuscript could be strengthened by analysing both constructs more fully.

      Appraisal and impact:

      This study contributes to important and debated evidence on kinesin-1 force-detachment kinetics. The authors conclude that kinesin-1 exhibits a slip-bond interaction with the microtubule under increasing forces, while other recent studies (Noell et al. and Kuo et al.), which also use low z-force setups, conclude catch-bond behaviour under hindering loads. I find the results not fully aligned with their interpretation. The first comparison of low z-forces in their setup with Noell et al. (2024), based on stall times, does not hold, because it is an apples-to-oranges comparison. Their data show a stall time constant of 2.52 s, which is comparable to the 3 s reported by Noell et al., but the comparison is made with a weighted average of 1.49 s. The authors do report that detachment rates are lower in low z-force conditions under unloaded scenarios. So, to completely rule out catch-bond-like behaviour is unfair. That said, their data quality is good and does show that higher hindering forces lead to higher detachment rates. However, on closer inspection, the range of 0-5 pN shows either a decrease or no change in detachment rate, which suggests that under a hindering force threshold, catch-bond-like or ideal-bond-like behaviour is possible, followed by slip-bond behaviour, which is amazing resolution. Under assisting loads, the slip-bond character is consistent, as expected. Overall, the study contributes to an important discussion in the biophysical community and is needed, but requires cautious framing, particularly without evidence of motor trapping in a high microtubule-affinity state rather than genuine bond strengthening.

    1. Joint Public Review:

      Summary:

      The Major Histocompatibility Complex (MHC) region is a collection of numerous genes involved in both innate and adaptive immunity. MHC genes are famed for their role in rapid evolution and extensive polymorphism in a variety of vertebrates. This paper presents a summary of gene-level gain and loss of orthologs and paralogs within MHC across the diversity of primates, using publicly available data.

      Strengths:

      This paper provides a strong case that MHC genes are rapidly gained (by paralog duplication) and lost over millions of years of macroevolution. The authors are able to identify MHC loci by homology across species, and from this infer gene duplications and losses using phylogenetic analyses. There is a remarkable amount of genic turnover, summarized in Figure 6 and Figure 7, either of which might be a future textbook figure of immune gene family evolution. The authors draw on state-of-the-art phylogenetic methods, and their inferences are robust.

      Editorial note:

      The authors have responded to the previous reviews and the Assessment was updated without involving the reviewers again.

    1. Reviewer #1 (Public review):

      Summary:

      This study investigated spatial representations in deep feedforward neural network models (DDNs) that were often used in solving vision tasks. The authors create a three-dimensional virtual environment, and let a simulated agent randomly forage in a smaller two-dimensional square area. The agent "sees" images of the room within its field of view from different locations and heading directions. These images were processed by DDNs. Analyzing model neurons in DDNs, they found response properties similar to those of place cells, border cells and head direction cells in various layers of deep nets. A linear readout of network activity can decode key spatial variables. In addition, after removing neurons with strong place/border/head direction selectivity, one can still decode these spatial variables from remaining neurons in the DNNs. Based on these results, the authors argue that that the notion of functional cell types in spatial cognition is misleading.

      Comments on the revision:

      In the revision, the authors proposed that their model should be interpreted as a null model, rather than the actual model of the spatial navigation system in the brain. In the revision, the authors also argued that the criterion used in the place cell literature was arbitrary. However, the strength of the present work still depends on how well the null model can explain the experimental findings. It seems that currently the null model failed to explain important aspects of the response properties of different functional cell types in the hippocampus.

      Strengths:

      This paper contains interesting and original ideas, and I enjoy reading it. Most previous studies (e.g., Banino, Nature, 2018; Cueva & Wei, ICLR, 2018; Whittington et al, Cell, 2020) using deep network models to investigate spatial cognition mainly relied on velocity/head rotation inputs, rather than vision (but see Franzius, Sprekeler, Wiskott, PLoS Computational Biology, 2007). Here, the authors find that, under certain settings, visual inputs alone may contain enough information about the agent's location, head direction and distance to the boundary, and such information can be extracted by DNNs. This is an interesting observation from these models.

      Weaknesses:

      While the findings reported here are interesting, it is unclear whether they are the consequence of the specific model setting and how well they would generalize. Furthermore, I feel the results are over-interpreted. There are major gaps between the results actually shown and the claim about the "superfluousness of cell types in spatial cognition". Evidence directly supporting the overall conclusion seems to be weak at the moment.

      Comments on the revision:

      The authors showed that the results generalized to different types of networks. The results were generally robust to different types of deep network architectures. This partially addressed my concern. It remains unclear whether the findings would generalize across different types of environment. Regarding this point, the authors argued that the way how they constructed the environment was consistent with the typical experimental setting in studying spatial navigation system in rodents. After the revision, it remains unclear what the implications of the work is for the spatial navigation system in the brain, given that the null model neurons failed to reproduce certain key properties of place cells (although I agreed with the authors that examining such null models are useful and would encourage one to rethink about the approach used to study these neural systems).

      Major concerns:

      (1) The authors reported that, in their model setting, most neurons throughout the different layers of CNNs show strong spatial selectivity. This is interesting and perhaps also surprising. It would be useful to test/assess this prediction directly based on existing experimental results. It is possible that the particular 2-d virtual environment used is special. The results will be strengthened if similar results hold for other testing environments.

      In particular, examining the pictures shown in Fig. 1A, it seems that local walls of the 'box' contain strong oriented features that are distinct across different views. Perhaps the response of oriented visual filters can leverage these features to uniquely determine the spatial variable. This is concerning because this is is a very specific setting that is unlikely to generalize.

      [Updated after revision]: This concern is partially addressed in the revision. The authors argued that the way how they constructed the environment is consistent with the typical experimental setting in studying spatial navigation system in rodents.

      (2) Previous experimental results suggest that various function cell types discovered in rodent navigation circuits persist in dark environments. If we take the modeling framework presented in this paper literally, the prediction would be that place cells/head direction cells should go away in darkness. This implies that key aspects of functional cell types in the spatial cognition are missing in the current modeling framework. This limitation needs to be addressed or explicitly discussed.

      [Updated after revision]: The authors proposed that their model should be treated as a null model, instead of a candidate model for the brain's spatial navigation system. This clarification helps to better position this work. I would like to thank the authors for making this point explicit. However, this doesn't fully address the issues raised. The significance of the reported results still depend on how well the null model can explain the experimental findings. If the null model failed to explain important aspects of the firing properties of functional cell types, that would speak in favor of the usefulness of the concept of functional cell types.

      (3) Place cells/border cell/ head direction cells are mostly studied in the rodent's brain. For rodents, it is not clear whether standard DNNs would be good models of their visual systems. It is likely that rodent visual system would not be as powerful in processing visual inputs as the DNNs used in this study.

      [Updated after revision]: The authors didn't specifically address this. But clarifying their work as a null model partially addresses this concern.

      (4) The overall claim that the functional cell types defined in spatial cognition are superfluous seems to be too strong based on the results reported here. The paper only studied a particular class of models, and arguably, the properties of these models have a major gap to those of real brains. Even though that, in the DNN models simulated in this particular virtual environment, (i) most model neurons have strong spatial selectivity; (ii) removing model neurons with the strongest spatial selectivity still retain substantial spatial information, why is this relevant to the brain? The neural circuits may operate in a very different regime. Perhaps a more reasonable interpretation of the results would be: these results raise the possibility that those strongly selective neurons observed in the brain may not be essential for encoding certain features, as something like this is observed in certain models. It is difficult to draw definitive conclusions about the brain based on the results reported.

      [Updated after revision]: The authors clarified that their model should be interpreted as a null model. This partially addresses the concern raised here. However, some concerns remain- it remains unclear what new insights the current work offers in terms of understanding the spatial navigation systems. It seems that this work concerns more about the approach to studying the neural systems. Perhaps this point could be made even more clear.

    2. Reviewer #3 (Public review):

      Summary:

      In this paper, the authors demonstrate the inevitability of the emergence of spatial information in sufficiently complex systems, even those that are only trained on object recognition (i.e. not a "spatial" system). As such, they present an important null hypothesis that should be taken into consideration for experimental design and data analysis of spatial tuning and its relevance for behavior.

      Strengths:

      The paper's strengths include the use of a large multi-layer network trained in a detailed visual environment. This illustrates an important message for the field: that spatial tuning can be a result of sensory processing. While this is a historically recognized and often-studied fact in experimental neuroscience, it is made more concrete with the use of a complex sensory network. Indeed, the manuscript is a cautionary tale for experimentalists and computational researchers alike against blindly applying and interpreting metrics without adequate controls. The addition of the deep network, i.e. the argument that sufficient processing increases the likelihood of such a confound, is a novel and important contribution.

      Weaknesses:

      However, the work has a number of significant weaknesses. Most notably: the spatial tuning that emerges is precisely that we would expect from visually-tuned neurons, and they do not engage with literature that controls for these confounds or compare the quality or degree of spatial tuning with neural data; the ability to linearly decode position from a large number of units is not a strong test of spatial cognition; and the authors make strong but unjustified claims as to the implications of their results in opposition to, as opposed to contributing to, work being done in the field.

      The first weakness is that the degree and quality of spatial tuning that emerges in the network is not analyzed to the standards of evidence that have been used in well-controlled studies of spatial tuning in the brain. Specifically, the authors identify place cells, head direction cells, and border cells in their network, and their conjunctive combinations. However, these forms of tuning are the most easily confounded by visual responses, and it's unclear if their results will extend to observed forms of spatial tuning that are not.

      For example, consider the head direction cells in Figure 3C. In addition to increased activity in some directions, these cells also have a high degree of spatial nonuniformity, suggesting they are responding to specific visual features of the environment. In contrast, the majority of HD cells in the brain are only very weakly spatially selective, if at all, once an animal's spatial occupancy is accounted for (Taube et al 1990, JNeurosci). While the preferred orientation of these cells are anchored to prominent visual cues, when they rotate with changing visual cues the entire head direction system rotates together (cells' relative orientation relationships are maintained, including those that encode directions facing AWAY from the moved cue), and thus these responses cannot be simply independent sensory-tuned cells responding to the sensory change) (Taube et al 1990 JNeurosci, Zugaro et al 2003 JNeurosci, Ajbi et al 2023).

      As another example, the joint selectivity of detected border cells with head direction in Figure 3D suggests that they are "view of a wall from a specific angle" cells. In contrast, experimental work on border cells in the brain has demonstrated that these are robust to changes in the sensory input from the wall (e.g. van Wijngaarden et al 2020), or that many of them are are not directionally selective (Solstad et al 2008).

      The most convincing evidence of "spurious" spatial tuning would be the emergence of HD-independent place cells in the network, however, these cells are a very small minority (in contrast to hippocampal data, Thompson and Best 1984 JNeurosci, Rich et al 2014 Science), the examples provided in Figure 3 are significantly more weakly tuned than those observed in the brain.

      Indeed, the vast majority of tuned cells in the network are conjunctively selective for HD (Figure 3A). While this conjunctive tuning has been reported, many units in the hippocampus/entorhinal system are not strongly hd selective (Muller et al 1994 JNeurosci, Sangoli et al 2006 Science, Carpenter et al 2023 bioRxiv). Further, many studies have been done to test and understand the nature of sensory influence (e.g. Acharya et al 2016 Cell), and they tend to have a complex relationship with a variety of sensory cues, which cannot readily be explained by straightforward sensory processing (rev: Poucet et al 2000 Rev Neurosci, Plitt and Giocomo 2021 Nat Neuro). E.g. while some place cells are sometimes reported to be directionally selective, this directional selectivity is dependent on behavioral context (Markus et al 1995, JNeurosci), and emerges over time with familiarity to the environment (Navratiloua et al 2012 Front. Neural Circuits). Thus, the question is not whether spatially tuned cells are influenced by sensory information, but whether feed-forward sensory processing alone is sufficient to account for their observed turning properties and responses to sensory manipulations.

      These issues indicate a more significant underlying issue of scientific methodology relating to the interpretation of their result and its impact on neuroscientific research. Specifically, in order to make strong claims about experimental data, it is not enough to show that a control (i.e. a null hypothesis) exists, one needs to demonstrate that experimental observations are quantitatively no better than that control.

      Where the authors state that "In summary, complex networks that are not spatial systems, coupled with environmental input, appear sufficient to decode spatial information." what they have really shown is that it is possible to decode some degree of spatial information. This is a null hypothesis (that observations of spatial tuning do not reflect a "spatial system"), and the comparison must be made to experimental data to test if the so-called "spatial" networks in the brain have more cells with more reliable spatial info than a complex-visual control.

      Further, the authors state that "Consistent with our view, we found no clear relationship between cell type distribution and spatial information in each layer. This raises the possibility that "spatial cells" do not play a pivotal role in spatial tasks as is broadly assumed." Indeed, this would raise such a possibility, if 1) the observations of their network were indeed quantitatively similar to the brain, and 2) the presence of these cells in the brain were the only evidence for their role in spatial tasks. However, 1) the authors have not shown this result in neural data, they've only noticed it in a network and mentioned the POSSIBILITY of a similar thing in the brain, and 2) the "assumption" of the role of spatially tuned cells in spatial tasks is not just from the observation of a few spatially tuned cells. But from many other experiments including causal manipulations (e.g. Robinson et al 2020 Cell, DeLauilleon et al 2015 Nat Neuro), which the authors conveniently ignore. Thus, I do not find their argument, as strongly stated as it is, to be well-supported.

      An additional weakness is that linear decoding of position is not a measure of spatial cognition. The ability to decode position from a large number of weakly tuned cells is not surprising. However, based on this ability to decode, the authors claim that "'spatial' cells do not play a privileged role in spatial cognition". To justify this claim, the authors would need to use the network to perform e.g. spatial navigation tasks, then investigate the networks' ability to perform these tasks when tuned cells were lesioned.

      Finally, I find a major weakness of the paper to be the framing of the results in opposition to, as opposed to contributing to, the study of spatially tuned cells. For example, the authors state that "If a perception system devoid of a spatial component demonstrates classically spatially-tuned unit representations, such as place, head-direction, and border cells, can "spatial cells" truly be regarded as 'spatial'?" Setting aside the issue of whether the perception system in question does indeed demonstrate spatially-tuned unit representations comparable to those in the brain, I ask "Why not?" This seems to be a semantic game of reading more into a name than is necessarily there. The names (place cells, grid cells, border cells, etc) describe an observation (that cells are observed to fire in certain areas of an animal's environment). They need not be a mechanistic claim (that space "causes" these cells to fire) or even, necessarily, a normative one (these cells are "for" spatial computation). This is evidenced by the fact that even within e.g. the place cell community, there is debate as to these cells' mechanisms and function (eg memory, navigation, etc), or if they can even be said to only serve a single one function. However, they are still referred to as place cells, not as a statement of their function but as a history-dependent label that refers to their observed correlates with experimental variables. Thus, the observation that spatially tuned cells are "inevitable derivatives of any complex system" is itself an interesting finding which contributes to, rather than contradicts, the study of these cells. It seems that the authors have a specific definition in mind when they say that a cell is "truly" "spatial" or that a biological or artificial neural network is a "spatial system", but this definition is not stated, and it is not clear that the terminology used in the field presupposes their definition.

      In sum, the authors have demonstrated the existence of a control/null hypothesis for observations of spatially-tuned cells. However, 1) It is not enough to show that a control (null hypothesis) exists, one needs to test if experimental observations are no better than control, in order to make strong claims about experimental data, 2) the authors do not acknowledge the work that has been done in many cases specifically to control for this null hypothesis in experimental work or to test the sensory influences on these cells, and 3) the authors do not rigorously test the degree or source of spatial tuning of their units.

      Comments on revisions:

      While I'm happy to admit that standards of spatial tuning are not unified or consistent across the field, I do not believe the authors have addressed my primary concern: they have pointed out a null model, and then have constructed a strong opinion around that null model without actually testing if it's sufficient to account for neural data. I've slightly modified my review to that effect.

      I do think it would be good for the authors to state in the manuscript what they mean when they say that a cell is "truly" "spatial" or that a biological or artificial neural network is a "spatial system". This is implied throughout, but I was unable to find what would distinguish a "truly" spatial system from a "superfluous" one.

    1. Reviewer #1 (Public review):

      Wang et al. studied an old, still unresolved problem: Why are reaching movements often biased? Using data from a set of new experiments and from earlier studies, they identified how the bias in reach direction varies with movement direction and movement extent, and how this depends on factors such as the hand used, the presence of visual feedback, the size and location of the workspace, the visibility of the start position and implicit sensorimotor adaptation. They then examined whether a target bias, a proprioceptive bias, a bias in the transformation from visual to proprioceptive coordinates and/or biomechanical factors could explain the observed patterns of biases. The authors conclude that biases are best explained by a combination of transformation and target biases.

      A strength of this study is that it used a wide range of experimental conditions with also a high resolution of movement directions and large numbers of participants, which produced a much more complete picture of the factors determining movement biases than previous studies did. The study used an original, powerful and elegant method to distinguish between the various possible origins of motor bias, based on the number of peaks in the motor bias plotted as a function of movement direction. The biomechanical explanation of motor biases could not be tested in this way, but this explanation was excluded in a different way using data on implicit sensorimotor adaptation. This was also an elegant method as it allowed the authors to test biomechanical explanations without the need to commit to a certain biomechanical cost function.

      Overall, the authors have done a good job mapping out reaching biases in a wide range of conditions, revealing new patterns in one of the most basic tasks, and the evidence for the proposed origins is convincing. The study will likely have substantial impact on the field, as the approach taken is easily applicable to other experimental conditions. As such, the study can spark future research on the origin of reaching biases.

    2. Reviewer #2 (Public review):

      Summary:

      This work examines an important question in the planning and control of reaching movements - where do biases in our reaching movements arise and what might this tell us about the planning process. They compare several different computational models to explain the results from a range of experiments including those within the literature. Overall, they highlight that motor biases are primarily caused errors in the transformation between eye and hand reference frames. One strength of the paper is the large numbers of participants studied across many experiments. However, one weakness is that most of the experiments follow a very similar planar reaching design - with slicing movements through targets rather than stopping within a target. This is partially addressed with Exp 4. This work provides a valuable insight into the biases that govern reaching movements. While the evidence is solid for planar reaching movements, further support in the manner of 3D reaching movements would help strengthen the findings.

