6,681 Matching Annotations
  1. Aug 2023
    1. Reviewer #2 (Public Review):

      In this manuscript, the authors characterize activity-dependent transcriptional and epigenetic changes at two different time points (1h and 4hrs) after neuronal activation using rat striatal primary cultures. They show that while at 1h post-stimulation mostly a selective set of IEGs are up-regulated, at 4hrs a wider set of genes, identified as late-response genes (LRGs), are upregulated, with distinct functional signatures. By using ATAC-seq, the authors show how chromatin accessibility is mostly spared at 1h post-stimulation, while a prominent set of differentially accessible regions (DARs) could be identified at 4hrs post-stimulation, enriched in motifs for TFs upregulated at their initial time-point. These chromatin changes appear to be dependent on the earlier translation of proteins, as they are avoided when neuronal cultures are pre-treated with the protein synthesis inhibitor Anisomycin. Afterwards, the authors characterized a set of regulatory regions of a particular LRG, Pdyn, associated with neuropsychiatric disorders, by using CRISRPR to activate or inactivate an enhancer that increases its accessibility at 4hrs post-stimulation, showing that the expression of Pdyn is highly dependent on this regulatory region both, at basal level and for its proper activity-dependent stimulation and that it is enriched in motifs for IEGs upregulated at 1h post-stimulation. Using publicly available data from human GABAergic and glutamatergic neurons similarly stimulated with KCl, the authors show that this enhancer is conserved in humans and that it is mostly modified in GABAergic neurons in response to neuronal stimulation, but not in glutamatergic neurons. Finally, the authors suggest that the regulatory role of the Pdyn enhancer they focus on it might be cell-type specific, as single-nuclei ATAC-seq data generated in rat Nucleus Accumbens (NAc) shows that its coaccessibility score together with Pdyn promoter is more prominent in Drd1- and Grm8-MSNs.

      Among the major strengths of the article, there is the generation of neuronal RNA-seq and ATAC-seq data in a model system, rat striatal neuronal cells, that hasn't been so broadly characterized as other more common ones such as mouse hippocampal neuronal cells and the functional characterization of an enhancer of the Pdyn gene that might be of interest for translational applications in which alterations of this gene might be occurring in neurological disorders.

      On the other hand, the manuscript presents several weaknesses to consider. First of all, at a conceptual level, most of the findings related to the induction of particular transcriptional programs upon neuronal activation the changes in chromatin state, and the need for protein translation for proper induction of LRGs have been broadly characterized previously in the literature (Tyssowski et al., Neuron, 2018; Ibarra et al., Mol. Syst. Biol., 2022; and also reviewed by Yap and Greenberg, Neuron, 2018). In addition, it is not so obvious why to focus on Pdyn gene regulatory regions among the thousands of genes upregulated and with modified chromatin landscape after neuronal activation. The authors highlight three particular traits of this gene as the reason to choose it, but those traits are probably shared by most of the genes that are part of the LRGs set.

      At the methodological level, some attention should be put into the timings chosen for generating the data. The authors claim that these time points (1h and 4hrs) identify the first (i.e IEGs) and second (i.e LRGs) waves of transcription. However, at 4hrs the highest over-expressed genes are still IEGs, as shown in the volcano plots of Figure 1B and 1C, showing a high overlap with up-regulated genes found at 1h (Figure 1D). This might suggest that the 4hrs time point is somewhere in between the first and second wave of transcription, probably missing some of the still-to-be-induced LRGs of the latest one.

      Finally, while only prosed as a suggestion, the assumption that from the data generated in this article, we can envision a mechanism by which AP-1 family of transcription factors interacts with the SWI/SNF chromatin remodeling complex is going too far, as no evidence is provided implicated SWI/SNF in the data presented in the manuscript.

    1. Reviewer #2 (Public Review):

      The authors phototag DA and GABA neurons in the VTA in mice performing a t-maze task, and report choice-specific responses in the delay period of a memory-guided task, more so than in a variant task w/o a memory component. Overall, I found the results convincing. While showing responses that are choice selective in DA neurons is not entirely novel (e.g. Morris et al NN 2006, Parker et al NN 2016), the fact that this feature is stronger when there is a memory requirement is an interesting and novel observation.

      I found the plots in 3B misleading because it looks like the main result is the sequential firing of DA neurons during the Tmaze. However, many of the neurons aren't significant by their permutation test. Often people either only plot the neurons that are significant, or plot with cross-validation (ie sort by half of the trials, and plot the other half).

      Relatedly, the cross-task comparisons of sequences (Fig, 4,5) are hampered by the fact that they sort in one task, then plot in the other, which will make the sequences look less robust even if they were equally strong. What happens if they swap which task's sequences they use to order the neurons? I do realize they also show statistical comparisons of modulated units across tasks, which is helpful.

      Overall, the introduction was scholarly and did a good job covering a vast literature. But the explanation of t-maze data towards the end of the introduction was confusing. In Line 87, I would not say "in the same task" but "in a similar task" because there are many differences between the tasks in question. And not clear what is meant by "by averaging neuronal population activities, none of these computational schemes would have been revealed. " There was trial averaging, at least in Harvey et al. I thought the main result of that paper related to coding schemes was that neural activity was sequential, not persistent. I think it would help the paper to say that clearly. Also, I'm not aware it was shown that choice selectivity diminishes when the memory demand of the task is removed - please clarify if that is true in both referenced papers. If so, an interpretation of this present data could be found in Lee et al biorxiv 2022, which presents a computational model that implies that the heterogeneity in the VTA DA system is a reflection of the heterogeneity found in upstream regions (the state representation), based on the idea that different subsets of DA neurons calculate prediction errors with respect to different subsets of the state representation.

      I am surprised only 28% of DA neurons responded to reward - the reward is not completely certain in this task. This seems lower than other papers in mice (even Pavlovian conditioning, when the reward is entirely certain). It would be helpful if the authors comment on how this number compares to other papers.

    1. Reviewer #2 (Public Review):

      This work presents a new, automated, deep learning-based segmentation pipeline for fetal cerebral MRI based on the anatomical definitions of the new fetal atlas of the Developing Human Connectome Project. The authors' new software pipeline demonstrated robust performance across different acquisition protocols and gestational age ranges, reducing the need for manual refinement. To provide ground truth data for training their deep learning network, the authors employed a semi-supervised approach, in which atlas labels were propagated to the datasets, and they were corrected manually.

      This work stands out for its extensive training on a large number of datasets, it achieves precise anatomical definition through a refined brain tissue parcellation protocol, and it evaluates the segmentation results against growth curves, allowing for a comprehensive assessment of fetal brain development. Due to the fact that abnormal anatomy was largely unobserved by the segmentation network, it is highly likely, however, that the BOUNTI pipeline would lead to some incorrect segmentations in subjects with moderate to large ventriculomegaly, as well as in cases of malformations of the corpus callosum, brainstem or neural tube defects. Further work is required for BOUNTI to generalize its application to pathological brains, as the vast majority of fetal cerebral MRI cases in clinical practice involve such abnormalities rather than normal brain development. This step is crucial for facilitating the clinical translation of BOUNTI. The algorithm is publicly available and works without limitations on datasets acquired in other centers.

    1. Reviewer #2 (Public Review):

      Sequences of neural activity underlie most of our behavior. And as experience suggests we are (in most cases) able to flexibly change the speed for our learned behavior which essentially means that brains are able to change the speed at which the sequence is retrieved from the memory. The authors here propose a mechanism by which networks in the brain can learn a sequence of spike patterns and retrieve them at variable speed. At a conceptual level I think the authors have a very nice idea: use of symmetric and asymmetric learning rules to learn the sequences and then use different inputs to neurons with symmetric or asymmetric plasticity to control the retrieval speed. The authors have demonstrated the feasibility of the idea in a rather idealized network model. I think it is important that the idea is demonstrated in more biologically plausible settings (e.g. spiking neurons, a network with exc. and inh. neurons with ongoing activity).

      Summary

      In this manuscript authors have addressed the problem of learning and retrieval sequential activity in neuronal networks. In particular, they have focussed on the problem of how sequence retrieval speed can be controlled?<br /> They have considered a model with excitatory rate-based neurons. Authors show that when sequences are learned with both temporally symmetric and asymmetric Hebbian plasticity, by modulating the external inputs to the network the sequence retrieval speed can be modulated. With the two types of Hebbian plasticity in the network, sequence learning essentially means that the network has both feedforward and recurrent connections related to the sequence. By giving different amounts of input to the feed-forward and recurrent components of the sequence, authors are able to adjust the speed.

      Strengths<br /> - Authors solve the problem of sequence retrieval speed control by learning the sequence in both feedforward and recurrent connectivity within a network. It is a very interesting idea for two main reasons: 1. It does not rely on delays or short-term dynamics in neurons/synapses 2. It does not require that the animal is presented with the same sequences multiple times at different speeds. Different inputs to the feedforward and recurrent populations are sufficient to alter the speed. However, the work leaves several issues unaddressed as explained below.

      Weaknesses<br /> - The main weakness of the paper is that it is mostly driven by a motivation to find a computational solution to the problem of sequence retrieval speed. In most cases they have not provided any arguments about the biological plausibility of the solution they have proposed e.g.:

      -- Is there any experimental evidence that some neurons in the network have symmetric Hebbian plasticity and some temporally asymmetric? In the references authors have cited some references to support this. But usually the switch between temporally symmetric and asymmetric rules is dependent on spike patterns used for pairing (e.g. bursts vs single spikes). In the context of this manuscript, it would mean that in the same pattern, some neurons burst and some don't and this is the same for all the patterns in the sequence. As far as I see here authors have assumed a binary pattern of activity which is the same for all neurons that participate in the pattern.

      -- How would external inputs know that they are impinging on a symmetric or asymmetric neuron? Authors have proposed a mechanism to learn these inputs. But that makes the sequence learning problem a two stage problem -- first an animal has to learn the sequence and then it has to learn to modulate the speed of retrieval. It should be possible to find experimental evidence to support this?

      -- Authors have only considered homogeneous DC input for sequence retrieval. This kind of input is highly unnatural. It would be more plausible if the authors considered fluctuating input which is different from each neuron.

      -- All the work is demonstrated using a firing rate based model of only excitatory neurons. I think it is important that some of the key results are demonstrated in a network of both excitatory and inhibitory spiking neurons. As the authors very well know it is not always trivial to extend rate-based models to spiking neurons.

      I think at a conceptual level authors have a very nice idea but it needs to be demonstrated in a more biologically plausible setting (and by that I do not mean biophysical neurons etc.).

