Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.
Learn more at Review Commons
Reply to the reviewers
1. General Statements [optional]
We thank all the reviewers for their constructive and critical comments. We provide a point-by-point response to the reviewers' comments, as detailed below. By responding to them, we believe that our revised manuscript will significantly improve so that it will be of interest for researchers in the field of cell biology, signaling pathways, physiology and nutrition.
Reply to the reviewers
Reviewer #1 (Evidence, reproducibility and clarity):
Summary: The manuscript by Yusuke Toyoda and co-workers describes that the phosphorylation of the a-arrestin Aly3 downstream of TORC2 and GAD8 (AKT) negatively regulates endocytosis of the hexose transporter Ght5 in S.pombe under glucose limiting growth conditions.
To arrive at these conclusions, the researchers define a set of redundant c-terminal phosphorylation sites in Aly3 that are downstream by GAD8. Phosphorylation of these sites reduces Ght5 ubiquitination and endocytosis. For ubiquitination, Aly3 interacts with the ubiquitin ligases Pub1/3.
We thank the reviewer for his/her time and reporting advantages and issues of this study.
Major points:
Figure 3B: it would be interesting to compare Aly3 migration pattern (and hence potential phosphorylation) under glucose replete or limiting growth conditions. Can the authors provide direct evidence that Aly3 phosphorylation changes in response to glucose availability? Also please explain the 'smear' in lanes aly3(4th Ala), aly3(4th Ala, A584S), aly3(4th Ala, A586T).
While it is an interesting possibility that the Aly3 migration pattern changes in response to glucose concentrations in medium, we think that this is unlikely and that examining this possibility is beyond the scope of this study. Because a phospho-proteomics study reported by Dr. Paul Nurse's lab showed Tor1-dependent phosphorylation of Aly3 at S584 under high glucose (2%) conditions (Mak et al, EMBO J, 2021), the Aly3 phosphorylation (migration) pattern is likely to be constant regardless of glucose conditions. Glucose conditions affect the mRNA and protein levels of Ght5, but supposedly not its endocytosis to vacuoles (Saitoh et al, Mol Biol Cell, 2015; Toyoda et al, J Cell Sci, 2021).
As for the smear in Aly3(4th A), Aly3(4th A;A584S), Aly3(4th A; A586T), we suspect that some posttranslational modification occurs on these mutant Aly3 proteins, but the identity of the modification is unclear. We did not mention the smear signals in the original manuscript, because the presence or absence of the smear did not necessarily correlate with cell proliferation in low glucose and thus vacuolar localization of Ght5, which is the main topic of this study. In the revised manuscript, we will mention this point more clearly.
Figure 4: Ght5 localization should be analyzed + / - thiamine and in media with different glucose levels. Also, a co-localization with a vacuolar marker (FM4-64) would be nice (but not necessary). Ideally, the authors should add WB analysis of Ght5 turnover to complement the imaging data. Also, would it be possible to measure directly the effects on glucose uptake (using eg: 2-NBDG).
In this revision, we plan to observe Ght5 localization under the conditions indicated by the reviewer (+/- thiamine and high/low glucose levels) to unambiguously show that the vacuolar localization of Ght5 occurs in a manner dependent solely on expression of the mutant Aly3 protein.
We thank the reviewer for the suggestion of co-staining with FM4-64. Indeed, because we previously reported that the cytoplasmic Ght5 signals were surrounded by FM4-64 signals in the TORC2-deficient tor1Δ mutant cells (Toyoda et al, J Cell Sci, 2021), the cytoplasmic Ght5-GFP signals in Figure 4 are very likely to co-localize with vacuoles. We will modify the text to clarify this point.
As suggested, we plan to add Western blot analysis of Ght5 turnover in Aly3-expressing cells, to complement the imaging data (Figure 4) in the revised manuscript. Persistent appearance of GFP in Western blot would be a good support for vacuolar transport of Ght5-GFP.
While regulation of glucose uptake is an important issue, measurement of Ght5-dependent glucose uptake using 2-NBDG was very difficult in our hands. Another reviewer (Reviewer #2) also mentioned the difficulty of this measurement in the Referees cross-commenting section.
Figure 5: Given the localization of Ght5 shown in Figure 4, I'm surprised that it is possible in to detect full length Ght5, and its ubiquitination in the phospho-mutants of Aly3. I expected that the majority of Ght5 would be constitutively degraded, and that one would need to prevent endocytosis and/or vacuolar degradation to detect full length Ght5 and ubiquitination. Please explain the discrepancy. Also it seems that the quantification in B was performed on a single experiment.
As the aim of Figure 5 is to compare the ubiquitinated species of Ght5 among the samples expressing different species of Aly3, the loading amount of each sample was adjusted so that the abundance of immunoprecipitated Ght5 is same across them. Therefore, as the reviewer points out, before the adjustment, abundance of the full-length Ght5 might be different in these samples. In the revised manuscript, we will add explanation on this point; why the anti-GFP blot of Figure 5A has the similar intensities in those samples.
In the revised manuscript, we will add two additional replicates of the same experiment as Figure 5 in Supplementary material to show reproducibility of the result.
Figure 6: Which PPxY motif of Aly3 is used for interaction with Pub1/3 and does their interaction depend on (de)phosphorylation?
In the revised manuscript, we will discuss that "both PY motifs of Aly3 might be required for full interaction with Pub1/3," by citing the following published knowledge:
(a) Mutation of both PPxY motif of budding yeast Rod1 and Rog3 (Aly3 homologs) diminished their interaction with the ubiquitin ligase Rsp5 (Andoh et al, FEBS Lett, 2002).
(b) Mutating either one of two PPxY motifs of budding yeast Cvs7/Art1 greatly decreased interaction with WW domain, and mutating both abolished the interaction (Lin et al, Cell, 2008).
Our preliminary results indicated that Pub3 interacted with Aly3, Aly3(4th A) and phospho-mimetic Aly3(4th D), and thus suggested that the Aly3-Pub1/3 interaction does not depend on the phosphorylation status of Aly3. Consistently, budding yeast Rod1 reportedly interacts with Rsp5 regardless of its phosphorylation status (e.g. Becuwe et al, J Cell Biol, 2012). While we have partially mentioned this point in the original manuscript (L499-503), we will discuss this point more clearly in the revised manuscript.
Reviewer #1 (Significance):
The results are well presented and clear cut (with few exceptions, please see major points). They provide further evidence that metabolic cues instruct the phosphorylation of a-arrestins. Phosphorylation then negatively regulates a-arrestin function in selective endocytosis and is essential to adjust nutrient uptake across the plasma membrane to the given biological context.
We thank the reviewer for finding significance of our study. We believe that adding new results of the requested experiments and responding to the raised comments will clarify the significance of our revised manuscript.
Reviewer #2 (Evidence, reproducibility and clarity):
**Summary / background.
This paper focuses on the regulation of endocytosis of the hexose transporter, Ght5, in S. pombe by nutrient limitation through the arrestin-like protein Aly3.
Ght5 is induced when glucose is limiting and is required for growth and proliferation in these conditions.
ght5+ encodes the only high-affinity glc transporter from fission yeast. ght5+ is induced in low glucose conditions at the transcriptional level and is translocated to the plasma membrane to allow glc import.