      Strengths:

      The work uses a large number of participants both with studies in the laboratory which can be controlled well and a huge number of participants via online studies. In addition, they use a large number of reaching directions allowing careful comparison across models. Together these allow a clear comparison between models which is much stronger than would usually be performed.

    3. Reviewer #3 (Public review):

      This study makes excellent use of a uniquely large dataset of reaching movements collected over several decades to evaluate the origins of systematic motor biases. The analyses convincingly demonstrate that these biases are not explained by errors in sensed hand position or by biomechanical constraints, but instead arise from a misalignment between eye-centric and body-centric representations of position. By testing multiple computational models across diverse contexts-including different effectors, visible versus occluded start positions-the authors provide strong evidence for their transformation model. My earlier concerns have been addressed, and I find the work to be a significant and timely contribution that will be of broad interest to researchers studying visuomotor control, perception, and sensorimotor integration.

    1. Reviewer #1 (Public review):

      Summary

      The revised manuscript by Liff et al. represents a substantial improvement over the original version. The authors have carefully addressed the key concerns raised in the initial review, most notably by expanding their behavioral analyses and incorporating additional experiments that strengthen the mechanistic links between olfactory sensory neuron (OSN) changes and behavioral outcomes. Their integration of unsupervised Keypoint-MoSeq analysis, extended behavioral metrics (distance travelled, mean speed, freezing time), and the inclusion of behavioral results in the main figures significantly enhance the clarity and impact of the work. The revised discussion also better contextualizes the findings in relation to previous literature, including the discrepancies with Dias & Ressler (2014), and provides more transparency regarding experimental choices.

      Overall Evaluation

      The revised version has substantially strengthened the manuscript. By addressing the initial concerns with new data, improved analyses, and clearer discussion, the authors provide a much more compelling and rigorous account of how odor-shock conditioning biases OSN fate and influences offspring. Although some questions remain open for future exploration, the present study now makes a clear, well-supported contribution to understanding intergenerational sensory inheritance. I commend the authors for their thoughtful and thorough revisions.

      Strengths

      Expanded behavioral analysis: The addition of multiple quantitative metrics, inclusion of freezing behavior, and use of Keypoint-MoSeq provide a much richer characterization of behavioral phenotypes in both F0 and F1 generations. These data convincingly demonstrate nuanced odor-specific effects that were not captured in the earlier version.

      Improved presentation: Behavioral data, previously relegated to supplementary materials, are now appropriately included in the main figures, supported by supplementary statistical tables. This makes the results more transparent and accessible.

      Potential Limitations

      Some behavioral effects in the F1 generation remain subtle; the discussion addresses this, but a cautious interpretation of behavioral inheritance would be appropriate.

      The MoSeq analysis is a valuable addition, though clarifying what "syllables" represent and how they relate to traditional behavioral measures could aid reader interpretation.

    2. Reviewer #2 (Public review):

      Summary:

      The authors examined inherited changes to the olfactory epithelium produced by odor-shock pairings. The manuscript demonstrates that odor fear conditioning biases olfactory bulb neurogenesis toward more production of the olfactory sensory neurons engaged by the odor-shock paring. Further the manuscript reveals that this bias remains in first generation male and female progeny produced by trained parents. Surprisingly, there was a disconnect between increased morphology of the olfactory epithelium for the conditioned odor and the response to odor presentation. The expectation based on previous literature and the morphological results were that F1 progeny would also show an aversion to the odor stimulus. However, the authors found that F1 progeny were not more sensitive to the odor compared to littermate controls

      Strengths:

      The manuscript includes conceptual innovation and some technical innovation. The results validate previous findings that were deemed controversial in the field, which is a major strength of the work. Moreover, these studies were conducted using a combination of genetically modified animals and state-of-the-art imaging techniques, highlighting the rigorous nature of the research. Lastly, the authors provide novel mechanistic details regarding the remodeling of the olfactory epithelium, demonstrating that biased neurogenesis, as opposed to changes in survival rates, account for the increase in odorant receptors after training.

      Weaknesses:

      The main weakness is the disconnect between the morphological changes reported and the lack of change in aversion to the odorant in F1 progeny. The authors also do not address the mechanisms underlying the inheritance of the phenotype, which may lie outside of the scope of the present study.

    3. Reviewer #3 (Public review):

      Liff et al. have made considerable effort to improve their manuscript. In their revised manuscript, the authors have substantiated their claims of intergenerationally inherited changes in the olfactory system in response to odor-dependent fear conditioning. Several new experiments and analyses now strengthen this study.

      I still find that the statement that the study provides "insight into the heritability of acquired phenotypes" is somewhat misleading. In their response to this initially raised point the authors correctly point out that their "results provide basic knowledge that will accelerate our ability to uncover the mechanisms driving heritable changes." That said, current "insights" are not mechanistic in nature.

    1. Reviewer #1 (Public review):

      Summary:

      The authors use longitudinal in vivo 1-photon calcium recordings in mouse prefrontal cortex throughout the learning of an odor-guided spatial memory task, with the goal of examining the development of task-related prefrontal representations over the course of learning in different task stages and during sleep sessions. They report replication of their previous results, Muysers et al. 2025, that task and representations in prefrontal cortex arise de novo after learning, comprising of goal selective cells that fire selectively for left or right goals during the spatial working memory component of the task, and generalized task phase selective cells that fire equivalently in the same place irrespective of goal, together comprising task-informative cells. The number of task-informative cells increases over learning, and covariance structure changes resulting in increased sequential activation in the learned condition, but with limited functional relevance to task representation. Finally, the authors report that similar to hippocampal trajectory replay, prefrontal sequences are replayed at reward locations.

      Strengths:

      The major strength of the study is the use of longitudinal recordings, allowing identification of task-related activity in the prefrontal cortex that emerges de novo after learning, and identification of sub-second sequences at reward wells.

      Comments on revisions:

      The authors have added additional analyses and clarifications that increase the strength of evidence, especially quantification of functional classes of cells using longitudinal calcium recordings in prefrontal cortex during learning of an odor cue guided task, and quantification of prefrontal sequences.

      There are a few remaining issues:

      (1) The manuscript quantifies changes over learning in prefrontal goal-selective cells (equated to "splitter" place cells in hippocampus) and task-phase selective cells (similar to non-splitter place cells that are not goal modulated). A subset of these task cells remain stable throughout learning, and are equated to schema representations in the study. In the memory literature, schemas are generally described as relational networks of abstract and generalized information, that enable adapting to novel context and inference by enabling retrieval of related information from previous contexts. The task-phase selective cells that stay stable throughout learning clearly will have a role in organizing task representations, but to this reviewer, denoting them as forming a schema is an unwarranted interpretation. By this definition, hippocampal non-splitter place cells that emerge early in learning and are stable over days would also form a schema. Therefore, schema notation cannot just be based on stability, it requires further evidence of abstraction such as cross-condition generalization.

      (2) The quantification of prefrontal replay sequences during reward is useful, but it is still unconvincing that the distinction between existence of sequences in the odor sampling phase and reward phase is not trivially expected based on prior literature. This is odor guided task, not a spatial exploration task with no cues, and it is very well-established (as noted in citations in the previous review) that during odor sampling, animals' will sniff in an exploratory stage, resulting in strong beta and respiratory rhythms in prefrontal cortex. Not having LFP recordings in this task does not preclude considering prior literature that clearly shows that odor sampling results in a unique internal state network state, when animals are retrieving the odor-associated goal, vastly different from a reward sampling phase. The authors argue that this is not trivial since they see some sequences during sampling, although they also argue the opposite in response to a question from Reviewer 2 about shuffling controls for sequences, that 'not' seeing these sequences in the sampling phase is an internal control. The bigger issue here is equating these sequences during sampling to replay/ preplay or reactivation sequences similar to the reward phase, since the prefrontal network dynamics are engaged in odor-driven retrieval of associated goals during sampling, as has been shown in previous studies.

    2. Reviewer #2 (Public review):

      Summary:

      The first part of the manuscript quantifies the proportion of goal-arm specific and task-phase specific cells during the learning and learned conditions and similar to their previously published Muysers et al., 2025 paper find that the task-phase coding cells (Muysers et al. call them path equivalent cells) increase in the learned condition. However, compared to the Muysers et al. 2025 paper, this work quantifies the proportion of cells that change coding type across learning and learned conditions. The second part of the paper reports firing sequences using a sequence similarity clustering-based method that the group developed previously and applied to hippocampal data in the past.

      Strengths:

      Identifying sequences by a clustering method in which sequence patterns of individual events are compared is an interesting idea.

      Weaknesses:

      Further controls are needed to validate the results.

      Comments on revisions:

      Further changes are needed to improve the description of the methods and the discussion needs to be extended to contrast the results with previously published results of the group. Some control figures would also be needed to quantitatively demonstrate, across the entire dataset, that sequence detection did not identify random events as sequences, even if the detection method was designed to exclude such sequences. For example, showing that sequences are not detected in randomised data with the current method would better convince readers of the method's validity.

      Although differences in the classification scheme relative to the Muysers et al. (2025) paper have been explained, the similarity (perhaps equivalence of results) is not sufficiently acknowledged - e.g., at the beginning of the discussion.

      Although the control of spurious sequences may have been built into the method, this is not sufficiently explained in the method. It is also not clear what kind of randomization was performed. Importantly, I do not see a quantification that shows that the detected sequences are significantly better than the sequence quality measure on randomized events. Or that randomized data do not lead to sequence clusters. Also, it is still not clear how the number of clusters was established. I understand that the previously published paper may have covered these questions; these should be explained here as well. Also, the sequence similarity description is still confusing in the method; please correct this sentence "Only the l neurons active in both sequences of a pair were taken into account. "

    3. Reviewer #3 (Public review):

      In the study the authors performed longitudinal 1P calcium imaging of mouse mPFC across 8 weeks during learning of an olfactory-guided task, including habituation, training, and sleep periods. The authors' goal was to determine how the mPFC representation of the task changed and what aspects of activity emerged between the learning and the learned conditions of the task. The task had 3 arms. Odor was sampled at the end of the middle arm (named the "Sample" period). The animal then needed to run to one of the two other arms (R or L) based on the odor. The whole period until they reached the end of one of the choice arms was the "Outward" period. The time at the reward end was the "Reward" period. They noted several changes from the learning condition to the learned condition:

      (1) They classified cells in a few ways. First each cell was classified as SI (spatially informative) if it had significantly more spatial information than shuffled activity, and ~50% of cells ended up being SI cells. Then among the SI cells they classified a cell as a TC (task cell) if it had statistically similar activity maps for R versus L arms, and a GC (goal arm cell) otherwise. Note that there are 4 kinds of these cells: outer arm TCs and GCs and middle arm TCs and GCs (with middle arm GCs essentially being like "splitter cells" since they are not similarly active in the middle arm for R versus L trials). There was an increase in TCs from the learning to the learned condition sessions. They also note the sources of these TCs (some came from GCs, others from non-SI cells).

      (2) They analyze activity sequences across cells. They extracted 500 ms duration bursts (defined as periods of activity > 0.5 standard deviations over what I assume is the mean, which is a permissive threshold encompassing a significant fraction of the activity in non-sleep, non-habituation periods). They first noted that the resulting "Burst rates were significantly larger during behavioral epochs than during sleep and during periods of habituation to the arena" and "Moreover, burst rates during correct trials were significantly lower than during error trials". For the sequence analysis they only considered bursts consisting of at least 5 active cells. A cell's activity within the burst was set to the center of mass calcium activity. Then they took all the sequences from all learned and learning sessions together and hierarchically clustered them based on the Spearman's rank correlation between the order of activity in each pair of sequences (among the cells active in both). The iterative hierarchical clustering process produces groups (clusters) of sequences such that there are multiple repeats of sequences within a cluster. Different sequences are expressed across all the longitudinally recorded sessions. They noted "large differences of sequence activation between learning and learned condition, both in the spatial patterns (example animal in Fig. 4D) and the distribution of the sequences (Fig. 4D,E). Rastermap plots (Fig. 4D) also reveal little similarity of sequence expression between task and habituation or sleep condition." They also note the difference in the sequences between learning and learned condition was larger than the different between correct and error trials within each condition. They conclude that during task learning new representations are established, as measured by the burst sequence content. They do additional analyses of the sequence clusters by assessing the spatial informativeness (SI) of each sequence cluster. Over learning they find an increase in clusters that are spatially informative (clusters that tend to occur in specific locations). Finally, they analyzed the SI clusters in a similar manner as SI cells and classified them as task phase selective sequences (TSs) and goal arm selective sequences (GSs) and did some further analysis. However, they themselves conclude that the frequency of TSs and GSs is limited because most sequence clusters were non-SI. In the discussion they say "In addition to GSs and TSs, we found that most of the recurring sequences are not related to behavior (not SI)".

      (3) As an alternative to analyzing individual cells and sequences of individual cells, they then look for trajectory replay using Bayesian population decoding of location during bursts. They analyze TS bursts, GS bursts, and non-SI bursts. They say "we found correlations of decoded position with time bin (within a 500 ms burst) strongly exceeding chance level only during outward and reward phase, for both GSs and TSs (Fig 5H)." Fig5H shows distributions indicating statistically significant bias in the forward direction (using correlations of decoded location versus time bin across 10 bins of 50 ms each within each 500ms burst). They find that the Outward trajectories appear to reflect the actual trajectory during running itself, so are likely not replay. But the sequences at the Reward are replay as they do not reflect the current location. Furthermore, replay at the Reward is in the forward direction (unlike the reverse replay at Reward seen in the hippocampus) and this replay is only seen in the learned and not the learning condition. At the same time, they find that replay is not seen during odor Sampling, from which they conclude there is no evidence of replay used for planning. Instead they say the replay at the Reward could possibly be for evaluation during the Reward phase, though this would only be for the learned condition. They conclude "Together with our finding of strong changes in sequence expression after learning (Fig 4E) these findings suggest that a representation of task develops during learning".

      This study provides valuable new information about the evolution of mPFC activity during the learning of a odor-based 2AFC T-maze-like task. They show convincing evidence of changes in single cell tuning, population sequences, and replay events. They also find novel forward replay at the Reward, and find that this is present only after the animal learned the task. In the discussion the authors note "the present study, to our knowledge, identified for the first time fast recurring neural sequence activity from 1-p calcium data, based on correlation analysis". Overall, they find a substantial amount of change among the features they analyzed and according to their methods, though they note a small amount of activity was preserved through learning.

      One comment is that the threshold for extracting burst events (0.5 standard deviations, presumably above the mean) seems lower than what one usually sees as a threshold for population burst detection, and the authors show (in Supplementary Fig 1) that this means bursts cover ~20-40% of the data. However, it is potentially a strength of this work that their results are found by using this more permissive threshold.

    1. Reviewer #1 (Public review):

      Summary:

      This paper reports an interesting and clever task which allows the joint measurement of both perceptual judgments and confidence (or subjective motion strength) in real / continuous time. The task is used together with a social condition to identify the (incidental, task-irrelevant) impact of another player on decision-making and confidence. The paper is well-written and clear.

      Strengths:

      The innovation on the task alone is likely to be impactful for the field, extending recent continuous report (CPR) tasks to examine other aspects of perceptual decision-making and allowing more naturalistic readouts. One interesting and novel finding is the observation of dyadic convergence of confidence estimates even when the partner is incidental to the task performance, and that dyads tend to be more risk-seeking (indicating greater confidence) than when playing solo.

      One concern with the novel task is whether confidence is disambiguated from a tracking of stimulus strength or coherence. The subjects' task is to track motion direction and use the eccentricity of the joystick to control the arc of a catcher - thus implementing a real-time sensitivity to risk (peri-decision wagering). The variable-width catcher has been used to good effect in other confidence/uncertainty tasks involving learning of the spread of targets (the Nassar papers). But in the context of an RDK task, one simple strategy here is to map eccentricity directly to (subjective) motion coherence - such that the joystick position at any moment in time is a vector with motion direction and strength. The revised version of the paper now includes a comprehensive analysis of the extent to which the metacognitive aspect of the task (the joystick eccentricity) tracks stimulus features such as motion coherence. The finding of a lagged relationship between task accuracy and eccentricity in conjunction with a relative lack of instantaneous relationships with coherence fluctuations, convincingly strengthens the inference that this component of the joystick response is metacognitive in nature, and dynamically tracking changes in performance. This importantly rebuts a more deflationary framing of the metacognitive judgment, in which what the subjects might be doing is tracking two features of the world - instantaneous motion strength and direction.

      The claim that the novel task is tracking confidence is also supported by new analyses showing classic statistical features of explicit confidence judgments (scaling with aggregate accuracy, and tracking psychometric function slope) are obtained with the joystick eccentricity measure.

    2. Reviewer #2 (Public review):

      Summary:

      Schneider et al examine perceptual decision-making in a continuous task setup when social information is also provided to another human (or algorithmic) partner. The authors track behaviour in a visual motion discrimination task and report accuracy, hit rate, wager, and reaction times, demonstrating that choice wager is affected by social information from the partner.

      Strengths:

      There are many things to like about this paper. The visual psychophysics has been undertaken with much expertise and care to detail. The reporting is meticulous and the coverage of the recent previous literature is reasonable. The research question is novel.

      Comments on revisions:

      The authors have addressed my suggestions adequately

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Vineis et al. examined the structure and functional potential of microbial communities along a vertical sediment profile of a salt marsh, using a genome-centric metagenomic approach. They attempted to test whether (1) the microbial communities within dynamic upper layers contain genomes with diverse functional potential, (2) the energy limited deeper sediments contain microbial consortia assembled to metabolise complex carbon, and (3) microbial compositional changes in the low energy sediments mirror the burial processes observed in marine environments with similar energetic limitations. Results revealed a core microbial consortia that contains a collective metabolic potential for complex carbon and aromatics degradation, suggesting putative syntrophic interactions. Besides, the recovery of MAGs assembled independently from multiple depths in the same core and the consistent relative abundance structure of MAGs within co-occurrence network modules together suggest burial process as a likely mechanism for microbial assembly.

      Strengths:

      (1) Two long sediment cores (down to 240 cm deep) were collected in this study, allowing investigation of the less well characterised subsurface microbiome in salt marsh.

      (2) A genome-centric metagenomic approach was employed here, which provides information on both the structure and functional potential of the salt marsh sediment microbiome, which is not possible in commonly performed 16S rRNA-based surveys.