    1. Reviewer #1 (Public Review):

      The manuscript by Kulkarni et al proposes a new cellular origin of ENS, which is increased with age and therefore may be associated with the gradual decline of gut function. The study is based on an initial observation that many enteric neurons do not seem to retain tdTomato expression in Wnt1Cre-R26-Tom mice, suggesting a loss of neurons that are replaced by a non-neural crest source. Further detection of reporter expression within the ENS of Tek and Mesp Cre-lines indicated a mesodermal origin of the new enteric neurons. Mesodermally derived neurons (MENS) were associated with Met, while neural crest derived neurons (NENS) expressed Ret. GDNF could decrease occurrence of MENS (defined as tdTomato-negative cells), while HGF had the opposite effect. Age-associated decline in gut transit was alleviated with GDNF treatment, while Ret heterozygote mutants had an increase of MENS. Overall, the study suggests that neural crest derived neurons are replaced by mesodermal-derived neurons that lead to an overall reduction in GI-physiology and that manipulation of the balance between the two types of neurons could have beneficial effects of age-associated gut malfunction. Generation of neurons from non-ectodermal sources would be a paradigm shift not only in the ENS, but in the Neuroscience field as a whole. The presence of mesenchymal marker genes in subsets of cells of the ENS in native gut tissue is convincing and the lack of retained fluorescent reporter expression in ENS from the many neural and Cre drivers used is indeed clear.

      The current state of the manuscript is though not conceivable as it has unsound interpretation of data at many places, most importantly there is no firm connection between the MENs identified in tissue and the scRNA cluster annotated as MENs. "scRNA-seq-MENs" show very little expression of the bona fide neuron markers used to detect "tissue-MENs" including Elavl4 and the overall proportions of "scRNA-seq-MENs" in the tissue is very far from that of "tissue-MENs". Hence, the claims that "tissue-MENs" equals "scRNA-seq MENs" could be excluded or their interpretation discussed in an unbiased manner. Marker expression of "scRNA-seq MENs" are suggestive of mesothelial cell identities, not ENS cells. Even the annotation of scRNA-seq profiles denoted as neural-crest derived enteric neurons (NENs) is highly questionable as 25% of the cells display bona fide lympathic epithelial cell markers and no neuronal markers.

    1. Reviewer #2 (Public Review):

      The question the authors pose is very simple and yet very important. Does the fact that many genes compete for Pol II to be transcribed explain why so many trans-eQTL contribute to the heritability of complex traits? That is, if a gene uses up a proportion of Pol II, does that in turn affect the transcriptional output of other genes relevant or even irrelevant for the trait in a way that their effect will be captured in a genome-wide association study? If yes, then the large number of genetic effects associated with variation in complex traits can be explained but such trans-propagating has effects on the transcriptional output of many genes.

      This is a very timely question given that we still don't understand how, mechanistically, so many genes can be involved in complex traits variation. Their approach to this question is very simple and it is framed in classic enzyme-substrate equations. The authors show that the trans-propagating effect is too small to explain the ~70% of heritability of complex traits that are associated with trans-effects. Their conclusion relies on the comparison of the order of magnitude of a) the quantifiable transcriptional effects due to Pol II competition, and b) the observed percentage of variance explained by trans effects (data coming from Liu et al 2019, from the same lab).

      The results shown in this manuscript rule out that competition for limited resources in the cell (not restricted to Pol II, but applicable to any other cellular resource like ribosomes, etc) could explain the heritability of complex traits.

    1. Reviewer #2 (Public Review):

      The manuscript investigates the connections between the ubiquitin ligase protein deltex and the wingless pathway. Two different connections are proposed, one is the function of deltex to modulate the gradient of wingless diffusion and hence modulate the spatial pattern of wingless pathway targets, which regulate at different thresholds of wingless concentration. The second is a direct interaction between deltex and armadillo, a downstream component of the wingless pathway. Deltex is proposed to cause the degradation of armadillo resulting in suppression of wingless pathway activity. The results and conclusions of the manuscript are interesting and for the most part, novel, although previously published work linking Notch and deltex to wingless signal regulation, and endocytosis to wingless gradient formation could be more extensively discussed. However neither of the two parts of the manuscript seem in themselves sufficiently complete, and combining both parts together therefore seems to lack focus.

      The main issue with the manuscript is that many of the conclusions are inferred from genetic interactions in vivo between loss of function mutants and overexpression. While providing useful in vivo physiological context, this type of approach struggles to be able to make definitive conclusions on whether an interaction is due to a direct or indirect mechanism, as the authors themselves conclude at the end of section 2.3. The problem is confounded by the fact that there is already documented much cross-talk between the Notch signaling pathway and wingless at the transcriptional level, and deltex is already a Notch modulator that can alter wingless mRNA expression (See Hori et al 2004). Deltex in addition to promoting a ligand-independent Notch signal can also induce expression of Notch ligand, allowing further non-autonomous Notch activation and subsequent cell autonomous cis-inhibition of the initial deltex-induced signal. The dynamics and outcomes of the Notch signal response to deltex in vivo are therefore already very complicated to interpret before even considering unraveling indirect (via Notch) and direct interactions with wingless, although the two possibilities are not mutually exclusive.

    1. Reviewer #2 (Public Review):

      Wang, He et al. shed insight into the molecular mechanisms of deep-sea chemosymbiosis at the single-cell level. They do so by producing a comprehensive cell atlas of the gill of Gigantidas platifrons, a chemosymbiotic mussel that dominates the deep-sea ecosystem. They uncover novel cell types and find that the gene expression of bacteriocytes, the symbiont-hosting cells, supports two hypotheses of host-symbiont interactions: the "farming" pathway, where symbionts are directly digested, and the "milking" pathway, where nutrients released by the symbionts are used by the host. They perform an in situ transplantation experiment in the deep sea and reveal transitional changes in gene expression that support a model where starvation stress induces bacteriocytes to "farm" their symbionts, while recovery leads to the restoration of the "farming" and "milking" pathways.

      A major strength of this study includes the successful application of advanced single-nucleus techniques to a non-model, deep-sea organism that remains challenging to sample. I also applaud the authors for performing an in situ transplantation experiment in a deep-sea environment. From gene expression profiles, the authors deftly provide a rich functional description of G. platifrons cell types that is well-contextualized within the unique biology of chemosymbiosis. These findings offer significant insight into the molecular mechanisms of deep-sea host-symbiont ecology, and will serve as a valuable resource for future studies into the striking biology of G. platifrons.

      The authors' conclusions are generally well-supported by their results. However, I recognize that the difficulty of obtaining deep-sea specimens may have impacted experimental design. In this area, I would appreciate more in-depth discussion of these impacts when interpreting the data.

      Because cells from multiple individuals were combined before sequencing, the in situ transplantation experiment lacks clear biological replicates. This may potentially result in technical variation (ie. batch effects) confounding biological variation, directly impacting the interpretation of observed changes between the Fanmao, Reconstitution, and Starvation conditions. It is notable that Fanmao cells were much more sparsely sampled. It appears that fewer cells were sequenced, resulting in the Starvation and Reconstitution conditions having 2-3x more cells after doublet filtering. It is not clear whether this is due to a technical factor impacting sequencing or whether these numbers are the result of the unique biology of Fanmao cells. Furthermore, from Table S19 it appears that while 98% of Fanmao cells survived doublet filtering, only ~40% and ~70% survived for the Starvation and Reconstitution conditions respectively, suggesting some kind of distinction in quality or approach.

      There is a pronounced divergence in the relative proportions of cells per cell type cluster in Fanmao compared to Reconstitution and Starvation (Fig. S11). This is potentially a very interesting finding, but it is difficult to know if these differences are the expected biological outcome of the experiment or the fact that Fanmao cells are much more sparsely sampled. The study also finds notable differences in gene expression between Fanmao and the other two conditions- a key finding is that bacteriocytes had the largest Fanmao-vs-starvation distance (Fig. 6B). But it is also notable that for every cell type, one or both comparisons against Fanmao produced greater distances than comparisons between Starvation and Reconstitution (Fig. 6B). Again, it is difficult to interpret whether Fanmao's distinctiveness from the other two conditions is underlain by fascinating biology or technical batch effects. Without biological replicates, it remains challenging to disentangle the two.

    1. Reviewer #2 (Public Review):

      This is an interesting paper from a reputable group in the field of islet physiology. The authors have provided the results from extensive studies, which will contribute to the knowledge of islet dysfunction and diabetes pathophysiology. The authors studied "the human orthologues of the correlated mouse proteins that are proximal to the glycemia-associated SNPs in human GWAS". This implies two assumptions - (1) human and mouse proteins do not differ in terms of islet physiology and calcium signaling; (2) the proteins proximal to the SNPs are the causal factors for functional differences, though the SNPs could affect protein/gene function distant from the SNPs.

    1. Reviewer #2 (Public Review):

      The authors aimed to investigate whether digital insoles are an appropriate alternative to laboratory assessment with force plates when attempting to identify the knee injury status. The methods are rigorous and appropriate in the context of this research area. The results are impressive, and the figures are exceptional. The findings of this study can have a great impact on the field, showing that digital insoles can be accurately used for clinical purposes. The authors successfully achieved their aims.

    1. Reviewer #2 (Public Review):

      The manuscript by Hayashi et al provides the characterization of a new mouse line that targets V2 neurons and demonstrates the locomotor consequences of manipulating the large V2 population. Prior work has examined the effects of silencing and/or ablation of the excitatory V2a and inhibitory V2b neuronal populations independently. Since the two populations are derived from the same V2 lineage but have opposite transmitter phenotypes, one may expect some common synaptic targets and/or similar or complementary functional roles that require excitatory/inhibitory balance. Overall, the value and importance of the study is that comparison of prior manipulations of the V2a and V2b populations (individually in prior studies) with the more global V2 manipulation (here) provides additional insights into spinal locomotor circuitry.

      The authors successfully generate a new Hes2cre mouse line that targets the V2 population with high accuracy. The characterizations as far as the specificity and efficiency of the line are compelling. This line is then used to examine the locomotor effects of, first, synaptically silencing all Hes2 neurons throughout the neuroaxis beginning in early development and, then, ablating spinal Hes2 neurons in the adult. The phenotypes of both groups of mice are quite similar, with some small exceptions. The most obvious disturbance in both is the shortened steps, faster step cycle, and more steps required to travel the same distance. As the authors point out, much of the phenotype may be due to a disruption in balance. Interestingly, the hyperextension that is characteristic of V2b neuronal ablation is lost when the function of V2a neurons is compromised as well, suggesting antagonistic functions of these populations in intralimb coordination.

      The experiments are rigorous and the data are clearly presented. The findings are interesting to consider in context with prior work. Some comparisons are difficult since gait is not considered and one of the major roles of spinal V2a neurons has been demonstrated to be speed/gait-dependent. The ipsilateral deficits are a major conclusion but some of the supporting data are not clearly derived (or there was an error in the figure?). The use of spinal restricted manipulation removes many of the potential confounds of the full Hes2 silencing. It is still, however, not possible to disentangle the local spinal circuit effects from altered proprioceptive input pathways or ascending information from the lumbar cord to the cervical regions or the brainstem. Although of value to inform future experiments, this impacts the strength of the conclusions that can be drawn.