Ght5 is targeted to the vacuole in conditions of N limitation.
Mutations in the TORC2 pathway lead to the same process, thus preventing growth on low glucose medium, as shown in the gad8ts mutant, mutated for the Gad8 kinase acting downstream of TORC2.
Previously, the authors demonstrated that the vacuolar delivery of Ght5 in the gad8ts mutant is suppressed by mutation of the arrestin-like protein Aly3. Arrestin-like proteins are in charge of recognising and ubiquitinating plasma membrane proteins to direct their vacuolar targeting by the endocytosis pathway. This suggested that Aly3 is hyperactive in TORC2 mutants, and accordingly, Ght5 ubiquitination was increased in gad8ts.
**Overall statement
This study aims at deepening our understanding of the regulation of endocytosis by signalling pathways through arrestin-like proteins. Ght5 is a nice model to study a physiological regulation, and the authors have a great set of tools at hand.
However, I think the conclusions are not always rigorous and the conclusions are sometimes far-reaching.
The main problem is that much of the conclusions concern a potential phosphorylation of Aly3 which is not experimentally addressed. An additional issue is the fact that they look at Ght5 ubiquitination by co-immunoprecipitation in native conditions (or at least, it seems to me) which cannot be conclusive.
Overall, I think some experiments should be performed to address (at least) these 2 points before the manuscript can be published, see detailed comments below.
We thank the reviewer for pointing both advantages and issues of our manuscript.
We admit that phosphorylation of Aly3 was not experimentally shown in our manuscript, although its phosphorylation has already been shown in phospho-proteomic studies by other groups. For this issue, we plan to add an experiment and modify the text, as explained below.
The other major issue raised by this reviewer is that detection of Ght5 ubiquitination by immunoprecipitation in a native condition cannot be conclusive. Although we noticed that many studies perform affinity purification after denaturing and precipitating proteins with TCA or acetone to detect ubiquitination of the affinity-purified protein (e.g. Lin et al, Cell, 2008), we disagree with this opinion of the reviewer #2. In a review article describing methods to study ubiquitination by immunoblotting (Emmerich and Cohen, Biochem Biophys Res Comm, 2015), affinity purification of the protein of interest in a native condition is mentioned as one major choice. Moreover, a denaturing condition was not applicable to detect ubiquitinated Ght5 because the Ght5 protein that is once denatured and precipitated with TCA cannot be re-solubilized for immune-purification and -blotting. As the reviewer points out, a pitfall of detection of ubiquitinated Ght5 in a native condition is the presence of co-immunoprecipitated proteins. In our previous study (Toyoda et al, J Cell Sci, 2021), we purified GFP-tagged Ght5 and showed that a 110 kDa band detected in an anti-Ub immunoblot was also recognized by an anti-GFP antibody, confirming that the detected 110 kDa band corresponded to an ubiquitinated species of Ght5, but not a co-immunoprecipitated protein. Similarly, in the revised manuscript, we will add a panel of high-contrast (over-exposed) anti-GFP immunoblot, in which the indicated 110 kDa band was clearly detected by an anti-GFP antibody, in Figure 5A.
We appreciate these issues raised by the reviewer #2. By responding to them, we believe that conclusions of our study will be more rigorous and undoubtful in the revised manuscript.
**Major statements and criticism.
*Fig 1. Based on the hypothesis that TORC2-mediated phosphorylation regulate Ght5 endocytosis, the authors first considered a possible phosphorylation of Ght5. They mutagenised 11 **possible** phosphorylation sites on the Ct of Ght5, but none affected the growth on low glucose in the absence of thiamine, suggesting that they don't contribute to the observed TORC2-mediated regulation. However, I disagree with the statement that "phosphorylation of Ght5 is dispensable for cell proliferation in low glucose", given that the authors do not show 1- that Ght5 is phosphorylated and 2-that this is abolished by these mutations. They should either provide data on this or tone down and say that these residues are not involved in the regulation, without implying phosphorylation which is not proven.
Although we did not experimentally test whether these 11 residues of Ght5 was phosphorylated in our hand, these residues have been shown to be phosphorylated in phospho-proteomics studies by other groups (Kettenbach et al, Mol Cell Proteomics, 2015; Swaffer et al, Cell Rep, 2018; Tay et al, Cell Rep, 2019; Halova et al, Open Biol, 2021; Mak et al, EMBO J, 2021). In the revised manuscript, we plan to be more precise by replacing this conclusion with the following statement: "11 Ser/Thr residues of Ght5, which are reportedly phosphorylated, are not essential for cell proliferation in low glucose."
In the presence of Thiamine (Supp fig 1), it seems that the ST/A mutant grows better in low glucose, and this is not explained nor commented. Since the transporter is not expressed, could the authors provide an explanation to this? If the promoter is leaky and some ght5-ST/A is expressed, it may be more stable and allow better growth than the WT, which would tend to indicate that impairing phosphorylation prevents endocytosis (which is classical for many transporters, see the body of work on CK1-mediated phosphorylation of transporters). Have the authors tried to decrease glc concentration lower than 0.14% in the absence of thiamine to see if this also true when the transporters is strongly expressed? (OPTIONAL)
Improved growth of Ght5(ST11A)-expressing cells in the presence of thiamine was mentioned in the legend of Supplementary Figure 1A. In the revised manuscript, we will mention this observation also in the main text for better description of the results.
Adding thiamine to medium does not completely shut off transcription from the nmt1 promoter but allows some transcription, as previously reported (Maundrell, J Biol Chem, 1990; Forsburg, Nuc Acid Res, 1993). In the revised manuscript, we will mention this "leakiness" of the nmt1 promoter and, by citing the suggested studies, will discuss a possibility that the ST11A mutations might prevent endocytosis of Ght5 and consequently promote cell proliferation in low glucose conditions.
We found that, in the absence of thiamine, cells expressing ght5+ and ght5(ST11A) proliferated to the comparable extent on medium containing 0.08% glucose. This result will be added to the revised manuscript.
*Fig 2. The authors then follow the hypothesis that TORC2 exerts its Ght5-dependent regulation through the phosphorylation of Aly3. They mutagenised 18 **possible** phosphorylation sites on Aly3. This led to a strong defect in growth in low-glc medium. Mutation of the possible Gad8 site (S460) did not recapitulate this phenotype, suggesting that it is not sufficient, however, mutations of 4 ST residues in a CT cluster (582-586) mimicked the full 18ST/A mutation, suggesting these are the important residues for Ght5 endocytosis.
We thank the reviewer for appreciating the results in Fig. 2. As we explain below, we plan to perform an additional experiment to show that the Aly3 C-terminus is phosphorylated. With this result, our model will gain another experimental support.
*Fig 3A. Further dissection did not allow to pinpoint this regulation to a specific residue, beyond the dispensability of the T586 residue.