      Weaknesses:

      (1) In both the abstract and conclusion, the authors claimed that results from this study provide a "mechanistic understanding" of the assembly and distribution of the microbial communities in salt marsh sediment (P2, L31 and P35, L645-649). However, both claims are speculative and not supported by solid evidence. Firstly, the genomic data presented in this study and supplementary physical properties of sediments in the broader area are not enough to make a solid claim (that appears in the title) on microbial assembly being governed by a burial process. Alternative explanations include residual bioturbation, slow porewater advection, etc. Therefore, this remains an interesting hypothesis unless additional evidence is provided to rule out the alternative explanations. Similarly, the claim on the detailed syntrophic interactions among members within a co-occurrence network module (e.g. P36, L649-652) is purely speculative and warrants functional validation experiments to prove.

      (2) A major aim of this work was to study complex carbon degradation. However, neither CAZymes, the first-line carbon degradation enzymes, nor peptidases, which can be important contributors to carbon degradation at depth, was examined here. METABOLIC, which the authors used for functional annotation of MAGs, by default generates peptidases outputs and can be easily integrated here.

      (3) No geochemical data is available to provide context for the genomic analysis here. Without such information, readers cannot even tell whether the surface sediment samples were oxic or anoxic. A reference to a PhD thesis is provided (P6, L126) but it would be most helpful to extract relevant data from there and provide as a supplementary table.

      (4) A single metagenomic binning tool, CONCOCT, was used in this study, which very likely has resulted in a limited number of MAGs recovered. More (high-quality) MAGs are expected with the use of additional binners and a bin consolidation procedure.

      (5) Several terminologies are misleading here. Firstly, the term "co-occurring" or "co-located" microbes or MAGs (e.g. P1, L19 and P31, L537) can be misleading as it could imply a close spatial relationship. However, co-occurrence networks rely on correlations of (relative) abundance and show statistical associations instead of direct spatial or physical relationships. I would suggest alternative names such as co-abundant or statistically associated microbes. Secondly, the term "persistent conversion of soil organic carbon" (P36, L654) in the conclusion is also misleading as it implies an active process, which cannot be tested without metatranscriptomics or metaproteomics data.

      (6) Based on a NMDS plot of KEGG IDs (Figure 4B), the authors claimed that the functional potential among MAGs in modules 1, 2 and 7 was very similar (P18, L346). However, the dispersions of modules 1 and 2 were just too large. A proper statistical test, such as PERMANOVA, should be used to support the claim.

      (7) Genome-scale metabolic networks was analysed using Metag2Metabo (M2M) and results were discussed in detail (P26, L453-466). However, the source data should be provided in a supplementary table to show what metabolites are producible by which MAGs.

    2. Reviewer #2 (Public review):

      This work provides a detailed metabolic reconstruction of sediment microbiomes along a depth profile in a Spartina patens salt marsh in Massachusetts, USA. Using a combination of genome reconstruction, co-occurrence network analysis, and metabolic profiling, the authors describe the metabolic potential of co-occurring microbial consortia in understudied deep sediments.

      Major strengths of this study include the detailed metagenomic characterization of the understudied deep marsh sediments. The authors recovered genomes representing a substantial portion of the deep sediment microbiome (up to ~60%) and provided an initial explanation of pathways related to the potential for organic carbon decomposition in this environment. Of particular interest is the capability of the deep sediment microbiome to process aromatic organic compounds, highlighting the need for a collaborative consortium to carry out their decomposition. Improved understanding of the microbial transformation of deep sediment organic carbon in blue carbon ecosystems is vital to better understand the fate of this large carbon pool in the face of climate change.

      However, I have a few concerns in the interpretation of the results, and in the case of the surface sediments there is a lack of strong evidence in my opinion.

      (1) A stronger ecological interpretation is needed regarding the meaning of the co-occurrence network analysis. The authors correctly note that their analysis identifies groups of co-occurring genomes, which may indicate shared niche space, not necessarily interspecific ecological interactions (as the authors imply for instance in lines 423-425). When performing network analysis using samples from the entire sediment profile (0-240 cm), they identified consortia that co-vary in relative abundance along the depth gradient most likely because of shared environmental filtering forces, such as changes in redox potential and sediment chemistry. Supplementary Figure S4 showing that different modules have distinct abundance distributions along the sediment profile supports this idea. Being that the case, I would like the authors to define the ecological significance of the "connector hub". Is it merely taxa that is prevalent in the whole sediment profile? Since the modules are physically separated (in different sediment depth layers), they are not really interacting between each other. As it stands, it is not clear why the authors decide to study connector hubs in greater detail, along with their subnetworks.

      (2) I question if the lack of network modules in the surface sediment is really a consequence of non-significant interspecific ecological interactions and not the result of methodological biases. The low MAG recovery and thus short read recruitment in surface-level metagenomes may hinder the ability of the authors to identify co-varying microorganisms in the surface sediment. The high diversity of the surface sediment prevents proper assembly of the surface microbiome. I would also argue that as redox potential declines sharply in salt marsh sediments just below the root surface, the microbial community in the first few centimeter's changes rapidly and is significantly different from the more stable deep sediment microbiome. Due to the sampling design, the study has less representation of the surface layer (only 0-30 cm, while the cores extend down to 240 cm). Grouping sediment microbiomes by depth based on similarity in their sequence space (e.g., Mash) or functional profile (e.g., KEGG annotation) before performing network analysis could help to better infer ecological relationships within the distinct ecological niches of the marsh sediment profile, rather than performing a single network analysis of all samples combined.

      (3) Normalizing the relative abundance of MAGs by dividing by the total reads mapping to a particular sample can be misleading due to differences in recruitment levels across samples (and depths). A better approach would be to normalize by metagenome library size, or preferably by genome equivalents (e.g., using MicrobeCensus) or a similar approach.

    1. Reviewer #1 (Public review):

      Summary:

      The authors aimed to determine whether individual serotonin neurons encode a slowly evolving estimate of environmental value during a dynamic Pavlovian conditioning task. They used a Bayesian modeling framework to fit neural activity and behavior to reward history across multiple timescales. A key goal was to distinguish value coding from other influences, particularly thirst, by comparing model fits across neurons. Ultimately, they sought to quantify the prevalence and properties of value coding in single serotonin neurons and assess its relationship to behavior.

      Strengths:

      The authors employ a Bayesian modeling framework that allows for nuanced hypothesis testing on long timescales of reward history. This approach is well-suited to the complexity of single-neuron data, where noise and variability can obscure meaningful patterns. By fitting generative models to both neural activity and behavior, the authors move beyond descriptive statistics to infer latent variables such as value and thirst, and quantify their contributions to firing rate.

      The use of hierarchical Bayesian models enables partial pooling across neurons and sessions, improving parameter estimation while accounting for individual variability. The mixture modeling strategy further strengthens the analysis by explicitly testing whether neurons encode value, thirst, or neither - rather than assuming a single coding scheme. This avoids overfitting and provides a principled way to assess the prevalence and properties of value coding in the serotonergic population.

      The authors also validate their modeling choices through cross-validation and comparisons with null and trend models, demonstrating that their value model explains neural activity better than simpler alternatives. This lends credibility to their claim that serotonin neurons encode slowly evolving estimates of value.

      Weaknesses:

      The authors' decision to analyze neural activity during the ITI is methodologically sound in terms of maximizing spike counts and improving statistical power for single-unit modeling. Their generative model performs best when applied to ITI firing, and the longer duration and higher spike density of this period make it well-suited for capturing slow dynamics in serotonergic neurons.

      However, this strength simultaneously introduces a conceptual limitation. The behavioral readout-anticipatory licking-occurs during the cue periods, not the ITI. This creates a temporal disconnect between the neural and behavioral data streams. While the authors cite theoretical work suggesting that ITI value scales with trace period value, this assumption is not directly validated in the current dataset. As a result, it remains unclear whether ITI firing reflects behaviorally relevant value signals or merely captures slow fluctuations unrelated to immediate behavioral output. For example, after all of the analyses performed, the final results section point reads: "Taken together, anticipatory licking is explained partially by value integration occurring at a faster time scale than seen in serotonergic cells and partially by value integration happening at a timescale that matches the serotonergic cells, but the part of the behaviour matching the timescale seen in serotonergic cells is better explained by a model of thirst than a model of value." This appears to negate much of the work of the prior analyses.

      The manuscript lacks sufficient population-level illustrations of behavior. Figure 1 presents a single-session example, which does not allow the reader to assess consistency across mice or neurons. Figure 2 improves on this by showing individual traces and means, but the data are already processed and smoothed, obscuring raw behavioral variability.

      Additionally, key behavioral metrics are not clearly defined. For instance, the calculation of "reward collection probability" is ambiguous. It is unclear whether this refers to licking during the cue, the outcome window, or some other period. The relationship between reward collection probability and anticipatory licking is also not explicitly described, making it difficult to interpret how these behavioral measures relate to the modeled value signals. The reader is also not shown what licking looks like during the ITI - the precise period the authors analyse and focus on.

      Thirst plays a central role in the manuscript, both as a behavioral driver and as a confounding variable in interpreting serotonergic activity. However, the method used to quantify thirst, a linear decrease from an initial value following each drinking event, is overly simplistic and potentially misleading. This approach assumes that thirst diminishes uniformly with each reward, without accounting for the physiological complexity of hydration and satiety regulation.

      In reality, thirst is influenced by multiple factors, including fluid balance, timing of intake, and individual variability. Modeling it as a monotonic function of reward consumption risks conflating motivational state with mere reward history. Given how prominently thirst features in the analysis and interpretation, a more nuanced or empirically validated measure would strengthen the manuscript's conclusions.

      Minor, but I did not find Panel A of Figure S1 to be helpful to the manuscript. The panel says height, while the caption says hairline. This manuscript is not about faculty, height, or hairline.

    2. Reviewer #2 (Public review):

      Summary:

      The authors recently published a seminal work (Nature 2025), in which they proposed that the activity of serotonin neurons encodes a "prospective code for value" (value with low-pass filtered negative feedback, roughly resulting in rate-of-change + (compressed) value) and validated this proposal by analyzing several data sets and showing that their theory provided better fit than existing other theories. In the present work, the authors analyzed the activity of serotonin neurons and the licking behavior in reference to their theory by using the data of mice performing a dynamic Pavlovian task, in which the reward probability occasionally changed without a cue in a block-wise manner. While serotonin neuronal activity during task trials in the same data set was analyzed in their previous work, in the present work, the authors focused on the activity during inter-trial intervals and longer time-scale changes. The authors' analyses using Bayesian model fitting revealed that serotonin neurons' activities reflected reward history over long time scales (on average about 100 trials or 10~20 minutes) and the time scales for individual neurons considerably varied (30~300 trials, 5~60 minutes). Analysis of licking, on the other hand, revealed that licking frequency mainly reflected reward history over shorter time scales, and the remaining long-time-scale components could be mostly explained by (gradually decreasing) thirst.

      Strengths:

      (1) The results supported and further elaborated the authors' prospective value coding theory of serotonin.

      (2) The results also raised a question about what then determines the frequency of licking behavior and how.

      Weaknesses:

      (1) A limitation of the current analyses is the lack of consideration of the effort cost of licking. Given that both involvement of serotonin in effort cost computation (Meyniel et al., 2016 eLife 17282) and the existence/influence of effort cost of licking (Hage et al., 2023 eLife 87238) have been suggested, it is desired to consider (most desirably, formally analyze) such an effect in the current data set. A simple way of incorporating effort cost would be to assume a small (free parameter) negative reward for every single licking (anticipatory and other) and combine these negative rewards with positive (liquid) rewards in the calculation of value. This may not drastically change the main claims of the present work, but could still provide insights into whether/how serotonin is involved in cost-benefit computation (or whether/how reward and cost are combined in the serotonin system).

      (2) Another possibility related to effort cost is that the accumulation of effort cost of licking over a long time scale may cause fatigue. Since such a fatigue is expected to gradually increase across the entire session, potentially in a similar time course to thirst (but with a positive rather than negative slope), it may be needed to ask whether the suggested positive effect of thirst on licking (i.e., decrease of licking due to decrease of thirst) could be (partially) explained by a negative effect of fatigue (i.e., decrease of licking due to increase of fatigue).

      (3) Are there also possibilities that the decrease of licking (partially) reflects a decrease in the degree of exploration (over the selection between licking and no-licking) and/or meta learning about the occasional sudden changes in the reward probability, such as the meta learning observed in animals engaging in a repetitive reversal learning task (Hattori et al., 2023 Nat Neurosci)?

    3. Reviewer #3 (Public review):

      Summary:

      The authors are reanalyzing previously published data to test the hypothesis that serotonin neurons encode state value. Here, the authors focus on analyzing the firing rate of serotonin neurons during the inter-trial interval, in which no cues or outcomes are delivered. The goal is to quantify and find neurons whose activity is explained by value encoding, and for those that have this property, determine what the timescale of reward integration is (e.g., a few trials, tens of trials, or the entire session) in individual neurons.

      Strengths:

      The major strengths are the use of a Bayesian modelling approach to extract value and thirst coding features from individual neurons, and comparison of the time course of adaptation of serotonin neurons with a behavioral output, licking in this case. I also appreciate the use of a separate dataset to establish prior distributions for baseline firing rate to be used in the modelling done here, which is an attempt to deal with the main weakness of this study:

      Weaknesses:

      The weakness of this study is the small number of neurons available for analysis, resulting in a small number of neurons that unequivocally are modulated by value.

      The authors did achieve their aims, but the results show that it is hard to unequivocally separate value-coding neurons with long timescales from thirst-coding neurons, which is acknowledged by the authors.

      While the experimental results do not allow for a strong conclusion regarding the distinction of value versus thirst coding in serotonin neurons, the methods employed and the rationale for using them are of great utility to the community and for considerations of behavioral task design and data analysis in future studies. This is a point that the authors could discuss/develop more.

      Additional significance of the work:

      The comparison between time courses for behavior (anticipatory licking) and serotonin activity (as well as the reference to dopamine activity's time course from a previous study) is of great significance for any researcher studying behavioral control. Mounting evidence suggests that multiple brain circuits contribute to any given action selection. Therefore, expecting a perfect alignment between the time course of neuromodulator activity and behavioral output might be unreasonable. For future studies, modelling behavioral output as a combination of policies determined by multiple brain circuits or neuromodulators might be a promising approach.

    1. Reviewer #1 (Public review):

      Summary:

      The authors have used gene deletion approaches in zebrafish to investigate the function of genes of the hox clusters in pectoral fin "positioning" (but perhaps more accurately pectoral fin "formation"

      Strengths:

      The authors have employed a robust and extensive genetic approach to tackle an important and unresolved question.

      The results are largely very clearly presented.

      Weaknesses:

      The Abstract suggests that no genetic evidence exists in model organisms for a role of Hox genes in limb positioning. There are, however, several examples in mouse and other models (both classical genetic and other) providing evidence for a role of Hox genes in limb position, which is elaborated on in the Introduction.

      It would perhaps be more accurate to state that several lines of evidence in a range of model organisms (including the mouse) support a role for Hox genes in limb positioning. The author's work is not weakened by a more inclusive introduction that cites the current literature more comprehensively.

      It would be helpful for the authors to make a clear distinction between "positioning" of the limb/fin and whether a limb/fin "forms" at all, independent of the relative position of this event along the body axis.

      Discussion of why the zebrafish is sensitive to Hoxb loss with reference to the fin, but mouse Hoxb mutants do make a limb?

      Is this down to exclusive expression of Hoxbs in the zebrafish pectoral fin forming region rather than a specific functional role of the protein? This is important as it has implications for the interpretation of results throughout the paper and could explain some apparently conflicting results. .

      Why is hoxba more potent than hoxbb? Is this because Hioxba has Hox4/5 present while hox bb has only hoxb5? Hoxba locus has retained many more hox genes in,cluater than hoxbb therefore might expect to see greater redundancy in this locus)<br /> Deletion of either hox a or hox d in background of hoxba mutant does have some effect. IS this a reflection of protein function or expression dynamics of hoax/hoxd genes?

      Can we really be confident there is a "transformation of pectoral fin progenitor cells into cardiac cells"?

      The failure to repress Nkx2.5 in the posterior (pelvic fin) domain is clear but have these cells actually acquired cardiac identity? They would be expected to express Tbx5a (or b) as cardiac precursors but this domain does not broaden. There is no apparent expansion of the heart (field)/domain or progenitors beyond 16 somite stage. The claimed "migration" of heart precursors iin the mutant is not clear. The heart/cardiac domain that does form in the mutant is not clearly expanded in the mutant. The domain of cmlc2 looks abnormal in the mutant but I am not convinced it is "enlarged" as claim by the authors. The authors have not convincingly shown that " the cells that should form the pectoral fin instead differentiate into cardia cells."

      The only clear conclusion is the loss of pectoral fin-forming cells rather than these fin-forming cells being "transformed" into a new identity. It would be interesting to know what has happened to the cells of the pectoral fin forming region in these double mutants.

      It is not clear what the authors mean by a "converse" relationship between forelimb/pectoral fin and heart formation. The embryological relationship between these two populations is distinct in amniotes.

      The authors show convincing data that RA cannot induce Tbx5a in the absence of Hob clusters but I am not convinced by the interpretation of this result. The results shown would still be consistent with RA acting directly upstream of tbx5a but merely that RA acts in concert with hox genes to activate tbx5a. IN the absence of one or the other tbx5a would not be expressed. It is not necessary that RA and hoxbs act exclusively in a linear manner (i.e. RA regulates hoxb that in turn regulate tbx5a)

      The authors have carried out a functional test for the function of hoxb6 and hoxb8 in the hemizygous hoxb mutant background. What is lacking is any expression analysis to demonstrate whether hoxb6b or hoxb8b are even expressed in the appropriate pectoral fin territory to be able to contribute to pectoral fin development either in this assay or in normal pectoral fin development.

      (The term "compensate" used in this section is confusing/misleading.)

      The authors' confounding results described in Figures 6-7 are consistent with the challenges faced in other model organisms in trying to explore the function of genes in the hox cluster and the known redundancy that exists across paralogous groups and across individual clusters.