    1. Reviewer #2 (Public Review):

      The chemoreceptor proteins expressed by olfactory sensory neurons differ in their selectivity such that glomeruli vary in the breadth of volatile chemicals to which they respond. Prior work assessing the relationship between tuning breadth and the demographics of principal neuron types that innervate a glomerulus demonstrated that narrowly tuned glomeruli are innervated more projection neurons (output neurons) and fewer local interneurons relative to more broadly tuned glomeruli. The present study used high-resolution electron microscopy to determine which synaptic relationships between principal cell types also vary with glomerulus tuning breadth using a narrowly tuned glomerulus (DA2) and a broadly tuned glomerulus (DL5). The strength of this study lies in the comprehensive, synapse-level resolution of the approach. Furthermore, the authors implement a very elegant approach of using a 2-photon microscope to score the upper and lower bounds of each glomerulus, thus defining the bounds of their restricted regions of interest. There were several interesting differences including greater axo-axonic afferent synapses and dendrodentric output neuron synapses in the narrowly tuned glomerulus, and greater synapses upon sensory afferents from multiglomerular neurons and output neuron autapses in the broadly tuned glomerulus.

      The study is limited by a few factors. There was a technical need to group all local interneurons, centrifugal neurons, and multiglomerular projection neurons into one category ("multiglomerular neurons") which complicates any interpretations as even multiglomerular projection neurons are very diverse. Additionally, there were as many differences between the two narrowly tuned glomeruli as there were comparing the narrowly and broadly tuned glomeruli. Architecture differences may therefore not reflect differences in tuning breadth, but rather the ecological significance of the odors detected by cognate sensory afferents. Finally, some synaptic relationships are described as differing and others as being the same between glomeruli, but with only one sample from each glomerulus, it is difficult to determine when measures differ when there is no measure of inter-animal variability. If these caveats are kept in mind, this work reveals some very interesting potential differences in circuit architecture associated with glomerular tuning breadth.

      This work establishes specific hypotheses about network function within the olfactory system that can be pursued using targeted physiological approaches. It also identifies key traits that can be explored using other high-resolution EM datasets and other glomeruli that vary in their tuning selectivity. Finally, the laser "branding" technique used in this study establishes a reduced-cost procedure for obtaining smaller EM datasets from targeted volumes of interest by leveraging the ability to transgenically label brain regions in Drosophila.

    1. Reviewer #2 (Public Review):

      Working memory is not error free. Behavioral reports of items held in working memory display several types of bias, including contraction bias and serial dependence. Recent work from Akrami and colleagues demonstrates that inactivating rodent PPC reduces both forms of bias, raising the possibility of a common cause.

      In the present study, Boboeva, Pezzotta, Clopath, and Akrami introduce circuit and descriptive variants of a model in which the contents of working memory can be replaced by previously remembered items. This volatility manifests as contraction bias and serial dependence in simulated behavior, parsimoniously explaining both sources of bias. The authors validate their model by showing that it can recapitulate previously published and novel behavioral results in rodents and neurotypical and atypical humans.

      Both the modeling and the experimental work is rigorous, providing compelling evidence that a model of working memory in which reports sometimes sample past experience can produce both contraction bias and serial dependence, and that this model is consistent with behavioral observations across rodents and humans in the parametric working memory (PWM) task.

      Evidence for the model advanced by the authors, however, remains incomplete. The model makes several bold predictions about behavior and neural activity, untested here, that either conflict with previous findings or have yet to be reported but are necessary to appropriately constrain the model.

      First, in the most general (descriptive) formulation of the Boboeva et al. model, on a fraction of trials items in working memory are replaced by items observed on previous trials. In delayed estimation paradigms, which allow a more direct behavioral readout of memory items on a trial-by-trial basis than the PWM task considered here, reports should therefore be locked to previous items on a fraction of trials rather than display a small but consistent bias towards previous items. However, the latter has been reported (e.g., in primate spatial working memory, Papadimitriou et al., J Neurophysiol 2014). The ready availability of delayed estimation datasets online (e.g., from Rademaker and colleagues, https://osf.io/jmkc9/) will facilitate in-depth investigation and reconciliation of this issue.

      Second, the bulk of the modeling efforts presented here are devoted to a circuit-level description of how putative posterior parietal cortex (PPC) and working-memory (WM) related networks may interact to produce such volatility and biases in memory. This effort is extremely useful because it allows the model to be constrained by neural observations and manipulations in addition to behavior, and the authors begin this line of inquiry here (by showing that the circuit model can account for effects of optogenetic inactivation of rodent PPC). Further experiments, particularly electrophysiology in PPC and WM-related areas, will allow further validation of the circuit model. For example, the model makes the strong prediction that WM-related activity should display 'jumps' to states reflecting previously presented items on some trials. This hypothesis is readily testable using modern high-density recording techniques and single-trial analyses.

      Finally, while there has been a refreshing movement away from an overreliance on p-values in recent years (e.g., Amrhein et al., PeerJ 2017), hypothesis testing, when used appropriately, provides the reader with useful information about the amount of variability in experimental datasets. While the excellent visualizations and apparently strong effect sizes in the paper mitigate the need for p-values to an extent, the paucity of statistical analysis does impede interpretation of a number of panels in the paper (e.g., the results for the negatively skewed distribution in 5D, the reliability of the attractive effects in 6a/b for 2- and 3- trials back).

    1. Reviewer #2 (Public Review):

      This work describes transcriptome profiling of dissected skin of zebrafish at post-embryonic stages, at a time when adult structures and patterns are forming. The authors have used the state-of-the-art combinatorial indexing RNA-seq approach to generate single cell (nucleus) resolution. The data appears robust and is coherent across the four different genotypes used by the authors.

      The authors present the data in a logical and accessible manner, with appropriate reference to the anatomy. They include helpful images of the biology and schematics to illustrate their interpretations.

      The datasets are then interrogated to define cell and signalling relationships between skin compartments in six diverse contexts. The hypotheses generated from the datasets are then tested experimentally. Overall, the experiments are appropriate and rigorously performed. They ask very interesting questions of interactions in the skin and identify novel and specific mechanisms. They validate these well.

      The authors use their datasets to define lineage relationships in the dermal scales and also in the epidermis. They show that circumferential pre-scale forming cells are precursors of focal scale forming cells while there appeared a more discontinuous relationship between lineages in the epidermis.

      The authors present transcriptome evidence for enamel deposition function in epidermal subdomains. This is convincingly confirmed with an ameloblastin in situ. They further demonstrate distinct expression of SCPP and collagen genes in the SFC regions.

      The authors then demonstrate that Eda and TH signalling to the basal epidermal cells generates FGF and PDGF ligands to signal to surrounding mesenchyme, regulating SFC differentiation and dermal stratification respectively.

      Finally, they exploit RNA-seq data performed in parallel in the bnc2 mutants to identify the hypodermal cells as critical regulators of pigment patterning and define the signalling systems used.

      Whilst these six interactions in the skin are disparate, the stories are unified by use of the sci-RNA-seq data to define interactions. Overall, it's an assembly of work which identifies novel and interesting cell interactions and cross-talk mechanisms.

      The paper provides robust evidence of cell interrelationships in the skin undergoing morphogenesis and will be a welcome dataset for the field.

    1. Reviewer #2 (Public Review):

      Raymond Laboy et.al explored how transcriptional Mondo/Max-like complex (MML-1/MXL-2) is regulated by glucose metabolic signals using germ-line removal longevity model. They believed that MML-1/MXL-2 integrated multiple longevity pathways through nutrient sensing and therefore screened the glucose metabolic enzymes that regulated MML-1 nuclear localization. Hexokinase 1 and 2 were identified as the most vigorous regulators, which function through mitochondrial beta-oxidation and the pentose phosphate pathway (PPP), respectively. MML-1 localized to mitochondria associated with lipid droplets (LD), and MML-1 nuclear localization was correlated with LD size and metabolism. Their findings are interesting and may help us to further explore the mechanisms in multiple longevity models, however, the study is not complete and the working model remains obscure. For example, the exact metabolites that account for the direct regulation of MML-1 were not identified, and more detailed studies of the related cellular processes are needed.

      The identification of responsible metabolites is necessary since multiple pieces of evidence from the study suggests that lipid other than glucose metabolites may be more likely to be the direct regulator of MML-1 and HXK regulate MML-1 indirectly by affecting the lipid metabolism: 1) inhibiting the PPP is sufficient to rescue MML-1 function independent of G6P levels; 2) HXK-1 regulates MML-1 by increasing fatty acid beta-oxidation; 3) LD size correlates with MML-1 nuclear localization and LD metabolism can directly regulate MML-1. The identification of metabolites will be helpful for understanding the mechanism.

      Beta-oxidation and the PPP are involved in the regulation of MML-1 by HXK-1 and HXK-2, respectively. But how these two pathways participate in the regulation is not clear. Is it the beta-oxidation rate or the intermediate metabolites that matters? As for the PPP, it provides substrates for nucleotide synthesis and also its product NADPH is essential for redox balance. Is one of the metabolites or the NADPH levels involved in MML-1 regulation? More studies are needed to provide answers to these concerns.

    1. Reviewer #2 (Public Review):

      Synthetic autotrophy of biotechnologically relevant microorganisms offers exciting chances for CO2 neutral or even CO2 negative production of goods. The authors' lab has recently published an engineered and evolved Escherichia coli strain that can grow on CO2 as its only carbon source. Lab evolution was necessary to achieve growth. Evolved strains displayed tens of mutations, of which likely not all are necessary for the desired phenotype.

      In the present paper the authors identify the mutations that are necessary and sufficient to enable autotrophic growth of engineered E. coli. Three mutations were identified, and their phenotypic role in enhancing growth via the introduced Calvin-Benson-Bassham cycle were characterized. It was demonstrated that these mutations allow autotrophic growth of E. coli with the introduced CBB cycle without any further metabolic intervention. Autotrophic growth is demonstrated by 13C labelling with 13C CO2, measured in proteinogenic amino acids. In Figures 2B and S1, the labeling data are shown, with an interval of the "predicted range under 13CO2". Here, the authors should describe how this interval was derived.

      The methodology is clearly described and appropriate.

      The present results will allow other labs to engineer E. coli and other microorganisms further to assimilate CO2 efficiently into biomass and metabolic products. The importance is evident in the opportunity to employ such strain in CO2 based biotech processes for the production of food and feed protein or chemicals, to reduce atmospheric CO2 levels and the consumption of fossil resources.

  2. Jul 2023
    1. Reviewer #2 (Public Review):

      The authors apply a deep learning approach to predict fracture using forearm HR-pQCT data pooled from 3 longitudinal cohorts totaling 2666 postmenopausal women. The deep learning based 'Structural Fragility Score - AI' was compared to FRAX w/BMD and BMD alone in its ability to identify women who went on to fracture within the next 5 years. SFS-AI performed significantly better than FRAX w/BMD and BMD alone in all metrics except specificity. This work establishes that deep learning methods applied to HR-pQCT data have great potential for use in predicting (and therefore preventing) fractures.

      The low specificity of SFS-AI compared to FRAX and BMD is not adequately acknowledged or addressed - will this lead to over diagnosis / unnecessary interventions and is that a problem?

      The paper does not adequately address the relative role of bone vs soft tissue features in the determination of SFS-AI. It would be possible to feed the algorithm only the segmented bone volumes, and compare AUC, etc, of SFS-AI (bone) to that acquired using the entire bone + muscle volume. It's possible (likely?) that most of the predictive power will remain. If muscle is an important part of this algorithm, then mid-diaphyseal tibia scans will be an interesting next application - since that scan site is closer to the muscle belly compared to the distal radius site which contains very little muscle volume.