Fig 3B. The authors look at the effects of mutation of Aly3 on these sites at the protein level. They had to develop an antibody because HA-epitope tagging did not lead to a functional protein (Supp fig 2). Whereas I agree that the mutations causing a phenotype lead to a change in the migration pattern, I disagree with the statement that "This observation indicated that slower migrating bands were phosphorylated species of Aly3" (p.9 l.271). First, lack of phosphorylation usually causes a slower mobility on gel, which is not clear to spot here. Second, a smear appears on top of the mutated proteins (eg. 4th Ala) which is possibly caused by another modification. There are many precedents in the literature about arrestins being ubiquitinated when they are not phosphorylated (see the work on Bul1, Rod1, Csr2 in baker's yeast from various labs). My gut feeling is that lack of phosphorylation unleashes Aly3 ubiquitination leading to change in pattern.
All in all, it is impossible to state about the phosphorylation of a protein without addressing its phosphorylation properly by phosphatase treatment + change in migration, or MS/MS. Thus, whereas the data looks promising, this hypothesis that Aly3 is phosphorylated at the indicated sites is not properly demonstrated.
We disagree with the reviewer's opinion that a lack of phosphorylation usually causes slower mobility on gel. There are many examples in which phosphorylation causes slower mobility on gel, including budding yeast Rod1 (Alvaro et al, Genetics, 2016), and mammalian TXNIP (Wu et al, Mol Cell, 2013). In the revised manuscript, we will cite these reports to support our interpretation that the slower migrating bands are likely phosphorylated species of Aly3 (L270-271).
Smear-like signals in Aly3(4th Ala), Aly3(4th A;A584S) and Aly3(4th A;A586T) might result from some modification, but identity of the modification is unknown. As the reviewer #2 mentioned, phosphorylation on Aly3 might negatively regulate another modification. The precedent studies revealed that budding yeast Rod1 and Rog3 arrestins tend to be ubiquitinated in snf1/AMPK-deficient cells (Becuwe et al, J Cell Biol, 2012; O'Donnell et al, Mol Cell Biol, 2015), and that Bul1 arrestin is dephosphorylated and ubiquitinated in budding yeast cells deficient in Npr1 kinase (Merhi and Andre, Mol Cell Biol, 2012). Also, budding yeast Csr2 arrestin is deubiquitinated and phosphorylated upon glucose replenishment, while non-phosphorylated Csr2 is ubiquitinated and activated by Rsp5 (Hovsepian et al, J Cell Biol, 2012). While the smear-like signals are interesting, we noticed that the smear-like signals did not necessarily correlate with cell proliferation defects in low glucose. We therefore think that clarifying the identity of the smear-like signals is beyond the scope of this study. We will discuss the smear-like signals only briefly in the revised manuscript, and would address this issue in our future work, hopefully.
While the 4 S/T residues at the C-terminus of Aly3 as well as the other 14 S/T residues have been already shown to be phosphorylated in the precedent studies (Kettenbach et al, Mol Cell Proteomics, 2015; Tay et al, Cell Rep, 2019; Halova et al, Open Biol, 2021), we will confirm that the slower migrating Aly3 is indeed phosphorylated by phosphatase treatment in the revised manuscript. This planned experiment will further strengthen our study and support our conclusion and model.
*Fig 4. The authors now look at the functional consequences of these mutations on ALy3 on Ght5 localisation. The data clearly shows that mutation of the 4 identified S/T residues (Aly3-4th A) causes aberrant localisation of the transporter to the vacuole, likely to cause the observed growth defect on low glucose. There is a nice correlation between the vacuolar localisation and growth in low-glucose for the various aly3 mutants. (A final proof could be to express this in the context of an endocytic mutant, which should restore membrane localisation and suppress the aly3-4thA phenotype - OPTIONAL). However, I still disagree with the statement that "These results indicate that phosphorylation of Aly3 at the C-terminal 582nd, 584th, and/or 585th serine residues is required for cell-surface localization of Ght5." given that phosphorylation was not properly demonstrated.
While phosphorylation of the 582nd, 584th and/or 585th serine residues of Aly3 is not experimentally demonstrated in our hands, they have been shown to be phosphorylated in phospho-proteomics studies by other groups (Kettenbach et al, Mol Cell Proteomics, 2015; Tay et al, Cell Rep, 2019; Halova et al, Open Biol, 2021; Mak et al, EMBO J, 2021). Among them, the 584th serine residue (S584) was reported to be phosphorylated in a TORC2-dependent manner (Mak et al, EMBO J, 2021), consistent with our model. To explicitly demonstrate that S584 is phosphorylated, we plan to make a strain expressing a mutant Aly3 protein in which all the possible phosphorylation sites except S584 are replaced with alanine, namely Aly3(ST17A;S584). Hopefully, we can properly show the phosphorylation of S584 by measuring the mobility of the Aly3(ST17A;S584) on gel with/without phosphatase treatment or gad8 mutation.
We thank the reviewer for suggestion of the experiment using an endocytic mutant. Previously we reported that vacuolar localization of Ght5 in gad8 mutant cells was suppressed by mutations in not only aly3 but also genes encoding ESCRT complexes (Toyoda et al, J Cell Sci, 2021). We therefore think that in cells expressing Aly3(ST18A) or Aly3(4th Ala), Ght5 is subject to endocytosis and ensuing selective transport to vacuoles via endosome-localized ESCRT complexes. We will discuss this point in the revised manuscript.
*Fig 5. Here, the authors question the role of Aly3 mutations on Ght5 ubiquitination. They immunoprecipitate Ght5 and address its ubiquitination status in various Aly3 mutants. The data is encouraging for a role in Aly3 phosphorylation (?) in the negative control of Ght5 ubiquitination. My main problem with this experiment is that it seems that Ght5 immunoprecipitations were made in non-denaturing conditions, which leads to the question of what is the anti-ubiquitin revealing here (Ght5 or a co-immunoprecipitated protein, for example Aly3 itself, or the Pub ligases, or an unknown protein). It seems that this protocol was previously used in their previous paper, but I stand by my conclusion that ubiquitination of a given protein can only be looked in denaturing conditions. The experiments should be repeated in buffers classical for the study of protein ubiquitination to be able to conclude unambiguously that we are looking at Ght5 ubiquitination itself, especially in the absence of a non-ubiquitinable form of Ght5 as a negative control.
Could the authors comment on the fact that S-A or S-D mutations display the same phenotype regarding the possible Ght5 ubiquitination?
As mentioned above, immunoprecipitation of Ght5 in denaturating conditions is not feasible. Ght5 can be affinity-purified only in a non-denaturing condition. In addition, affinity purification in a native condition is considered as a major choice to examine its ubiquitination according to a literature by Emmerich and Cohen (Emmerich and Cohen, Biochem Biophys Res Comm, 2015). A drawback of native condition is, as the reviewer points out, that the affinity-purified fraction might include non-bait (non-Ght5) proteins. The 110 kDa band indicated by an arrow in Fig. 5A was confirmed to be Ght5, not a non-bait protein, as a band at the identical position was detected in the immunoblot with anti-GFP antibody. Because this band in the anti-GFP immunoblot was too faint to be visible in Fig. 5A of the original manuscript, we will add an additional panel showing the contrast-enhanced anti-GFP immunoblot in which the 110 kDa band is clearly visible.