      Given the experimental challenges in deciphering the actual functions of individual or groups of hox genes, a discussion of the normal expression pattern of individual and groups of hox genes (and how this may change in different mutant backgrounds) could be helpful to make conclusions about likely normal function of these genes and compensation/redundancy in different mutant scenarios.

      Comments on revisions:

      No further issues to address.

    2. Reviewer #2 (Public review):

      Summary:

      The authors of this manuscript performed a fascinating set of zebrafish mutant analysis on hox cluster deletion and pinpoint the cause of the pectoral fin loss in one combinatorial hox cluster mutant of hoxba and hoxbb. I support the publication of this manuscript.

      Strengths:

      The study is based on a variety of existing experimental tools that enabled the authors' past construction of hox cluster mutants and is well-designed. The manuscript is well written to report the author's findings on the mechanism that positions the pectoral fin.

      Weaknesses:

      The study does not focus on the other hox clusters than ba and bb, and is confined to the use of zebrafish, as well as the comparison with existing reports from mouse experiments.

      Comments on revisions:

      The authors have sufficiently addressed the concerns raised in my previous review. The revised manuscript substantially strengthens the original work.

    1. Reviewer #2 (Public review):

      Summary:

      The authors investigate sub-skin surface deformations to a number of different, relevant tactile stimuli, including pressure and moving stimuli. The results demonstrate and quantify the tension and compression applied from these types of touch to fingerprint ridges, where pressure flattens the ridges. Their study further revealed that on lateral movement, prominent vertical shearing occurred in ridge deformation, with somewhat inconsistent horizontal shear. This also shows how much the deeper skin layers are deformed in touch, meaning the activation of all cutaneous mechanoreceptors, as well as the possibility of other deeper non-cutaneous mechanoreceptors.

      Strengths:

      The paper has many strengths. As well as being impactful scientifically, the methods are sound and innovative, producing interesting and detailed results. The results reveal the intricate workings of the skin layers to pressure touch, as well as sliding touch over different conditions. This makes it applicable to many touch situations and provides insights into the differential movements of the skin, and thus the encoding of touch in regards to the function of fingerprints. The work is very clearly written and presented, including how their work relates to the literature and previous hypotheses about the function of fingerprint ridges. The figures are very well-presented and show individual and group data well. The additional supplementary information is informative and the video of the skin tracking demonstrates the experiments well.

      Weaknesses:

      There are very few weaknesses with the work; rather the authors detail well the limitations in the discussion. Therefore, this opens up lots of possibilities for future work.

      Impact/significance:

      Overall, the work will likely have a large impact on our understanding of the mechanics of the skin. The detail shown in the study goes beyond current understanding, to add profound insights into how the skin actually deforms and moves on contact and sliding over a surface, respectively. The method could be potentially applied in many other different settings (e.g. to investigate more complex textures, how skin deformation changes with factors like dryness and aging). This fundamental piece of work could therefore be applied to understand skin changes and how these impact on touch perception. It can further be applied to understand skin mechanoreceptor function better and model these. Finally, the importance of fingertip ridges is well-detailed, demonstrating how these play a role in directly shaping our touch perception and how they can shape the interactions we have with surfaces.

    2. Reviewer #3 (Public review):

      Summary:

      The publication presents unique in-vivo images of the upper layer of the epidermis of glabrous skin when a flat object compresses or slides on the fingertip. The images are captured using OCT and show the strain that fingerprints experience during mechanical stimulation.

      The most important finding is, in my opinion, that fingerprints undergo pure compression/tension without horizontal shear, suggesting that the shear stress caused by tangential load is transferred to the deeper tissues and ultimately to the mechanoreceptors (SA-I / RA-I).

      Strengths:

      Fascinating new insights into the mechanics of glabrous skin. To the best of my knowledge, this is the first experimental evidence of the mechanical deformation of fingerprints when subjected to dynamic mechanical stimulation. The OCT measurement allows unprecedented measurement of skin depth, whereas previous works were limited to tracking surface deformation.

      The robust data analysis reveals the continuum mechanics underlying the deformation of the fingerprint ridges.

      Weaknesses:

      I do not see any major weaknesses. The work is mainly experimental and is rigorously executed.

    1. Reviewer #1 (Public review):

      Summary:

      The authors analyse electron microscopy data of the nociceptive circuit in fly larvae at two developmental stages. They look for ways in which the connectivity of the circuit differs between these two stages, when neurons grow by a factor of about 5. They find that average synaptic weights do not change significantly, and that the density of synaptic inputs onto a dendrite is also unchanged despite the extreme change in size. Further, they find that synaptic weights become less variable and that synapses between pairs of neurons do not become more correlated over development. The second of these findings is evidence against many known long-term synaptic plasticity mechanisms having a significant effect on this circuit.<br /> They combine their first result with theoretical modelling to show that invariances in weight and density preserve neuronal responses despite scaling, and conclude that this is the mechanism by which the circuit can maintain useful function throughout development.

      Strengths:

      The paper carefully analyses a rich dataset of electron microscopy data and clearly highlights how the data support the authors' findings and not obvious alternative hypotheses. The overall finding, that this particular circuit can maintain stable responses using a local conservation of synaptic inputs, is quite striking.

      Weaknesses:

      The main weakness of this paper is in its argument that such a mechanism of input conservation might be a general developmental rule. The vast majority of literature on spine density in mammals finds that spine density increases early in development before falling again (Bourgeois & Rakic, J Neurosci 1993; Petanjek at el, PNAS 2011; Wildenberg et al, Nat Comms 2023). I find the analyses in this manuscript convincing, but the authors should more clearly highlight that this mechanism might be specific to insect nociceptive circuits. A further minor weakness is the fact that only staging data is available, where different individuals are imaged at different developmental stages. This is unavoidable and acknowledged in the manuscript, but it makes it harder to draw clear conclusions about plasticity mechanisms and specific changes in synaptic weight distributions.

    2. Reviewer #2 (Public review):

      Summary:

      The authors utilize large volume electron microscopy ("connectomics") data to address how circuits remain stable during development. They focus on the development of the Drosophila nociceptive circuit between larval stages L1 and L3. Their analyses focus on changes to pre- and post-synaptic circuit partners (i.e., pre-synaptic axons and post-synaptic dendrites) and conduct a thorough analysis of eliminating likely changes to both that could balance circuits. Ultimately, they find that the change in axonal growth (i.e, cable length) is mismatched with dendritic growth, but that this is balanced by an increase in the synapse density of pre-synaptic axons.

      Strengths:

      The authors used connectomics, the gold standard for neural circuit tracing, to conduct their analyses, and thus their results are strongly supported by the quality of the data. They carefully eliminated several models for how pre- and post-synaptic changes could co-develop to preserve circuit stability until they identified a major driver in changes in the timing of axon development relative to dendritic development. I also admired their willingness to be transparent about the limitations of their studies, including a lack of analyses of changes to inhibitory inputs and a lack of dynamics in their data. Overall, it's difficult to argue their results are wrong, but they may be incomplete. That said, it's difficult to account for every variable, and they covered the more salient topics, and it's my opinion that this is an important contribution that moves the field forward while also being careful to note its limitations that could and should motivate future work.

      Weaknesses:

      I identified a few weaknesses that could benefit from revisions:

      (1) I found parts of the text confusing, verging on misleading, specifically as it relates to other species. For example, in Line 93, the authors state that they have shown that synapses per unit dendrite length remain remarkably constant across species and brain regions. This was mentioned throughout the manuscript, and it wasn't clear to me whether this was referring to across development or in adults. If over-development, this contrasts with other recently published work of our own comparing synapse densities in the developing mouse and rhesus macaque. Whether they are different or the same is equally interesting and should be discussed more clearly. Related to this, it's not clear that mammalian circuits over development remain stable. For example, our work shows that the ratio of excitatory and inhibitory synapses changes quite a lot in developing mice and primates.

      (2) I was not convinced by the use of axon-dendritic cable overlap. While axons and dendrites certainly need to be close together to make a synapse, I don't understand why this predicts they will connect. In connectomic data, axons pass by hundreds if not thousands of potential post-synaptic partners without making a synapse. Ultimately, the authors' data on changes in axon cable length between L1 and L3 would predict more overlap, but I found the use of overlap confusing and unnecessary, relative to the concreteness of their other analyses. I would suggest removing this from their analyses or providing a stronger argument for how overlap predicts connectivity.

      (3) Figure 7. For non-computational neuroscientists, I think it would be tremendously helpful to include a table that outlines the metrics you used. The text states you constrained these models with your EM data, but it would be helpful to summarize the range of numerical data you used for each parameter.

      (4) The most important finding to me was the asymmetry between axon and dendrite development. Perhaps beyond the scope of this work, it raises the question of whether there are privileged axons that uniquely increase their synapse density. Figure 5D alludes to this, where the fold change in cable length is not proportional to the change in synapse density. Could it be that over development, specific inputs become dominant while others prune their synapses, resulting in an overall balanced circuit, but dominance of specific partners changes? Either answer (i.e., yes, there are privileged circuits that emerge from L1 to L3, or no) would be very interesting and greatly elevate the significance of this work.

      (5) Related to my comment #1, can the authors comment on whether these changes are unique to Drosophila nociceptive circuits? Do all circuits remain balanced over development in flies? Finally, could you clarify why L1 to L3 was chosen?

    3. Reviewer #3 (Public review):

      Summary:

      Fritz et al. investigate the changes in synaptic connectivity between two different life stages of the Drosophila larva, L1 and L3. They focus on 3 types of nociceptive mechanosensory neurons and their connecting 6 downstream interneurons. Connectomic analysis reveals that connectivity and dendritic density are stable across development; however, axonal density, axodendritic overlap, and the number of synapses increase. Finally, using a modeling approach, they demonstrate that this conservation of most features enables stable output across life stages.

      Strengths:

      The authors analyse two different connectomes from fly larvae in two different life stages. By now, there are only very few such samples available; thus, this is a novel approach and will be helpful to guide further comparative connectomic studies in the future.

      Weaknesses:

      The authors analyze only a minimal circuit with 9 different cell types on each hemisphere; thus, their findings might be specialised for this specific nociceptive sensory to interneuron peripheral circuit. Also, more animals might need to be analyzed in different life stages to generalize these findings.

    1. Reviewer #1 (Public review):

      Summary:

      Using a computational modeling approach based on the Drift and Diffusion Model (DDM) introduced by Ratcliff and McKoon in 2008, the article by Shevlin and colleagues investigates whether there are differences between neutral and negative emotional states in:

      (1) The timings of the integration in food choices of the perceived healthiness and tastiness of food options in individuals with bulimia nervosa (BN) and healthy participants (2) The weighting of the perceived healthiness and tastiness of these options.

      Strengths:

      By looking at the mechanistic part of the decision process, the approach has potential to improve the understanding of pathological food choices.

      Weaknesses:

      I thank the author for reviewing their manuscript.

      However, I still have major concerns.

      The authors say that they removed any causal claims in their revised version of the manuscript. The sentence before the last one of the abstract still says "bias for high-fat foods predicted more frequent subjective binge episodes over three months". This is a causal claim that I already highlighted in my previous review, specifically for that sentence (see my second sentence of my major point 2 of my previous review).

      I also noticed that a comment that I added was not sent to the authors. In this comment I was highlighting that in Figure 2 of Galibri et al., I was uncertain about a difference between neutral and negative inductions of the average negative rating after the induction in the BN group (i.e. comparing the negative rating after negative induction in BN to the negative rating after neutral induction in BN). Figure 2 of Galibri et al. looks to me that:

      (1) The BN participants were more negative before the induction when they came to the neutral session than when they came to the negative session. (2) The BN participants looked almost negatively similar (taking into account the error bars reported) after the induction in both sessions

      These observations are of high importance because they may support the fact that BN patients were likely in a similar negative state to run the food decision task in both conditions (negative and neutral). Therefore, the lack of difference in food choices in BN patients is unsurprising and nothing could be concluded from the DDM analyses. Moreover, the strong negative ratings of BN patients in the neutral condition as compared to healthy participants together with almost similar negative ratings after the two inductions contradict the authors' last sentence of their abstract.

      I appreciate that the authors reproduced an analysis of their initial paper regarding the negative ratings (i.e. Table S1). It partly answers my aforementioned point but does not address the fact that BN may have been in a similar negative state in both conditions (neutral and negative) when running the food decision task: if BN patients were similarly negative after both induction (neutral and negative), nothing can be concluded from their differences in their results obtained from the DDM. As the authors put it, "not all loss-of-control eating occurs in the context of negative state", I add that far from all negative states lead to a loss-of-control eating in BN patients. This grounds all my aforementioned remarks and my remarks of my first review.

      A solution for that is to run a paired t-test in BN patients only comparing the score after the induction in the two conditions (neutral and negative) reported in Figure 2 of their initial article.

      I appreciate the analysis that the authors added with the restrictive subscale of the EDE-Q. That this analysis does not show any association with the parameters of interest does not show that there is a difference in the link between self reported restrictions and self reported binges. Only such a difference would allow us to claim that the results the authors report may be related to binges.

      I appreciate the wording of the answer of the authors to my third point: "the results suggest that individuals whose task behavior is more reactive to negative affect tend to be the most symptomatic, but the results do not allow us to determine whether this reactivity causes the symptoms". This sentence is crystal clear and sums very well the limits of the associations the authors report with binge eating frequency. However, I do not see this sentence in the manuscript. I think the manuscript would benefit substantially from adding it.

      Statistical analyses:

      If I understood well the mixed models performed, analyses of supplementary tables S1 and S27 to S32 are considering all measures as independent which means that the considered score of each condition (neutral vs negative) and each time (before vs after induction) which have been rated by the same participants are independent. Such type of analyses does not take into account the potential correlation between the 4 scores of a given participant. As a consequence, results may lead to false positives that a linear mixed model does not address. The appropriate analysis would be to run adapted statistical tests pairing the data without running any mixed model.

      Notes:

      It is not because specific methods like correlating self reported measures over long periods with almost instantaneous behaviors (like tasks) have been used extensively in studies that these methods are adapted to answer a given scientific question. Measures aggregated over long periods miss the variations in instantaneous behaviors over these periods.

    2. Reviewer #2 (Public review):

      Summary:

      Binge eating is often preceded by heightened negative affect, but the specific processes underlying this link are not well-understood. The purpose of this manuscript was to examine whether affect state (neutral or negative mood) impacts food choice decision-making processes that may increase the likelihood of binge eating in individuals with bulimia nervosa (BN). The researchers used a randomized crossover design in women with BN (n=25) and controls (n=21), in which participants underwent a negative or neutral mood induction prior to completing a food-choice task. The researchers found that despite no differences in food choices in the negative and neutral conditions, women with BN demonstrated a stronger bias toward considering the 'tastiness' before the 'healthiness' of the food after the negative mood induction.

      Strengths:

      The topic is important and clinically relevant, and the methods are sound. The use of computational modeling to understand nuances in decision-making processes and how that might relate to eating disorder symptom severity is a strength of the study.

      Weaknesses:

      Sample size was relatively small, and participants were all women with BN, which limits generalizability of findings to the larger population of individuals who engage in binge eating. It is likely that the negative affect manipulation was weak and may not have been potent enough to change behavior. These limitations are adequately noted in the discussion.

    3. Reviewer #3 (Public review):

      Summary:

      The study uses the food choice task, a well-established method in eating disorder research, particularly in anorexia nervosa. However, it introduces a novel analytical approach-the diffusion decision model-to deconstruct food choices and assess the influence of negative affect on how and when tastiness and healthiness are considered in decision-making among individuals with bulimia nervosa and healthy controls.

      Strengths:

      The introduction provides a comprehensive review of the literature, and the study design appears robust. It incorporates separate sessions for neutral and negative affect conditions and counterbalances tastiness and healthiness ratings. The statistical methods are rigorous, employing multiple testing corrections.

      A key finding-that negative affect induction biases individuals with bulimia nervosa toward prioritizing tastiness over healthiness-offers an intriguing perspective on how negative affect may drive binge eating behaviors.

      Weaknesses:

      A notable limitation is the absence of a sample size calculation, which, combined with the relatively small sample, may have contributed to null findings. Additionally, while the affect induction method is validated, it is less effective than alternatives such as image or film-based stimuli (Dana et al., 2020), potentially influencing the results.

    1. Reviewer #1 (Public review):

      This is a well-designed and very interesting study examining the impact of imprecise feedback on outcomes on decision-making. I think this is an important addition to the literature and the results here, which provide a computational account of several decision-making biases, are insightful and interesting.

      I do not believe I have substantive concerns related to the actual results presented; my concerns are more related to the framing of some of the work. My main concern is regarding the assertion that the results prove that non-normative and non-Bayesian learning is taking place. I agree with the authors that their results demonstrate that people will make decisions in ways that demonstrate deviations from what would be optimal for maximizing reward in their task under a strict application of Bayes rule. I also agree that they have built reinforcement learning models which do a good job of accounting for the observed behavior. However, the Bayesian models included are rather simple- per the author descriptions, applications of Bayes' rule with either fixed or learned credibility for the feedback agents. In contrast, several versions of the RL models are used, each modified to account for different possible biases. However more complex Bayes-based models exist, notably active inference but even the hierarchical gaussian filter. These formalisms are able to accommodate more complex behavior, such as affect and habits, which might make them more competitive with RL models. I think it is entirely fair to say that these results demonstrate deviations from an idealized and strict Bayesian context; however, the equivalence here of Bayesian and normative is I think misleading or at least requires better justification/explanation. This is because a great deal of work has been done to show that Bayes optimal models can generate behavior or other outcomes that are clearly not optimal to an observer within a given context (consider hallucinations for example) but which make sense in the context of how the model is constructed as well as the priors and desired states the model is given.

      As such, I would recommend that the language be adjusted to carefully define what is meant by normative and Bayesian and to recognize that work that is clearly Bayesian could potentially still be competitive with RL models if implemented to model this task. An even better approach would be to directly use one of these more complex modelling approaches, such as active inference, as the comparator to the RL models, though I would understand if the authors would want this to be a subject for future work.

      Abstract:

      The abstract is lacking in some detail about the experiments done, but this may be a limitation of the required word count? If word count is not an issue, I would recommend adding details of the experiments done and the results. One comment is that there is an appeal to normative learning patterns, but this suggests that learning patterns have a fixed optimal nature, which may not be true in cases where the purpose of the learning (e.g. to confirm the feeling of safety of being in an in-group) may not be about learning accurately to maximize reward. This can be accommodated in a Bayesian framework by modelling priors and desired outcomes. As such the central premise that biased learning is inherently non-normative or non-Bayesian I think would require more justification. This is true in the introduction as well.