    1. Reviewer #2 (Public Review):

      In this study Weinberger et al. investigated cardiac macrophage subsets after ischemia/reperfusion (I/R) injury in mice. The authors studied a ∆FIRE mouse model (deletion of a regulatory element in the Csf1r locus), in which only tissue resident macrophages might be ablated. The authors showed a reduction of resident macrophages in ∆FIRE mice and characterized its macrophages populations via scRNAseq at baseline conditions and after I/R injury. 2 days after I/R protocol ∆FIRE mice showed an enhanced pro inflammatory phenotype in the RNAseq data and differential effects on echocardiographic function 6 and 30 days after I/R injury. Via flow cytometry and histology the authors confirmed existing evidence of increased bone marrow-derived macrophage infiltration to the heart, specifically to the ischemic myocardium. Macrophage population in ∆FIRE mice after I/R injury were only changed in the remote zone. Further RNAseq data on resident or recruited macrophages showed transcriptional differences between both cell types in terms of homeostasis-related genes and inflammation. Depleting all macrophage using a Csf1r inhibitor resulted in a reduced cardiac function and increased fibrosis.

      Strengths<br /> 1. The authors utilized robust methodology encompassing state of the art immunological methods, different genetic mouse models and transcriptomics.<br /> 2. The topic of this work is important given the emerging role of tissue resident macrophages in cardiac homeostasis and disease.

      Weaknesses:<br /> 1. Specificity of ∆FIRE mouse model for ablating resident macrophages.<br /> The study builds on the assumption that only resident macrophages are ablated in ∆FIRE mice, while bone marrow-derived macrophages are unaffected. While the effects of the ∆FIRE model is nicely shown for resident macrophages, the authors did not directly assess bone marrow-derived macrophages. Moreover, in the immunohistological images in Fig. 1D nearly all macrophages appear to be absent. It would be helpful to further address the question of whether recruited macrophages are influenced in ∆FIRE mice. Evaluation of YFP positive heart and blood cells in ∆FIRE mice crossed with Flt3CreRosa26eYFP mice could clarify whether bone marrow-derived cardiac macrophages are influenced in ∆FIRE mice. This would be even more relevant in the I/R model where recruitment of bone marrow-derived macrophages is increased. A more direct assessment of recruited macrophages in ∆FIRE mice could also help to discuss potential similarities or discrepancies to the study of Bajpai et al, Circ Res 2018 (https://doi.org/10.1161/CIRCRESAHA.118.314028), which showed distinct effects of resident versus recruited macrophages after myocardial infarction. Providing the quantification of flow cytometry data (fig. 1E-F) would be supportive.

      2. Limited adverse cardiac remodeling in ∆FIRE mice after I/R.<br /> The authors suggested an adverse cardiac remodeling in ∆FIRE mice. However, the relevance of a <5% reduction in ejection fraction/stroke volume within an overall normal range in ∆FIRE mice is questionable. Moreover, 6 days after I/R injury ∆FIRE mice were protected from the impairment in ejection fraction and had a smaller viability defect. Based on the data few questions may arise: Why was ablation of resident macrophages beneficial at earlier time points? Are recruited macrophages affected in ∆FIRE mice (see above)? Overall, the manuscript could benefit if the claim of an adverse remodeling in ∆FIRE mice would be discussed more carefully.

      3. Underlying mechanisms.<br /> The study did not functionally evaluated targets from transcriptomics to provide further mechanistic insights. It would be helpful if the authors discuss potential mechanisms of the differential effects of macrophages after ischemia in more detail.

      Other:<br /> - It is unclear why the authors performed RNAseq experiments 2 days after I/R (fig. 5/6), while the proposed functional phenotype occurred later.<br /> - A sample size of 2 animals per group appears very limited for RNAseq in ∆FIRE mice (fig. 6).

    1. Reviewer #2 (Public Review):

      The present manuscript investigates the implication of locus coeruleus-noradrenaline system in the stress-induced transcriptional changes of dorsal and ventral hippocampus, combining pharmacological, chemogenetic, and optogenetic techniques. Authors have revealed that stress-induced release of noradrenaline from locus coeruleus plays a modulatory role in the expression of a large scale of genes in both ventral and dorsal hippocampus through activation of β-adrenoreceptors. Similar transcriptional responses were observed after optogenetic and chemogenetic stimulation of locus coeruleus. Among all the genes analysed, authors identified the most affected ones in response to locus coeruleus-noradrenaline stimulation as being Dio2, Ppp1r3c, Ppp1r3g, Sik1, and Nr4a1. By comparing their transcriptomic data with publicly available datasets, authors revealed that these genes were upregulated upon exposure to different stressors. Additionally, authors found that upregulation of Ppp1r3c, Ppp1r3g, and Dio2 genes following swim stress was sustained from 90 min up to 2-4 hours after stress and that it was predominantly restricted to hippocampal astrocytes, while Sik1 and Nr4a1 genes showed a broader cellular expression and a sharp rise and fall in expression, within 90 min of stress onset.

      Overall, the paper is well written and provides a useful inventory of dorsal and ventral hippocampal gene expression upregulated by activation of LC-NA system, which can be used as starting point for more functional studies related to the effects of stress-induced physiological and pathological changes. However, I believe that the study would have benefited of a more comprehensive analyses of sex differences. Experiments in females were conducted only in one experiment and analyses restricted to the ventral hippocampus. Although, the experiments were overall sound and the results broadly support the conclusion made, I think some methodological choices should be better explained and rationalized. For instance, the study focuses on identifying transcriptional changes in the hippocampus induced by stress-mediated activation of the LC-NA system, however NA release following stress exposure and pharmacological or optogenetic manipulation was mostly measured in the cortex. Furthermore, behavioral changes following systemic pharmacologic or chemogenetic manipulation were observed in the open field task immediately after peripheral injections of yohimbine or CNO, respectively. Is this timing sufficient for both drugs to cross the blood brain barrier and to exert behavioral effects? Finally, the study shows that activation of noradrenergic hippocampus-projecting LC neurons is sufficient to regulate the expression of several hippocampal genes, although the necessity of these projection to induce the observed transcriptional effects has been tested to some extent through systemic blockade of beta-adrenoceptor, I believe the study would have benefited of more selective (optogenetic or chemogenetic) necessity experiments.

    1. Reviewer #2 (Public Review):

      The new work from Lemcke et al. suggests that the infection with Influenza A virus causes such flu symptoms as sleepiness and loss of appetite through the direct action on the responsible brain region, the hypothalamus. To test this idea, the authors performed single-nucleus RNA sequencing of the mouse hypothalamus in controlled experimental conditions (0, 3, 7, and 23 days after intranasal infection) and analyzed changes in the gene expression in the specific cell populations. The key results are promising and spurring future research. After revision, the analysis was considerably improved. Alternative approaches were used for testing. Specifically, during the revision: 1) The annotation of cell types was considerably improved; 2) The authors performed an additional analysis comparing case-control studies (Cacoa), where they could partly confirm their earlier findings.

    1. Reviewer #2 (Public Review):

      Hong and collaborators investigated variations in the amount of synaptic proteins in plasma extracellular vesicles (EV) in Parkinson's Disease (PD) patients on one-year follow-up. Their findings suggest that plasma EV synaptic proteins may be used as clinical biomarkers of PD progression.

      It is a preliminary study using semi-quantitative analysis of synaptic proteins.

      The authors have a cohort of PD patients with clinical examination and a know-how on EV purification. Regarding this latter part, they may improve their description of EV purification. EV may be broken into smaller size EV after freezing. Does it explain the relatively small size in their EV preparation? Do the authors refer to the MISEV guidelines for EV purity? Regarding synaptic protein quantification, the choice of western blotting may not be the best one. ELISA and other multiplex arrays are available. How the authors do justify their choice? Do the authors try to sort plasma EV by membrane-associated neuronal EV markers using either vesicle sorting or immunoprecipitation?

      Many technical aspects may be improved. Such technical questions weakened the authors' conclusions.

      The discussion is pretty long to justify the data. It may be shortened by adding some information in the introduction.

    1. Reviewer #2 (Public Review):

      This paper uses a novel maze design to explore mouse navigation behaviour in an automated analogue of the Barnes maze. Overall I find the work to be solid, with the cleverly designed maze/protocol to be its major strength - however there are some issues that I believe should be addressed and clarified.

      1. Whilst I'm generally a fan of the experimental protocol, the design means that internal odor cues on the maze change from trial to trial, along with cues external to the maze such as the sounds and visual features of the recording room, ultimately making it hard for the mice to use a completely allocentric spatial 'place' strategy to navigate. I do not think there is a way to control for these conflicts between reference frames in the statistical modelling, but I do think these issues should be addressed in the discussion.

      2. Somewhat related - I could not find how the internal maze cues are moved for each trial to demarcate the new goal (i.e. the luminous cues) ? This should be clarified in the methods.

      3. It appears some data is being withheld from Figures 2&3? E.g. Days 3/4 from Fig 2b-f and Days 1-5 on for Fig 3. Similarly, Trials 2-7 are excluded from Fig 3. If this is the case, why? It should be clarified in the main text and Figure captions, preferably with equivalent plots presenting all the data in the supplement.

      4. I strongly believe the data and code should be made freely available rather than "upon reasonable request".

    1. Reviewer #2 (Public Review):

      The voltage-gated potassium channel KCNQ1/KCNE1 (IKs) plays important physiological functions, for instance in the repolarization phase of the cardiac action potential. Loss-of-function of KCNQ1/KCNE1 is linked to disease. Hence, KCNQ1/KCNE1 is a highlighted pharmacological target and mechanistic insights into how channel modulators enhance the function of the channel is of great interest. The authors have through several previous studies provided mechanistic insights into how small-molecule activators like ML277 act on KCNQ1. However, less is known about the binding site and mechanism of action of other type of channel activators, which require KCNE1 for their effect. In this study, Chan and co-workers use molecular dynamics approaches, mutagenesis and electrophysiology to propose an overall similar binding site for the KCNQ1/KCNE1 activators mefenamic acid and DIDS, located at the extracellular interface of KCNQ1 and KCNE1. The authors propose an induced-fit model for the binding site, which critically engages residues in the N-terminus of KCNE1. Moreover, the authors discuss possible mechanisms of action of how drug binding to this site may enhance channel function.

      The authors address an important question, of broad relevance to researchers in the field. The manuscript is well written and the text easy to follow. A strength of the work is the parallel use of experimental and simulation approaches, which enables both functional testing and mechanistic predictions and interpretations. For instance, the authors have experimentally assessed the putative relevance of a large set of residues based on simulation predictions. A minor limitation is that not all residues of putative importance for drug binding/effects can be reliable evaluated in experiments, which is, however, clearly discussed by the authors and a challenge shared by electrophysiologists in the field.