As for the result that "S-A or S-D mutations display the same phenotype regarding the possible Ght5 ubiquitination," we are afraid that the reviewer #2 misunderstood the labels of the samples. We apologize for confusing notational system of the sample name. Full description of samples is as follows; In Aly3(4th A), all of S582, S584, S585 and T586 are replaced with A; In Aly3(4th A;A584S), S582, S585 and T586 are replaced with A, whereas S584 remains intact; In Aly3(4th A;A584D), S582, S585 and T586 are replaced with A, and S584 is replaced with phospho-mimetic D. Because cells expressing Aly3(4th A;A584S) and Aly3(4th A;A584D) exhibited similarly low levels of Ght5 ubiquitination, we speculated that phosphorylation at S584 of Aly3 negatively regulates ubiquitination of Ght5.
In the revised manuscript, we plan to add a table showing amino acid sequence of each species of Aly3 (just like Figure 3A) to avoid confusion.
*Fig 6. The authors want to document the model whereby Aly3 may interact with some of the Nedd4 ligases (Pub1/2/3) to mediate its Ght5-ubiquitination function. They actually use the Aly3-4thA mutant, it should have been better with the WT protein. But the results indicate a clear interaction with at least Pub1 and Pub3. By the way, are the Pub1/2/3 fusions functional? Nedd4 proteins are notoriously affected in their function by C-terminal tagging and are usually tagged at their N-terminus (See Dunn et al. J Cell Biol 2004).
We plan to test whether Pub1-myc is functional by comparing proliferation of the Pub1-myc-expressing strain and pub1Δ strain, as pub1Δ cells reportedly show proliferation defects at a high temperature (Tamai and Shimoda, J Cell Sci, 2002). As deletion of pub2 or pub3 reportedly exhibited no obvious defects (Tamai and Shimoda, J Cell Sci, 2002; Hayles et al, Open Biol, 2013), it is not easy to assess functionality of the myc-tagged genes.
Please note that C-terminally tagged Pub1/2/3 proteins have been widely used in studies with fission yeast. Both Pub1-HA and non-tagged Pub1 were reported to be ubiquitinated (Nefsky and Beach, EMBO J, 1996; Strachan et al, J Cell Sci, 2023). Pub1-GFP, which complemented the high temperature sensitivity of pub1Δ, localized to cell surface and cytoplasmic bodies (Tamai and Shimoda, J Cell Sci, 2002). Pub2-GFP, overexpression of which arrested cell growth just like overexpression of non-tagged Pub2, localized to cell surface, and consistently Pub2-HA was detected in membrane-enriched pellet fractions after ultracentrifugation (Tamai and Shimoda, J Cell Sci, 2002). They also reported ubiquitin conjugation of the HECT domain of Pub2 fused with myc epitope at its C-terminus. Pub3-GFP localized to cell surface (Matsuyama et al, Nat Biotech, 2006).
Regardless of functionality of the myc-tagged Pub1/2/3, we believe that results of this experiment (Figure 6) support our model, because the aim of this experiment, which is to identify the HECT-type and WW-domain containing ubiquitin ligase(s) that interact with Aly3, is irrelevant to functionality of the myc-tagged Pub proteins.
*Fig 7. The authors want to provide genetic interaction between the Pub ligases and the growth defects in low glc due to alterations in Ght5 trafficking. It is unclear how the gad8ts pub1∆ mutant was generated since it doesn't seem to grow on regular glc concentration (Supp fig 5), could the authors provide some information about this? It is also not clear whether it can be stated thatches mutant is "more sensitive" to glc depletion because of the low level of growth to begin with (even at 3%). Altogether, the data show that deletion of pub3+ is able to suppress the growth defect of the gad8ts mutant on low glc medium, suggesting it is the relevant ligase for Ght5 endocytosis. This is confirmed by microscopy observations of Ght5 localisation. However, I would again tone down the main conclusion, which I feel is far-reaching: "Combined with physical interaction data, these results strongly suggest that Aly3 recruits Pub3, but not Pub2, for ubiquitination of Ght5." Work on Rsp5 in baker's yeast has shown that Rsp5 function goes beyond cargo ubiquitination, including ubiquitination of arrestins (which is often required for their function as mentioned in the introduction) or other endocytic proteins (epsins, amphyphysin etc). I agree that the data are compatible with this model but there are other possible explanations. Anything that would block endocytosis would supposedly suppress the gad8ts phenotype.
gad8ts pub1Δ was produced at 26 {degree sign}C, a permissive temperature of the gad8ts mutant. While this is described in the Methods section of the original manuscript, we will mention this more clearly in the Results section of the revised manuscript.
We did not conclude low glucose sensitivity of gad8ts pub1Δ cells in the indicated part (L376-377). Rather, we compared proliferation of gad8ts single mutant and pub1Δ single mutant cells in low glucose, and we found that the pub1Δ single mutant exhibited the higher sensitivity. In the revised manuscript we will correct the text to clarify that we compared proliferation of two single mutants (but not gad8ts pub1Δ mutant).
We agree with the opinion that the recruited Pub3 may ubiquitinate proteins other than Ght5. In the revised manuscript, we will correct our conclusion of the Figure 7 experiment (L388-390), not to limit the possible ubiquitination target(s) to Ght5.
In a genetic screen, we found that mutations in aly3+ and genes encoding ESCRT complexes suppressed low-glucose sensitivity and vacuolar transport of Ght5 of gad8ts mutant cells (Toyoda et al, J Cell Sci, 2021). This finding appears consistent with the reviewer's opinion that blocking endocytosis would supposedly suppress the gad8ts phenotype. We will mention this point in the revised manuscript.
*Discussion
Some analogy with the regulation of the Bul arrestins by TORC1/Npr1 and PP2A/Sit4 could be mentioned (Mehri et al. 2012), at the discretion of the authors.
The possibility that phosphorylation may neutralise a basic patch on Aly3 Ct, possibly involved in electrostatic interactions with Ght5 is very interesting.
Regarding the effect of the mutations on Aly3 localisation (p.15 l.498), did the authors tag Aly3 with GFP? There are examples where proteins tagged with HA are not functional whereas tagging with GFP does not alter their function (eg. Rod1, Laussel et al. 2022) - and here Supp Fig 2 only relates to HA-tagging. Proof of a change in Aly3 localisation upon mutation would definitely be a plus (OPTIONAL).
We thank the reviewer for the suggestion of a reference. In the revised manuscript, we will cite the indicated report in the corresponding part for an additional support of TORC1-mediated control of Aly3 (de)phosphorylation.
While examining localization of Aly3 by GFP-tagging is interesting, we do not believe that it is necessary in this study. We would like to produce Aly3-GFP and to examine its functionality and localization in our future study. We thank the reviewer's insightful suggestion.
**Minor comments.
*Introduction:
- I believe the text corresponding to the work on TXNIP is incorrect (p.5 l.127). TXNIP is degraded after its phosphorylation, not "rectracted" from the surface.
In the revised manuscript, we will correct the text accordingly.
- For the sake of completion, the authors could add other references concerning the regulation of Rod1 in budding yeast such as Becuwe et al. 2012 J Cell Biol and O'Donnell et al. 2015 Mol Cell Biol, in addition to Llopis-Torregrosa et al. 2016.
In the revised manuscript, we will add the suggested references and correct the text in the corresponding part of the Introduction (L123-138).
