10,000 Matching Annotations
  1. Aug 2025
    1. Reviewer #1 (Public review):

      Summary:

      Foik et al. report that hypochlorous acid, a reactive chlorine species generated during host defense, activates the transcription of the froABCD in P. aeruginosa. This gene cluster had previously been associated with a potential role during the flow of fluids and appears to be regulated by the sigma factor FroR and its anti-sigma factor FroI. In the present study, the authors show that froABCD is expressed both in neutrophils and macrophages, which they claim is likely a result of HOCl but not H2O2 production. Fro expression is also induced in a murine model of corneal infection, which is characterized by immune cell invasion. Expression of the fro system can be quenched by several antioxidants, such as methionine, cysteine, and others. FroR-deficient cells that lack froABCD expression during HOCl stress appear more sensitive to the oxidant.

      Strengths:

      The authors provide a number of data supporting their claim that transcription of the froABCD system is induced by reactive chlorine species. This was shown by RNAseq, qRT-PCR, and through microscopy using a transcriptional reporter fusion. Likewise, elevated expression of froABCD was shown in vitro and in vivo, excluding potential in vitro artifacts. The manuscript, while mostly descriptive, is easy to follow, and the data were presented clearly.

      Weaknesses:

      (1) Lines 60-62: Some of the authors' conclusions are not supported by the data and thus appear unfounded. One example: "we determine that fro upregulation.....These data suggest a novel mechanism..." Their data do not show that MSR upregulation is a direct effect of FroABCD. Instead, it could be possible that the FroR sigma factor also controls the expression of msr genes, which would be independent of froABCD.

      (2) The authors show increased fro transcription both in neutrophils and macrophages; however, the two types of immune cells differ quite dramatically with respect to myeloperoxidase activation and HOCl production. Neither has this been discussed nor considered here.

      (3) With respect to the activation of fro expression upon challenge with conditioned media from stimulated neutrophils, does the conditioned media contain detectable amounts of HOCl? Do chloramines, which are byproducts of HOCl oxidation with amines, also stimulate expression?

      (4) A better control to prove that this fro expression is indeed induced by HOCl in activated neutrophils would be to conduct the experiments in the presence of a myeloperoxidase inhibitor.

      (5) The work was conducted with two different P. aeruginosa strains (i.e. AL143 and PAO1F). None of the figure legends provides details on which strain was used. For instance, in line 111, the authors refer to Figure S1B for data that I thought were done with PAO1F, while in 154, data were presented in the context of the infection model, which was conducted with the other strain.

      (6) It would be good if immune cell recruitment at 2hrs and 20hrs PI could be quantified.

      (7) The conclusions of Figure 4 are, in my opinion, weak (line 187-188; "It is possible that ....."). These antioxidants likely quench the low amounts of NaOCl directly. This would significantly reduce the NaOCl concentrations to a level that no longer activates expression of fro. There is no direct evidence provided that oxidized methionine induces fro expression. Do the authors postulate that this is free methionine, or could methionine and/or cysteine oxidation in FroR increase the binding affinity of the sigma factor to the promoter? Another possibility is that NaOCl deactivates the anti-sigma factor. None of these scenarios has been considered here.

      (8) Line 184: The reaction constants of HOCl with Cys and Met are similar.

      (9) Treatment with 16 uM NaOCl caused a growth arrest of ~15 hrs in the WT (Figure 5A), whereas no growth at all was recorded with 7.5 uM in Figure 3A.

      (10) The concentration range of NaOCl causing fro expression is extremely narrow, while oxidative burst rapidly generates HOCl at much higher concentrations. This should be discussed in more detail.

    2. Reviewer #2 (Public review):

      Summary:

      Foik et al. studied the regulation of the fro operon in response to HOCl, an oxidant derived from immune cells, especially neutrophils. They use a transcriptional fusion of YFP to the froA promoter in an mCherry-expressing P. aeruginosa strain to determine fro-induction under the microscope. They use this system to study fro expression in medium, in the presence of neutrophils and macrophages, neutrophil-conditioned medium, and several chemical stimuli, including NaCl, HOCl, hydrogen peroxide, nitric acid, hydrochloric acid, and sodium hydroxide. They also use a corneal infection model to demonstrate that froA is upregulated in P. aeruginosa 20 h post-infection and perform transcriptional analyses in WT and a froR mutant in response to HOCl.

      Strengths:

      Their data clearly shows that HOCl is a strong inducer of the fro Operon. The addition of HOCl-quenching chemicals together with HOCl abrogates the response. They also show that a froR mutant is more susceptible to HOCl than WT. Their transcriptomic data reveal genes under control of the FroR/FroI sigma factor/anti sigma factor system.

      Weaknesses:

      Although the presented evidence is mostly solid, some of their findings need to be evaluated more carefully; explaining the rationale behind some of the experiments might enhance the article, and some of the models proposed by the authors seem far-fetched, as outlined below:

      (1) In line 76 the authors claim "Relative to P. aeruginosa that were incubated in host cell-free media, P. aeruginosa in close proximity to human neutrophils or that were engulfed in mouse macrophages appeared to increase fro expression (Fig. 1C)". Counting bacterial cells in Figure 1C shows that 1 in 17 bacteria (5.8%) induce the froA-promotor in media in the absence of immune cells, while 4 in 72 bacteria (only 5.5%) do the same in the presence of neutrophils. Contrary to the authors' claims, it appears that P. aeruginosa actually decreases fro-expression in close proximity to neutrophils. There is a slight increase in fro-expression in bacteria co-incubated with macrophages (3 in 21, or 14.3%). A more rigorous statistical analysis might substantiate the authors' claim, but, as is, the claim "neutrophils increase fro expression" is untenable.

      (2) The authors should explain the rationale behind some of the chemicals used. Why did they use nitric acid? Especially at these high concentrations, a strong acid such as nitric acid might have a significant influence on the medium pH. I understand that the medium is phosphate-buffered, but 25 mM nitric acid in an unbuffered medium would shift the pH well below 2. Similar considerations apply to hydrochloric acid and sodium hydroxide.

      (3) In line 187, the authors state that "It is possible that oxidized methionine increases fro expression" and they suggest a model to that effect in Figure 5D. It is unclear why the authors singled out methionine sulfoxide, since a number of other things get oxidized by HOCl. In line 184, the authors state, in the same vein, that "HOCl oxidizes methionine residues 100-fold more rapidly than other cellular components". The authors should state which other cellular compounds they are referring to. Certainly not cysteine and other thiols, which react equally fast and are highly abundant in the cell: P. aeruginosa contains 340 µM GSH, 140 µM CoA-SH (https://doi.org/10.1074/jbc.RA119.009934) plus free cysteine and cysteines in proteins (based on codon usage, 1.34% of amino acids in proteins are cysteine, while methionine is only slightly more present at 2.10%, although a number of starting methionines are removed from mature proteins).

      (4) Overall (and this is probably not addressable with the authors' data), some very interesting questions remain unanswered: what is the molecular mechanism of fro-induction? How is the FroR/FroI system modulated by HOCl? Does the system sense free or protein-bound methionine-sulfoxide? Are certain methionine residues in these proteins directly oxidized by HOCl? Many "HOCl-sensing" proteins are also modified at cysteine residues or amino groups; could those play a role? And lastly: what is the connection between shear/fluid flow and HOCl, or are these totally separate mechanisms of fro-induction?

    1. Reviewer #1 (Public review):

      Summary:

      This study investigated the heterogeneous responses to Mycobacterium tuberculosis (Mtb) in 19 wild-derived inbred mouse strains collected from various geographic locations. The goal of this study is to identify novel mechanisms that regulate host susceptibility to Mtb infection. Using the genetically resistant C57BL/6 mouse strain as the control, they successfully identified a few mouse strains that revealed higher bacterial burdens in the lung, implicating increased susceptibility in those mouse strains. Furthermore, using flow cytometry analysis, they discovered strong correlations between CFU and various immune cell types, including T cells and B cells. The higher neutrophil numbers correlated with significantly higher CFU in some of the newly identified susceptible mouse strains. Interestingly, MANB and MANC mice exhibited comparable numbers of neutrophils but showed drastically different bacterial burdens. The authors then focused on the neutrophil heterogeneity and utilized a single-cell RNA-seq approach, which led to identifying distinct neutrophil subsets in various mouse strains, including C57BL/6, MANA, MANB, and MANC. Pathway analysis on neutrophils in susceptible MANC strain revealed a highly activated and glycolytic phenotype, implicating a possible mechanism that may contribute to the susceptible phenotype. Lastly, the authors found that a small group of neutrophil-specific genes are expressed across many other cell types in the MANC strain.

      Strengths:

      This manuscript has many strengths.

      (1) Utilizing and characterizing novel mouse strains that complement the current widely used mouse models in the field of TB. Many of those mouse strains will be novel tools for studying host responses to Mtb infection.

      (2) The study revealed very unique biology of neutrophils during Mtb infection. It has been well-established that high numbers of neutrophils correlate with high bacterial burden in mice. However, this work uncovered that some mouse strains could be resistant to infection even with high numbers of neutrophils in the lung, indicating the diverse functions of neutrophils. This information is important.

      Weaknesses:

      The weaknesses of the manuscript are that the work is relatively descriptive. It is unclear whether the neutrophil subsets are indeed functionally different. While single-cell RNA seq did provide some clues at transcription levels, functional and mechanistic investigations are lacking. Similarly, it is unclear how highly activated and glycolytic neutrophils in MANC strain contribute to its susceptibility.

    2. Reviewer #2 (Public review):

      Summary:

      These studies investigate the phenotypic variability and roles of neutrophils in tuberculosis (TB) susceptibility by using a diverse collection of wild-derived inbred mouse lines. The authors aimed to identify new phenotypes during Mycobacterium tuberculosis infection by developing, infecting, and phenotyping 19 genetically diverse wild-derived inbred mouse lines originating from different geographic regions in North America and South America. The investigators achieved their main goals, which were to show that increasing genetic diversity increases the phenotypic spectrum observed in response to aerosolized M. tuberculosis, and further to provide insights into immune and/or inflammatory correlates of pulmonary TB. Briefly, investigators infected wild-derived mice with aerosolized M. tuberculosis and assessed early infection control at 21 days post-infection. The time point was specifically selected to correspond to the period after infection when acquired immunity and antigen-specific responses manifest strongly, and also early susceptibility (morbidity and mortality) due to M. tuberculosis infection has been observed in other highly susceptible wild-derived mouse strains, some Collaborative Cross inbred strains, and approximately 30% of individuals in the Diversity Outbred mouse population. Here, the investigators normalized bacterial burden across mice based on inoculum dose and determined the percent of immune cells using flow cytometry, primarily focused on macrophages, neutrophils, CD4 T cells, CD8 T cells, and B cells in the lungs. They also used single-cell RNA sequencing to identify neutrophil subpopulations and immune phenotypes, elegantly supplemented with in vitro macrophage infections and antibody depletion assays to confirm immune cell contributions to susceptibility. The main results from this study confirm that mouse strains show considerable variability to M. tuberculosis susceptibility. Authors observed that enhanced infection control correlated with higher percentages of CD4 and CD8 T cells, and B cells, but not necessarily with the percentage of interferon-gamma (IFN-γ) producing cells. High levels of neutrophils and immature neutrophils (band cells) were associated with increased susceptibility, and the mouse strain with the most neutrophils, the MANC line, exhibited a transcriptional signature indicative of a highly activated state, and containing potentially tissue-destructive, mediators that could contribute to the strain's increased susceptibility and be leveraged to understand how neutrophils drive lung tissue damage, cavitation, and granuloma necrosis in pulmonary TB.

      Strengths:

      The strengths are addressing a critically important consideration in the tuberculosis field - mouse model(s) of the human disease, and taking advantage of the novel phenotypes observed to determine potential mechanisms. Notable strengths include,

      (1) Innovative generation and use of mouse models: Developing wild-derived inbred mice from diverse geographic locations is innovative, and this approach expands the range of phenotypic responses observed during M. tuberculosis infection. Additionally, the authors have deposited strains at The Jackson Laboratory making these valuable resources available to the scientific community.

      (2) Potential for translational research: The findings have implications for human pulmonary TB, particularly the discovery of neutrophil-associated susceptibility in primary infection and/or neutrophil-mediated disease progression that could both inform the development of therapeutic targets and also be used to test the effectiveness of such therapies.

      (3) Comprehensive experimental design: The investigators use many complementary approaches including in vivo M. tuberculosis infection, in vitro macrophage studies, neutrophil depletion experiments, flow cytometry, and a number of data mining, machine learning, and imaging to produce robust and comprehensive analyses of the wild-derives d strains and neutrophil subpopulations in 3 weeks after M. tuberculosis infection.

      Weaknesses:

      The manuscript and studies have considerable strengths and very few weaknesses. One minor consideration is that phenotyping is limited to a single limited-time point; however, this time point was carefully selected and has a strong biological rationale provided by investigators. This potential weakness does not diminish the overall findings, exciting results, or conclusions.

    1. Reviewer #1 (Public review):

      Summary:

      The work by Pinon et al describes the generation of a microvascular model to study Neisseria meningitidis interactions with blood vessels. The model uses a novel and relatively high throughput fabrication method that allows full control over the geometry of the vessels. The model is well characterized from the vascular standpoint and shows improvements when exposed to flow. The authors show that Neisseria binds to the 3D model in a similar geometry that in the animal xenograft model, induces an increase in permeability short after bacterial perfusion, and endothelial cytoskeleton rearrangements including a honeycomb actin structure. Finally, the authors show neutrophil recruitment to bacterial microcolonies and phagocytosis of Neisseria.

      Strengths:

      The article is overall well written, and it is a great advancement in the bioengineering and sepsis infection field. The authors achieved their aim at establishing a good model for Neisseria vascular pathogenesis and the results support the conclusions. I support the publication of the manuscript. I include below some clarifications that I consider would be good for readers.

      One of the most novel things of the manuscript is the use of a relatively quick photoablation system. Could this technique be applied in other laboratories? While the revised manuscript includes more technical details as requested, the description remains difficult to follow for readers from a biology background. I recommend revising this section to improve clarity and accessibility for a broader scientific audience.

      The authors suggest that in the animal model, early 3h infection with Neisseria do not show increase in vascular permeability, contrary to their findings in the 3D in vitro model. However, they show a non-significant increase in permeability of 70 KDa Dextran in the animal xenograft early infection. As a bioengineer this seems to point that if the experiment would have been done with a lower molecular weight tracer, significant increases in permeability could have been detected. I would suggest to do this experiment that could capture early events in vascular disruption.

      One of the great advantages of the system is the possibility of visualizing infection-related events at high resolution. The authors show the formation of actin of a honeycomb structure beneath the bacterial microcolonies. This only occurred in 65% of the microcolonies. Is this result similar to in vitro 2D endothelial cultures in static and under flow? Also, the group has shown in the past positive staining of other cytoskeletal proteins, such as ezrin in the ERM complex. Does this also occur in the 3D system?

      Significance:

      The manuscript is comprehensive, complete and represents the first bioengineered model of sepsis. One of the major strengths is the carful characterization and benchmarking against the animal xenograft model. Beyond the technical achievement, the manuscript is also highly quantitative and includes advanced image analysis that could benefit many scientists. The authors show a quick photoablation method that would be useful for the bioengineering community and improved the state-of-the-art providing a new experimental model for sepsis.

      My expertise is on infection bioengineered models.

    2. Reviewer #2 (Public review):

      Pinon and colleagues have developed a Vessel-on-Chip model showcasing geometrical and physical properties similar to the murine vessels used in the study of systemic infections. The vessel was created via highly controllable laser photoablation in a collagen matrix, subsequent seeding of human endothelial cells, and flow perfusion to induce mechanical cues. This model could be infected with Neisseria meningitidis as a model of systemic infection. In this model, microcolony formation and dynamics, and effects on the host were very similar to those described for the human skin xenograft mouse model (the current gold standard for systemic studies) and were consistent with observations made in patients. The model could also recapitulate the neutrophil response upon N. meningitidis systemic infection.

      The claims and the conclusions are supported by the data, the methods are properly presented, and the data is analyzed adequately. The most important strength of this manuscript is the technology developed to build this model, which is impressive and very innovative. The Vessel-on-Chip can be tuned to acquire complex shapes and, according to the authors, the process has been optimized to produce models very quickly. This is a great advancement compared with the technologies used to produce other equivalent models. This model proves to be equivalent to the most advanced model used to date (skin xenograft mouse model). The human skin xenograft mouse model requires complex surgical techniques and has the practical and ethical limitations associated with the use of animals. However, the Vessel-on-chip model is free of ethical concerns, can be produced quickly, and allows to precisely tune the vessel's geometry and to perform higher resolution microscopy. Both models were comparable in terms of the hallmarks defining the disease, suggesting that the presented model can be an effective replacement of the animal use in this area. In addition, the Vessel-on-Chip allows to perform microscopy with higher resolution and ease, which can in turn allow more complex and precise image-based analysis.

      A limitation of this model is that it lacks the multicellularity that characterizes other similar models, which could be useful to research disease more extensively. However, the authors discuss the possibilities of adding other cells to the model, for example, fibroblasts. It is also not clear whether the technology presented in the current paper can be adopted by other labs. The methodology is complex and requires specialized equipment and personnel, which might hinder its widespread utilization of this model by researchers in the field.

      This manuscript will be of interest for a specialized audience focusing on the development of microphysiological models. The technology presented here can be of great interest to researchers whose main area of interest is the endothelium and the blood vessels, for example, researchers on the study of systemic infections, atherosclerosis, angiogenesis, etc. This manuscript can have great applications for a broad audience and it can present an opportunity to begin collaborations, aimed at answering diverse research questions with the same model.

    3. Reviewer #3 (Public review):

      Summary:

      In this manuscript Pinon et al. describe the development of a 3D model of human vasculature within a microchip to study Neisseria meningitidis (Nm)- host interactions and validate it through its comparison to the current gold-standard model consisting of human skin engrafted onto a mouse. There is a pressing need for robust biomimetic models with which to study Nm-host interactions because Nm is a human-specific pathogen for which research has been primarily limited to simple 2D human cell culture assays. Their investigation relies primarily on data derived from microscopy and its quantitative analysis, which support the authors' goal of validating their Vessel-on-Chip (VOC) as a useful tool for studying vascular infections by Nm, and by extension, other pathogens associated with blood vessels.

      Strengths:<br /> • Introduces a novel human in vitro system that promotes control of experimental variables and permits greater quantitative analysis than previous models<br /> • The VOC model is validated by direct comparison to the state-of-the-art human skin graft on mouse model<br /> • The authors make significant efforts to quantify, model, and statistically analyze their data<br /> • The laser ablation approach permits defining custom vascular architecture<br /> • The VOC model permits the addition and/or alteration of cell types and microbes added to the model<br /> • The VOC model permits the establishment of an endothelium developed by shear stress and active infusion of reagents into the system

      Weaknesses:<br /> • The work presented here is mostly descriptive, with little new information that is learned about the biology of Nm or endothelial cells. However, the goal of this study was to establish the VOC model, and the validation presented here is necessary for follow-on studies on Nm pathogenesis and host response.<br /> • The VOC model contains one cell type, human umbilical cord vascular endothelial cells (HUVECs), while true vasculature contains a number of other cell types that associate with and affect the endothelium, such as smooth muscle cells, pericytes, and components of the immune system. These and other shortcomings of the VOC model as it currently stands warrant additional discussion.

      Impact:<br /> The VOC model presented by Pinon et al. is an exciting advancement in the set of tools available to study human pathogens interacting with the vasculature. This manuscript focuses on validating the model, and as such sets the foundation for impactful research in the future. Of particular value is the photoablation technique that permits the custom design of vascular architecture without the use of artificial scaffolding structures described in previously published works.

    1. Reviewer #1 (Public review):

      Summary:

      In this report, Yabaji et al describe studies designed to address the mechanism behind the TB susceptibility gene sst1. This locus is known to affect expression of IFN and synergizes with Myc to potentiate infectivity. Using a variety of molecular expression and imaging techniques, the authors demonstrate that mice harboring an sst1 transgene (compared to B6 controls) are highly susceptible to TB infection via a mechanism involving loss of antioxidant defense systems, the down regulation of key antioxidant genes and ferritin controlling intracellular iron levels. The combination of increased iron plus decreased antioxidant defense systems in turn increases lipid peroxidation and downstream sequelae. Inhibition of peroxidation diminishes infectivity increases ferritin levels. Furthermore, the authors demonstrate that Myc activation potentiates this process and that down regulation of NRF2 antioxidant defenses accompany potentiated infectivity. Increased peroxidation products (4-HNE) may activate the ASK1/JNK system leading to IFNb superinduction and diminished macrophage viability thereby diminishing ability to withstand TB infection. Extending these findings, additional mouse models plus some work in humans supports the peroxidation hypothesis. Overall, the work is significant for it introduces a molecular basis for TB infectivity and presents a potential novel therapeutic opportunity.

      Strengths:

      (1) Strengths of this study include a multi-omic analysis of infectivity combining gene expression analysis with biochemical and cell biological evaluation.

      (2) Novel identification of an iron-catalyzed lipid peroxidation based mechanism for why the sst1 locus is linked to TB infection.

      (3) Parallels to human biology are included via analysis of Myc upregulation in peripheral blood from patients.

      (4) Appropriate statistical analysis

      Weaknesses:

      (1) Lipid peroxidation is a broad phenotype process and the authors honed in on 4-HNE dependent processes as a likely mechanism because they can measure 4-HNE conjugated proteins. However, lipid peroxidation is a complex phenomenon and the work presented herein is largely descriptive.

      (2) The authors continually refer to increased 4HNE while they do not measure this 9 carbon lipid, they actually measure 4-HNE conjugated proteins immunochemically.

      (3) The authors do not distinguish between increased protein-HNE adducts and increased membrane peroxidation (or both) as mechanistically linked to infectivity.

    1. Reviewer #1 (Public review):

      Summary:

      The authors add to the body of evidence showing theta rhythmic modulations of neuronal activity and behavior.

      Strengths:

      Precise characterization of the effects of visual stimulation on theta-induced neuronal oscillations of spiking neurons in V1 and its relevance for behavior.

      The manuscript is well-written and clearly presented,

      Weaknesses:

      The advances are limited over the established body of evidence. Both theta-induced visual oscillations and their relevance for behavior have been firmly established by prior work, including prior work from the authors. There is no major new technique, data, finding, or insight that extends our knowledge in a majorly significant way beyond existing knowledge, in my opinion. I would suggest that the authors re-evaluate the body of existing work to more strongly place their work in the context of existing work. A study that targets fundamental holes or open questions in the field would have been viewed as more impactful.

    2. Reviewer #2 (Public review):

      Summary:

      Schmid & colleagues test an interesting hypothesis that V1 neurons might act as theta-tuned filters to incoming sensory information, and thereby influence downstream processing and detection performance.

      Strengths:

      The authors report that circular stimuli elicit theta oscillations in V1 single units and population activity. They also report that the phase of the theta oscillations influences performance in a change detection task.

      Weaknesses:

      The results are reported in terms of specific stimulus sizes. To truly reflect general-purpose spatial computations in the primary visual cortex, it will be important to establish a relationship between stimulus size and receptive field size.

      I have several major concerns that I would like the authors to address:

      (1) First paragraph of Results: The results are presented at very specific stimulus sizes: 0.3-degree, 1-degree, 4-degree, and so on. A key missing piece of information is the size of the receptive fields (RFs) that were recorded from. A related missing information is at what eccentricity these RFs were recorded from. Since there is nothing magical about a 1-degree stimulus, any general-purpose computation in the primary visual cortex has to establish a relationship between RF size and stimulus size.

      (2) Second paragraph of Results: The authors state that "specific stimulus sizes consistently induced strong theta rhythmic activity: 1{degree sign} in MUA and 2{degree sign} in LFP". What is the interpretation of these specific sizes? Given that the LFP and MUAe reflect different aspects of neural activity, how does one interpret the discrepancy?

      (3) Third paragraph of Results: Again related to (1), what is the relationship between the stimulus size that elicited the largest theta peaks and RF size at the population level? (1)-(3) taken together, there seems to be an opportunity to reveal something more fundamental about V1 processing that the authors might have missed here.

      (4) Change detection task: It was not clear to me whether the timing of the luminance change, which varied from 500ms to 1500ms, was drawn from an exponential distribution or a uniform distribution. Only an exponential distribution has the property of a flat hazard function, which will be important to establish that the animal could not anticipate the timing of the upcoming change.

      (5) Figure 3D: Have the authors tried to fit the data separately for each animal? There seems to be an inconsistency in the results between the 2 animals. The circular data points ('AL') seem positively correlated, similar to the overall trend, but the diamond data points ('DP') seem to have a negative slope.

    3. Reviewer #3 (Public review):

      Summary:

      This paper investigates changes in brain oscillations in V1 in response to experimentally manipulating visual stimulus features (size, contrast at optimal size) and examines whether these effects are of perceptual relevance. The results reveal prominent stimulus-related theta oscillations in V1 that match in frequency the rhythms of behavioural performance (response speed in detecting targets in the visual display). Phase analyses relate these fluctuations of detection performance more formally to opposite theta phase angles in V1.

      Strengths:

      The non-human primate model provides unique findings on how brain oscillations relate to rhythms in perception (in two rhesus monkeys) that align well with findings from human studies (as occurring in the theta band). However, theta rhythms in humans are typically associated with fronto-parietal activity in the domain of spatial orienting, attentional sampling, while here the focus is on V1. Importantly, microsaccade-controls seem to speak against a spatial orienting/ attentional sampling mechanism to explain the observed effects (at least regarding overt attention).

      Weaknesses:

      This study provides interesting clues on perceptually relevant brain oscillations. Despite the microsaccade-control, I believe it remains an open question whether the V1 rhythmicity is of pure V1 origin, or driven by top-down input, as it is conceivable that specific stimuli capture attention differently (and hence induce specific covert attentional (re)orienting patterns). For perceptually relevant (yet beta) rhythmicity over occipital areas that are top-down generated, see e.g., Veniero et al., 2019.

    1. Reviewer #2 (Public review):

      This manuscript describes the role of the production of c-di-AMP on the chlamydial developmental cycle. The main findings remain the same. The authors show that overexpression of the dacA-ybbR operon results in increased production of c-di-AMP and early expression of transitionary and late genes. The authors also knocked down the expression of the dacA-ybbR operon and reported a modest reduction in the expression of both hctA and omcB. The authors conclude with a model suggesting the amount of c-di-AMP determines the fate of the RB, continued replication, or EB conversion.

      Overall, this is a very intriguing study with important implications however the data is very preliminary and the model is very rudimentary. The data support the observation that dramatically increased c-di-AMP has an impact on transitionary gene expression and late gene expression suggesting dysregulation of the developmental cycle. This effect goes away with modest changes in c-di-AMP (detaTM-DacA vs detaTM-DacA (D164N)). However, the model predicts that low levels of c-di-AMP delays EB production is not not well supported by the data. If this prediction were true then the growth rate would increase with c-di-AMP reduction and the data does not show this. The levels of of c-di-AMP at the lower levels need to be better validated as it seems like only very high levels make a difference for dysregulated late gene expression. However, on the low end it's not clear what levels are needed to have an effect as only DacAopMut and DacAopKD show any effects on the cycle and the c-di-AMP levels are only different at 24 hours.

      The data still do not support the overall model.

      In Figure 1 the authors show at 24 hpi.

      DacA overexpression increases cdiAMP to ~4000 pg/ml

      DacAmut overexpression reduces cdiAMP dramatically to ~256 pg/ml)

      DacATM overexpression increases cdiAMP to ~4000 pg/ml.

      DacAmutTM overexpression does not seem to change cdiAMP ~1500 pg/ml .

      dacAKD decreases cdiAMP to ~300 pg/ml .

      dacAKDcom increased cdiAMP to ~8000 pg/ml.

      DacA-ybbRop overexpression increased cdiAMP to ~500,000 pg/ml.

      DacA-ybbRopmut ~300 pg/ml.

      However in Figure 2 the data show that overexpression of DacA (cdiAMP ~4000 pg/ml) did not have a different phenotype than over expression of the mutant (cdiAMP ~256 pg/ml). HctA expression down, omcB expression down, euo not much change, replication down, and IFUs down. Additionally, Figure 3 shows no differences in anything measured although cdiAMP levels were again dramatically different. DacATM overexpression (~4000 pg/ml) and DacAmutTM (~1500). This makes it unclear what cdiAMP is doing to the developmental cycle.

      In Figure 4 the authors knockdown dacA (dacA-KD) and complement the knockdown (dacA-KDcom) dacAKD decreases cdiAMP (~300) while DacA-KDcom increases cdiAMP much above wt (~8000).<br /> KD decreased hctA and omcB at 24hpi. Complementation resulted in a moderate increase in hctA at a single time point but not at 24 hpi and had no effect on euo or omcB expression. Importantly, complementation decreased the growth rate. Based on the proposed model, growth rate should increase as the chlamydia should all be RBs and replicating and not exiting the cell cycle to become EBs (not replicating). Interestingly reducing cdiAMP levels by over expressing DacAmut (~256 pg/ml) did not have an effect on the cycle but the reduction in cdiAMP by knockdown of dacA (~300 pg/ml) did have a moderate effect on the cycle.

      For Figure 5 DacA-ybbRop was overexpressed and this increased cdiAMP dramatically ~500,000 pg/ml as compared to wt ~1500. This increased hctA only at an early timepoint and not at 24hpi and again had no effect on omcB or euo. Overexpression of the operon with the mutation DacA-ybbRopmut reduced cdiAMP to ~300 pg/ml and this showed a reduction in growth rate similar to dacAmut but a more dramatic decrease in IFUs.

      Overall:

      DacA overexpression increases cdiAMP to ~4000 pg/ml (decreased everything except euo)

      DacAmut overexpression reduces cdiAMP dramatically (~256 pg/ml). (decreased everything except euo)

      DacATM overexpression increases cdiAMP to ~4000 pg/ml (no changes noted)

      DacAmutTM overexpression does not seem to change cdiAMP ~1500 pg/ml (no changes noted)

      dacAKD decrease cdiAMP to ~300 pg/ml (decreased everything except euo)

      dacAKDcom increased cdiAMP to ~8000 pg/ml (decreases growth rate, increase hctA a little but not omcB)

      DacA-ybbRop overexpression increased cdiAMP to ~500,000 pg/ml (decreases growth rate, increase hctA a little but not omcB)

      DacA-ybbRopmut ~300 pg/ml (decreased everything except euo)

      Overall, the data show that increasing cdiAMP only has a phenotype if it is dramatically increased, no effect at 4000 pg/ml. Decreasing cdiAMP has a consistent effect, decreased growth rate, IFU, hctA expression and omcB expression. However, if their proposed model was correct and low levels of cdiAMP blocked EB conversion then more chlamydial cells would be RBs (dividing cells) and the growth rate should increase. Conversely, if cdiAMP levels were dramatically raised then all RBs would all convert and the growth rate would be very low. When cdiAMP was raised to ~4000 pg/ml there was no effect on the growth rate. However, an increase to ~8000 pg/ml resulted in a significant decrease but growth continued. Increasing cdAMP to ~500,000 pg/ml had less of an impact on the growth rate. Overall, the data does not cleanly support the proposed model.

    1. Reviewer #1 (Public review):

      Summary:

      This is a contribution to the field of developmental bioelectricity. How do changes of resting potential at the cell membrane affect downstream processes? Zhou et al. reported in 2015 that phosphatidylserine and K-Ras cluster upon plasma membrane depolarization and that voltage-dependent ERK activation occurs when constitutively active K-RasG12V mutants are overexpressed. In this paper, the authors advance the knowledge of this phenomenon by showing that membrane depolarization up-regulates mitosis and that this process is dependent on voltage-dependent activation of ERK. ERK activity's voltage-dependence is derived from changes in the dynamics of phosphatidylserine in the plasma membrane and not by extracellular calcium dynamics. This paper reports an interesting and important finding. It is somewhat derivative of Zhou et al., 2015. (https://www.science.org/doi/full/10.1126/science.aaa5619). The main novelty seems to be that they find quantitatively different conclusions upon conducting similar experiments, albeit with a different cell line (U2OS) than those used by Zhou et al. Sasaki et al. do show that increased K+ levels increase proliferation, which Zhou et al. did not look at. The data presented in this paper are a useful contribution to a field often lacking such data.

      Strengths:

      Bioelectricity is an important field for areas of cell, developmental, and evolutionary biology, as well as for biomedicine. Confirmation of ERK as a transduction mechanism and a characterization of the molecular details involved in the control of cell proliferation are interesting and impactful.

      Weaknesses:

      The authors lean heavily on the assumption that the Nernst equation is an accurate predictor of membrane potential based on K+ level. This is a large oversimplification that undermines the author's conclusions, most glaringly in Figure 2C. The author's conclusions should be weakened to reflect that the activity of voltage gated ion channels and homeostatic compensation are unaccounted for.

      There are grammatical tense errors are made throughout the paper (ex line 99 "This kinetics should be these kinetics")

      Line 71: Zhou et al. use BHK, N2A, PSA-3 cells, this paper uses U2OS (osteosarcoma) cells. Could that explain the differences in bioelectric properties that they describe? In general, there should be more discussion of the choice of cell line. Why were U2OS cells chosen? What are the implications of the fact that these are cancer cells, and bone cancer cells in particular? Does this paper provide specific insights for bone cancers? And crucially, how applicable are findings from these cells to other contexts?

      Line 115: The authors use EGF to calibrate 'maximal' ERK stimulation. Is this level near saturation? Either way is fine, but it would be useful to clarify.

      Line 121: Starting line 121 the authors say "Of note, U2OS cells expressed wild-type K-Ras but not an active mutant of K-Ras, which means voltage dependent ERK activation occurs not only in tumor cells but also in normal cells". Given that U2OS cells are bone sarcoma cells, is it appropriate to refer to these as 'normal' cells in contrast to 'tumor' cells?

      Line 101: These normalizations seem reasonable, the conclusions sufficiently supported and the requisite assumptions clearly presented. Because the dish-to-dish and cell-to-cell variation may reflect biologically relevant phenomena it would be ideal if non-normalized data could be added in supplemental data where feasible.

      Figure 2C is listed as Figure 2D in the text

      There is no Figure 2F (Referenced in line 148)

    2. Reviewer #2 (Public review):

      Sasaki et al. use a combination of live-cell biosensors and patch-clamp electrophysiology to investigate the effect of membrane potential on the ERK MAPK signaling pathway, and probe associated effects on proliferation. This is an effect that has long been proposed, but a convincing demonstration has remained elusive, because it is difficult to perturb membrane potential without disturbing other aspects of cell physiology in complex ways. The time-resolved measurements here are a nice contribution to this question, and the perforated patch clamp experiments with an ERK biosensor are fantastic - they come closer to addressing the above difficulty of perturbing voltage than any prior work. It would have been difficult to obtain these observations with any other combination of tools.

      However, there are still some concerns as detailed in specific comments below:

      Specific comments:

      (1) All the observations of ERK activation, by both high extracellular K+ and voltage clamp, could be explained by cell volume increase (more discussion in subsequent comments). There is a substantial literature on ERK activation by hypotonic cell swelling (e.g. https://doi.org/10.1042/bj3090013, https://doi.org/10.1002/j.1460-2075.1996.tb00938.x, among others). Here are some possible observations that could demonstrate that ERK activation by volume change is distinct from the effects reported here:

      i) Does hypotonic shock activate ERK in U2OS cells?

      ii) Can hypotonic shock activate ERK even after PS depletion, whereas extracellular K+ cannot?

      iii) Does high extracellular K+ change cell volume in U2OS cells, measured via an accurate method such as fluorescence exclusion microscopy?

      iv) It would be helpful to check the osmolality of all the extracellular solutions, even though they were nominally targeted to be iso-osmotic.

      (2) Some more details about the experimental design and the results are needed from Figure 1:

      i) For how long are the cells serum-starved? From the Methods section, it seems like the G1 release in different K+ concentration is done without serum, is this correct? Is the prior thymidine treatment also performed in the absence of serum?

      ii) There is a question of whether depolarization constitutes a physiologically relevant mechanism to regulate proliferation, and how depolarization interacts with other extracellular signals that might be present in an in vivo context. Does depolarization only promote proliferation after extended serum starvation (in what is presumably a stressed cell state)? What fraction of total cells are observed to be mitotic (without normalization), and how does this compare to the proliferation of these cells growing in serum-supplemented media? Can K+ concentration tune proliferation rate even in serum-supplemented media?

      (3) In Figure 2, there are some possible concerns with the perfusion experiment:

      i) Is the buffer static in the period before perfusion with high K+, or is it perfused? This is not clear from the Methods. If it is static, how does the ERK activity change when perfused with 5 mM K+? In other words, how much of the response is due to flow/media exchange versus change in K+ concentration?

      ii) Why do there appear to be population-average decreases in ERK activity in the period before perfusion with high K+ (especially in contrast to Fig. 3)? The imaging period does not seem frequent enough for photobleaching to be significant.

      (4) Figure 3 contains important results on couplings between membrane potential and MAPK signaling. However, there are a few concerns:

      i) Does cell volume change upon voltage clamping? Previous authors have shown that depolarizing voltage clamp can cause cells to swell, at least in the whole-cell configuration:

      https://www.cell.com/biophysj/fulltext/S0006-3495(18)30441-7 . Could it be possible that the clamping protocol induces changes in ERK signaling due to changes in cell volume, and not by an independent mechanism?

      ii) Does the -80 mV clamp begin at time 0 minutes? If so, one might expect a transient decrease in sensor FRET ratio, depending on the original resting potential of the cells. Typical estimates for resting potential in HEK293 cells range from -40 mV to -15 mV, which would reach the range that induces an ERK response by depolarizing clamp in Fig. 3B. What are the resting potentials of the cells before they are clamped to -80 mV, and why do we not see this downward transient?

      (5) The activation of ERK by perforated voltage clamp and by high extracellular K+ are each convincing, but it is unclear whether they need to act purely through the same mechanism - while additional extracellular K+ does depolarize the cell, it could also be affecting function of voltage-independent transporters and cell volume regulatory mechanisms on the timescales studied. To more strongly show this, the following should be done with the HEK cells where there is already voltage clamp data:

      i) Measure resting potential using the perforated patch in zero-current configuration in the high K+ medium. Ideally this should be done in the time window after high K+ addition where ERK activation is observed (10-20 minutes) to minimize the possibility of drift due to changes in transporter and channel activity due to post-translational regulation.

      ii) Measure YFP/CFP ratio of the HEK cells in the high K+ medium (in contrast to the U2OS cells from Fig. 2 where there is no patch data).

      iii) The assertion that high K+ is equivalent to changes in Vmem for ERK signaling would be supported if the YFP/CFP change from K+ addition is comparable to that induced by voltage clamp to the same potential. This would be particularly convincing if the experiment could be done with each of the 15 mM, 30 mM, and 145 mM conditions.

      (6) Line 170: "ERK activity was reduced with a fast time course (within 1 minute) after repolarization to -80 mV." I don't see this in the data: in Fig. 3C, it looks like ERK remains elevated for > 10 min after the electrical stimulus has returned to -80 mV

      Comments on revisions:

      The authors have done a good job addressing the comments on the previous submission.

    3. Reviewer #3 (Public review):

      Summary:

      This paper demonstrates that membrane depolarization induces a small increase in cell entry into mitosis. Based on previous work from another lab, the authors propose that ERK activation might be involved. They show convincingly using a combination of assays that ERK is activated by membrane depolarization. They show this is Ca2+ independent and is a result of activation of the whole K-Ras/ERK cascade which results from changed dynamics of phosphatidylserine in the plasma membrane that activates K-Ras. Although the activation of the Ras/ERK pathway by membrane depolarization is not new, linking it to an increase in cell proliferation is novel.

      Strengths

      A major strength of the study is the use of different techniques - live imaging with ERK reporters, as well as Western blotting to demonstrate ERK activation as well as different methods for inducing membrane depolarization. They also use a number of different cell lines. Via Western blotting the authors are also able to show that the whole MAPK cascade is activated.

      Weaknesses

      A weakness of the study is the data in Figure 1 showing that membrane depolarization results in an increase of cells entering mitosis. There are very few cells entering mitosis in their sample in any condition. This should be done with many more cells to increase the confidence in the results. The study also lacks a mechanistic link between ERK activation by membrane depolarization and increased cell proliferation.

      The authors did achieve their aims with the caveat that the cell proliferation results could be strengthened. The results, for the most par,t support the conclusions.

      This work suggests that alterations in membrane potential may have more physiological functions than action potential in the neural system as it has an effect on intracellular signalling and potentially cell proliferation.

      In the revised manuscript, the authors have now addressed the issues with Figure 1, and the data presented are much clearer. They did also attempt to pinpoint when in the cell cycle ERK is having its activity, but unfortunately, this was not conclusive.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Mack and colleagues investigate the role of posttranslational modifications, including lysine acetylation and ubiquitination, in methyltransferase activity of SETD2 and show that this enzyme functions as a tumor suppressor in a KRASG12C-driven lung adenocarcinoma. In contrast to H3K36me2-specific oncogenic methyltransferases, the deletion of SETD2, which is capable of H3K36 trimethylation, increases lethality in a KRASG12C-driven lung adenocarcinoma mouse tumor model. In vitro, the authors demonstrate that polyacetylation of histone H3, particularly of H3K27, H3K14 and H3K23, promotes the catalytic activity of SETD2, whereas ubiquitination of H2A and H2B has no effect.

      Strengths:

      Overall, this is a well-designed study that addresses an important biological question regarding the functioning of the essential chromatin component. The manuscript contains excellent quality data, and the conclusions are convincing and justified. This work will be of interest to many biochemists working in the field of chromatin biology and epigenetics.

      Comments on revisions:

      All previous comments are well addressed, and I enthusiastically support publication.

    2. Reviewer #2 (Public review):

      Summary:

      Human histone H3K36 methyltransferase Setd2 has been previously shown to be a tumor suppressor in lung and pancreatic cancer. In this manuscript by Mack et al., the authors first use a mouse KRASG12D-driven lung cancer model to confirm in vivo that Setd2 depletion exacerbates tumorigenesis. They then investigate the enzymatic regulation of the Setd2 SET domain in vitro, demonstrating that H2A, H3, or H4 acetylation stimulates Setd2-SET activity, with specific enhancement by mono-acetylation at H3K14ac or H3K27ac. In contrast, histone ubiquitination has no effect. The authors propose that H3K27ac may regulate Setd2-SET activity by facilitating its binding to nucleosomes. This work provides insight into how cross-talk between histone modifications regulates Setd2 function.

      Comments on revisions:

      (1) Regarding New Figure 2F lane 1, please reference PMID: 33972509 Fig 4D bottom. Setd2-SET is a well-known robust K36 trimethylase. Why, under the authors' conditions, do WT nucleosomes show a significant amount of K36me1 and K36me2 accumulation, whereas K36me3 is not as pronounced? As a comparison, the authors should also report the evidence for the efficiency of each chemical modification that generates K36 methylation mimic.

      (2) The bottom panel of Figure 2B does not match the top one; the number of repeats should be indicated in the figure legends.

      (3) In Figure 4E, the differences between Setd2-bound WT and acetylated nucleosomes are minimal, as judged by both the decreasing trend of unbound nucleosomes and the increasing trend of bound fractions. This experiment needs to be quantified based on multiple repeats.

    1. Reviewer #1 (Public review):

      In this manuscript, Wolfson and co-authors demonstrate a combination of an injury-specific enhancer and engineered AAV that enhances transgene expression in injured myocardium. The authors characterize spatiotemporal dynamics of TREE-directed AAV expression in the injured heart using a non-invasive longitudinal monitoring system. They show that transgene expression is drastically increased 3 days post-injury, driven by 2ankrd1a. They reported a liver-detargeted capsid, AAV cc.84, with decreased viral entry into the liver while maintaining TREE transgene specificity. They further identified the IR41 serotype with enhanced transgene expression in injured myocardium from AAV library screening. This is an interesting study that optimizes the potential application of TREE delivery for cardiac repair.

      Comments on revisions:

      The authors are responsive and have addressed my concerns.

    2. Reviewer #2 (Public review):

      Summary:

      In this manuscript by Wolfson et al., various adeno-associated viruses (AAVs) were delivered to mice to assess the cardiac-specificity, injury border-zone cardiomyocyte transduction rate, and temporal dynamics in the goal to find better AAVs for gene therapies targeting the heart. The authors delivered tissue regeneration enhancer elements (TREEs) controlling luciferase expression and used IVIS imaging to examine transduction in the heart and other organs. They found that luciferase expression increased in the first week after injury when using AAV9-TREE-Hsp68 promoter, waning to baseline levels by 7 weeks. However, AAV9 vectors transduced the liver, which was significantly reduced by using an AAV.cc84 liver de-targeting capsid. The authors then performed in vivo screening of AAV9 capsids and found AAV-IR41 to preferentially transduce injured myocardium when compared to AAV9. Finally, the authors combined TREEs with AAV-IR41 to show improved luciferase expression compared to AAV9-TREE at 7, 14 and 21 days after injury.

      Overall, this manuscript provides insights into TREE expression dynamics when paired with various heart-targeting capsids, which can be useful for researchers studying ischemic injury of murine hearts. While the authors have shown the success of using AAV9-TREEs in porcine hearts, it is unknown whether the expression dynamics would be similar in pigs or humans, as mentioned in the limitations.

      Strengths:

      Important contribution to the AAV gene therapy literature.

      Comments on revised version:

      My concerns have been adequately addressed.

    3. Reviewer #3 (Public review):

      Summary:

      The tissue regeneration enhancer elements (TREEs) identified in zebrafish have been shown to drive injury-activated temporal-spatial gene expression in mice and large animals. These findings increase the translational potential of findings in zebrafish to mammals. In this manuscript, the authors tested TREEs in combination with different adeno-associated viral (AAV) vectors using in vivo luciferase bioluminescent imaging that allows for longitudinal tracking. The TREE-driven luciferase delivered by a liver de-targeted AAV.cc84 decreased off-target transduction in liver. They further screened an AAV library to identify capsid variants that display enhanced transduction for infarcted myocardium post ischemia reperfusion and myocardial infarction. A new capsid variant, AAV.IR41, was found to show increased transduction post I/R and MI.

      Strengths:

      The authors injected AAV-cargo several days after ischemia/reperfusion (I/R) injury as a clinically relevant approach. Overall, this study is significant in that it identifies new AAV vectors that can be used to deliver promising genes as potential new gene therapies in the future. The manuscript is well-written and the data are also of high quality.

      Weaknesses:

      The authors have addressed my previous concerns.

    1. Reviewer #2 (Public review):

      This is a timely and insightful study aiming to explore the general physical principles for the sub-compartmentalization--or lack thereof--in the phase separation processes underlying the assembly of postsynaptic densities (PSDs), especially the markedly different organizations in three-dimensional (3D) droplets on one hand and the two-dimensional (2D) condensates associated with a cellular membrane on the other. Simulation of a highly simplified model (one bead per protein domain) is apparently carefully executed. Based on a thorough consideration of various control cases, the main conclusion regarding the trade-off between repulsive excluded volume interactions and attractive interactions among protein domains in determining the structures of 3D vs 2D model PSD condensates is quite convincing. The novel results in this manuscript should be published.

      Comment on the revised manuscript:

      The authors have adequately addressed all my previous concerns. The manuscript is now much improved, ready for publication as a version of record.

    2. Reviewer #3 (Public review):

      Summary:

      In this work, Yamada, Brandani and Takada have developed a mesoscopic model of the interacting proteins in the postsynaptic density. They have performed simulations, based on this model and using the software ReaDDy, to study the phase separation in this system in 2D (on the membrane) and 3D (in the bulk). They have carefully investigated the reasons behind different morphologies observed in each case, and have looked at differences in valency, specific/non-specific interactions and interfacial tension.

      Strengths:

      The simulation model is developed very carefully, with strong reliance on binding valency and geometry, experimentally measured affinities, and physical considerations like the hydrodynamic radii. The presented analyses are also thorough, and great effort has been put into investigating different scenarios that might explain the observed effects.

      Weaknesses:

      The biggest weakness of the study, in my opinion, has been a lack of more in-depth and quantitative physical insights about phase separation theories. In the revised version, the authors have added text to point the interested reader to the respective theories, and have included a qualitative assessment of their findings in the light of said theories. This better positions their discussion. I still believe the role of entropic effects need more attention, which can be the subject of future studies.

      The authors have revised their Introduction and added text to the Discussion, to enrich their view on the attractive and repulsive forces as well as mixing entropy. This version better covers the physics of phase separation.

      I appreciate the added discussion about the different diffusive behavior in the membrane in contrast to the bulk (i.e. the Saffman-Delbrück model). This paves the way for future studies, including realistic kinetics of the studied system.

    1. Joint Public Review:

      This manuscript reconsiders the "general form" of Hamilton's rule, in which "benefit" and "cost" are defined as regression coefficients. It points out that there is no reason to insist on Hamilton's rule of the form -c+br>0, and that, in fact, arbitrarily many terms (i.e. higher-order regression coefficients) can be added to Hamilton's rule to reflect nonlinear interactions. Furthermore, it argues that insisting on a rule of the form -c+br>0 can result in conditions that are true but meaningless and that statistical considerations should be employed to determine which form of Hamilton's rule is meaningful for a given dataset or model.

      Comments on latest version:

      The authors have provided a robust, valuable and detailed response to the previous reviews.

      Comments from Reviewer #1: I have nothing further to add.