    1. Reviewer #2 (Public Review):

      Tejeda Muñoz et al. investigate the intersection of Wnt signaling, macropinocytosis, lysosomes, focal adhesions and membrane trafficking in embryogenesis and cancer. Following up on their previous papers, the authors present evidence that PMA enhances Wnt signaling and embryonic patterning through macropinocytosis. Proteins that are associated with the endo-lysosomal pathway and Wnt signaling are co-increased in colorectal cancer samples, consistent with their pro-tumorigenic action. The function of macropinocytosis is not well understood in most physiological contexts, and its role in Wnt signaling is intriguing. The authors use a wide range of models - Xenopus embryos, cancer cells in culture and in xenografts and patient samples to investigate several endolysosomal processes that appear to act upstream or downstream of Wnt. A downside of this broad approach is a lack of mechanistic depth. In particular, few experiments monitor macropinocytosis directly, and macropinocytosis manipulations have pleiotropic effects that are open alternative interpretations. Several experiments are confirmatory of previous findings; the manuscript could be improved by focusing on the novel relationship between PMA-induced macropinocytosis and better support these conclusions with additional experiments.

      The authors use a range of inhibitors that suppress macropinosome formation (EIPA, Bafilomycin A1, Rac1 inhibition). However, these are not specific macropinocytosis inhibitors (EIPA blocks an Na+/H+ exchanger, which is highly toxic and perturbs cellular pH balance; Bafilomycin blocks the V-ATPase, which has essential functions in the Golgi, endosomes and lysosomes; Rac1 signals through multiple downstream pathways). A specific macropinocytosis inhibitor does not exist, and it is thus important to support key conclusions with dextran uptake experiments.

      The title states that PMA increases Wnt signaling through macropinocytosis. However, the mechanistic relationship between PMA-induced macropinocytosis and Wnt signaling is not well supported. The authors refer to a classical paper that demonstrates macropinocytosis induction by PMA in macrophages (PMID: 2613767). Unlike most cell types, macrophages display growth factor-induced and constitutive macropinocytic pathways (PMID: 30967001). It would thus be important to demonstrate macropinocytosis induction by PMA experimentally in Xenopus embryos / cancer cells. Does treatment with EIPA / Bafilomycin / Rac1i decrease the dextran signal in embryos? In macrophages, the PKC inhibitor Calphostin C blocks macropinocytosis induction by PMA (PMID: 25688212). Does Calphostin C block macropinocytosis in embryos / cancer cells? Do the various combinations of Wnts / Wnt agonists and PMA have additive or synergistic effects on dextran uptake? If the authors want to conclude that PMA activates Wnt signaling, it would also be important to demonstrate the effect of PMA on Wnt target gene expression.

      The experiments concerning macropinosome formation in Xenopus embryos are not very convincing. Macropinosomes are circular vesicles whose size in mammalian cells ranges from 0.2 - 10 µM (PMID: 18612320). The TMR-dextran signal in Fig. 1A does not obviously label structures that look like macropinosomes; rather the signal is diffusely localized throughout the dorsal compartment, which could be extracellular (or perhaps cytosolic). I have similar concerns for the cell culture experiments, where dextran uptake is only shown for SW480 spheroids in Fig. S2. It would be helpful to quantify size of the circular structures (is this consistent with macropinosomes?).

      In Fig. 4I - J, the dramatic decrease in b-catenin and especially in Rac1 after overnight EIPA treatment is rather surprising. How do the authors explain these findings? Is there any evidence that macropinocytosis stabilizes Rac1? Could this be another effect of EIPA or general toxicity?

      On a similar note, Fig. 6 K - L the FAK staining in control cells appears to localize to focal adhesions, but in PMA-treated cells is strongly localized throughout the cell. Do the authors have any thoughts on how PMA stabilizes FAK and where the kinase localizes under these conditions? Does PMA treatment increase FAK signaling activity?

      The tumor stainings in Figure 5 are interesting but correlative. Pak1 functions in multiple cellular processes and Pak1 levels are not a direct marker for macropinocytosis. In the discussion, the authors discuss evidence that the V-ATPase translocates to the plasma membrane in cancer to drive extracellular acidification. To which extent does the Voa3 staining reflect lysosomal V-ATPase? Do the authors have controls for antibody specificity?

    1. Reviewer #2 (Public Review):

      The manuscript by Sun et al. applies the powerful technology of profiling viral DNA sequences in numerous anatomical sites in autopsy samples from participants who maintained their antiviral therapy up to the time of death. The sequencing is of high quality in using end-point dilution PCR to generate individual viral genomes. There is a thoughtful discussion, although there are points that we disagree with. This is an important data set that increases the scope of how the field thinks about the latent reservoir with a new look at the potential of a reservoir within the CNS.

      1. The participants are very different in their exposure to HIV replication and disease progression. Participant 1 appears to have been on ART for most of the time after diagnosis of infection (16 years) and died with a high CD4 T cell count. The other two participants had only one year on ART and died with relatively low CD4 T cell counts (under 200). This could lead to differences in the nature of the reservoir. In this regard, the amount of DNA per million cells appears to be about 10-fold lower across the compartments sampled for participant 1. Also, one might expect fewer intact proviruses surviving after 16 years on ART compared to only 1 year on ART. The depth of sampling may be too limited and the number of participants too few to assess if these differences are features of these participants because of their different exposures to HIV replication. On the positive side, finding similarities across these big differences in participant profiles does reinforce the generalizability of the observations.

      2. The following analysis will be limited by sampling depth but where possible it would be interesting to compare the ratio of intact to defective DNA. A sanctuary might allow greater persistence of cells with intact viral DNA even without viral replication (i.e. reduced immune surveillance). Detecting one or two intact proviruses in a tissue sample does not lend itself to a level of precision to address this question, but statistical tests could be applied to infer when there is sampling of 5 or more intact proviruses to determine if their frequency as a ratio of total DNA in different anatomical sites is similar or different. This would allow adjustment for the different amount of viral DNA in different compartments while addressing the question of the frequency of intact versus defective proviruses. One complication in this analysis is if there was clonal expansion of a cell with an intact genome which would represent a fortuitous over-representation intact genomes in that compartment.

      3. The key point of this work is that the participants were on therapy up to the time of death ("enforcing" viral latency). The predominance of defective genomes is consistent with this assumption. Is there data from untreated infections to compare to as a signature of whether the viral DNA population was under selective pressure from therapy or not? Presumably untreated infections contain more intact DNA relative to total DNA. This would represent independent evidence that therapy was in place.

      4. There are several points in Figure 5 to raise about V3 loop sequences. The analysis includes a large number of "undetermined" sequences that did not have a V3 loop sequence to evaluate. We would argue it is a fair assumption that the deleted proviruses have the same distribution of X4 and R5 sequences as the ones that have a V3 sequence to evaluate. In this view it would be possible to exclude the sequences for which there is no data and just look at the ratio of X4 and R5 in the different compartments, specifically does this ratio change in a statistically significant way in different compartments? The authors use "CCR5 and non-CCR5" as the two entry phenotypes. The evidence is pretty strong that the "other" coreceptor the virus routinely uses is CXCR4, and G2P is providing the FPR for X4 viruses. Perhaps the authors are trying to create some space for other coreceptors on microglia, but we are pretty sure what they are measuring is X4 viruses, especially in this late disease state of participant 2. Finally, we have previously observed that the G2P FPR score of <2 is a strong indicator of being X4, FPR scores between 2 and 10 have a 50% chance of being X4, and FPR scores above 10 are reliably R5 (PMID27226378). In addition, we observed that X4 viruses form distinct phylogenetic lineages. The authors might consider these features of X4 viruses in the evaluation of their sequences. Specifically, it would be helpful to incorporate the FPR scores of the reported X4 viruses.

      5. We have puzzled over the many reports of different cell types in the CNS being infected. When we examined these cells types (both as primary cells and as iPSC-derived cells), all cells could be infected with a version of HIV that had the promiscuous VSV-G protein on the virus surface as a pseudotype. However, only macrophages and microglia could be infected using the HIV Env protein, and then only if it was the M-tropic version and not the T-tropic version (PMID35975998). RNAseq analysis was consistent with this biological readout in that only macrophages and microglia expressed CD4, neurons and astrocytes do not. From the virology point of view, astrocytes are no more infectable than neurons.

      6. The brain gets exposed to virus from the earliest stages of infection but this is not synonymous with viral replication. Most of the time there is virus in the CSF but it is present at 1-10% of the level of viral load in the blood and phylogenetically it looks like the virus in the blood, most consistent with trafficking T cells, some of which are infected (PMID25811757). The fact that the virus in the blood is almost always T cell-tropic in needing a high density of CD4 for entry makes it unlikely that monocytes are infected (with their low density of CD4) and thus are not the source of virus found in the CNS. It seems much more likely that infected T cells are the "Trojan Horse" carrying virus into the CNS.

      7. While all participants were taking antiretroviral therapy at the time of their death, they were not all suppressed when the tissues were collected. The authors are careful not to mention "suppressive ART" in the text, which is appreciated. However, the title should be changed to also reflect this fact.

    1. Reviewer #2 (Public Review):

      In this manuscript the authors established synapsin's E-domain as an essential functional binding partner that allows α-syn functionality. They show very elegantly that only synapsin isoforms that have an E-domain bind α-syn and allow the inhibition mediated by α-syn. Deletion of the C-terminus (α-syn 96-110) eliminated this interaction. Hence, synapsin E-domain binds to α-syn enabling the inhibitory effect of α-syn on synaptic transmission.

      The paper will be improved significantly if additional experiments are added to expand and provide a more mechanistic understanding of the effect of α-syn and the intricate interplay between synapsin, α-syn, and the SV. For an enthusiastic reader, the manuscript as it looks now with only 3 figures, ends prematurely. Some of the experiments above or others could complement, expand and strengthen the current manuscript, moving it from a short communication describing the phenomenon to a coherent textbook topic. Nevertheless, this work provides new and exciting evidence for the regulation of neurotransmitter release and its regulation by synapsin and α-syn.

    1. Reviewer #2 (Public Review):

      In this manuscript, Mendana et al developed a multiplexing method - Targeted Genetically-Encoded Multiplexing or TaG-EM - by inserting a DNA barcode upstream of the polyadenylation site in a Gal4-inducible UAS-GFP construct. This Multiplexing method can be used for population-scale behavioral measurements or can potentially be used in single-cell sequencing experiments to pool flies from different populations. The authors created 20 distinctly barcoded fly lines. First, TaG-EM was used to measure phototaxis and oviposition behaviors. Then, TaG-EM was applied to the fly gut cell types to demonstrate its applications in single-cell RNA-seq for cell type annotation and cell origin retrieving.

      This TaG-EM system can be useful for multiplexed behavioral studies from next-generation sequencing (NGS) of pooled samples and for Transcriptomic Studies. I don't have major concerns for the first application, but I think the scRNA-seq part has several major issues and needs to be further optimized.