- Other examples of the requirement for arrestin ubiquitination beyond Art1 (p.5 l.136-137) are listed in the ref cited: Kahlhofer et al. 2021.
We will cite the indicated review to navigate readers for more examples of arrestin ubiquitination (and transporter ubiquitination).
*Figures: In general, I think it would be clearer if the authors showed on the figures that the background strain in which the XXX gene is added (or its mutant forms) is a xxx∆ strain.
We will modify the figures to clearly show the genetic background of the strains used.
**Referees cross-commenting**
Cross review of Reviewer 1 -
*I don't believe that the authors "define a set of redundant c-terminal phosphorylation sites in Aly3", because phosphorylation is not proven.
*I thinks the points raised for Fig 3B are valid but the authors should focus on making their story conclusive before expanding to other data (except for the explanation of the smear, see my review). Also, I don't think 2NBDG actually works to measure Glc uptake.
* same for Fig 6 - not sure the interaction site mapping between Aly3 and Pubs would bring much value since there are more urgent things to do to make the story solid.
As mentioned above, we will experimentally show phosphorylation of the Aly3 C-terminus in the revised manuscript. Such experiments would make our story more solid and conclusive. We truly appreciate the comments and suggestions.
We agree with the comments on difficulty of measuring glucose uptake using 2-NBDG. In fact, we tried and failed measuring Ght5-mediated glucose uptake using 2-NBDG.
Cros review of Reviewer 3 - we have many overlaps, so briefly :
*I agree that the bibliography is incomplete (mentioned in my review)
*I agree that there is no demonstration of the phospho-status of Aly3, and it is a problem
*I agree that the results can be better quantified, esp. in the light of the points raised by this referee concerning the variability of expression of ST18A
Other specific comments :
*I agree that the statement that dephosphorylation activates alpha-arresting should be toned down - this was observed in several instances but there are examples of arrestin-mediated endocytosis which does not require their prior dephosphorylation.
*I fully agree that efforts could be made regarding the classification/nomenclature of arrestins in S. pombe, this had escaped my attention
As detailed in the individual point raised by the reviewers, we will add the suggested references and accordingly correct the text in the revised manuscript.
In addition to experimentally showing Aly3 phosphorylation, we will quantify the immunoblot result.
Our statement that dephosphorylation activates alpha-arrestins might be too generalized. We will mention reports in which arrestin-mediated endocytosis does not require prior dephosphorylation (e.g. O'Donnell et al, Mol Biol Cell, 2010; Gournas et al, Mol Biol Cell, 2017; Savocco et al, PLoS Biol, 2019), and modify the text precisely.
Reviewer #2 (Significance):
*strengths and limitations
This study aims at deepening our understanding of the regulation of endocytosis by signalling pathways through arrestin-like proteins in S. pombe. Ght5 is a nice model to study a physiological regulation, and the authors have a great set of tools at hand, including the discovery of Aly3 as the main arrestin for this regulation, and a signalling pathway (TORC2/Gad8) acting upstream. The main question is now to understand at the mechanistic level how TORC2 signaling impinges on the regulation of this arrestin.
Overall, the authors nicely demonstrate that C-terminal Ser/Thr residues are crucial for the function of Aly3 in Ght5 endocytosis. They propose a model whereby Aly3 phosphorylation by an unknownn kinase inhibits its function on Ght5 ubiquitination, which would favour its endocytosis.
However, I think the conclusions are not always rigorous and the conclusions are sometimes far-reaching.
The main problem is that much of the conclusions concern a potential phosphorylation of Aly3 which is not experimentally addressed. An additional issue is the fact that they look at Ght5 ubiquitination by co-immunoprecipitation in native conditions (or at least, it seems to me) which cannot be conclusive.
Overall, I think some experiments should be performed to address (at least) these 2 points before the manuscript can be published, see detailed comments above.
*Advance
This study, if completed carefully, would provide among the first examples of mapping of phosphorylation sites on arrestins, which are usually phosphorylated at many sites and are thus difficult to study. Few studies went down to this level in this respect (see Ivshov et al. eLife 2020). There are no changes in paradigms or new conceptual insights, but this work is a nice example of the conservation of these regulatory mechanisms.
We appreciate that this study is highly evaluated by this reviewer. We understand the main problems raised by the reviewer, and as we detailed above, we plan to perform an experiment and make explanation to respond to the problems. With the raised issues answered, we believe that conclusions of the revised manuscript will be more rigorous.
Our study reveals mechanisms regulating vacuolar transport of the Ght5 hexose transporter via the TORC2 pathway in fission yeast. The serine residues at the Aly3 C-terminus (582nd, 584th and 585th serine residues), which are probably phosphorylated in a manner dependent on the TORC2 pathway, are required for sustained Ght5 localization to cell surface and cellular adaptation to low glucose. To our knowledge, there is no such study, and thus we think that this study is novel. By responding to the reviewers' comments and adding new data as explained above, the revised manuscript will be able to present novelty of our study more clearly. Comparison of our study in fission yeast to related studies in other model organisms may reveal the conservation and diversity of these regulatory mechanisms.
*Audience
Should be of interest for people studying basic research in the field of cell biology, signalling pathways, transporter regulation by physiology.
Reviewer background is on the regulation of transporter endocytosis by signalling pathways and arrestin-like proteins.
Reviewer #3 (Evidence, reproducibility and clarity): (Authors' response in blue)
In this manuscript, the authors work to address how phospho-regulation of a-arrestin Aly3 in S. pombe regulates the glucose transporter Ght5. The authors use a series of phospho-mutants in Aly3 and assess function of these mutants using growth assays and localization of Ght5. My main concerns with the manuscript are that 1) there is a lack of appreciation for the similar work that has been done in S. cerevisiae to define a-arrestin phospho-regulation, which is evidenced by the severe lack of referencing throughout the document, 2) the sites mutated on Aly3 are not demonstrated to change phospho-status of Aly3 and so all interpretations of these mutants need to be better contextualized and 3) almost none of the findings are quantified (imaging or immunoblots) making it difficult to assess the rigor of the outcomes. More detailed comments are provided below.
We thank the reviewer for thorough reading of the manuscript and the detailed comments. As explained below, we will respond to the points raised by the reviewer and accordingly modify the manuscript.
Minor Comments
Immunoblotting or immunostaining to define the levels and localization of phospho-mutants - In Figure 1, an immunoblot or immunostaining to define the abundance/localization of WT Ght5 vs its ST11A mutant would be appreciated. It is very difficult to know if ST11A is as functional as WT or not without an assessment of the levels and localization of the WT and mutant proteins to accompany the spot assays. Perhaps a version of Ght5 that is a phospho-mimetic would be more useful here as well since that version should not be dephosphorylated and then presumably would be internalized and not allow for growth on low glucose medium.
We plan to add fluorescence microscopy data of WT Ght5 and Ght5(ST11A) in the revised manuscript, to compare the localization and abundance of these two Ght5 species. In our preliminary observation, those of two Ght5 species seemed to be indistinguishable.