      Comments from Reviewer #2: I appreciate the clarifications the author has made to the manuscript regarding (i) "sample covariance" terminology, (ii) the generality of the "generalized Price equation", and (iii) the distinction between the covariance and regression forms of the Price equation. I also appreciate that the ms now engages more deeply with some of the previous literature on regression-based Hamilton's rules (e.g. Smith et al., 2010; Rousset 2015). I feel these revisions make this contribution more valuable, and also more technically sound, since the term "sample covariance" is no longer used incorrectly.

      I also add that I agree with the substance of the authors' response to Reviewer #3. That is, the original submission was very clear that the regression-based Hamilton's rule is already completely general in the range of situations to which it applies, and that the added "generality" in the present ms refers to the variety of regression models that can be applied to these situations. In this way, the original ms already anticipates and addresses the criticism that Reviewer #3 raises.

      Reviewer #3 did not provide comments on the revised version.

    1. Reviewer #1 (Public review):

      Filamentous fungi are established work horses in biotechnology with Aspergillus oryzae as a prominent example with a thousand-year of history. Still the cell biology and biochemical properties of the production strains is not well understood. The paper of the Takeshita group describes the change in nuclear numbers and correlate it to different production capacities. They used microfluidic devices to really correlate the production with nuclear numbers. In addition, they used microdissection to understand expression profile changes and found an increase of ribosomes. The analysis of two genes involved in cell volume control in S. pombe did not reveal conclusive answers to explain the phenomenon. It appears that it is a multi-trait phenotype. Finally, they identified SNPs in many industrial strains and tried to correlate them to the capability of increasing their nuclear numbers.

      The methods used in the paper range from high quality cell biology, Raman spectroscopy to atomic force and electron microscopy and from laser microdissection to the use of microfluidic devices to study individual hyphae.

      This is a very interesting, biotechnologically relevant paper with the application of excellent cell biology.

      Comments on revised version:

      The authors addressed all suggestions satisfactorily.

    2. Reviewer #2 (Public review):

      Summary:

      In the study presented by Itani and colleagues it is shown that some strains of Aspergillus oryzae - especially those used industrially for the production of sake and soy sauce - develop hyphae with a significantly increased number of nuclei and cell volume over time. These thick hyphae are formed by branching from normal hyphae and grow faster and therefore dominate the colonies. The number of nuclei positively correlates with the thicker hyphae and also the amount of secreted enzymes. The addition of nutrients such as yeast extract or certain amino acids enhanced this effect. Genome and transcriptome analyses identified genes, including rseA, that are associated with the increased number of nuclei and enzyme production. The authors conclude from their data involvement of glycosyltransferases, calcium channels and the tor regulatory cascade in regulation of cell volume and number of nuclei. Thicker hyphae and an increased number of nuclei was also observed in high-production strains of other industrially used fungi such as Trichoderma reesei and Penicillium chrysogenum, leading to the hypothesis that the mentioned phenotypes are characteristic of production strains which is of significant interest for fungal biotechnology.

      Strengths:

      The study is very comprehensive and involves application of divers state-of-the-art cell biological, biochemical and genetical methods. Overall, the data are properly controlled and analyzed, figures and movies are of excellent quality.<br /> The results are particularly interesting with regard to the elucidation of molecular mechanisms that regulate the size of fungal hyphae and their number of nuclei. For this, the authors have discovered a very good model: (regular) strains with a low number of nuclei and strains with high number of nuclei. Also, the results can be expected to be of interest for the further optimization of industrially relevant filamentous fungi.

      In the revision the authors addressed all my comments and as a result produced an even stronger study.

    3. Reviewer #3 (Public review):

      Summary:

      The authors seek to determine the underlying traits that support the exceptional capacity of Aspergillus oryzae to secrete enzymes and heterologous proteins. To do so, they leverage the availability of multiple domesticated isolates of A. oryzae along with other Aspergillus species to perform comparative imaging and genomic analysis.

      Strengths:

      The strength of this study lies in the use of multifaceted approaches to identify significant differences in hyphal morphology that correlate with enzyme secretion, which is then followed by the use of genomics to identify candidate functions that underlie these differences.

      Weaknesses:

      Although the image analysis and data interpretation is convincing, the genetic data supporting the author's model is somewhat more speculative and will likely require additional investigation.

      Overall, the authors have achieved their aims in that they are able to clearly document the presence of two distinct hyphal forms in A. oryzae and other Aspergillus species, and to correlate the presence of the thicker rapidly growing form with enhanced enzyme secretion. The image analysis is convincing. The discovery that addition of yeast extract and specific amino acids can stimulate formation of the novel hyphal form is also notable. Although the conclusions are generally supported by the results, this is perhaps less so for the genetic analysis as it remains unclear how direct the role of RseA and the calcium transporters might be in supporting the formation of the thicker hyphae.

      The results presented here will impact the field. The complexity of hyphal morphology and how it affects secretion are not well understood despite the importance of these processes for the fungal lifestyle. In addition, the description of approaches that can be used to facilitate the study of these different hyphal forms (i.e., stimulation using yeast extract or specific animo acids) will benefit future efforts to understand the molecular basis of their formation.

    1. Reviewer #1 (Public review):

      Summary:

      The behaviour of cells expressing constitutively active HRas is examined in mosaic monolayers, both in MCF10a breast epithelial and Beas2b bronchial epithelial cell lines, mimicking the potential initial phase of development of carcinoma. Single HRas-positive cells are excluded from MCF10a but not Beas2b monolayers. Most interestingly, however, when in groups, these cells are not excluded, but rather sharply segregated within a MCF10a monolayer. In contrast, they freely mix with wt Beas2b cells. Biophysical analysis identifies high tension at heterotypic interfaces between HRas and wild-type cells as the likely reason for segregation of MCF10a cells. The hypothesis is supported experimentally, as myosin inhibition abolishes segregation. The probable reason for the lack of segregation in the bronchial epithelium is to be found in the different intrinsic properties of these cells, which form a looser tissue with lower basal actomyosin activity. The behaviour of single cells and groups is recapitulated in a vortex model based on the principle of differential interfacial tension, under the condition of high heterotypic interfacial tension.

      Strengths:

      Despite being long recognized as a crucial event during cancer development, segregation of oncogenic cells has been a largely understudied question. This nice work addresses the mechanics of this phenomenon through a straightforward experimental design, applying the biophysical analytical approaches established in the field of morphogenesis. Comparison between two cell types provides some preliminary clues on the diversity of effects in various cancers.

      Weaknesses:

      Although not calling into question the main message of this study, there are a few issues that one may want to address:

      (1) One may be careful in interpreting the comparison between MCF10a and Beas2b cells as used in this study. The conditions may not necessarily be representative of the actual properties of breast and bronchial epithelia. How much of the epithelial organization is reconstituted under these experimental conditions remains to be established. This is particularly obvious for bronchial cells, which would need quite specific culture conditions to build a proper bronchial layer. In this study, they seemed to be on the verge of a mesenchymal phenotype (large gaps, huge protrusions, cells growing on top of each other, as mentioned in the manuscript).

      As an alternative to Beas2b, comparison of MCF10a with another cell line capable of more robust in vitro epithelial organization, but ideally with different adhesive and/or tensile properties, would be highly interesting, as it may narrow down the parameters involved in segregation of oncogenic cells.

      (2) While the seminal description of tissue properties based on interfacial tensions (Brodland 2002) is clearly key to interpreting these data, the actual "Differential Interfacial Tension Hypothesis" poses that segregation results from global differences, i.e., juxtaposition of two tissues displaying different intrinsic tensions. On the contrary, the results of the present work support a different scenario, where what counts is the actual difference in tension ALONG the tissue boundary, in other words, that segregation is driven by high HETEROTYPIC interfacial tension. This is an important distinction that should be clarified.

      (3) Related: The fact that actomyosin accumulates at the heterotypic interface is key here. It would be quite informative to better document the pattern of this accumulation, which is not clear enough from the images of the current manuscript: Are we talking about the actual interface between mutant and wt cells (membrane/cortex of heterotypic contacts)? Or is it more globally overactivated in the whole cell layer along the border? Some better images and some quantification would help.

      (4) In the case of Beas2b cells, mutant cells show higher actin than wt cells, while actin is, on the contrary, lower in mutant MCF10a cells (Figure 2b). Has this been taken into account in the model? It may be in line with the idea that HRas may have a different action on the two cell types, a possibility that would certainly be worth considering and discussing.

      In conclusion, the study conveys an important message, but, as it stands, the strength of evidence is incomplete. It would greatly benefit from a more detailed and complete analysis of the experimental data, a better fit between this analysis and the corresponding vertex model, and a more in-depth discussion of biological and biophysical aspects. These revisions should be rather easily done, and would then make the evidence much more solid.

    2. Reviewer #2 (Public review):

      Summary:

      The authors investigate the behavior of oncogenic cells in mammary and bronchial epithelia. They observe that individual oncogenic cells are preferentially excluded from the mammary epithelium, but they remain integrated in the bronchial epithelium. They also observe that clusters of oncogenic cells form a compact cluster in the mammary epithelium, but they disperse in the bronchial epithelium. The authors demonstrate experimentally and in the vertex model simulations that the difference in observed behavior is due to the differential tension between the mutant and wild-type cells due to a differential expression of actin and myosin.

      Strengths:

      (1) Very detailed analysis of experiments to systematically characterize and quantify differences between mammary and bronchial epithelia.

      (2) Detailed comparison between the experiments and vertex model simulations to identify the differential cell line tension between the oncogenic and wild-type cells as one of the key parameters that are responsible for the different behavior of oncogenic cells in mammary and bronchial epithelia

      Weaknesses:

      (1) It is unclear what the mechanistic origin of the shape-tension coupling is, which is used in the vertex model, and how important that coupling is for the presented results. The authors claim that the shape-tension coupling is due to the anisotropic distribution of stress fibers when cells are under external stress. It is unclear why the stress fibers should affect an effective line tension on the cell boundaries and why the stress fibers should be sensitive to the magnitude of the internal isotropic cell pressure. In experiments, it makes sense that stress fibers form when cells are stretched. Similar stress fibers form when the cytoskeleton or polymer networks are stretched. It is unclear why the stress fibers should be sensitive to the magnitude of internal isotropic cell pressure. If all the surrounding cells have the same internal pressure, then the cell would not be significantly deformed due to that pressure, and stress fibers would not form. The authors should better justify the use of the shape-tension coupling in the model and also present simulation results without that coupling. I expect that most of the observed behavior is already captured by the differential tension, even if there is no shape-tension coupling.

      (2) The observed difference of shape indices between the interfacial and bulk cells in simulations in the absence of differential line tension is concerning. This suggests that either there are not enough statistics from the simulations or that something is wrong with the simulations. For all presented simulation results, the authors should repeat multiple simulations and then present both averages and standard deviations. This way, it would be easier to determine whether the observed differences in simulations are statistically significant.

      (3) The authors should also analyze the cell line tension data in simulations and make a comparison with experiments.

    1. Reviewer #1 (Public review):

      Summary:

      Sakelaris and Riecke used computational modeling to explore how neurogenesis and sequential integration of new neurons into a network support memory formation and maintenance. They focus on the integration of granule cells in the olfactory bulb, a brain area where adult neurogenesis is prominent. Experimental results published during recent years provide an excellent basis to address the question at hand by biologically constrained models. The study extends previous computational models and provides a coherent picture of how multiple processes may act in concert to enable rapid learning, high stability of memories, and high memory capacity. This computational model generates experimentally testable predictions and is likely to be valuable to understand roles of neurogenesis and related phenomena in memory. One of the key findings is that important features of the memory system depend on transient properties of adult-born granule cells such as enhanced excitability and apoptosis during specific phases the development of individual neurons. The model can explain many experimental observations, and suggests specific functions for different processes (e.g., importance of apoptosis for continual learning). While this model is obviously a massive simplification of the biological system, it conceptualizes diverse experimental observations into a coherent picture, it generates testable predictions for experiments, and it and will likely inspire further modeling and experimental studies.

      Strengths:

      - The model can explain diverse experimental observations

      - The model directly represents the biological network

      Weaknesses:

      - As many other models of biological networks, this model contains major simplifications.

    2. Reviewer #2 (Public review):

      Summary:

      The authors propose a mechanism to provide flexibility to learn new information while preserving stability in neural networks by combining structural plasticity and synaptic plasticity.

      Strengths:

      An intriguing idea, well embedded in experimental data.

      Authors have done a great job addressing reviewers' concerns

      Weaknesses:

      None

    3. Reviewer #3 (Public review):

      The manuscript is focused on local bulbar mechanisms to solve the flexibility-stability dilemma in contrast to long range interactions documented in other systems (hippocampus-cortex). The network performance is assessed in a perceptual learning task: the network is presented with alternating, similar artificial stimuli (defined as enrichment) and the authors assess its ability to discriminate between these stimuli by comparing the mitral cell representations quantified by Fisher discriminant analysis. The authors use enhancement in discriminability between stimuli as function of the degree of specificity of connectivity in the network to quantify the formation of an odor-specific network structure which as such has memory - they quantify memory as the specificity of that connectivity.

      The focus on neurogenesis, excitability and synaptic connectivity of abGCs is topical, and the authors systematically built their model, clearly stating their assumptions and setting up the questions and answers. In my opinion, the combination of latent dendritic representations, excitability and apoptosis in an age-dependent manner is interesting and as the authors point out leads to experimentally testable hypotheses.

      In the revised manuscript, the authors have systematically addressed my previous concerns. In particular, they now refer to previous work on granule cells-mitral cell interactions more generally, they explain the pros and cons for usage of specificity in connectivity as a proxy for memory capacity, and the biological plausibility of the model.

    1. Reviewer #1 (Public review):

      Summary:

      This work provides a comprehensive analysis of how adult zebrafish show fear responses to conspecific alarm substances (CAS) and retain their associative memory. It shows that freezing is a more reliable measure of fear response and memory compared to evasive swimming, and that the reactivity and the type of responses depend on the zebrafish strain. It further suggests neuronal substrates of different fear responses based on c-Fos mapping.

      Strengths:

      The behavioral part is the most comprehensive and detailed yet in the zebrafish field, providing strong support for the authors' claim. The flow from Figure 1 to Figure 4 is very smooth. They provide extremely detailed, yet complementary and necessary, analyses of how different categories of behavior emerge over time during the CAS exposure and memory retrieval. I'm convinced that neuro researchers who study fear/stress responses will always refer to this paper to plan and interpret their future experiments.

      Weaknesses:

      The neural analysis part is very comprehensive. Figure 5 and Figure 6 are independent but complement each other very well. They together support that the cerebellar system is the key brain component for a freezing response. Their extreme focus on high-level analyses, however, came at the expense of biological intuitions. I suggest adding some figure panels and result/discussion paragraphs to help with that aspect.

    2. Reviewer #2 (Public review):

      In this study, Fontana et al. develop a paradigm for associative conditioning by pairing exposure to an alarm substance with a novel tank. Exposure to conspecific alarm substance (CAS) in the novel tank triggers freezing and what they characterize as evasive swimming behaviour, which is subsequently seen in a re-exposure to the novel tank without the CAS present. Importantly, these states are identified via automated processes, including postural tracking and a random forest classification process, which could be very useful tools for subsequent studies.

      In their experiments, they focus on the differences in behaviour among strains of zebrafish (both males and females), and among individual zebrafish. For males and females of different strains, they find some differences, though the clearest message seems to be that the most robust measure of the behaviour in response to both the CAS and in the memory trials is the freezing behaviour, while evasive behaviour is more variable. and not always seen. This may relate to their observation of significant "evasiveness" in vehicle control experiments (discussed further below).

      Moving on to individual variation from within this multi-strain male/female dataset, they first examine transition matrices between states and find tthat his is not dramatically altered by stimulus exposure. They then use clustering to identify 4 different "classes" of zebrafish that differ in their expression (or not) of two types of behaviour: freezing and/or evasive behaviour. They show that over the three exposure epochs of the experiment, this classification is somewhat stable in an individual fish, though many fish change their behaviour - e.g., evading + freezing -> only freezing.

      In the final set of experiments, the authors move beyond behavioural analyses and perform whole-brain cFos mapping of these individual zebrafish. They perform analyses aimed at identifying correlations between individual behavioural expression and the number of cFos-positive cells in different brain regions. Using partial least squares analysis, they find areas associated with two types of behavioural contrasts, which differ in their weighting of different behavioural expression during the Memory trials. Covariation and network structure analysis within different classes of larvae also find some differences in covariation among brain areas, providing hypotheses as to underlying network effects that may govern the expression of freezing and/or evasive behavior in the memory trial phases.

      Overall, I find this to be an interesting study that employs state of the are methods of behavioural analyses and whole-brain cFos analyses, but I am left a little bit confused as to what the take home message is and what can be concluded from this complex study that mixes in analyses of strain, sex, and individuality within a quite complex assay with multiple behavioural parameters.

      My suggestions are as follows:

      (1) My first concern relates to the claim in the abstract that "We found that fear memory behavior fell into four distinct groups: non-reactive, evaders, evading freezers, and freezers".

      In my opinion, the "freezing" aspect is well supported as being both triggered by the CAS and for memory effect upon re-exposure to the tank, but I am less convinced about the "evasive" behaviour. In Figure 2, it appears that "evasiveness" is generally not increased in both the Exposure or Memory phases for many groups, and in Figure 5, it appears that "evasiveness" is expressed by nearly 50% of the fish in the pre-exposure condition before CAS addition and in all phases in the vehicle condition. Therefore, it appears that most of the expression of this behaviour is independent of any memory-based effect.

      (2) My second concern relates to the claim in the abstract that "background strain and sex influenced how fish respond to CAS, with males more likely to increase evasive behaviors than females and the TU strain more likely to be non-reactive."

      My understanding, based on the introduction and on the methods, is that it is likely important that the CAS be prepared from conspecifics of the same strain and sex, and for this reason, they prepared different CAS specific for each strain and each sex. Therefore, the "CAS" that is applied is necessarily different for each condition, and I am concerned about if the differences observed could relate more to variation in the quality, purity, concentration, etc. of the specific CAS samples for different groups, rather than their reactivity to the substance or their ability to form memories based on such experiences.

      (3) My third concern relates to the interpretation of the cFos data.

      As I mentioned above, I feel as though the behavioural analysis is perhaps more complex than is warranted via the inclusion of evasiveness, and I wonder if the conclusions from the experiments would be simpler if analyzed only from the perspective of freezing.

      But considering the presented analyses: while I dont think there is anything wrong with the partial least squares approach and the network analyses, I am concerned that the simple messaging in the text does not reflect the complexity of this analysis combining different weightings of different behavioural characteristics in a behavioural contrast, or covariations among many regions and what such analyses mean at the level of brain function. For these reasons, I feel like statements along the lines of "Behavioral variation is driven by differences in the activity of brain regions outside the telencephalon, such as the cerebellum, preglomerular nuclei, preoptic area and hypothalamus" are not well supported.

    3. Reviewer #3 (Public review):

      Summary:

      This manuscript by Fontana et al. sets out to fill a critical gap in our understanding of how individuality in fear responses corresponds to changes in brain activity. Previous work has shown in myriad species that fear behaviors are highly variable, and these variabilities correlate with sex and strain, with epigenetic modifications, and neural activity in specific regions of the brain, such as the amygdala. However, a whole-brain functional assessment of whether activity in different regions of the brain is associated with fear behavior has been difficult to assess, in part due to the large size and opacity of the brain. The Kenney group overcomes these limitations using the zebrafish, together with powerful behavioral and brain imaging approaches pioneered by their lab. To overcome the technical obstacles of delivering a reproducible unconditioned stimulus in water and quantifying nuanced behavioral responses, the authors developed a three-day conditioning paradigm in which fish were repeatedly exposed to CAS in one tank context and to control water in another. Leveraging automated cluster analysis across over 300 individuals from four inbred strains, they identified four distinct memory-recall phenotypes - non-reactive, evaders, evading freezers, and freezers - demonstrating both the robustness of their assay and the influence of genetic background and sex on fear learning. Finally, whole-brain imaging using the AZBA atlas (Kenney et al. eLife) and cfos mapping coupled with multivariate analysis revealed that although all fish reengaged telencephalic regions during recall, high-freezing phenotypes uniquely recruited cerebellar, preglomerular, and pretectal nuclei, whereas mixed evasion-freezing fish showed preferential activation of preoptic and hypothalamic areas - a finding that lays the groundwork for dissecting the distributed neural substrates of associative fear in zebrafish.

      Strengths:

      The strengths of the study lie in the use of zeberarish and the innovative behavioral, modeling, and brain imaging tools applied to address this question. The question of how brain-wide activity correlates with variations in fear behavior is fundamental, and arguably, this system is the only system that could be used to address this. The statistics are appropriate, and the study is well reasoned. Overall, I like this manuscript very much and think it adds invaluable information to the field of fear/anxiety.

      Weaknesses:

      I have a few questions and suggestions.

      (1) The three-day contextual fear paradigm, as implemented - one CAS pairing on day 2 followed by a single recall test on day 3 - inevitably conflates acquisition and long-term memory, making it impossible to know whether strains like TU truly recall the association poorly or simply learn it more slowly. For example, given that TU fish extinguish fear faster than AB or TL strains in extended protocols, they may simply require additional or repeated CAS pairings to achieve the same asymptotic performance. To disentangle learning kinetics from recall strength, the assay could be revised to include multiple acquisition trials (e.g., conditioning on two or more consecutive days) with an immediate post-conditioning probe to assess acquisition independent of consolidation, and continuous measurement of freezing and evasive behaviors across each trial to fit learning curves for each strain. Such refinements - even if on a subset of the strains - would reveal whether "non-reactive" phenotypes reflect genuine recall deficits or merely delayed acquisition.

      (2) My second major question is with respect to Figure 3 panel B. This is a complex figure, and I can understand the gist of what the authors are attempting to show, but it is difficult to understand as it is. Can this be represented in a way that is clearer and explained a bit more easily?

      (3) The brain mapping is by far one of the most interesting aspects of this study, and the methods that the group used are interesting. The brain mapping, however, relies on generating "contrasting" groups (Figure 6A), and I was not clear as to how these two groups were formed. Could the authors elaborate a bit?

    1. Reviewer #1 (Public review):

      Summary:

      In this study, the authors present a thorough mechanistic study of the J-domain protein Apj1 in Saccharomyces cerevisiae, establishing it as a key repressor of Hsf1 during the attenuation phase of the heat shock response (HSR). The authors integrate genetic, transcriptomic (ribosome profiling), biochemical (ChIP, Western), and imaging data to dissect how Apj1, Ydj1 and Sis1 modulate Hsf1 activity under stress and non-stress conditions. The work proposes a model where Apj1 specifically promotes displacement of Hsf1 from DNA-bound heat shock elements, linking nuclear PQC to transcriptional control.

      Strengths:

      Overall, the work is highly novel-this is the first detailed functional dissection of Apj1 in Hsf1 attenuation. It fills an important gap in our understanding of how Hsf1 activity is fine-tuned after stress induction, with implications for broader eukaryotic systems. I really appreciate the use of innovative techniques including ribosome profiling and time-resolved localization of proteins (and tagged loci) to probe Hsf1 mechanism. The overall proposed mechanism is compelling and clear-the discussion proposes a phased control model for Hsf1 by distinct JDPs, with Apj1 acting post-activation, while Sis1 and Ydj1 suppress basal activity.

      The manuscript is well-written and will be exciting for the proteostasis field and beyond.

      Comments on revised version:

      The authors have addressed all my concerns,

    2. Reviewer #2 (Public review):

      Summary:

      Overall, the work is exceptionally well done and controlled and the results properly and appropriately interpreted. While several of the approaches, while powerful, are somewhat indirect (i.e., following gene expression via ribosomal profiling) additional experiments utilizing traditional gene expression assays added in revision combine to ultimately provide a compelling answer to the main questions being asked.

      The key finding from this work is the discovery that Apj1 regulates Hsf1 attenuation in a manner that includes Hsp70. That finding is strongly supported by the experimental data. While it would be ideal to also demonstrate Apj1-controlled differential binding of Ssa1/2 to Hsf1 at either the N- or C-terminal binding sites during attenuation, the Hsp70-Hsf1 interactions are difficult to reproducibly assess in cell extracts and are likely beyond the scope of this study. However, this work paves the way in the future for potential biochemical reconstitution assays that could elucidate both Hsp70-Hsf1 interactions as well as the distinct JDP-Hsf1 interactions reported here.

      This discovery raises additional new questions about JDP specificity in HSR regulation and the role of JDPs in navigating protein aggregation and sensing of proteostatic challenge in the nucleus, thus advancing the field and opening new, exciting avenues for exploration.

    3. Reviewer #3 (Public review):

      Summary:

      The heat shock response (HSR) is an inducible transcriptional program that has provided paradigmatic insight into how stress cues feed information into the control of gene expression. The recent elucidation that the chaperone Hsp70 controls the DNA binding activity of the central HSR transcription factor Hsf1 by direct binding has spurred the question how such a general chaperone obtains specificity. This study has addressed the next logical question, how J-domain proteins execute this task in budding yeast, the leading cell model for studying the HSR. While an involvement and in part overlapping function of general class A and B J-domain proteins, Ydj1 and Sis1 are indicated by the genetic analysis a highly specific role for the class A Apj1 in displacing Hsf1 from the promoters is found unveiling specificity in the system.

      Strengths

      The central strong point of the paper is the identification of class A J-domain protein Apj1 as a specific regulator of the attenuation of the HSR by removing Hsf1 from HSEs at the promoters. The genetic evidence and the ChIP data strongly support this claim. This identification of a specific role for a lowly expressed nuclear J-domain protein changes how the wiring of the HSR should be viewed. It also raises important questions regarding the model of chaperone titration, the concept that a chaperone with limiting availability is involved in a thug of war involving competing interactions with misfolded protein substrates and regulatory interactions with Hsf1. Perhaps Apj1 with its low levels and interactions with misfolded and aggregated proteins in the nucleus is the titrated Hsp70 (co)chaperone that determines the extent of the HSR? This would mean that Apj1 is at the nexus of the chaperone titration mechanism. Although Apj1 is not a highly conserved J domain protein among eukaryotes the strength of the study is that is provides a conceptual framework for what may be required for chaperone titration in other eukaryotes: One or more nuclear J-domain proteins with low nuclear levels that has an affinity for Hsf1 and that can become limiting due to interactions with misfolded Hsp70 proteins. The provides a pathway for how these may be identified using for example ChIP-seq.

      Weakness

      A built-in challenge when studying the mechanism of the HSR is the general role of Hsp70 chaperone system and its J domain proteins. Indeed, a weakness of the study is that it is unclear what of the phenotypic effects have to do with directly recruiting Hsp70 to Hsf1 dependent on a J domain protein and what instead is an indirect effect of protein misfolding caused by the mutation. This interpretation problem is clearly and appropriately dealt with in the manuscript text and in experiments but is of such fundamental nature that it cannot easily be fully ruled out.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript from Jones and colleagues investigates a previously described phenomenon in which P. falciparum malaria parasites display increased trafficking of proteins displayed on the surface of infected RBCs, as well as increased cytoadherence in response to febrile temperatures. While this parasite response was previously described, it was not uniformly accepted, and conflicting reports can be found in the literature. This variability likely arises due to differences in the methods employed and the degree of temperature increase to which the parasites were exposed. Here, the authors are very careful to employ a temperature shift that likely reflects what is happening in infected humans and that they demonstrate is not detrimental to parasite viability or replication. In addition, they go on to investigate what steps in protein trafficking are affected by exposure to increased temperature and show that the effect is not specific to PfEMP1 but rather likely affects all transmembrane domain-containing proteins that are trafficked to the RBC. They also detect increased rates of phosphorylation of trafficked proteins, consistent with overall increased protein export.

      Strengths:

      The authors used a relatively mild increase in temperature (39 degrees), which they demonstrate is not detrimental to parasite viability or replication. This enabled them to avoid potential complications of a more severe heat shock that might have affected previously published studies. They employed a clever method of fractionation of RBCs infected with a var2csa-nanoluc fusion protein expressing parasite line to determine which step in the export pathway was likely accelerating in response to increased temperature. This enabled them to determine that export across the PVM is being affected. They also explored changes in phosphorylation of exported proteins and demonstrated that the effect is not limited to PfEMP1 but appears to affect numerous (or potentially all) exported transmembrane domain-containing proteins.

      Weaknesses:

      All the experiments investigating changes resulting from increased temperature were conducted after an increase in temperature from 16 to 24 hours, with sampling or assays conducted at the 24 hr mark. While this provided consistency throughout the study, this is a time point relatively early in the export of proteins to the RBC surface, as shown in Figure 1E. At 24 hrs, only approximately 50% of wildtype parasites are positive for PfEMP1, while at 32 hrs this approaches 80%. Since the authors only checked the effect of heat stress at 24 hrs, it is not possible to determine if the changes they observe reflect an overall increase in protein trafficking or instead a shift to earlier (or an accelerated) trafficking. In other words, if a second time point had been considered (for example, 32 hrs or later), would the parasites grown in the absence of heat stress catch up?

    2. Reviewer #2 (Public review):

      This manuscript describes experiments characterising how malaria parasites respond to physiologically relevant heat-shock conditions. The authors show, quite convincingly, that moderate heat-shock appears to increase cytoadherance, likely by increasing trafficking of surface proteins involved in this process.

      While generally of a high quality and including a lot of data, I have a few small questions and comments, mainly regarding data interpretation.

      (1) The authors use sorbitol lysis as a proxy for trafficking of PSAC components. This is a very roundabout way of doing things and does not, I think, really show what they claim. There could be a myriad of other reasons for this increased activity (indeed, the authors note potential PSAC activation under these conditions). One further reason could be a difference in the membrane stability following heat shock, which may affect sorbitol uptake, or the fragility of the erythrocytes to hypotonic shock. I really suggest that the authors stick to what they show (increased PSAC) without trying to use this as evidence for increased trafficking of a number of non-specified proteins that they cannot follow directly.

      (2) Supplementary Figure 6C/D: The KAHRP signal does not look like it should. In fact, it doesn't look like anything specific. The HSP70-X signal is also blurry and overexposed. These pictures cannot be used to justify the authors' statements about a lack of colocalisation in any way.

      (3) Figure 6: This experiment confuses me. The authors purport to fractionate proteins using differential lysis, but the proteins they detect are supposed to be transmembrane proteins and thus should always be found associated with the pellet, whether lysis is done using equinatoxin or saponin. Have they discovered a currently unknown trafficking pathway to tell us about? Whilst there is a lot of discussion about the trafficking pathways for TM proteins through the host cell, a number of studies have shown that these proteins are generally found in a membrane-bound state. The authors should elaborate, or choose an experiment that is capable of showing compartment-specific localisation of membrane-bound proteins (protease protection, for example).

      (4) The red blood cell contains, in addition to HSP70-X, a number of human HSPs (HSP70 and HSP90 are significant in this current case). As the name suggests, these proteins non-specifically shield exposed hydrophobic domains revealed upon partial protein unfolding following thermal insult. I would thus have expected to find significantly more enrichment following heat shock, but this is not the case. Is it possible that the physiological heat shock conditions used in this current study are not high enough to cause a real heat shock?

    3. Reviewer #3 (Public review):

      Summary:

      In this paper, it is established that high fever-like 39{degree sign}C temperatures cause parasite-infected red blood cells to become stickier. It is thought that high temperatures might help the spleen to destroy parasite-infected cells, and they become stickier in order to remain trapped in blood vessels, so they stop passing through the spleen.

      Strengths:

      The strength of this research is that it shows that fever-like temperatures can cause parasite-infected red blood cells to stick to surfaces designed to mimic the walls of small blood vessels. In a natural infection, this would cause parasite-infected red blood cells to stop circulating through the spleen, where the parasites would be destroyed by the immune system. It is thought that fevers could lead to infected red blood cells becoming stiffer and therefore more easily destroyed in the spleen. Parasites respond to fevers by making their red blood cells stickier, so they stop flowing around the body and into the spleen. The experiments here prove that fever temperatures increase the export of Velcro-like sticky proteins onto the surface of the infected red blood cells and are very thorough and convincing.

      Weaknesses:

      A minor weakness of the paper is that the effects of fever on the stiffness of infected red blood cells were not measured. This can be easily done in the laboratory by measuring how the passage of infected red blood cells through a bed of tiny metal balls is delayed under fever-like temperatures.

    1. Reviewer #1 (Public review):

      Summary:

      In this article, Almeida and colleagues use a combination of NMR and ITC to study the interaction of the EBH domain of microtubule end-binding protein 1 (EB1) with SxIP peptides derived from the MACF plus-end tracking protein. EBH forms a dimer and in isolation has previously been shown to have a disordered C-terminal tail. Here, the authors use NMR to determine a solution structure of the EBH dimer bound to 11-mer SxIP peptides derived from MACF, and observe that the disordered C-terminal of EBH is recruited by residues C-terminal to the SxIP motif to fold into the final complex. By comparison of binding in different length peptides, and of EBH lacking the C-terminal tail, they show that these additional contacts increase binding affinity by an order of magnitude, greatly stabilising the interaction, in a binding mode they term 'dock-and-lock'.

      The authors also use their new structural knowledge to design peptides with higher affinities, and show in a cell model that these can be weakly recruited to microtubule ends - although a dimeric construct is necessary for efficient recruitment. Ultimately, by demonstrating the feasibility of targeting these proteins, this work points towards the possibility of designing small-molecules to block the interactions.

    2. Reviewer #2 (Public review):

      Summary:

      The C-terminal region of EB1 is responsible for protein-protein interactions, thereby recruiting the binding partners of EB1 to microtubules; the coiled-coil region (EBH) and the acidic tail are critical for their binding partners. The authors demonstrated by using NMR that the binding mode of EBH with the SxIP motif, which is a two-step process termed "dock-and-lock". The ITC analysis supports the results obtained from NMR. The initial version of the manuscript contained ambiguities on the ITC data; however, the results of the revised manuscript are convincing and support the two-step binding model.

      Strength:

      The authors propose a novel model of "dock-and-lock" by using multiple methods of NMR, ITC and cell biology.

    1. Reviewer #1 (Public review):

      This paper presents a computational model of the evolution of two different kinds of helping ("work," presumably denoting provisioning, and defense tasks) in a model inspired by cooperatively breeding vertebrates. The helpers in this model are a mix of previous offspring of the breeder and floaters that might have joined the group, and can either transition between the tasks as they age or not. The two types of help have differential costs: "work" reduces "dominance value," (DV), a measure of competitiveness for breeding spots, which otherwise goes up linearly with age, but defense reduces survival probability. Both eventually might preclude the helper from becoming a breeder and reproducing. How much the helpers help, and which tasks (and whether they transition or not), as well as their propensity to disperse, are all evolving quantities. The authors consider three main scenarios: one where relatedness emerges from the model, but there is no benefit to living in groups, one where there is no relatedness, but living in larger groups gives a survival benefit (group augmentation, GA), and one where both effects operate. The main claim is that evolving defensive help or division of labor requires the group augmentation; it doesn't evolve through kin selection alone in the authors' simulations.

      This is an interesting model, and there is much to like about the complexity that is built in. Individual-based simulations like this can be a valuable tool to explore the complex interaction of life history and social traits. Yet, models like this also have to take care of both being very clear on their construction and exploring how some of the ancillary but potentially consequential assumptions affect the results, including robust exploration of the parameter space. I think the current manuscript falls short in these areas, and therefore, I am not yet convinced of the results.

      In this round, the authors provided some clarity, but some questions still remain, and I remain unconvinced by a main assumption that was not addressed.

      Based on the authors' response, if I understand the life history correctly, dispersers either immediately join another group (with 1-the probability of dispersing), or remain floaters until they successfully compete for a breeder spot or die? Is that correct? I honestly cannot decide because this seems implicit in the first response but the response to my second point raises the possibility of not working while floating but can work if they later join a group as a subordinate. If it is the case that floaters can have multiple opportunities to join groups as subordinates (not as breeders; I assume that this is the case for breeding competition), this should be stated, and more details about how.

      So there is still some clarification to be done, and more to the point, the clarification that happened only happened in the response. The authors should add these details to the main text. Currently, the main text only says vaguely that joining a group after dispersing " is also controlled by the same genetic dispersal predisposition" without saying how.

      In response to my query about the reasonableness of the assumption that floaters are in better condition (in the KS treatment) because they don't do any work, the authors have done some additional modeling but I fail to see how that addresses my point. The additional simulations do not touch the feature I was commenting on, and arguably make it stronger (since assuming a positive beta_r -which btw is listed as 0 in Table 1- would make floaters on average be even more stronger than subordinates). It also again confuses me with regard to the previous point, since it implies that now dispersal is also potentially a lifetime event. Is that true?

      Meanwhile, the simplest and most convincing robustness check, which I had suggested last round, is not done: simply reduce the increase in the R of the floater by age relative to subordinates. I suspect this will actually change the results. It seems fairly transparent to me that an average floater in the KS scenario will have R about 15-20% higher than the subordinates (given no defense evolves, y_h=0.1 and H_work evolves to be around 5, and the average lifespan for both floaters and subordinates are in the range of 3.7-2.5 roughly, depending on m). That could be a substantial advantage in competition for breeding spots, depending on how that scramble competition actually works. I asked about this function in the last round (how non-linear is it?) but the authors seem to have neglected to answer.

      More generally, I find that the assumption (and it is an assumption) floaters are better off than subordinates in a territory to be still questionable. There is no attempt to justify this with any data, and any data I can find points the other way (though typically they compare breeders and floaters, e.g.: https://bioone.org/journals/ardeola/volume-63/issue-1/arla.63.1.2016.rp3/The-Unknown-Life-of-Floaters--The-Hidden-Face-of/10.13157/arla.63.1.2016.rp3.full concludes "the current preliminary consensus is that floaters are 'making the best of a bad job'."). I think if the authors really want to assume that floaters have higher dominance than subordinates, they should justify it. This is driving at least one and possibly most of the key results, since it affects the reproductive value of subordinates (and therefore the costs of helping).

      Regarding division of labor, I think I was not clear so will try again. The authors assume that the group reproduction is 1+H_total/(1+H_total), where H_total is the sum of all the defense and work help, but with the proviso that if one of the totals is higher than "H_max", the average of the two totals (plus k_m, but that's set to a low value, so we can ignore it), it is replaced by that. That means, for example, if total "work" help is 10 and "defense" help is 0, total help is given by 5 (well, 5.1 but will ignore k_m). That's what I meant by "marginal benefit of help is only reduced by a half" last round, since in this scenario, adding 1 to work help would make total help go to 5.5 vs. adding 1 to defense help which would make it go to 6. That is a pretty weak form of modeling "both types of tasks are necessary to successfully produce offspring" as the newly added passage says (which I agree with), since if you were getting no defense by a lot of food, adding more food should plausibly have no effect on your production whatsoever (not just half of adding a little defense). This probably explains why often the "division of labor" condition isn't that different than the no DoL condition.

    2. Reviewer #2 (Public review):

      Summary:

      This paper formulates an individual-based model to understand the evolution of division of labor in vertebrates. The model considers a population subdivided in groups, each group has a single asexually-reproducing breeder, other group members (subordinates) can perform two types of tasks called "work" or "defense", individuals have different ages, individuals can disperse between groups, each individual has a dominance rank that increases with age, and upon death of the breeder a new breeder is chosen among group members depending on their dominance. "Workers" pay a reproduction cost by having their dominance decreased, and "defenders" pay a survival cost. Every group member receives a survival benefit with increasing group size. There are 6 genetic traits, each controlled by a single locus, that control propensities to help and disperse, and how task choice and dispersal relate to dominance. To study the effect of group augmentation without kin selection, the authors cross-foster individuals to eliminate relatedness. The paper allows for the evolution of the 6 genetic traits under some different parameter values to study the conditions under which division of labour evolves, defined as the occurrence of different subordinates performing "work" and "defense" tasks. The authors envision the model as one of vertebrate division of labor.

      The main conclusion of the paper is that group augmentation is the primary factor causing the evolution of vertebrate division of labor, rather than kin selection. This conclusion is drawn because, for the parameter values considered, when the benefit of group augmentation is set to zero, no division of labor evolves and all subordinates perform "work" tasks but no "defense" tasks.

      Strengths:

      The model incorporates various biologically realistic details, including the possibility to evolve age polytheism where individuals switch from "work" to "defence" tasks as they age or vice versa, as well as the possibility of comparing the action of group augmentation alone with that of kin selection alone.

      Weaknesses:

      The model and its analysis is limited, which makes the results insufficient to reach the main conclusion that group augmentation and not kin selection is the primary cause of the evolution of vertebrate division of labor. There are several reasons.

      First, the model strongly restricts the possibility that kin selection is relevant. The two tasks considered essentially differ only by whether they are costly for reproduction or survival. "Work" tasks are those costly for reproduction and "defense" tasks are those costly for survival. The two tasks provide the same benefits for reproduction (eqs. 4, 5) and survival (through group augmentation, eq. 3.1). So, whether one, the other, or both tasks evolve presumably only depends on which task is less costly, not really on which benefits it provides. As the two tasks give the same benefits, there is no possibility that the two tasks act synergistically, where performing one task increases a benefit (e.g., increasing someone's survival) that is going to be compounded by someone else performing the other task (e.g., increasing that someone's reproduction). So, there is very little scope for kin selection to cause the evolution of labour in this model. Note synergy between tasks is not something unusual in division of labour models, but is in fact a basic element in them, so excluding it from the start in the model and then making general claims about division of labour is unwarranted. I made this same point in my first review, although phrased differently, but it was left unaddressed.

      Second, the parameter space is very little explored. This is generally an issue when trying to make general claims from an individual-based model where only a very narrow parameter region has been explored of a necessarily particular model. However, in this paper, the issue is more evident. As in this model the two tasks ultimately only differ by their costs, the parameter values specifying their costs should be varied to determine their effects. Instead, the model sets a very low survival cost for work (yh=0.1) and a very high survival cost for defense (xh=3), the latter of which can be compensated by the benefit of group augmentation (xn=3). Some very limited variation of xh and xn is explored, always for very high values, effectively making defense unevolvable except if there is group augmentation. Hence, as I stated in my previous review, a more extensive parameter exploration addressing this should be included, but this has not been done. Consequently, the main conclusion that "division of labor" needs group augmentation is essentially enforced by the limited parameter exploration, in addition to the first reason above.

      Third, what is called "division of labor" here is an overinterpretation. When the two tasks evolve, what exists in the model is some individuals that do reproduction-costly tasks (so-called "work") and survival-costly tasks (so-called "defense"). However, there are really no two tasks that are being completed, in the sense that completing both tasks (e.g., work and defense) is not necessary to achieve a goal (e.g., reproduction). In this model there is only one task (reproduction, equation 4,5) to which both "tasks" contribute equally and so one task doesn't need to be completed if the other task compensates for it. So, this model does not actually consider division of labor.

    1. Reviewer #1 (Public review):

      Jiang et al. present a measure of phenological lag by quantifying the effects of abiotic constraints on the differences between observed and expected phenological changes, using a combination of previously published phenology change data for 980 species, and associated climate data for study sites. They found that, across all samples, observed phenological responses to climate warming were smaller than expected responses for both leafing and flowering spring events. They also show that data from experimental studies included in their analysis exhibited increased phenological lag compared to observational studies, possibly as a result of reduced sensitivity to climatic changes. Furthermore, the authors present evidence that spatial trends in phenological responses to warming may differ than what would be expected from phenological sensitivity, due to the seasonal timing of when warming occurs. Thus, climate change may not result in geographic convergences of phenological responses. This study presents an interesting way to separate the individual effects of climate change and other abiotic changes on the phenological responses across sites and species.

      Strengths:

      A straightforward mathematical definition of phenological lag allows for this method to potentially be applied in different geographic contexts. Where data exists, other researchers can partition the effects of various abiotic forcings on phenological responses that differ from those expected from warming sensitivity alone.

      Identifying phenological lag, and associated contributing factors, provides a method by which more nuanced predictions of phenological responses to climate change can be made. Thus, this study could improve ecological forecasting models.

      Weaknesses:

      The analysis here could be more robust. A more thorough examination of phenological lag would provide stronger evidence that the framework presented has utility. The differences in phenologica lag by study approach, species origin, region, and growth form are interesting, and could be expanded. For example, the authors have the data to explore the relationships between phenological lag and the quantitative variables included in the final model (altitude, latitude, mean annual temperature) and other spatial or temporal variables. This would also provide stronger evidence for the author's claims about potential mechanisms that contribute to phenological lag.

      The authors include very little data visualizations, and instead report results and model statistics in tables. This is difficult to interpret and may obscure underlying patterns in the data. Including visual representations of variable distributions and between-variable relationships, in addition to model statistics, provides stronger evidence than model statistics alone.

    2. Reviewer #3 (Public review):

      Summary:

      The authors developed a new phenological lag metric and applied this analytical framework to a global dataset to synthesize shifts in spring phenology and assess how abiotic constraints influence spring phenology.

      Strengths:

      The dataset developed in this study is extensive, and the phenological lag metric is valuable.

      Weaknesses:

      The stability of the method used in this study needs improvement, particularly in the calculation of forcing requirements. In addition, the visualization of the results (such as Table 1) should be enhanced.

    1. Reviewer #1 (Public review):

      This work provides a new Python toolkit for combining generative modeling of neural dynamics and inversion methods to infer likely model parameters that explain empirical neuroimaging data. The authors provided tests to show the toolkit's broad applicability, accuracy, and robustness; hence, it will be very useful for people interested in using computational approaches to better understand the brain.

      Strengths:

      The work's primary strength is the tool's integrative nature, which seamlessly combines forward modelling with backward inference. This is important as available tools in the literature can only do one and not the other, which limits their accessibility to neuroscientists with limited computational expertise. Another strength of the paper is the demonstration of how the tool can be applied to a broad range of computational models popularly used in the field to interrogate diverse neuroimaging data, ensuring that the methodology is not optimal to only one model. Moreover, through extensive in-silico testing, the work provided evidence that the tool can accurately infer ground-truth parameters even in the presence of noise, which is important to ensure results from future hypothesis testing are meaningful.

      Weaknesses

      The paper still lacks appropriate quantitative benchmarking relative to non-Bayesian-based inference tools, especially with respect to performance accuracy and computational complexity and efficiency. Without this benchmarking, it is difficult to fully comprehend the power of the software or its ability to be extended to contexts beyond large-scale computational brain modelling.

    2. Reviewer #2 (Public review):

      Summary:

      Whole-brain network modeling is a common type of dynamical systems-based method to create individualized models of brain activity incorporating subject-specific structural connectome inferred from diffusion imaging data. This type of model has often been used to infer biophysical parameters of the individual brain that cannot be directly measured using neuroimaging but may be relevant to specific cognitive functions or diseases. Here, Ziaeemehr et al introduce a new toolkit, named "Virtual Brain Inference" (VBI), offering a new computational approach for estimating these parameters using Bayesian inference powered by artificial neural networks. The basic idea is to use simulated data, given known parameters, to train artificial neural networks to solve the inverse problem, namely, to infer the posterior distribution over the parameter space given data-derived features. The authors have demonstrated the utility of the toolkit using simulated data from several commonly used whole-brain network models in case studies.

      Strength:

      - Model inversion is an important problem in whole-brain network modeling. The toolkit presents a significant methodological step up from common practices, with the potential to broadly impact how the community infers model parameters.<br /> - Notably, the method allows the estimation of the posterior distribution of parameters instead of a point estimation, which provides information about the uncertainty of the estimation, which is generally lacking in existing methods.<br /> - The case studies were able to demonstrate the detection of degeneracy in the parameters, which is important. Degeneracy is quite common in this type of models. If not handled mindfully, they may lead to spurious or stable parameter estimation. Thus, the toolkit can potentially be used to improve feature selection or to simply indicate the uncertainty.<br /> - In principle, the posterior distribution can be directly computed given new data without doing any additional simulation, which could improve the efficiency of parameter inference on the artificial neural network is well-trained.

      Weaknesses:

      - The z-scores used to measure prediction error are generally between 1-3, which seems quite large to me. It would give readers a better sense of the utility of the method if comparisons to simpler methods, such as k-nearest neighbor methods, are provided in terms of accuracy.<br /> - A lot of simulations are required to train the posterior estimator, which is computationally more expensive than existing approaches. Inferring from Figure S1, at the required order of magnitudes of the number of simulations, the simulation time could range from days to years, depending on the hardware. The payoff is that once the estimator is well-trained, the parameter inversion will be very fast given new data. However, it is not clear to me how often such use cases would be encountered. It would be very helpful if the authors could provide a few more concrete examples of using trained models for hypothesis testing, e.g., in various disease conditions.

    1. Reviewer #1 (Public review):

      Summary:

      Ramirez Carbo et al. use the powerful M. xanthus spore morphogenesis model to address fundamental mechanisms in coordinated peptidoglycan remodeling and degradation. As peptidoglycan is an essential macromolecule and difficult to study in vivo, the authors use indirect but important methodology. The authors first identify two lytic transglycosylase (Ltg) enzymes necessary for spore morphogenesis using mutant phenotypic studies. They characterize these mutants for their role in coordinating spore morphogenesis induced either in fruiting bodies (starvation-dependent) or in liquid-rich media conditions (chemical-dependent). They conclude from these phenotypic and epistatic analyses that LtgA is necessary for morphogenesis during chemical-induced sporulation, and LtgB appears to be necessary to coordinate LtgA activity by interfering with LtgA function. Under starvation-induced sporulation, the absence of LtgB interferes with the building of fruiting bodies. LtgA does not appear to play a primary role in promoting aggregation into fruiting bodies, nor in degradation of peptidoglycan as assayed by loss of signal in anti-PG immunofluorescence. The authors demonstrate that the purified periplasmic domain of LtgA is highly active in degrading purified PG sacculi in vitro, while that of LtgB is highly reduced (relative to LtgA or lysozyme). The authors use photoactivated mCherry Lyt fusions and PALM to track the fusion protein mobility, which they state correlates with activity as immobilization results from PG binding. They demonstrate that in vegetative cells, a greater proportion of LtgA-PAmCh is more immobile (more active) than LtgB-PAmCh, but that directly after chemical-induction of sporulation, LtgB-PAmCh becomes more immobile (active). These analyses in the partner mutant backgrounds suggest that LtgA-PAmCh is more immobile (less active) in the absence of LtgB, but the reverse is not observed. Finally, the authors demonstrate that overexpression of LtgA in vegetative conditions leads to cell rounding, likely because of uncontrolled PG degradation, while overexpression of LtgB displays no phenotype.