      Introduction:

      As noted above the conceptualization of Bayesian learning being equivalent to normative learning I think requires either further justification. Bayesian belief updating can be biased an non-optimal from an observer perspective, while being optimal within the agent doing the updating if the priors/desired outcomes are set up to advantage these "non-optimal" modes of decision making.

      Results:

      I wonder why the agent was presented before the choice - since the agent is only relevant to the feedback after the choice is made. I wonder if that might have induced any false association between the agent identity and the choice itself. This is by no means a critical point but would be interesting to get the authors' thoughts.

      The finding that positive feedback increases learning is one that has been shown before and depends on valence, as the authors note. They expanded their reinforcement learning model to include valence; but they did not modify the Bayesian model in a similar manner. This lack of a valence or recency effect might also explain the failure of the Bayesian models in the preceding section where the contrast effect is discussed. It is not unreasonable to imagine that if humans do employ Bayesian reasoning that this reasoning system has had parameters tuned based on the real world, where recency of information does matter; affect has also been shown to be incorporable into Bayesian information processing (see the work by Hesp on affective charge and the large body of work by Ryan Smith). It may be that the Bayesian models chosen here require further complexity to capture the situation, just like some of the biases required updates to the RL models. This complexity, rather than being arbitrary, may be well justified by decision-making in the real world.

      The methods mention several symptom scales- it would be interesting to have the results of these and any interesting correlations noted. It is possible that some of individual variability here could be related to these symptoms, which could introduce precision parameter changes in a Bayesian context and things like reward sensitivity changes in an RL context.

      Discussion:

      (For discussion, not a specific comment on this paper): One wonders also about participant beliefs about the experiment or the intent of the experimenters. I have often had participants tell me they were trying to "figure out" a task or find patterns even when this was not part of the experiment. This is not specific to this paper, but it may be relevant in the future to try and model participant beliefs about the experiment especially in the context of disinformation, when they might be primed to try and "figure things out".

      As a general comment, in the active inference literature, there has been discussion of state-dependent actions, or "habits", which are learned in order to help agents more rapidly make decisions, based on previous learning. It is also possible that what is being observed is that these habits are at play, and that they represent the cognitive biases. This is likely especially true given, as the authors note, the high cognitive load of the task. It is true that this would mean that full-force Bayesian inference is not being used in each trial, or in each experience an agent might have in the world, but this is likely adaptive on the longer timescale of things, considering resource requirements. I think in this case you could argue that we have a departure from "normative" learning, but that is not necessarily a departure from any possible Bayesian framework, since these biases could potentially be modified by the agent or eschewed in favor of more expensive full-on Bayesian learning when warranted. Indeed in their discussion on the strategy of amplifying credible news sources to drown out low-credibility sources, the authors hint to the possibility of longer term strategies that may produce optimal outcomes in some contexts, but which were not necessarily appropriate to this task. As such, the performance on this task- and the consideration of true departure from Bayesian processing- should be considered in this wider context. Another thing to consider is that Bayesian inference is occurring, but that priors present going in produce the biases, or these biases arise from another source, for example factoring in epistemic value over rewards when the actual reward is not large. This again would be covered under an active inference approach, depending on how the priors are tuned. Indeed, given the benefit of social cohesion in an evolutionary perspective, some of these "biases" may be the result of adaptation. For example, it might be better to amplify people's good qualities and minimize their bad qualities in order to make it easier to interact with them; this entails a cost (in this case, not adequately learning from feedback and potentially losing out sometimes), but may fulfill a greater imperative (improved cooperation on things that matter). Given the right priors/desired states, this could still be a Bayes-optimal inference at a social level and as such may be ingrained as a habit which requires effort to break at the individual level during a task such as this.

      The authors note that this task does not relate to "emotional engagement" or "deep, identity-related, issues". While I agree that this is likely mostly true, it is also possible that just being told one is being lied to might elicit an emotional response that could bias responses, even if this is a weak response.

      Comments on first revisions:

      In their updated version the authors have made some edits to address my concerns regarding the framing of the 'normative' Bayesian model, clarifying that they utilized a simple Bayesian model which is intended to adhere in an idealized manner to the intended task structure, though further simulations would have been ideal.

      The authors, however, did not take my recommendation to explore the symptoms in the symptom scales they collected as being a potential source of variability. They note that these were for hypothesis generation and were exploratory, fair enough, but this study is not small and there should have been sufficient sample size for a very reasonable analysis looking at symptom scores.

      However, overall the toned-down claims and clarifications of intent are adequate responses to my previous review.

      Comments on second revisions:

      While I believe an exploration of symptom scores would have been a valuable addition, this is not required for the purpose of the paper, and as such, I have no further comments.

    2. Reviewer #2 (Public review):

      This important paper studies the problem of learning from feedback given by sources of varying credibility. The convincing combination of experiment and computational modeling helps to pin down properties of learning, while opening unresolved questions for future research.

      Summary:

      This paper studies the problem of learning from feedback given by sources of varying credibility. Two bandit-style experiments are conducted in which feedback is provided with uncertainty, but from known sources. Bayesian benchmarks are provided to assess normative facets of learning, and alternative credit assignment models are fit for comparison. Some aspects of normativity appear, in addition to possible deviations such as asymmetric updating from positive and negative outcomes.

      Strengths:

      The paper tackles an important topic, with a relatively clean cognitive perspective. The construction of the experiment enables the use of computational modeling. This helps to pinpoint quantitatively the properties of learning and formally evaluate their impact and importance. The analyses are generally sensible, and advanced parameter recovery analyses (including cross-fitting procedure) provide confidence in the model estimation and comparison. The authors have very thoroughly revised the paper in response to previous comments.

      Weaknesses:

      The authors acknowledge the potential for cognitive load and the interleaved task structure to play a meaningful role in the results, though leave this for future work. This is entirely reasonable, but remains a limitation in our ability to generalize the results. Broadly, some of the results obtained in cases where the extent of generalization is not always addressed and remains uncertain.

    3. Reviewer #3 (Public review):

      Summary

      This paper investigates how disinformation affects reward learning processes in the context of a two-armed bandit task, where feedback is provided by agents with varying reliability (with lying probability explicitly instructed). They find that people learn more from credible sources, but also deviate systematically from optimal Bayesian learning: They learned from uninformative random feedback and updated too quickly from fully credible feedback (especially following low-credibility feedback). People also appeared to learn more from positive feedback and there is tentative evidence that this bias is exacerbated for less credible feedback.

      Overall, this study highlights how misinformation could distort basic reward learning processes, without appeal to higher order social constructs like identity.

      Strengths - The experimental design is simple and well-controlled; in particular, it isolates basic learning processes by abstracting away from social context - Modeling and statistics meet or exceed standards of rigor - Limitations are acknowledged where appropriate, especially those regarding external validity and challenges in dissociating positivity bias from perseveration - The comparison model, Bayes with biased credibility estimates, is strong; deviations are much more compelling than e.g. a purely optimal model - The conclusions are of substantial interest from both a theoretical and applied perspective

      Weaknesses

      The authors have done a great job addressing my concerns with the two previous submission. The one issue that they were not able to truly address is the challenge of dissociating positivity bias from perseveration; this challenge weakens evidence for the conclusion that less credible feedback yields a stronger positivity bias. However, the authors have clearly acknowledged this limitation and tempered their conclusions accordingly. Furthermore, the supplementary analyses on this point are suggestive (if not fully conclusive) and do a better job of at least trying to address the confound than most work on positivity/confirmation bias.

      I include my previous review describing the challenge in more detail for reference. I encourage interested readers to see the author response as well. It has convinced me that this weakness is not a reflection of the work, but is instead a fundamental challenge for research on positivity bias.

      Absolute or relative positivity bias?

      The conclusion of greater positivity bias for lower credible feedback (Fig 5) hinges on the specific way in which positivity bias is defined. Specifically, we only see the effect when normalizing the difference in sensitivity to positive vs. negative feedback by the sum. I appreciate that the authors present both and add the caveat whenever they mention the conclusion. However, without an argument that the relative definition is more appropriate, the fact of the matter is that the evidence is equivocal.

      There is also a good reason to think that the absolute definition is more appropriate. As expected, participants learn more from credible feedback. Thus, normalizing by average learning (as in the relative definition) amounts to dividing the absolute difference by increasingly large numbers for more credible feedback. If there is a fixed absolute positivity bias (or something that looks like it), the relative bias will necessarily be lower for more credible feedback. In fact, the authors own results demonstrate this phenomenon (see below). A reduction in relative bias thus provides weak evidence for the claim.

      It is interesting that the discovery study shows evidence of a drop in absolute bias. However, for me, this just raises questions. Why is there a difference? Was one just a fluke? If so, which one?

      Positivity bias or perseveration?

      Positivity bias and perseveration will both predict a stronger relationship between positive (vs. negative) feedback and future choice. They can thus be confused for each other when inferred from choice data. This potentially calls into question all the results on positivity bias.

      The authors clearly identify this concern in the text and go to considerable lengths to rule it out. However, the new results (in revision 1) show that a perseveration-only model can in fact account for the qualitative pattern in the human data (the CA parameters). This contradicts the current conclusion:

      Critically, however, these analyses also confirmed that perseveration cannot account for our main finding of increased positivity bias, relative to the overall extent of CA, for low-credibility feedback.

      Figure 24c shows that the credibility-CA model does in fact show stronger positivity bias for less credible feedback. The model distribution for credibility 1 is visibly lower than for credibilities 0.5 and 0.75.

      The authors need to be clear that it is the magnitude of the effect that the perseveration-only model cannot account for. Furthermore, they should additionally clarify that this is true only for models fit to data; it is possible that the credibility-CA model could capture the full size of the effect with different parameters (which could fit best if the model was implemented slightly differently).

      The authors could make the new analyses somewhat stronger by using parameters optimized to capture just the pattern in CA parameters (for example by MSE). This would show that the models are in principle incapable of capturing the effect. However, this would be a marginal improvement because the conclusion would still rest on a quantitative difference that depends on specific modeling assumptions.

      New simulations clearly demonstrate the confound in relative bias

      Figure 24 also speaks to the relative vs. absolute question. The model without positivity bias shows a slightly stronger absolute "positivity bias" for the most credible feedback, but a weaker relative bias. This is exactly in line with the logic laid out above. In standard bandit tasks, perseveration can be quite well-captured by a fixed absolute positivity bias, which is roughly what we see in the simulations (I'm not sure what to make of the slight increase; perhaps a useful lead for the authors). However, when we divide by average credit assignment, we now see a reduction. This clearly demonstrates that a reduction in relative bias can emerge without any true differences in positivity bias.

      Given everything above, I think it is unlikely that the present data can provide even "solid" evidence for the claim that positivity bias is greater with less credible feedback. This confound could be quickly ruled out, however, by a study in which feedback is sometimes provided in the absence of a choice. This would empirically isolate positivity bias from choice-related effects, including perseveration.

      Comments on revisions:

      Great work on this. The new paper is very interesting as well. I'm delighted to see that the excessive amount of time I spent on this review has had a concrete impact.

    1. Reviewer #1 (Public review):

      Summary:

      The authors provide a compelling case that the unique variance explained by LLMs is different (and later) than the unique variance explained by DNNs. This characterises when, and to some extent where, these differences occur, and for LLMs, why. The authors also probe what in the sentences is driving the brain alignment.

      Strengths:

      (1) The study is timely.

      (2) There is a robust dataset and results.

      (3) There is compelling separation between unique responses related to LLMs and DNNs.

      (4) The paper is well-written.

      Weaknesses:

      The authors could explore more of what the overlap between the LLM and DNN means, and in general, how this relates to untrained networks.

    2. Reviewer #2 (Public review):

      Summary:

      This study provides an investigation into the temporal dynamics of visuo-semantic processing in the human brain, leveraging both deep neural networks (DNNs) and large language models (LLMs). By developing encoding models based on vision DNNs, LLMs, and their fusion, the authors demonstrate that vision DNNs preferentially account for early, broadband EEG responses, while LLMs capture later, low-frequency signals and more detailed visuo-semantic information. It is shown that the parietal cortex shows responses during visuo-semantic processing that can be partially accounted for by language features, highlighting the role of higher-level areas in encoding abstract semantic information.

      Strengths:

      The study leverages a very large EEG dataset with tens of thousands of stimulus presentations, which provides an unusually strong foundation for benchmarking a variety of vision DNNs and LLMs. This scale not only increases statistical power but also allows robust comparison across model architectures, ensuring that the conclusions are not idiosyncratic to a particular dataset or stimulus set.

      By using high-density EEG, the authors are able to capture the fine-grained temporal dynamics of visuo-semantic processing, going beyond the coarse temporal resolution of fMRI-based studies. This enables the authors to disentangle early perceptual encoding from later semantic integration, and to characterize how different model types map onto these stages of brain activity. The temporal dimension provides a particularly valuable complement to previous fMRI-based model-to-brain alignment studies.

      The encoding models convincingly show that vision DNNs and LLMs play complementary roles in predicting neural responses. The vision DNNs explain earlier broadband responses related to perceptual processing, while LLMs capture later, lower-frequency signals that reflect higher-order semantic integration. This dual contribution provides new mechanistic insights into how visual and semantic information unfold over time in the brain, and highlights the utility of combining unimodal models rather than relying on multimodal networks alone.

      Weaknesses:

      (1) The experimental design is insufficiently described, particularly regarding whether participants were engaged in a behavioral task or simply passively viewing images. Task demands are known to strongly influence neural coding and representations, and without this information, it is difficult to interpret the nature of the EEG responses reported.

      (2) The description of the encoding model lacks precision and formalization. It is not entirely clear what exactly is being predicted, how the model weights are structured across time points, or the dimensionality of the inputs and outputs. A more formal mathematical formulation would improve clarity and reproducibility.

      (3) The selected vision DNNs (CORnet-S, ResNet, AlexNet, MoCo) have substantially lower ImageNet classification accuracies than current state-of-the-art models, with gaps of at least 10%. Referring to these models collectively as "vision DNNs" may overstate their representational adequacy. This performance gap raises concerns about whether the chosen models can fully capture the visual and semantic features needed for comparison with brain data. Clarification of the rationale for choosing these particular networks, and discussion of how this limitation might affect the conclusions, is needed.

      (4) The analytic framework treats "vision" and "language" as strictly separate representational domains. However, semantics are known to emerge in many state-of-the-art visual models, with different layers spanning a gradient from low-level visual features to higher-level semantic representations. Some visual layers may be closer to LLM-derived representations than others. By not examining this finer-grained representational structure within vision DNNs, the study may oversimplify the distinction between vision- and language-based contributions.

      (5) The study uses static images, which restricts the scope of the findings to relatively constrained visual semantics. This limitation may explain why nouns and adjectives improved predictions over vision DNNs, but verbs did not. Verbs often require dynamic information about actions or events, which static images cannot convey.

    3. Reviewer #3 (Public review):

      Summary:

      Rong et al., compare EEG image responses from a large-scale dataset to state-of-the-art vision and language models, as well as their fusion. They find that the fusion of models provides the best predictivity, with early contribution from vision models and later predictivity from language models. The paper has several strengths: high temporal resolution data (though at the expense of spatial resolution), detailed comparison of alignment (and differences) between vision and language model embeddings, and comparison of "fusion" of different DNN models.

      Despite the paper's strengths, it is not clear what is at stake with these findings or how they advance our knowledge beyond other recent studies showing vision versus language model predictions of visual cortex responses with fMRI.

      Strengths:

      The authors use a large-scale EEG dataset and a comprehensive modeling approach. The methods are sound and involve multiple model comparisons. In particular, the disentangling of vision and language model features is something that has been largely ignored in prior related studies.

      Weaknesses:

      (1) The authors state their main hypothesis (lines 48-51) that human neural responses to visual stimulation are better modelled by combining representations from a vision DNN and an LLM than by the representations from either of the two components alone, and that the vision DNN and LLM components would uniquely predict earlier and later stages of visual processing, respectively.

      While they confirm this hypothesis in largely compelling ways, it is not clear whether these results tell us something about the brain beyond how to build the most predictive model.

      In particular, why do language models offer advantages over vision models, and what does this tell us about human visual processing? In several places, the discussion of advantages for the language model felt somewhat trivial and did not seem to advance our understanding of human vision, e.g., "responses for visual stimulation encode detailed information about objects and their properties" (lines 266-270) and "LLM representations capture detailed visuo-semantic information about the stimulus images" (line 293).

      (2) It is not clear what the high temporal resolution EEG data tell us that the whole-brain fMRI data do not. The latency results seem to be largely in line with fMRI findings, where the early visual cortex is better predicted by vision models, and the language model is better in later/more anterior regions. In addition, it would help to discuss whether the EEG signals are likely to be restricted to the visual cortex, or could the LLM predictivity explain downstream processing captured by whole-brain EEG signals?

      Relatedly, it would help the authors to expand on the implications of the frequency analysis.

      (3) While the authors test many combinations of vision and language models and show their "fusion" advantages are largely robust to these changes, it is still hard to ignore the vast differences between vision and language models, in terms of architecture and how they are trained. Two studies (Wang et al., 2023, and Conwell et al., 2024) have now shown that when properly controlling for architecture and dataset, there is little to no advantage of language alignment in predicting visual cortex responses. It would help for the authors to both discuss this aspect of the prior literature and to try to address the implications for their own findings (related to pt 1 about what, if anything, is "special" about language models).

      (4) Model features - it would help to state the dimensionality of the input embeddings for each model and how much variance is explained and preserved after the PCA step? I wonder how sensitive the findings are to this choice of dimensionality reduction, and whether an approach that finds the optimal model layer (in a cross-validated way) would show less of a difference between vision/language models (I realize this is not feasible with models like GPT-3).

      (5) To better understand the fusion advantage, it would help to look at the results, look for a pair of vision models and a pair of language models. Can a similar advantage be found by combining models from the same modality?