We'd like to emphasize that the primary aim of this study is to reveal mechanisms regulating Ght5 localization and consequently ensuring cell proliferation in low glucose. While analyzing a phospho-mimetic Ght5 mutant (e.g. Ght5(ST11D)) is interesting in terms of understanding of the nature of Ght5, we believe that such an analysis is out of the scope on this study. As Ght5(ST11A)-expressing cells proliferated comparably to Ght5(WT)-expressing cells and WT and ST11A Ght5 indistinguishably localize on the cell surface, phosphorylation of the ST residues of Ght5 is not likely to be the primary mechanism regulating Ght5 localization and function. We would like to assess a phospho-mimetic Ght5 mutant protein in our future studies.
For the Aly3 mutants where the abundance of Aly3 appears lower via immunoblotting (i.e., 4thA-A582S or S582A) how is the near perfect functional readout explained when the levels of the protein are much lower than WT? For the ST18A mutant, this is a particularly important point since the authors indicate on lines 194-197 that based on the functional data for ST18A, some of these ST residues are needed for phospho-regulation of Aly3. However, in Figure 3B the authors clearly show that there is very little ST18A protein in cells, and so these mutations have impacted Aly3 stability, which may or may not be linked to its phospho-status. The authors should be upfront about this finding on lines 194-197 and should not present this phospho-model as the only reason for why ST18A may not be functional. On lines 265-276 for the authors indicate that ST18A is expressed equivalently to WT Aly3, which is just not the case in Figure 3B. Perhaps quantification of replicate data would help clarify this issue. Further, if the authors wish to conclude that the upper MW bands in Figure 3B are due to phosphorylation, perhaps they should perform phosphatase treatments of their extracts to collapse these bands. However, most certainly the overall abundance of the single band for ST18A is reduced compared to the total bands of WT Aly3.
We disagree with the opinion that the levels of the mutant Aly3 are much lower than WT. For semi-quantitative measurement of the protein abundance, 2-fold dilution series of the WT Aly3 sample were loaded in the leftmost 3 lanes of Figure 3B. Although the levels of Aly3(4th A;A582S), Aly3(S582A) and Aly3(ST18A) were lower than that of WT Aly3, those are 50% or more of the WT, judging from the intensities of the serially-diluted WT samples. To clearly show that the expression of these Aly3 proteins is within comparable levels, we plan to add a column chart of the quantified expression levels and to mention abundances of the Aly3 proteins more quantitatively in the revised text. We do not think that replicate data (of Western blots as in Figure 3B) helps clarify this issue, because nmt1 promoter-driven gene transcription is induced with a small variation (Forsburg, Nuc Acid Res, 1993). We will cite this report and mention this point in the revised text.
We are afraid that this reviewer seems to consider that Aly3(ST18A) is not functional, but it is not a case and we do not intend to claim so. While deletion of aly3 did not interfere with cell proliferation in low glucose (see vector controls in Figures 2B, 2C and 3A, -Thiamine), expression of the ST18A mutant clearly hinders cell proliferation in low glucose, indicating that the ST18A performs dominant negative function to inhibit cell proliferation. That is, even though the expression level and/or stability of the ST18A is reduced, it is still sufficiently abundant to perform the dominant negative function. We propose the phospho-model not due to dysfunctionality of ST18A, but its dominant negative functionality. The 18 S/T residues of Aly3, which are shown to be phosphorylated in precedent phospho-proteomics studies, seem to be required to down-regulate Aly3's function to inhibit cell proliferation in low glucose. We apologize for this confusion, and we will modify the text and figures to clarify these points in the revised manuscripts.
To obtain an experimental support for our description that the slower migrating bands in Figure 3B are due to phosphorylation, we plan to perform a phosphatase treatment experiment as suggested.
Figure 2A - how do the phosphorylation sites identified in Aly3 compare to those identified in Rod1 from S. cerevisiae? See PMID 26920760 or SGD for more information. I am confused as to why the Aly3 protein has an arrowhead at the C-terminus. What does this denote?
We will mention reported phosphorylation sites of Aly3 and budding yeast Rod1/Art4 in the revised manuscript, by referring to the indicated report and database. It should be noted that similarity between amino acid sequences of Aly3 and S. cerevisiae Rod1 is not so high and limited in Arrestin-N and -C domains. The C-terminal half of Aly3, in which most of the potential phosphorylation sites are found, is not similar to Rod1. Thus, these sites are unlikely to be conserved between them.
An arrowhead indicates the direction of transcription (from N to C-terminus). We will describe it explicitly in the revised figure legend.
Figure 2 - The WT and Aly3-ST18A are expressed in S. pombe from a non-endogenous locus under the control of the Nmt1 promoter. However, are these mutants present in cells that contain WT copies of Aly3 at other genomic loci? If so, this would surely muddy the interpretations of these data as a- and b-arrestins are capable of multimerizing and the effect of multimerization on their activities can vary.
As mentioned in L188, an aly3 deletion mutant strain (aly3Δ) was used as a host, and thus all strains harboring an nmt1-driven aly3 gene lack the endogenous aly3 gene. We will add an illustration clearly showing that the host strain lacks the endogenous aly3+ gene and modify the legend of Figure 2.
Functional readouts for Aly3 using Ght5 localization - The reduced surface levels of Ght5 does correspond to the spot assay growth in low glucose for the various Aly3 mutants used. However, it would be useful if these assays incorporated an endocytosis inhibitor to help prevent the activities of these Aly3 plasmids to see if the transporter is retained at the PM. At the end of these mutational analyses, the authors conclude that phosphorylation of Aly3 at any of 3 sites is required for Ght5 trafficking to the vacuole in low glucose, however no experiment is done to demonstrate that these sites are phosphorylated residues. A phosphatase assay would be useful to help demonstrate that the modifications in 3B really are phosphorylation and a quantification of the phosphorylated bands in these WBs would also be useful to solidify the statement made on lines 306-309.
We thank the reviewer for suggestion of the experiment using an endocytosis inhibitor. Previously we reported that vacuolar localization of Ght5 in gad8ts mutant cells was suppressed by mutations in not only aly3 but also genes encoding ESCRT complexes (Toyoda et al, J Cell Sci, 2021). We therefore think that, in cells expressing Aly3(ST18A) or Aly3(4th Ala), Ght5 is subject to endocytosis and subsequent selective transport to vacuoles via ESCRT complexes. We will mention these previous findings in the revised manuscript.
As mentioned in responses to the comments above and other reviewer's, we will perform a phosphatase treatment experiment and its quantification in the revised manuscript. Here, we'd like to emphasize that these 3 sites have been shown to be phosphorylated in phospho-proteomic studies by other researchers (Kettenbach et al, Mol Cell Proteomics, 2015; Tay et al, Cell Rep, 2019; Halova et al, Open Biol, 2021; Mak et al, EMBO J, 2021), although we do not show it directly in this study.
Phosphorylation assessments - in general, it would be good to not only build the non-phosphorylatable versions of Aly3 but also the phospho-mimetic forms.
We produced a phospho-mimetic mutant Aly3 (i.e. Aly3(4th A;A584D)), and showed the result in Figure 5A; cells expressing Aly3(4th A;A584D) exhibited a low ubiquitination of Ght5, similarly to Aly3(WT)- and Aly3(4th A;A584S)-expressing cells. According to our experiences, replacing S/T with D/E does not necessarily mimic phosphorylation. Thus, we do not believe that systematic production of phospho-mimetic Aly3 mutants would help achieve the aim of this study.
