- Dec 2023
-
www.youtube.com www.youtube.com
-
How to fold and cut a Christmas star<br /> Christian Lawson-Perfect https://www.youtube.com/watch?v=S90WPkgxvas
What a great simple example with some interesting complexity.
For teachers trying this with students, when one is done making some five pointed stars, the next questions a curious mathematician might ask are: how might I generalize this new knowledge to make a 6 pointed star? A 7 pointed star? a 1,729 pointed star? Is there a maximum number of points possible? Is there a minimum? Can any star be made without a cut? What happens if we make more than one cut? Are there certain numbers for which a star can't be made? Is there a relationship between the number of folds made and the number of points? What does all this have to do with our basic definition of what a paper star might look like? What other questions might we ask to extend this little idea of cutting paper stars?
Recalling some results from my third grade origami days, based on the thickness of most standard office paper, a typical sheet of paper can only be folded in half at most 7 times. This number can go up a bit if the thickness of the paper is reduced, but having a maximum number of potential folds suggests there is an upper bound for how many points a star might have using this method of construction.
-
- Aug 2023
-
hub.jhu.edu hub.jhu.edu
-
But then, so are numbers, for all their illusion of concrete specificity and precision.
Too many non-mathematicians view numbers as solid, concrete things which are meant to make definite sense and quite often their only experience with it is just that. Add two numbers up and always get the same thing. Calculate something in physics with an equation and get an exact, "true" answer. But somehow to be an actual mathematician, one must not see it as a "solid area" (using these words in their non-mathematical senses), but a wholly abstract field of abstraction built upon abstraction. While each abstraction has a sense of "trueness", it will need to be abstracted over and over while still maintaining that sense of "trueness". For many, this is close to being impossible because of the sense of solidity and gravity given to early mathematics.
How can we add more exploration for younger students?
-