      Strengths:

      This paper capitalizes on a novel spore morphogenesis mechanism to define proteins and mechanisms involved in peptidoglycan reorganization. The authors use the powerful PALM microscopy technique to assess Ltg activity in vivo by assaying for immobility as a proxy for PG binding. The authors elucidate a novel mechanism by which two Ltg's function together- with one (LtgB) seeming to regulate the activity of the other (the primary Ltg).

      Despite some weaknesses, there is no question that this study provides important insight into mechanisms of peptidoglycan remodeling- a difficult but highly impactful area of study with implications for the development of novel therapeutics and the discovery of mechanisms of fundamental bacterial physiology.

      Weaknesses:

      In many places, the authors do not adequately justify interpretations of their assays, leading to some apparently unjustified conclusions. Many of these are minor and may just require citations to demonstrate that the interpretations are justified by previous studies (detailed in recommendations below), but two bigger concerns are as follows:

      (1) It is not clear how the muropeptides listed in Figure 1 were assigned, and it is missing in the methods. In the sporulating conditions, the spectra look like combinations of multiple peaks, and the data, as stated, is not convincing to the non-specialist eye.

      (2) The observation that the lytB mutant prevents appropriate aggregation into fruiting bodies does not allow the interpretation that the absence of LytB prevents PG morphogenesis in the starvation-induced sporulation pathway, per se. It is more likely that in the lytB mutant, the morphogenesis program is not even triggered. This is because signaling proteins and regulators (specifically, C-signal accumulation/activated FruA), which are dependent on increased cell-cell signaling in the fruiting body, do not accumulate appropriately in shallow aggregates. C-signal/FruA are necessary to trigger the sporulation program in FBs. BTW: A hypothesis to explain the indirect effect of ltgB absence on aggregation could be that UDP-precursors are not regulated appropriately (unregulated LtyA??), so polysaccharides necessary for motility are not properly produced.

      Along these lines, fruiting body formation does not equal sporulation, and even "darkened" fruiting bodies can be misleading, as some mutants form polysaccharide-rich fruiting bodies (that appear dark under certain light conditions in the stereomicroscope) but do not sporulate efficiently. The wording in the text suggests that the authors assume that sporulation levels are normal because fruiting bodies are produced (see specific comments for details).

      (3) The authors repeatedly state that production of spore coat polysaccharides likely affects the PG IP staining (see below), but this is not well justified. A citation is needed if this has already been directly shown, or the language needs to be softened.

      (4) Better justification for the immobility of Lyt proteins in vivo as an assay for activity may be required. If this is well known in the field, it should be explicitly stated. The authors address this better in the discussion - but still state it is a correlation.

    2. Reviewer #2 (Public review):

      Summary:

      The authors' initial goal was to demonstrate loss of PG during the slow sporulation process of Myxococcus xanthus, with examination of the PG degradation products in order to implicate possible enzymes involved. Upon finding a predominance of LGT products, they examined sporulation in strains lacking each of the 14 candidate LGTs encoded in the genome, leading to the identification of two sporulation-linked LGTs. An extensive characterization of the roles played by these LGTs. One LGT is responsible for the slow sporulation PG degradation, while another is required for the rapid sporulation process. Interestingly, the "slow" LGT seems to provide an important regulatory brake on the rapid enzyme. Single-molecule fluorescent tracking of these enzymes was used to develop a model for their interaction with PG that mimics their observed activity. The rate of PG synthesis activity was also shown to impact the rate of PG degradation, suggesting potential interplay between the synthetic and degradative enzymes.

      Strengths:

      The genetic analysis to identify sporulation-linked LGTs and their effects on growth, sporulation, and spore properties was well done and productive. The fluorescence microscopy to track LGT mobility, presumably tied to activity, produced a convincing argument about the mechanism of regulation of one LGT by another.

      Weaknesses:

      While the impact of LGTs on sporulation was clearly demonstrated, the PG analysis that resulted from the study of LGTs raised some important unanswered questions. The analyses suggest that the PG is degraded to quite small fragments, which would normally be lost during the purification of PG. How these small fragments were thus detected is unclear, and this suggests a more complex story concerning PG metabolism during sporulation. An anti-PG antibody is used to quantify PG in the spores, but it is not made clear what the specificity of this antibody is, and thus whether it would recognize the LGT-altered PG of the spore. The authors suggest a "new mechanism of sporulation" when they have actually simply identified an important factor (PG degradation by LGTs) within a complex "process of sporulation".

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, Chen et al. use cryo-electron tomography and an in vitro reconstitution system to demonstrate that the autoinhibited form of LRRK2 can assemble into filaments that wrap around microtubules. These filaments are generally shorter and less ordered than the previously characterized active-LRRK2 filaments. The structure reveals a novel interface involving the N-terminal repeats, which were disordered in the earlier active filament structure. Additionally, the autoinhibited filaments exhibit distinct helical parameters compared to the active form.

      Strengths:

      This study presents the highest-resolution structure of LRRK2 filaments obtained via subtomogram averaging, marking a significant technical advance over the authors' previous work published in Cell. The data are well presented, with high-quality visualizations, and the findings provide meaningful insights into the structural dynamics of LRRK2.

      Weaknesses and Suggestions:

      The revised manuscript by Chen et al. has fully addressed all of my previous suggestions regarding the rearrangement of the main figures.

    2. Reviewer #2 (Public review):

      The authors of this paper have done much pioneering work to decipher and understand LRRK2 structure and function and uncover the mechanism by which LRRK2 binds to microtubules and to study the roles that this may play in biology. Their previous data demonstrated that LRRK2 in the active conformation (pathogenic mutation or Type I inhibitor complex) bound to microtubule filaments in an ordered helical arrangement. This they showed induced a "roadblock" in the microtubule impacting vesicular trafficking. The authors have postulated that this is a potentially serious flaw with Type 1 inhibitors and that companies should consider generating Type 2 inhibitors in which the LRRK2 is trapped in the inactive conformation. Indeed the authors have published much data that LRRK2 complexed to Type 2 inhibitors does not seem to associate with microtubules and cause roadblocks in parallel experiments to those undertaken with type 1 inhibitors published above.

      In the current study the authors have undertaken an in vitro reconstitution of microtubule bound filaments of LRRK2 in the inactive conformation, which surprisingly revealed that inactive LRRK2 can also interact with microtubules in its auto-inhibited state. The authors' data shows that while the same interphases are seen with both the active LRRK2 and inactive microtubule bound forms of LRRK2, they identified a new interphase that involves the WD40-ARM-ANK- domains that reportedly contributes to the ability of the inactive form of LRRK2 to bind to microtubule filaments. The structures of the inactive LRRK2 complexed to microtubules are of medium resolution and do not allow visualisation of side chains.

      This study is extremely well written and the figures incredibly clear and well presented. The finding that LRRK2 in the inactive autoinhibited form can associate with microtubules is an important observation that merits further investigation. This new observation makes an important contribution to the literature and builds upon the pioneering research that this team of researchers has contributed to the LRRK2 fields.

      Comments on revised version:

      The authors have adequately addressed my questions and those of the other Reviewers in my opinion.

    3. Reviewer #3 (Public review):

      Summary:

      The manuscript by Chen et al examines the structure of the inactive LRRK2 bound to microtubules using cryo-EM tomography. Mutations in this protein have been shown to be linked to Parkinson's Disease. It is already shown that the active-like conformation of LRRK2 binds to the MT lattice, but this investigation shows that full-length LRRk2 can oligomerize on MTs in its autoinhibited state with different helical parameters than were observed with active-like state. The structural studies suggest that the autoinhibited state is less stable on MTs.

      Strengths:

      The protein of interest is very important biomedically and a novel conformational binding to microtubules in proposed

      The authors have addressed my original critique.

    1. Reviewer #1 (Public review):

      This study examined the effect of blood pressure variability on brain microvascular function and cognitive performance. By implementing a model of blood pressure variability using intermittent infusion of AngII for 25 days, the authors examined different cardiovascular variables, cerebral blood flow and cognitive function during midlife (12-15-month-old mice). Key findings from this study demonstrate that blood pressure variability impairs baroreceptor reflex and impairs myogenic tone in brain arterioles, particularly at higher blood pressure. They also provide evidence that blood pressure variability blunts functional hyperemia and impairs cognitive function and activity. Simultaneous monitoring of cardiovascular parameters, in vivo imaging recordings, and the combination of physiological and behavioral studies reflect rigor in addressing the hypothesis. The experiments are well designed, and data generated are clear.

      A number of issues raised earlier were addressed by the authors in the revised manuscript. The responses are convincing. These included circadian rhythm considerations, baroreflex findings, BP fluctuations driven by animal movement, and data presentation.

      Overall, this is a solid study with huge physiological implications. I believe that it will be of great benefit to the field.

    1. Reviewer #1 (Public review):

      Summary:

      Meijer et al. sought to investigate the role of cortical layer 6b (L6b) neurons in modulating sleep-wake states and cortical oscillations under baseline and sleep deprived conditions and in response to orexin A and B. Using chronic EEG recordings in mice with silencing of Drd1a+ neurons (via constitutive Cre-dependent knockout of SNAP25), the authors report that while overall baseline sleep-wake architecture and response to sleep deprivation minimal/unchanged, "L6b silencing" leads to a slowing of theta activity during wakefulness and REM sleep, and a reduction in EEG power during NREM sleep. Additionally, orexin B-induced increases in theta activity were attenuated in L6b silenced mice, which the authors state suggests a modulatory role for L6b in orexin-mediated arousal regulation. The manuscript is generally well written with clarity and transparency. However, a major concern is the lack of specificity in the genetic manipulation, which targets Drd1a+ neurons not exclusive to L6b, undermining the attribution of observed effects solely to L6b. Verification of neuronal silencing is also unclear, and statistical inconsistencies between the main text and figures/tables make it difficult to effectively evaluate the text and stated outcomes.

      Strengths:

      (1) The text is well written.

      (2) The authors are transparent about methodological details.

      (3) The stated sleep, circadian, and orexin infusion experiments appear to be well designed, executed, and analyzed (with the exceptions of some statistical analyses detailed below).

      Weaknesses:

      (1) All outcomes are attributed specifically to L6b neurons, but the genetic manipulation is not specific to L6b neurons. The authors acknowledge this as a limitation, but in my view, this global manipulation is more than a limitation - it affects the overall interpretations of the data. The Hoerder-Suabedissen et al., 2018 paper shows sparse, but also dense, expression of Drd1a+ neurons in brain regions outside of the L6b. Given this issue, the results are largely overstated throughout the paper.

      (2) It is not clear to me that the "silencing" of Drd1a+ neurons was verified.

      (3) There were various discrepancies (and potentially misattributions) between the stated significant differences in Supplementary Table T1 data and Figure 3a & S2 spectral plots. This issue makes it difficult to effectively evaluate the main text and stated outcomes.

      Related, the authors stated that post hoc comparisons of EEG spectral frequency bins were not corrected for multiple testing. Instead, significance was only denoted if changes in at least two consecutive frequency bins were significant. However, there are multiple plots in which a single significance marker is placed over an isolated bin (i.e., 4c, 6, S5, S6). Unless each marker is equivalent to 2 consecutive frequency bins, these markers should be removed from the plots. Otherwise, please define the frequency and size of these markers in the main text.

      (4) A rainbow color scale, as in Figure 3, we've now learned, can be misleading and difficult to interpret. The viridis color scale or a different diverging color scale are good alternatives.

      (5) How much time elapsed between vehicle/orexin A & B infusions?

      (6) For Figure 6, there are statistical discrepancies between the main text and the plots (pg. 10):

      a) The text claims post hoc differences for relative ORXA frontal EEG, but there are no significance markers on the plot.<br /> b) The text states that there were no post hoc differences for the relative ORXA occipital EEG, but significance markers are on the plot.<br /> c) The main test for the relative ORXB frontal EEG was not significant, but there are post hoc significance markers on the plot.<br /> d) For relative ORXB occipital EEG, there are significant markers on the plot outside of the stated range in the text.

      (7) Some important details are only available in figure captions, making it difficult to understand the main text. For example, when describing Figure 3c in the main text on page 7, it is not clear what type of transitions are being discussed without reading the figure caption. Likewise, a "decrease," "shift," and "change" are mentioned, but relative to what? Similar comment for the EEG theta activity description on pages 7 - 8. Please add relevant details to the main text.

      (8) Statistical comparisons for data in Figure 3e, post hoc analyses for data in Figure S7a-b REM data, and post hoc analyses for Figure S7c (not b) occipital EEG should be included to support differences claims. Please denote these differences on the respective plots.

      (9) In the subsection titled "Layer 6b mediates effects of orexin on vigilance states (pg. 8)," there does not seem to be any stated differences between control and L6b silenced mice. A more accurate subtitle is needed.

    2. Reviewer #2 (Public review):

      Summary:

      In this manuscript, Meijer and colleagues investigated the effects of inactivation (conditional silencing) of cortical layer 6b neurons on sleep-wake states and EEG spectral power under the following three conditions: during natural sleep-wake states, after sleep deprivation, or after intracerebroventricular administration of orexin A and B. The authors report that silencing of L6b neurons did not have a significant effect on the total time spent in sleep-wake states, duration, or number of state epochs, or the response to sleep deprivation. However, silencing of L6b neurons did slow down theta-frequency (6-9 Hz) during wake and REM sleep, and reduced the total EEG power during NREM sleep. Infusion of orexin A in the mice in which cortical layer 6b neurons were inactivated produced an increase in wakefulness. A similar effect was observed after infusion of orexin A in the mice in which these neurons were not silenced, but the effect (i.e., increase in wakefulness) was of a smaller magnitude. Silencing of cortical layer 6b neurons attenuated the effect of orexin B in increasing theta activity, as was observed in the control mice. The authors conclude that the cortical neurons in layer 6b play an essential role in state-dependent dynamics of brain activity, vigilance state control, and sleep regulation.

      Strengths:

      (1) A focus on cortical layer 6b neurons, which are an understudied neuronal population, especially in the context of brain and behavioral state transitions.

      (2) The authors used a well-established mouse model to study the effect of inactivation of cortical layer 6b neurons.

      Weaknesses:

      (1) Although the authors used a highly selective approach to silence layer 6b neurons, the observed changes in EEG oscillations cannot be solely attributed to layer 6b neurons because of the ICV route for orexin administration.

      (2) The rationale for using only male rats is not provided.

    1. Joint Public Review:

      Summary:

      There has been extensive electrophysiological research investigating the relationship between local field potential patterns and individual cell spike patterns in the hippocampus. In this study, the authors used innovative imaging techniques to examine spike synchrony of hippocampal cells during locomotion and immobility states. The authors report that hippocampal place cells exhibit prominent synchronous spikes that co-occur with theta oscillations during exploration of novel environments.

      Strengths:

      The single cell voltage imaging used in this study is a highly novel method that may allow recordings that were not previously possible using traditional methods.

      Weaknesses:

      Local field potential recordings were obtained from the contralateral hemisphere for technical reasons, which limits some of the study's claims.

    1. Reviewer #1 (Public review):

      Summary:

      The work from this paper successfully mapped transcriptional landscape and identified EA-responsive cell types (endothelial, microglia). Data suggest EA modulates BBB via immune pathways and cell communication. However, claims of "BBB opening" are not directly proven (no permeability data).

      Strengths:

      First scRNA-seq atlas of EA effects on BBB, revealing 23 cell clusters and 8 cell types. High cell throughput (98,338 cells), doublet removal, and robust clustering (Seurat, SingleR). Comprehensive bioinformatics (GO/KEGG, CellPhoneDB for ligand-receptor interactions). Raw data were deposited in GEO (GSE272895) and can be accessed.

      Weaknesses:

      (1) No in vivo/in vitro assays confirm BBB permeability changes (e.g., Evans blue leakage, TEER).

      (2) Only male rats were used, ignoring sex-specific BBB differences.

      (3) Pericytes and neurons, critical for the BBB, were not captured, likely due to dissociation artifacts.

      (4) Protein-level validation (Western blot, IHC) absent for key genes (e.g., LY6E, HSP90).

      (5) Fixed stimulation protocol (2/100 Hz, 40 min); no dose-response or temporal analysis.

    2. Reviewer #2 (Public review):

      Summary:

      This study uses single-cell RNA sequencing to explore how electroacupuncture (EA) stimulation alters the brain's cellular and molecular landscape after blood-brain barrier (BBB) opening. The authors aim to identify changes in gene expression and signaling pathways across brain cell types in response to EA stimulation using single-cell RNA sequencing. This direction holds promise for understanding the consequences of noninvasive methods of BBB opening for therapeutic drug delivery across the BBB.

      Strengths:

      (1) The study addresses an emerging and potentially important application of noninvasive stimulation methods to manipulate BBB permeability.

      (2) The dataset provides broad transcriptional profiling across multiple brain cell types using single-cell resolution, which could serve as a valuable community resource.

      (3) Analyses of receptor-ligand signaling and cell-cell communication are included and have the potential to offer mechanistic insight into BBB regulation.

      Weaknesses:

      (1) The work falls short in its current form. The experimental design lacks a clear justification, and readers are not provided with sufficient background information on the extent, timing, or regional specificity of BBB opening in this EA model. These details, established in prior work, are critical to understanding the rationale behind the current transcriptomic analyses.

      (2) Further, the results are often presented with minimal context or interpretation. There is no model of intercellular or molecular coordination to explain the BBB-opening process, despite the stated goal of identifying such mechanisms. The statement that EA induces a "unique frontal cortex-specific transcriptome signature" is not supported, as no data from other brain regions are presented. Biological interpretation is at times unclear or inaccurate - for instance, attributing astrocyte migration effects to endothelial cell clusters or suggesting microglial tight junction changes without connecting them meaningfully to endothelial function.

      (3) The study does include analyses of receptor-ligand signaling and cell-cell communication, which could be among its most biologically rich outputs. However, these are relegated to supplementary material and not shown in the leading figures. This choice limits the utility of the manuscript as a hypothesis-generating resource.

      (4) Overall, while the dataset may be of interest to BBB researchers and those developing technologies for drug delivery across the BBB, the manuscript in its current form does not yet fulfill its interpretive goals. A more integrated and biologically grounded analysis would be beneficial.

    1. Reviewer #1 (Public review):

      Summary:

      This work investigates the neural basis of continual motor learning, specifically how brains might accommodate new motor memories without interfering with previously learned behaviours. Mainly drawing inspiration from recent experimental studies in monkeys (Losey et al. and Sun, O'Shea et al.), the authors use recurrent neural networks (RNNs) to model sequential learning and examine the emergence and properties of two proposed neural signatures of motor memory: the "uniform shift" observed in preparatory activity and the "memory trace" observed in execution activity.

      Strengths:

      The work's main contribution is demonstrating that both uniform shifts and memory traces emerge in RNN models trained on a sequential BCI task, without requiring explicit additional mechanisms. The work explores the relationship between these signatures and behavioural savings, finding that the memory trace correlates with immediate retention savings in networks without context, while the uniform shift does not. The study also investigates how properties of the new task perturbation (within- vs. outside-manifold) and the presence of explicit context cues affect these signatures and their relationship to savings, generally finding that context signals and outside-manifold perturbations reduce savings by decreasing the inherent overlap in the neural strategies used to solve the task.

      Weaknesses:

      A primary weakness is the lack of clear definitions of the uniform shift and the memory trace, which are quite different metrics. Another primary weakness is that the task modelled is well-matched to the Losey et al. BCI paradigm, but not well-matched to the Sun, O'Shea et al.'s curl field paradigm, which is likely impacting some of the results, primarily the lack of a relationship between the uniform shift and motor memories. While there are improvements that could be made in this work, we think it is a demonstration that modeling learning in neural activity using neural network models continues to be a valuable tool, moving the field forward.

    2. Reviewer #2 (Public review):

      Summary:

      Chang et al. develop an RNN model of a BCI sequential learning task to examine the emergence of motor memory in the network. They use this system to quantify signatures of memory in continual learning, comparing their model with experimental observations from monkeys in prior publications. They show that the RNN model has signatures of shifts associated with sequential learning without any non-standard learning rules. This convincing study contributes to the knowledge of how motor memories are formed and shaped so that they are flexible in acquiring multiple behaviors.

      Strengths:

      This paper describes a well-designed numerical experiment that comes to a clear interpretation of a set of neural BCI experiments. The learning signatures the authors describe are interesting and well laid out, and the paper is well written. I find it insightful that the neural signature of motor learning emerges in a trained network without special learning rules.

      Weaknesses:

      The paper could be stronger if it made a stronger interpretation of how memory traces and uniform shifts are related. These two observations are taken from the BCI sequential learning literature and introduced by two different prior experimental papers on two different tasks, so it seems like there is an opportunity here to use the RNN model to unite these concepts, or define another metric for signatures of learning from a more normative approach.

    3. Reviewer #3 (Public review):

      Summary:

      The authors build and analyze recurrent neural network (RNN) models of brain-computer interface (BCI) multi-task learning, developing a valuable theoretical understanding of learning-related neural population phenomena ("memory traces" and "uniform shifts") that have been reported in recent experimental studies of BCI and motor learning. The authors find that both phenomena emerge in their RNN models, and both correlate in some manner to learning-related behavioral phenomena ("savings" and "forgetting"). The authors also reveal that RNN training details, in particular, incorporating a task-indicating contextual input, can impact these population-level signatures of learning in RNN activity and their relation to those behavioral phenomena.

      Strengths:

      The text is well written, and the figures are clearly composed to convey the core concepts and findings. The RNN studies are elegant in their ability to recapitulate the memory trace and uniform shift phenomena, and further allow evaluations of novel scenarios that were not tested in the original corpus of the modeled animal experiments. The authors assess the sensitivity of their results to multiple approaches to RNN training, including training connectivity within a model of motor cortex, training only an upstream model that provides inputs to the motor cortex model, and providing task-indicating contextual inputs.

      Weaknesses:

      (1) It is unclear to what extent these RNN models operate in regimes relevant to biological neural networks (e.g., motor cortex), even at the neural-population level of abstraction studied here. Can the authors speak to how sensitive their results are to details that might speak to these operating regimes (e.g., signal-to-noise ratios or dimensionality of the RNN activities)?

      (2) The work could be further strengthened by analyses demonstrating a more direct link between the neural population phenomena (memory trace and uniform shift) and the behavioral phenomena (savings, forgetting, etc). While in animal experiments, it can be exceedingly difficult to demonstrate links beyond correlative effects, the promise of a model is the relative tractability of implementing manipulations that might establish something closer to a causal link between phenomena. Is it the case that the memory trace is a task-dependent, mean-preserving rotation of the across-target task-relevant activity space? And that the uniform shift is a translation (non-mean-preserving) of that space? If so, could the authors design regularization schemes that specifically target each of these effects, enabling a more direct test of the functional role the effects play in driving behavioral phenomena?

      Minor Comments:

      The current study is based on BCI learning of center-out tasks, analogous to the Losey et al. task that initially reported the memory trace phenomena. However, a rather different behavioral task - involving arm movements through curl force fields - was employed by the Sun, O'Shea, et al. study that originally reported the uniform shift phenomena. How should readers interpret the current study's findings related to the uniform shift? To what extent might the behavioral implications of the uniform shift depend on the demands of the task, e.g., the biomechanics, day-to-day experiencing of different curl-field perturbations, etc.?

    1. Reviewer #1 (Public review):

      Summary:

      Bacterial species that frequently undergo horizontal gene transfer events tend to have genomes that approach linkage equilibrium, making it challenging to analyze population structure and establish the relationships between isolates. To overcome this problem, researchers have established several effective schemes for analyzing N. gonorrhoeae isolates, including MLST and NG-STAR. This report shows that Life Identification Number (LIN) Codes provide for a robust and improved discrimination between different N. gonorrhoeae isolates.

      Strengths:

      The description of the system is clear, the analysis is convincing, and the comparisons to other methods show the improvements offered by LIN Codes.

      Weaknesses:

      No major weaknesses were identified by this reviewer.

    2. Reviewer #2 (Public review):

      Summary:

      This paper describes a new approach for analyzing genome sequences.

      Strengths:

      The work was performed with great rigor and provides much greater insights than earlier classification systems.

      Weaknesses:

      A minor weakness is that the clinical application of LIN coding could be articulated in a more in-depth way. The LIN coding system is very impressive and is certainly superior to other protocols. My recommendation, although not necessary for this paper, is that the authors expand their analysis to noncoding sequences, especially those upstream of open reading frames. In this respect, important cis-acting regulatory mutations that might help to further distinguish strains could be identified.

    3. Reviewer #3 (Public review):

      Summary:

      In this well-written manuscript, Unitt and colleagues propose a new, hierarchical nomenclature system for the pathogen Neisseria gonorrhoeae. The proposed nomenclature addresses a longstanding problem in N. gonorrhoeae genomics, namely that the highly recombinant population complicates typing schemes based on only a few loci and that previous typing systems, even those based on the core genome, group strains at only one level of genomic divergence without a system for clustering sequence types together. In this work, the authors have revised the core genome MLST scheme for N. gonorrhoeae and devised life identification numbers (LIN) codes to describe the N. gonorrhoeae population structure.

      Strengths:

      The LIN codes proposed in this manuscript are congruent with previous typing methods for Neisseria gonorrhoeae, like cgMLST groups, Ng-STAR, and NG-MAST. Importantly, they improve upon many of these methods as the LIN codes are also congruent with the phylogeny and represent monophyletic lineages/sublineages.

      The LIN code assignment has been implemented in PubMLST, allowing other researchers to assign LIN codes to new assemblies and put genomes of interest in context with global datasets.

      Weaknesses:

      The authors correctly highlight that cgMLST-based clusters can be fused due to "intermediate isolates" generated through processes like horizontal gene transfer. However, the LIN codes proposed here are also based on single linkage clustering of cgMLST at multiple levels. It is unclear if future recombination or sequencing of previously unsampled diversity within N. gonorrhoeae merges together higher-level clusters, and if so, how this will impact the stability of the nomenclature.

      The authors have defined higher resolution thresholds for the LIN code scheme. However, they do not investigate how these levels correspond to previously identified transmission clusters from genomic epidemiology studies. It would be useful for future users of the scheme to know the relevant LIN code thresholds for these investigations.

    1. Reviewer #1 (Public review):

      The authors try to investigate how the population of microtubules (LSPMB) that originate from sporozoite subpellicular microtubules (SSPM) and are remodelled during liver-stage development of malaria parasites. These bundles shrink over time and help form structures needed for cell division. The authors have used expansion microscopy, live-cell imaging, genetically engineered mutants, and pharmacological perturbation to study parasite development with liver cells.

      A major strength of the manuscript is the live cell imaging and expansion microscopy to study this challenging liver stage of parasite development. It gives important knowledge that PTMs of α-tubulin, such as polyglutamylation and tyrosination/detyrosination, are crucial for microtubule stability. Mutations in α-tubulin reduce the parasite's ability to move and proliferate in the liver cells. The drug oryzalin, which targets microtubules, also blocks parasite development, showing how important dynamic microtubules are at this stage.

      The major problem in the manuscript was the way it flows, as the authors keep shifting from the liver stage to the sporogony stages and then back to the liver stages. It was very confusing at times to know what the real focus of the study is, whether sporozoite development or liver stage development. The flow of the manuscript could be improved. Some of the findings reported here substantiate the previous electron microscopy.

      Overall, the study represents an important contribution towards understanding cytoskeletal remodelling during liver stage infection. The study suggests that tubulin modifications are key for the parasite's survival in the liver and could be targets for new malaria treatments. This is also the stage that has been used for vaccine development, so any knowledge of how parasites proliferate in the liver cells will be beneficial towards intervention approaches.

    2. Reviewer #2 (Public review):

      Summary:

      The authors investigated microtubule distribution and their possible post-translational modifications (PTM) in Plasmodium berghei during development of the liver stage, using either hepatocytes or HeLa cells as models. They used conventional immunofluorescence assays and expansion microscopy with various antibodies recognising tubulin and, in the second part of the work, its candidate PTMs, as well as markers of Plasmodium, in addition to live imaging with a fluorescent marker for tubulin. In the third part of the study, they generated 3 mutants deprived of either the last four residues or the last 11 residues, or where a candidate polyglutamylation site was substituted by an alanine residue.

      Strengths:

      In the first part, microtubules are monitored by a combination of two approaches (IFA and live), revealing nicely the evolution of the sporozoite subpellicular microtubules (SSPM, the sporozoite is the developmental stage present in salivary glands of the mosquitoes and that infects hepatocytes) into a different structure termed liver-stage parasite microtubule bundle (LSPMB). The LSPMB shrinks during the course of parasite development and finally disappears while hemi-spindles emerge over time. Contact points between these two structures are observed frequently in live cells and occasionally in fixed cells, suggesting the intriguing possibility that tubulin might be recycled from the LSPMB to contribute to hemi-spindle formation.

      In the second part, antibodies recognising (1) the final tyrosine found at the C-terminal tail and (2) a stretch of 3 glutamate residues in a side chain are used to monitor these candidate PTMs. Signals are positive at the SSPM, and while it remains positive for polyglutamylation, it becomes negative for the final tyrosine at the LSPM, while a positive signal emerges at hemi-spindles at later stages of development.

      In the last part, the three mutants are fed to mosquitoes, where they show reduced development, the one lacking the alpha-tubulin tail even failing to reach the salivary glands. However, the two other mutants infect HeLa cells normally, whereas sporozoites with the C-terminal tail deletion recovered from the haemolymph did not develop in these cells.

      The first part provides convincing evidence that microtubules are extensively remodelled during the infection of hepatocytes and HeLa cells, in agreement with the spectacular Plasmodium morphogenetic changes accompanying massive and rapid proliferation. The third part brings further confirmation that the C-terminal tail of alpha-tubulin is essential for multiple stages of parasite development, in agreement with previous work (50). Since it is the region where several post-translational modifications take place in other organisms (detyrosination, polyglutamylation, glycylation), it makes sense to propose that the essential function is related to these PTMs also in Plasmodium.

      Weaknesses:

      The significance of tubulin PTM relies on two antibodies whose reactivity to Plasmodium tubulins is unclear (see below). The interpretation of the literature on detyrosination and polyglutamylation is confusing in several places, meaning that the statements about the possible role of these PTMs need to be carefully revisited.

      The authors use the term "tyrosination" but the alpha1-tubulin studied here possesses the final tyrosine when it is synthesised, so it is "tyrosinated" by default. It could potentially be removed by a tyrosine carboxypeptidase of the vasoinhibin family (VASH) as reported in other species. After removal, this tyrosine can be added again by a tubulin-tyrosine ligase (TTL) enzyme. It is therefore more appropriate to talk about detyrosination-retyrosination rather than tyrosination (this confusion is unfortunately common in the literature, see Janke & Magiera, 2020).

      The difficulty here is that there is so far no evidence that detyrosination takes place in Plasmodium. Neither VASH nor TTL could be identified in the Plasmodium genome (ref 31, something we can confirm with our unsuccessful BLAST analyses), and mass spectrometry studies of purified tubulin, albeit from blood stages, did not find evidence for detyrosination (reference 43). Western blots using an antibody against detyrosinated tubulin did not produce a positive signal, neither on purified tubulin, nor on whole parasites (43). Of course, the situation could be different in liver stages, but the question of the detyrosinating enzyme is still there. The existence of a unique Plasmodium system for detyrosination cannot be formally ruled out, but given the high degree of conservation of these PTMs and their associated enzymes, it sounds difficult to imagine.

      The fact that the anti-tyrosinated antibody still produced a signal in the cell line where the final tyrosine is deleted raises issues about its specificity. A cross-reactivity with beta-tubulin is proposed, but the Plasmodium beta-tubulin does not carry a final tyrosine, further raising concerns about antibody specificity.

      The interpretation of these results should therefore be considered carefully. There also seems to be some confusion in the function of detyrosination cited from the literature. It is said in line 229 that "tyrosination has been associated with stable microtubules" (33, 34, 50, 55). References 33 and 34 actually show that tyrosinated microtubules turn over faster in neurons or in epithelial cells, respectively, while references 50 and 55 do not study de/retyrosination. The general consensus is that tyrosinated microtubules are more dynamic (see reference 24).

      The situation is a bit different for polyglutamylation since several candidate poly- or mono-glutamylases have been identified in the Plasmodium genome, and at least mono-glutamylation of beta-tubulin has been formally proven, still in bloodstream stages (ref 43). The authors propose that the residue E445 is the polyglutamylation site. To our knowledge, this has not been demonstrated for Plasmodium. This residue is indeed the favourite one in several organisms such as humans and trypanosomes (Eddé et al., Science 1990; Schneider et al., JCS, 1997), and it is tempting to propose it would be the same here. However, TTLLs bind the tubulin tails from their C-terminal end like a glove on a finger (Garnham et al., Cell, 2015), and the presence of two extra residues in Plasmodium tubulins would mean that the reactive glutamate might be in position E447 rather than E445. This is worth discussing.<br /> On the positive side, it is encouraging to see that signals for both anti-tyrosinated tail and poly-glutamylated side chain are going down in the various mutants, but this would need validation with a comparison for alpha-tubulin signal.

      Line 316: polyglutamylation "is commonly associated with dynamic microtubule behavior (78-80)". Actually, references 78 and 79 show the impact of this PTM on interaction with spastin, and reference 80 discusses polyglutamylation as a marker of stable microtubules in the context of cilia and flagella. The consensus is that polyglutamylated microtubules tend to be more stable (ref24).

      Conclusion:

      The first and the third parts of this manuscript - evolution of microtubules and importance of the C-terminal tails for Plasmodium development - are convincing and well supported by data. However, the presence and role of tubulin PTM should be carefully reconsidered.

      Plasmodium tubulins are more closely related to plant tubulins and are sensitive to inhibitors that do not affect mammalian microtubules. They therefore represent promising drug targets as several well-characterised compounds used as herbicides are available. The work produced here further defines the evolution of the microtubule network in sporozoites and liver stages, which are the initial and essential first steps of the infection. Moreover, Plasmodium has multiple specificities that make it a fascinating organism to study both for cell biology and evolution. The data reported here are elegant and will attract the attention of the community working on parasites but also on the cytoskeleton at large. It will be interesting to have the feedback of other people working on tubulin PTMs to figure out the significance of this part of the work.

    3. Reviewer #3 (Public review):

      Summary:

      The manuscript by Atchou et al. investigates the role of the microtubule cytoskeleton in sporozoites of Plasmodium berghei, including possible functions of microtubule post-translational modifications (tyrosination and polyglutamylation) in the development of sporozoites in the liver. They also assessed the development of sporozoites in the mosquito. Using cell culture models and in vivo infections with parasites that contain tubulin mutants deficient in certain PTMs, they show that may aspects of the life cycle progression are impaired. The main conclusion is that microtubule PTMs play a major role in the differentiation processes of the parasites.

      However, there are a number of major and minor points of criticism that relate to the interpretation of some of the data.

      Comments:

      (1) The first paragraph of "Results" almost suggests that the presence of a subpellicular MT-array in sporozoites is a new discovery. This is not the case, see e.g. the recent publication by Ferreira et al. (Nature Communications, 2023).

      (2) Why were HeLa cells and not hepatocytes (as in Figure 3) used for measuring infection rates of the mutants in Figure 5H and 5L? As I understand, HeLa cells are not natural host cells for invading sporozoites. HeLa cells are epithelial cells derived from a cervical tumour. I am not an expert in Plasmodium biology, but is a HeLa infection an accepted surrogate model for liver stage development?

      (3) The tubulin staining in Figures 1A and 1B is confusing and doesn't seem to make sense. Whereas in 1A the antibody nicely stains host and parasite tubulin, in 1B, only parasite tubulin is visible. If the same antibody and the same host cells have been used, HeLa cytoplasmic microtubules should be visible in 1B. In fact, they should be the predominant antigen. The same applies to Figure 2, where host microtubules are also not visible.

      (4) In Figures 2A and B, the host nuclei appear to have very different sizes in the DMSO controls and in the drug-treated cells. For example, in the 20 µM (-) image (bottom right), the nuclei are much larger than in the DMSO (-) control (top left). If this is the case, expansion microscopy hasn't worked reproducibly, and therefore, quantification of fluorescence is problematic. The scalebar is the same for all panels.

      (5) I don't quite follow the argument that spindles and the LSPMB are dynamic structures (e.g., lines 145, 174). That is a trivial statement for the spindle, as it is always dynamic, but beyond that, it has only been shown that the structure is sensitive to oryzalin. That says little about any "natural" dynamic behaviour. Any microtubule structure can be destroyed by a particular physical or chemical treatment, but that doesn't mean all structures are dynamic. It also depends on the definition of "dynamic" in a particular context, for example, the time scale of dynamic behaviour (changes within seconds, minutes, or hours).

      (6) I am not sure what part in the story EB1 plays. The data are only shown in the Supplements and don't seem to be of particular relevance. EB1 is a ubiquitous protein associated with microtubule plus ends. The statement (line 192) that it "may play a broader role..." is unsubstantiated and cannot be based merely on the observation that it is expressed in a particular life cycle stage.

      (7) Line 196 onwards: The antibody IN105 is better known in the field as polyE. Maybe that should be added in Materials and Methods. Also, the antibody T9028 against tyrosinated tubulin is poorly validated in the literature and rarely used. Usually, researchers in this field use the monoclonal antibody YL1/2. I am not sure why this unusual antibody was chosen in this study. In fact, has its specificity against tyrosinated α-tubulin from Plasmodium berghei ever been shown? The original antigen was human and had the sequence EGEEY. The Plasmodium sequence is YEADY and hence very different. It is stated that the LSPMB is both polyglutamylated and tyrosinated. This is unusual because polyglutamylated microtubules are usually indicative of stable microtubules, whereas tyrosinated microtubules are found on freshly polymerised and dynamic microtubules. However, a co-localisation within the same cell has not been attempted. This is, however, possible since polyE is a rabbit antibody and T9028 is a mouse antibody. I suspect that differences or gradients along the LSPMB would have been noticed. Also, in lines 207/208, it is said that tyrosination disappears after hepatocyte invasion, which is shown in Figure 3. However, in Figure 3A, quite a lot of positive signals for tyrosination are visible in the 54 and 56 hpi panels.

      (8) In line 229, it is stated that tyrosination "has previously been associated with stable microtubule in motility". This statement is not correct. In fact, none of the cited references that apparently support this statement show that this is the case. On the contrary, stable microtubules, such as flagellar axonemes, are almost completely detyrosinated. Therefore, tyrosination is a marker for dynamic microtubules, whereas detyrosinated microtubules are indicative of stable microtubules. This is an established fact, and it is odd that the authors claim the opposite.

      (9) Line 236 onwards: Concerning the generation of tubulin mutants, I think it is necessary to demonstrate successful replacement of the wild-type allele by the mutant allele. I am sure the authors have done this by amplification and subsequent sequencing of the genomic locus using PCR primers outside the plasmid sequences. I suggest including this information, e.g., by displaying the chromatograph trace in a supplementary figure. Or are the sequences displayed in Figure S3B already derived from sequenced genomic DNA? This is not described in the Legend or in Materials and Methods. The left PCR products obtained for Figure S3 B would be a suitable template for sequencing.

      (10) It is also important to be aware of the fact that glutamylation also occurs on β-tubulin. This signal will also be detected by polyE (IN105). Therefore, it is surprising that IN105 immunofluorescence is negative on the C-term Δ cells (Figure S3 D). Is there anything known about confirmed polyglutamylation sites on both α- and β-tubulins in Plasmodium, e.g., by MS? In Toxoplasma, both α- and β-tubulin have been shown to be polyglutamylated.

      (11) Figure S3 is very confusing. In the legend, certain intron deletions are mentioned. How does this relate to posttranslational tubulin modifications? The corresponding section in Results (lines 288-292) is also not very helpful in understanding this.

      (12) Figure 4E doesn't look like brightfield microscopy but like some sort of fluorescent imaging. In Figure 4C, were the control (NoΔ) cells with an integrated cassette, but no mutations, or non-transgenic cells?

      (13) It is difficult to understand why the TyΔ and the CtΔ mutants still show quite a strong signal using the anti-tyrosination antibody. If the mutants have replaced all wild-type alleles, the signal should be completely absent, unless the antibody (see my comment above concerning T9028) cross-reacts with detyrosinated microtubules. Therefore, the quantitation in Figures 5F and 5G is actually indicative of something that shouldn't be like that. The quantitation of 5F is at odds with the microscopy image in 5D. If this image is representative, the anti-Ty staining in TyΔ is as strong as in the control NoΔ.

      (14) The statement that the failure of CtΔ mutants to generate viable sporozoites is due to the lack of microtubule PTMs (lines 295-296) is speculative. The lack of the entire C-terminal tail could have a number of consequences, such as impaired microtubule assembly or failure to recruit and bind associated proteins. This is not necessarily linked to PTMs. Also, it has been shown in yeast that for microtubules to form properly and exquisite regulation (proteostasis) of the ratio between α- and β-tubulin is essential (Wethekam and Moore, 2023). I am not sure, but according to Materials and Methods (line 423), the gene cassettes for replacing the wild-type tubulin gene with the mutant versions contain a selectable marker gene for pyrimethamine selection. Are there qPCR data that show that expression levels of mutant α-tubulin are more or less the same as the wild-type levels?

      (15) In the Discussion, my impression is that two recent studies, the superb Expansion Microscopy study by Bertiaux et al. (2021) and the cryo-EM study by Ferreira et al. (2023), are not sufficiently recognised (although they are cited elsewhere in the manuscript). The latter study includes a detailed description of the microtubule cytoskeleton in sporozoites. However, the present study clearly expands the knowledge about the structure of the cytoskeleton in liver stage parasites and is one of the few studies addressing the distribution and function of microtubule post-translational modifications in Plasmodium.

      (16) I somewhat disagree with the statement of a co-occurrence of polyglutamylated and tyrosinated microtubules. I think the resolution is too low to reach that conclusion. As this is a bold claim, and would be contrary to what is known from other organisms, it would require a more rigorous validation. Given the apparent problems with the anti-Ty antibody (signal in the TyΔ mutant), one should be very cautious with this claim.

      (17) In the Discussion (lines 311 and 377), it is again claimed that tyrosinated microtubules are "a well-known marker of stable microtubules". This statement is completely incorrect, and I am surprised by this serious mistake. A few lines later, the authors say that polyglutamylated is "commonly associated with dynamic microtubule behaviour". Again, this is completely incorrect and is the opposite of what is firmly established in the literature. Polyglutamylation and detyrosination are markers of stable microtubules.

      (18) In line 339, the authors interpret the residual antibody staining after the introduction of the mutant tubulin as a compensatory mechanism. There is no evidence for this. More likely explanations are firstly the quality of the anti-Ty-antibody used (see comment above), and the fact that also β-tubulin carries C-terminal polyglutamylation sites, which haven't been investigated in this study. PTMs on β-tubulin are not compensatory, but normal PTMs, at least in all other organisms where microtubule PTMs have been investigated.

  2. resu-bot-bucket.s3.ca-central-1.amazonaws.com resu-bot-bucket.s3.ca-central-1.amazonaws.com
    1. •Delivered personalized bill reviews to identify cost-saving opportunities and increase customer satisfaction.

      Include specific savings amounts or percentage increases in customer retention due to these reviews.

    2. •Provided tailored mobile solutions by assessing customer needs and recommending optimal phone, plan, and accessory options.

      Quantify the increase in customer satisfaction or sales resulting from these tailored solutions.

    3. •Contributed to game development using Figma, ensuring engaging UI/UX design and adherence to project goals within a tight deadline.

      State how the UI/UX design improved user interaction or satisfaction rates.

    4. •Collaborated with a team to design and develop IntegrityXplorer, an interactive 'Choose Your Own Adventure' game focused on academic integrity.

      Include specific metrics on user engagement or feedback received post-launch.

    1. Reviewer #1 (Public review):

      Summary:

      In the presented study, the authors aim to explore the role of nociceptors in the fine particulate matter (FPM) mediated Asthma phenotype, using rodent models of allergic airway inflammation. This manuscript builds on previous studies, and identify transciptomic reprogramming and an increased sensitivity of the jugular nodose complex (JNC) neurons, one of the major sensory ganglion for the airways, on exposure to FPM along with Ova during the challenge phase. The authors then use OX-314 a selectively permeable form of lidocaine, and TRPV1 knockouts to demonstrate that nociceptor blocking can reduce airway inflammation in their experimental setup.

      The authors further identify the presence of Gfra3 on the JNC neurons, a receptor for the protein Artemin, and demonstrate their sensitivity to Artmein as a ligand. They further show that alveolar macrophages release Artemin on exposure to FPM.

      Strengths:

      The study builds on results available from multiple previous works, and presents important results which allow insights into the mixed phenotypes of Asthma seen clinically. In addition, by identifying the role of nociceptors, they identify potential therapeutic targets which bear high translational potential.

      Weaknesses:

      While the results presented in the study are highly relevant, there is a need for further mechanistic dissection to allow better inferences. Currently, certain results seem associative. Also, certain visualisations and experimental protocols presented in the manuscript need careful assessment and interpretation.

      While Asthma is a chronic disease, the presented results are particularly important to explore Asthma exacerbations in response to acute exposure to air pollutants. This is relevant in today's age of increasing air pollution and increasing global travel.

      Comments on revisions:

      Thank you for addressing the suggestions. No further comments.

    2. Reviewer #2 (Public review):

      Summary:

      The authors sought to investigate the role of nociceptor neurons in the pathogenesis of pollution-mediated neutrophilic asthma. The authors overall achieved the aim of demonstrating that nociceptor neurons are important to the pathogenesis of pollution-exacerbated asthma. Their results support their conclusions overall, although there are ways the study findings can be strengthened. This work further evaluates how nociceptor neurons contribute to asthma pathogenesis important for consideration while proposing treatment strategies for under treated asthma endotypes.

      Strengths:

      The authors utilize TRPV1 ablated mice to confirm the effects of intranasally administered QX-314 utilized to block sodium currents.

      Use of intravital microscopy to track alveolar macrophage and neutrophil motility in their model

      The authors demonstrate that via artemin, which is upregulated in alveolar macrophages in response to pollution, sensitizes JNC neurons thereby increasing their responsiveness to pollution. Ablation or inactivity of nociceptor neurons prevented the pollution induced increase in inflammation.

      Weaknesses:

      While neutrophilic, unclear of the endotype of asthma represented by the model

      Comments on revisions:

      The authors have addressed or commented on all concerns.

    3. Reviewer #3 (Public review):

      Asthma is a complex disease that includes endogenous epithelial, immune and neural components that respond to environmental stimuli. Small airborne particles with diameters in the range of 2.5 micrometers or less, so-called PM2.5, are thought to contribute to some forms of asthma. These forms of asthma may have neutrophils, eosinophils and macrophages in bronchoalveolar lavage. Here, Wang and colleagues build on a recent model that incorporated PM2.5 which was found to have a neutrophilic component. Wang altered the model to provide an extra kick via the incorporation of ovalbumin. The major strength of this work is that silencing TRPV1-expressing neurons either pharmacologically or genetically, modulated inflammation and the motility of neutrophils. By examining bronchoalveolar lavage fluid, they found not only that levels of a number of cytokines were increased, but also that artemin, a protein that supports neuronal development and function, was elevated, which did not occur in nociceptor- ablated mice. Their data strengthens links between pollutants, immune and neural interactions.

      Comments on revisions:

      The manuscript has been revised extensively, including the addition of new experiments, such as intravital microscopy. Did the comments from the reviewers, manifest by additional experiments and modifying how some of the data was presented, result in any changes in the hypotheses or the interpretation of such?

    1. Reviewer #1 (Public review):

      Summary:

      This paper presents evidence that a relatively common genetic variant tied to several disease phenotypes affects the interaction between the mRNA of CCL2 and the RNA binding protein HuR. CCL2 is an immune cell chemoattractant protein.

      Strengths:

      The study is well conducted with relevant controls. The techniques are appropriate, and several approaches provided concordant results were generally supportive of the conclusions reached. The impact of this work, identifying a genetic variant that works by altering the binding of an RNA-regulatory protein, has important implications given that the HuR protein could be a drug target to improve its function and over-ride this genetic change. This could have important implications for a number of diseases where this genetic variant contributes to disease risk.

      The authors have done a nice job of citing prior work. Details of the experimental protocols are well elaborated and the significance of the findings are well contextualized.

      Weaknesses:

      Authors have addressed prior weaknesses.

    2. Reviewer #2 (Public review):

      This study focuses on the differential binding of the RNA-binding protein HuR to CCL2 transcript (genetic variants rs13900 T or C). The study explores how this interaction influences the stability and translation of CCL2 mRNA. Employing a combination of bioinformatics, reporter assays, binding assays, and modulation of HuR expression, the study proposes that the rs13900T allele confers increased binding to HuR, leading to greater mRNA stability and higher translational efficiency. These findings indicate that rs13900T allele might contribute to heightened disease susceptibility due to enhanced CCL2 expression mediated by HuR. The study is interesting and most results are convincing, however the interpretation relative to RNA transcription and/or stability must be modified, and some data need better presentation or interpretation.