Pub1, 2, and 3 - It would be helpful if the authors indicated what genes Pubs 1-3 correspond to in S. cerevisiae, where Rsp5 is the predominant Ub ligase interacting with a-arrestins. Is there no ortholog of Rsp5 in S. pombe?
Pub1, Pub2 and Pub3 are regarded as orthologs of budding yeast Rsp5, according to the fission yeast database PomBase. We will perform a homology search for these E3 proteins, and based on the result, we will add a description in the revised manuscript.
Pub-Aly3 interactions - could the authors please comment on the reason why so very little Aly3 is copurified with Pub1 or Pub2? Can any clear conclusion be drawn about pub2 given how very little Pub2 is present in the IPs? Based on my understanding of these data I do not think that this can be cleanly interpreted. What is is the identity of the ~50kDa MW band in Figure 6 in the upper MYC detection panel?
We do not have an accurate answer for the result that a small amount of Aly3 is copurified with Pub1 or Pub3. The Pub1/3-Aly3 interaction may be weak or transient. We will discuss this point in the revised manuscript.
Regarding whether Aly3 interacts with Pub2, we agree with the reviewer. As described in the Results (L360-362), we could not conclude anything about Aly3-Pub2 interaction by this immunoprecipitation experiment alone. On the other hand, the genetic interaction experiment (Figure 7A) suggests that pub2+ is not involved in defects caused by the gad8ts mutation (while pub3+ and aly3+ are). By this experiment, we think that Pub2 is not a partner of Aly3.
In the revised manuscript, we will describe that Pub2 is not a partner of Aly3 in a paragraph describing the Figure 7A experiment.
Because the 50 kDa band found in the IP fraction of all the samples appears even in "beads only" (Figure 6), those are supposedly derived from mouse IgG dissociated from the beads used for immunoprecipitation. We will mention this in the legend of Figure 6.
Phosphorylation and ubiquitination of a-arrestins - The paragraph from lines 123-138 is very superficial in addressing what is known about phosphorylation and ubiquitination of a-arrestins. The way this section is written, it feels misleading to the reader as it omits many of the details for regulation that would help place the current study in context. The discussion of Rod1 phosphorylation by AMPK for example, which is directly relevant to this study, is underdeveloped. I would recommend splitting this into two paragraphs and providing a more in depth, and accurate, view of the literature on this topic, with a focus on the regulation that is relevant for the ortholog of Aly3 in S. cerevisiae. For example, Rod1 phosphorylation by AMPK is greatly expanded upon in the following papers (PMID 22249293 and 25547292) and AMPK regulation of C-tail phosphorylation of a-arrestins is defined further in PMID 26920760. These references are each particularly important to compare with the current findings presented in this manuscript. Torc2 regulation ofa-arrestins is also reviewed in PMID 36149412 and references therein should be considered.
Because the primary aim of this study is to reveal mechanisms regulating Ght5 localization in fission yeast, but not to dissect modification and regulation of α-arrestins, we decided not to get into the details of phosphorylation and ubiquitination of α-arrestins. Furthermore, although budding yeast Rod1 and Rog3 are found to be downstream of the TORC2-Ypk1 signaling in the context of internalization of the Ste2 pheromone receptor, it is not clear whether TORC2-Ypk1 signaling also regulate α-arrestin-mediated internalization of hexose transporters in budding yeast. For these reasons, we focused on limited literatures essential for interpretation of the results and omitted many references describing the details of α-arrestin regulation. However, as this reviewer commented, we realize that our decision makes the discussion superficial and misleading to the reader. We sincerely apologize for this inconvenience.
In the revised manuscript, we will reorganize the paragraphs in the discussion and include the suggested references. Regarding budding yeast Rod1, we will cite the study reporting Ypk1-mediated phosphorylation on Rod1 in mating pheromone response via regulation of Ste2 endocytosis (Alvaro et al, Genetics, 2016). We will also mention other reports (Becuwe et al, J Cell Biol, 2012; O'Donnell et al, Mol Cell Biol, 2015) about AMPK-dependent phosphorylation of Rod1 in the corresponding part (e.g. L129-130). In addition, we will mention that Aly2, Rod1 and Rog3 α-arrestins were found downstream of the TORC2-Ypk1 signaling (Muir et al, eLife, 2014; Thorner, Biochem J, 2022).
As a further detailed example, there is far more work done on ubiquitination of a-arrestins in S. cerevisiae than the single citation provided by the authors on line 137. The way this section is written it feels misleading. Considerable effort has been spent on defining how mono- and poly-ubiquitination regulate a-arrestins and the authors should consider the data provided in the following citations and revise the two sentences they provide in this introduction to better reflect the breadth of our understanding rather than simply indicate that the 'mechanisms that regulate functions of a-arrestisn are not fully understood'. (PMIDs 23824189; 22249293; 17028178; 28298493)
Ubiquitination of α-arrestin itself is not the topic of this study, and physiological consequences of ubiquitination of Aly3 remain unknown. Because of these reasons, we did not describe the details of ubiquitination of α-arrestins in the original manuscript. However, we never intend to mislead the reader, and thus to avoid it, we will revise the indicated sentences and cite the suggested literatures (O'Donnell et al, J Biol Chem, 2013; Becuwe et al, J Cell Biol, 2012; Kee et al, J Biol Chem, 2006; Ho et al, Mol Biol Cell, 2017) in the revised manuscript.
Context of the findings and lack of citations - The referencing in this manuscript is very poor as many of the key papers that report analogous findings in the budding yeast Saccharomyces cerevisiae are not cited. This oversight in citing the appropriate literature must be remedied before this manuscript can be considered further for publication. Examples of these omissions occur at the following places:
We will modify the text and carefully cite more literatures describing analogous finding in budding yeast and other organisms in the revised manuscript. We appreciate the insightful suggestions by this reviewer. It should be noted, however, that it is not evident whether budding yeast Rod1 and Rog3 are orthologous to fission yeast Aly3. Although Rod1 and Aly3 share overlapping roles, amino acid sequence similarity of them is not high and limited only in domains which are generally conserved among α-arrestin-family proteins.
Line 90 - The Puca and Brou citations is one example of this but the first examples come from Daniela Rotin's work looking at Rsp5 interactions in budding yeast, which is where the association between HECT-domain Ub ligases and a-arrestins is also documented by Scott Emr and Hugh Pelham's labs. Here are some PMID numbers to improve the citations of this section (PMID 17551511; 18976803; 19912579) and each of these references long predates the Puca and Brou publication.
In the revised manuscript, we will improve the citations by including the suggested studies (Gupta et al, Mol Syst Biol, 2007; Lin et al, Cell, 2008; Nikko and Pelham, Traffic, 2009).
Lines 123-126 - Phosphorylation can also increase vacuole-dependent degradation of alpha-arrestins as demonstrated in PMID 35454122. The interaction with 14-3-3 proteins that is driven by phosphorylation of a-arrestins was first demonstrated by the Leon group in PMID 22249293).
Lines 129-132 - Here again the Leon reference that helps demonstrate the 14-3-3 inhibition of Rod1 is lacking (PMID 22249293).