      Major concerns:<br /> 1. It seems the barcode detection rate is low according to Fig S9 and Fig 5F, J and N. Could the authors evaluate the detection rate? If the detection rate is too low, it can cause problems when it is used to decode cell types.<br /> 2. Unsuccessful amplification of TaG-EM barcodes: The authors attempted to amplify the TaG-EM barcodes in parallel to the gene expression library preparation but encountered difficulties, as the resulting sequencing reads were predominantly off-target. This unsuccessful amplification raises concerns about the reliability and feasibility of this amplification approach, which could affect the detection and analysis of the TaG-EM barcodes in future experiments.<br /> 3. For Fig 5, the singe-cell clusters are not annotated. It is not clear what cell types are corresponding to which clusters. So, it is difficult to evaluate the accuracy of the assignment of barcodes.<br /> 4. The scRNA-seq UMAP in Fig 5 is a bit strange to me. The fly gut epithelium contains only a few major cell types, including ISC, EB, EC, and EE. However, the authors showed 38 clusters in fig 5B. It is true that some cell types, like EE (Guo et al., 2019, Cell Reports), have sub-populations, but I don't expect they will form these many sub-types. There are many peripheral small clusters that are not shown in other gut scRNA-seq studies (Hung et al., 2020; Li et al., 2022 Fly Cell Atlas; Lu et al., 2023 Aging Fly Cell Atlas). I suggest the authors try different data-processing methods to validate their clustering result.<br /> 5. Different gut drivers, PMC-, PC-, EB-, EC-, and EE-GAL4, were used. The authors should carefully characterize these GAL4 expression in larval guts and validate sequencing data. For example, does the ratio of each cell type in Fig 5B reflect the in vivo cell type ratio? The authors used cell-type markers mostly based on the knowledge from adult guts, but there are significant morphological and cell ratio differences between larval and adult guts (e.g., Mathur...Ohlstein, 2010 Science).<br /> 6. Doublets are removed based on the co-expression of two barcodes in Fig 5A. However, there are also other possible doublets, for example, from the same barcode cells or when one cell doesn't have detectable barcode. Did the authors try other computational approaches to remove doublets, like DoubleFinder (McGinnis et al., 2019) and Scrublet (Wolock et al., 2019)?<br /> 7. Did the authors remove ambient RNA which is a common issue for scRNA-seq experiments?<br /> 8. Why does TaG-EM barcode #4, driven by EC-GAL4, not label other classes of enterocyte cells such as betaTry+ positive ECs (Figures 5D-E)? similarly, why does TaG-EM barcode #9, driven by EE-GAL4, not label all EEs? Again, it is difficult to evaluate this part without proper data processing and accurate cell type annotation.<br /> 9. For Figure 2, when the authors tested different combinations of groups with various numbers of barcodes. They found remarkable consistency for the even groups. Once the numbers start to increase to 64, barcode abundance becomes highly variable (range of 12-18% for both male and female). I think this would be problematic because the differences seen in two groups for example may be due to the barcode selection rather than an actual biologically meaningful difference.<br /> 10. Barcode #14 cannot be reliably detected in oviposition experiment. This suggests that the BC 14 fly line might have additional mutations in the attp2 chromosome arm that affects this behavior. Perhaps other barcode lines also have unknown mutations and would cause issues for other untested behaviors. One possible solution is to back-cross all 20 lines with the same genetic background wild-type flies for >7 generations to make all these lines to have the same (or very similar) genetic background. This strategy is common for aging and behavior assays.

    1. we now have a decade—if that—to achieve a dramatic redirection of thehuman course as a now globally interdependentspecies.
      • for: climate clock
      • comment
        • We are already, in fact a highly interdependent species.
        • We are so specialized that if the precarious system were to fail,
          • few have the breadth of knowledge to survive, much less thrive on their own.
        • The key shift that is required is therefore not from a siloed to an interdependent one as it is from
          • an unhealthy and exploitative interdependence to
          • a healthy one based on holistic wellbeing
    1. Reviewer #2 (Public Review):

      The manuscript by Petitgas et al demonstrates that loss of function for the only enzyme responsible for the purine salvage pathway in fruit-flies reproduces the metabolic and neurologic phenotypes of human patients with Lesch-Nyhan disease (LND). LND is caused by mutations in the enzyme HGPRT, but this enzyme does not exist in fruit-flies, which instead only have Aprt for purine recycling. They demonstrate that mutants lacking the Aprt enzyme accumulate uric acid, which like in humans can be rescued by feeding flies allopurinol, and have decreased longevity, locomotion and sleep impairments and seizures, with striking resemblance to HGPRT loss of function in humans. They demonstrate that both loss of function throughout development or specifically in the adult ubiquitously or in all neurons, or dopaminergic neurons, mushroom body neurons or glia, can reproduce the phenotypes (although knock-down in glia does not affect sleep). They show that the phenotypes can be rescued by over-expressing a wild-type form of the Aprt gene in neurons. They identify a decrease in adenosine levels as the cause underlying these phenotypes, as adenosine is a neurotransmitter functioning via the purinergic adenosine receptor in neurons. In fact, feeding flies throughout development and in the adult with either adenosine or m6A could prevent seizures. They also demonstrate that loss of adenosine caused a secondary up-regulation of ENT nucleoside transporters and of dopamine levels, that could explain the phenotypes of decreased sleep and hyperactivity and night. Finally, they provide the remarkable finding that over-expression of the human mutant HGPRT gene but not its wild-type form in neurons impaired locomotion and induced seizures. This means that the human mutant enzyme does not simply lack enzymatic activity, but it is toxic to neurons in some gain-of-function form. Altogether, these are very important and fundamental findings that convincingly demonstrate the establishment of a Drosophila model for the scientific community to investigate LND, to carry out drug testing screens and find cures.

      The experiments are conducted with great rigour, using appropriate and exhaustive controls, and on the whole the evidence does convincingly or compellingly support the claims. The exception is an instance when authors mention 'data not shown' and here data should either be provided, or claims removed: "feeding flies with adenosine or m6A did not rescue the SING phenotype of Aprt mutants (data not shown)". It is important to show these data (see below).

      Sleep is used to refer to lack of movement of flies to cross a beam for more than 5 minutes. However, lack of movement does not necessarily mean the flies are asleep, as they could be un-motivated to move (which could reflect abnormal dopamine levels) or engaged in incessant grooming instead. These differences are important for future investigation into the neural circuits affect by LND.

      The authors claim that based on BLAST genome searchers, there are no HPRTI (encoding HGPRT) homologues in Drosophila. However, such a claim would require instead structure-based searches that take into account structural conservation despite high sequence divergence, as this may not be detected by regular BLAST.

      This work raises important questions that still need resolving. For example, the link between uric acid accumulation, reduced adenosine levels, increased dopamine and behavioural neurologic consequences remain unresolved. It is important that they show that restoring uric acid levels does not rescue locomotion nor seizure phenotypes, as this means that this is not the cause of the neurologic phenotypes. Instead, their data indicate adenosine deficiency is the cause. However, one weakness is that for the manipulations they test some behaviours but not all. The authors could attempt to improve the link between mechanism and behaviour by testing whether over-expression of Aprt in neurons or glia, throughout development or in the adult, and feeding with adenosine and m6A can rescue each of the behavioural phenotypes handled: lifespan, SING, sleep and seizures. The authors could also attempt to knock-down dopamine levels concomitantly with feeding with adenosine or m6A to see if this rescues the phenotypes of SING and sleep. Visualising the neural circuits that express the adenosine receptor could reveal why the deficit in adenosine can affect distinct behaviours differentially, and which neurologic phenotypes are primary and which secondary consequences of the mutations. This would allow them to carry out epistasis analysis by knocking-down AdoR in specific circuits, whilst at the same time feeding Aprt mutants with Adenosine.

      The revelation that the mutant form of human HGPRT has toxic effects is very intriguing and important and it invites the community to investigate this further into the future.

      To conclude, this is a fundamental piece of work that opens the opportunity for the broader scientific community to use Drosophila to investigate LND.

    1. Reviewer #2 (Public Review):

      In this manuscript Sangaram et al provide a systematic methodology and pipeline for benchmarking cell type deconvolution algorithms for spatial transcriptomic data analysis in a reproducible manner. They developed a tissue pattern simulator that starts from single-cell RNA-seq data to create silver standards and used spatial aggregation strategies from real in situ-based spatial technologies to obtain gold standards. By using several established metrics combined with different deconvolution challenges they systematically scored and ranked 11 deconvolution methods and assessed both functional and usability criteria. Altogether, they present a reusable and extendable platform and reach very similar conclusions to other deconvolution benchmarking paper, including that RCTD, SpatialDWLS and Cell2location typically provide the best results.

      More specifically, the authors of this study sought to construct a methodology for benchmarking cell type deconvolution algorithms for spatial transcriptomic data analysis in a reproducible manner. The authors leveraged publicly available scRNA-seq, seqFISH, and STARMap datasets to create synthetic spatial datasets modeled after that of the Visium platform. It should be noted that the underlying experimental techniques of seqFISH and STARMap (in situ hybridization) do not parallel that of Visium (sequencing), which could bias simulated data. Furthermore, to generate the ground truth datasets cells and their corresponding count matrix are represented by simple centroids. Although this simplifies the analysis it might not necessarily accurately reflect Visium spots where cells could lie on a boundary and affect deconvolution results. On the other hand, the authors state that in silver standard datasets one half of the scRNA-seq data was used for simulation and the other half was used as a reference for the algorithms, but the method of splitting the data, i.e., at random or proportionally by cell type, was not specified. Supplying optimal reference data is important to achieve best performance, as the authors note in their conclusions.

      The authors thoroughly and rigorously compare methods while addressing situational discrepancies in model performance, indicative of a strong analysis. The authors make a point to address both inter- and intra- dataset reference handling, which has a significant impact on performance. Major strengths of the simulation engine include the ability to downsample and recapitulate several cell and tissue organization patterns.

      It's important to realize that deconvolution approaches are typically part of larger exploratory data analysis (EDA) efforts and require users to change parameters and input data multiple times. Furthermore, many users might not have access to more advanced computing infrastructure (e.g. GPU) and thus running time, computing needs, and scalability are probably key factors that researchers would like to consider when looking to deconvolve their datasets.

      The authors achieve their aim to benchmark different deconvolution methods and the results from their thorough analysis support the conclusions that many methods are still outperformed by bulk deconvolution methods. This study further informs the need for cell type deconvolution algorithms that can handle both cell abundance and rarity throughout a given tissue sample.

      The reproducibility of the methods described will have significant utility for researchers looking to develop cell type deconvolution algorithms, as this platform will allow simultaneous replication of the described analysis and comparison to new methods.

    1. Reviewer #2 (Public Review):

      This work follows in the footsteps of earlier work showing that BMI prediction accuracy can vary dramatically by context, even within a relatively ancestrally homogenous sample. This is an important observation that is worth the extension to different context variables and samples.

      Much of the follow-up analyses are commendably trying to take us a step further-towards explaining the underlying observed trends of variable prediction accuracy for BMI. Some of these analyses, however, are somewhat confounded and hard to interpret.

      For example, many of the covariates which the authors use to stratify the sample by may drive range restriction effects. Further, the covariates considered could be causally affected by genotype and causally affect BMI, with reverse causality effects; other covariates may be partially causally affected by both genotype and BMI, resulting in collider bias. Finally, population structure differences between quintiles of a covariate may drive variable levels of stratification. These can bias estimation and confounds interpretations, at least one of which intuitively seems like a concern for each of the context variables (e.g., the covariates SES, LDL, diet, age, smoking, and alcohol drinking).