      Major Points

      Figure 2C:<br /> The authors describe an experiment to assess mRNA stability by labeling nascent RNA with EU for 3 hours, followed by washout of EU, and then incubation with or without actinomycin D for an additional 4 hours before measuring the remaining EU-labeled RNA. While the approach to label nascent RNA with EU is appropriate for tracking RNA decay, I have concerns regarding the use and interpretation of actinomycin D in this context.<br /> After EU washout, the pool of EU-labeled RNA is fixed and no new EU incorporation can occur. Therefore, the addition of actinomycin D at this stage should not affect the decay rate of the already labeled RNA, as transcription of EU-labeled RNA has effectively ceased. In this design, measuring the decrease in EU-labeled RNA over time reflects mRNA stability (even in absence of actinomycin D) rather than transcriptional activity.<br /> Therefore, the authors' statement that the non-actinomycin D treatment group represents transcriptional changes is not accurate here. Since EU labeling was stopped prior to the 4-hour incubation, any changes in EU-labeled RNA levels during this period reflect RNA decay, not new transcription.

      In summary:<br /> To assess transcriptional changes, one would compare the amount of EU-labeled RNA synthesized during the initial labeling period (the first 3 hours), before washout.<br /> If the authors wish to use actinomycin D to block transcription, this should be done in a separate decay assay without EU labeling.<br /> In the current experimental setup, actinomycin D is unnecessary after EU washout and does not influence the decay of the labeled RNA.<br /> I recommend the authors reconsider the interpretation of their data accordingly. I recommend to remove the data points relative to the presence of actinomycin D, as the non-actinomycin D samples are already representative of post-transcriptional changes given that EU was washed out. If Authors want to assess transcriptional changes, they would have to assess the levels during the initial labeling period (before the washout). Transcriptional differences were not assessed, therefore I would modify the text accordingly.<br /> In this context, any changes observed in the actinomycin D-treated samples are likely attributable to general cellular stress induced by actinomycin D, which is known to be highly stressful for cells. This stress could indirectly influence the decay rates of already-labeled EU-RNA.

      Figure 4C and 4D:<br /> The Author provided an updated gel with relative quantification - which effectively show the enhanced binding of CCL2 mRNA carrying the T variant to HuR - but they only provided it as data for reviewers (Figure R1). I highly recommend to use these data in the final manuscript instead of the data currently presented in Figure 4C and 4D. This would be important in order not to not create confusion in the reader or concerns regarding probe degradation or saturation.

      Minor points<br /> For the IP, I recommend to explain in the final version why the input was not provided (lack of material) and to clarify that the specific binding of Actin was used as a loading control in absence of input. This would be highly beneficial for the readers.

    1. Reviewer #1 (Public review):

      Summary:

      Chen et al. engineered and characterized a suite of next-generation GECIs for the Drosophila NMJ that allow for the visualization of calcium dynamics within the presynaptic compartment, at presynaptic active zones, and in the postsynaptic compartment. These GECIs include ratiometric presynaptic Scar8m (targeted to synaptic vesicles), ratiometric active zone localized Bar8f (targeted to the scaffold molecule BRP), and postsynaptic SynapGCaMP8m. The authors demonstrate that these new indicators are a large improvement on the widely used GCaMP6 and GCaMP7 series GECIs, with increased speed and sensitivity. They show that presynaptic Scar8m accurately captures presynaptic calcium dynamics with superior sensitivity to the GCaMP6 and GCaMP7 series and with similar kinetics to chemical dyes. The active-zone targeted Bar8f sensor was assessed for the ability to detect release-site-specific nanodomain changes, but the authors concluded that this sensor is still too slow to accurately do so. Lastly, the use of postsynaptic SynapGCaMP8m was shown to enable the detection of quantal events with similar resolution to electrophysiological recordings. Finally, the authors developed a Python-based analysis software, CaFire, that enables automated quantification of evoked and spontaneous calcium signals. These tools will greatly expand our ability to detect activity at individual synapses without the need for chemical dyes or electrophysiology.

      Strengths:

      (1) In this study, the authors rigorously compare their newly engineered GECIs to those previously used at the Drosophila NMJ, highlighting improvements in localization, speed, and sensitivity. These comparisons appropriately substantiate the authors' claim that their GECIs are superior to those currently in use.

      (2) The authors demonstrate the ability of Scar8m to capture subtle changes in presynaptic calcium resulting from differences between MN-Ib and MN-Is terminals and from the induction of presynaptic homeostatic potentiation (PHP), rivaling the sensitivity of chemical dyes.

      (3) The improved postsynaptic SynapGCaMP8m is shown to approach the resolution of electrophysiology in resolving quantal events.

      (4) The authors created a publicly available pipeline that streamlines and standardizes analysis of calcium imaging data.

      Weaknesses:

      (1) Given the superior performance of GCaMP8m in the vesicle-tethered and postsynaptic applications, an analysis of its functionality at individual active zones ("Bar8m") would be a useful addition to this compendium, especially since the authors show that the faster kinetics of GCaMP8f are still not fast enough to resolve active zone-specific calcium dynamics.

      (2) Description of the CaFire pipeline could be clearer (for example, what exactly is the role of Excel?), and the GitHub user guide could be more fleshed out (with the addition of example ImageJ scripts and analyzed images).

    2. Reviewer #2 (Public review):

      Summary

      Calcium ions play a key role in synaptic transmission and plasticity. To improve calcium measurements at synaptic terminals, previous studies have targeted genetically encoded calcium indicators (GECIs) to pre- and postsynaptic locations. Here, Chen et al. improve these constructs by incorporating the latest GCaMP8 sensors and a stable red fluorescent protein to enable ratiometric measurements. In addition, they develop a new analysis platform, 'CaFire', to facilitate automated quantification. Using these tools, the authors demonstrate favorable properties of their sensors relative to earlier constructs. Impressively, by positioning postsynaptic GCaMP8m near glutamate receptors, they show that their sensors can report miniature synaptic events with speed and sensitivity approaching that of intracellular electrophysiological recordings. These new sensors and the analysis platform provide a valuable tool for resolving synaptic events using all-optical methods.

      Strengths:

      The authors present a rigorous characterization of their sensors using well-established assays. They employ immunostaining and super-resolution STED microscopy to confirm correct subcellular targeting. Additionally, they quantify response amplitude, rise and decay kinetics, and provide side-by-side comparisons with earlier-generation GECIs. Importantly, they show that the new sensors can reproduce known differences in evoked Ca²⁺ responses between distinct nerve terminals. Finally, they present what appears to be the first simultaneous calcium imaging and intracellular mEPSP recording to directly assess the sensitivity of different sensors in detecting individual miniature synaptic events.

      Weaknesses:

      Major points:

      (1) While the authors rigorously compared the response amplitude, rise, and decay kinetics of several sensors, key parameters like brightness and photobleaching rates are not reported. I feel that including this information is important as synaptically tethered sensors, compared to freely diffusible cytosolic indicators, can be especially prone to photobleaching, particularly under the high-intensity illumination and high-magnification conditions required for synaptic imaging. Quantifying baseline brightness and photobleaching rates would add valuable information for researchers intending to adopt these tools, especially in the context of prolonged or high-speed imaging experiments.

      (2) In several places, the authors compare the performance of their sensors with synthetic calcium dyes, but these comparisons are based on literature values rather than on side-by-side measurements in the same preparation. Given differences in imaging conditions across studies (e.g., illumination, camera sensitivity, and noise), parameters like indicator brightness, SNR, and photobleaching are difficult to compare meaningfully. Additionally, the limited frame rate used in the present study may preclude accurate assessment of rise times relative to fast chemical dyes. These issues weaken the claim made in the abstract that "...a ratiometric presynaptic GCaMP8m sensor accurately captures .. Ca²⁺ changes with superior sensitivity and similar kinetics compared to chemical dyes." The authors should clearly acknowledge these limitations and soften their conclusions. A direct comparison in the same system, if feasible, would greatly strengthen the manuscript.

      (3) The authors state that their indicators can now achieve measurements previously attainable with chemical dyes and electrophysiology. I encourage the authors to also consider how their tools might enable new measurements beyond what these traditional techniques allow. For example, while electrophysiology can detect summed mEPSPs across synapses, imaging could go a step further by spatially resolving the synaptic origin of individual mEPSP events. One could, for instance, image MN-Ib and MN-Is simultaneously without silencing either input, and detect mEPSP events specific to each synapse. This would enable synapse-specific mapping of quantal events - something electrophysiology alone cannot provide. Demonstrating even a proof-of-principle along these lines could highlight the unique advantages of the new tools by showing that they not only match previous methods but also enable new types of measurements.

      (4) For ratiometric measurements, it is important to estimate and subtract background signals in each channel. Without this correction, the computed ratio may be skewed, as background adds an offset to both channels and can distort the ratio. However, it is not clear from the Methods section whether, or how, background fluorescence was measured and subtracted.

      (5) At line 212, the authors claim "... GCaMP8m showing 345.7% higher SNR over GCaMP6s....(Fig. 3D and E) ", yet the cited figure panels do not present any SNR quantification. Figures 3D and E only show response amplitudes and kinetics, which are distinct from SNR. The methods section also does not describe details for how SNR was defined or computed.

      (6) Lines 285-287 "As expected, summed ΔF values scaled strongly and positively with AZ size (Fig. 5F), reflecting a greater number of Cav2 channels at larger AZs". I am not sure about this conclusion. A positive correlation between summed ΔF values and AZ size could simply reflect more GCaMP molecules in larger AZs, which would give rise to larger total fluorescence change even at a given level of calcium increase.

      (7) Lines 313-314: "SynapGCaMP quantal signals appeared to qualitatively reflect the same events measured with electrophysiological recordings (Fig. 6D)." This statement is quite confusing. In Figure 6D, the corresponding calcium and ephys traces look completely different and appear to reflect distinct sets of events. It was only after reading Figure 7 that I realized the traces shown in Figure 6D might not have been recorded simultaneously. The authors should clarify this point.

      (8) Lines 310-313: "SynapGCaMP8m .... striking an optimal balance between speed and sensitivity", and Lines 314-316: "We conclude that SynapGCaMP8m is an optimal indicator to measure quantal transmission events at the synapse." Statements like these are subjective. In the authors' own comparison, GCaMP8m is significantly slower than GCaMP8f (at least in terms of decay time), despite having a moderately higher response amplitude. It is therefore unclear why GCaMP8m is considered 'optimal'. The authors should clarify this point or explain their rationale for prioritizing response amplitude over speed in the context of their application.

    3. Reviewer #3 (Public review):

      Genetically encoded calcium indicators (GECIs) are essential tools in neurobiology and physiology. Technological constraints in targeting and kinetics of previous versions of GECIs have limited their application at the subcellular level. Chen et al. present a set of novel tools that overcome many of these limitations. Through systematic testing in the Drosophila NMJ, they demonstrate improved targeting of GCaMP variants to synaptic compartments and report enhanced brightness and temporal fidelity using members of the GCaMP8 series. These advancements are likely to facilitate more precise investigation of synaptic physiology.

      This is a comprehensive and detailed manuscript that introduces and validates new GECI tools optimized for the study of neurotransmission and neuronal excitability. These tools are likely to be highly impactful across neuroscience subfields. The authors are commended for publicly sharing their imaging software.

      This manuscript could be improved by further testing the GECIs across physiologically relevant ranges of activity, including at high frequency and over long imaging sessions. The authors provide a custom software package (CaFire) for Ca2+ imaging analysis; however, to improve clarity and utility for future users, we recommend providing references to existing Ca2+ imaging tools for context and elaborating on some conceptual and methodological aspects, with more guidance for broader usability. These enhancements would strengthen this already strong manuscript.

    1. Reviewer #1 (Public review):

      Summary:

      This study probes the role of the NF-κB inhibitor IκBa in the regulation of pluripotency in mouse embyronic stem cells (mESCs). It follows from previous work that identified a chromatin-specific role for IκBa in the regulation of tissue stem cell differentiation. The work presented here shows that a fraction of IκBa specifically associates with chromatin in pluripotent stem cells. Using three Nfkbia-knockout lines, the authors show that IκBa ablation impairs the exit from pluripotency, with embryonic bodies (an in vitro model of mESC multi-lineage differentiation) still expressing high levels of pluripotency markers after sustained exposure to differentiation signals. The maintenance of aberrant pluripotency gene expression under differentiation conditions is accompanied by pluripotency-associated epigenetic profiles of DNA methylation and histone marks. Using elegant separation of function mutants identified in a separate study, the authors generate versions of IκBa that are either impaired in histone/chromatin binding or NF-κB binding. They show that the provision of the WT IκBa, or the NF-κB-binding mutant can rescue the changes in gene expression driven by loss of IκBa, but the chromatin-binding mutant can not. Thus the study identifies a chromatin-specific, NF-κB-independent role of IκBa as a regulator of exit from pluripotency.

      Strengths:

      The strengths of the manuscript lie in:<br /> (a) the use of several orthogonal assays to support the conclusions on the effects of exit from pluripotency;<br /> (b) the use of three independent clonal Nfkbia-KO mESC lines (lacking IκBa), which increase confidence in the conclusions; and<br /> (c) the use of separation of function mutants to determine the relative contributions of the chromatin-associated and NF-κB-associated IκBa, which would otherwise be very difficult to unpick.

      Weaknesses:

      No notable weaknesses remain in this revised version.

    2. Reviewer #2 (Public review):

      Summary:

      This manuscript investigates the role of IκBα in regulating mouse embryonic stem cell (ESC) pluripotency and differentiation. The authors demonstrate that IκBα knockout impairs the exit from the naïve pluripotent state during embryoid body differentiation. Through mechanistic studies using various mutants, they show that IκBα regulates ESC differentiation through chromatin-related functions, independent of the canonical NF-κB pathway.

      Strengths:

      The authors nicely investigate the role of IκBα in pluripotency exit, using embryoid body formation and complementing the phenotypic analysis with a number of genome-wide approaches, including transcriptomic, histone marks deposition, and DNA methylation analyses. Moreover, they generate a first-of-its-kind mutant set that allows them to uncouple IκBα's function in chromatin regulation versus its NF-κB-related functions. This work contributes to our understanding of cellular plasticity and development, potentially interesting a broad audience including developmental biologists, chromatin biology researchers, and cell signaling experts.

      Weaknesses:

      Future experiments will likely help establish a more direct mechanistic link between IκBα activity and the chromatin remodeling events observed in pluripotent cells.

    1. Reviewer #1 (Public review):

      Summary:

      The authors define the principles that, based on first principles, should be guiding the optimisation of transcription factors with intrinsically disordered regions (IDR). The authors introduce an original search process, coined "octopusing", that involves transcription factor IDR and their binding affinities to optimise search times and binding affinities. The first part concerns the optimal strategies to define binding affinities to the genome in the receiving region that is called the "antenna", highlighting the following: (i) reduce the target to IDR-binding distance on the genome, (ii) optimise the distance between the DNA binding domain and the binding sites on the IDR to be as close as possible to the distance between their binding sites on the genome; (iii) keep the same number of binding sites and their targets and modulate this number with binding strength, reducing them with increased strength; (iv) modulate the binding strength to be above a threshold that depends on the proportion of IDR binding sites in the antenna. The second part concerns the scaling of the search time in function of key parameters such as the volume of the nucleus, and the size of the antenna, derived as a combination of 3D search and 1D "octopusing". The third part focuses on validation, where the current results are compared to binding probability data from a single experiment, and new experiments are proposed to further validate the model as well as testing designed transcription factors.

      Strengths:

      The strength of this work is that it provides simple, interpretable and testable theoretical conclusions. This will allow the derived design principles to be understood, evaluated and improved in the future. The theoretical derivations are rigorous. The authors provide a comparison to experiments, and also propose new experiments to be performed in the future. This is a great value in the paper since it will set the stage and inspire new experimental techniques. Further, the field needs inspiration and motivation to develop these techniques, since they are required to benchmark the transcription factors designed with the methods presented in this paper, as well as to develop novel data based or in vivo methods that would greatly benefit the field. As such, this paper is a fundamental contribution to the field.

      Weaknesses:

      The model presents many first principles to drive the design of transcription factors, but arguably, other principles and mechanisms might also play a role by being beneficial to the search and binding process. These other principles are mentioned at the end of the discussion part of the paper. On the other hand, an important task left to do, is to critically consider these principles altogether, and analyse the available data to quantify which role is predominant among transcription factors IDRs functions. Further, since one function doesn't exclude another, a theoretical investigation of possible crosstalk, interaction, and cooperativity of those different hypothetical functions is still missing.

    2. Reviewer #2 (Public review):

      Summary:

      This is an interesting theoretical exploration of how a flexible protein domain, which has multiple DNA-binding sites along it, affects the stability of the protein-DNA complex. It proposes a mechanism ("octopusing") for protein doing a random walk while bound to DNA which simultaneously enables exploration of the DNA strand and stability of the bound state.

      Strengths:

      Stability of the protein-DNA bound state and the ability of the protein to perform 1d diffusion along the DNA are two properties of a transcription factor that are usually seen as being in opposition of each other. The octopusing mechanism is an elegant resolution of the puzzle of how both could be accommodated. This mechanism has interesting biological implications for the functional role of intrinsically disordered domains in transcription factor (TF) proteins. They show theoretically how these domains, if flexible and able to make multiple weak contacts with the DNA, can enhance the ability of the TF to efficiently find their binding site on the DNA from which they exert control over the transcription of their target gene. The paper concludes with a comparison of model predictions with experimental data which gives further support to the proposed mechanism. Overall, this is an interesting and well-executed theoretical paper that proposes an interesting idea about the functional role for IDR domains in TFs.

      Weaknesses:

      It is not clear how ubiquitous among eukaryotic transcription factors are the DNA binding sites for multiple subdomains along the IDR, which are assumed by the model. These assumptions though, provide interesting points of departure for further experiments.

    1. Reviewer #1 (Public review):

      In their manuscript, Michelson et al use a combination of mesoscopic 1p and single-cell resolution 2p imaging to characterise cortical encoding of grooming behaviour. Despite their subcortical locus of control (and non-reliance on cortex), the authors report that grooming movements are accompanied by widespread activation of dorsal cortex. Different grooming movements elicit distinct spatiotemporal cortical activity patterns. They find that cortical engagement is greater at the beginning of grooming episodes than at their end. They also report greater cortical activation for atypical unilateral grooming movements seen under head-restraint in comparison to cortical activity during bilateral movements typical of unrestrained or spontaneous grooming.

      While this is not the first study to report cortical representations of subcortically controlled behaviours, and the authors themselves cite many previous reports of cortical activation during locomotion and even grooming (Sjöbom et al 2020), the value of the present study lies in their use of imaging to reveal the widespread nature of cortical activation during execution of a complex, innate behaviour. I also appreciate the systematic approach used by the authors to break down grooming episodes into their constituent movements and reveal their transition structure.

      I do have concerns, however, that some of the authors' claims are insufficiently supported by their results, and more analysis is required to convincingly rule out alternative interpretations.

      (1) One possible explanation for the gradual decline in cortical activity is that unilateral movements associated with greater cortical activation dominate early in grooming episodes, whereas bilateral movements that elicit weaker cortical activity dominate later (Figure 3G and 2C). The authors could check whether cortical activity associated with the *same* grooming movement is constant or declines during such episodes. A related point: doesn't the regression analysis shown in Figure 3, Supplement 2, assume that a stationary relationship between movement and spatiotemporal patterns of cortical activity?

      (2) From the decline in cortical responses during long grooming episodes, the authors suggest that "mesoscale cortical activity mostly reflects the initiation of subcortically-mediated behaviors, rather than the behavior itself". The authors have taken a lot of trouble to come up with a rich, detailed segmentation and clustering of the grooming behaviour into its constituent movements (Figure 1). Therefore, I am somewhat surprised that they make this claim solely from analysis of averaged cortical activity during nearly minute-long grooming episodes rather than a higher time resolution analysis of transitions between distinct grooming movements (like the prior study by Sjöbom et al and related work in striatal encoding of innate movement sequences by Markowitz et al).

      (3) The authors find that unilateral, atypical grooming movements elicit cortical activity that is distinct from the more naturalistic bilateral movements. They interpret this as reflecting the temporal transition structure of the behaviour. However, an alternative explanation is that the differences (or similarities) in evoked activity simply reflect differences (or similarities) in the kinematics of these movements, with bilateral movements appearing more similar to each other than to unilateral movements. A related point: there is little description of the "non-grooming forelimb movements". Were these kinematically similar to the unilateral forelimb movements, which may explain why they cluster together in Figure 4H?

      (4) Page 13, last paragraph: the authors suggest that similar encoding of non-grooming forelimb movements and unilateral grooming movements may reflect a shared reliance on the cortex. This is rather speculative. Several studies have demonstrated that voluntary unilateral movements employed for reaching or lever pressing are not generally reliant on the cortex (Whishaw et al, Beh Brain Res, 1991; Kawai et al, 2015). There isn't, in my opinion, a broad consensus for the authors' statement that "reaching for food is a cortex-dependent action". Rather than extrapolating from past studies, could the authors not experimentally assess whether unilateral grooming movements are more sensitive to cortical silencing than bilateral ones, possibly revealing a cortical locus of control?

    2. Reviewer #2 (Public review):

      Summary:

      In this manuscript, Michelson, Gupta, and Murphy use calcium imaging to map the distribution of neural activity across the cerebral cortex of grooming, head-restrained mice. Animals groomed spontaneously and in response to wetting of the face. Individual movement elements, such as bilateral strokes across the face, resembled those observed in freely-moving animals. Sequencing of movement elements was structured, but did not consist of full "syntactic grooming chains." Widefield imaging across the cortex revealed distinct patterns of activity for distinct movement elements. Individual neurons responded strongly during movement and had largely similar properties across cortical areas.

      Strengths:

      In my opinion, this is a solid paper that will be of interest to the mouse sensorimotor neuroscience community. The experiments are technically sound, the text is well-written, and the figures are clear. The activity maps are presented in standardized Allen Atlas coordinates, and I expect they will be very useful for future studies of orofacial and limb movement.

      Weaknesses:

      While the manuscript provides a valuable description of cortical activity during head-restrained grooming, I think it could engage a bit more with contemporary theories and debates in cortical physiology and motor control. The Abstract nicely highlights an apparent paradox: the motor cortex sends strong projections to the spinal cord, and is strongly modulated during behaviors like grooming. Nevertheless, blocking corticospinal traffic by inactivating or lesioning the motor cortex leaves such behaviors intact. There are several potential resolutions to this paradox. First, cortical activity during grooming could be confined to an "output-null" subspace that is responsible for monitoring sensorimotor events and preparing voluntary movements, but does not drive muscle activity (c.f. work in the macaque: Kaufman et al., Nature Neuroscience 2014; Churchland & Shenoy, Nature Reviews Neuroscience 2024). Second, cortical activity during grooming could be transmitted to lower centers, but gated out through inhibition. Third, it is possible that cortical activity in intact animals does contribute to muscle activation during grooming, but following a lesion or inactivation, other descending pathways compensate for the cortical deficit. The authors might wish to discuss their findings in light of these considerations.

      In the first paragraph of the Introduction, it could be made clearer which results are specific to mice. The Niell & Stryker finding, for example, holds in mice, but not marmosets (Liska et al., eLife 2024).

      The "hotspots" in Figure 3G appear to be more anterior during bilateral elliptical than unilateral elliptical movements. How do the authors interpret this finding?

      The distribution of single-neuron responses looks relatively similar across cortical areas, including forelimb, hindlimb, and trunk somatosensory cortex, and primary and secondary forelimb motor cortex. What do the authors make of this?

    3. Reviewer #3 (Public review):

      Summary:

      The authors use a combination of a head-fixed grooming paradigm, single-photon mesoscale, and wide-field-of-view two-photon calcium imaging to characterize cortical activity patterns during evoked grooming. Previous work has shown that grooming behavior does not require cortex, but that there are neuronal representations of grooming in motor cortex. The authors extend these findings by showing cortex-wide activation patterns at the meso-scale that relate to distinct grooming elements. This activation is strongest at grooming onset, but declines over the course of extended grooming periods. They also find similar activity patterns during licking/drinking behavior. Two-photon imaging further revealed that individual neurons across the cortex are preferentially activated by grooming. While their activity also declines after grooming onset, they remain active throughout grooming periods. This work extends previous findings by revealing that grooming and other subcortically-generated behaviors may be represented not only in motor cortex, but across dorsal cortex, both on the mesoscale and single neuron levels. These findings may lead to further investigation into the role of cortical activity during subcortically generated behaviors.

      Strengths:

      (1) Detailed characterization of grooming behavior in a head-fixed paradigm.

      (2) Combination of single photon mesoscale and two-photon wide field-of-view imaging to characterize grooming (and licking)-related activity across dorsal cortex on multiple levels

      Weaknesses:

      (1) The behavior observed in the head-fixed grooming paradigm only partially resembles spontaneous grooming, lacking typical elements of the syntactic chain, while additionally evoking non-typical behaviors, resembling unilateral reaches, making the interpretation of the observations and their relevance to natural behaviors difficult. Furthermore, the nature of the non-typical movements (which may be cortex-dependent while typical grooming is not) is not explored.

      (2) Two important findings in relation to the neural representations of individual grooming behaviors remain unclear:

      a) The authors state that individual grooming behaviors did not have distinct neuronal representations (except unilateral grooming; Figure 4G) - it remains unclear how this fits with the observation of distinct activation maps during the different grooming behaviors. Should this differential activation not also correspond to distinct activation patterns of 'grooming' neurons across the cortex? Or do they mean that the activity in the 'grooming' neurons is not consistent across grooming instances and therefore no distinct representation can be detected?

      b) The authors state that the 'typical' grooming behaviors do not have consistent activation patterns across animals (Figure 3 and supplements). It remains, therefore, unclear what the averaged activation maps really represent. Furthermore, this observation leaves several open questions: Are the activation patterns consistent in individual animals? Do differences across animals emerge due to differences in their behavior? And most importantly, can the actual behavior be decoded from the activation patterns?

      (3) Multiple statements/conclusions are not supported by quantification of the data, but only by qualitative assessments, e.g.: lines 433-435: "In general, the maximally activated networks involved in licking and unilateral grooming behaviors 'appeared' to be the most consistent across animals compared to the bilateral grooming movements (Figure 3G)."; 436-437: "Averaged cortical activation maps associated with licking and elliptical behaviors were 'qualitatively similar' between evoked and spontaneous sessions, where the water drop was not applied".; 480-482: "The unique explained variance maps for the licking behavior 'differed' in the drinking context compared to the grooming context (Figure 3-figure supplement 3F)." The lack of quantification leaves the significance of these observations unclear.

      (4) It remains unclear what the ongoing activity in 'grooming' neurons represents, since there is no detailed analysis of the relationship between activity and the detailed kinematics of the grooming movements.

      The authors show that neuronal representations of grooming and other subcortical behaviors can be found across dorsal cortex and that these representations are at least to some degree specific to distinct behavioral elements. While this study does not reveal functional insights into the role of cortical representations of subcortically-generated behaviors, it is a step towards more in-depth studies. In the future, it will be important to determine whether these representations are efference copies or sensory-driven, or whether they affect the behavior, and if so, under which circumstances.

    1. Reviewer #2 (Public review):

      General comments

      We thank the reviewers and editor for their thoughtful feedback. We are glad that the minor comments appear resolved. In this revision, we added subject-specific analyses, further FC comparisons, and clarified our rationale for stimulation parameters. We acknowledge that two concerns remain: (1) the 1 mA-2 mA sequence may introduce confounds, and (2) electric field modeling was not included due to technical limitations. We now explicitly note these as limitations in the manuscript and provide justification and discussion accordingly.

      Major comments

      R.2.1. For the anesthetized monkeys, the anode location differs between subjects, with the electrode positioned to stimulate the left DLFPC in monkey R and the right DLPFC in monkey N. The authors mention that this discrepancy does not result in significant differences in the electric field due to the monkeys' small head size. However, this is incorrect, as placing the anode on the left hemisphere would result in a much lower EF in the right DLPFC than placing the anode on the right side. Running an electric field simulation would confirm this. Additionally, the small electrode size suggested by the Easy cap configuration for NHP appears sufficient to stimulate the targeted regions focally. If this interpretation is correct, the authors should provide additional evidence to support their claim, such as a computational simulation of the EF distribution.

      R.2.1 Authors' answer: We thank the Reviewer for the comments. First, regarding the reviewer's statement that placing the anode on the left hemisphere would result in a much lower EF in the right DLPFC than placing the anode on the right side, we would like to clarify that we did not use a typical 4 x 1 concentric ring high-definition setup (which consists of a small centre electrode surrounded by four return electrodes), but a two-electrode montage, with one electrode over the left or right PFC and the other one over the contralateral occipital cortex. According to EF modelling papers, a 4 x 1 high-definition setup would produce an EF that is focused and limited to the cortical area circumscribed by the ring of the return electrodes (Datta et al. 2009; Alam et al. 2016). Therefore, targeting the left or right DLPFC with a 4 x 1 setup would produce an EF confined to the targeted hemisphere of the PFC. In contrast, we expect the brain current flow generated with our 2-electrode setup to be broader, despite the small size of the electrodes, because there is no constraint from return electrodes. Thus, with our setup, the current is expected to flow between the PFC and the occipital cortex (see also our responses to comments R3.3., R.E.C.#2.1. and R.E.C.#2.2.).

      Second, we would like to point out that in awake experiments, in which we stimulated the right PFC of both monkeys, there was no gross evidence of left or right asymmetry in the computed functional connectivity patterns (Figure 3A, Figure 3 - figure supplement 2A; Figure 5A). These results, showing that our stimulation montages did not induce asymmetric dynamic FC changes in NHPs, support the idea that our setups did not generate EFs that were spatially focused enough to alter brain activity in one hemisphere substantially more than the other.

      Third, it is also worth noting that current evidence suggests that human brains are significantly more lateralized than those of macaques. Macaque monkeys have been found to have some degree of lateralized networks, but these are of lower complexity, and the lateralization is less pronounced and functionally organized than in humans. (Whey et al., 2014; Mantini et al., 2013). This suggests that, even if the stimulation were focal enough to stimulate the left or the right part of the PFC only, the behavioural effects would likely be similar.

      Follow-up comment: Thank you for the detailed response and for referencing both experimental data and prior literature. While I appreciate the discussion on the lack of functional asymmetry and reduced lateralization in macaques, my original concern was about the physical distribution of the electric field (EF) due to different anode placements. Functional connectivity outcomes do not necessarily reflect EF symmetry, and without EF modeling, it's difficult to determine whether the stimulation affected both hemispheres equally. I understand the challenges of NHP-specific modeling, but even a simplified simulation or acknowledgment of this limitation in the manuscript would help clarify the interpretability of your results.

      R.2.2. For the anesthetized monkeys, the authors applied 1 mA tDCS first, followed by 2 mA tDCS. A 20-minute stimulation duration of 1 mA tDCS is strong enough to produce after-effects that could influence the brain state during the 2 mA tDCS. This raises some concerns. Previous studies have shown that 1 mA tDCS can generate EF of over 1 V/m in the brain, and the effects of stimulation are sensitive to brain state (e.g., eye closed vs. eye open). How do the authors ensure that there are no after-effects from the 1 mA tDCS? This issue makes it challenging to directly compare the effects of 1 mA and 2 mA stimulation.<br /> R.2.2 Authors' answer: We agree with the reviewer's comment that 1 mA tDCS may induce aftereffects, as has been observed in several human studies (e.g., (Jamil et al. 2017, 2020). Although the differences between the 1 mA post-stimulation and baseline conditions were not significant in our analyses, it's still possible that the stimulation produced some effects below the threshold of significance that may contribute, albeit weakly, to the changes observed during

      Follow-up comment: Thank you for the clarification and for acknowledging the potential for 1 mA after-effects. While I appreciate the authors' transparency and the amendment to the manuscript, I still find it important that the limitation be clearly stated in the Discussion section. The fact that 2 mA stimulation always followed 1 mA introduces a potential confound, making it difficult to attribute observed changes uniquely to 2 mA. If a counterbalanced design was not feasible, I would recommend explicitly noting this as a limitation in the interpretation of dose-dependent effects.

      R.2.3. The occurrence rate of a specific structural-functional coupling pattern among random brain regions shows significant effects of tDCS. However, these results seem counterintuitive. It is generally understood that non-invasive brain stimulation tends to modulate functional connectivity rather than structural or structural-functional connectivity. How does the occurrence rate of structural-functional coupling patterns provide a more suitable measure of the effectiveness of tDCS than functional connectivity alone? I would recommend that the authors present the results based on functional connectivity itself. If there is no change in functional connectivity, the relevance of changes in structural-functional coupling might not translate into a meaningful alteration in brain function, making it unclear how significant this finding is without corresponding functional evidence.

      R.2.3. Authors' answer: First of all, we would like to make it clear that the occurrence rate of patterns as a function of their SFC is not intended to be used or seen as a 'better' measure of the efficacy of tDCS. Instead, it is one aspect of the effects of tDCS on whole-brain functional cortical dynamics, obtained from refined measures (phase-coherences), that specifically addresses the coupling between structure and function. This type of analysis is further motivated by its increasing use in the literature due to its suspected relationship to wakefulness (e.g., (Barttfeld et al. 2015, Demertzi et al. 2019; Castro et al. 2023)). Also, in our analysis, the structure is kept constant: the connectivity matrix used to correlate the functional brain states is always the same (CoCoMac82). Thus, the influence of tDCS on the structure-function side can only be explained by modulating the functional aspects, as suggested by intuition and previous results.

      Then, we agree with the reviewer that studying the functional changes induced by tDCS alone could be valuable. However, usual metrics used in FC analysis are usually done statistically: FC-states are either computed through averaging spatial correlations over time, then analyzed through graph-theoretical properties for instance (or by just directly computing the element-wise differences), or either by considering the properties of the different visited FC-states by computing spatial correlations over a sliding time-window, and then similar analysis can be done as previously explained. But these are static metrics, if the states visited are essentially the same (which is expected from non-invasive neuromodulations that haven't already demonstrated strong and/or characteristic impact), but the dynamical process of visiting said states changes, one would see no difference in that regard. As such, in the case of resting-state fMRI, differences in FCs are hard to interpret given that between-sessions within-condition differences are usually found with some degree of variance for the respective conditions. Trying then to interpret between-condition differences is quite tricky in the case of subtle modulations of the system's activity. On the other hand, more subtle differences can be captured by considering more detailed analysis, such as using phase-based methods like we did, by incorporating some statistical learning component with regard to the dynamicity of the system (supervised learning for instance like we did followed by temporal & transition-based methodology), and by adding some dimensions along which one will be able to give some interpretation to the analysis. In our case we were interested in characterizing resting-state differences between stimulation conditions, which have nuanced and subtle interactions with the biological system. As such, classical measures of differences between FC states are likely to not be refined and precise enough. In fact, we propose additional files investigating those classically used measures such as differences in average FC matrices, or changes in functional graph properties (like modularity, efficiency and density) of the visited FC states. These figures show that, for the first case, comparing region-to-region specific FCs provides very few statistically significant results. With respect to the second part, we show that virtually no differences are observed in the properties of the functional states visited. These results suggest, as expected, that the actual brain states visited across the different stimulation conditions are topologically quite similar, and that only very few region-specific pairwise functional connectivities are particularly modulated by specific tDCS montages while, on the other hand, the actual dynamical process dictating how the brain activity passes from one state to another is in fact being influenced as shown by the dynamical analysis presented in the main figures in a more apparent and meaningful way (in that it is dependent on the montage, somewhat consistent with regard to the post-stimulations conditions, and can be made sense of by considering the theoretical effect of near-anodal versus near-cathodal neuromodulatory effects).

      Actions in the text: We have added new supplementary files showing the effects of the stimulations on FC matrices and on classical functional graph properties in awake and anesthesia datasets (Supplementary Files 3 & 4). We have added new sentences about these new analyses on the effects of the stimulations on FC matrices and on classical functional graph properties in the Results section:<br /> Follow-up comment: Thank you for the detailed and comprehensive response. The clarification regarding the use of SFC dynamics and the additional analyses provided are convincing.

      R2.4. The authors recorded data from only two monkeys, which may limit the investigation of the group effects of tDCS. As the number of scans for the second monkey in each consciousness condition is lower than that in the first monkey, there is a concern that the main effects might primarily reflect the data from a single monkey. I suggest that the authors should analyze the data for each monkey individually to determine if similar trends are observed in both subjects.

      R.2.4. Authors' answer: We agree that the small number of subjects is a limitation of our study. However, we have already addressed these aspects by reporting statistical analyses that consider them, using linear models of such variables, and running them through ANOVA tests. In addition, we experimentally ensured that we recorded a relatively high number of sessions over a period of several years. Regardless, we agree that our study would benefit from further investigation into this matter. We have therefore prepared complementary figures showing the main analysis performed separately for the two monkeys as proposed, as well as further investigations into the inter-condition variability outmatching the inter-individual variability, itself being also outmatched by intra-individual changes.

      Actions in the text: We have added a supplementary file showing the main analyses performed separately for the two monkeys (Supplementary File 2) and further investigations into the inter-condition variability (Supplementary Files 3 & 4). We have added new sentences about these analyses performed separately for the two monkeys in the Results section:

      Follow-up comment: Thank you for addressing this concern and for providing the individual monkey analysis. The additional figures and statistical explanations are helpful and appreciated.

      R2.5. Anodal tDCS was only applied to anesthetized monkeys, which limits the conclusion that the authors are aiming for. It raises questions about the conclusion regarding brain state dependency. To address this, it would be better to include the cathodal tDCS session for anesthetized monkeys. If cathodal tDCS changes the connectivity during anesthesia, it becomes difficult to argue that the effects of cathodal tDCS vary depending on the state of consciousness as discussed in this paper. On the other hand, if cathodal tDCS would not produce any changes, the conclusion would then focus on the relationship between the polarity of tDCS and consciousness. In that case, the authors could maintain their conclusion but might need to refine it to reflect this specific relationship more accurately.

      R.2.5. Authors' answer: We agree with the reviewer that it would have been interesting to investigate the effects of cathodal tDCS in anesthetized monkeys. However, due to the challenging nature of the experimental procedures under anesthesia, we had to limit the investigations to only one stimulation modality. We chose to deliver anodal stimulation because, from a translational point of view, we aimed to provide new information on the effects of tDCS under anesthesia as a model for disorders of consciousness. It also made much more sense to increase the cortical excitability of the prefrontal cortex in an attempt to wake up the sedated monkeys rather than doing the opposite.

      Actions in the text: We have added a new sentence in the Results section:

      "Due to the challenging nature of the experimental procedures under anesthesia, we limited the investigations to only one stimulation modality. We chose to deliver anodal stimulation to provide new information on the effects of tDCS under anesthesia as a model for disorders of consciousness and to increase the cortical excitability of the PFC in an attempt to wake up the sedated monkeys."

      Follow-up comment: Thank you for clarifying the rationale behind applying only anodal stimulation under anesthesia. While I appreciate the experimental constraints and the translational motivation, I would still encourage the authors to explicitly acknowledge in the Discussion that the absence of a cathodal condition under anesthesia limits the ability to dissociate polarity-specific effects from state-dependent effects. This clarification would help temper the conclusions and better reflect the scope of the current dataset.

    2. Reviewer #3 (Public review):

      Summary:

      This study used transcranial direct current stimulation administered using small 'high definition' electrodes to modulate neural activity within the non-human primate prefrontal cortex during both wakefulness and anaesthesia. Functional magnetic resonance imaging (fMRI) was used to assess neuromodulatory effects of stimulation. The authors report on modification of brain dynamics during and following anodal and cathodal stimulation during wakefulness and following anodal stimulation at two intensities (1 mA, 2 mA) during anaesthesia. This study provides some support that prefrontal direct current stimulation can alter neural activity patterns across wakefulness and sedation in monkeys.

      Strengths and Weaknesses:

      A key strength of this work is the use of fMRI-based methods to track changes in brain activity with good spatial precision. Another strength is the exploration of stimulation effects across wakefulness and sedation, which has the potential to provide novel information on the impact of electrical stimulation across states of consciousness. The authors should be commended for undertaking this challenging and important work.

      The lack of a sham stimulation condition is a limitation of the study, as it somewhat restricts the certainty with which the results can be attributed to the active stimulation as opposed to other external factors such as drowsiness or fatigue as a result of the experimental procedure? Nevertheless, I acknowledge the demanding nature of performing this work in non-human primates and that only runs with high fixation rates were included, which should have helped reduce any fatigue-related effects.

      In the anaesthesia condition, the authors investigated the effects of two intensities of stimulation (1 mA and 2 mA). However, it is possible that the initial 1 mA stimulation block might have caused some level of plasticity-related changes in neural activity that could have potentially interfered with the following 2 mA block due to the lack of a sufficient wash-out period. This potentially limits the findings from the 2 mA block as they cannot be interpreted as completely separate to the initial 1 mA stimulation period, given that they were administered consecutively. However, I do acknowledge the author's point that differences between the 1 mA post-stimulation and baseline conditions were not significantly different, which provides some evidence against this possibility.

      The different electrode placement for the two anaesthetised monkeys (i.e., Monkey R: F3/O2 montage, Monkey N: F4/O1 montage) is potentially problematic, as it might have resulted in stimulation over different brain regions. Electric field models of brain current flow for the monkeys would really be needed to understand with reasonable certainty, however, I recognise that these models are generally designed for human studies making their integration into non-human primate studies challenging.

      Finally, the sample size is obviously small. However, I realise this is often a limitation in non-human primate research, which can be both expensive and labour intensive.

      Assessment:

      This manuscript presents some novel insights into the effects of transcranial direct current stimulation on functional brain dynamics in awake and anaesthetised monkeys using MRI-based connectivity indices. Overall, the study presents several interesting and potentially impactful findings regarding stimulation-induced changes in brain activity. There are some limitations, such as the small sample size, lack of a sham stimulation control, and lack of electric field models, which, if included, would have, in my view, further helped improve the rigour of the study. Nevertheless, the manuscript presents several important findings, which warrant further analysis in future work.

    1. Reviewer #1 (Public review):

      The manuscript by Sayeed et al. uses a comprehensive series of multi-omics approaches to demonstrate that late-stage human cytomegalovirus (HCMV) infection leads to a marked disruption of TEAD1 activity, a concomitant loss of TEAD1-DNA interactions, and extensive chromatin remodeling. The data are thoroughly presented and provide evidence for the role of TEAD1 in the cellular response to HCMV infection.

      However, a key question remains unresolved: is the observed disruption of TEAD1 activity a direct consequence of HCMV infection, or could it be secondary to the broader innate antiviral response? In this respect, the study would benefit from more in-depth experiments that assess the effect of TEAD1 overexpression or knockdown/deletion on HCMV replication dynamics. The new data provided by the authors in Reviewer Response Figures 1 and 2 suggest that the presence of constitutively expressed TEAD1 does not substantially impact HCMV replication and gene expression as assessed at 72 and 96 hours post-infection. However, this does not discount the fact that HCMV infection induces significant TEAD1-related chromatin changes that may impact other cellular functions.

    2. Reviewer #2 (Public review):

      Summary:

      This work uses genomic and biochemical approaches for HCMV infection in human fibroblasts and retinal epithelial cell lines, followed by comparisons and some validations using strategies such as immunoblots. Based on these analyses, they propose several mechanisms that could contribute to the HCMV-induced diseases, including closing of TEAD1-occupying domains and reduced TEAD1 transcript and protein levels, decreased YAP1 and phospho-YAP1 levels, and exclusion of TEAD1 exon 6. Some functional assays, using over-expression of TEAD1, are provided.

      Strengths:

      The genomics experiments were done in duplicates and data analyses show good technical reproducibility. Data analyses are performed to show changes at the transcript and chromatin level changes, followed by some Western blot validations.

      Weaknesses:

      For readers who are outside the field, some clarifications of the system and design would be helpful.

    1. Reviewer #1 (Public review):

      Summary:

      There is growing appreciation for the important of luminal (apical) ECM in tube development, but such matrices are much less well understood than basal ECMs. Here the authors provide insights into the aECM that shapes the Drosophila salivary gland (SG) tube and the importance of PAPSS-dependent sulfation in its organization and function.

      The first part of the paper focuses on careful phenotypic characterization of papss mutants, using multiple markers and TEM. This revealed reduced markers of sulfation and defects in both apical and basal ECM organization, Golgi (but not ER) morphology, number and localization of other endosomal compartments, plus increased cell death. The authors focus on the fact that papss mutants have an irregular SG lumen diameter, with both narrowed regions and bulged regions. They address the pleiotropy, showing that preventing the cell death and resultant gaps in the tube did not rescue the SG luminal shape defects and discussing similarities and differences between the papss mutant phenotype and those caused by more general trafficking defects. The analysis uses a papss nonsense mutant from an EMS screen - I appreciate the rigorous approach the authors took to analyze transheterozygotes (as well as homozygotes) plus rescued animals in order to rule out effects of linked mutations. Importantly, the rescue experiments also demonstrated that sulfation enzymatic activity is important.

      The 2nd part of the paper focuses on the SG aECM, showing that Dpy and Pio ZP protein fusions localize abnormally in papss mutants and that these ZP mutants (and Np protease mutants) have similar SG lumen shaping defects to the papss mutants. A key conclusion is that SG lumen defects correlate with loss of a Pio+Dpy-dependent filamentous structure in the lumen. These data suggest that ZP protein misregulation could explain this part of the papss phenotype.

      Overall, the text is very well written and clear. Figures are clearly labeled. The methods involve rigorous genetic approaches, microscopy, and quantifications/statistics and are documented appropriately. The findings are convincing.

      Significance:

      This study will be of interest to researchers studying developmental morphogenesis in general and specifically tube biology or the aECM. It should be particularly of interest to those studying sulfation or ZP proteins (which are broadly present in aECMs across organisms, including humans).

      This study adds to the literature demonstrating the importance of luminal matrix in shaping tubular organs and greatly advances understanding of the luminal matrix in the Drosophila salivary gland, an important model of tubular organ development and one that has key matrix differences (such as no chitin) compared to other highly studied Drosophila tubes like the trachea.

      The detailed description of the defects resulting from papss loss suggests that there are multiple different sulfated targets, with a subset specifically relevant to aECM biology. A limitation is that specific sulfated substrates are not identified here (e.g. are these the ZP proteins themselves or other matrix glycoproteins or lipids?); therefore, it's not clear how direct or indirect the effects of papss are on ZP proteins. However, this is clearly a direction for future work and does not detract from the excellent beginning made here.

      Comments on revised version:

      Overall, I am pleased with the authors' revisions in response to my original comments and those of the other reviewers

    2. Reviewer #2 (Public review):

      Summary

      This study provides new insights into organ morphogenesis using the Drosophila salivary gland (SG) as a model. The authors identify a requirement for sulfation in regulating lumen expansion, which correlates with several effects at the cellular level, including regulation of intracellular trafficking and the organization of Golgi, the aECM and the apical membrane. In addition, the authors show that the ZP proteins Dumpy (Dpy) and Pio form an aECM regulating lumen expansion. Previous reports already pointed to a role for Papss in sulfation in SG and the presence of Dpy and Pio in the SG. Now this work extends these previous analyses and provides more detailed descriptions that may be relevant to the fields of morphogenesis and cell biology (with particular focus on ECM research and tubulogenesis). This study nicely presents valuable information regarding the requirements of sulfation and the aECM in SG development.

      Strengths

      -The results supporting a role for sulfation in SG development are strong. In addition, the results supporting the involvement of Dpy and Pio in the aECM of the SG, their role in lumen expansion, and their interactions, are also strong.

      -The authors have made an excellent job in revising and clarifying the many different issues raised by the reviewers, particularly with the addition of new experiments and quantifications. I consider that the manuscript has improved considerably.

      -The authors generated a catalytically inactive Papss enzyme, which is not able to rescue the defects in Papss mutants, in contrast to wild type Papss. This result clearly indicates that the sulfation activity of Papss is required for SG development.

      Weaknesses

      -The main concern is the lack of clear connection between sulfation and the phenotypes observed at the cellular level, and, importantly, the lack of connection between sulfation and the Pio-Dpy matrix. Indeed, the mechanism/s by which sulfation affects lumen expansion are not elucidated and no targets of this modification are identified or investigated. A direct (or instructive) role for sulfation in aECM organization is not clearly supported by the results, and the connection between sulfation and Pio/Dpy roles seems correlative rather than causative. As it is presented, the mechanisms by which sulfation regulates SG lumen expansion remains elusive in this study.

      -In my opinion the authors overestimate their findings with several conclusions, as exemplified in the abstract:

      "In the absence of Papss, Pio is gradually lost in the aECM, while the Dpy-positive aECM structure is condensed and dissociates from the apical membrane, leading to a thin lumen. Mutations in dpy or pio, or in Notopleural, which encodes a matriptase that cleaves Pio to form the luminal Pio pool, result in a SG lumen with alternating bulges and constrictions, with the loss of pio leading to the loss of Dpy in the lumen. Our findings underscore the essential role of sulfation in organizing the aECM during tubular organ formation and highlight the mechanical support provided by ZP domain proteins in maintaining luminal diameter."

      The findings leading to conclude that sulfation organizes the aECM and that the absence of Papss leads to a thin lumen due to defects in Dpy/Pio are not strong. The authors certainly show that Papss is required for proper Pio and Dpy accumulation. They also show that Pio is required for Dpy accumulation, and that Pio and Dpy form an aECM required for lumen expansion. However, the absence of Pio and Dpy do not fully recapitulate Papss mutant defects (thin lumen). I wonder whether other hypothesis and models could account for the observed results. For instance, a role for Papss affecting secretion, in which case sulfation would have an indirect role in aECM organization. This study does not address the mechanical properties of Dpy in normal and mutant salivary glands.