We will cite the suggested studies in description of these topics (Bowman et al, Biomolecules, 2022; Becuwe et al, J Cell Biol, 2012).
Lines 130-132 - Please include references for the statement that dephosphorylation activates a-arrestin activity. There are no citations on this statement and there are many to choose from and I would urge the authors to cite the primary literature on these points.
We will cite studies for the statement "Conversely, dephosphorylation is thought to activate α-arrestins and to promote selective endocytosis of transporter proteins" (L130-132).
These are just a few examples from the Introduction, but the Discussion is similarly wrought with issues in referencing and framing the experimental results within the context of the larger field, including what is known about Rod1/Rog3 regulation in S. cerevisiae. For example, the Llopis-Torregrosa et al reference and statement on lines 508-510 is incorrect. There are other phosphorylation sites defined in the C-terminus of Rod1, as described in Alvaro et al. PMID: 26920760.
We will carefully correct Discussion by citing the suggested references (e.g. Alvaro et al, Genetics, 2016) and framing the obtained results within the context of the larger field.
Of note, a combination of α-arrestin, upstream kinase(s) and distinct phosphorylation sites appears to determine the target transporter (Kahlhofer et al, Biol Cell, 2021; Thorner, Biochem J, 2022), and it has not been explicitly proved that TORC2-Ypk1 signaling also regulate α-arrestin-mediated internalization of hexose transporters in budding yeast. For these reasons, we stated "S. cerevisiae Rod1 and Rog3 are phosphorylated solely by Snf1p/AMPK" in the context of internalization of hexose transporters. We will also discuss this point in the revised manuscript.
Minor Comments
Clarification needed - Lines 107-121 - The relationship between the S. pombe arrestins and those in other organisms is somewhat unclear. Frist, all the arrestins in humans and S. cerevisiae can be sorted into the alpha, beta and Vps26 classes. However, the authors indicate that the S. pombe genome has 11 arrestin-like proteins but only 4 of these are a-arrestins. What classes do the other 7 arrestins belong to? It would be appreciated if this point was clarified.
To our knowledge, fission yeast arrestins are not well classified yet. We will perform a phylogenetic tree analysis to classify them, and modify the description of the indicated part accordingly. We will also cite our previous report (Toyoda et al, J Cell Sci, 2021), in which the overall protein structure and domains of 11 fission yeast arrestin-like proteins were reported.
Next, for the 4 a-arrestins identified in S. pombe the authors indicate that Aly3 is the homolog of Rod1/Art4 and Rog3/Art7 from S. cerevisiae. What is the relationship of Rod1 in S. pombe to Rod1 in S. cerevisiae? Are these also homologs? You can see how the nomenclature is confusing and, given the functional overlap of S. cerevisiae Rod1/Rog3 proteins it is important to know if Aly3 is the only version of these a-arrestins or if there is an additional counterpart in S. pombe.
This point becomes somewhat more confusing when on lines 134-136 the authors talk about Arn1/Any1 as an arrestin related protein in S. pombe yet this protein was not included on the list of a-arrestins in the preceding section. What class of arrestin is this protein?
According to PomBase, both Aly3 and Rod1 are assigned as the orthologue of budding yeast Rod1 and Rog3. However, as mentioned in responses above, it is unclear whether Aly3 is really orthologous to budding yeast Rod1/Rod3. In the revised manuscript, we will perform a homology search for these 4 proteins, and add information on how much these arrestins share homology.
Arn1/Any1 is regarded as a β-arrestin (Nakase et al, J Cell Sci, 2013). We will also mention this in the revised manuscript.
Alpha-arrestin homology - On lines 127-129 the authors indicate that TXNIP is the mammalian homolog of Aly3. To my knowledge, there are no evolutionary analyses that can draw these lines of homology between the a-arrestins in humans and those in yeasts. It would be appreciated if the authors could cite the work that leads to this conclusion or revise the sentence to more accurately reflect what is known on this topic. It certainly appears that, given their functional overlap in regulating glucose transporters, Txnip and Rod1/Rog3 in humans and S. cerevisiae are functionally connected. I urge the authors to use more caution when describing this protein family.
Among human α-arrestins, ARRDC2 (22%) but not TXNIP (20%) has the highest amino acid identity to Aly3 (Toyoda et al, J Cell Sci, 2021). However, as TXNIP has been reported to regulate endocytosis of hexose transporters, GLUT1 and 4 (Wu et al, Mol Cell, 2013; Waldhart et al, Cell Rep, 2017), we think that TXNIP and Aly3 share physiological roles. We will revise the sentence (L127-129) more accurately.
Text editing - The text could use editing as there are awkward and grammatically incorrect sentences in several places. Here are a few examples to help the authors:
Please note that the original manuscript is edited by a professional editor, who is a native English (American) speaker and has edited thousands of research papers, before initial submission. We will ask an editor to check the revised draft again before submission.
Lines 57-60 - the protein is not expressed over the entire cell surface, but is localized to the entire cell surface.
We will correct this wording.
Lines 80-83 - this sentence is very confusing
We will correct this part by changing the phrase "Unlike TORC1," into a clause.
Line 86 - Is there more than one gene encoding Aly3 in S. pombe?
No, there is only one gene encoding Aly3. We will correct this part so as to avoid being misunderstood.
Line 88, 109, - these sentences need to start with a capitol so either capitalize the A in arrestin or write out Alpha with a capitol A.
We will correct the sentence as suggested.
Lines 145-148 - unclear as written
We will clarify the meaning of the sentence by changing the voice.
Line 224 - why are these amino acids being referred to as hydroxylated? Perhaps hydroxyl-containing amino acids or 18 amino acids with hydroxyl side chains would be better choices?
We will correct the word as suggested.
Line 300 - very confusing sentence structure
We will correct this part by simplifying the structure of the sentence.
And elsewhere....
We will carefully check the revised text before submission.
Reviewer #3 (Significance):
The authors provide some information as to the residues needed in the Aly3 C-tail for Ght5 trafficking in S. Pombe. These results are not places in the context of similar phosphor-regulatory work done for a-arrestins in S. cerevisiae, and this is needed for appreciation of the significance of the study.
Overall, it appears that the model put forth is very similar to the one already proposed in S. cerevisiae where phosphorylation impedes a-arrestin-mediated trafficking of glucose transporters. It is interesting to see this similarity hold in S. Pombe, but it does not dramatically alter our appreciation of a-arrestin biology.
The significance of the findings are somewhat underscored by the fact that very little quantification of data are presented, making the rigor of the work difficult to assess.
We thank the reviewer for careful reading and evaluation of our study. As the reviewer states, the results are not placed in the context of similar phospho-regulatory works done for α-arrestins in S. cerevisiae. This may partly come from the fact that it remains unclear whether internalization of hexose transporters is regulated by TORC2-dependent phosphorylation in S. cerevisiae. We believe that our study is novel and significant for this reason. By performing the additional experiments/quantification and revising the text as suggested by the reviewers, the manuscript will be further strengthened, and we will be able to clearly conclude that TORC2-dependent phosphorylation of Aly3 regulates localization of the Ght5 hexose transporter and cellular responses to glucose shortage stress.