    1. Reviewer #1 (Public review):

      Summary:

      Rahmani et al. utilize the TurboID method to characterize global proteome changes in the worm's nervous system induced by a salt-based associative learning paradigm. Altogether, they uncover 706 proteins tagged by the TurboID method in worms that underwent the memory-inducing protocol. Next, the authors conduct a gene enrichment analysis that implicates specific molecular pathways in salt-associative learning, such as MAP kinase and cAMP-mediated pathways, as well as specific neuronal classes including pharyngeal neurons, and specific sensory neurons, interneurons, and motor neurons. The authors then screen a representative group of hits from the proteome analysis. They find that mutants of candidate genes from the MAP kinase pathway, namely dlk-1 and uev-3, do not affect performance in the learning paradigm. Instead, multiple acetylcholine signaling mutants, as well as a protein-kinase-A mutant, significantly affected performance in the associative memory assay (e.g., acc-1, acc-3, lgc-46, and kin-2). Finally, the authors demonstrate that protein-kinase-A mutants, as well as acetylcholine signaling mutants, do not exhibit a phenotype in a related but distinct conditioning paradigm-aversive salt conditioning-suggesting their effect is specific to appetitive salt conditioning.

      Overall, the authors addressed the concerns raised in the previous review round, including the statistics of the chemotaxis experiments and the systems-level analysis of the neuron class expression patterns of their hits. I also appreciate the further attempt to equalize the sample size of the chemotaxis experiments and the transparent reporting of the sample size and statistics in the figure captions and Table S9. The new results from the panneuronal overexpression of the kin-2 gain-of-function allele also contribute to the manuscript. Together, these make the paper more compelling. The additional tested hits provide a comprehensive analysis of the main molecular pathways that could have affected learning. However, the revised manuscript includes more information and analysis, raising additional concerns.

      Major comments:

      As reviewer 4 noted, and as also shown to be relevant for C30G12.6 presented in Figure 6, the backcrossing of the mutants is important, as background mutations may lead to the observed effects. Could the authors add to Table 1, sheet 1, the outcrossing status of the tested mutants? It is important to validate that the results of the positive hits (where learning was affected), such as acc-1, acc-3, and lgc-46, do not stem from background mutations.

      The fold change in the number of hits for different neurons in the CENGEN-based rank analysis requires a statistical test (discussed on pages 17-19 and summarized in Table S7). Similar to the other gene enrichment analyses presented in the manuscript, the new rank analysis also requires a statistical test. Since the authors extensively elaborate on the results from this analysis, I think a statistical analysis is especially important for its interpretation. For example, if considering the IL1 neurons, which ranked highest, and assuming random groups of genes-each having the same size as those of the ranked neurons (209 genes in total for IL1 in Table S7)-how common would it be to get the calculated fold change of 1.38 or higher? Such bootstrapping analysis is common for enrichment analysis. Perhaps the authors could consult with an institutional expert (Dr. Pawel Skuza, Flinders University) for the statistical aspects of this analysis.

      The learning phenotypes from Figure S8, concerning acc-1, acc-3, and lgc-46 mutants, are summarized in a scheme in Figure 4; however, the chemotaxis results are found in the supplemental Figure S8. Perhaps I missed the reasoning, but for transparency, I think the relevant Figure S8 results should be shown together with their summary scheme in Figure 4.

    2. Reviewer #2 (Public review):

      Summary:

      In this study by Rahmani in colleagues, the authors sought to define the "learning proteome" for a gustatory associative learning paradigm in C. elegans. Using a cytoplasmic TurboID expressed under the control of a pan-neuronal promoter, the authors labeled proteins during the training portion of the paradigm, followed by proteomics analysis. This approach revealed hundreds of proteins potentially involved in learning, which the authors describe using gene ontology and pathway analysis. The authors performed functional characterization of over two dozen of these genes for their requirement in learning using the same paradigm. They also compared the requirement for these genes across various learning paradigms and found that most hits they characterized appear to be specifically required for the training paradigm used for generating the "learning proteome".

      Strengths:

      - The authors have thoughtfully and transparently designed and reported the results of their study. Controls are carefully thought-out, and hits are ranked as strong and weak. By combining their proteomics with behavioral analysis, the authors also highlight the biological significance of their proteomics findings, and support that even weak hits are meaningful.

      - The authors display a high degree of statistical rigor, incorporating normality tests into their behavioral data which is beyond the field standard.

      - The authors include pathway analysis that generates interesting hypotheses about processes involved learning and memory

      -The authors generally provide thoughtful interpretations for all of their results, both positive and negative, as well as any unexpected outcomes.

      Weaknesses:

      - The authors use the Cengen single cell-transcriptomic atlas to predict where the proteins in the "learning proteome" are likely to be expressed and use this data to identify neurons that are likely significant to learning, and building hypothetical circuit. This is an excellent idea; however, the Cengen dataset only contains transcriptomic data from juvenile L4 animals, while the authors performed their proteome experiments in Day 1 Adult animals. It is well documented that the C. elegans nervous system transcriptome is significant different between these two stages (Kaletsky et al., 2016, St. Ange et al., 2024), so the authors might be missing important expression data, resulting in inaccurate or incomplete networks. The adult neuronal single-cell atlas data (https://cestaan.princeton.edu/) would be better suited to incorporate into neuronal expression analysis.

      - The authors offer many interpretations for why mutants in "learning proteome" hits have no detectable phenotype, which is commendable. They are however overlooking another important interpretation, it is possible that these changes to the proteome are important for memory, which is dependent upon translation and protein level changes, and is molecularly distinct from learning. It is well established in the field mutating or knocking down memory regulators in other paradigms will often have no detectable effect on learning. Incorporating this interpretation into the discussion and highlighting it as an area for future exploration would strengthen the manuscript.

      -A minor weakness - In the discussion, the authors state that the Lakhina, et al 2015 used RNA-seq to assess memory transcriptome changes. This study used microarray analysis.

      Significance:

      The approach used in this study is interesting and has the potential to further our knowledge about the molecular mechanisms of associative behaviors. There have been multiple transcriptomic studies in the worm looking at gene expression changes in the context of behavioral training. This study compliments and extends those studies, by examining how the proteome changes in a different training paradigm. This approach here could be employed for multiple different training paradigms, presenting a new technical advance for the field. This paper would be of interest to the broader field of behavioral and molecular neuroscience. Though it uses an invertebrate system, many findings in the worm regarding learning and memory translate to higher organisms, making this paper of interest and significant to the broader field of behavioral neuroscience.

    3. Reviewer #4 (Public review):

      Summary:

      In this manuscript, authors used a learning paradigm in C. elegans; when worms were fed in a saltless plate, its chemotaxis to salt is greatly reduced. To identify learning-related proteins, authors employed nervous system-specific transcriptome analysis to compare whole proteins in neurons between high-salt-fed animals and saltless-fed animals. Authors identified "learning-specific proteins" which are observed only after saltless feeding. They categorized these proteins by GO analyses, pathway analyses and expression site analyses, and further stepped forward to test mutants in selected genes identified by the proteome analysis. They find several mutants that are defective or hyper-proficient for learning, including acc-1/3 and lgc-46 acetylcholine receptors, F46H5.3 putative arginine kinase, and kin-2, a cAMP pathway gene. These mutants were not previously reported to have abnormality in the learning paradigm.

      Concerns:

      Upon revision, authors addressed all concerns of this reviewer, and the results are now presented in a way that facilitates objective evaluation. Authors' conclusions are supported by the results presented, and the strength of the proteomics approach is persuasively demonstrated.

      Significance:

      (1) Total neural proteome analysis has not been conducted before for learning-induced changes, though transcriptome analysis has been performed for odor learning (Lakhina et al., http://dx.doi.org/10.1016/j.neuron.2014.12.029). This warrants the novelty of this manuscript, because for some genes, protein levels may change even though mRNA levels remain the same. Although in a few reports TurboID has been used in C. elegans, this is the first report of a systematic analysis of tissue-specific differential proteomics.

      (2) Authors found five mutants that have abnormality in the salt learning. These genes have not been described to have the abnormality, providing novel knowledge to the readers, especially those who work on C. elegans behavioural plasticity. Especially, involvement of acetylcholine neurotransmission has not been addressed before. Although transgenic rescue experiments have not been performed except kin-2, and the site of action (neurons involved) has not been tested in this manuscript, it will open the venue to further determine the way in which acetylcholine receptors, cAMP pathway etc. influences the learning process.

    1. Reviewer #1 (Public review):

      Summary:

      The authors show that corticotropin-releasing factor (CRF) neurons in the central amygdala (CeA) and bed nucleus of the stria terminalis (BNST) monosynaptically target cholinergic interneurons (CINs) in the dorsal striatum of rodents. Functionally, activation of CRFR1 receptors increases CIN firing rate, and this modulation was reduced by pre-exposure to ethanol. This is an interesting finding, with potential significance for alcohol use disorders, but some conclusions could use additional support.

      Strengths:

      Well-conceived circuit mapping experiments identify a novel pathway by which the CeA and BNST can modulate dorsal striatal function by controlling cholinergic tone. Important insight into how CRF, a neuropeptide that is important in mediating aspects of stress, affective/motivational processes, and drug-seeking, modulates dorsal striatal function.

      Weaknesses:

      (1) Tracing and expression experiments were performed both in mice and rats (in a mostly non-overlapping way). While these species are similar in many ways, some conclusions are based on assumptions of similarities that the presented data do not directly show. In most cases, this should be addressed in the text (but see point number 2).

      (2) Experiments in rats show that CRFR1 expression is largely confined to a subpopulation of striatal CINs. Is this true in mice, too? Since most electrophysiological experiments are done in various synaptic antagonists and/or TTX, it does not affect the interpretation of those data, but non-CIN expression of CRFR1 could potentially have a large impact on bath CRF-induced acetylcholine release.

      (3) Experiments in rats show that about 30% of CINs express CRFR1 in rats. Did only a similar percentage of CINs in mice respond to bath application of CRF? The effect sizes and error bars in Figure 5 imply that the majority of recorded CINs likely responded. Were exclusion criteria used in these experiments?

      (4) The conclusion that prior acute alcohol exposure reduces the ability of subsequent alcohol exposure to suppress CIN activity in the presence of CRF may be a bit overstated. In Figure 6D (no ethanol pre-exposure), ethanol does not fully suppress CIN firing rate to baseline after CRF exposure. The attenuated effect of CRF on CIN firing rate after ethanol pre-treatment (6E) may just reduce the maximum potential effect that ethanol can have on firing rate after CRF, due to a lowered starting point. It is possible that the lack of significant effect of ethanol after CRF in pre-treated mice is an issue of experimental sensitivity. Related to this point, does pre-treatment with ethanol reduce the later CIN response to acute ethanol application (in the absence of CRF)?

      (5) More details about the area of the dorsal striatum being examined would be helpful (i.e., a-p axis).

    2. Reviewer #2 (Public review):

      Summary:

      Essoh and colleagues present a thorough and elegant study identifying the central amygdala and BNST as key sources of CRF input to the dorsal striatum. Using monosynaptic rabies tracing and electrophysiology, they show direct connections to cholinergic interneurons. The study builds on previous findings that CRF increases CIN firing, extending them by measuring acetylcholine levels in slices and applying optogenetic stimulation of CRF+ fibers. It also uncovers a novel interaction between alcohol and CRF signaling in the striatum, likely to spark significant interest and future research.

      Strengths:

      A key strength is the integration of anatomical and functional approaches to demonstrate these projections and assess their impact on target cells, striatal cholinergic interneurons.

      Weaknesses:

      The nature of the interaction between alcohol and CRF actions on cholinergic neurons remains unclear. Also, further clarification of the ACh sensor used and others is required

    3. Reviewer #3 (Public review):

      Summary:

      The authors demonstrate that CRF neurons in the extended amygdala form GABAergic synapses onto cholinergic interneurons and that CRF can excite these neurons. The evidence is strong, however, the authors fail to make a compelling connection showing CRF released from these extended amygdala neurons is mediating any of these effects. Further, they show that acute alcohol appears to modulate this action, although the effect size is not particularly robust.

      Strengths:

      This is an exciting connection from the extended amygdala to the striatum that provides a new direction for how these regions can modulate behavior. The work is rigorous and well done.

      Weaknesses:

      While the authors show that opto stim of these neurons can increase firing, this is not shown to be CRFR1 dependent. In addition, the effects of acute ethanol are not particularly robust or rigorously evaluated. Further, the opto stim experiments are conducted in an Ai32 mouse, so it is impossible to determine if that is from CEA and BNST, vs. another population of CRF-containing neurons. This is an important caveat.

    4. Reviewer #4 (Public review):

      Summary:

      This manuscript presents a compelling and methodologically rigorous investigation into how corticotropin-releasing factor (CRF) modulates cholinergic interneurons (CINs) in the dorsal striatum - a brain region central to cognitive flexibility and action selection-and how this circuit is disrupted by alcohol exposure. Through an integrated series of anatomical, optogenetic, electrophysiological, and imaging experiments, the authors uncover a previously uncharacterized CRF⁺ projection from the central amygdala (CeA) and bed nucleus of the stria terminalis (BNST) to dorsal striatal CINs.

      Strengths:

      Key strengths of the study include the use of state-of-the-art monosynaptic rabies tracing, CRF-Cre transgenic models, CRFR1 reporter lines, and functional validation of synaptic connectivity and neurotransmitter release. The finding that CRF enhances CIN excitability and acetylcholine (ACh) release via CRFR1, and that this effect is attenuated by acute alcohol exposure and withdrawal, provides important mechanistic insight into how stress and alcohol interact to impair striatal function. These results position CRF signaling in CINs as a novel contributor to alcohol use disorder (AUD) pathophysiology, with implications for relapse vulnerability and cognitive inflexibility associated with chronic alcohol intake.

      The study is well-structured, with a clear rationale, thorough methodology, and logical progression of results. The discussion effectively contextualizes the findings within broader addiction neuroscience literature and suggests meaningful future directions, including therapeutic targeting of CRFR1 signaling in the dorsal striatum.

      Weaknesses:

      Minor areas for improvement include occasional redundancy in phrasing, slightly overlong descriptions in the abstract and significance sections, and a need for more concise language in some places. Nevertheless, these do not detract from the manuscript's overall quality or impact.

      Overall, this is a highly valuable contribution to the fields of addiction neuroscience and striatal circuit function, offering novel insights into stress-alcohol interactions at the cellular and circuit level, which requires minor editorial revisions.

    1. Reviewer #1 (Public review):

      Summary:

      Fogel & Ujfalussy report an extension of a visualization tool that was originally designed to enable an understanding of detailed biophysical neuron models. Named "extended currentscape", this new iteration enables visual assessment of individual currents across a neuron's spatially extended dendritic arbor with simultaneous readout of somatic currents and voltage. The overall aim was to permit a visually intuitive understanding for how a model neuron's inputs determine its output. This goal was worthwhile and the authors achieved it. Their manuscript makes two additional contributions of note: (1) a clever algorithmic approach to model the axial propagation of ionic currents (recursively traversing acyclic graph subsections) and (2) interesting, albeit not easily testable, insights into important neurophysiological phenomena such as complex spike generation and place field dynamics. Overall, this study provides a valuable and well-characterized biophysical modeling resource to the neuroscience community.

      Strengths:

      The authors significantly extended a previously published open-source biophysical modeling tool. Beyond providing important new capabilities, the potential impact of "extended currentscape" is boosted by its integration with preexisting resources in the field.

      The code is well-documented and freely available via GitHub.

      The author's clever portioning algorithm to relate dendritic/synaptic currents to somatic yielded multiple intriguing observations regarding when and why CA1 pyramidal neurons fire complex spikes versus single action potentials. This topic carries major implications for how the hippocampus represents and stores information about an animal's environment.

      Weaknesses:

      While extended currentscape is clearly a valuable contribution to the neuroscience community, this reviewer would argue that it is framed in a way that oversells its capabilities. The Abstract, Introduction, Results, and Methods all contain phrases implying that extended currentscape infers dendritic/synaptic currents contributing to somatic output., i.e. backwards inference of unknown inputs from a known output. This is not the case; inputs are simulated and then propagated through the model neuron using a clever partitioning algorithm that essentially traverses a biologically undirected graph structure by treating it like a time series of tiny directed graphs. This is an impressive solution, but it does not infer a neuron's input structure.

      Because a directed acyclic graph architecture is shown in Figure 2, it is unintuitive that the authors can infer bidirectional current flow, e.g. Figure 3 showing current flowing from basal dendrites and axon to soma, and further towards the apical dendrites. This is explained in Methods, but difficult to parse from Results amidst lots of rather abstract jargon (target, reference, collision, compartment). Figure 2 would have presented an opportunity to clearly illustrate the author's portioning algorithm by (1) rooting it in the exact morphology of one of their multicompartmental model neurons and (2) illustrating that "target" and "reference" have arbitrary morphological meanings; they describe the direction of current flow which is reevaluated at each time step.

      Analyses in Figure 7, C and D, are insightfully devised and illuminating. However, they could use some reconciliation with Figure 5 regarding initiation of individual APs versus CSBs within place fields.

      The intriguing observations generated by extended currentscape also point to its main weakness, which the authors openly acknowledge: as of now, no experimental methods exist to conclusively tests its predictions.

    2. Reviewer #2 (Public review):

      Summary


      The electrical activity of neurons and neuronal circuits is dictated by the concerted activity of multiple ionic currents. Because directly investigating these currents experimentally isn't possible with current methods, researchers rely on biophysical models to develop hypotheses and intuitions about their dynamics. Models of neural activity produce large amounts of data that is hard to visualize and interpret. The currentscape technique helps visualize the contributions of currents to membrane potential activity, but it's limited to model neurons without spatial properties. The extended currentscape technique overcomes this limitation by tracking the contributions of the different currents from distant locations. This extension allows tracking not only the types of currents that contribute to the activity in a given location, but also visualizing the spatial region where the currents originate. The method is applied to study the initiation of complex spike bursts in a model hippocampal place cell. 



      Strengths.


      The visualization method introduced in this work represents a significant improvement over the original currentscape technique. The extended currentscape method enables investigation of the contributions of currents in spatially extended models of neurons and circuits. 



      Weaknesses.


      The case study is interesting and highlights the usefulness of the visualization method. A simpler case study may have been sufficient to exemplify the method, while also allowing readers to compare the visualizations against their own intuitions of how currents should flow in a simpler setting.