      -Minor issues relate to the genotype/phenotype analysis. It is surprising that the authors detect only mild effects on sulfation in Papss mutants using an anti-sulfoTyr antibody, as Papss is the only Papss synthathase. Generating germ line clones (which is a feasible experiment) would have helped to prove that this minor effect is due to the contribution of maternal product. The loss of function allele used in this study seems problematic, as it produces effects in heterozygous conditions difficult to interpret. Cleaning the chromosome or using an alternative loss of function condition (another allele, RNAi, etc...) would have helped to present a more reliable explanation.

    1. Reviewer #1 (Public review):

      Summary:

      In this manuscript, the authors use anatomical tracing and slice physiology to investigate the integration of thalamic (ATN) and retrosplenial cortical (RSC) signals in the dorsal presubiculum (PrS). This work will be of interest to the field, as postsubiculum is thought to be a key region for integrating internal head direction representations with external landmarks. The main result is that ATN and RSC inputs drive the same L3 PrS neurons, which exhibit superlinear summation to near-coincident inputs. Moreover, this activity can induce bursting in L4 PrS neurons, which can pass the signals LMN (perhaps gated by cholinergic input).

      Strengths:

      The slice physiology experiments are carefully done. The analyses are clear and convincing, and the figures and results are well composed. Overall, these results will be a welcome addition to the field.

      Weaknesses:

      The conclusions about the circuit-level function of L3 PrS neurons sometimes outstrip the data, and their model of the integration of these inputs is unclear. I would recommend some revision of the introduction and discussion. I also had some minor comments about the experimental details and analysis.

      Specific major comments:

      (1) I found that the authors' claims sometimes outstrip their data, given that there were no in vivo recordings during behavior. For example, in the abstract that their results indicate "that layer 3 neurons can transmit a visually matched HD signal to medial entorhinal cortex", and in the conclusion they state "[...] cortical RSC projections that carry visual landmark information converge on layer 3 pyramidal cells of the dorsal presubiculum". However, they never measured the nature of the signals coming from ATN and RSC to L3 PrS (or signals sent to downstream regions). Their claim is somewhat reasonable with respect to ATN, where the majority of neurons encode HD, but neurons in RSC encode a vast array of spatial and non-spatial variables other than landmark information (e.g., head direction, egocentric boundaries, allocentric position, spatial context, task history to name a few), so making strong claims about the nature of the incoming signals is unwarranted.

      (2) Related to the first point, the authors hint at, but never explain, how coincident firing of ATN and RSC inputs would help anchor HD signals to visual landmarks. Although the lesion data (Yoder et al. 2011 and 2015) support their claims, it would be helpful if the proposed circuit mechanism was stated explicitly (a schematic of their model would be helpful in understanding the logic). For example, how do neurons integrate the "right" sets of landmarks and HD signals to ensure a stable anchoring? Moreover, it would be helpful to discuss alternative models of HD-to-landmark anchoring, including several studies that have proposed that the integration may (also?) occur in RSC (Page & Jeffrey, 2018; Yan, Burgess, Bicanski, 2021; Sit & Goard, 2023). Currently, much of the Discussion simply summarizes the results of the study, this space could be better used in mapping the findings to the existing literature on the overarching question of how HD signals are anchored to landmarks.

      Comments on revised version:

      The authors addressed all of my major points and most of my minor points in the revised submission.

    2. Reviewer #2 (Public review):

      Richevaux et al investigate how anterior thalamic (AD) and retrosplenial (RSC) inputs are integrated by single presubicular (PrS) layer 3 neurons. They show that these two inputs converge onto single PrS layer 3 principal cells. By performing dual wavelength photostimulation of these two inputs in horizontal slices, the authors show that in most layer 3 cells, these inputs summate supra-linearly. They extend the experiments by focusing on putative layer 4 PrS neurons and show that they do not receive direct anterior thalamic nor retrosplenial inputs; rather, they are (indirectly) driven to burst firing in response to strong activation of the PrS network.

      This is a valuable study, which investigates an important question - how visual landmark information (possibly mediated by retrosplenial inputs) converges and integrates with HD information (conveyed by the AD nucleus of the thalamus) within PrS circuitry. The data indicate that near-coincident activation of retrosplenial and thalamic inputs leads to non-linear integration in target layer 3 neurons, thereby offering a potential biological basis for landmark + HD binding.

      Main limitations relate to the anatomical annotation of 'putative' PrS L4 neurons, and to the presentation of retrosplenial / thalamic input modularity. Specifically, more evidence should be provided to convincingly demonstrate that the 'putative L4 neurons' of the PrS are not distal subicular neurons (as the authors' anatomy and physiology experiments seem to indicate). The modularity of thalamic and retrosplenial inputs could be better clarified in relation to the known PrS modularity.

    3. Reviewer #3 (Public review):

      Summary:

      The authors sought to determine, at the level of individual presubiculum pyramidal cells, how allocentric spatial information from retrosplenial cortex was integrated with egocentric information from the anterior thalamic nuclei. Employing a dual opsin optogenetic approach with patch clamp electrophysiology, Richevaux and colleagues found that around three quarters of layer 3 pyramidal cells in presubiculum receive monosynaptic input from both brain regions. While some interesting questions remain (e.g. the role of inhibitory interneurons in gating the information flow and through different layers of presubiculum, this paper provides valuable insights into the microcircuitry of this brain region and the role that it may play in spatial navigation.

      Strengths:

      One of the main strengths of this manuscript was that the dual opsin approach allowed the direct comparison of different inputs within an individual neuron, helping to control for what might otherwise have been an important source of variation. The experiments were well-executed and the data rigorously analysed. The conclusions were appropriate to the experimental questions and were well-supported by the results. These data will help to inform in vivo experiments aimed at understanding the contribution of different brain regions in spatial navigation and could be valuable for computational modelling.

      Weaknesses:

      Some attempts were made to gain mechanistic insights into how inhibitory neurotransmission may affect processing in presubiuclum (e.g. figure 5) but these experiments were a little underpowered and the analysis carried out could have been more comprehensively undertaken, as was done for other experiments in the manuscript.

      Comments on revised version:

      The authors have addressed all of my comments and I have nothing further to add. Well done for an interesting and valuable contribution!

    1. Reviewer #1 (Public review):

      In this study, the authors identified an insect salivary protein LssaCA participating viral initial infection in plant host. LssaCA directly bond to RSV nucleocapsid protein and then interacted with a rice OsTLP that possessed endo-β-1,3-glucanase activity to enhance OsTLP enzymatic activity and degrade callose caused by insects feeding. The manuscript suffers from fundamental logical issues, making its central narrative highly unconvincing.

      (1) These results suggested that LssaCA promoted RSV infection through a mechanism occurring not in insects or during early stages of viral entry in plants, but in planta after viral inoculation. As we all know that callose deposition affects the feeding of piercing-sucking insects and viral entry, this is contradictory to the results in Fig. S4 and Fig 2. It is difficult to understand callose functioned in virus reproduction in 3 days post virus inoculation. And authors also avoided to explain this mechanism.

      (2) Missing significant data. For example, the phenotypes of the transgenic plants, the RSV titers in the transgenic plants (OsTLP OE, ostlp). The staining of callose deposition were also hard to convince. The evidence about RSV NP-LssaCA-OsTLP tripartite interaction to enhance OsTLP enzymatic activity is not enough.

      (3) Figure 4a, there was the LssaCA signal in the fourth lane of pull-down data. Did MBP also bind LsssCA? The characterization of pull-down methods was rough a little bit. The method of GST pull-down and MBP pull-down should be characterized more in more detail.

    1. Reviewer #1 (Public review):

      Summary:

      The paper reports an analysis of whole-genome sequence data from 40 Faroese. The authors investigate aspects of demographic history and natural selection in this population. The key findings are that the Faroese (as expected) have a small population size and are broadly of Northwest European ancestry. Accordingly, selection signatures are largely shared with other Northwest European populations, although the authors identify signals that may be specific to the Faroes. Finally, they identify a few predicted deleterious coding variants that may be enriched in the Faroes.

      Strengths:

      The data are appropriately quality-controlled and appear to be of high quality. Some aspects of the Faroese population history are characterized, in particular, by the relatively (compared to other European populations) high proportion of long runs of homozygosity, which may be relevant for disease mapping of recessive variants. The selection analysis is presented reasonably, although as the authors point out, many aspects, for example differences in iHS, can reflect differences in demographic history or population-specific drift and thus can't reliably be interpreted in terms of differences in the strength of selection.

      Weaknesses:

      The main limitations of the paper are as follows:

      (1) The data are not available. I appreciate that (even de-identified) genotype data cannot be shared; however, that does substantially reduce the value of the paper. Minimally, I think the authors should share summary statistics for the selection scans, in line with the standard of the field.

      (2) The insight into the population history of the Faroes is limited, relative to what is already known (i.e., they were settled around 1200 years ago, by people with a mixture of Scandinavian and British ancestry, have a small effective population size, and any admixture since then comes from substantially similar populations). It's obvious, for example, that the Faroese population has a smaller bottleneck than, say, GBR.

      More sophisticated analyses (for example, ARG-based methods, or IBD or rare variant sharing) would be able to reveal more detailed and fine-scale information about the history of the populations that is not already known. PCA, ADMIXTURE, and HaplotNet analysis are broad summaries, but the interesting questions here would be more specific to the Faroes, for example, what are the proportions of Scandinavian vs Celtic ancestry? What is the date and extent of sex bias (as suggested by the uniparental data) in this admixture? I think that it is a bit of a missed opportunity not to address these questions.

      (3) I don't really understand the rationale for looking at HLA-B allele frequencies. The authors write that "ankylosing spondylitis (AS) may be at a higher prevalence in the Faroe Islands (unpublished data), however, this has not been confirmed by follow-up epidemiological studies". So there's no evidence (certainly no published evidence) that AS is more prevalent, and hence nothing to explain with the HLA allele frequencies?

    2. Reviewer #2 (Public review):

      In this paper, Hamid et al present 40 genomes from the Faroe Islands. They use these data (a pilot study for an anticipated larger-scale sequencing effort) to discuss the population genetic diversity and history of the sample, and the Faroes population. I think this is an overall solid paper; it is overall well-polished and well-written. It is somewhat descriptive (as might be expected for an explorative pilot study), but does make good use of the data.

      The data processing and annotation follows a state-of-the-art protocol, and at least I could not find any evidence in the results that would pinpoint towards bioinformatic issues having substantially biased some of the results, and at least preliminary results lead to the identification of some candidate disease alleles, showing that small, isolated cohorts can be an efficient way to find populations with locally common, but globally rare disease alleles.

      I also enjoyed the population structure analysis in the context of ancient samples, which gives some context to the genetic ancestry of Faroese, although it would have been nice if that could have been quantified, and it is unfortunate that the sampling scheme effectively precludes within-Faroes analyses.

      I am unfortunately quite critical of the selection analysis, both on a statistical level and, more importantly, I do not believe it measures what the authors think it does.

      Major comments:

      (1) Admixture timing/genomic scaling/localization:<br /> As the authors lay out, the Faroes were likely colonized in the last 1,000-1,500 years, i.e., 40-60 generations ago. That means most genomic processes that have happened on the Faroese should have signatures that are on the order of ~1-2cM, whereas more local patterns likely indicate genetic history predating the colonization of the islands. Yet, the paper seems to be oblivious to this (to me) fascinating and somewhat unique premise. Maybe this thought is wrong, but I think the authors miss a chance here to explain why the reader should care beyond the fact that the small populations might have high-frequency risk alleles and the Faroes are intrinsically interesting, but more importantly, it also makes me think it leads to some misinterpretations in the selection analysis

      (2) ROH:<br /> Would the sampling scheme impact ROH? How would it deal with individuals with known parental coancestry? As an example of what I mean by my previous comment, 1MB is short enough in that I would expect most/many 1MB ROH-tracts to come from pedigree loops predating the colonization of the Faroes. (i.e, I am actually quite surprised that there isn't much more long ROH, which makes me wonder if that would be impacted by the sampling scheme).

      (3) Selection scan:

      We are talking about a bottlenecked population that is recently admixed (Faroese), compared to a population (GBR) putatively more closely related to one of its sources. My guess would be that selection in such a scenario would be possibly very hard to detect, and even then, selection signals might not differentiate selection in Faroese vs. GBR, but rather selection/allele frequency differences between different source populations. I think it would be good to spell out why XP-EHH/iHS measures selection at the correct time scale, and how/if these statistics are expected to behave differently in an admixed population.

      (4) Similarly, for the discussion of LCT, I am not convinced that the haplotypes depicted here are on the right scale to reflect processes happening on the Faroes. Given the admixture/population history, it at the very least should be discussed in the context of whether the 13910 allele frequency on the Faroes is at odds with what would be expected based on the admixture sources.

      (5) I am lacking information to evaluate the procedure for turning the outliers into p-values. Both iHS and XP-EHH are ratio statistics, meaning they might be heavy-tailed if one is not careful, and the central limit theorem may not apply. It would be much easier (and probably sufficient for the points being made here) to reframe this analysis in terms of empirical outliers.

      (6) Oldest individual predating gene flow: It seems impossible to make any statements based on a single individual. Why is it implausible that this person (or their parents), e.g., moved to the Faroes within their lifetime and died there?

    1. Reviewer #1 (Public review):

      Summary:

      In the manuscript, Hallinan et al. describe off-target probe binding in the 10x Genomics Xenium platform, which results in invalid profiling of some genes in a spatial context. This was validated by comparing the Xenium results with Visium and scRNA-seq using human breast tissue, which are comprehensive and convincing. The authors also provide a dedicated tool to predict such off-target binding, Off-target Probe Tracker (OPT), which could be widely adopted in the field by researchers who are interested in validating the previously published results.

      Strengths:

      (1) This is the first study to suggest off-target binding of probes in the gene panels of the Xenium platform, which could be easily overlooked.

      (2) The results were rigorously validated with two different methods.

      (3) This paper will be a helpful resource for properly interpreting the results of previously published papers based on the Xenium platform (the signals could be mixed).

      Weaknesses:

      (1) The results were only tested with one tissue (human breast). However, this is not a major weakness, as one can easily extrapolate that this should be the case for any other tissue.

      (2) Once the 10X Genomics corrects their gene panels according to this finding, the tool (OPT) will not be useful for most people. Still, it can be used by those who want to design de novo probes from scratch.

    2. Reviewer #2 (Public review):

      This paper describes an analysis of a commercially available panel for a spatial transcriptomic approach and introduces a computational tool to predict potential off-target binding sites for the type of probe used in the aforementioned panel. The performance of the prediction tool was validated by examining a dataset that profiled the same cancer tissue with multiple modalities. Finally, a detailed analysis of the potential pitfalls in a published study communicated by the company that commercialized the spatial transcriptomic platform in question is provided, along with best practice guidelines for future studies to follow.

      Strengths:

      The manuscript is clearly written and easy to follow.

      The authors provide clean, organized, and well-documented code in the associated GitHub repository.

      Weaknesses:

      The manuscript section on the software tool feels underdeveloped.

    3. Reviewer #3 (Public review):

      Summary:

      The authors present a new computational method (OPT) for predicting off-target probe binding in the commercial 10X Xenium spatial transcriptomics platform. They identified 28 genes in the 10x xenium human breast cancer gene panel (280 genes) that are not accurately detected at the single-molecule level. They validated the predicted off-target binding using reference data from single-cell RNA-seq and 3'-sequencing-based Visium RNA-seq. This work provides a practical resource and will serve as a valuable reference for future data interpretation.

      Strengths:

      (1) Provides a toolbox for the community to identify off-target probes.

      (2) Validates the predictions using single-cell RNA-seq and sequencing-based Visium RNA-seq datasets.

      Weaknesses:

      (1) Does not apply the OPT method to the most widely used Xenium gene panels (e.g., pan-Human, pan-Mouse panels with ~5,000 genes each).

      (2) Lacks clarity on how the confidence level of off-target predictions is calculated.

    1. Reviewer #1 (Public review):

      Summary:

      This study aimed to investigate the effects of optically stimulating the A13 region in healthy mice and a unilateral 6-OHDA mouse model of Parkinson's disease (PD). The primary objectives were to assess changes in locomotion, motor behaviors, and the neural connectome. For this, the authors examined the dopaminergic loss induced by 6-OHDA lesioning. They found a significant loss of tyrosine hydroxylase (TH+) neurons in the substantia nigra pars compacta (SNc) while the dopaminergic cells in the A13 region were largely preserved. Then, they optically stimulated the A13 region using a viral vector to deliver the channelrhodopsine (CamKII promoter). In both sham and PD model mice, optogenetic stimulation of the A13 region induced pro-locomotor effects, including increased locomotion, more locomotion bouts, longer durations of locomotion, and higher movement speeds. Additionally, PD model mice exhibited increased ipsilesional turning during A13 region photoactivation. Lastly, the authors used whole-brain imaging to explore changes in the A13 region's connectome after 6-OHDA lesions. These alterations involved a complex rewiring of neural circuits, impacting both afferent and efferent projections. In summary, this study unveiled the pro-locomotor effects of A13 region photoactivation in both healthy and PD model mice. The study also indicates the preservation of A13 dopaminergic cells and the anatomical changes in neural circuitry following PD-like lesions that represent the anatomical substrate for a parallel motor pathway.

      Strengths:

      These findings hold significant relevance for the field of motor control, providing valuable insights into the organization of the motor system in mammals. Additionally, they offer potential avenues for addressing motor deficits in Parkinson's disease (PD). The study fills a crucial knowledge gap, underscoring its importance, and the results bolster its clinical relevance and overall strength.

      The authors adeptly set the stage for their research by framing the central questions in the introduction, and they provide thoughtful interpretations of the data in the discussion section. The results section, while straightforward, effectively supports the study's primary conclusion-the pro-locomotor effects of A13 region stimulation, both in normal motor control and in the 6-OHDA model of brain damage.

      Weaknesses:

      (1) Anatomical investigation. I have a major concern regarding the anatomical investigation of plastic changes in the A13 connectome (Figures 4 and 5). While the methodology employed to assess the connectome is technically advanced and powerful, the results lack mechanistic insight at the cell or circuit level into the pro-locomotor effects of A13 region stimulation in both physiological and pathological conditions. This concern is exacerbated by a textual description of results that doesn't pinpoint precise brain areas or subareas but instead references large brain portions like the cortical plate, making it challenging to discern the implications for A13 stimulation. Lastly, the study is generally well-written with a smooth and straightforward style, but the connectome section presents challenges in readability and comprehension. The presentation of results, particularly the correlation matrices and correlation strength, doesn't facilitate biological understanding. It would be beneficial to explore specific pathways responsible for driving the locomotor effects of A13 stimulation, including examining the strength of connections to well-known locomotor-associated regions like the Pedunculopontine nucleus, Cuneiformis nucleus, LPGi, and others in the diencephalon, midbrain, pons, and medulla. Additionally, identifying the primary inputs to A13 associated with motor function would enhance the study's clarity and relevance.

      The study raises intriguing questions about compensatory mechanisms in Parkinson's disease a new perspective with the preservation of dopaminergic cells in A13, despite the SNc degeneration, and the plastic changes to input/output matrices. To gain inspiration for a more straightforward reanalysis and discussion of the results, I recommend the authors refer to the paper titled "Specific populations of basal ganglia output neurons target distinct brain stem areas while collateralizing throughout the diencephalon from the David Kleinfeld laboratory." This could guide the authors in investigating motor pathways across different brain regions.

      (2) Description of locomotor performance. Figure 3 provides valuable data on the locomotor effects of A13 region photoactivation in both control and 6-OHDA mice. However, a more detailed analysis of the changes in locomotion during stimulation would enhance our understanding of the pro-locomotor effects, especially in the context of 6-OHDA lesions. For example, it would be informative to explore whether the probability of locomotion changes during stimulation in the control and 6-OHDA groups. Investigating reaction time, speed, total distance, and even kinematic aspects during stimulation could reveal how A13 is influencing locomotion, particularly after 6-OHDA lesions. The laboratory of Whelan has a deep knowledge of locomotion and the neural circuits driving it so these features may be instructive to infer insights on the neural circuits driving movement. On the same line, examining features like the frequency or power of stimulation related to walking patterns may help elucidate whether A13 is engaging with the Mesencephalic Locomotor Region (MLR) to drive the pro-locomotor effects. These insights would provide a more comprehensive understanding of the mechanisms underlying A13-mediated locomotor changes in both healthy and pathological conditions.

      (3) Figure 2 indeed presents valuable information regarding the effects of A13 region photoactivation. To enhance the comprehensiveness of this figure and gain a deeper understanding of the neurons driving the pro-locomotor effect of stimulation, it would be beneficial to include quantifications of various cell types:

      • cFos-Positive Cells/TH-Positive Cells: it can help determine the impact of A13 stimulation on dopaminergic neurons and the associated pro-locomotor effect in healthy condition and especially in the context of Parkinson's disease (PD) modeling.

      • cFos-Positive Cells /TH-Negative Cells: Investigating the number of TH-negative cells activated by stimulation is also important, as it may reveal non-dopaminergic neurons that play a role in locomotor responses. Identifying the location and characteristics of these TH-negative cells can provide insights into their functional significance.<br /> Incorporating these quantifications into Figure 2 would enhance the figure's informativeness and provide a more comprehensive view of the neuronal populations involved in the locomotor effects of A13 stimulation.

      (4) Referred to Figure 3. In the main text (page 5) when describing the animal with 6-OHDA the wrong panels are indicated. It is indicated in Figure 2A-E but it should be replaced with 3A-E. Please do that.

      Summary of the Study after revision

      The revised manuscript reflects significant efforts to improve clarity, organization, and data interpretation. The refinements in anatomical descriptions, behavioral analyses, and contextual framing have strengthened the manuscript considerably. However, the study still lacks direct causal evidence linking anatomical remodeling to behavioral improvements, and the small sample size in the anatomical analyses remains a concern. The authors have addressed many points raised in the initial review, but further acknowledgement of the exploratory nature of these findings would enhance the scientific rigor of the work.

      Key Improvements in the Revision

      The revised manuscript demonstrates considerable progress in clarifying data presentation, refining behavioral analyses, and improving the contextualization of anatomical findings. The restructuring of the anatomical section now provides greater precision in describing motor-related pathways, integrating terminology from the Allen Brain Atlas. The addition of new figures (Figures 4 and 5) strengthens the accessibility of these findings by illustrating key connectivity patterns more effectively. Furthermore, the correlation matrices have been adjusted to improve interpretability, ensuring that the presented data contribute meaningfully to the overall narrative of the study.

      The authors have also made significant improvements in their behavioral analyses, particularly in the organization and presentation of locomotor data. Figure 3 has been revised to distinctly separate results from 6-OHDA and sham animals, providing a clearer comparison of locomotor outcomes. Additional metrics, such as reaction time, locomotion bouts, and movement speed, further enhance the granularity of the analysis, making the results more informative.

      The discussion surrounding anatomical connectivity has also been strengthened. The revised manuscript now places greater emphasis on motor-related pathways and refines its analysis of A13 efferents and afferents. A newly introduced figure provides a concise summary of these connections, improving the contextualization of the anatomical data within the study's broader scope. Moreover, the authors have addressed the translational relevance of their findings by acknowledging the differences between optogenetic stimulation and deep brain stimulation (DBS). Their discussion now better situates the findings within existing literature on PD-related motor circuits, providing a more balanced perspective on the potential implications of A13 stimulation.

      Remaining Concerns

      Despite these substantial improvements, a number of critical concerns remain. The anatomical findings, though insightful, remain largely correlative and do not establish a causal link between structural remodeling and locomotor recovery. While the authors argue that these data will serve as a reference for future investigations, their necessity for the core conclusions of the study is not entirely clear. Additionally, while the anatomical data offer an interesting perspective on A13 connectivity, their direct relevance to the study's primary goal-demonstrating the role of A13 in locomotor recovery-remains uncertain. The authors emphasize that these data will be valuable for future research, yet their integration into the study's main narrative feels somewhat supplementary. Based on this last thought of the authors it is even more relevant another key limitation lying in the small sample size used for connectivity analyses. With only two sham and three 6-OHDA animals included, the statistical confidence in the findings is inherently limited. The absence of direct statistical comparisons between ipsilesional and contralesional projections further weakens the conclusions drawn from these anatomical studies. The authors have acknowledged that obtaining the necessary samples, acquiring the data, and analyzing them is a prolonged and resource-intensive process. While this may be a valid practical limitation, it does not justify the lack of a robust statistical approach. A more rigorous statistical framework should be employed to reinforce the findings, or alternative techniques should be considered to provide additional validation. Given these constraints, it remains unclear why the authors have not opted for standard immunohistochemistry, which could provide a complementary and more statistically accessible approach to validate the anatomical findings. Employing such an approach would not only increase the robustness of the results but also strengthen the study's impact by providing an independent confirmation of the observed structural changes.

    2. Reviewer #2 (Public review):

      Summary:

      The paper by Kim et al. investigates the potential of stimulating the dopaminergic A13 region to promote locomotor restoration in a Parkinson's mouse model. Using wild-type mice, 6-OHDA injection depletes dopaminergic neurons in the substantia nigra pars compacta, without impairing those of the A13 region and the ventral tegmentum area, as previously reported in humans. Moreover, photostimulation of presumably excitatory (CAMKIIa) neurons in the vicinity of the A13 region improves bradykinesia and akinetic symptoms after 6-OHDA injection. Whole-brain imaging with retrograde and anterograde tracers reveals that the A13 region undergoes substantial changes in the distribution of its afferents and projections after 6-OHDA injection, thus suggesting a remodeling of the A13 connectome. Whether this remodelling contributes to pro-locomotor effects of the photostimulation of the A13 region remains unknown as causality was not addressed.

      Strengths:

      Photostimulation of presumably excitatory (CAMKIIa) neurons in the vicinity of the A13 region promotes locomotion and locomotor recovery of wild-type mice 1 month after 6-OHDA injection in the medial forebrain bundle, thus identifying a new potential target for restoring motor functions in Parkinson's disease patients. The study also provides a description of the A13 region connectome pertaining to motor behaviors and how it changes after a dopaminergic lesion. Although there is no causal link between anatomical and behavioral data, it raises interesting questions for further studies.

      Weaknesses:

      Although CAMKIIa is a marker of presumably excitatory neurons and can be used as an alternative marker of dopaminergic neurons, some uncertainty remains regarding the phenotype of neurons underlying recovery of akinesia and improvement of bradykinesia.

      Figure 4 is improved, but the results from the correlation analyses remain difficult to interpret, as they may reflect changes in various impaired brain regions independently of the A13 region. While the analysis offers a snapshot of correlated changes within the connectome, it does not identify which specific cell or axonal populations are actually increasing or decreasing. Although functional MRI connectome analyses are well-established, anatomical data seem less suitable for this purpose. How can one interpret correlated changes in anatomical inputs or outputs between two distinct regions?

      Figure 5 is also improved, but there is room for further enhancement. As currently presented, it is difficult to distinguish the differences between the sham and 6-OHDA groups. The first column could compare afferents, while the second column could compare efferents. Given the small sample size, it would be more appropriate to present individual data rather than the mean and standard deviation.

      Appraisal and impact

      Although the behavioral experiments are convincing, the low number of animals in the anatomical studies is insufficient to make any relevant statistical conclusions due to extremely low statistical power.

    3. Reviewer #3 (Public review):

      Kim, Lognon et al. present an important finding on pro-locomotor effects of optogenetic activation of the A13 region, which they identify as a dopamine-containing area of the medial zona incerta that undergoes profound remodeling in terms of afferent and efferent connectivity after administration of 6-OHDA to the MFB. The authors claim to address a model of PD-related gait dysfunction, a contentious problem that can be difficult to treat by dopaminergic medication or DBS in conventional targets. They make use of an impressive array of technologies to gain insight into the role of A13 remodeling in the 6-OHDA model of PD. The evidence provided is solid and the paper is well written, but there are several general issues that reduce the value of the paper in its current form, and a number of specific, more minor ones. Also some suggestions, that may improve the paper compared to its recent form, come to mind.

      The most fundamental issue that needs to be addressed is the relation of the structural to the behavioral findings. It would be very interesting to see whether the structural heterogeneity in afferent/effects projections induced by 6-OHDA is related to the degree of symptom severity and motor improvement during A13 stimulation.

      The authors provide extensive interrogation of large-scale changes in the organization of the A13 region afferent and efferent distributions. It remains unclear how many animals were included to produce Fig 4 and 5. Fig S5 suggests that only 3 animals were used, is that correct? Please provide details about the heterogeneity between animals. Please provide a table detailing how many animals were used for which experiment. Were the same animals used for several experiments?

      While the authors provide evidence that photoactivation of the A13 is sufficient in driving locomotion in the OFT, this pro-locomotor effect seems to be independent of 6-OHDA induced pathophysiology. Only in the pole test do they find that there seems to be a difference between Sham vs 6-OHDA concerning effects of photoactivation of the A13. Because of these behavioral findings, optogenic activation of A13 may represent a gain of function rather than disease-specific rescue. This needs to be highlighted more explicitly in the title, abstract and conclusion.

      The authors claim that A13 may be a possible target for DBS to treat gait dysfunction. However, the experimental evidence provided (imparticular lack of disease-specific changes in the OFT) seem insufficient to draw such conclusions. It needs to be highlighted that optogenetic activation does not necessarily have the same effects as DBS (see the recent review from Neumann et al. in Brain: https://pubmed.ncbi.nlm.nih.gov/37450573/). This is important because ZI-DBS so far had very mixed clinical effects. The authors should provide plausible reasons for these discrepancies. Is cell-specificity, that only optogenetic interventions can achieve, necessary? Can new forms of cyclic burst DBS achieve similar specificity (Spix et al, Science 2021)? Please comment.

      In a recent study, Jeon et al (Topographic connectivity and cellular profiling reveal detailed input pathways and functionally distinct cell types in the subthalamic nucleus, 2022, Cell Reports) provided evidence on the topographically graded organization of STN afferents and McElvain et al. (Specific populations of basal ganglia output neurons target distinct brain stem areas while collateralizing throughout the diencephalon, 2021, Neuron) have shown similar topographical resolution for SNr efferents. Can a similar topographical organization of efferents and afferents be derived for the A13/ ZI in total?

      In conclusion, this is an interesting study that can be improved taking into consideration the points mentioned above.

    1. Reviewer #1 (Public review):

      Summary:

      In this study, Bonnifet et al. profile the presence of L1 ORF1p in the mouse and human brain and report that ORF1p is expressed in the human and mouse brain specifically in neurons at steady state and that there is an age-dependent increase in expression. This is a timely report as two recent papers have extensively documented the presence of full-length L1 transcripts in the mouse and human brain (PMID: 38773348 & PMID: 37910626). Thus, the finding that L1 ORF1p is consistently expressed in the brain is important to document and will be of value to the field.

      Strengths:

      Several parts of this manuscript appear to be well done and include the necessary controls. In particular, the documentation of neuron-specific expression of ORF1p in the mouse brain is an interesting finding with nice documentation. This will be very useful information for the field.

      Weaknesses:

      The transcriptomic data using human postmortem tissue presented in Figures 4 and 5 are not convincing. Quantification of transposon expression on short read sequencing has important limitations. Longer reads and complementary approaches are needed to study the expression of evolutionarily young L1s (see PMID: 38773348 & PMID: 37910626 for examples of the current state of the art). As presented, the human RNA data is inconclusive due to the short read length and small sample size. The value of including an inconclusive analysis in the manuscript is difficult to understand. With this data set, the authors cannot investigate age-related changes in L1 expression in human neurons.

      In line with these comments, the title should be changed to better reflect the findings in the manuscript. A title that does not mention "L1 increase with aging" would be better.

      Comments on Revisions:

      It is notable that the expression of ORF1p in the human brain shows two strong bands in the WB. As the authors acknowledge in their discussion, some labs report only one band. The authors have performed a number of controls to address this issue, acknowledge remaining uncertainty, and discuss the discrepancy in the field.

    2. Reviewer #2 (Public review):

      Summary:

      Bonnifet et al. sought to characterize the expression pattern of L1 ORF1p expression across the entire mouse brain, in young and aged animals and to corroborate their characterization with Western blotting for L1 ORF1p and L1 RNA expression data from human samples. They also queried L1 ORF1p interacting partners in the mouse brain by IP-MS.

      Strengths:

      A major strength of the study is the use of two approaches: a deep-learning detection method to distinguish neuronal vs. non-neuronal cells and ORF1p+ cells vs. ORF1p- cells across large-scale images encompassing multiple brain regions mapped by comparison to the Allen Brain Atlas, and confocal imaging to give higher resolution on specific brain regions. These results are also corroborated by Western blotting on six mouse brain regions. Extension of their analysis to post-mortem human samples, to the extent possible, is another strength of the paper. The identification of novel ORF1p interactors in brain is also a strength in that it provides a novel dataset for future studies.

      Weaknesses:

      The main weakness of the IP-MS portion of the study is that none of the interactors were individually validated or subjected to follow-up analyses. The list of interactors was compared to previously published datasets, but not to ORF1p interactors in any other mouse tissue.

      Comments on revisions:

      The co-staining of Orf1p with Parvalbumin (PV) presented in Supplemental Figure S5 is a welcome addition exploring the cell type-specificity of Orf1p staining, and broadly corroborates the work of Bodea et al. while revealing that Orf1p also is expressed in non-PV+ cells, consistent with L1 activity across a range of neuronal subtypes. The authors also have strengthened their findings regarding the increased intensity of ORF1p staining in aged compared to young animals, and the newly presented results are indeed more convincing. The prospect of increased neuronal L1 activity with age is exciting, and the results in this paper have provided the groundwork for ongoing discoveries in this area. While it is disappointing that no Orf1p interactors were followed up, this is understandable and the data are nonetheless valuable and will likely prove useful to future studies.

    1. Reviewer #1 (Public review):

      Summary:

      The researchers aimed to identify which neurotransmitter pathways are required for animals to withstand chronic oxidative stress. This work thus has important implications for disease processes that are caused/linked to oxidative stress. This work identified specific neurotransmitters and receptors that coordinate stress resilience, both prior to and during stress exposure. Further, the authors identified specific transcriptional programs coordinated by neurotransmission that may provide stress resistance.

      Strengths:

      The manuscript is very clearly written with a well-formulated rationale. Standard C. elegans genetic analysis and rescue experiments were performed to identify key regulators of the chronic oxidative stress response. These findings were enhanced by transcriptional profiling that identified differentially expressed genes that likely affect survival when animals are exposed to stress.

      Weaknesses:

      Where the gar-3 promoter drives expression was not discussed in the context of the rescue experiments in Figure 7.

    2. Reviewer #2 (Public review):

      In this paper, Biswas et al. describe the role of acetylcholine (ACh) signaling in protection against chronic oxidative stress in C. elegans. They showed that disruption of ACh signaling in either unc-17 mutants or gar-3 mutants led to sensitivity to toxicity caused by chronic paraquat (PQ) treatment. Using RNA seq, they found that approximately 70% of the genes induced by chronic PQ exposure in wild type failed to upregulate in these mutants. The overexpression of gar-3 selectively in cholinergic neurons was sufficient to promote protection against chronic PQ exposure in an ACh-dependent manner. The study points to a previously undescribed role for ACh signaling in providing organism-wide protection from chronic oxidative stress, likely through the transcriptional regulation of numerous oxidative stress-response genes. The paper is well-written, and the data are robust, though some conclusions seem preliminary and do not fully support the current data. While the study identifies the muscarinic ACh receptor gar-3 as an important regulator of the response to PQ, the specific neurons in which gar-3 functions were not unambiguously identified, and the sources of ACh that regulate GAR-3 signaling and the identities of the tissues targeted by gar-3 were not addressed, limiting the scope of the study.

      Major Comments:

      (1) The site of action of cholinergic signaling for protection from PQ was not adequately explored. The authors' conclusion that cholinergic motor neurons are protective is based on studies using overexpression of gar-3 and an unc-17 allele that may selectively disrupt ACh in cholinergic motor neurons (Figure 9F), but these approaches are indirect. To more directly address the site of action, the authors should conduct rescue experiments using well-defined heterologous promoters. Figure 7G shows that gar-3 expressed under a 7.5 kb promoter fragment fully rescues the defect of gar-3 mutants, but the authors did not report where this promoter fragment is expressed, nor did they conduct rescue experiments of the specific tissues where gar-3 is known to be expressed (cholinergic neurons, GABAergic neurons, pharynx, or muscles). UNC-17 rescue experiments could also be useful to address the site of action. Does expression of unc-17 selectively in cholinergic motor neurons rescue the stress sensitivity of unc-17 mutants (or restore resistance to gar-3(OE); unc-17 mutants)? These experiments may also address whether ACh acts in an autocrine or paracrine manner to activate gar-3, which would be an important mechanistic insight to this study that is currently lacking.

      (2) The genetic pan-neuronal silencing experiments presented in Figure 1 motivated the subsequent experiments, but the authors did not relate these observations to ACh/gar-3 signaling. For example, the authors did not address whether silencing just the cholinergic motor neurons at the different times tested has the same effects on survival as pan-neuronal silencing.

      (3) It is assumed that protection occurs through inter-tissue signaling of ACh to target tissues, where it impacts gene expression. While this is a reasonable assumption, it has not been directly shown here. It is recommended that the authors examine GFP reporter expression of a sampling of the genes identified in this study (including proteasomal genes that the authors highlight) that are regulated by unc-17 and gar-3. This would serve to independently confirm the RNAseq data and to identify target tissues that are subject to gene expression regulation by ACh, which would significantly strengthen the study.

    1. Reviewer #1 (Public review):

      Summary:

      Lesser et al provide a comprehensive description of Drosophila wing proprioceptive sensory neurons at the electron microscopy resolution. This "tour-de-force" provides a strong foundation for future structural and functional research aimed at understanding wing motor control in Drosophila with implications for understanding wing control across other insects.

      Strengths:

      (1) The authors leverage previous research that described many of the fly wing proprioceptors, and combine this knowledge with EM connectome data such that they now provide a near-complete morphological description of all wing proprioceptors.

      (2) The authors cleverly leverage genetic tools and EM connectome data to tie the location of proprioceptors on the wings with axonal projections in the connectome. This enables them to both align with previous literature as well as make some novel claims.

      3) In addition to providing a full description of wing proprioceptors, the authors also identified a novel population of sensors on the wing tegula that make direct connections with the B1 wing motor neurons, implicating the role of the tegula in wing movements that was previously underappreciated.

      (4) Despite being the most comprehensive description so far, it is reassuring that the authors clearly state the missing elements in the discussion.

      Weaknesses:

      (1) The authors do their main analysis on data from the FANC connectome but provide corresponding IDs for sensory neurons in the MANC connectome. I wonder how the connectivity matrix compares across FANC and MANC if the authors perform a similar analysis to the one they have done in Figure 2. This could be a valuable addition and potentially also pick up any sexual dimorphism.

      (2) The authors speculate about the presence of gap junctions based on the density of mitochondria. I'm not convinced about this, given that mitochondrial densities could reflect other things that correlate with energy demands in sub-compartments.

      (3) I'm intrigued by how the tegula CO is negative for iav. I wonder if authors tried other CO labeling genes like nompc. And what does this mean for the nature of this CO. Some more discussion on this anomaly would be helpful.

      (4) The authors conclude there are no proprioceptive neurons in sclerite pterale C based on Chat-Gal4 expression analysis. It would be much more rigorous if authors also tried a pan-neuronal driver like nsyb/elav or other neurotransmitter drivers (Vglut, GAD, etc) to really rule this out. (I hope I didn't miss this somewhere.)

      Overall, I consider this an exceptional analysis that will be extremely valuable to the community.

    2. Reviewer #2 (Public review):

      Summary:

      Lesser et al. present an atlas of Drosophila wing sensory neurons. They proofread the axons of all sensory neurons in the wing nerve of an existing electron microscopy dataset, the female adult fly nerve cord (FANC) connectome. These reconstructed sensory axons were linked with light microscopy images of full-scale morphology to identify their origin in the periphery of the wing and encoded sensory modalities. The authors described the morphology and postsynaptic targets of proprioceptive neurons as well as previously unknown sensory neurons.

      Strengths:

      The authors present a valuable catalogue of wing sensory neurons, including previously undescribed sensory axons in the Drosophila wing. By providing both connectivity information with linked genetic drive lines, this research facilitates future work on the wing motor-sensory network and applications relating to Drosophila flight. The findings were linked to previous research as well as their putative role in the proprioceptive and nerve cord circuitry, providing testable hypotheses for future studies.

      Weaknesses:

      (1) With future use as an atlas, it should be noted that the evidence is based on sensory neurons on only one side of the nerve cord. Fruit flies have stereotyped left/right hemispheres in the brain and left/right hemisegments in the nerve cord. The comparison of left and right neurons of the nervous system can give a sense of how robust the morphological and connectivity findings are. Here, the authors have not compared the left and right side sensory axons from the wing nerve, leaving potential for developmental variability across samples and left/right hemisegments.

      (2) Not all links between the EM reconstructions and driver lines are convincing. To strengthen these, for all EM-LM matches in Figures 3-7, rotated views of the driver line (matching the rotated EM views) should be shown to provide a clearer comparison of the data. In particular, Figure 3G and Figure 7B are not very convincing based on the images shown. MCFO imaging of the driver lines in Figure 3G and 7B would make this position stronger if a clone that matches the EM reconstruction could be identified.

      (3) Figure 7B looks like the driver line might have stochastic expression in the sensory neuron, which further reduces confidence in the result shown in Figure 7C. Is this expression pattern in the wing consistently seen? Many split-GAL4s have stochastic expressions. The evidence would be strengthened if the authors presented multiple examples (~4-5) of each driver line's expression pattern in the supplement.

      (4) Certain claims in this work lack quantitative evidence. On line 128, for instance, "Overall, our comprehensive reconstruction revealed many morphological subgroups with overlapping postsynaptic partners, suggesting a high degree of integration within wing sensorimotor circuits." If a claim of subgroups having shared postsynaptic partners is being made, there should have been quantitative evidence. For example, cosine similar amongst members of each group compared to the cosine similarity of shuffled/randomised sets of axons from different groups. The heat map of cosine similarity in Figure 2B alone is not sufficient.

      (5) Similarly, claims about putative electrical connections to b1 motor neurons are very speculative. The authors state that "their terminals contain very densely packed mitochondria compared to other cells", without providing a quantitative comparison to other sensory axons. There is also no quantitative comparison to the one example of another putative electrical connection from the literature. Further, it should be noted that this connection from Trimarchi and Murphey, 1997, is also stated as putative on line 167, which further weakens this evidence. Quantification would strongly strengthen this position. Identification of an example of high mitochondrial density at a confirmed electrical connection would be even better. In the related discussion section "A potential metabolic specialization for flight circuitry", it should be more clearly noted that the dense mitochondria could be unrelated to a putative electrical connection. If the authors have an alternative hypothesis about the mitochondria density, this should be stated as well.

      (6) It would be appropriate to cite previous work using a similar strategy to match sensory axons to their cell bodies/dendrites at the periphery using driver lines and connectomics (see Figure 5 for example in the following paper: https://doi.org/10.7554/eLife.40247 ).

      The methods section is very sparse. For the sake of replicability, all sections should be expanded upon.

    3. Reviewer #3 (Public review):

      Summary:

      The authors aim to identify the peripheral end-organ origin in the fly's wing of all sensory neurons in the anterior dorsomedial nerve. They reconstruct the neurons and their downstream partners in an electron microscopy volume of a female ventral nerve cord, analyse the resulting connectome, and identify their origin with a review of the literature and imaging of genetic driver lines. While some of the neurons were already known through previous work, the authors expand on the identification and create a near-complete map of the wing mechanosensory neurons at synapse resolution.

      Strengths:

      The authors elegantly combine electron microscopy, neuron morphology, connectomics, and light microscopy methods to bridge the gap between fly wing sensory neuron anatomy and ventral nerve cord morphology. Further, they use EM ultrastructural observations to make predictions on the signaling modality of some of the sensory neurons and thus their function in flight.

      The work is as comprehensive as state-of-the-art methods allow to create a near-complete map of the wing mechanosensory neurons. This work will be of importance to the field of fly connectomics and modelling of fly behavior, as well as a useful resource to the Drosophila research community.

      Through this comprehensive mapping of neurons to the connectome, the authors create a lot of hypotheses on neuronal function, partially already confirmed with the literature and partially to be tested in the future. The authors achieved their aim of mapping the periphery of the fly's wing to axonal projections in the ventral nerve cord, beautifully laying out their results to support their mapping.

      The authors identify the neurons in a previously published connectome of a male fly ventral nerve cord to enable cross-individual analysis of connections. Further, together with their companion paper, Dhawan et al. 2025, describing the haltere sensory neurons in the same EM dataset, they cover the entire mechanosensory space involved in Drosophila flight.

      Weaknesses:

      The connectomic data are only available upon request; the inclusion of a connectivity table of the reconstructed neurons would aid analysis reproducibility and cross-dataset comparisons.

    1. Reviewer #1 (Public review):

      Summary:

      In this study by Kitto et al., the authors set out to identify specific signaling components regulating the hypoxic response from the neurons to the periphery and which components are required for lifespan extension. Their previous work had shown that expression of a stabilized HIF-1 mutant in the nervous system extends lifespan through the serotonin receptor SER-7 and leads to the induction of fmo-2 in the intestine. In the current study, they mapped the precise neural circuits required for this response, as well as the signaling mediators. Their work reveals that neurotransmitters GABA and tyramine, and the neuropeptide NLP-17, act downstream of neuronal HIF-1 to convey a "hypoxic signal" to peripheral tissues. Through cell-type-specific expression studies, targeted knockouts, and comprehensive lifespan analysis, the authors provide robust evidence to support their conclusions. The insights gained from the study are both moving the field forward as they advance our understanding of neuro-peripheral hypoxic signaling, but they also lay the groundwork for potential therapeutic strategies aimed at the modulation of such signaling pathways.

      Strengths:

      (1) This study provides new evidence further delineating signaling components required for hypoxic signaling-mediated longevity, from the nervous system to the periphery. Using a rigorous approach where they express stabilized HIF-1 mutant selectively in ADF, NSM, and HSN serotonergic neurons, followed by cell-type-specific tph-1 knockouts to pinpoint ADF-dependent serotonin signaling as essential for both lifespan extension and intestinal fmo-2 induction.

      This was followed by generating 11 transgenic lines that drive SER-7 expression under distinct neuron-specific promoters, to systematically tease out in which of 27 candidate neurons SER-7 functions to mediate hypoxia-induced longevity. This ultimately highlighted the RIS interneuron as the required signaling hub.

      (2) As the intestine lacks direct neuronal innervation, the authors employ neuron-specific RNAi (TU3311 strain) and dense core vesicle analyses to identify that the neuropeptide NLP-17 is required to transmit the hypoxic signal from RIS to induce fmo-2 in the intestine.

      (3) Overall, the paper is very well written. The experiments were carried out carefully and thoroughly, and the conclusions drawn are also well supported by the results they are showing.

      Weaknesses:

      Overall, I don't see many weaknesses. One point relates to their read-outs, which rely heavily on lifespan measurements and fmo-2 induction without evaluating other physiological processes that serotonin or NLP-17 might affect. For translational relevance, it would be valuable to assess or mention potential adverse effects, such as changes in reproduction, pharyngeal pumping, or proteostasis capacity (proteostasis capacity specifically in the tissue showing fmo-2 upregulation).

      While lifespan assays and fmo-2 expression do provide strong evidence, incorporating additional markers of stress resistance could strengthen the link between hypoxic signaling and organismal health as well.

    2. Reviewer #2 (Public review):

      Summary:

      The authors aimed to identify the specific neurons, neurotransmitters, and neuropeptides that mediate the longevity effects of the hypoxic response in C. elegans. By genetically dissecting the pathway downstream of HIF-1, they define a neural circuit involving ADF serotonergic neurons, the SER-7 receptor in the RIS interneuron, tyraminergic signaling from RIM, and neuropeptide NLP-17, ultimately linking neuronal hypoxic sensing to pro-longevity signaling in the intestine.

      Strengths:

      The study employs a diverse genetic toolkit, including neuron-specific transgenes, tissue-specific knockouts and rescues, RNAi knockdowns, allowing the authors to pinpoint causality, sufficiency, and necessity with high resolution. The comprehensive mapping of cell-nonautonomous signaling adds depth to our understanding of how HIF and serotonin signaling interface with aging pathways. The conclusions are supported by consistent survival assays and fmo-2 gene expression analyses.

      Weaknesses:

      A key limitation is the lack of clear evidence showing epistasis of so many identified molecular/neuronal components downstream of HIF-1 and serotonin. Thus, the mechanisms of how a diverse set of molecules/neurons coordinate and mediate neuronal HIF-1 effects on intestinal fmo-2 and longevity remain murky. Some rescue strategies may inadvertently cause non-physiological expression. Additionally, environmental hypoxia was not tested in parallel, so the claim on "hypoxia respone" throughout the manuscript is not justified by genetic manipulation alone, and the translational relevance of the genetic manipulations remains somewhat uncertain.

    3. Reviewer #3 (Public review):

      Summary:

      This study found that ADF serotonergic neurons have a significant role in extending lifespan mediated by HIF-1, as well as serotonin receptor SER-7 in the GABAergic RIS interneurons. The author focuses on the sufficiency and necessity of components from the central nervous system and how they contribute to aging upon hypoxia.

      Previous work from the lab has identified that the stabilization of HIF-1 in neurons is sufficient to extend lifespan through the serotonin receptor, SER-7, which subsequently activates fmo-2 in the intestine and leads to lifespan extension. Building on this, the author sought to determine which serotonergic neurons are involved and found that serotonin signaling in ADF neurons is required for lifespan extension mediated by HIF-1.