      The increased prediction accuracy observed with some of the age-dependent prediction models is notable. Despite the clear utility of this investigation, I am not aware of much existing work that shows such improvements for context-aware prediction models (compared to additive/main effect models). I would be curious to see if the predictive utility extends to held-out data from a data set distinct from the UKB, where the model was trained, or whether it replicates when predicting variation within families. Such analyses could strengthen the evidence for these models capturing direct causal effects, rather than other reasons for the associations existing in the UKB sample.

    1. Reviewer #2 (Public Review):

      In this study the authors aim to elucidate the role of RAPSYN in BCR-ABL-mediated leukemogenesis. RAPSYN is mainly known as a scaffolding protein for anchoring acetylcholine receptors (AChRs) to the cytoskeleton in muscle cells, facilitating AChR clustering through neddylation (Li et al., 2016). The authors demonstrate, through a broad and rigorous array of biochemical assays, that RAPSYN also plays a crucial role in the neddylation of BCR-ABL in leukemia cells. Their results indicate that this process shields BCR-ABL from ubiquitination and subsequent degradation, likely through a mechanism involving competition for binding with the BCR-ABL ubiquitin ligase c-CBL. In addition, the authors delve into the regulatory mechanisms underlying RAPSYN stability, demonstrating that it is enhanced through phosphorylation by SRC. This discovery further deepens our understanding of the complex dynamics of the molecular interactions that regulate BCR-ABL stability in leukemia.

      To confirm the physiological significance of their findings, the authors effectively utilize cell viability assays and in vivo models. The integration of these approaches lends strength and validity to their conclusions.

      The implications of the findings presented in this study are important, particularly in relation to our understanding of the pathogenesis and potential therapeutic strategies for Philadelphia chromosome-positive leukemias. By illuminating the role of RAPSYN in the regulation of BCR-ABL stability, this research potentially uncovers avenues for the development of targeted therapies, making a significant contribution to the field.

      Most of the conclusions drawn in this paper are well supported by data, but some aspects of the data need to be clarified and extended:

      1) The authors propose that targeting RAPSYN in Ph+ leukemia could have a high therapeutic index, suggesting that inhibition of RAPSYN may lead to cytotoxicity in Ph+ leukemia with high specificity and minimal side effects. To substantiate this assertion, the authors should investigate the impact on cell viability upon RAPSYN knockdown in non-Ph leukemic cell lines or HS-5 cells (similar to Figure 1C), despite their lower RAPSYN protein levels.

      2) The authors intriguingly show that the protein levels of RAPSYN are significantly enriched in Ph+ patient samples and cell lines (Figure 1A,B), even though the mRNA levels remain unchanged (Supplementary Figure 1 A-C). This observation merits a clear explanation in the context of the presented results. The data in the manuscript does imply a feedforward loop mechanism (Figure 7), where BCR-ABL activates SRC, which subsequently stabilizes RAPSYN, which in turn helps protect BCR-ABL from c-CBL-mediated degradation. If this is the working hypothesis, it would be beneficial for the reader to see supporting evidence.

      3) The authors present compelling evidence to suggest that RAPSYN may possess direct NEDD8-ligase activity on BCR-ABL. To strengthen this claim, it may be valuable to conduct further assays involving a ligase-deficient mutant, such as C366A, beyond its use in Figure 2J. Incorporating this mutant into the in vitro assay illustrated in Figure 2K, for instance, could offer substantial validation for the claim. In addition, showing whether the ligase-deficient mutant is capable of phenocopying the phosphorylation-mutant Y336F, as showcased in Figures 5E, F, and 6D, F, would be beneficial.

      4) The observations presented in Figures 6 C-G require additional clarification. Notably, there are discrepancies in relative cell viability effects in K562 cells, and to some extent in MEG-01 cells, under conditions that are indicated as being either identical or highly similar. For instance, this inconsistency is observable when comparing the left panels of Figure 6C and 6D in the case of NC overexpression + shSRC#2, and the left panels of Figure 6E and 6G with NC overexpression or shNC, respectively. Listing potential causes of these discrepancies would strengthen the overall validity of the findings and their subsequent interpretation.

      5) Throughout the manuscript, immunoblots which showcase immunoprecipitations of BCR-ABL or His-BCR-ABL depict poly-neddylation (e.g. Figures 2E-M, 3D-G, and 5A-E) and poly-ubiquitination (e.g. Figures 3D-G) patterns/smears where these patterns seem to extend below the molecular weight of BCR-ABL. To enhance clarity, it would be valuable for the authors to provide an explanation in the text or the figure legend for this observation. Is it reflective of potential degradation of BCR-ABL or is there another explanation behind it?

    1. Reviewer #2 (Public Review):

      This is a very nice study showing how partial loss of vestibular function leads to long term alterations in behavioural responses of mice. Specifically, the authors show that VOR involving both canal and otolith afferents are strongly attenuated following treatment and partially recover. The main result is that loss of VOR is partially "compensated" by increased OKR in treated animals. Finally, the authors show that treatment primarily affects type I hair cells as opposed to type II. Overall, these results have potentially important implications for our understanding of how the VOR Is generated using input from both type I and type II hair cells. As detailed below however, more controls as well as analyses are needed.

      Major points:

      The authors analyze both canal and otolith contributions to the VOR which is great. There is however an asymmetry in the way that the results are presented in Figure 1. Please correct this and show time series of fixations for control and at W6 and W12. Moreover, the authors are plotting table and eye position traces in Fig. 1B but, based on the methods, gains are computed based on velocity. So please show eye velocity traces instead. Also, what was the goodness of fit of the model to the trace at W6? If lower than 0.5 then I think that it is misleading to show such a trace since there does not seem to be a significant VOR. This is important to show that the loss is partial as opposed to total. It seems to me that the treatment was not effective at all for aVOR for at least some animals. What happens if these are not included in the analysis?

      Figure 2A shows a parallel time course for gains of aVOR and OCR at the population level. Is this also seen at the individual level?

      Figure 3: please show individual datapoints in all conditions.

      Figure 4: The authors show both gain and phase for OKR. Why not show gain and phase for aVOR and OCR in Figure 1. I realize that phase is shown in sup Figures but it is important to show in main figures. The authors show a significant increase in phase lead for aVOR but no further mention is made of this in the discussion. Moreover, how are the authors dealing with the fact that, as gain gets smaller, the error on the phase will increase. Specifically, what happens when the grey datapoints are not included?

      Discussion: As mentioned above, the authors should discuss the mechanisms and implications of the observed phase lead following treatment. Moreover, recent literature showing that VN neurons that make the primary contribution to the VOR (i.e., PVP neurons) tend to show more regular resting discharges than other classes (i.e., EH cells), and that such regularity is needed for the VOR should be discussed (Mackrous et al. 2020 eLife). Specifically, how are type I and type II hair cells related to discharge regularity by central neurons in VN?

    1. Reviewer #2 (Public Review):

      This manuscript by Petersen and colleagues investigates the mechanistic underpinnings of activation of the ion channel TREK-1 by mechanical inputs (fluid shear or membrane stretch) applied to cells. Using a combination of super-resolution microscopy, pair correlation analysis and electrophysiology, the authors show that the application of shear to a cell can lead to changes in the distribution of TREK-1 and the enzyme PhospholipaseD2 (PLD2), relative to lipid domains defined by either GM1 or PIP2. The activation of TREK-1 by mechanical stimuli was shown to be sensitized by the presence of PLD2, but not a catalytically dead xPLD2 mutant. In addition, the activity of PLD2 is increased when the molecule is more associated with PIP2, rather than GM1 defined lipid domains. The presented data do not exclude direct mechanical activation of TREK-1, rather suggest a modulation of TREK-1 activity, increasing sensitivity to mechanical inputs, through an inherent mechanosensitivity of PLD2 activity. The authors additionally claim that PLD2 can regulate transduction thresholds in vivo using Drosophila melanogaster behavioural assays. However, this section of the manuscript overstates the experimental findings, given that it is unclear how the disruption of PLD2 is leading to behavioural changes, given the lack of a TREK-1 homologue in this organism and the lack of supporting data on molecular function in the relevant cells. This work will be of interest to the growing community of scientists investigating the myriad mechanisms that can tune mechanical sensitivity of cells, providing valuable insight into the role of functional PLD2 in sensitizing TREK-1 activation in response to mechanical inputs, in some cellular systems.

      The authors convincingly demonstrate that, post application of shear, an alteration in the distribution of TREK-1 and mPLD2 (in HEK293T cells) from being correlated with GM1 defined domains (no shear) to increased correlation with PIP2 defined membrane domains (post shear). These data were generated using super-resolution microscopy to visualise, at sub diffraction resolution, the localisation of labelled protein, compared to labelled lipids. The use of super-resolution imaging enabled the authors to visualise changes in cluster association that would not have been achievable with diffraction limited microscopy. However, the conclusion that this change in association reflects TREK-1 leaving one cluster and moving to another overinterprets these data, as the data were generated from static measurements of fixed cells, rather than dynamic measurements capturing molecular movements.

      When assessing molecular distribution of endogenous TREK-1 and PLD2, these molecules are described as "well correlated: in C2C12 cells" however it is challenging to assess what "well correlated" means, precisely in this context. This limitation is compounded by the conclusion that TREK-1 displayed little pair correlation with GM1 and the authors describe a "small amount of TREK-1 trafficked to PIP2". As such, these data may suggest that the findings outlined for HEK293T cells may be influenced by artefacts arising from overexpression.

      The changes in TREK-1 sensitivity to mechanical activation could also reflect changes in the amount of TREK-1 in the plasma membrane. The authors suggest that the presence of a leak currently accounts for the presence of TREK-1 in the plasma membrane, however they do not account for whether there are significant changes in the membrane localisation of the channel in the presence of mPLD2 versus xPLD2. The supplementary data provide some images of fluorescently labelled TREK-1 in cells, and the authors state that truncating the c-terminus has no effect on expression at the plasma membrane, however these data provide inadequate support for this conclusion. In addition, the data reporting the P50 should be noted with caution, given the lack of saturation of the current in response to the stimulus range.

      Finally, by manipulating PLD2 in D. melanogaster, the authors show changes in behaviour when larvae are exposed to either mechanical or electrical inputs. The depletion of PLD2 is concluded to lead to a reduction in activation thresholds and to suggest an in vivo role for PA lipid signaling in setting thresholds for both mechanosensitivity and pain. However, while the data provided demonstrate convincing changes in behaviour and these changes could be explained by changes in transduction thresholds, these data only provide weak support for this specific conclusion. As the authors note, there is no TREK-1 in D. melanogaster, as such the reported findings could be accounted for by other explanations, not least including potential alterations in the activation threshold of Nav channels required for action potential generation. To conclude that the outcomes were in fact mediated by changes in mechanotransduction, the authors would need to demonstrate changes in receptor potential generation, rather than deriving conclusions from changes in behaviour that could arise from alterations in resting membrane potential, receptor potential generation or the activity of the voltage gated channels required for action potential generation.

      This work provides further evidence of the astounding flexibility of mechanical sensing in cells. By outlining how mechanical activation of TREK-1 can be sensitised by mechanical regulation of PLD2 activity, the authors highlight a mechanism by which TREK-1 sensitivity could be regulated under distinct physiological conditions.