    1. Reviewer #1 (Public review):

      Summary:

      The authors used fine-level resolution epidemiological data to describe the spatiotemporal patterns of dengue, chikungunya and Zika. They assessed which factors best captured the historic transmission dynamics in Brazil. It was used epidemiological data from 2013 to 2020. They tested the association between arbovirus incidence and environment, human connectivity and socioeconomic, and climate variables, including extreme weather conditions.

      Strengths:

      The authors used granular epidemiological data at the subnational level and weekly case notification time series. Furthermore, they considered more than one hundred variables. Among the variables, it is highlighted that they also considered human connectivity and extreme weather events.

      The authors used appropriate statistical methods accounting for the spatiotemporal structure and used the negative binomial to handle overdispersion; They applied a systematic covariate screening, using WAIC and performed sensitivity analysis. Their results suggest an important role of climate variables such as El Niño South Oscillation Anomalies, and that extremes in wetness and drought may drive infections outside regular patterns; it also suggests that temperature variations and extremes may be more associated with the incidence than the mean temperature; in addition, human connectivity networks are also pointed out as a key driver factor at fine level scale.

      Weaknesses:

      The authors have not accounted for the correlation between diseases. They have not considered the co-occurrence of diseases by applying a joint modelling approach, nor have they discussed this as a possibility for future work. Still, regarding the methods, they used a simplified lag treatment. They could have included into the discussion, examples of methods like Distributed Lag Models. This can be used in contexts when analysing meteorological covariates and extreme weather events.

      They also have not considered the population's immunity to the different serotypes of dengue, which can reflect in peaks of incidence when a new serotype starts to circulate in a certain region. It is important to bring this into the discussion section.

      Whether the authors achieved their aims, and whether the results support their conclusions:

      The authors assess variables which may be associated with different vector-borne disease incidence and the magnitude of these associations. Conducting a fine-scale resolution analysis (spatial and temporal), they emphasised the role of environmental and extreme weather conditions. Their findings are coherent with their analysis and corroborate some of the existing literature.

      Discussion of the likely impact of the work on the field, and the utility of the methods and data to the community:

      Their work shows how the different vector-borne diseases are influenced by environmental and climatic factors and that human connectivity may play an important role at the fine level spatial and temporal scale. This work brings a picture of the spatial and temporal distributions of dengue, chikungunya and Zika, at the municipal level in Brazil (2013-2020). The material and methods are well described, and the source is made available, allowing reproducibility by other researchers and academics.

    2. Reviewer #2 (Public review):

      Summary:

      This manuscript looks at a wide variety of likely important drivers of arbovirus transmission across municipalities in Brazil. The results are intriguing due to their relevance and breadth, but the approach also brings challenges, which make the results hard to interpret.

      Strengths:

      Important and complex problem, excellent spatiotemporal resolution, collection of important covariates, and holistic analysis.

      Weaknesses:

      There are two key weaknesses. First, it is difficult to understand the actual contributions of each included covariate. The principal fit metric is WAIC, and importance is characterized by rank based on univariate fit. WAIC is a valuable comparison metric, but does not indicate how well the best model (or any other) fits the data. Figures 5B and S2-S4 show what look like good fits, but it also seems possible that most of this fit could be coming from the random effects rather than the covariates. It would be helpful to show the RE-only model as a comparator in these figures and also to consider other metrics that could help show overall fit (e.g., R^2). How much variance is actually being explained by the covariates?

      Relatedly, the mean absolute errors reported are approximately 2-8 across the viruses, which sounds good on the surface. But many of the actual counts are zeros, so it's hard to tell if this is really good. Comparison to the mean and median observed case counts would be helpful.

      Second, some of the results/discussion on specific variables and covariates were confusing. For example, the relationships between relative humidity and temperature vary substantially between pathogens and minimum or maximum temperature values. However, as transmission of three viruses relies on the same mosquito and minimum and maximum temperatures are highly correlated, we would expect these relationships to be very similar. One concern is clarity, and another is that some of the findings may be spurious - potentially related to how much of the variance is accounted for by the random effects alone (see above) and the wide range of covariates assessed (thus increasing the chance of something improving fit).

      Underlying much of this are likely nonlinear relationships. The authors comment on this as a likely reason for some of the specific relationships, but it is not a very strong argument because the variable selection process is completely based on (generalized) linear univariate regressions.

      Lastly, the mischaracterization of arboviral disease is a big challenge, as noted in the discussion. Only a subset of cases in Brazil are laboratory confirmed, but I couldn't find any statement about whether the cases used here were laboratory confirmed or not. I suspect that they are a combination of confirmed and suspect cases. A sensitivity analysis with only confirmed cases would increase confidence in the results.

    1. Reviewer #1 (Public review):

      Summary:

      Many studies have investigated adaptation to altered sensorimotor mappings or to an altered mechanical environment. This paper asks a different but also important question in motor control and neurorehabilitation: how does the brain adapt to changes in the controlled plant? The authors addressed this question by performing a tendon transfer surgery in two monkeys during which the swapped tendons flexing and extending the digits. They then monitored changes in task performance, muscle activation and kinematics post-recovery over several months, to assess changes in putative neural strategies.

      Strengths:

      (1) The authors performed complicated tendon transfer experiments to address their question of how the nervous system adapts to changes in the organisation of the neuromusculoskeletal system, and present very interesting data characterising neural (and in one monkey, also behavioural) changes post tendon transfer over several months.

      (2) The fact that the authors had to employ to two slightly different tasks -one more artificial, the other more naturalistic- in the two monkeys and yet found qualitatively similar changes across them makes the findings more compelling.

      (3) The paper is quite well written, and the analyses are sound, although some analyses could be improved (suggestions below).

      Weaknesses:

      (1) I think this is an important paper, paper but I'm puzzled about a tension in the results. On the one hand, it looks like the behavioural gains post-TT happen rather smoothly over time (Figure 5). On the other, muscle synergy activations changes abruptly at specific days (around day ~65 for Monkey A and around day ~45 for monkey B; e.g., Figure 6). How do the authors reconcile this tension? In other words, how do they think that this drastic behavioural transition can arise from what appears to be step-by-step, continuous changes in muscle coordination? Is it "just" subtle changes in movements/posture exploiting the mechanical coupling between wrist and finger movements combined with subtle changes in synergies and they just happen to all kick in at the same time? This feels to me the core of the paper and should be addressed more directly.

      (2) The muscles synergy analyses, which are an important part of the paper, could be improved. In particular:

      (2a) When measuring the cross-correlation between the activation of synergies, the authors should include error bars, and should also look at the lag between the signals.

      (2b) Figure 7C and related figures, the authors state that the activation of muscle synergies revert to pre-TT patterns toward the end of the experiments. However, there are noticeable differences for both monkeys (at the end of the "task range" for synergy B for monkey A, and around 50 % task range for synergy B for monkey B). The authors should measure this, e.g., by quantifying the per-sample correlation between pre-TT and post-TT activation amplitudes. Same for Figures 8I,J, etc.

      (2c) In Figures 9 and 10, the authors show the cross-correlation of the activation coefficients of different synergies; the authors should also look at the correlation between activation profiles because it provides additional information.

      (2d) Figure 11: the authors talk about a key difference in how Synergy B (the extensor finger) evolved between monkeys post-TT. However, to me this figure feels more like a difference in quantity -the time course- than quality, since for both monkeys the aaEMG levels pretty much go back to close to baseline levels -even if there's a statistically significant difference only for Monkey B. What am I missing?

      (2e) Lines 408-09 and above: The authors claim that "The development of a compensatory strategy, primarily involving the wrist flexor synergy (Synergy C), appears crucial for enabling the final phase of adaptation", which feels true intuitively and also based on the analysis in Figure 8, but Figure 11 suggests this is only true for Monkey A . How can these statements be reconciled?

      (3) Experimental design: at least for the monkey who was trained on the "artificial task" (Monkey A), it would have been good if the authors had also tested him on naturalistic grasping, like the second monkey, to see to what extent the neural changes generalise across behaviours or are task-specific. Do the authors have some data that could be used to assessed this even if less systematically?

      (4) Monkey's B behaviour pre-tendon transfer seems more variable than that of Monkey A (e.g., the larger error bars in Figure 5 compared to monkey A, the fluctuating cross-correlation between FDS pre and EDC post in Figure 6Q), this should be quantified to better ground the results since it also shows more variability post-TT.

      (5) Minor: Figure 12 is interesting and supports the idea that monkeys may exploit the biomechanical coupling between wrist and fingers as part of their function recovery. It would be interesting to measure whether there is a change in such coupling (tenodesis) over time, e.g., by plotting change in wrist angle vs change in MCP angle as a scatter plot (one dot per trial), and in the same plot show all the days, colour coded by day. Would the relationship remain largely constant or fluctuate slightly early on? I feel this analysis could also help address my point (1) above.

    2. Reviewer #2 (Public review):

      Summary:

      This study tackles an important question for both basic science understanding and translational relevance - how does the nervous system learn to control a changing body? Of course, all bodies change slowly over time, including basic parameters like size and weight distribution, but many types of diseases and injuries also alter the body and require neural adaptation to sustain normal control. A dramatic example from the clinic is the use of tendon transfer surgery in patients with near tetraplegia that allows them to use more proximal arm muscles to control the hand. Here, the authors sought to ask what strategies may be used when an animal adapts its motor control in response to tendon transfer. They focus on whether recovered functions leverage fractionated control over each muscle separately or, alternatively, whether there is evidence for modular control in which pre-existing synergies are recruited differently after the surgery. Overall, this work is very promising and advances the use of tendon transfer in animal models as a powerful way to study motor control flexibility, but the incomplete data and difficulty comparing between the two subjects mean that evidence is lacking for some of the conclusions.

      Strengths:

      A major strength of this paper is its motivating idea of using tendon transfer between flexor and extensor muscles in non-human primate wrist control to ask what adaptations are possible, how they evolve over time, and what might be the underlying neural control strategies. This is a creative and ambitious approach. Moreover, these surgeries are likely very challenging to do properly, and the authors rigorously documented the effectiveness of the transfer, particularly for Monkey A.

      The results are promising, and there are two very interesting findings suggested by the data. First, when a single muscle out of a related group is manipulated, there is aberrant muscle activity detected across related muscles that are coordinated with each other and impacted as a group. For example, when the main finger extensor muscle now becomes a flexor, the timing of its activation is changed, and this is accompanied by similar changes in a more minor finger extensor as well as in wrist extensor muscles. This finding was observed in both monkeys and likely reflects a modular adaptive response. Second, there is a biphasic response in the weeks following injury, with an early phase in which the magnitude of an extensor synergy was increased and the timing of flexor and extensor recruitment was altered, followed by a later phase in which the timing and overall magnitude are restored.

      Weaknesses:

      The most notable weakness of the study is the incompleteness of the data. Monkey A has excellent quality EMG in all relevant muscles, but no analysis of video data, while Monkey B has some video data kinematics and moderate quality EMG, but the signal in the transferred FDS muscle was lost. These issues could be overcome by aligning data between the two monkeys, but the behavior tasks performed by each monkey are different, and so are the resulting muscle synergies detected (e.g., for synergies C and D), and different timepoints were analyzed in each monkey. As a result, it is difficult to make general conclusions from the study, and it awaits further analysis or the addition of another subject.

      A second weakness is the insufficient analysis of the movements themselves, particularly for Monkey A. The main metrics analyzed were the time from task engagement (touch) to action onset and the time spent in an off-target location - neither of these measures can be related directly to muscle activity or the movement. Since the authors have video data for both monkeys, it is surprising that it was not used to extract landmarks for kinematic analysis, or at least hand/endpoint trajectory, and how it is adjusted over time. Adding more behavior data and aligning it with the EMG data would be very helpful for characterizing motor recovery and is needed to support conclusions about underlying neural control strategies for functional improvement.

      Considering specific conclusions, the statement that the monkeys learned to use "tenodesis" over time by increasing activation of a wrist flexor muscle synergy does not seem to be fully supported by the data. Monkey A data includes EMG for two wrist flexors and a clear wrist flexor synergy, but it seems that, when comparing baseline and the final post-surgery timepoints, the main change is decreased activity around grasp after tendon transfer (at 0% of the task range if I understand this correctly) (Figure 8E and Figure S2-H vs R and -I vs S). It is clear that Monkey B increases the flexion of the wrist joint over time from the kinematic data, but the activity pattern in the only recorded wrist flexor (PL) doesn't change much with time (Figure S2-AN) and this monkey does not have a clear wrist flexor synergy (PL is active in the flexor synergy A while synergy C mainly reflects deltoid activity). Given these issues, it is not clear how to align the EMG and kinematic data and interpret these findings.

      A more minor point regarding conclusions: statements about poor task performance and high energy expenditure being the costs that drive exploration for a new strategy are speculative and should be presented as such. Although the monkeys did take longer to complete the tasks after the surgery, they were still able to perform it successfully and in less than a second and no measurements of energy expenditure were taken.

      A small concern is whether the tendon transfer effect may fail over time, either due to scar tissue formation or tendon tearing, and it would be ideal if the integrity of the intervention were re-assessed at the end of the study.

    3. Reviewer #3 (Public review):

      Summary:

      In this study, Philipp et al. investigate how a monkey learns to compensate for a large, chronic biomechanical perturbation - a tendon transfer surgery, swapping the actions of two muscles that flex and extend the fingers. After performing the surgery and confirming that the muscle actions are swapped, the authors follow the monkeys' performance on grasping tasks over several months. There are several main findings:

      (1) There is an initial stage of learning (around 60 days), where monkeys simply swap the activation timing of their flexors and extensors during the grasp task to compensate for the two swapped muscles.

      (2) This is (seemingly paradoxically) followed by a stage where muscle activation timing returns almost to what it was pre-surgery, suggesting that monkeys suddenly swap to a new strategy that is better than the simple swap.

      (3) Muscle synergies seem remarkably stable through the entire learning course, indicating that monkeys do not fractionate their muscle control to swap the activations of only the two transferred muscles.

      (4) Muscle synergy activation shows a similar learning course, where the flexion synergy and extension synergy activations are temporarily swapped in the first learning stage and then revert to pre-surgery timing in the second learning stage.

      (5) The second phase of learning seems to arise from making new, compensatory movements (supported by other muscle synergies) that get around the problem of swapped tendons.

      Strengths:

      This study is quite remarkable in scope, studying two monkeys over a period of months after a difficult tendon-transfer surgery. As the authors point out, this kind of perturbation is an excellent testbed for the kind of long-term learning that one might observe in a patient after stroke or injury, and provides unique benefits over more temporary perturbations like visuomotor transformations and studying learning through development. Moreover, while the two-stage learning course makes sense, I found the details to be genuinely surprising--specifically the fact that: (1) muscle synergies continue to be stable for months after the surgery, despite now being maladaptive; and (2) muscle activation timing reverts to pre-surgery levels by the end of the learning course. These two facts together initially make it seem like the monkey simply ignores the new biomechanics by the end of the learning course, but the authors do well to explain that this is mainly because the monkeys develop a new kind of movement to circumvent the surgical manipulation.

      I found these results fascinating, especially in comparison to some recent work in motor cortex, showing that a monkey may be able to break correlations between the activities of motor cortical neurons, but only after several sessions of coaching and training (Oby et al. PNAS 2019). Even then, it seemed like the monkey was not fully breaking correlations but rather pushing existing correlations harder to succeed at the virtual task (a brain-computer interface with perturbed control).

      Weaknesses:

      I found the analysis to be reasonably well considered and relatively thorough. However, I do have a few suggestions that I think may elevate the work, should the authors choose to pursue them.

      First, I find myself wondering about the physical healing process from the tendon transfer surgery and how it might contribute to the learning. Specifically, how long does it take for the tendons to heal and bear forces? If this itself takes a few months, it would be nice to see some discussion of this.

      Second, I see that there are some changes in the muscle loadings for each synergy over the days, though they are relatively small. The authors mention that the cosine distances are very small for the conserved synergies compared to distances across synergies, but it would be good to get a sense for how variable this measure is within synergy. For example, what is the cosine similarity for a conserved synergy across different pre-surgery days? This might help inform whether the changes post-surgery are within a normal variation or whether they reflect important changes in how the muscles are being used over time.

      Last, and maybe most difficult (and possibly out of scope for this work): I would have ideally liked to see some theoretical modeling of the biomechanics so I could more easily understand what the tendon transfer did or how specific synergies affect hand kinematics before and after the surgery. Especially given that the synergies remained consistent, such an analysis could be highly instructive for a reader or to suggest future perturbations to further probe the effects of tendon transfer on long-term learning.

    1. Reviewer #1 (Public review):

      Summary:

      The authors propose a new technique which they name "Multi-gradient Permutation Survival Analysis (MEMORY)" that they use to identify "Genes Steadily Associated with Prognosis (GEARs)" using RNA-seq data from the TCGA database. The contribution of this method is one of the key stated aims of the paper. The majority of the paper focuses on various downstream analyses that make use of the specific GEARs identified by MEMORY to derive biological insights, with a particular focus on lung adenocarcinoma (LUAD) and breast invasive carcinoma (BRCA) which are stated to be representative of other cancers and are observed to have enriched mitosis and immune signatures, respectively. Through the lens of these cancers, these signatures are the focus of significant investigation in the paper.

      Strengths:

      The approach for MEMORY is well-defined and clearly presented, albeit briefly. This affords statisticians and bioinformaticians the ability to effectively scrutinize the proposed methodology and may lead to further advancements in this field. The scientific aspects of the paper (e.g., the results based on the use of MEMORY and the downstream bioinformatics workflows) are conveyed effectively and in a way that is digestible to an individual that is not deeply steeped in the cancer biology field.

      Weaknesses:

      Comparatively little of the paper is devoted to the justification of MEMORY (i.e., the authors' method) for identification of genes that are important broadly for the understanding of cancer. The authors' approach is explained in the methods section of the paper, but no comparison or reference is made to any other methods that have been developed for similar purposes, and no results are shown to illustrate the robustness of the proposed method (e.g., is it sensitive to subtle changes in how it is implemented).

      For example, in the first part of the MEMORY algorithm, gene expression values are dichotomized at the sample median, and a log-rank test is performed. This would seemingly result in an unnecessary loss of information for detecting an association between gene expression and survival. Moreover, while dichotomizing gene expressions at the median is optimal from an information theory perspective (i.e., it creates equally sized groups), there is no reason to believe that median-dichotomization is correct vis-à-vis the relationship between gene expression and survival. If a gene really matters and expression only differentiates survival more towards the tail of the empirical gene expression distribution, median-dichotomization could dramatically lower power to detect group-wise differences. Notwithstanding this point, the reviewer acknowledges that dichotomization offers a straightforward approach to model gene expression and is widely used. This approach is nonetheless an example of a limitation of the current version of MEMORY that could be addressed to improve the methodology.