      The author next tested which subset of neurons requires Ser-7 expression to rescue hypoxic response. They found that ser-7 expression in multiple neurons is sufficient to induce fmo-2, with the top candidate being the RIS neuron. Ablation of the RIS neuron did not extend lifespan, suggesting that ser-7 expression in the RIS neuron is required for lifespan extension, positioning it as a key component in the longevity signaling pathway.

      The author also investigated neurotransmitters and found that GABA and tyramine are important components in this circuit. They showed that the tyramine receptor called tyra-3 is required for vhl-1-mediated longevity. Given that tyra-3 is expressed in oxygen- and carbon dioxide-sensing neurons, the author demonstrated that these sensing neurons work downstream of serotonin signaling. Lastly, the author screened neuropeptide/receptor binding pairs and identified NLP-17 as playing a role in hypoxia-mediated longevity.

      Originality and Significance:

      This research is significant in that it uncovers components that are sufficient and necessary for lifespan extension via the hypoxic response. It provides comprehensive data supporting longevity induced by HIF-1-mediated hypoxic response, in conjunction with fmo-2, a longevity gene, as demonstrated in previous work from the lab. Moreover, it provides a number of new transgenic worm tools for C. elegans and aging communities.

      Data and Methodology:

      (1) The experiments were thoroughly conducted, especially the generations of strains using different neuron-type promoters and crossing into mutant strains to demonstrate sufficiency and necessity.

      (2) Some figure legends from the text do not match what the data show. (Figure 6E, F, G).

      (3) The lifespan graph legends are confusing and could use some revamping for better clarification.

      Conclusions:

      This study provides insights into how hypoxic response regulates aging in a cell non-autonomous manner, outlining a potential circuit involving neurons, neurotransmitters, and neuropeptides.

    1. Reviewer #1 (Public review):

      Summary:

      This study compares four models - VALOR (dynamic visual-text alignment), CLIP (static visual-text alignment), AlexNet (vision-only), and WordNet (text-only) - in their ability to predict human brain responses using voxel-wise encoding modeling. The results show that VALOR not only achieves the highest accuracy in predicting neural responses but also generalizes more effectively to novel datasets. In addition, VALOR captures meaningful semantic dimensions across the cortical surface and demonstrates impressive predictive power for brain responses elicited by future events.

      Strengths:

      The study leverages a multimodal machine learning model to investigate how the human brain aligns visual and textual information. Overall, the manuscript is logically organized, clearly written, and easy to follow. The results well support the main conclusions of the paper.

      Weaknesses:

      (1) My primary concern is that the performance difference between VALOR and CLIP is not sufficiently explained. Both models are trained using contrastive learning on visual and textual inputs, yet CLIP performs significantly worse. The authors suggest that this may be due to VALOR being trained on dynamic movie data while CLIP is trained on static images. However, this explanation remains speculative. More in-depth discussion is needed on the architectural and inductive biases of the two models, and how these may contribute to their differences in modeling brain responses.

      (2) The methods section lacks clarity regarding which layers of VALOR and CLIP were used to extract features for voxel-wise encoding modeling. A more detailed methodological description is necessary to ensure reproducibility and interpretability. Furthermore, discussion of the inductive biases inherent in these models-and their implications for brain alignment - is crucial.

      (3) A broader question remains insufficiently addressed: what is the purpose of visual-text alignment in the human brain? One hypothesis is that it supports the formation of abstract semantic representations that rely on no specific input modality. While VALOR performs well in voxel-wise encoding, it is unclear whether this necessarily indicates the emergence of such abstract semantics. The authors are encouraged to discuss how the computational architecture of VALOR may reflect this alignment mechanism and what implications it has for understanding brain function.

      (4) The current methods section does not provide enough details about the network architectures, parameter settings, or whether pretrained models were used. If so, please provide links to the pretrained models to facilitate reproducible science.

    2. Reviewer #2 (Public review):

      Summary:

      Fu and colleagues have shown that VALOR, a model of multimodal and dynamic stimulus features, better predicts brain responses compared to unimodal or static models such as AlexNet, WordNet, or CLIP. The authors demonstrated the robustness of their findings by generalizing encoding results to an external dataset. They demonstrated the models' practical benefit by showing that semantic mappings were comparable to another model that required labor-intensive manual annotation. Finally, the authors showed that the model reveals predictive coding mechanisms of the brain, which held a meaningful relationship with individuals' fluid intelligence measures.

      Strengths:

      Recent advances in neural network models that extract visual, linguistic, and semantic features from real-world stimuli have enabled neuroscientists to build encoding models that predict brain responses from these features. Higher prediction accuracy indicates greater explained variance in neural activity, and therefore a better model of brain function. Commonly used models include AlexNet for visual features, WordNet for audio-semantic features, and CLIP for visuo-semantic features; these served as comparison models in the study. Building on this line of work, the authors developed an encoding model using VALOR, which captures the multimodal and dynamic nature of real-world stimuli. VALOR outperformed the comparison models in predicting brain responses. It also recapitulated known semantic mappings and revealed evidence of predictive processing in the brain. These findings support VALOR as a strong candidate model of brain function.

      Weaknesses:

      The authors argue that this modeling contributes to a better understanding of how the brain works. However, upon reading, I am less convinced about how VALOR's superior performance over other models tells us more about the brain. VALOR is a better model of the audiovisual stimulus because it processes multimodal and dynamic stimuli compared to other unimodal or static models. If the model better captures real-world stimuli, then I almost feel that it has to better capture brain responses, assuming that the brain is a system that is optimized to process multimodal and dynamic inputs from the real world. The authors could strengthen the manuscript if the significance of their encoding model findings were better explained.

      In Study 3, the authors show high alignment between WordNet and VALOR feature PCs. Upon reading the method together with Figure 3, I suspect that the alignment almost has to be high, given that the authors projected VALOR features to the Huth et al.'s PC space. Could the authors conduct non-parametric permutation tests, such as shuffling the VALOR features prior to mapping onto Huth et al.'s PC space, and then calculating the Jaccard scores? I imagine that the null distribution would be positively shifted. Still, I would be convinced if the alignment is higher than this shifted null distribution for each PC. If my understanding of this is incorrect, I suggest editing the relevant Method section (line 508) because this analysis was not easy to understand.

      In Study 4, the authors show that individuals whose superior parietal gyrus (SPG) exhibited high prediction distance had high fluid cognitive scores (Figure 4C). I had a hard time believing that this was a hypothesis-driven analysis. The authors motivate the analysis that "SPG and PCu have been strongly linked to fluid intelligence (line 304)". Did the authors conduct two analyses only-SPG-fluid intelligence and PCu-fluid intelligence-without relating other brain regions to other individual differences measures? Even if so, the authors should have reported the same r-value and p-value for PCu-fluid intelligence. If SPG-fluid intelligence indeed holds specificity in terms of statistical significance compared to all possible scenarios that were tested, is this rationally an expected result, and could the authors explain the specificity? Also, the authors should explain why they considered fluid intelligence to be the proxy of one's ability to anticipate upcoming scenes during movie watching. I would have understood the rationale better if the authors had at least aggregated predictive scores for all brain regions that held significance into one summary statistic and found a significant correlation with the fluid intelligence measure.

    3. Reviewer #3 (Public review):

      Summary:

      In this work, the authors aim to improve neural encoding models for naturalistic video stimuli by integrating temporally aligned multimodal features derived from a deep learning model (VALOR) to predict fMRI responses during movie viewing.

      Strengths:

      The major strength of the study lies in its systematic comparison across unimodal and multimodal models using large-scale, high-resolution fMRI datasets. The VALOR model demonstrates improved predictive accuracy and cross-dataset generalization. The model also reveals inherent semantic dimensions of cortical organization and can be used to evaluate the integration timescale of predictive coding.

      This study demonstrates the utility of modern multimodal pretrained models for improving brain encoding in naturalistic contexts. While not conceptually novel, the application is technically sound, and the data and modeling pipeline may serve as a valuable benchmark for future studies.

      Weaknesses:

      The overall framework of using data-driven features derived from pretrained AI models to predict neural response has been well studied and accepted by the field of neuroAI for over a decade. The demonstrated improvements in prediction accuracy, generalization, and semantic mapping are largely attributable to the richer temporal and multimodal representations provided by the VALOR model, not a novel neural modeling framework per se. As such, the work may be viewed as an incremental application of recent advances in multimodal AI to a well-established neural encoding pipeline, rather than a conceptual advance in modeling neural mechanisms.

      Several key claims are overstated or lack sufficient justification:

      (1) Lines 95-96: The authors claim that "cortical areas share a common space," citing references [22-24]. However, these references primarily support the notion that different modalities or representations can be aligned in a common embedding space from a modeling perspective, rather than providing direct evidence that cortical areas themselves are aligned in a shared neural representational space.

      (2) The authors discuss semantic annotation as if it is still a critical component of encoding models. However, recent advances in AI-based encoding methods rely on features derived from large-scale pretrained models (e.g., CLIP, GPT), which automatically capture semantic structure without requiring explicit annotation. While the manuscript does not systematically address this transition, it is important to clarify that the use of such pretrained models is now standard in the field and should not be positioned as an innovation of the present work. Additionally, the citation of Huth et al. (2012, Neuron) to justify the use of WordNet-based annotation omits the important methodological shift in Huth et al. (2016, Nature), which moved away from manual semantic labeling altogether.

      Since the 2012 dataset is used primarily to enable comparison in study 3, the emphasis should not be placed on reiterating the disadvantages of semantic annotation, which have already been addressed in prior work. Instead, the manuscript's strength lies in its direct comparison between data-driven feature representations and semantic annotation based on WordNet categories. The authors should place greater emphasis on analyzing and discussing the differences revealed by these two approaches, rather than focusing mainly on the general advantage of automated semantic mapping.

      (3) The authors use subject-specific encoding models trained on the HCP dataset to predict group-level mean responses in an independent in-house dataset. While this analysis is framed as testing model generalization, it is important to clarify that it is not assessing traditional out-of-distribution (OOD) generalization, where the same subject is tested on novel stimuli, but rather evaluating which encoding model's feature space contains more stimulus-specific and cross-subject-consistent information that can transfer across datasets.

      Within this setup, the finding that VALOR outperforms CLIP, AlexNet, and WordNet is somewhat expected. VALOR encodes rich spatiotemporal information from videos, making it more aligned with movie-based neural responses. CLIP and AlexNet are static image-based models and thus lack temporal context, while WordNet only provides coarse categorical labels with no stimulus-specific detail. Therefore, the results primarily reflect the advantage of temporally-aware features in capturing shared neural dynamics, rather than revealing surprising model generalization. A direct comparison to pure video-based models, such as Video Swin Transformers or other more recent video models, would help strengthen the argument.

      Moreover, while WordNet-based encoding models perform reasonably well within-subject in the HCP dataset, their generalization to group-level responses in the Short Fun Movies (SFM) dataset is markedly poorer. This could indicate that these models capture a considerable amount of subject-specific variance, which fails to translate to consistent group-level activity. This observation highlights the importance of distinguishing between encoding models that capture stimulus-driven representations and those that overfit to individual heterogeneities.

    1. Reviewer #1 (Public review):

      Summary:

      This study advances the lab's growing body of evidence exploring higher-order learning and its neural mechanisms. They recently found that NMDA receptor activity in the perirhinal cortex was necessary for integrating stimulus-stimulus associations with stimulus-shock associations (mediated learning) to produce preconditioned fear, but it was not necessary for forming stimulus-shock associations. On the other hand, basolateral amygdala NMDA receptor activity is required for forming stimulus-shock memories. Based on these facts, the authors assessed: (1) why the perirhinal cortex is necessary for mediated learning but not direct fear learning, and (2) the determinants of perirhinal cortex versus basolateral amygdala necessity for forming direct versus indirect fear memories. The authors used standard sensory preconditioning and variants designed to manipulate the novelty and temporal relationship between stimuli and shock and, therefore, the attentional state under which associative information might be processed. Under experimental conditions where information would presumably be processed primarily in the periphery of attention (temporal distance between stimulus/shock or stimulus pre-exposure), perirhinal cortex NMDA receptor activation was required for learning indirect associations. On the other hand, when information would likely be processed in focal attention (novel stimulus contiguous with shock), basolateral amygdala NMDA activity was required for learning direct associations. Together, the findings indicate that the perirhinal cortex and basolateral amygdala subserve peripheral and focal attention, respectively. The authors provide support for their conclusions using careful, hypothesis-driven experimental design, rigorous methods, and integrating their findings with the relevant literature on learning theory, information processing, and neurobiology. Therefore, this work will be highly interesting to several fields.

      Strengths:

      (1) The experiments were carefully constructed and designed to test hypotheses that were rooted in the lab's previous work, in addition to established learning theory and information processing background literature.

      (2) There are clear predictions and alternative outcomes. The provided table does an excellent job of condensing and enhancing the readability of a large amount of data.

      (3) In a broad sense, attention states are a component of nearly every behavioral experiment. Therefore, identifying their engagement by dissociable brain areas and under different learning conditions is an important area of research.

      (4) The authors clearly note where they replicated their own findings, report full statistical measures, effect sizes, and confidence intervals, indicating the level of scientific rigor.

      (5) The findings raise questions for future experiments that will further test the authors' hypotheses; this is well discussed.

      Weaknesses:

      As a reader, it is difficult to interpret how first-order fear could be impaired while preconditioned fear is intact; it requires a bit of "reading between the lines".

    2. Reviewer #2 (Public review):

      Summary:

      This paper continues the authors' research on the roles of the basolateral amygdala (BLA) and the perirhinal cortex (PRh) in sensory preconditioning (SPC) and second-order conditioning (SOC). In this manuscript, the authors explore how prior exposure to stimuli may influence which regions are necessary for conditioning to the second-order cue (S2). The authors perform a series of experiments which first confirm prior results shown by the author - that NMDA receptors in the PRh are necessary in SPC during conditioning of the first-order cue (S1) with shock to allow for freezing to S2 at test; and that NMDA receptors in the BLA are necessary for S1 conditioning during the S1-shock pairings. The authors then set out to test the hypothesis that the PRh encodes associations in a peripheral state of attention, whereas the BLA encodes associations in a focal state of attention, similar to the A1 and A2 states in Wagner's theory of SOP. To do this, they show that BLA is necessary for conditioning to S2 when the S2 is first exposed during a serial compound procedure - S2-S1-shock. To determine whether pre-exposure of S2 will shift S2 to a peripheral focal state, the authors run a design in which S2-S1 presentations are given prior to the serial compound phase. The authors show that this restores NMDA receptor activity within the PRh as necessary for the fear response to S2 at test. They then test whether the presence of S1 during the serial compound conditioning allows the PRh to support the fear responses to S2 by introducing a delay conditioning paradigm in which S1 is no longer present. The authors find that PRh is no longer required and suggest that this is due to S2 remaining in the primary focal state.

      Strengths:

      As with their earlier work, the authors have performed a rigorous series of experiments to better understand the roles of the BLA and PRh in the learning of first- and second-order stimuli. The experiments are well-designed and clearly presented, and the results show definitive differences in functionality between the PRh and BLA. The first experiment confirms earlier findings from the lab (and others), and the authors then build on their previous work to more deeply reveal how these regions differ in how they encode associations between stimuli. The authors have done a commendable job of pursuing these questions.

      Table 1 is an excellent way to highlight the results and provide the reader with a quick look-up table of the findings.

      Weaknesses:

      The authors have attempted to resolve the question of the roles of the PRh and BLA in SPC and SOC, which the authors have explored in previous papers. Laudably, the authors have produced substantial results indicating how these two regions function in the learning of first- and second-order cues, providing an opportunity to narrow in on possible theories for their functionality. Yet the authors have framed this experiment in terms of an attentional framework and have argued that the results support this particular framework and hypothesis - that the PRh encodes peripheral and the BLA encodes focal states of learning. This certainly seems like a viable and exciting hypothesis, yet I don't see why the results have been completely framed and interpreted this way. It seems to me that there are still some alternative interpretations that are plausible and should be included in the paper.

    3. Reviewer #3 (Public review):

      Summary:

      This manuscript presents a series of experiments that further investigate the roles of the BLA and PRH in sensory preconditioning, with a particular focus on understanding their differential involvement in the association of S1 and S2 with shock.

      Strengths:

      The motivation for the study is clearly articulated, and the experimental designs are thoughtfully constructed. I especially appreciate the inclusion of Table 1, which makes the designs easy to follow. The results are clearly presented, and the statistical analyses are rigorous. My comments below mainly concern areas where the writing could be improved to help readers more easily grasp the logic behind the experiments.

      Weaknesses:

      (1) Lines 56-58: The two previous findings should be more clearly summarized. Specifically, it's unclear whether the "mediated S2-shock" association occurred during Stage 2 or Stage 3. I assume the authors mean Stage 2, but Stage 2 alone would not yet involve "fear of S2," making this expression a bit confusing.

      (2) Line 61: The phrase "Pavlovian fear conditioning" is ambiguous in this context. I assume it refers to S1-shock or S2-shock conditioning. If so, it would be clearer to state this explicitly.

      (3) Regarding the distinction between having or not having Stage 1 S2-S1 pairings, is "novel vs. familiar" the most accurate way to frame this? This terminology could be misleading, especially since one might wonder why S2 couldn't just be presented alone on Stage 1 if novelty is the critical factor. Would "outcome relevance" or "predictability" be more appropriate descriptors? If the authors choose to retain the "novel vs. familiar" framing, I suggest providing a clear explanation of this rationale before introducing the predictions around Line 118.

      (4) Line 121: This statement should refer to S1, not S2.

      (5) Line 124: This one should refer to S2, not S1.

      (6) Additionally, the rationale for Experiment 4 is not introduced before the Results section. While it is understandable that Experiment 4 functions as a follow-up to Experiment 3, it would be helpful to briefly explain the reasoning behind its inclusion.

  3. resu-bot-bucket.s3.ca-central-1.amazonaws.com resu-bot-bucket.s3.ca-central-1.amazonaws.com
    1. •Implemented over 6 different JUnit tests for each function future-proofing development and open-source contributions.

      Clarify how these tests contributed to the project's reliability or ease of future updates.

    2. •Utilized Java libraries and frameworks to create functions that allowed for recursive generation of the dice.

      Explain the significance of this feature—how does it enhance the application's functionality or user experience?

    3. •Developed standards for employee software interaction, reduced operating costs by 40%, improving functionality.

      Explain how reduced costs translated to benefits for the company (e.g., increased revenue, efficiency).

    4. •Unified three isolated programs into one software solution utilizing Java, PHP, SQL(MySQL), and RESTful API reducing user workload by up to 75%.

      Clarify the context of 'user workload' reduction—what tasks were simplified or eliminated?

    5. •Partnered with the professor, planned and implemented creative projects following the school’s curriculum and objectives, improving students’ understanding of course material.

      Specify how much student understanding improved (e.g., grades, feedback) to quantify impact.

    1. Reviewer #1 (Public review):

      Summary and Strengths:

      The very well-written manuscript by Lövestam et al. from the Scheres/Goedert groups entitled "Twelve phosphomimetic mutations induce the assembly of recombinant full-length human tau into paired helical filaments" demonstrates the in vitro production of the so-called paired helical filament Alzheimer's disease (AD) polymorph fold of tau amyloids through the introduction of 12 point mutations that attempt to mimic the disease-associated hyper-phosphorylation of tau. The presented work is very important because it enables disease-related scientific work, including seeded amyloid replication in cells, to be performed in vitro using recombinant-expressed tau protein.

      Comments on revised version:

      The manuscript is significantly improved, as also indicated by Reviewer 2, with the 100% formation of the PHF and the additional experiments to elucidate on the potential mechanism by the PTMs. This is a great work.

    2. Reviewer #2 (Public review):

      Summary:

      This manuscript addresses an important impediment in the field of Alzheimer's disease (AD) and tauapathy research by showing that 12 specific phosphomimetic mutations in full-length tau allow the protein to aggregate into fibrils with the AD fold and the fold of chronic traumatic encephalopathy fibrils in vitro. The paper presents comprehensive structural and cell based seeding data indicating the improvement of their approach over previous in vitro attempts on non-full-length tau constructs. The main weaknesses of this work results from the fact that only up to 70% of the tau fibrils form the desired fibril polymorphs. In addition, some of the figures are of low quality and confusing.

      Strengths:

      This study provides significant progress towards a very important and timely topic in the amyloid community, namely the in vitro production of tau fibrils found in patients.

      The 12 specific phosphomimetic mutations presented in this work will have an immediate impact in the field since they can be easily reproduced.

      Multiple high-resolution structures support the success of the phosphomimetic mutation approach.

      Additional data show the seeding efficiency of the resulting fibrils, their reduced tendency to bundle, and their ability to be labeled without affecting core structure or seeding capability.

      Comments on revised version:

      Generally, I am satisfied with the revisions. Specifically, the new results showing 100% formation of PHF is a significant improvement.

    1. Reviewer #1 (Public review):

      Summary:

      The topic of tumor-immune co-evolution is an important, understudied topic with, as the authors noted, a general dearth of good models in this space. The authors have made important progress on the topic by introduced a stochastic branching process model of antigenicity / immunogenicity and measuring the proportion of simulated tumors which go extinct. The model is extensively explored and authors provide some nice theoretical results in addition to simulated results, including an analysis of increasing cancer/immune versus cyclical cancer/immune dynamics. The analysis appropriately builds upon the foundation of other work in the field of predicting site frequency spectrum, but extends the results into cancer-immune co-evolution in an intuitive computational framework.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript by Moret et al. details the development and characterisation of novel ER- and mitochondria-targeted genetically encoded chemogenic Ca2+ sensors.

      Strengths:

      Compared to existing probes, these sensors exhibited superior responsiveness, brightness, and photostability within the red and far-red emission spectrum, enabling triple compartment Ca2+ measurements (ER, mitochondria, cytosol) and the detection of Ca2+ dynamics in axons and dendrites.

      Weaknesses:

      The data are robust and convincing, although the manuscript text lacks precision.

    2. Reviewer #2 (Public review):

      Summary:

      Moret et al. present an engineered family of fluorescent calcium indicators based on HaloCamp, a HaloTag-based sensor system that utilizes Janelia Fluorophores (JF dyes) to report calcium dynamics. By introducing single or multiple amino acid substitutions, the authors reduce HaloCamp's calcium affinity, making these low-affinity variants well-suited for imaging calcium transients in high-calcium environments such as the endoplasmic reticulum (ER) and mitochondria. The study validates the sensors' dissociation constants (Kd), spectra, and multiplex capabilities. It demonstrates improved performance compared to existing tools when targeted to subcellular compartments in mammalian cells and cultured neurons. The sensors can be tuned across the red-to-far-red spectrum via JF585 and JF635 labeling, enabling flexible multiplexed imaging. For example, the authors show that HaloCamp can be targeted to mitochondria and used alongside other green and red sensors, allowing simultaneous imaging of calcium dynamics in the cytosol, ER, and mitochondria. Overall, they achieve their goals, and the data demonstrate that HaloCamp variants are effective for detecting ER and mitochondrial calcium changes under physiological conditions. The presented experiments support the conclusions. However, some key aspects, such as sensor kinetics and axonal validation, would benefit from further analysis.

      This work is likely to have an important impact on the fields of calcium imaging and organelle physiology. The modular design of HaloCamp and its compatibility with a wide range of fluorophores offer a broad application range for cell biologists and neuroscientists.

      Strengths:

      (1) The authors introduce the first tunable, dye-based, low-affinity HaloTag calcium sensors for subcellular imaging, addressing a significant unmet need for ER and mitochondrial calcium detection.

      (2) The ability to pair HaloCamp with JF585 and JF635 extends the spectral range, facilitating multiplexed imaging with existing calcium indicators.

      (3) The sensors are validated in a range of subcellular compartments (ER, mitochondria, cytosol) in both mammalian cells and neurons.

      (4) The authors successfully demonstrate simultaneous imaging of three compartments using orthogonal sensors, a technically impressive feat.

      (5) Kd values are measured, and fluorescent responses are tested under physiologically relevant stimulation.

      Weaknesses:

      (1) The authors do not quantify the kinetics (e.g., decay tau or off-rate) of the fluorescent signals, particularly after stimulation. For example, in the ER imaging experiments in neurons, the decay of the HaloCamp fluorescence after field stimulation (20 APs @ 20 Hz) is not analyzed or compared to ER-GCaMP6-210 or R-CEPIer.

      (2) It remains unclear whether the observed decay represents the sensor's off-kinetics or actual physiological calcium clearance from the ER. A comparison between sensors or an independent measurement of ER clearance rates in vitro would clarify this.

      (3) The choice of 20 APs at 20 Hz is not justified. Specifically, single APs or low-frequency stimulations are not tested, leaving unclear what the detection threshold of the new sensors is.

      (4) In neuron experiments, the authors report measuring ER calcium in axons based presumably on morphology, but no specific justification for selection, markers, or post hoc labeling is described.

      (5) Figure 5 assumes that all three indicators (cytosolic, ER, and mitochondrial) are fast enough to report calcium dynamics in response to histamine. This assumption is not fully validated. Cross-controls (e.g., expressing GCaMP6-210 in mitochondria and HaloCamp in the ER) would strengthen confidence that the sensors are correctly reporting dynamic changes.

      (6) It is not clear why Thapsigargin leads to depletion in HeLa cells and neurons in experiments shown in Figure 1E, but not in 2B upon field stimulation.

    1. Reviewer #1 (Public review):

      Summary:

      This study investigates the molecular mechanism by which warm temperature induces female-to-male sex reversal in the ricefield eel (Monopterus albus), a protogynous hermaphroditic fish of significant aquacultural value in China. The study identifies Trpv4 - a temperature-sensitive Ca²⁺ channel - as a putative thermosensor linking environmental temperature to sex determination. The authors propose that Trpv4 causes Ca²⁺ influx, leading to activation of Stat3 (pStat3). pStat3 then transcriptionally upregulates the histone demethylase Kdm6b (aka Jmjd3), leading to increased dmrt1 gene expression and ovo-testes development. This work aims to bridge ecological cues with molecular and epigenetic regulators of sex change and has potential implications for sex control in aquaculture.

      Strengths:

      (1) This study proposes the first mechanistic pathway linking thermal cues to natural sex reversal in adult ricefield eel, extending the temperature-dependent sex determination paradigm beyond embryonic reptiles and saltwater fish.

      (2) The findings could have applications for aquaculture, where skewed sex ratios apparently limit breeding efficiency.

      Weaknesses:

      (A) Scientific Concerns:

      (1) There is insufficient replication and data transparency. First, the qPCR data are presented as bar graphs without individual data points, making it impossible to assess variability or replication. Please show all individual data points and clarify n (sample size) per group. Second, the Western blotting is only shown as single replicates. If repeated 2-3 times as stated, quantification and normalization (e.g., pStat3/Stat3, GAPDH loading control) are essential. The full, uncropped blots should be included in the supplementary data.

      (2) The biological significance of the results is not clear. Many reported fold changes (e.g., kdm6b modulation by Stat3 inhibition, sox9a in S3A) are modest (<2-fold), raising concerns about biological relevance. Can the authors define thresholds of functional relevance or confirm phenotypic outcomes in these animals?

      (3) The specificity of key antibodies is not validated. Key antibodies (Stat3, pStat3, Foxl2, Amh) were raised against mammalian proteins. Their specificity for ricefield eel proteins is unverified. Validation should include siRNA-mediated knockdown with immunoblot quantification with 3 replicates. Homemade antibodies (Sox9a, Dmrt1) also require rigorous validation.

      (4) Most of the imaging data (immunofluorescence) is inconclusive. Immunofluorescence panels are small and lack monochrome channels, which severely limits interpretability. Larger, better-contrasted images (showing the merge and the monochrome of important channels) and quantification would enhance the clarity of these findings.

      (B) Other comments about the science:

      (1) In S3A, sox9a expression is not dose-responsive to Trpv4 modulation, weakening the causal inference.

      (2) An antibody against Kdm6b (if available) should be used to confirm protein-level changes.

      In sum, the interpretations are limited by the above concerns regarding data presentation and reagent specificity.

    2. Reviewer #2 (Public review):

      Summary:

      This study presents valuable findings on the molecular mechanisms driving the female-to-male transformation in the ricefield eel (Monopterus albus) during aging. The authors explore the role of temperature-activated TRPV4 signaling in promoting testicular differentiation, proposing a TRPV4-Ca²⁺-pSTAT3-Kdm6b axis that facilitates this gonadal shift.

      Strengths:

      The manuscript describes an interesting mechanism potentially underlying sex differentiation in M. albus.

      Weaknesses:

      The current data are insufficient to fully support the central claims, and the study would benefit from more rigorous experimental approaches.

      (1) Overstated Title and Claims:

      The title "TRPV4 mediates temperature-induced sex change" overstates the evidence. No histological confirmation of gonadal transformation (e.g., formation of testicular structures) is presented. Conclusions are based solely on molecular markers such as dmrt1 and sox9a, which, although suggestive, are not definitive indicators of functional sex reversal.

      (2) Temperature vs Growth Rate Confounding (Figure 1E):

      The conclusion that warm temperature directly induces gonadal transformation is confounded by potential growth rate effects. The authors state that body size was "comparable" between 25{degree sign}C and 33{degree sign}C groups, but fail to provide supporting data. In ectotherms, growth is intrinsically temperature-dependent. Given the known correlation between size and sex change in M. albus, growth rate-rather than temperature per se-may underlie the observed sex ratio shifts. Controlled growth-matched comparisons or inclusion of growth rate metrics are needed.

      (3) TRPV4 as a Thermosensor-Insufficient Evidence:

      The characterisation of TRPV4 as a direct thermosensor lacks biophysical validation. The observed transcriptional upregulation of Trpv4 under heat (Figure 2) reflects downstream responses rather than primary sensor function. Functional thermosensors, including TRPV4, respond to heat via immediate ion channel activity-typically measurable within seconds-not mRNA expression over hours. No patch-clamp or electrophysiological data are provided to confirm TRPV4 activation thresholds in eel gonadal cells. Additionally, the Ca²⁺ imaging assay (Figure 2F) lacks essential details: the timing of GSK1016790A/RN1734 administration relative to imaging is unclear, making it difficult to distinguish direct channel activity from indirect transcriptional effects.

      (4) Cellular Context of TRPV4 Activity Is Unclear:

      In situ hybridisation suggests TRPV4 expression shifts from interstitial to somatic domains under heat (Figures. 2H, S2C), implying potential cell-type-specific roles. However, the study does not clarify: (i) whether TRPV4 plays the same role across these cell types, (ii) why somatic cells show stronger signal amplification, or (iii) the cellular composition of explants used in in vitro assays. Without this resolution, conclusions from pharmacological manipulation (e.g., GSK1016790A effects) cannot be definitively linked to specific cell populations.

      (5) Rapid Trpv4 mRNA Elevation and Channel Function:

      The authors report a dramatic increase in Trpv4 mRNA within one day of heat exposure (Figures 4D, S2B). Given that TRPV4 is a membrane channel, not a transcription factor, its rapid transcriptional sensitivity to temperature raises mechanistic questions. This finding, while intriguing, seems more correlational than functional. A clearer explanation of how TRPV4 senses temperature at the molecular level is needed.

      (6) Inconclusive Evidence for the Ca<sup>2+</sup> -pSTAT3-Kdm6b Axis:

      Although the authors propose a TRPV4-Ca<sup>2+</sup> -pSTAT3-Kdm6b-dmrt1 pathway, intermediate steps remain poorly supported. For example, western blot data (Figures 3C, 4B) do not convincingly demonstrate significant pSTAT3 elevation at 34{degree sign}C. Higher-resolution and properly quantified blots are essential. The inferred signalling cascade is based largely on temporal correlation and pharmacological inhibition, which are insufficient to establish direct regulatory relationships.

      (7) Species-Specific STAT3-Kdm6b Regulation Is Unresolved:

      The proposed activation of Kdm6b by pSTAT3 contrasts with findings in the red-eared slider turtle (Trachemys scripta), where pSTAT3 represses Kdm6b. This divergence in regulatory direction between the two TSD species is surprising and demands further justification. Cross-species differences in binding motifs or epigenetic context should be explored. Additional evidence, such as luciferase reporter assays (using wild-type and mutant pSTAT3 binding motifs in the Kdm6b promoter) is needed to confirm direct activation. A rescue experiment-testing whether Kdm6b overexpression can compensate for pSTAT3 inhibition-would also greatly strengthen the model.

      (8) Immunofluorescence-Lack of Structural Markers:

      All immunofluorescence images should include structural markers to delineate gonadal boundaries. Furthermore, image descriptions in the figure legends and main text lack detail and should be significantly expanded for clarity.

      (9) Pharmacological Reagents-Mechanisms and References:

      The manuscript lacks proper references and mechanistic descriptions for the pharmacological agents used (e.g., GSK1016790A, RN1734, Stattic). Established literature on their specificity and usage context should be cited to support their application and interpretation in this study.

      (10) Efficiency of Experimental Interventions:

      The percentage of gonads exhibiting sex reversal following pharmacological or RNAi treatments should be reported in the Results. This is critical for evaluating the strength and reproducibility of the interventions.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript titled "Introduction of cytosine-5 DNA methylation sensitizes cells to oxidative damage" proposes that 5mC modifications to DNA, despite being ancient and wide-spread throughout life, represent a vulnerability, making cells more susceptible to both chemical alkylation and, of more general importance, reactive oxygen species. Sarkies et al take the innovative approach of introducing enzymatic genome-wide cytosine methylation system (DNA methyltransferases, DNMTs) into E. coli, which normally lacks such a system. They provide compelling evidence that the introduction of DNMTs increases the sensitivity of E. coli to chemical alkylation damage. Surprisingly they also show DNMTs increase the sensitivity to reactive oxygen species and propose that the DNMT generated 5mC presents a target for the reactive oxygen species that is especially damaging to cells. Evidence is presented that DNMT activity directly or indirectly produces reactive oxygen species in vivo, which is an important discovery if correct, though the mechanism for this remains obscure.

      I am satisfied that the points #2, #3 and #4 relating to non-addativity, transcriptional changes and ROS generation have been appropriately addressed in this revised manuscript. The most important point (previously #1) has not been addressed beyond the acknowledgement in the results section that: "Alternatively, 3mC induction by DNMT may lead to increased levels of ssDNA, particularly in alkB mutants, which could increase the risk of further DNA damage by MMS exposure and heighten sensitivity." This slightly miss-represents the original point that 5mC the main enzymatic product of DNMTs rather or in addition to 3mC is likely to lead to transient damage susceptible ssDNA, especially in an alkB deficient background. And more centrally to the main claims of this manuscript, the authors have not resolved whether methylated cytosine introduced into bacteria is deleterious in the context of genotoxic stress because of the oxidative modification to 5mC and 3mC, or because of oxidative/chemical attack to ssDNA that is transiently exposed in the repair processing of 5mC and 3mC, especially in an alkB deficient background. This is a crucial distinction because chemical vulnerability of 5mC would likely be a universal property of cytosine methylation across life, but the wide-spread exposure of ssDNA is expected to be peculiarity of introducing cytosine methylation into a system not evolved with that modification as a standard component of its genome.

      These two models make different predictions about the predominant mutation types generated, in the authors system using M.SssI that targets C in a CG context - if oxidative damage to 5mC dominates then mutations are expected to be predominantly in a CG context, if ssDNA exposure effects dominate then the mutations are expected to be more widely distributed - sequencing post exposure clones could resolve this.

      Strengths:

      This work is based on an interesting initial premise, it is well motivated in the introduction and the manuscript is clearly written. The results themselves are compelling.

      Weaknesses:

      I am not currently convinced by the principal interpretations and think that other explanations based on known phenomena could account for key results. Specifically the authors have not resolved whether oxidative modification to 5mC and 3mC, or chemical attack to ssDNA that is transiently exposed in the repair processing of 5mC and 3mC is the principal source of the observed genotoxicity. The authors acknowledge this potential alternative model in their discussion of the revised manuscript.

    2. Reviewer #2 (Public review):

      5-methylcytosine (5mC) is a key epigenetic mark in DNA and plays a crucial role in regulating gene expression in many eukaryotes including humans. The DNA methyltransferases (DNMTs) that establish and maintain 5mC, are conserved in many species across eukaryotes, including animals, plants, and fungi, mainly in a CpG context. Interestingly, 5mC levels and distributions are quite variable across phylogenies with some species even appearing to have no such DNA methylation.

      This interesting and well-written paper discusses continuation of some of the authors' work published several years ago. In that previous paper, the laboratory demonstrated that DNA methylation pathways coevolved with DNA repair mechanisms, specifically with the alkylation repair system. Specifically, they discovered that DNMTs can introduce alkylation damage into DNA, specifically in the form of 3-methylcytosine (3mC). (This appears to be an error in the DNMT enzymatic mechanism where the generation 3mC as opposed to its preferred product 5-methylcytosine (5mC), is caused by the flipped target cytosine binding to the active site pocket of the DNMT in an inverted orientation.) The presence of 3mC is potentially toxic and can cause replication stress, which this paper suggests may explain the loss of DNA methylation in different species. They further showed that the ALKB2 enzyme plays a crucial role in repairing this alkylation damage, further emphasizing the link between DNA methylation and DNA repair.

      The co-evolution of DNMTs with DNA repair mechanisms suggest there can be distinct advantages and disadvantages of DNA methylation to different species which might depend on their environmental niche. In environments that expose species to high levels of DNA damage, high levels of 5mC in their genome may be disadvantageous. This present paper sets out to examine the sensitivity of an organism to genotoxic stresses such as alkylation and oxidation agents as the consequence of DNMT activity. Since such a study in eukaryotes would be complicated by DNA methylation controlling gene regulation, these authors cleverly utilize Escherichia coli (E.coli) and incorporate into it the DNMTs from other bacteria that methylate the cytosines of DNA in a CpG context like that observed in eukaryotes; the active sites of these enzymes are very similar to eukaryotic DNMTs and basically utilize the same catalytic mechanism (also this strain of E.coli does not specifically degrade this methylated DNA) .

      The experiments in this paper more than adequately show that E. coli expression of these DNMTs (comparing to the same strain without the DNMTS) do indeed show increased sensitivity to alkylating agents and this sensitivity was even greater than expected when a DNA repair mechanism was inactivated. Moreover, they show that this E. coli expressing this DNMT is more sensitive to oxidizing agents such as H2O2 and has exacerbated sensitivity when a DNA repair glycosylase is inactivated. Both propensities suggest that DNMT activity itself may generate additional genotoxic stress. Intrigued that DNMT expression itself might induce sensitivity to oxidative stress, the experimenters used a fluorescent sensor to show that H2O2 induced reactive oxygen species (ROS) are markedly enhanced with DNMT expression. Importantly, they show that DNMT expression alone gave rise to increased ROS amounts and both H2O2 addition and DNMT expression has greater effect that the linear combination of the two separately. They also carefully checked that the increased sensitivity to H2O2 was not potentially caused by some effect on gene expression of detoxification genes by DNMT expression and activity. Finally, by using mass spectroscopy, they show that DNMT expression led to production of the 5mC oxidation derivatives 5-hydroxymethylcytosine (5hmC) and 5-formylcytosine (5fC) in DNA. 5fC is a substrate for base excision repair while 5hmC is not; more 5fC was observed. Introduction of non-bacterial enzymes that produce 5hmC and 5fC into the DNMT expressing bacteria again showed a greater sensitivity than expected. Remarkedly, in their assay with addition of H2O2, bacteria showed no growth with this dual expression of DNMT and these enzymes.

      Overall, the authors conduct well thought-out and simple experiments to show that a disadvantageous consequence of DNMT expression leading to 5mC in DNA is increased sensitivity to oxidative stress as well as alkylating agents.

      Again, the paper is well-written and organized. The hypotheses are well-examined by simple experiments. The results are interesting and can impact many scientific areas such as our understanding of evolutionary pressures on an organism by environment to impacting our understanding about how environment of a malignant cell in the human body may lead to cancer.

      In a new revised version of the paper, the authors have adequately addressed issues put forth by other reviewers.

    3. Reviewer #3 (Public review):

      Summary:

      Krwawicz et al., present evidence that expression of DNMTs in E. coli results in (1) introduction of alkylation damage that is repaired by AlkB; (2) confers hypersensitivity to alkylating agents such as MMS (and exacerbated by loss of AlkB); (3) confers hypersensitivity to oxidative stress (H2O2 exposure); (4) results in a modest increase in ROS in the absence of exogenous H2O2 exposure; and (5) results in the production of oxidation products of 5mC, namely 5hmC and 5fC, leading to cellular toxicity. The findings reported here have interesting implications for the concept that such genotoxic and potentially mutagenic consequences of DNMT expression (resulting in 5mC) could be selectively disadvantageous for certain organisms. The other aspect of this work which is important for understanding the biological endpoints of genotoxic stress is the notion that DNA damage per se somehow induces elevated levels of ROS.

      Strengths:

      The manuscript is well-written, and the experiments have been carefully executed providing data that support the authors' proposed model presented in Fig. 7 (Discussion, sources of DNA damage due to DNMT expression).

      Weaknesses:

      (1) The authors have established an informative system relying on expression of DNMTs to gauge the effects of such expression and subsequent induction of 3mC and 5mC on cell survival and sensitivity to an alkylating agent (MMS) and exogenous oxidative stress (H2O2 exposure). The authors state (p4) that Fig. 2 shows that "Cells expressing either M.SssI or M.MpeI showed increased sensitivity to MMS treatment compared to WT C2523, supporting the conclusion that the expression of DNMTs increased the levels of alkylation damage." This is a confusing statement and requires revision as Fig. 2 does ALL cells shown in Fig. 2 are expressing DNMTs and have been treated with MMS. It is the absence of AlkB and the expression of DNMTs that that causes the MMS sensitivity.

      (2) It would be important to know whether the increased sensitivity (toxicity) to DNMT expression and MMS is also accompanied by substantial increases in mutagenicity. The authors should explain in the text why mutation frequencies were not also measured in these experiments.

      (3) Materials and Methods. ROS production monitoring. The "Total Reactive Oxygen Species (ROS) Assay Kit" has not been adequately described. Who is the Vendor? What is the nature of the ROS probes employed in this assay? Which specific ROS correspond to "total ROS"?

      (4) The demonstration (Fig. 4) that DNMT expression results in elevated ROS and its further synergistic increase when cells are also exposed to H2O2 is the basis for the authors' discussion of DNA damage-induced increases in cellular ROS. S. cerevisiae does not possess DNMTs/5mC, yet exposure to MMS also results in substantial increases in intracellular ROS (Rowe et al, (2008) Free Rad. Biol. Med. 45:1167-1177. PMC2643028). The authors should be aware of previous studies that have linked DNA damage to intracellular increases in ROS in other organisms and should comment on this in the text.

      Comments for the revised manuscript:

      In this revised manuscript, the authors have satisfactorily addressed the issues raised in the review of the original submission and have significantly improved these studies.

    1. Joint Public Review:

      In this work, the authors present DeepTX, a computational tool for studying transcriptional bursting using single-cell RNA sequencing (scRNA-seq) data and deep learning. The method aims to infer transcriptional burst dynamics-including key model parameters and the associated steady-state distributions-directly from noisy single-cell data. The authors apply DeepTX to datasets from DNA damage experiments, revealing distinct regulatory patterns: IdU treatment in mouse stem cells increases burst size, promoting differentiation, while 5FU alters burst frequency in human cancer cells, driving apoptosis or survival depending on dose. These findings underscore the role of burst regulation in mediating cell fate responses to DNA damage.

      The main strength of this study lies in its methodological contribution. DeepTX integrates a non-Markovian mechanistic model with deep learning to approximate steady-state mRNA distributions as mixtures of negative binomial distributions, enabling genome-scale parameter inference with reduced computational cost. The authors provide a clear discussion of the framework's assumptions, including reliance on steady-state data and the inherent unidentifiability of parameter sets, and they outline how the model could be extended to other regulatory processes.

      The revised manuscript addresses many of the original concerns, particularly regarding sample size requirements, distributional assumptions, and the biological interpretation of inferred parameters. However, the framework remains limited by the constraints of snapshot data and cannot yet resolve dynamic heterogeneity or causality. The manuscript would also benefit from a broader contextualisation of DeepTX within the landscape of existing tools linking mechanistic modelling and single-cell transcriptomics. Finally, the interpretation of pathway enrichment analyses still warrants clarification.

      Overall, this work represents a valuable contribution to the integration of mechanistic models with high-dimensional single-cell data. It will be of interest to researchers in systems biology, bioinformatics, and computational modelling.

    1. Reviewer #2 (Public review):

      This paper presents interesting and fresh approach as it investigates whether female moths utilize plant-emitted ultrasounds, particularly those associated with dehydration stress, in their egg-laying decision-making process. It provides the first empirical evidence suggesting that acoustic information may contribute to insect-plant interactions.

      The revised version is significantly strengthened by the addition of supplementary data and improved explanations. The authors present robust results across multiple experiments, enhancing the credibility of their conclusions.

      Female moths showed a preference for moist, fresh plants over dehydrated ones in experiments using actual plants. Additionally, when both plants were fresh but ultrasonic sounds specific to dehydrated plants were presented from one side, the moths chose the silent plant. However, in experiments without plants, contrary to the hypothesis derived from the above results, the moths preferred to oviposit near ultrasonic playback mimicking the sounds of dehydrated plants. 

      These results clearly indicate that moths can perceive plant presence through sound. The findings also highlight the need for future investigation into the multi-modal nature of moth decision-making, as acoustic cues alone may not fully explain the behavioral choices observed across different contexts.

      Overall, the results are intriguing, and I think the experiments are very well designed. The authors successfully demonstrate that plant-derived acoustic signals influence oviposition behavior in female moths, thereby achieving the study's objectives. The experimental design and analysis protocols are reproducible and well suited for adaptation to other species.

    1. Reviewer #1 (Public review):

      Summary:

      In this study, Meunier et al. investigated the functional role of IL-10 in avian mucosal immunity. While the anti-inflammatory role of IL-10 is well established in mammals, and several confirmatory Knock-out models available in mice, IL-10's role in avian mucosal immunity is so far correlative. In this study the authors generated two different models of IL-10 ablation in Chickens. A whole body knock-out model, and an enhancer KO model leading to reduced IL10 expression. The authors first performed in vitro LPS stimulation based experiments, and then in vivo two different infection models employing C. jejuni and E. tenella, to demonstrate that complete ablation of IL10 leads to enhanced inflammation related pathology and gene expression, and enhanced pathogen clearance. At a steady-state level, however, IL-10 ablation did not lead to spontaneous colitis.

      Strengths:

      Overall the study is well executed and establishes an anti-inflammatory role of IL-10 in birds. While the results are expected, and not surprising, this appears to be the first report to conclusively demonstrate IL-10's anti-inflammatory role upon its genetic ablation in avian model. Provided the applicability of this information in combating pathogen infection in livestock species in sustainable industries like poultry, the study is worth publishing.

      Weaknesses:

      The study is primarily a confirmation of the already established anti-inflammatory role of IL-10.

      Comments on revised version:

      The authors have incorporated most of the points raised, and provided a reasonable argument for not considering DSS mediated colitis as an additional model.

    2. Reviewer #2 (Public review):

      Summary:

      The authors were to investigate functional role of IL10 on mucosal immunity in chickens. CRISPR technology was employed to generate IL10 knock out chickens in both exon and putative enhancer regions. IL10 expressions were either abolished (knockout in exon) or reduced (enhancer knock-out). IL-10 play an important role in the composition of the caecal microbiome. Through various enteric pathogens challenge, deficient IL10 expression was associated with enhanced pathogen clearance, but with more severe lesion score and body weight loss.

      Strengths:

      Both in vitro and in vivo knock-out in abolished and reduced IL10 expression and broad enteric pathogens were challenged in vivo and various parameters were examined to evaluate the functional role of IL10 on mucosal immunity.

      Weaknesses:

      Overexpression of IL10 either in vitro or in vivo may further support the findings from this study.

      Comments on revised version:

      The authors' response and justifications are appropriate.

    1. Reviewer #1 (Public review):

      The authors present their new bioinformatic tool called TEKRABber, and use it to correlate expression between KRAB ZNFs and TEs across different brain tissues, and across species. While the aims of the authors are clear and there would be significant interest from other researchers in the field for a program that can do such correlative gene expression analysis across individual genomes and species, the presented approach and work display significant shortcomings. In the current state of the analysis pipeline, the biases and shortcomings mentioned below, for which I have seen no proof of that they are accounted for by the authors, are severely impacting the presented results and conclusions. It is therefore essential that the points below are addressed, involving significant changes in the TEKRABber progamm as well as the analysis pipeline, to prevent the identification of false positive and negative signals, that would severely affect the conclusions one can raise about the analysis.

      My main concerns are provided below:

      One important shortcoming of the biocomputational approach is that most TEs are not actually expressed, and others (Alus) are not a proxy of the activity of the TE class at all. I will explain: While specific TE classes can act as (species-specific) promoters for genes (such as LTRs) or are expressed as TE derived transcripts (LINEs, SVAs), the majority of other older TE classes do not have such behavior and are either neutral to the genome or may have some enhancer activity (as mapped in the program they refer to 'TEffectR'. A big focus is on Alus, but Alus contribute to a transcriptome in a different way too: They often become part of transcripts due to alternative splicing. As such, the presence of Alu derived transcripts is not a proxy for the expression/activity of the Alu class, but rather a result of some Alus being part of gene transcripts (see also next point). Bottom line is that the TEKRABber software/approach is heavily prone to picking up both false positives (TEs being part of transcribed loci) and false negatives (TEs not producing any transcripts at all) , which has a big implication for how reads from TEs as done in this study should be interpreted: The TE expression used to correlate the KRAB ZNF expression is simply not representing the species-specific influences of TEs where the authors are after.