      If I understand correctly, for each cancer the authors propose to search for the smallest subsample size (i.e., the smallest value of k_{j}) were there is at least one gene with a survival analysis p-value <0.05 for each of the 1000 sampled datasets. Then, any gene with a p-value <0.05 in 80% of the 1000 sampled datasets would be called a GEAR for that cancer. The 80% value here is arbitrary but that is a minor point. I acknowledge that something must be chosen.

      Presumably the gene with the largest effect for the cancer will define the value of K_{j} and, if the effect is large, this may result in other genes with smaller effects not being defined as a GEAR for that cancer by virtue of the 80% threshold. Thus, a gene being a GEAR is related to the strength of association for other genes in addition to its own strength of association. One could imagine that a gene that has a small-to-moderate effect consistently across many cancers may not show up as GEAR in any of them (if there are [potentially different] genes with more substantive effects for those cancers). Is this desirable?

      The term "steadily associated" implies that a signal holds up across subsample gradients. Effectively this makes the subsampling a type of indirect adjustment to ensure the evidence of association is strong enough. How well this procedure performs in repeated use (i.e., as a statistical procedure) is not clear.

      Assuredly subsampling sets the bar higher than requiring a nominal p-value to be beneath the 0.05 threshold based on analysis of the full data set. The author's note that the MEMORY has several methodological limitations, "chief among them is the need for rigorous, large-scale multiple-testing adjustment before any GEAR list can be considered clinically actionable." The reviewer agrees and would add that it may be difficult to address this limitation within the author's current framework. Moreover, should the author's method be used before such corrections are available given their statement? Perhaps clarification of what it means to be clinically actionable could help here. If a researcher uses MEMORY to screen for GEARs based on the current methodology, what do the authors recommend be done to select a subset of GEARs worthy of additional research/investment?

    2. Reviewer #2 (Public review):

      Summary:

      The authors are trying to come up with a list of genes (GEAR genes) that are consistently associated with cancer patient survival based on TCGA database. A method named "Multi-gradient Permutation Survival Analysis" was created based on bootstrapping and gradually increasing the sample size of the analysis. Only the genes with consistent performance in this analysis process are chosen as potential candidates for further analyses.

      Strengths:

      The authors describe in details their proposed method and the list of the chosen genes from the analysis. Scientific meaning and potential values of their findings are discussed in the context of published results in this field.

      Weaknesses:

      Some steps of the proposed method (especially the definition survival analysis similarity (SAS) need further clarification or details since it would be difficult if anyone tries to reproduce the results.

      If the authors can improve the clarity of the manuscript, including the proposed method and there is no major mistake there, the proposed approach can be applied to other diseases (assuming TCGA type of data is available for them) to identify potential gene lists, based on which drug screening can be performed to identify potential target for development.

    3. Reviewer #4 (Public review):

      Thank you to the authors for their detailed responses and changes in relation to my questions. They have addressed all my concerns around methodological and inference clarity. I would still recommend against the use of feature/pathway selection techniques where there is no way of applying formal error control. I am pleased to read, however, that the authors are planning to develop this in future work. My edited review reflects these changes:

      The authors apply what I gather is a novel methodology titled "Multi-gradient Permutation Survival Analysis" to identify genes that are robustly associated with prognosis ("GEARs") using tumour expression data from 15 cancer types available in the TCGA. The resulting lists of GEARs are then interrogated for biological insights using a range of techniques including connectivity and gene enrichment analysis.

      I reviewed this paper primarily from a statistical perspective. Evidently an impressive amount of work has been conducted, concisely summarised, and great effort has been undertaken to add layers of insight to the findings. I am no stranger to what an undertaking this would have been. My primary concern, however, is that the novel statistical procedure proposed, and applied to identify the gene lists, as far as I can tell offers no statistical error control nor quantification. Consequently we have no sense what proportion of the highlighted GEAR genes and networks are likely to just be noise.

      Major comments:

      The main methodology used to identify the GEAR genes, "Multi-gradient Permutation Survival Analysis" does not formally account for multiple testing and offers no formal error control. Meaning we are left without knowing what the family wise (aka type 1) error rate is among the GEAR lists, nor the false discovery rate. I appreciate the emphasis on reproducibility, but I would generally recommend against the use of any feature selection methodology which does not provide error quantification because otherwise we do not know if we are encouraging our colleagues and/or readers to put resource into lists of genes that contain more noise than not. I am glad though and appreciative that the authors intend to develop this in future work.

      The authors make a good point that, despite lack of validation in an external independent dataset, it is still compelling work given the functional characterisation and literature validation. I am pleased though that the authors agree validation in an independent dataset is an important next step, and plan to do so in future work.

    1. Reviewer #1 (Public review):

      Summary:

      The Neuronal microtubule cytoskeleton is essential long long-range transport in axons and dendrites. The axon-specific plus-end out microtubule organization vs the dendritic-specific plus-end in organization allows for selective transport into each neurite, setting up neuronal polarity. In addition, the dendritic microtubule organization is thought to be important for dendritic pruning in Drosophila during metamorphosis. However, the precise mechanisms that organize microtubules in neurons are still incompletely understood.

      In the current manuscript, the authors describe the spectraplakin protein Shot as important in developmental dendritic pruning. They find that Shot has dendritic microtubule polarity defects, which, based on their rescues and previous work, is likely the reason for the pruning defect.

      Since Shot is a known actin-microtubule crosslinker, they also investigate the putative role of actin and find that actin is also important for dendritic pruning. Finally, they find that several factors that have been shown to function as a dendritic MTOC in C. elegans also show a defect in Drosophila upon depletion.

      Strengths:

      Overall, this work was technically well-performed, using advanced genetics and imaging. The author reports some interesting findings identifying new players for dendritic microtubule organization and pruning.

      Weaknesses:

      The evidence for Shot interacting with actin for its functioning is contradictory. The Shot lacking the actin interaction domain did not rescue the mutant; however, it also has a strong toxic effect upon overexpression in wildtype (Figure S3), so a potential rescue may be masked. Moreover, the C-terminus-only construct, which carries the GAS2-like domain, was sufficient to rescue the pruning. This actually suggests that MT bundling/stabilization is the main function of Shot (and no actin binding is needed). On the other hand, actin depolymerization leads to some microtubule defects and subtle changes in shot localization in young neurons (not old ones). More importantly, it did not enhance the microtubule or pruning defects of the Shot domain, suggesting these act in the same pathway. Interesting to note is that Mical expression led to microtubule defects but not to pruning defects. This argues that MT organization effects alone are not enough to cause pruning defects. This may be be good to discuss. For the actin depolymerization, the authors used overexpression of the actin-oxidizing Mical protein. However, Mical may have another target. It would be good to validate key findings with better characterized actin targeting tools.

      In analogy to C. elegans, where RAB-11 functions as a ncMTOC to set up microtubules in dendrites, the authors investigated the role of these in Drosophila. Interestingly, they find that rab-11 also colocalizes to gamma tubulin and its depletion leads to some microtubule defects. Furthermore, they find a genetic interaction between these components and Shot; however, this does not prove that these components act together (if at all, it would be the opposite). This should be made more clear. What would be needed to connect these is to address RAB-11 localization + gamma-tubulin upon shot depletion.

      All components studied in this manuscript lead to a partial reversal of microtubules in the dendrite. However, it is not clear from how the data is represented if the microtubule defect is subtle in all animals or whether it is partially penetrant stronger effect (a few animals/neurons have a strong phenotype). This is relevant as this may suggest that other mechanisms are also required for this organization, and it would make it markedly different from C. elegans. This should be discussed and potentially represented differently.

    2. Reviewer #2 (Public review):

      Summary:

      In their manuscript, the authors reveal that the spectraplakin Shot, which can bind both microtubules and actin, is essential for the proper pruning of dendrites in a developing Drosophila model. A molecular basis for the coordination of these two cytoskeletons during neuronal development has been elusive, and the authors' data point to the role of Shot in regulating microtubule polarity and growth through one of its actin-binding domains. The authors also propose an intriguing new activity for a spectraplakin: functioning as part of a microtubule-organizing center (MTOC).

      Strengths:

      (1) A strength of the manuscript is the authors' data supporting the idea that Shot regulates dendrite pruning via its actin-binding CH1 domain and that this domain is also implicated in Shot's ability to regulate microtubule polarity and growth (although see comments below); these data are consistent with the authors' model that Shot acts through both the actin and microtubule cytoskeletons to regulate neuronal development.

      (2) Another strength of the manuscript is the data in support of Rab11 functioning as an MTOC in young larvae but not older larvae; this is an important finding that may resolve some debates in the literature. The finding that Rab11 and Msps coimmunoprecipitate is nice evidence in support of the idea that Rab11(+) endosomes serve as MTOCs.

      Weaknesses:

      (1) A significant, major concern is that most of the authors' main conclusions are not (well) supported, in particular, the model that Shot functions as part of an MTOC. The story has many interesting components, but lacks the experimental depth to support the authors' claims.

      (2) One of the authors' central claims is that Shot functions as part of a non-centrosomal MTOC, presumably a MTOC anchored on Rab11(+) endosomes. For example, in the Introduction, last paragraph, the authors summarize their model: "Shot localizes to dendrite tips in an actin-dependent manner where it recruits factors cooperating with an early-acting, Rab11-dependent MTOC." This statement is not supported. The authors do not show any data that Shot localizes with Rab11 or that Rab11 localization or its MTOC activity is affected by the loss of Shot (or otherwise manipulating Shot). A genetic interaction between Shot and Rab11 is not sufficient to support this claim, which relies on the proteins functioning together at a certain place and time. On a related note, the claim that Shot localization to dendrite tips is actin-dependent is not well supported: the authors show that the CH1 domain is needed to enrich Shot at dendrite tips, but they do not directly manipulate actin (it would be helpful if the authors showed the overexpression of Mical disrupted actin, as they predict).

      (3) The authors show an image that Shot colocalizes with the EB1-mScarlet3 comet initiation sites and use this representative image to generate a model that Shot functions as part of an MTOC. However, this conclusion needs additional support: the authors should quantify the frequency of EB1 comets that originate from Shot-GFP aggregates, report the orientation of EB1 comets that originate from Shot-GFP aggregates (e.g., do the Shot-GFP aggregates correlate with anterogradely or retrogradely moving EB1 comets), and characterize the developmental timing of these events. The genetic interaction tests revealing ability of shot dsRNA to enhance the loss of microtubule-interacting proteins (Msps, Patronin, EB1) and Rab11 are consistent with the idea that Shot regulates microtubules, but it does not provide any spatial information on where Shot is interacting with these proteins, which is critical to the model that Shot is acting as part of a dendritic MTOC.

      (4) It is unclear whether the authors are proposing that dendrite pruning defects are due to an early function of Shot in regulating microtubule polarity in young neurons (during 1st instar larval stages) or whether Shot is acting in another way to affect dendrite pruning. It would be helpful for the authors to present and discuss a specific model regarding Shot's regulation of dendrite pruning in the Discussion.

      (5) The authors argue that a change in microtubule polarity contributes to dendrite pruning defects. For example, in the Introduction, last paragraph, the authors state: "Loss of Shot causes pruning defects caused by mixed orientation of dendritic microtubules." The authors show a correlative relationship, not a causal one. In Figure 4, C and E, the authors show that overexpression of Mical disrupts microtubule polarity but not dendrite pruning, raising the question of whether disrupting microtubule polarity is sufficient to cause dendrite pruning defects. The lack of an association between a disruption in microtubule polarity and dendrite pruning in neurons overexpressing Mical is an important finding.

      (6) The authors show that a truncated Shot construct with the microtubule-binding domain, but no actin-binding domain (Shot-C-term), can rescue dendrite pruning defects and Khc-lacZ localization, whereas the longer Shot construct that lacks just one actin-binding domain ("delta-CH1") cannot. Have the authors confirmed that both proteins are expressed at equivalent levels? Based on these results and their finding that over-expression of Shot-delta-CH1 disrupts dendrite pruning, it seems possible that Shot-delta-CH1 may function as a dominant-negative rather than a loss-of-function. Regardless, the authors should develop a model that takes into account their findings that Shot, without any actin-binding domains and only a microtubule-binding domain, shows robust rescue.

      (7) The authors state that: "The fact that Shot variants lacking the CH1 domain cannot rescue the pruning defects of shot[3] mutants suggested that dendrite tip localization of Shot was important for its function." (pages 10-11). This statement is not accurate: the Shot C-term construct, which lacks the CH1 domain (as well as other domains), is able to rescue dendrite pruning defects.

      (8) The authors state that: "In further support of non-functionality, overexpression of Shot[deltaCH1] caused strong pruning defects (Fig. S3)." (page 8). Presumably, these results indicate that Shot-delta-CH1 is functioning as a dominant-negative since a loss-of-function protein would have no effect. The authors should revise how they interpret these results. This comment is related to another comment about the ability of Shot constructs to rescue the shot[3] mutant.

    1. Reviewer #1 (Public review):

      Summary:

      This study aims to address an important and timely question: how does the mesoscale architecture of cortical and subcortical circuits reorganize during sensorimotor learning? By using high-density, chronically implanted ultra-flexible electrode arrays, the authors track spiking activity across ten brain regions as mice learn a visual Go/No-Go task. The results indicate that learning leads to more sequential and temporally compressed patterns of activity during correct rejection trials, alongside changes in functional connectivity ranks that reflect shifts in the relative influence of visual, frontal, and motor areas throughout learning. The emergence of a more task-focused subnetwork is accompanied by broader and faster propagation of stimulus information across recorded regions.

      Strengths:

      A clear strength of this work is its recording approach. The combination of stable, high-throughput multi-region recordings over extended periods represents a significant advance for capturing learning-related network dynamics at the mesoscale. The conceptual framework is well motivated, building on prior evidence that decision-relevant signals are widely distributed across the brain. The analysis approach, combining functional connectivity rankings with information encoding metrics is well motivated but needs refinement. These results provide some valuable evidence of how learning can refine both the temporal precision and the structure of interregional communication, offering new insights into circuit reconfiguration during learning.

      Weaknesses:

      The technical approach is strong and the conceptual framing is compelling, but several aspects of the evidence remain incomplete. In particular, it is unclear whether the reported changes in connectivity truly capture causal influences, as the rank metrics remain correlational and show discrepancies with the manipulation results. The absolute response onset latencies also appear slow for sensory-guided behavior in mice, and it is not clear whether this reflects the method used to define onset timing or factors such as task structure or internal state. Furthermore, the small number of animals, combined with extensive repeated measures, raises questions about statistical independence and how multiple comparisons were controlled. The optogenetic experiments, while intended to test the functional relevance of rank-increasing regions, leave it unclear how effectively the targeted circuits were silenced. Without direct evidence of reliable local inhibition, the behavioral effects or lack thereof are difficult to interpret. Details on spike sorting are limited.

    2. Reviewer #2 (Public review):

      Summary:

      Wang et al. measure from 10 cortical and subcortical brain as mice learn a go/no-go visual discrimination task. They found that during learning, there is a reshaping of inter-areal connections, in which a visual-frontal subnetwork emerges as mice gain expertise. Also visual stimuli decoding became more widespread post-learning. They also perform silencing experiments and find that OFC and V2M are important for the learning process. The conclusion is that learning evoked a brain-wide dynamic interplay between different brain areas that together may promote learning.

      Strengths:

      The manuscript is written well and the logic is rather clear. I found the study interesting and of interest to the field. The recording method is innovative and requires exceptional skills to perform. The outcomes of the study are significant, highlighting that learning evokes a widespread and dynamics modulation between different brain areas, in which specific task-related subnetworks emerge.

      Weaknesses:

      I had several major concerns:

      (1) The number of mice was small for the ephys recordings. Although the authors start with 7 mice in Figure 1, they then reduce to 5 in panel F. And in their main analysis, they minimize their analysis to 6/7 sessions from 3 mice only. I couldn't find a rationale for this reduction, but in the methods they do mention that 2 mice were used for fruitless training, which I found no mention in the results. Moreover, in the early case, all of the analysis is from 118 CR trials taken from 3 mice. In general, this is a rather low number of mice and trial numbers. I think it is quite essential to add more mice.

      (2) Movement analysis was not sufficient. Mice learning a go/no-go task establish a movement strategy that is developed throughout learning and is also biased towards Hit trials. There is an analysis of movement in Figure S4, but this is rather superficial. I was not even sure that the 3 mice in Figure S4 are the same 3 mice in the main figure. There should be also an analysis of movement as a function of time to see differences. Also for Hits and FAs. I give some more details below. In general, most of the results can be explained by the fact that as mice gain expertise, they move more (also in CR during specific times) which leads to more activation in frontal cortex and more coordination with visual areas. More needs to be done in terms of analysis, or at least a mention of this in the text.

      (3) Most of the figures are over-detailed, and it is hard to understand the take-home message. Although the text is written succinctly and rather short, the figures are mostly overwhelming, especially Figures 4-7. For example, Figure 4 presents 24 brain plots! For rank input and output rank during early and late stim and response periods, for early and expert and their difference. All in the same colormap. No significance shown at all. The Δrank maps for all cases look essentially identical across conditions. The division into early and late time periods is not properly justified. But the main take home message is positive Δrank in OFC, V2M, V1 and negative Δrank in ThalMD and Str. In my opinion, one trio map is enough, and the rest could be bumped to the Supplementary section, if at all. In general, the figure in several cases do not convey the main take home messages. See more details below.

      (4) The analysis is sometimes not intuitive enough. For example, the rank analysis of input and output rank seemed a bit over complex. Figure 3 was hard to follow (although a lot of effort was made by the authors to make it clearer). Was there any difference between the output and input analysis? Also, the time period seems redundant sometimes. Also, there are other network analysis that can be done which are a bit more intuitive. The use of rank within the 10 areas was not the most intuitive. Even a dimensionality reduction along with clustering can be used as an alternative. In my opinion, I don't think the authors should completely redo their analysis, but maybe mention the fact that other analyses exist.