      With the strategy as described, a lot of TE expression is misinterpreted: TEs can be part of gene-derived transcripts due to alternative splicing (often happens for Alus) or as a result of the TE being present in an inefficiently spliced out intron (happens a lot) which leads to TE-derived reads as a result of that TE being part of that intron, rather than that TE being actively expressed. As a result, the data as analysed is not reliably indicating the expression of TEs (as the authors intend too) and should be filtered for any reads that are coming from the above scenarios: These reads have nothing to do with KRAB ZNF control, and are not representing actively expressed TEs and therefore should be removed. Given that from my lab's experience in brain (and other) tissues, the proportion of RNA sequencing reads that are actually derived from active TEs is a stark minority compared to reads derived from TEs that happen to be in any of the many transcribed loci, applying this filtering is expected to have a huge impact on the results and conclusions of this study.

      Another potential problem that I don't see addressed is that due to the high level of similarity of the many hundreds of KRAB ZNF genes in primates and the reads derived from them, and the inaccurate annotations of many KZNFs in non-human genomes, the expression data derived from RNA-seq datasets cannot be simply used to plot KZNF expression values, without significant work and manual curation to safeguard proper cross species ortholog-annotation: The work of Thomas and Schneider (2011) has studied this in great detail but genome-assemblies of non-human primates tend to be highly inaccurate in appointing the right ortholog of human ZNF genes. The problem becomes even bigger when RNA-sequencing reads are analyzed: RNA-sequencing reads from a human ZNF that emerged in great apes by duplication from an older parental gene (we have a decent number of those in the human genome) may be mapped to that older parental gene in Macaque genome: So, the expression of human-specific ZNF-B, that derived from the parental ZNF-A, is likely to be compared in their DESeq to the expression of ZNF-A in Macaque RNA-seq data. In other words, without a significant amount of manual curation, the DE-seq analysis is prone to lead to false comparisons which make the stategy and KRABber software approach described highly biased and unreliable.

      There is no doubt that there are differences in expression and activity of KRAB-ZNFs and TEs repspectively that may have had important evolutionary consequences. However, because all of the network analyses in this paper rely on the analyses of RNA-seq data and the processing through the TE-KRABber software with the shortcomings and potential biases that I mentioned above, I need to emphasize that the results and conclusions are likely to be significantly different if the appropriate measures are taken to get more accurate and curated TE and KRAB ZNF expression data.

      Finally, there are some minor but important notes I want to share:

      The association with certain variations in ZNF genes with neurological disorders such as AD, as reported in the introduction is not entirely convincing without further functional support. Such associations could be merely happen by chance, given the high number of ZNF genes in the human genome and the high chance that variations in these loci happen associate with certatin disease associated traits. So using these associations as an argument that changes in TEs and KRAB ZNF networks are important for diseases like AD should be used with much more caution.

      There is a number of papers where KRAB ZNF and TE expression are analysed in parallel in human brain tissues. So the novelty of that aspect of the presented study may be limited.

      Additional note after reviewing the revised version of the manuscript:

      After reviewing the revised version of the manuscript, my criticism and concerns with this study are still evenly high and unchanged. To clarify, the revised version did not differ in essence from the original version; it seems that unfortunately, no efforts were taken to address the concerns raised on the original version of the manuscript, the results section as well as the discussion section are virtually unchanged.

    1. Reviewer #1 (Public review):

      Summary:

      Axon growth is of course essential to formation of neural connections. Adhesion is generally needed to anchor and rectify such motion, but whether the tenacity or forces of adhesion must be optimal for maximal axon extension is unknown. Measurements and contributing factors are generally lacking and are pursued here with a laser-induced shock wave approach near the axon growth cone. The authors claim to make measurements of the pressure required to detach axon from low to high matrix density. The results seem to support the authors' conclusions, and the work -- with further support per below - is likely to impact the field of cell adhesion. In particular, there could be some utility of the methods for the adhesion and those interested in aspects of axon growth

      Strengths:

      A potential ability to control the pressure simply via proximity of the laser spot is convenient and perhaps responsible. The 0 to 1 scale for matrix density is a good and appropriate measure for comparing adhesion and other results. The attention to detachment speed, time, F-actin, and adhesion protein mutant provides key supporting evidence. Lastly, the final figure of traction force microscopy with matrix varied on a gel is reasonable and more physiological because neural tissue is soft (cite PMID: 16923388); an optimum in Fig.6 also perhaps aligns with axon length results in Fig.5.

      Weaknesses:

      The results seem incomplete and less than convincing. This is because the force calibration curve seems to be from a >10 yr old paper without any more recent checks or validating measurements. Secondly, the claimed effect of pressure on detachment of the growth cone does not consider other effects such as cavitation or temperature and certainly needs validation with additional methods that overcome such uncertainties. The authors need to check whether the laser perturbs the matrix, particularly local density. A relation between traction stresses of ~20-50 pN/um2 in Fig.6 and the adhesion pressure of 3-5 kPa of FIg.3 needs to be carefully explained; the former units equate to 0.02-0.05 kPa, and would perhaps suggest cells cannot detach themselves and move forward.

      The authors need to measure axon length on gels (Fig.6) as more physiological because neural tissue is soft. The studies are also limited to a rudimentary in vitro model without clear relevance to in vivo.

      Weaknesses concerning the laser method have been addressed, but alternative methods and relevance to in vivo remain lacking.

    2. Reviewer #3 (Public review):

      Summary:

      Yamada et al. build on classic and more recent studies (Chen et al., 2023; Lemmon et al., 1992; Nichol et al., 2016; Zheng et al., 1994; Schense and Hubbell, 2000) to better understand the relationship between substrate adhesion and neurite outgrowth.

      Strengths:

      The primary strength of the manuscript lies in developing a method for investigating the role of adhesion in axon outgrowth and traction force generation using a femtosecond laser technique. The most exciting finding is that both outgrowth and traction force generation have a biphasic relationship with laminin concentration.

      Weaknesses:

      The primary weaknesses, as written, are a lack of discussion of prior studies that have directly measured the strength of growth cone adhesions to the substrate (Zheng et al., 1994) and traction forces (Koch et al., 2012), the inverse correlation between retrograde flow rate and outgrowth (Nichol et al., 2016), and prior studies noting a biphasic effect of substrate concentration of neurite outgrowth (Schense and Hubbell, 2000).

      Overall, the claims and conclusions are well justified by the data. The main exception is that the data is more relevant to how the rate of neurite outgrowth is controlled rather than axonal guidance.

      This manuscript will help foster interest in the interrelationship between neurite outgrowth, traction forces, and substrate adhesion, and the use of a novel method to study this problem.

      The authors did an excellent job in addressing my original concerns in the revision.

    1. Reviewer #1 (Public review):

      Summary:

      This manuscript uses primarily simulation tools to probe the pathway of cholesterol transport with the smoothened (SMO) protein. The pathway to the protein and within SMO is clearly discovered, and interactions deemed important are tested experimentally to validate the model predictions.

      Strengths:

      The authors have clearly demonstrated how cholesterol might go from the membrane through SMO for the inner and outer leaflets of a symmetrical membrane model. The free energy profiles, structural conformations, and cholesterol-residue interactions are clearly described.

      Weaknesses:

      (1) Membrane Model:

      The authors decided to use a rather simple symmetric membrane with just cholesterol, POPC, and PSM at the same concentration for the inner and outer leaflets. This is not representative of asymmetry known to exist in plasma membranes (SM only in the outer leaflet and more cholesterol in this leaflet). This may also be important to the free energy pathway into SMO. Moreover, PE and anionic lipids are present in the inner leaflet and are ignored. While I am not requesting new simulations, I would suggest that the authors should clearly state that their model does not consider lipid concentration leaflet asymmetry, which might play an important role.

      (2) Statistical comparison of barriers:

      The barriers for pathways 1 and 2 are compared in the text, suggesting that pathway 2 has a slightly higher barrier than pathway 1. However, are these statistically different? If so, the authors should state the p-value. If not, then the text in the manuscript should not state that one pathway is preferred over the other.

      (3) Barrier of cholesterol (reasoning):

      The authors on page 7 argue that there is an enthalpy barrier between the membrane and SMO due to the change in environment. However, cholesterol lies in the membrane with its hydroxyl interacting with the hydrophilic part of the membrane and the other parts in the hydrophobic part. How is the SMO surface any different? It has both characteristics and is likely balanced similarly to uptake cholesterol. Unless this can be better quantified, I would suggest that this logic be removed.

    2. Reviewer #2 (Public review):

      Summary:

      In this work, the authors applied a range of computational methods to probe the translocation of cholesterol through the Smoothened receptor. They test whether cholesterol is more likely to enter the receptor straight from the outer leaflet of the membrane or via a binding pathway in the inner leaflet first. Their data reveal that both pathways are plausible but that the free energy barriers of pathway 1 are lower, suggesting this route is preferable. They also probe the pathway of cholesterol transport from the transmembrane region to the cysteine-rich domain (CRD).

      Strengths:

      (1) A wide range of computational techniques is used, including potential of mean force calculations, adaptive sampling, dimensionality reduction using tICA, and MSM modelling. These are all applied in a rigorous manner, and the data are very convincing. The computational work is an exemplar of a well-carried out study.

      (2) The computational predictions are experimentally supported using mutagenesis, with an excellent agreement between their PMF and mRNA fold change data.

      (3) The data are described clearly and coherently, with excellent use of figures. They combine their findings into a mechanism for cholesterol transport, which on the whole seems sound.

      (4) The methods are described well, and many of their analysis methods have been made available via GitHub, which is an additional strength.

      Weaknesses:

      (1) Some of the data could be presented a little more clearly. In particular, Figure 7 needs additional annotation to be interpretable. Can the position of the cholesterol be shown on the graph so that we can see the diameter change more clearly?

      (2) In Figure 3C, it doesn't look like the Met is constricting the tunnel at all. What residue is constricting the tunnel here? Can we see the Ala and Met panels from the same angle to compare the landscapes? Or does the mutation significantly change the tunnel? Why not A283 to a bulkier residue? Finally, the legend says that the figure shows that cholesterol can still pass this residue, but it doesn't really show this. Perhaps if the HOLE graph was plotted, we could see the narrowest point of the tunnel and compare it to the size of cholesterol.

      (3) The PMF axis in 3b and d confused me for a bit. Looking at the Supplementary data, it's clear that, e.g., the F455I change increases the energy barrier for chol entering the receptor. But in 3d this is shown as a -ve change, i.e., favourable. This seems the wrong way around for me. Either switch the sign or make this clearer in the legend, please.

      (4) The impact of G280V is put down to a decrease in flexibility, but it could also be a steric hindrance. This should be discussed.

      (5) Are the reported energy barriers of the two pathways (5.8{plus minus}0.7 and 6.5{plus minus}0.8 kcal/mol) significantly and/or substantially different enough to favour one over the other? This could be discussed in the manuscript.

      (6) Are the energy barriers consistent with a passive diffusion-driven process? It feels like, without a source of free energy input (e.g., ion or ATP), these barriers would be difficult to overcome. This could be discussed.

      (7) Regarding the kinetics from MSM, it is stated that the values seen here are similar to MFS transporters, but this then references another MSM study. A comparison to experimental values would support this section a lot.

    3. Reviewer #3 (Public review):

      This manuscript presents a study combining molecular dynamics simulations and Hedgehog (Hh) pathway assays to investigate cholesterol translocation pathways to Smoothened (SMO), a G protein-coupled receptor central to Hedgehog signal transduction. The authors identify and characterize two putative cholesterol access routes to the transmembrane domain (TMD) of SMO and propose a model whereby cholesterol traverses through the TMD to the cysteine-rich domain (CRD), which is presented as the primary site of SMO activation.

      The MD simulations and biochemical experiments are carefully executed and provide useful data. However, the manuscript is significantly weakened by a narrow and selective interpretation of the literature, overstatement of certain conclusions, and a lack of appropriate engagement with alternative models that are well-supported by published data-including data from prior work by several of the coauthors of this manuscript. In its current form, the manuscript gives a biased impression of the field and overemphasizes the role of the CRD in cholesterol-mediated SMO activation. Below, I provide specific points where revisions are needed to ensure a more accurate and comprehensive treatment of the biology.

      Major Comments:

      (1) Overstatement of the CRD as the Orthosteric Site of SMO Activation

      The manuscript repeatedly implies or states that the CRD is the orthosteric site of SMO activation, without adequate acknowledgment of alternative models. To give just a few examples (of many in this manuscript):

      a) "PTCH is proposed to modulate the Hh signal by decreasing the ability of membrane cholesterol to access SMO's extracellular cysteine-rich domain (CRD)" (p. 3).

      b) "In recent years there has been a vigorous debate on the orthosteric site of SMO" (p. 3).

      c) "cholesterol must travel through the SMO TMD to reach the orthosteric site in the CRD" (p. 4).

      d) "we observe cholesterol moving along TM6 to the TMD-CRD interface (common pathway, Fig. 1d) to access the orthosteric binding site in the CRD" (p. 6).

      While the second quote in this list at least acknowledges a debate, the surrounding text suggests that this debate has been entirely resolved in favor of the CRD model. This is misleading and not reflective of the views of other investigators in the field (see, for example, a recent comprehensive review from Zhang and Beachy, Nature Reviews Molecular and Cell Biology 2023, which makes the point that both the CRD and 7TM sites are critical for cholesterol activation of SMO as well as PTCH-mediated regulation of SMO-cholesterol interactions).

      In contrast, a large body of literature supports a dual-site model in which both the CRD and the TMD are bona fide cholesterol-binding sites essential for SMO activation. Examples include:

      a) Byrne et al., Nature 2016: point mutation of the CRD cholesterol binding site impairs-but does not abolish-SMO activation by cholesterol (SMO D99A, Y134F, and combination mutants - Fig 3 of the 2016 study).

      b) Myers et al., Dev Cell 2013 and PNAS 2017: CRD deletion mutants retain responsiveness to PTCH regulation and cholesterol mimetics (similar Hh responsiveness of a CRD deletion mutant is also observed in Fig 4 Byrne et al, Nature 2016).

      c) Deshpande et al., Nature 2019: mutation of residues in the TMD cholesterol binding site blocks SMO activation entirely, strongly implicating the TMD as a required site, in contrast to the partial effects of mutating or deleting the CRD site.

      Qi et al., Nature 2019, and Deshpande et al., Nature 2019, both reported cholesterol binding at the TMD site based on high-resolution structural data. Oddly, Deshpande et al., Nature 2019, is not cited in the discussion of TMD binding on p. 3, despite being one of the first papers to describe cholesterol in the TMD site and its necessity for activation (the authors only cite it regarding activation of SMO by synthetic small molecules).

      Kinnebrew et al., Sci Adv 2022 report that CRD deletion abolished PTCH regulation, which is seemingly at odds with several studies above (e.g., Byrne et al, Nature 2016; Myers et al, Dev Cell 2013); but this difference may reflect the use of an N-terminal GFP fusion to SMO in the Kinnebrew et al 2022, which could alter SMO activation properties by sterically hindering activation at the TMD site by cholesterol (but not synthetic SMO agonists like SAG); in contrast, the earlier work by Byrne et al is not subject to this caveat because it used an untagged, unmodified form of SMO.

      Although overexpression of PTCH1 and SMO (wild-type or mutant) has been noted as a caveat in studies of CRD-independent SMO activation by cholesterol, this reviewer points out that several of the studies listed above include experiments with endogenous PTCH1 and low-level SMO expression, demonstrating that SMO can clearly undergo activation by cholesterol (as well as regulation by PTCH1) in a manner that does not require the CRD.

      Recommendation:

      The authors should revise the manuscript to provide a more balanced overview of the field and explicitly acknowledge that the CRD is not the sole activation site. Instead, a dual-site model is more consistent with available structural, mutational, and functional data. In addition, the authors should reframe their interpretation of their MD studies to reflect this broader and more accurate view of how cholesterol binds and activates SMO.

      (2) Bias in Presentation of Translocation Pathways

      The manuscript presents the model of cholesterol translocation through SMO to the CRD as the predominant (if not sole) mechanism of activation. Statements such as: "Cholesterol traverses SMO to ultimately reach the CRD binding site" (p. 6) suggest an exclusivity that is not supported by prior literature in the field. Indeed, the authors' own MD data presented here demonstrate more stable cholesterol binding at the TMD than at the CRD (p 17), and binding of cholesterol to the TMD site is essential for SMO activation. As such, it is appropriate to acknowledge that cholesterol may activate SMO by translocating through the TM5/6 tunnel, then binding to the TMD site, as this is a likely route of SMO activation in addition to the CRD translocation route they highlight in their discussion.

      The authors describe two possible translocation pathways (Pathway 1: TM2/3 entry to TMD; Pathway 2: TM5/6 entry and direct CRD transfer), but do not sufficiently acknowledge that their own empirical data support Pathway 2 as more relevant. Indeed, because their experimental data suggest Pathway 2 is more strongly linked to SMO activation, this pathway should be weighted more heavily in the authors' discussion. In addition, Pathway 2 is linked to cholesterol binding to both the TMD and CRD sites (the former because the TMD binding site is at the terminus of the hydrophobic tunnel, the latter via the translocation pathway described in the present manuscript), so it is appropriate that Pathway 2 figure more prominently than Pathway 1 into the authors' discussion.

      The authors also claim that "there is no experimental structure with cholesterol in the inner leaflet region of SMO TMD" (p 16). However, a structural study of apo-SMO from the Manglik and Cheng labs (Zhang et al., Nat Comm, 2022) identified a cholesterol molecule docked at the TM5/6 interface and also proposed a "squeezing" mechanism by which cholesterol could enter the TM5/6 pocket from the membrane. The authors do not take this SMO conformation into account in their models, nor do they discuss the possibility that conformational dynamics at the TM5/6 interface could facilitate cholesterol flipping and translocation into the hydrophobic conduit, even though both possibilities have precedent in the 2022 empirical cryoEM structural analysis.

      Recommendation:

      The authors should avoid oversimplification of the SMO cholesterol activation process, either by tempering these claims or broadening their discussion to better reflect the complexity and multiplicity of cholesterol access and activation routes for SMO, and consider the 2022 apo-SMO cryoEM structure in their analysis of the TM5/6 translocation pathway.

      (3) Alternative Possibility: Direct Membrane Access to CRD

      The possibility that the CRD extracts cholesterol directly from the membrane outer leaflet is not considered. While the crystal structures place the CRD in a stable pose above the membrane, multiple cryo-EM studies suggest that the CRD is dynamic and adopts a variety of conformations, raising the possibility that the stability of the CRD in the crystal structures is a result of crystal packing and that the CRD may be far more dynamic under more physiological conditions.

      Recommendation:

      The authors should explicitly acknowledge and evaluate this potential mechanism and, if feasible, assess its plausibility through MD simulations.

      (4) Inconsistent Framing of Study Scope and Limitations

      The discussion contains some contradictory and misleading language. For example, the authors state that "In this study we only focused on the cholesterol movement from the membrane to CRD binding site." and then several sentences later state that "We outline the entire translocation mechanism from a kinetic and thermodynamic perspective.". These statements are at odds. The former appropriately (albeit briefly) notes the limited scope of the modeling, while the latter overstates the generality of the findings.

      In addition, the authors' narrow focus on the CRD site constitutes a major caveat to the entire work. It should be acknowledged much earlier in the manuscript, preferably in the introduction, rather than mentioned as an aside in the penultimate paragraph of the conclusion.

      Recommendation:<br /> The authors should clarify the scope of the study and expand the discussion of its limitations. They should explicitly acknowledge that the study models one of several cholesterol access routes and that the findings do not rule out alternative pathways.

      Summary:

      This study has the potential to make a useful contribution to our understanding of cholesterol translocation and SMO activation. However, in its current form, the manuscript presents an overly narrow and, at times, misleading view of the literature and biological models; as such, it is not nearly as impactful as it could be. I strongly encourage the authors to revise the manuscript to include:

      (1) A more balanced discussion of the CRD vs. TMD binding sites.

      (2) Acknowledgment of alternative cholesterol access pathways.

      (3) More comprehensive citation of prior structural and functional studies.

      (4) Clarification of assumptions and scope.

      Of note, the above suggestions require little to no additional MD simulations or experimental studies, but would significantly enhance the rigor and impact of the work.

    1. Reviewer #1 (Public review):

      Summary:

      In this paper, the authors investigate the effects of Miro1 on VSMC biology after injury. Using conditional knockout animals, they provide the important observation that Miro1 is required for neointima formation. They also confirm that Miro1 is expressed in human coronary arteries. Specifically, in conditions of coronary diseases, it is localized in both media and neointima, and, in atherosclerotic plaque, Miro1 is expressed in proliferating cells.

      However, the role of Miro1 in VSMC in CV diseases is poorly studied, and the data available are limited; therefore, the authors decided to deepen this aspect. The evidence that Miro-/- VSMCs show impaired proliferation and an arrest in S phase is solid and further sustained by restoring Miro1 to control levels, normalizing proliferation. Miro1 also affects mitochondrial distribution, which is strikingly changed after Miro1 deletion. Both effects are associated with impaired energy metabolism due to the ability of Miro1 to participate in MICOS/MIB complex assembly, influencing mitochondrial cristae folding. Interestingly, the authors also show the interaction of Miro1 with NDUFA9, globally affecting super complex 2 assembly and complex I activity.

      Finally, these important findings also apply to human cells and can be partially replicated using a pharmacological approach, proposing Miro1 as a target for vasoproliferative diseases.

      Strengths:

      The discovery of Miro1 relevance in neointima information is compelling, as well as the evidence in VSMC that MIRO1 loss impairs mitochondrial cristae formation, expanding observations previously obtained in embryonic fibroblasts.

      The identification of MIRO1 interaction with NDUFA9 is novel and adds value to this paper. Similarly, the findings that VSMC proliferation requires mitochondrial ATP support the new idea that these cells do not rely mostly on glycolysis.

      Weaknesses:

      (1) Figure 3:

      I appreciate the system used to assess mitochondrial distribution; however, I believe that time-lapse microscopy to evaluate mitochondrial movements in real time should be mandatory. The experimental timing is compatible with time-lapse imaging, and these experiments will provide a quantitative estimation of the distance travelled by mitochondria and the fraction of mitochondria that change position over time. I also suggest evaluating mitochondrial shape in control and MIRO1-/- VSMC to assess whether MIRO1 absence could impact mitochondrial morphology, altering fission/fusion machinery, since mitochondrial shape could differently influence the mobility.

      (2) Figure 6:

      The evidence of MIRO1 ablation on cristae remodeling is solid; however, considering that the mechanism proposed to explain the finding is the modulation of MICOS/MIB complex, as shown in Figure 6D, I suggest performing EM analysis in each condition. In my mind, Miro1 KK and Miro1 TM should lead to different cristae phenotypes according to the different impact on MICOS/MIB complex assembly. Especially, Miro1 TM should mimic Miro1 -/- condition, while Miro1 KK should drive a less severe phenotype. This would supply a good correlation between Miro1, MICOS/MIB complex formation and cristae folding.

      I also suggest performing supercomplex assembly and complex I activity with each plasmid to correlate MICOS/MIB complex assembly with the respiratory chain efficiency.

      (3) I noticed that none of the in vitro findings have been validated in an in vivo model. I believe this represents a significant gap that would be valuable to address. In your animal model, it should not be too complex to analyze mitochondria by electron microscopy to assess cristae morphology. Additionally, supercomplex assembly and complex I activity could be evaluated in tissue homogenates to corroborate the in vitro observations.

      (4) I find the results presented in Figure S7 somewhat unclear. The authors employ a pharmacological strategy to reduce Miro1 and validate the findings previously obtained with the genetic knockout model. They report increased mitophagy and a reduction in mitochondrial mass. However, in my opinion, these changes alone could significantly impact cellular metabolism. A lower number of mitochondria would naturally result in decreased ATP production and reduced mitochondrial respiration. This, in turn, weakens the proposed direct link between Miro1 deletion and impaired metabolic function or altered electron transport chain (ETC) activity. I believe this section would benefit from additional experiments and a more in-depth discussion.

    2. Reviewer #2 (Public review):

      Summary:

      This study identifies the outer‑mitochondrial GTPase MIRO1 as a central regulator of vascular smooth muscle cell (VSMC) proliferation and neointima formation after carotid injury in vivo and PDGF-stimulation ex vivo. Using smooth muscle-specific knockout male mice, complementary in vitro murine and human VSMC cell models, and analyses of mitochondrial positioning, cristae architecture, and respirometry, the authors provide solid evidence that MIRO1 couples mitochondrial motility with ATP production to meet the energetic demands of the G1/S cell cycle transition. However, a component of the metabolic analyses is suboptimal and would benefit from more robust methodologies. The work is valuable because it links mitochondrial dynamics to vascular remodelling and suggests MIRO1 as a therapeutic target for vasoproliferative diseases, although whether pharmacological targeting of MIRO1 in vivo can effectively reduce neointima after carotid injury has not been explored. This paper will be of interest to those working on VSMCs and mitochondrial biology.

      Strengths:

      The strength of the study lies in its comprehensive approach, assessing the role of MIRO1 in VSMC proliferation in vivo, ex vivo, and importantly in human cells. The subject provides mechanistic links between MIRO1-mediated regulation of mitochondrial mobility and optimal respiratory chain function to cell cycle progression and proliferation. Finally, the findings are potentially clinically relevant given the presence of MIRO1 in human atherosclerotic plaques and the available small molecule MIRO1.

      Weaknesses:

      (1) There is a consistent lack of reporting across figure legends, including group sizes, n numbers, how many independent experiments were performed, or whether the data is mean +/- SD or SEM, etc. This needs to be corrected.

      (2) The in vivo carotid injury experiments are in male mice fed a high-fat diet; this should be explicitly stated in the abstract, as it's unclear if there are any sex- or diet-dependent differences. Is VSMC proliferation/neointima formation different in chow-fed mice after carotid injury?

      (3) The main body of the methods section is thin, and it's unclear why the majority of the methods are in the supplemental file. The authors should consider moving these to the main article, especially in an online-only journal.

      (4) Certain metabolic analyses are suboptimal, including ATP concentration and Complex I activity measurements. The measurement of ATP/ADP and ATP/AMP ratios for energy charge status (luminometer or mass spectrometry), while high-resolution respirometry (Oroboros) to determine mitochondrial complex I activity in permeabilized VSMCs would be more informative.

      (5) The statement that 'mitochondrial mobility is not required for optimal ATP production' is poorly supported. XF Seahorse analysis should be performed with nocodazole and also following MIRO1 reconstitution +/- EF hands.

      (6) The authors should consider moving MIRO1 small molecule data into the main figures. A lot of value would be added to the study if the authors could demonstrate that therapeutic targeting of MIRO1 could prevent neointima formation in vivo.

    3. Reviewer #3 (Public review):

      Summary:

      This study addresses the role of MIRO1 in vascular smooth muscle cell proliferation, proposing a link between MIRO1 loss and altered growth due to disrupted mitochondrial dynamics and function. While the findings are potentially useful for understanding the importance of mitochondrial positioning and function in this specific cell type within health and disease contexts, the evidence presented appears incomplete, with key bioenergetic and mechanistic claims lacking adequate support.

      Strengths:

      (1) The study focuses on an important regulatory protein, MIRO1, and its role in vascular smooth muscle cell (VSMC) proliferation, a relatively underexplored context.

      (2) It explores the link between smooth muscle cell growth, mitochondrial dynamics, and bioenergetics, which is a potentially significant area for both basic and translational biology.

      (3) The use of both in vivo and in vitro systems provides a potentially useful experimental framework to interrogate MIRO1 function in this context.

      Weaknesses:

      (1) The central claim that MIRO1 loss impairs mitochondrial bioenergetics is not convincingly demonstrated, with only modest changes in respiratory parameters and no direct evidence of functional respiratory chain deficiency.

      (2) The proposed link between MIRO1 and respiratory supercomplex assembly or function is speculative, lacking mechanistic detail and supported by incomplete or inconsistent biochemical data.

      (3) Key mitochondrial assays are either insufficiently controlled or poorly interpreted, undermining the strength of the conclusions regarding oxidative phosphorylation.

      (4) The study does not adequately assess mitochondrial content or biogenesis, which could confound interpretations of changes in respiratory activity.

      (5) Overall, the evidence for a direct impact of MIRO1 on mitochondrial respiratory function in the experimental setting is weak, and the conclusions overreach the data.

    1. Reviewer #1 (Public review):

      Summary:

      The study by the Obata group characterizes the dynamics of the canonical malate dehydrogenase-citrate synthase metabolon in yeast.

      Strengths:

      The study is well-written and appears to give clear demonstrations of this phenomenon.

      Studies of the dynamics of metabolon formation are rare; if the authors can address the concern detailed below, then they have provided such for one of the canonical metabolons in nature.

      Weaknesses:

      There is a fundamental issue with the study, which is that the authors do not provide enough support or information concerning the split luciferase system that they use. Is the binding reversible or not? How the data is interpreted is massively influenced by this fact. What are the pros and cons of this method in comparison to, for example, FLIM-FRET? The authors state that the method is semi-quantitative - can they document this? All of the conclusions are based on the quality of this method. I know that it has been used by others, but at least some preliminary documentation to address these questions is required.

    2. Reviewer #2 (Public review):

      This study explores the dynamic association between malate dehydrogenase (MDH1) and citrate synthase (CIT1) in Saccharomyces cerevisiae, with the aim of linking this interaction to respiratory metabolism. Utilizing a NanoBiT split-luciferase system, the authors monitor protein-protein interactions in vivo under various metabolic conditions.

      Major Concerns:

      (1) NanoBiT Signal May Reflect Protein Abundance Rather Than Interaction Strength

      In Figure 1C, the authors report increased MDH1-CIT1 interaction under respiratory (acetate) conditions and decreased interaction during fermentation (glucose), as indicated by NanoBiT luminescence. However, this signal appears to correlate strongly with the expression levels of MDH1 and CIT1, raising the possibility that the observed luminescence reflects protein abundance rather than specific interaction dynamics. To resolve this, NanoBiT signals should be normalized to the expression levels of both proteins to distinguish between abundance-driven and interaction-driven changes.

      (2) Lack of Causal Evidence

      The study presents a series of metabolic perturbation experiments (e.g., arsenite, AOA, antimycin A, malonate) and correlates changes in metabolite levels with NanoBiT signals. However, these data are correlative and do not establish a functional role for the MDH1-CIT1 interaction in metabolic regulation. To demonstrate causality, the authors should implement approaches to specifically disrupt the MDH1-CIT1 interaction. One strategy could involve using a 15-residue peptide (Pept1) derived from the Pro354-Pro366 region of CIT1, previously shown to mediate the interaction, or introducing the cit1Δ3 (Arg362Glu) mutation, which perturbs binding. Metabolic flux analysis using ^13C-labeled glucose and mitochondrial respiration assays (e.g., Seahorse) could then assess functional consequences.

      (3) Absence of Protein Expression Controls Under Perturbation Conditions

      In experiments involving acetate, arsenite, AOA, antimycin A, and malonate, the authors infer changes in MDH1-CIT1 association based solely on NanoBiT signals. However, no accompanying data are provided on MDH1 and CIT1 protein levels under these conditions. This omission weakens the conclusions, as altered expression rather than interaction strength could underlie the observed luminescence changes. Immunoblotting or quantitative proteomics should be used to confirm constant protein expression across conditions.

      Conclusion:

      Although the central question is compelling and the use of NanoBiT in live cells is a strength, the manuscript requires additional experimental rigor. Specifically, normalization of interaction signals, introduction of causative perturbations, and validation of protein expression are essential to substantiate the study's claims.

    3. Reviewer #3 (Public review):

      Summary:

      Metabolons are multisubunit complexes that promote the physical association of sequential enzymes within a metabolic pathway. Such complexes are proposed to increase metabolic flux and efficiency by channeling reaction intermediates between enzymes. The TCA cycle enzymes malate dehydrogenase (MDH1) and citrate synthase (CIT1) have been linked to metabolon formation, yet the conditions under which these enzymes interact, and whether such interactions are dynamic in response to metabolic cues, remain unclear, particularly in the native cellular context. This study uses a nanoBIT protein-protein interaction assay to map the dynamic behavior of the MDH1-CIT1 interaction in response to multiple metabolic stimuli and challenges in yeast. Beyond mapping these interactions in real time, the authors also performed GC-MS metabolomics to map whole-cell metabolite alterations across experimental conditions. Finally, the authors use microscale thermophoresis to determine components that alter the MDH1-CIT1 interaction in vitro. Collectively, the authors synthesize their collected data into a model in which the MDH1-CIT1 metabolon dissociates in conditions of low respiratory flux, and is stimulated during conditions of high respiratory flux. While their data largely support these models, some key exceptions are found that suggest this model is likely oversimplified and will require further work to understand the complexities associated with MDH1-CIT1 interaction dynamics. Nonetheless, the authors put forth an interesting and timely toolkit to begin to understand the interaction kinetics and dynamics of key metabolic enzymes that should serve as a platform to begin disentangling these important yet understudied aspects of metabolic regulation.

      Strengths:

      (1) The authors address an important question: how do metabolon-associated protein-protein interactions change across altered metabolic conditions?

      (2) The development and validation of the MDH1-CIT1 nanoBIT assay provides an important tool to allow the quantification of this protein-protein interaction in vivo. Importantly, the authors demonstrate that the assay allows kinetic and real time assessment of these protein interactions, which reveal interesting and dynamic behavior across conditions.

      (3) The use of classic biochemical techniques to confirm that pH and various metabolites can alter the MDH1-CIT1 interaction in vitro is rigorous and supports the model put forth by the authors.

      Weaknesses:

      (1) Some of the data collected seem to be merely reported rather than synthesized and interpreted for the reader. This is particularly true for data that seem to reflect more complex trends, such as the GC-MS experiments that map metabolites across multiple experiments, or treatments that show somewhat counterintuitive results, such as the antimycin A treatment, which promotes rather than disrupts the MDH1-CIT1 interaction.

      (2) Some of the assertions put forth in the manuscript are not substantiated by the data presented, and the authors are at times overly reliant on previous findings from the literature to support their claims. This is particularly notable for claims about "TCA cycle flux"; the authors do not perform flux analysis anywhere in their study and should be cautious when insinuating correlations between their observations and "flux".

      (3) The manuscript presentation could be improved. For figures, at times, the axes do not have intuitive labels (example, Figure 1A), data points and details about the number of samples analyzed are missing (bar graphs and box plots), and molecular weight markers are not reported on western blots. The authors refer to the figures out of order in the text, which makes the manuscript challenging to navigate as a reader.

    1. Reviewer #1 (Public review):

      Summary:

      In this paper, Behruznia and colleagues use long-read sequencing data for 339 strains of the Mycobacterium tuberculosis complex to study genome evolution in this clonal bacterial pathogen. They use both a "classical" pangenome approach that looks at the presence and absence of genes, and a pangenome graph based on whole genomes in order to investigate structural variants in non-coding regions. The comparison of the two approaches is informative and shows that much is missed when focusing only on genes. The two main biological results of the study are that 1) the MTBC has a small pangenome with few accessory genes, and that 2) pangenome evolution is driven by genome reduction. The second result is still questionable because it relies on a method that disregards paralogs.

      Strengths:

      The authors put together the so-far largest data set of long-read assemblies representing most lineages of the Mycobacterium tuberculosis context, and covering a large geographic area. They sequenced and assembled genomes for strains of M. pinnipedi, L9, and La2, for which no high-quality assemblies were available previously. State-of-the-art methods are used to analyze gene presence-absence polymorphisms (Panaroo) and to construct a pangenome graph (PanGraph). Additional analysis steps are performed to address known problems with misannotated or misassembled genes.

      Weaknesses:

      The main criticism regarding the dominance of genome reduction remains after two rounds of revisions. A method that systematically excludes paralogs is hardly suitable to draw conclusions about the relative importance of insertions/duplications and deletions in a clonal organism, where any insertion/duplication will result in a paralog. I understand that a re-analysis of the data might not be practical, and the authors have added a few sentences in the discussion that touch on this problem. However, the statements regarding the dominance of genome reduction remain too assertive given this basic flaw.

      Here are the more detailed argument from the previous review:

      In a fully clonal organism, any insertion/duplication will be an insertion/duplication of an existing sequence and thus produce a paralog. If I'm correctly understanding your methods section, paralogs are systematically excluded in the pangraph analysis. Genomic blocks are summarized at the sublineage level as follows (l.184 ): "The DNA sequences from genomic blocks present in at least one sub-lineage but completely absent in others were extracted to look for long-term evolution patterns in the pangenome." I presume this is done using blastn, as in other steps of the analysis.

      So a sublineage-specific copy of IS6110 would be excluded here, because IS6110 is present somewhere in the genome in all sublineages. However, the appropriate category of comparison, at least for the discussion of genome reduction, is orthology rather than homology: is the same, orthologous copy of IS6110, at the same position in the genome, present or absent in other sublineages? The same considerations apply to potential sublineage-specific duplicates of PE, PPE, and Esx genes. These gene families play important roles in host-pathogen interactions, so I'd argue that the neglect of paralogs is not a finicky detail, but could be of broader biological relevance.

    1. Reviewer #1 (Public review):

      Summary:

      In this study, the authors investigate mechanisms of acquired resistance (AR) to KRAS-G12C inhibitors (sotorasib) in NSCLC, proposing that resistance arises from signaling rewiring rather than additional mutations.

      Strengths:

      Using a panel of AR models - including cell lines, PDXs, CDXs, and PDXOs - they report activation of KRAS and PI3K/AKT/mTOR pathways, with elevated PI3K levels. Pharmacologic inhibition or CRISPR-Cas9 knockout of PI3K partially restores sotorasib sensitivity, and p-4EBP1 upregulation is implicated as an additional contributor, with dual mTORC1/2 inhibition more effective than mTORC1 inhibition alone.

      Weaknesses:

      While the study addresses an important clinical question, it is limited by several weaknesses in experimental rigor, data interpretation, and presentation. The mechanistic findings are not entirely novel, since the role of PI3K-AKT-mTOR signaling in therapeutic resistance is already well-established in the literature. Rather than uncovering new resistance mechanisms, the study largely confirms known pathways. Several key conclusions are not supported by the data, and critical alternative explanations - such as additional mutations or increased KRAS expression - are not thoroughly investigated or ruled out. Furthermore, while the authors use CRISPR-Cas9 to knock out PI3K and 4E-BP1 in H23-AR and H358-AR cells to restore sotorasib sensitivity, they do not perform reconstitution experiments to confirm that re-expressing PI3K or 4E-BP1 reverses the sensitization. This prevents full characterization of PI3K and p-4EBP1 upregulation as contributors to resistance. The manuscript also has several errors, poor figure quality, and a lack of proper quantification. Additional experimental validation, data improvement, and text revisions are required.

    2. Reviewer #2 (Public review):

      Summary:

      In this manuscript, the authors focus on the identification of the mechanisms involved in the acquired resistance to Sotorasib in non-small lung KRASG12C mutant cells. To perform this study, the authors generate different clones of cell lines, cell-derived xenografts, patient-derived xenograft organoids, and patient-derived xenografts. In all these models, the authors generate resistant forms (i.e., resistant cell lines PDXs and organoids) and the genetic and molecular changes were characterised using whole-exome sequencing, proteomics, and phospho-proteomics. This analysis led to the identification of an important role of the PI3K/AKT/mTORC1/2 signalling network in the acquisition of resistance in several of the models tested. Molecular characterisation identified changes in the expression of some of the proteins in this network as key changes for the acquisition of resistance, and in particular, the authors show that changes in 4E-BP1 are common to some of the cells downstream of PI3K. Using pharmacological testing, they show that different drugs targeting PI3K, AKT, and MTORC1/2 sensitise some of the resistant models to Sotorasib. The analyses showed that the PI3K inhibitor copanlisib has an effect in NSCLC cells that, in some cases, seems to be synergistic with Sotorasib. Based on the work performed, the authors conclude that the PI3K/mTORC1/2 mediated 4E-BP1 phosphorylation is one of the mechanisms associated with the acquisition of resistance to Sotorasib and that targeting this signalling module could result in effective treatments for NSCLC patients.

      The work as presented in the current manuscript is very interesting, provides cell models that benefit the community, and can be used to expand our knowledge of the mechanism of resistance to KRAS targeting therapies. Overall, the techniques and methodology seem to be performed in agreement with standard practice, and the results support most of the conclusions made by the authors. However, there are some points that, if addressed, would increase the value and relevance of the findings and further extend the impact of this work. Some of the recommendations for changes relate to the way things are explained and presented, which need some work. Other changes might require the performance of additional experiments or reanalysis of the existing data.

      Strengths:

      (1) One of the stronger contributions of this article is the different models used to study the acquisition of resistance to Sotorasib. The resistant cell lines, PDXs and PDXOs, and the fact that the authors have different clones for each, made this collection especially relevant, as they seem to show different mechanisms that the cells used to become resistant to Sotorasib. Although logically, the authors focus on one of these mechanisms, the differential responses of the different clones and models to the treatments used in this work show that some of the clones used additional mechanisms of resistance that can be explored in other studies. Importantly, as they use in vitro and in vivo models, the results also consider the tumour microenvironment and other factors in the response to the treatments.

      (2) Another strength is the molecular characterisation of the different Sotorasib-resistant tumour cells by WES, which shows that these cells do not seem to acquire secondary mutations.

      (3) The use of MS-based proteomics also identifies proteome signatures that are associated with the acquisition of resistance, including PI3K/mTORC1/2. The combination of proteomics and phospho-proteomics results should allow the identification of several mechanisms that are deregulated in Sotorasib-resistant cells.

      (4) The results show a strong response of the NSCLC cells and PDXs to copanlisib, a drug for which there is limited information in this cancer type.

      (5) The way they develop the PDX-resistant and the PDXO seems to be appropriate.

      Weaknesses:

      In general, the data is of good quality, but due to the sheer amount of data included and the way it is presented and discussed, several of the claims or conclusions are not clear.

      (1) The abstract is rather long and gives details that are not usually included in one. This makes it very complicated to identify the most relevant findings of the work. The use of acronyms PDX, PDXO, and CDX without defining them makes it complicated for the non-specialist to know what the models are. Rewriting and reorganisation of the abstract would benefit the manuscript.

      (2) Expression, presentation, and grammar should be reviewed in all sections of the manuscript.

      (3) In the different parts of the result section where the models shown in Figure 2 are described the authors indicate "Whole-exome sequencing (WES) confirmed that XXX model retained the KRASG12C mutation with no additional KRAS mutations detected" however, it is not indicated where this data is shown and in not all the cases there is explanation to other possible modifications that might relate to mechanisms of resistance. This information should be included in the manuscript, and the WES made publicly available.

      (4) The way the proteomics analysis of the TC303 and TC314 parental and resistant PDX is described in the text is confusing. The addition of an experimental layout figure would facilitate the understanding. As it is written, it is not obvious that the parental PDX were also analysed. For instance, the authors say, "The global and phosphoproteomic analyses identified over 8,000 and 4,000 gene protein products (GPPs), respectively". Is this comparing only resistant cells, or from the comparison of the parental and resistant pairs? And where are these numbers presented in the figures? Also, there is information that seems more adequate for the materials and methods sections, i.e., "Samples were analyzed using label-free nanoscale liquid chromatography coupled with tandem mass spectrometry (nanoLC-MS/MS) on a Thermo Fusion Mass Spectrometer. The resulting data were processed and quantified using the Proteome Discoverer 2.5 interface with the Mascot search engine, referencing the NCBI RefSeq protein database (Saltzman, Ruprecht). Two-component analysis is better named principal component analysis."

      (5) While the presentation of the proteomics data could be done in different ways, the way the data is presented in Figure 3 does not allow the reader to get an idea of many of the findings from this experiment. Although it is indicated that a table with the data will be made available, this should be central to the way the data is presented and explained. A table (ie, Excel doc) where the raw data and all the analysis are presented should be included and referenced. Additionally, heat maps for the whole proteomes identified should be included. In the text, it is said, "Global proteomic heatmap analysis revealed unique protein profiles in TC303AR and TC314AR PDXs compared to their sensitive counterparts (Figure 3C)." However, this figure only shows the histogram of the differentially regulated cells. Inclusion of the histogram showing all the cells is necessary, and it might be informative to include the histogram comparing the two isogenic pairs, which could identify common mechanisms and differences between both sets. In Figure 3C, the protein names should be readable, or a reference to tables where the proteins are listed should be included.

      (6) In Figure 3, the pathway enrichment tool and GO used should be mentioned in the text. The tables with all significant tables should also be provided. The proteomics data seems to convincingly identify mTOR as one of the pathways deregulated in resistant cells, but there is little explanation of what is considered a significant FDR value and if there are other pathways or networks that are also modified, which might not be common to both isogenic models. In MS-based Phosphoproteome could help with the identification of differentially regulated pathways, but it is not really presented in the current manuscript. Most of the analysis of phospho-proteomics comes from the RPPA analysis, which is targeted proteomics. With the way the data is presented, the authors show evidence for a role of mTOR in the acquisition of resistance, but unfortunately, they do not discuss or allow the reader to explore if other pathways might also contribute to this change.

      (7) Where is the proteomics data going to be deposited, and will it be made public to comply with FAIR principles?

      (8) The authors claim that the resistance shown for H23AR and H353AR cells is due to reactivation of KRAS signalling. This is done by looking to phosphorylation of ERK as a surrogate, as they claim, "KRAS inhibition is commonly assessed by evaluating the inhibition of ERK phosphorylation (p-ERK)". While this might be true in many cases, the data presented does not demonstrate that the increase in p-ERK is due to reactivation of KRAS. To make this claim, the authors should measure activation of KRAS (and possibly H- and NRAS) using GST-pull down or an image-based method.

      (9) The experiments in Figure 4 are very confusing, and some controls are missing. There is no blot where they show the effect of Sotorasib treatment in H23 and H358 parental cells. Is the increase shown in resistant cells shown in parental or is it exclusive for resistant cells only (and therefore acquired)? Experiment 4B should include this control. What is clear is that there is an increase in the expression of AKT and PI3K.

      (10) The main point here is whether this is acquired resistance or the sensitivity to the drug is already there, and there was no need to do an omics experiment to find this. In some cases, it seems that the single treatment with PI3K inhibitors is as effective as Sotorasib treatment, promoting the death of the parental cells. This is in line with previous data in H23 and H353 that show sensitivity to PI3K inhibition ( i.e., H358 10.1016/j.jtcvs.2005.06.051 ; 10.1016/j.jtcvs.2005.06.051H23 10.20892/j.issn.2095-3941.2018.0361). The data is clear, especially for copanlisib, but would it be the case that this treatment could be used for the treatment of NSCLC alone or directly in combination with Sotorasib and prevent resistance? The results shown in Figure 4C strongly support that a single treatment might be effective in cases that do not respond to Sotorasib. The data in figure 4D-F (please correct typo "inhibition" in labels) seem to support that PI3K treatment of parental cells is as effective as in the resistant cells.

      (11) The experiments presented in Figure 7 show synergy between Sotorasib and copanlisib treatment in some of the resistant cells. But in Figure 7G, the single treatment of H23AR is as effective as the combination. Did the authors check the effect of this drug on the parental cells? As they do not include this control, it is not possible to know if this is acquired sensitivity to PI3K inhibition or if the parental cells were already sensitive (as indicated by the Figure 4 results).

    1. Reviewer #1 (Public review):

      Summary:

      In this detailed study, Cohen and Ben-Shaul characterized the AOB cell responses to various conspecific urine samples in female mice across the estrous cycle. The authors found that AOB cell responses vary with strains and sexes of the samples. Between estrous and non-estrous females, no clear or consistent difference in responses was found. The cell response patterns, as measured by the distance between pairs of stimuli, are largely stable. When some changes do occur, they are not consistent across strains or male status. The authors concluded that AOB detects the signals without interpreting them. Overall, this study will provide useful information for scientists in the field of olfaction.

      Strengths:

      The study uses electrophysiological recording to characterize the responses of AOB cells to various urines in female mice. AOB recording is not trivial as it requires activation of VNO pump. The team uses a unique preparation to activate the VNO pump with electric stimulation, allowing them to record AOB cell responses to urines in anesthetized animals. The study comprehensively described the AOB cell responses to social stimuli and how the responses vary (or not) with features of the urine source and the reproductive state of the recording females. The dataset could be a valuable resource for scientists in the field of olfaction.

      Weaknesses:

      The study will be significantly strengthened by understanding the "distance" of chemical composition in different urine. This could be an important future direction.

    1. Reviewer #1 (Public review):

      Summary:

      The manuscript by Hao Jiang et al described a systematic approach to identify proline hydroxylation proteins. The authors implemented a proteomic strategy with HILIC-chromatographic separation and reported an identification of 4993 sites from HEK293 cells (4 replicates) and 3247 sites from RCC4 sites (3 replicates) with 1412 sites overlapping between the two cell lines. From the analysis, the authors identified 225 sites and 184 sites respectively from 293 and RCC4 cells with HyPro diagnostic ion. The identifications were validated by analyzing a few synthetic peptides, with a specific focus on Repo-man (CDCA2) through comparing MS/MS spectra, retention time, and diagnostic ions. With SILAC analysis and recombinant enzyme assay, the study showed that Repo-man HyPro604 is a target of the PHD1 enzyme.

      Strengths:

      The study involved extensive LC-MS analysis and was carefully implemented. The identification of over 4000 confident proline hydroxylation sites would be a valuable resource for the community. The characterization of Repo-man proline hydroxylation is a novel finding.

      Weaknesses:

      However, as a study mainly focused on methodology, the findings from the experimental data did not convincingly demonstrate the sensitivity and specificity of the workflow for site-specific identification of proline hydroxylation in global studies.

      Major concerns:

      (1) The study applied HILIC-based chromatographic separation with a goal of enriching and separating hydroxyproline-containing peptides. However, as the authors mentioned, such an approach is not specific to proline hydroxylation. In addition, many other chromatography techniques can achieve deep proteome fractionation such as high pH reverse phase fractionation, strong-cation exchange etc. There was no data in this study to demonstrate that the strategy offered improved coverage of proline hydroxylation proteins, as the identifications of the HyPro sites could be achieved through deep fractionation and a highly sensitive LCMS setup. The data of Figure 2A and S1A were somewhat confusing without a clear explanation of the heat map representations.

      (2) The study reported that the HyPro immonium ion is a diagnostic ion for HyPro identification. However, the data showed that only around 5% of the identifications had such a diagnostic ion. In comparison, acetyllysine immonium ion was previously reported to be a useful marker for acetyllysine peptides (PMID: 18338905), and the strategy offered a sensitivity of 70% with a specificity of 98%. In this study, the sensitivity of HyPro immonium ion was quite low. The authors also clearly demonstrated that the presence of immonium ion varied significantly due to MS settings, peptide sequence, and abundance. With further complications from L/I immonium ions, it became very challenging to implement this strategy in a global LC-MS analysis to either validate or invalidate HyPro identifications.

      (3) The study aimed to apply the HILIC-based proteomics workflow to identify HyPro proteins regulated by the PHD enzyme. However, the quantification strategy was not rigorous. The study just considered the HyPro proteins not identified by FG-4592 treatment as potential PHD targeted proteins. There are a few issues. First, such an analysis was not quantitative without reproducibility or statistical analysis. Second, it did not take into consideration that data-dependent LC-MS analysis was not comprehensive and some peptide ions may not be identified due to background interferences. Lastly, FG-4592 treatment for 24 hrs could lead to wide changes in gene expressions and protein abundances. Therefore, it is not informative to draw conclusions based on the data for bioinformatic analysis.

      (4) The authors performed an in vitro PHD1 enzyme assay to validate that Repo-man can be hydroxylated by PHD1. However, Figure 9 did not show quantitatively PHD1-induced increase in Repo-man HyPro abundance and it is difficult to assess its reaction efficiency to compare with HIF1a HyPro.

    2. Reviewer #2 (Public review):

      Summary:

      In this manuscript, Jiang et al. developed a robust workflow for identifying proline hydroxylation sites in proteins. They identified proline hydroxylation sites in HEK293 and RCC4 cells, respectively. The authors found that the more hydrophilic HILIC fractions were enriched in peptides containing hydroxylated proline residues. These peptides showed differences in charge and mass distribution compared to unmodified or oxidized peptides. The intensity of the diagnostic hydroxyproline iminium ion depended on parameters including MS collision energy, parent peptide concentration, and the sequence of amino acids adjacent to the modified proline residue. Additionally, they demonstrate that a combination of retention time in LC and optimized MS parameter settings reliably identifies proline hydroxylation sites in peptides, even when multiple proline residues are present

      Strengths:

      Overall, the manuscript presents an advanced, standardized protocol for identifying proline hydroxylation. The experiments were well designed, and the developed protocol is straightforward, which may help resolve confusion in the field.

      Weaknesses:

      (1) The authors should provide a summary of the standard protocol for identifying proline hydroxylation sites in proteins that can easily be followed by others.

      (2) Cockman et al. proposed that HIF-α is the only physiologically relevant target for PHDs. Their approach is considered the gold standard for identifying PHD targets. Therefore, the authors should discuss the major progress they made in this manuscript that challenges Cockman's conclusion.

    3. Reviewer #3 (Public review):

      Summary:

      The authors present a new method for detecting and identifying proline hydroxylation sites within the proteome. This tool utilizes traditional LC-MS technology with optimized parameters, combined with HILIC-based separation techniques. The authors show that they pick up known hydroxy-proline sites and also validate a new site discovered through their pipeline.

      Strengths:

      The manuscript utilizes state-of-the-art mass spectrometric techniques with optimized collision parameters to ensure proper detection of the immonium ions, which is an advance compared to other similar approaches before. The use of synthetic control peptides on the HILIC separation step clearly demonstrates the ability of the method to reliably distinguish hydroxy-proline from oxidized methionine - containing peptides. Using this method, they identify a site on CDCA2, which they go on to validate in vitro and also study its role in regulation of mitotic progression in an associated manuscript.

      Weaknesses:

      Despite the authors' claim about the specificity of this method in picking up the intended peptides, there is a good amount of potential false positives that also happen to get picked (owing to the limitations of MS-based readout), and the authors' criteria for downstream filtering of such peptides require further clarification. In the same vein, greater and more diverse cell-based validation approach will be helpful to substantiate the claims regarding enrichment of peptides in the described pathway analyses.

    1. Reviewer #2 (Public review):

      Summary:

      The authors of this study investigated the membrane-binding properties of bactofilin A from Caulobacter crescentus, a classic model organism for bacterial cell biology. BacA was the progenitor of a family of cytoskeletal proteins that have been identified as ubiquitous structural components in bacteria, performing a range of cell biological functions. Association with the cell membrane is a frequent property of the bactofilins studied and is thought to be important for functionality. However, almost all bactofilins lack a transmembrane domain. While membrane association has been attributed to the unstructured N-terminus, experimental evidence had yet to be provided. As a result, the mode of membrane association and the underlying molecular mechanics remained elusive.

      Liu at al. analyze the membrane binding properties of BacA in detail and scrutinize molecular interactions using in-vivo, in-vitro and in-silico techniques. They show that few N-terminal amino acids are important for membrane association or proper localization and suggest that membrane association promotes polymerization. Bioinformatic analyses revealed conserved lineage-specific N-terminal motifs indicating a conserved role in protein localization. Using HDX analysis they also identify a potential interaction site with PbpC, a morphogenic cell wall synthase implicated in Caulobacter stalk synthesis. Complementary, they pinpoint the bactofilin-interacting region within the PbpC C-terminus, known to interact with bactofilin. They further show that BacA localization is independent of PbpC.

      Although the phenotypic effects of an abolished BacA-PbpC interaction are mild, these data significantly advance our understanding of bactofilin membrane binding, polymerization, and function at the molecular level. The major strength of the comprehensive study is the combination of complementary in vivo, in vitro and bioinformatic/simulation approaches, the results of which are consistent.

    1. Reviewer #1 (Public review):

      Summary:

      The authors have studied how a virus (EMCV) uses its RNA (Type 2 IRES) to hijack the host's protein-making machinery. They use cryo-EM to extract structural information about the recruitment of viral Type 2 IRES to ribosomal pre-IC. The authors propose a novel interaction mechanism in which the EMCV Type 2 IRES mimics 28S rRNA and interacts with ribosomal proteins and initiator tRNA (tRNAi).

      Strengths:

      (1) Getting structural insights about the Type 2 IRES-based initiation is novel.

      (2) The study allows a good comparison of other IRES-based initiation systems.

      (3) The manuscript is well-written and clearly explains the background, methods, and results.

      Weaknesses:

      (1) The main weakness of the work is the low resolution of the structure. This limits the possibility of data interpretation at the molecular level.

      However, despite the moderate resolution of the cryo-EM reconstructions, the model fits well into the density. The analysis of the EMCV IRES-48S PIC structure is thorough and includes meaningful comparisons to previously published structures (e.g., PDB IDs - 7QP6 and 7QP7). These comparisons showed that Map B1 represents a closed conformation, in contrast to Map A in the open state (Figure 2). Additionally, the proposed 28S rRNA mimicry strategy supported by structural superposition with the 80S ribosome and sequence similarity between the I domain of the IRES and the h38 region of 28S rRNA (Fig. 4) is well-justified.

      (2) The lack of experimental validation of the functional importance of regions like the GNRA and RAAA loops is another limitation of this study.

      (3) Minor modifications related to data processing and biochemical studies will further validate and strengthen the findings.

      a) In the cryo-EM data section, the authors should include an image showing rejected particles during 2D classification. This would help readers understand why, despite having over 22k micrographs with sufficient particle distribution and good contrast, only a smaller number of particles were used in the final reconstruction. Additionally, employing map-sharpening tools such as Ewald sphere correction, Bayesian polishing, or reference-based motion correction might further improve the quality of the maps. Targeting high-resolution structures would be particularly informative.

      b) The strategic modelling of different IRES domains into the density, particularly the domain into the region above the 40S head, is appreciable. However, providing the full RNA tertiary structure (RNAfold) of the EMCV IRES (nucleotides 280-905) would better explain the logic behind the model building and its molecular interpretation.

      c) Although the authors compare their findings with other types of IRESs (Types 1, 3, and 4), there is no experimental validation of the functional importance of regions like the GNRA and RAAA loops. Including luciferase-based assays or mutational studies of these regions for validation of structural interpretations is strongly recommended.

    2. Reviewer #2 (Public review):

      Summary:

      The field of protein translation has long sought the structure of a Type 2 Internal Ribosome Entry Site (IRES). In this work, Das and Hussain pair cryo-EM with algorithmic RNA structure prediction to present a structure of the Type 2 IRES found in Encephalomyocarditis virus (EMCV). Using medium to low resolution cryo-EM maps, they resolve the overall shape of a critical domain of this Type 2 IRES. They use algorithmic RNA prediction to model this domain onto their maps and attempt to explain previous results using this model.

      Strengths:

      (1) This study reveals a previously unknown/unseen binding modality used by IRESes: a direct interaction of the IRES with the initiator tRNA.

      (2) Use of an IRES-associated factor to assemble and pull down an IRES bound to the small subunit of the ribosome from cellular extracts is innovative.

      (3) Algorithmic modeling of RNA structure to complement medium to low resolution cryo-EM maps, as employed here, can be implemented for other RNA structures.

      Weaknesses:

      (1) Maps at the resolution presented prevent unambiguous modelling of the EMCV-IRES. This, combined with the lack of any biochemical data, calls into question any inferences made at the level of individual nucleotides, such as the GNRA loop and CAAA loop (Figure 4).

      (2) The EMCV IRES contains an upstream AUG at position 826, where the PIC can assemble (Pestova et al 1996; PMID 8943341). It is unclear if this start codon was mutated in this study. If it were not mutated, placement of AUG-834 over AUG-826 in the P-site is unexplained.

      (3) The claims the authors make about (i) the general overall shape and binding site of the IRES, (ii) its gross interaction with the two ribosomal proteins, (iii) the P-in state of the 48S, (iv) the rearrangement of the ternary complex are all warranted. Their claims about individual nucleotides or smaller stretches of the IRES-without any supporting biochemical data-is not warranted by the data.

    3. Reviewer #3 (Public review):

      Summary:

      Type II IRES, such as those from encephalomyocarditis virus (EMCV) and foot-and-mouth disease virus (FMDV), mediate cap-independent translation initiation by using the full complement of eukaryotic initiation factors (eIFs), except the cap-binding protein eIF4E. The molecular details of how IRES type II interacts with the ribosome and initiation factors to promote recruitment have remained unclear. Das and Hussain used cryo-electron microscopy to determine the structure of a translation initiation complex assembled on the EMCV IRES. The structure reveals a direct interaction between the IRES and the 40S ribosomal subunit, offering mechanistic insight into how type II IRES elements recruit the ribosome.

      Strengths:

      The structure reveals a direct interaction between the IRES and the 40S ribosomal subunit, offering mechanistic insight into how type II IRES elements recruit the ribosome.

      Weaknesses:

      While this reviewer acknowledges the technical challenges inherent in determining the structure of such a highly flexible complex, the overall resolution remains insufficient to fully support the authors' conclusions, particularly given that cryo-EM is the sole experimental approach presented in the manuscript.

      The study is biologically significant; however, the authors should improve the resolution or include complementary biochemical validation.

    1. Reviewer #1 (Public review):

      Summary:

      The authors test the hypothesis that the contribution of the cerebellum to cognitive tasks is similar to motor tasks, and is related to the processing of prediction errors (here: violation of expectations, VE). In three experiments, they find that cerebellar patients show differences compared to controls in measures of VE, but not task complexity. The findings show that cerebellar disease results in deficits in VE processing in cognitive tasks, and makes a valuable contribution of the field. The authors were able to test a large number of patients with cerebellar disease which is known to primarily affect the cerebellum (i.e. SCA6).

      Strengths:

      A strength of the study is that it is hypothesis-driven and that the three experiments are very well thought out. Furthermore, a comparatively large group of patients with spinocerebellar ataxia type 6 (SCA6) was tested, a disease which affects primarily the cerebellum.

      Weaknesses:

      - Acquisition of brain MRI scans would have been useful to perform lesion-behaviour-mapping. But this does not limit the significance of the behavioural findings.<br /> - Exp. 1 and 2: The lack of difference in accuracy was that an unexpected finding? How meaningful are the used paradigms when accuracy was the same in cerebellar patients and controls?<br /> - Exp. 1 and 2: Cerebellar patients have motor dysfunction which impacts reaction time. Can the authors exclude that this contributed at least in part to their findings? Any correlations to SARA score (upper limb function) or oculomotor dysfunction (e.g. presence of nystagmus)?<br /> - Data on the attention probes which have been done would be of interest. Were there any differences in attention between patients and controls, any correlations with the findings?

      Comments on revisions:

      I am not sure if I can follow the interpretation of the authors that the cerebellum contributes to prediction errors, but not predictions; These two are tightly connected? It may rather be that in patients with slowly progressive chronic disease there is a lot of compensation? It is not so rare that in cognitive tasks cerebellar patients do not perform differently from controls, even though one would expect a difference (e.g. based on fMRI data in controls)? Another factor which likely adds is age, Patients and controls are often middle-aged and elderly, adding to variability, decreasing the chance to see group differences?

    1. Reviewer #1 (Public review):

      The manuscript by Bru et al. focuses on the role of vacuoles as a phosphate buffering system for yeast cells. The authors describe here the crosstalk between the vacuole and the cytosol using a combination of in vitro analyses of vacuoles and in vivo assays. They show that the luminal polyphosphatases of the vacuole can hydrolyze polyphosphates to generate inorganic phosphate, yet they are inhibited by high concentrations. This balances the synthesis of polyphosphates against the inorganic phosphate pool. Their data further show that the Pho91 transporter provides a valve for the cytosol as it gets activated by a decline in inositol pyrophosphate levels. The authors thus demonstrate how the vacuole functions as a phosphate buffering system to maintain a constant cytosolic inorganic phosphate pool.

      This is a very consistent and well-written manuscript with a number of convincing experiments, where the authors use isolated vacuoles and cellular read-out systems to demonstrate the interplay of polyphosphate synthesis, hydrolysis, and release. The beauty of this system the authors present is the clear correlation between product inhibition and the role of Pho91 as a valve to release Pi to the cytosol to replenish the cytosolic pool. I find the paper overall an excellent fit and only have a few issues, including :

      (1) Figure 3: The authors use in their assays 1 mM ZnCl2 or 1mM MgCl2. Is this concentration in the range of the vacuolar luminal ion concentration? Did they also test the effect of Ca2+, as this ion is also highly concentrated in the lumen?

      (2) Regarding the concentration of 30 mM K-PI, did the authors also use higher and lower concentrations? I agree that there is inhibition by 30 mM, but they cannot derive conclusions on the luminal concentration if they use just one in their assay. A titration is necessary here.

      (3) What are the consequences on vacuole morphology if the cells lack Pho91?

      (4) Discussion: The authors do not refer to the effect of calcium, even though I would expect that the levels of the counterion should affect the phosphate metabolism. I would appreciate it if they would extend their discussion accordingly.

      (5) I would appreciate a brief discussion on how phosphate sensing and control are done in human cells. Do they use a similar lysosomal buffer system?

    2. Reviewer #2 (Public review):

      Summary:

      This manuscript presents a well-conceived and concise study that significantly advances our understanding of polyphosphate (polyP) metabolism and its role in cytosolic phosphate (Pi) homeostasis in a model unicellular eukaryote. The authors provide evidence that yeast vacuoles function as dynamic regulatory buffers for Pi homeostasis, integrating polyP synthesis, storage, and hydrolysis in response to cellular metabolic demands. The work is methodologically sound and offers valuable insights into the conserved mechanisms of phosphate regulation across eukaryotes.

      Strengths:

      The results demonstrate that the vacuolar transporter chaperone (VTC) complex, in conjunction with luminal polyphosphatases (Ppn1/Ppn2) and the Pi exporter Pho91, establishes a finely tuned feedback system that balances cytosolic Pi levels. Under Pi-replete conditions, inositol pyrophosphates (InsPPs) promote polyP synthesis and storage while inhibiting polyP hydrolysis, leading to vacuolar Pi accumulation.

      Conversely, Pi scarcity triggers InsPP depletion, activating Pho91-mediated Pi export and polyP mobilization to sustain cytosolic phosphate levels. This regulatory circuit ensures metabolic flexibility, particularly during critical processes such as glycolysis, nucleotide synthesis, and cell cycle progression, where phosphate demand fluctuates dramatically.

      From my viewpoint, one of the most important findings is the demonstration that vacuoles act as a rapidly accessible Pi reservoir, capable of switching between storage (as polyP) and release (as free Pi) in response to metabolic cues. The energetic cost of polyP synthesis-driven by ATP and the vacuolar proton gradient-highlights the evolutionary importance of this buffering system. The study also draws parallels between yeast vacuoles and acidocalcisomes in other eukaryotes, such as Trypanosoma and Chlamydomonas, suggesting a conserved role for these organelles in phosphate homeostasis.

      Weaknesses:

      While the manuscript is highly insightful, referring to yeast vacuoles as "acidocalcisome-like" may warrant further discussion. Canonical acidocalcisomes are structurally and chemically distinct (e.g., electron-dense, in most cases spherical, and not routinely subjected to morphological changes, and enriched with specific ions), whereas yeast vacuoles have well-established roles beyond phosphate storage. A comment on this terminology could strengthen the comparative analysis and avoid potential confusion in the field.

    3. Reviewer #3 (Public review):

      Bru et al. investigated how inorganic phosphate (Pi) is buffered in cells using S. cerevisiae as a model. Pi is stored in cells in the form of polyphosphates in acidocalcisomes. In S. cerevisiae, the vacuole, which is the yeast lysosome, also fulfills the function of Pi storage organelle. Therefore, yeast is an ideal system to study Pi storage and mobilization.

      They can recapitulate in their previously established system, using isolated yeast vacuoles, findings from their own and other groups. They integrate the available data and propose a working model of feedback loops to control the level of Pi on the cellular level.

      This is a solid study, in which the biological significance of their findings is not entirely clear. The data analysis and statistical significance need to be improved and included, respectively. The manuscript would have benefited from rigorously testing the model, which would also have increased the impact of the study.

    1. Reviewer #1 (Public review):

      Summary:

      Praegel et al. explore the differences in learning an auditory discrimination task between adolescent and adult mice. Using freely-moving (Educage) and head-fixed paradigms, they compare behavioral performance and neuronal responses over the course of learning. The mice were initially trained for seven days on an easy pure frequency tone Go/No-go task (frequency difference of one octave), followed by seven days of a harder version (frequency difference of 0.25 octave). While adolescents and adults showed similar performance on the easy task, adults performed significantly better on the harder task. Quantifying the lick bias of both groups, the authors then argue that the difference in performance is not due to a difference in perception, but rather to a difference in cognitive control. The authors then used neuropixel recordings across 4 auditory cortical regions to quantify the neuronal activity related to the behavior. At the single cell level, the data shows earlier stimulus-related discrimination for adults compared to adolescents in both the easy and hard tasks. At the neuronal population level, adults displayed a higher decoding accuracy and lower onset latency in the hard task as compared to adolescents. Such differences were not only due to learning, but also to age as concluded from recordings in novice mice. After learning, neuronal tuning properties had changed in adults but not in adolescent. Overall, the differences between adolescent and adult neuronal data correlates with the behavior results in showing that learning a difficult task is more challenging for younger mice.

      Strengths:

      The behavioral task is well designed, with the comparison of easy and difficult tasks allowing for a refined conclusion regarding learning across age. The experiments with optogenetics and novice mice are completing the research question in a convincing way.

      The analysis, including the systematic comparison of task performance across the two age groups, is most interesting and reveals differences in learning (or learning strategies?) that are compelling.

      Neuronal recording during both behavioral training and passive sound exposure is particularly powerful, and allows interesting conclusions.

      Weaknesses:

      The weaknesses listed by this reviewer were addressed by adequate revisions.

    2. Reviewer #2 (Public review):

      Summary:

      The authors aimed to find out how and how well adult and adolescent mice discriminate tones of different frequencies and whether there are differences in processing at the level of the auditory cortex that might explain differences in behavior between the two groups. Adolescent mice were found to be worse at sound frequency discrimination than adult mice. The performance difference between the groups was most pronounced when the sounds are close in frequency and thus difficult to distinguish and could, at least in part, be attributed to the younger mice' inability to withhold licking in no-go trials. By recording the activity of individual neurons in the auditory cortex when mice performed the task or were passively listening as well as in untrained mice the authors identified differences in the way that the adult and adolescent brains encode sounds and the animals' choice that could potentially contribute to the differences in behavior.

      Strengths:

      The study combines behavioural testing in freely-moving and head-fixed mice, optogenetic manipulation and high density electrophysiological recordings in behaving mice to address important open questions about age differences in sound-guided behavior and sound representation in the auditory cortex.

      Weaknesses:

      The weaknesses listed by this reviewer were addressed by adequate revisions.

    1. Reviewer #1 (Public review):

      Summary:

      Bhandari and colleagues present tour-de-force analyses that compare the representational geometry in the lateral prefrontal cortex and primary auditory cortex between two complex cognitive control tasks, with one having a "flat" structure where subjects are asked to form rote memory of all the stimulus-action mappings in the task and one having a "hierarchical" task structure that allows clustering of task conditions and that renders certain stimulus dimensions irrelevant for choices. They discovered that the lPFC geometry is high-dimensional in nature in that it allows above-chance separation between different dichotomies of task conditions. The separability is significantly higher for task-relevant features than task-irrelevant ones. They also found task features that are represented in an "abstract" format (e.g., audio features), i.e., the neural representation generalizes across specific task conditions that share this variable. The neural patterns in lPFC are highly relevant for behaviors as they are correlated with subjects' reaction times and choices.

      Strengths:

      Typically, geometry in coding patterns is reflected in single-unit firings; this manuscript demonstrates that such geometry can be recovered using fMRI BOLD signals, which is both surprising and important. The tasks are well designed and powerful in revealing the differences in neural geometry, and analyses are all done in a rigorous way. I am thus very enthusiastic about this paper and identify no major issues.

      I am curious about the consequence of dimensionality collapse in lPFC. The authors propose a very interesting idea that separability is critical for cognitive control; indeed, separability is high for task-relevant information. What happens when task-relevant separation is low or task-irrelevant separation is high, and will this lead to behavioral errors? Maybe a difference score between the separability of task-relevant and task-irrelevant features is a signature of the strength of cognitive control?

      Weaknesses:

      The authors show a difference between flat and hierarchical tasks, but the two tasks are different in accuracy, with the flat task having more errors. Will this difference in task difficulty/errors contribute to the task differences in results reported?

    2. Reviewer #2 (Public review):

      Summary:

      The authors study the influence of tasks on the representational geometry of the lPFC and auditory cortex (AC). In particular, they use two context-dependent tasks: a task with a hierarchical structure and a task with a flat structure, in which each context/stimulus maps to a specific response. Their primary finding is that the representational geometry in the lPFC, in contrast to AC, aligns with the optimal organization of the task. They conclude that the geometry of representations adapts, or is tailored, to the task in the lPFC, therefore supporting control processes.

      Strengths:

      (1) Dataset:<br /> The dataset is impressive and well-sampled. Having data from both tasks collected in the same subjects is a great property. If it is publicly available, it will be a significant contribution to the community.

      (2) Choice of methods:<br /> The choice of analyses are largely well-suited towards the questions at hand - cross-condition generalization, RSA + regression, in combination with ANOVAs, are well-suited to characterizing task representations.

      (3) I found some of their results, in particular, those presented in Figures 4 and 5, to be particularly compelling.

      (4) The correlation analysis with behavior is also a nice result.

      Weaknesses:

      (1) Choice of ROIs:<br /> A strength of fMRI is its spatial coverage of the whole brain. In this study, however, the authors focus on only two ROIs: the lPFC and auditory cortex. Though I understand the justification for choosing lPFC from decades of research, the choice of AC as a control feels somewhat arbitrary - AC is known to have worse SNR in fMRI data, and limiting a 'control' to a single region seems arbitrary. For example, why not also include visual regions, given that the task also involves two visual features?

      (2) Construction of ROIs:<br /> The choice and construction of the ROIs feel a bit arbitrary, as the lPFC region was constructed out of 10 parcels from Schaefer, while the AC was constructed from a different methodology (neurosynth). Did both parcels have the same number of voxels/vertices? It would be helpful to include a visualization of these masks as a figure.

      (3) Task dimensionality:<br /> In some ways, the main findings - that representation dimensionality is tailored to the task - seem to obviously follow from the choice of two tasks, particularly from a normative modeling perspective. For example, the flat task is effectively a memorization task, and is incompressible in the sense that there are no heuristics to solve it. In contrast, the hierarchical task can have several strategies, an uncompressed (memorized) strategy, and a compressed strategy. This is analogous to other studies evaluating representations during 'rich' vs. 'lazy'/kernel learning in ANNs. However, it seems unlikely (if not impossible) to form a 'rich' representation in the flat task. Posed another way, the flat task will always necessarily have a higher dimensionality than the hierarchical task. Thus, is their hypothesis - that representational geometry is tailored to the task - actually falsifiable? I understand the authors posit alternative hypotheses, e.g., "a fully compressed global axis with no separation among individual stimulus inputs could support responding [in the flat task]" (p. 36). But is this a realistic outcome, for example, in the space of all possible computational models performing this task? I understand that directly addressing this comment is challenging (without additional data collection or modeling work), but perhaps some additional discussion around this would be helpful.

      (4) Related to the above:<br /> The authors have a section on p. 27: "Local structure of lPFC representational geometry of the flat task shows high separability with no evidence for abstraction" - I understand a generalization analysis can be done in the feature space, but in practice, the fact that the flat task doubles as a memorization task implies that there are no useful abstractions, so it seems to trivially follow that there would be no abstract representations. In fact, the use of task abstractions in the stimulus space would be detrimental to task performance here. I could understand the use of this analysis as a control, but the phrasing of this section seems to indicate that this is a surprising result.

      (5) Statistical inferences:<br /> Throughout the manuscript, the authors appear to conflate failure to reject the null with acceptance of the null. For example, p. 24: "However, unlike left lPFC, paired t-tests showed no reliable difference in the separability of the task-relevant features vs the orthogonal, task-irrelevant features... Therefore, the overall separability of pAC representations is not shaped by either task-relevance of task structure."

    3. Reviewer #3 (Public review):

      Summary:

      In this paper, Bhandari, Keglovits, et al. explore the representational structure of task encoding in the lateral prefrontal cortex. Through an impressive fMRI data-collection effort, they compare and contrast neural representations across tasks with different high-level stimulus-response structures. They find that the lateral prefrontal cortex shows enhanced encoding of task-relevant information, but that most of these representations do not generalize across conditions (i.e., have low abstraction). This appears to be driven in part by the representation of task conditions being clustered by the higher-order task properties ('global' representations), with poor generalization across these clusters ('local' representations). Overall, this paper provides an interesting account of how task representations are encoded in the PFC.

      Strengths:

      (1) Impressive dataset, which may provide further opportunities for investigating prefrontal representations.

      (2) Clever task design, allowing the authors to confound several features within a complex paradigm.

      (3) Best-practice analysis for decoding, similarity analyses, and assessments of representational geometry.

      (4) Extensive analyses to quantify the structure of PFC task representations.

      Weaknesses:

      (1) The paper would benefit from improved presentational clarity: more scaffolding of design and analysis decisions, clearer grounding to understand the high-level interpretations of the analyses (e.g., context, cluster, abstraction), and better visualizations of the key findings.

      (2) The paper would benefit from stronger theoretical motivation for the experimental design, as well as a refined discussion on the implications of these findings for theories of cognitive control.

    1. Reviewer #1 (Public Review):

      This paper describes technically impressive measurements of calcium signals near synaptic ribbons in zebrafish bipolar cells. The data presented provides high spatial and temporal resolution information about calcium concentrations along the ribbon at various distances from the site of entry at the plasma membrane. This is important information. The experiments appear to be well-done and provide strong evidence for the main conclusions reached.

      Strengths

      The technical aspects of the measurements are impressive. The authors use calcium indicators bound to the ribbon and high-speed line scans to resolve changes with a spatial resolution of ~250 nm and temporal resolution of less than 10 ms. These spatial and temporal scales are much closer to those relevant for vesicle release than previous measurements. Hence the results provide a unique window onto these events.

      The use of calcium indicators with very different affinities and of different intracellular calcium buffers helps provide confirmation of key results.

    2. Reviewer #2 (Public review):

      Summary:

      The study introduces new tools for measuring intracellular Ca2+ concentration gradients around retinal rod bipolar cell (rbc) synaptic ribbons. This is done by comparing the Ca2+ profiles measured with mobile Ca2+ indicator dyes versus ribbon-tethered (immobile) Ca2+ indicator dyes. The Ca2+ imaging results provide a straightforward demonstration of Ca2+ gradients around the ribbon and validate their experimental strategy. This experimental work is complemented by a coherent, open-source, computational model that successfully describes changes in Ca2+ domains as a function of Ca2+ buffering. In addition, the authors try to demonstrate that there is heterogeneity among synaptic ribbons within an individual rbc terminal.

      Strengths:

      The study introduces a new set of tools for estimating Ca2+ concentration gradients at ribbon AZs, and the experimental results are accompanied by an open-source, computational model that nicely describes Ca2+ buffering at the rbc synaptic ribbon. In addition, the dissociated retinal preparation remains a valuable approach for studying ribbon synapses. Lastly, excellent EM.

      Comments on revisions:

      Several concerns were raised about the kinetic analyses, and the authors have carefully acknowledged the critiques. The ideal outcome would have been a more complete kinetic readout and analyses (in particular a better readout of risetime would have improved the results). In the absence of a suitable readout of the risetime, the authors scaled back their claims and improved on the description of the falling phase of the signals. The authors have given a reasonable response under the circumstances.

      In addition, the authors provided more context to their results.

      I have no further concerns.

    3. Reviewer #3 (Public review):

      Summary:

      In this study, the authors have developed a new Ca indicator conjugated to the peptide, which likely recognizes synaptic ribbons and have measured microdomain Ca near synaptic ribbons at retinal bipolar cells. This interesting approach allows one to measure Ca close to transmitter release sites, which may be relevant for synaptic vesicle fusion and replenishment. Though microdomain Ca at the active zone of ribbon synapses has been measured by Hudspeth and Moser, the new study uses the peptide recognizing synaptic ribbons, potentially measuring the Ca concentration relatively proximal to the release sites.

      Strengths:

      The study is, in principle, technically well done, and the peptide approach is technically interesting, which allows one to image Ca near the particular protein complexes. The approach is potentially applicable to other types of imaging.

      Weaknesses:

      Peptides may not be entirely specific, and genetic approach tagging particular active zone proteins with fluorescent Ca indicator proteins may well be more specific. The readers should be aware of this, when interpreting the results.

    1. Reviewer #1 (Public review):

      Summary:

      The paper presents a three-layered hierarchical model for simulating Drosophila larva locomotion, navigation, and learning. The model consists of a basic locomotory layer that generates crawling and turning using a coupled oscillator framework, incorporating intermittency in movement through alternating runs and pauses. The intermediate layer enables navigation by allowing larvae to actively sense and respond to odor gradients, facilitating chemotaxis. The adaptive learning layer integrates a spiking neural network model of the Mushroom Body, simulating associative learning where larvae modify their behavior based on past experiences. The model is validated through simulations of free exploration, chemotaxis, and odor preference learning, demonstrating close agreement with empirical behavioral data. This modular framework provides a valuable advance for modeling larva behavior.

      Strengths:

      Every modeling paper requires certain assumptions and abstractions. The main strength of this paper lies in its modular and hierarchical approach to modeling behavior, making connections to influential theories of motor control in the brain. The authors also provide a convincing discussion of the experimental evidence supporting their layered behavioral architecture. This abstraction is valuable, offering researchers a useful conceptual framework and marking a significant step forward in the field. Connections to empirical larval movement are another major strength.

      Weaknesses:

      While the model represents a conceptual advance in the field, some of its assumptions and choices fall behind state-of-the-art approaches. One limitation is the paper's simplified representation of larval neuromechanics, in which the body is reduced to a two-segment structure with basic neural control. Another limitation is the absence of an explicit neuromuscular control system, which would better capture the role of segmental central pattern generators (CPGs) and neuronal circuits in regulating peristalsis and turning in Drosophila larvae. Many detailed neuromechanical models, as cited by the authors, have already been published. These abstractions overlook valuable experimental studies that detail segmental dynamics during crawling and the larval connectome.

      The strength of the model could also be its weakness. The model follows a subsumption architecture, where low-level behaviors operate autonomously while higher layers modulate them. However, this approach may underestimate the complexity of real neural circuits, which likely exhibit more intricate feedback mechanisms between sensory input and motor execution.

    2. Reviewer #2 (Public review):

      Summary:

      Sakagiannis et al. propose a hierarchically layer architecture to larval locomotion and foraging. They go from exploration to chemotaxis and odour preference test after associative learning.

      Strengths:

      A new locomotion model based on two oscillators that also incorporates peristaltic strides.

      Weaknesses:

      • The model is not always clearly or sufficiently explained (chemotaxis and odour test).

      • Data analysis of the model movement is not very thorough.

      • Comparisons with locomotion of behaving animals missing in chemotaxis and odour preference test after associative learning.

      • Overall it is hard to judge the descriptive and predictive value of the model.

    3. Reviewer #3 (Public review):

      Summary:

      This paper presents a framework for a multilevel agent-based model of the drosophila larva, using a simplified larval body and locomotor equations coupled to oscillators and sensory input. The model itself is built upon significant existing literature, particularly Wystrach, Lagogiannis, and Webb 2016 and Jürgensen et al. 2024. The aim is to generate an easily configurable, well-documented platform for organism-scale behavioral simulation in specific experiments. The authors demonstrate qualitative similarity between in vivo behavioral experiments to calibrated models.

      Strengths:

      The goal is excellent - a system to rapidly run computational experiments that align naturally with behavioral experiments would be well-suited to develop intuitions and cut through hypotheses. The authors provide quantitative descriptions that show that the best-fit parameters in their models produce results that agree with several properties of larval locomotion.

      The description of model calibration in the appendix is clear and explains several aspects of the model better than the main text.

      In addition, the code is well-organized using contemporary Python tooling and the documentation is nicely in progress (although it remains incomplete). However, see notes for difficulties with installation.

      Weaknesses:

      (1) As presented here the modeling itself is described in an unclear fashion and without a particular scientific question. The majority of the effort appears to be calibrating modest extensions of existing models and applying them to very simple experiments. This could be an effective first part of a paper on the software tool, but the paper needs to point to a scientific question or, if it is a tool paper, a gap in the current state of modeling tools needed to address scientific goals. While the manuscript has a good overview of larval behavioral papers, the discussion of modeling is more of an afterthought. However, the paper is a modeling paper and the contribution is to modeling and particularly with this work's minor adaptions of existing models, it is unclear what the principle contribution is intended to be.

      (2) While the models presented do qualitatively agree with experimental data in specific situations, there is no effort to challenge the model assumptions or compare them to alternative models. Simply because the data is consistent in a small number of simple experiments does not mean that the models are correct. Moreover, given the highly empirical nature of the modeling, I wonder what results are largely the model putting out what was put in, particularly with regards to kinematic results like frequency and body length or the effect of learning simply changing the sensory gain constant. It is difficult to imagine how at this level of empirical modeling, it would appear quite difficult to integrate the type of cell-type-specific perturbation or functional observation that is common in larval experiments.

      (3) The central framing of a "layered control architecture" does not have a significant impact on the work presented here and the paper would do better with less emphasis on it. Given the limited empirical models, there are only so many parameters where different components can influence one another, and as best as I can tell from the paper there is only chemotaxis and modulation of a chemotactic gain constant that are incorporated so far. However, since these are empirical functions it says little about how the layers are actually controlled by the nervous system - indeed, the larval nervous system appears to have many levels of local and long-range module of circuits at both the sensory and motor layers. It is not clear how this aspect would contribute beyond the well-appreciated concept of a relatively finite set of behavioral primitives in an insect brain, particularly for the fly larva. What would be a contradictory model and how would the authors differentiate between that and the one they currently propose? If focusing only on olfactory learning and chemotaxis, how does the current framing add to the existing understanding?

      (4) The paper uses experimental data to calibrate the models, however, the experiments are not described at all in the text.

    1. Reviewer #2 (Public review):

      Summary

      The past several years has seen publication of both new (Witvliet et al., 2021) and newly analyzed (Cook et al., 2019; Moyle et al., 2021; Brittin et al., 2021) data for the C. elegans connectome. The increase in data availability for a single species allows researchers to examine variability due to both stochastic events and due to changes over development. The quantity of these data are huge. To help the community make these data more accessible, the authors present a new online tool that allows examination of 3D models for C. elegans neurons in the central neuropil across development. In addition to visualizing the overall structure of the neuronal processes and locations of synapses, the NeuroSC tool also allows users to probe into the C-PHATE visualization results, which this group previously pioneered to describe similarities in neuron adjacency (Moyle et al., 2021).

      Strengths

      The ability to visualize the data from both a connectomics and contactomics perspective across developmental time has significant power. The original C. elegans connectome (White et al., 1986) presented their circuits as line drawings with chemical and electrical synapses indicated through arrows and bars. While these line drawings are incredibly useful, they were necessary simplifications for a 2D publication and lack details of the complex architecture seen within each EM image. Koonce et al takes advantage of their own and others segmented image data of each neuronal process within the nerve ring to create a web interface where users can visualize 3D models for their neuron of choice. The C-PHATE visualization is intended to allow users to explore similarities among different neurons in terms of adjacency and then go directly to the 3D model for these neurons. The 3-D models it generates are beautiful and will likely be showing up in many future presentations and publications. The tool doesn't require any additional downloading and is open source. This revision includes an option where hovering over an individual neurons, synapse, or contact will pull up a statistics panel. The addition of text to the video tutorials in the revision is very useful.

      Weaknesses

      There are several bugs with this tool, which make it a bit clunky to use and suggest a lack of rigorous testing. There are also issues with data availability. I was disappointed that my "recommendations for the authors", which focused on the user interface, were not addressed in the response to reviewers.

    2. Reviewer #3 (Public review):

      Summary:

      This work provides graphical tools for reconstructing the detailed anatomy of a nervous system from a series of sections imaged by electron microscopy. Contact between neuronal processes can direct outgrowth and is necessary for connectivity, thus function. A bioinformatic approach is used to group neurons according to shared features (e.g., contact, synapses) in a hierarchy of "relatedness" that can be interrogated at each step. In this work, Koonze et al analyze vEM data sets for the C. elegans nerve ring (NR), a dense fascicle of processes from181 neurons. In a bioinformatic approach, the clustering algorithm Diffusion Condensation (DC) groups neurons according to similar cell biological features in iterations that remove chunks of differences in feature data with each step ultimately merging all NR neurons in one cluster. DC results are displayed with C-Phate a 3D visualization tool to produce a trajectory that can be interrogated for cell identities and other features at each iterative step. In previous work by these authors, this approach was utilized to identify subgroups of neuronal processes or "strata" in the NR that can be grouped by physical contact and connectivity. Here they expand their analysis to include a series of available vEM data sets across C. elegans larval development. This approach suggests that strata initially established during embryonic development are largely preserved in the adult. Importantly, exceptions involving stage specific-specific reorganization of neuronal placement in specific strata were also detected. A case study featured in the paper demonstrates the utility of this approach for visualizing the integration of newly generated neurons into the existing NR anatomy. Visualization tools used in this work are publicly available at NeuroSCAN.

      Strengths:

      A web-based app, NeuroSCAN, that individual researchers can use to interrogate the structure and organization of the C. elegans nerve ring across development.

      Weaknesses:

      minor revisions

      Comments on Revisions:

      The authors have satisfactorily addressed my critiques.

    1. Reviewer #1 (Public review):

      Lahtinen et al. evaluated the association between polygenic scores and mortality. This question has been intensely studied (Sakaue 2020 Nature Medicine, Jukarainen 2022 Nature Medicine, Argentieri 2025 Nature Medicine), where most studies use PRS as an instrument to attribute death to different causes. The presented study focuses on polygenic scores of non-fatal outcomes and separates the cause of death into "external" and "internal". The majority of the results are descriptive, and the data doesn't have the power to distinguish effect sizes of the interesting comparisons: (1) differences between external vs. internal (2) differences between PGI effect and measured phenotype. I have two main comments:

      (1) The authors should clarify whether the p-value reported in the text will remain significant after multiple testing adjustment. Some of the large effects might be significant; for example, Figure 2C (note that the small prediction accuracy of PGI in older age groups has been extensively studied, see Jiang, Holmes, and McVean, 2021, PLoS Genetics).

      (2) The authors might check if PGI+Phenotype has improved performance over Phenotype only. This is similar to Model 2 in Table 1, but slightly different.

    2. Reviewer #2 (Public review):

      Summary:

      This study provides a comprehensive evaluation of the association between polygenic indices (PGIs) for 35 lifestyle and behavioral traits and all-cause mortality, using data from Finnish population- and family-based cohorts. The analysis was stratified by sex, cause of death (natural vs. external), age at death, and participants' educational attainment. Additional analyses focused on the six most predictive PGIs, examining their independent associations after mutual adjustment and adjustment for corresponding directly measured baseline risk factors.

      Strengths:

      Large sample size with long-term follow-up.

      Use of both population- and family-based analytical approaches to evaluate associations.

      Weaknesses:

      It is unclear whether the PGIs used for each trait represent the most current or optimal versions based on the latest GWAS data.

      If the Finnish data used in this study also contributed to the development of some of the PGIs, there is a risk of overestimating their associations with mortality due to overfitting or "double-dipping." Similar inflation of effect sizes has been observed in studies using the UK Biobank, which is widely used for PGI construction.

    1. Reviewer #1 (Public review):

      Summary:

      By imaging the dynamics of synaptic proteins in cultured neurons, this study presents significant findings regarding the dynamics of excitatory and inhibitory synaptic proteins during development. The evidence shows that the ratios of excitatory and inhibitory synaptic proteins are stable during synapse development. This discovery advances our understanding of the complex mechanisms governing synapse formation. The strength of the evidence is robust, as it is supported by a combination of biological assays and endogenous labeling.

      Strengths:

      This research sheds light on the dynamics of the excitatory and inhibitory synapses during development. It is crucial to understand that while excitatory synapses and inhibitory synapses are developed independently, the ratio of their number is relatively stable during development, maintaining a stable excitatory/inhibitory ratio.

      Important findings and implications in the research include:

      (1) Persistent Synapse Dynamics: Excitatory and inhibitory synapses remain highly dynamic even in mature neurons (DIV12-14), challenging the dogma that synaptic structures are stable after the synaptogenesis stage.

      (2) Maintained E/I Balance: Despite ongoing synapse turnover (formation/elimination) and presynaptic terminal reduction, the overall density and ratio of excitatory-to-inhibitory synapses remain relatively stable during circuit maturation (Figure 7).

      (3) Developmental Shifts: While presynaptic compartments decrease over time, postsynaptic sites increase, suggesting independent regulation of pre- and postsynaptic elements within a stable E/I framework.

      Weaknesses:

      This study focuses on specific synaptic proteins within synapses, which may not fully represent the dynamics of other synaptic machinery; also, whether similar observations exist in vivo is still unknown. Further research is needed to explore the implications of these findings in more complex neuronal environments.

    2. Reviewer #2 (Public review):

      Summary:

      The Garbett et al. identified a critical need to begin to understand the interplay between the assembly, maturation, and elimination of excitatory and inhibitory synapses. They also detail the lack of reliable tools to address this gap in knowledge. Here, the authors developed synaptic reporters expressed by lentiviruses (mClover3-Homer1c, HaloTag-Syb2, and tdTomato-Gephyrin). They combined these reporters with resonance scanning confocal imaging to measure synapses over a 15-hour period during neuron development and in mature neurons in primary hippocampal cultures. Using these reporters in the same neuron, the authors compared the ratios of postsynaptic excitatory and inhibitory specializations that co-localize with presynaptic terminals during development and in mature neurons and found that they are stable across time points. Finally, the authors developed CRISPR/Cas9 tools (TKIT) to knock-in endogenous fluorescent tags (GFP/tdTomato-Gephyrin) or epitope tags (HA-Bassoon and HA-Homer1) to begin to study synapse dynamics using endogenous proteins. I believe this paper highlights an important gap in knowledge and begins to offer methodologies to determine the dynamic coordination between excitatory and inhibitory synapses.

      Strengths:

      (1) The experiments are well-designed and carefully controlled.

      (2) The authors carefully validated the reporter and TKIT constructs.

      (3) The authors provide strong proof-of-principle for the use of the reporter constructs to track synapse formation, maintenance, and elimination over a 15-hour period.

      (4) Ingenious use of technologies (reporters, TKIT, and resonance scanning confocal microscopy) to develop a platform for future studies of synapse dynamics.

      (5) Strong evidence supporting that the ratio of excitatory and inhibitory synapses (those that oppose syb2) stays constant through development.

      Weaknesses:

      Overall, this is a well-executed study that develops tools to simultaneously image excitatory and inhibitory synapse dynamics and represents an important first step to address the fundamental question regarding the coordination between these two types of synapses.

      Minor weaknesses of the manuscript include:

      (1) The lack of a characterization of endogenous Homer1-positive excitatory synapses using TKIT.

      (2) Discussion about other approaches to study excitatory and inhibitory synapses using endogenous proteins (e.g., intrabodies - FingR or nanobodies) should be included.

      (3) The activity state of a neuron and/or a synapse might alter the dynamic properties (formation, maintenance, and/or elimination). A discussion on whether the overexpression of Homer1 and/or gephyrin might alter synapse/neuron activity would provide greater interpretability of the results. A discussion of the potential limitations and benefits of the reporter and TKIT approaches would be beneficial.

      (4) A description and interpretation of the computational approach to calculate particle tracking would be helpful. I found that particle tracking figures, while elegant, are difficult to interpret.

    3. Reviewer #3 (Public review):

      In the present study, the authors describe the development of new tools and imaging strategies to assess the concomitant development of excitatory and inhibitory synapses in dissociated neuron cultures. To this end, they generate fluorescently tagged constructs of excitatory and inhibitory synapse marker proteins using either conventional overexpression or CRISPR-based strategies. They then image these marker proteins over a timespan of 15 hours to assess synaptic dynamics at different developmental timepoints. Based on their data, they conclude that excitatory and inhibitory synapse development occur in concert to maintain a functional balance despite individual synapse turnover.

      Overall, this study addresses an interesting question, i.e., the interplay between the development of excitatory and inhibitory synapses, which has important implications, particularly for neurodevelopmental disorders in which the balance of excitation and inhibition is disrupted. The experiments are technically solid and well-executed, and the individual images are highly compelling.

      However, a number of aspects remain to be addressed in order for the study to support the claims made by the authors. First, the novelty aspect of the development of the fluorescently tagged synaptic proteins is unclear, since reporters of this nature are in routine use in many labs. Second, the analysis of the acquired images often seems incomplete, with only example images but no quantification shown, or the distinction between spatial and temporal dynamics appearing unclear. Third, given this incomplete analysis, the interpretations of the authors are not always convincingly supported by the data presented. In conclusion, substantial improvements are required to render the main messages of the study clear and compelling.

    1. Reviewer #1 (Public review):

      This is a very interesting paper addressing the hierarchical nature of the mammalian auditory system. The authors use an unconventional technique to assess brain responses -- functional ultrasound imaging (fUSI). This measures blood volume in cortex at a relatively high spatial resolution. They present dynamic and stationary sounds in isolation and together, and show that the effect of the stationary sounds (relative to the dynamic sounds) on blood volume measurements decreases as one ascends the auditory hierarchy. Since the dynamic/stationary nature of sounds is related to their perception as foreground/background sounds, this suggests that neurons in higher levels of the cortex may be increasingly invariant to background sounds.

      The study is interesting, well conducted and well written. In the revised manuscript, the authors have addressed all the points I raised in my review.

    2. Reviewer #2 (Public review):

      Summary:

      Noise invariance is an essential computation in sensory systems for stable perception across a wide range of contexts. In this paper, Landemard et al. perform functional ultrasound imaging across primary, secondary and tertiary auditory cortex in ferrets to uncover the mesoscale organization of background invariance in auditory cortex. Consistent with previous work, they find that background invariance increases throughout the cortical hierarchy. Importantly, they find that background invariance is largely explained by progressive changes in spectro-temporal tuning across cortical stations which are biased towards foreground sound features. To test if these results are broadly relevant, they then re-analyze human fMRI data and find that spectro-temporal tuning fails to explain background invariance in human auditory cortex.

      Strengths:

      (1) Novelty of approach: Though the authors have published on this technique previously, functional ultrasound imaging offers unprecedented temporal and spatial resolution in a species where large-scale calcium imaging is not possible and electrophysiological mapping would take weeks or months. Combining mesoscale imaging with a clever stimulus paradigm, they address a fundamental question in sensory coding.

      (2) Quantification and execution: the results are generally clear and well supported by statistical quantification.

      (3) Elegance of modeling: The spectrotemporal model presented here is explained clearly and most importantly, provides a compelling framework for understanding differences in background invariance across cortical areas.

      Comments on revised version:

      The authors have addressed all of my previous concerns and their publicly shared data is easy to view, this is a nice contribution to the field.