    1. Reviewer #2 (Public Review):

      The manuscript describes a large scale study of 8 eye tracking tasks in a large cohort of 18 month old children. The dataset is impressive and allows a comparison across children in different tasks that assess social, endogenous, and exogenous attention tasks. As such, it provides a benchmark for future studies that examine eye movements within different cohorts of children and across development and offers exciting possibilities to correlate these measures with behavior, other measures of motor and neural development, and to compare these measures with children diagnosed with neurodevelopmental disorders.

      It does seem like additional insights can be gained from the study that could potentially address important topics in development, attention, and eye movements. Which components of attention are similar and in what way? The distinction between social vs non social is interesting but not ground breaking (e.g., the preference of toddlers to attend to faces); maybe looking at specific sub-tasks and clusters of participants the study can reveal new insights about the differences and similarities across tasks. The manuscript describes the importance of characterizing profiles of attention and individual differences, what kind of profiles are found in the study? Are there different profiles among this large cohort?<br /> Moreover, to allow comparison across analysis methods, ages, and neurodevelopmental disorders, it is important that the full dataset will be available online (i.e., all eye tracking data not just the metrics) as well as the software to run tasks that should also be made available to encourage using the battery across different research communities.

    1. Reviewer #2 (Public Review):

      Sleep and memory are intertwined processes, with sleep-deprivation having a negative impact on long-term memory in many species. Recently, the authors showed that fruit flies form sleep-dependent long-term appetitive memory only when fed. They showed that this context-dependent memory trace maps to the anterior-posterior (ap) α'β' mushroom body neurons (MBNs) (Chouhan et al., (2021) Nature). However, the molecular cascades induced during training that promote sleep and memory have remained enigmatic.

      Here the authors investigate this issue by combining cell-specific transcriptomics, genetic perturbations, and measurements of sleep and memory. They identify an array of genes altered in expression following appetitive training. These genes are mainly downregulated, and predominantly encode regulators of transcription and RNA biosynthesis. This is a conceptually attractive finding given that long-term memory requires de novo protein translation.

      The authors then screen these genes for novel regulators of sleep and memory. They show that one of these genes (Polr1F) acts in ap α'β' MBNs to promote wakefulness, while another (Regnase-1) promotes sleep. They also identify a specific role for Regnase-1 in ap α'β' MBNs in regulating short- and long-term memory formation, and demonstrate that Pol1rF inhibits translation throughout the fly brain.

      The analyses of molecular alterations in ap α'β' MBNs are interesting and impressive. However, caveats remain regarding the effect of Polr1F and Regnase-1 on sleep. There are significant differences in the impact of Polr1F knockdown on sleep between datasets, and from the data currently presented, it is unclear whether Polr1F and Regnase-1 might also play important developmental roles in ap α'β' MBNs that influence sleep. These caveats can be readily addressed by additional experiments that would enhance the robustness of the manuscript.

    1. Reviewer #2 (Public Review):

      This manuscript focuses on the clinical impact of subjective experience or treatment with transcranial magnetic stimulation and transcranial direct current stimulation studies with retrospective analyses of 4 datasets. Subjective experience or treatment refers to the patient level thought of receiving active or sham treatments. The analyses suggest that subjective treatment effects are an important and under appreciated factor in randomized controlled trials. The authors present compelling evidence that has significance in the context of other modalities of treatment, treatment for other diseases, and plans for future randomized controlled trials. Other strengths included a rigorous approach and analyses. Some aspects of the manuscript are underdeveloped and the findings are over interpreted. Thank you for your efforts and the opportunity to review your work.

    1. Reviewer #2 (Public Review):

      The authors applied two visual working memory tasks, a memory-guided localization (MGL), examining short-term memory of the location of an item over a brief interval, and an N-back task, examining orientation of a centrally presented item, in order to test working memory performance in patients with multiple sclerosis (including a subgroup with relapsing-remitting and one with secondary progressive MS), compared with healthy control subjects. The authors used an approach in testing and statistically modelling visual working memory paradigm previously developed by Paul Bays, Masud Husain and colleagues. Such continuous measure approaches make it possible to quantify the precision, or resolution, of working memory, as opposed to measuring working memory using discretised, all-or-none measures.

      The authors of the present study found that both MS subgroups performed worse than controls on the N-back task and that only the secondary progressive MS subgroup was significantly impaired on the MGL task. The underlying sources of error including incorrect association of an object's identity with its location or serial order, were also examined.

      The application of more precise psychophysiological methods to test visual working memory in multiple sclerosis should be applauded. It has the potential to lead to more sensitive and specific tests which could potentially be used as useful outcome measures in clinical trials of disease modifying drugs, for example.

      However, there are some significant limitations which severely affect the scientific validity and interpretability of the study:

      a) There is a striking lack of key clinical information. The inclusion and exclusion criteria are unclear and a recruitment flowchart has not been provided. Therefore it is unclear what proportion of MS patients were ineligible due to, for example, visual impairment. Basic clinical data such as EDSS scores, disease duration, treatment history, and performance on standard cognitive testing were not provided. Basic clinical and demographic data for each subgroup were not provided in a clear format. This severely limits the interpretability of the study and its significance for this clinical population. For example, might it be that the SPMS patients performed worse on the MGL task because they were more cognitively impaired than RRMS patients? That question might be easily answered, but the answer is unclear based on the data provided.

      b) The study is completely agnostic to the underlying pathophysiology. There is no neuroimaging available, therefore it is unclear how the specific working memory impairments observed might relate to lesioned underlying brain networks which are crucial for specific aspects of working memory. This severely limits the scientific impact of the results. This limitation is acknowledged by the authors, but the authors did not put forward any hypotheses on how their results may be underpinned by the underlying disease processes.

      c) The present study does not compare the continuous-report testing with a discrete measure task so it is unclear if the former is more sensitive, or more feasible in this patient group, although this may not have been the purpose of the study.

    1. Reviewer #2 (Public Review):

      The authors present an image-analysis pipeline for mother-machine data, i.e., for time-lapses of single bacterial cells growing for many generations in one-dimensional microfluidic channels. The pipeline is available as a plugin of the python-based image-analysis platform Napari. The tool comes with two different previously published methods to segment cells (classical image transformation and thresholding as well as UNet-based analysis), which compare qualitatively and quantitatively well with the results of widely accessible tools developed by others (BACNET, DelTA, Omnipose). The tool comes with a graphical user interface and example scripts, which should make it valuable for other mother-machine users, even if this has not been demonstrated yet.

      The authors also add a practical overview of how to prepare and conduct mother-machine experiments, citing their previous work and giving more advice on how to load cells using centrifugation. However, the latter part lacks detailed instructions.

      Finally, the authors emphasize that machine-learning methods for image segmentation reproduce average quantities of training datasets, such as the length at birth or division. Therefore, differences in training can propagate to difference in measured average quantities. This result is not surprising and is normally considered a desired property of any machine-learning algorithm as also commented on below.

      Points for improvement:<br /> Different datasets: The authors demonstrate the use of their method for bacteria growing in different growth conditions in their own microscope. However, they don't provide details on whether they had to adjust image-analysis parameters for each dataset. Similarly, they say that their method also works for other organisms including yeast and C. elegans (as part of the Results section) but they don't show evidence nor do they write whether the method needs to be tuned/trained for those datasets. Finally, they don't demonstrate that their method works on data from other labs, which might be different due to differences in setup or imaging conditions.

      Bias due to training sets:<br /> The bias in ML-methods based on training datasets is not surprising but arguably a desired property of those methods. Similarly, threshold-based classical segmentation methods are biased by the choice of threshold values and other segmentation parameters. A point that would have profited from discussion in this regard: How to make image segmentation unbiased, that is, how to deliver physical cell boundaries? This can be done by image simulations and/or by comparison with alternative methods such as fluorescence microscopy.

      The authors stress the user-friendliness of their method in comparison to others. For example, they write: 'Unfortunately, many of these tools present a steep learning curve for most biologists, as they require familiarity with command line tools, programming, and image analysis methods.' I suggest to instead emphasize that many of the tools published in recent years are designed to be very use friendly. And as will all methods, MM3 also comes at a prize, which is to install Napari followed by the installation of MM3, which, according to their own instructions, is not easy either.

    1. Reviewer #2 (Public Review):

      This manuscript investigates the mechanism behind the accumulation of phytosphingosine (PHS) and its role in triggering vacuole fission. The study proposes that membrane contact sites (MCSs) are involved in two steps of this process. First, tricalbin-tethered MCSs between the endoplasmic reticulum (ER) and the plasma membrane (PM) or Golgi modulate the intracellular amount of PHS. Second, the accumulated PHS induces vacuole fission, most likely via the nuclear-vacuolar junction (NVJ). The authors suggest that MCSs regulate vacuole morphology through sphingolipid metabolism.<br /> While some of the results in the manuscript are interesting the overall logic is hard to follow. In my assessment of the manuscript, my primary concern lies in its broad conclusions which, in my opinion, exceed the available data and raise doubts. Here are some instances where this comes into play for this manuscript:

      2.) Major points for revision

      1.) The rationale to start investigating a vacuolar fission phenotype in the beginning is very weak. It is basically based on a negative genetic interaction with NVJ1. Based on this vacuolar fragmentation is quantified. The binning for the quantifications is already problematic as, in my experience, WT cells often harbor one to three vacuoles. How are quantifications looking when 1-3 vacuoles are counted as "normal" and more than 3 vacuoles as "fragmented"? The observed changes seem to be relatively small and the various combinations of TCB mutants do not yield a clear picture.<br /> 2.) The analysis of the structural requirements of the Tcb3 protein is interesting but does not seem to add any additional value to this study. While it was used to quantify the mild vacuolar fragmentation phenotype it does not reoccur in any following analysis. Is the tcb3Δ sufficient to yield the lipid phenotype that is later proposed to cause the vacuolar fragmentation phenotype?<br /> 3.) The quantified lipid data also has several problems. i) The quantified effects are very small. The relative change in lipid levels does not allow any conclusion regarding the phenotypes. What is the change in absolute PHS in the cell. This would be important to know for judging the proposed effects. ii) It seems as if the lipid data is contradictory to the previous study from the lab regarding the role of tricalbins in ceramide transfer. Previously it was shown that ceramides remain unchanged and IPC levels were reduced. This was the rationale for proposing the tricalbins as ceramide transfer proteins between the ER and the mid-Golgi. What could be an explanation for this discrepancy? Does the measurement of PHS after labelling the cells with DHS just reflect differences in the activity of the Sur2 hydroxylase or does it reflect different steady state levels.<br /> 4.) Determining the vacuole fragmentation phenotype of a lag1Δlac1Δ double mutant does not allow the conclusion that elevated PHS levels are responsible for the observed phenotype. This just shows that lag1Δlac1Δ cells have fragmented vacuoles. Can the observed phenotype be rescued by treating the cells with myriocin? What is the growth rate of a LAG1 LAC1 double deletion as this strain has been previously reported to be very sick. Similarly, what is the growth phenotype of the various LCB3 LCB4 and LCB5 deletions and its combinations.<br /> 5.) The model in Figure 3 E proposes that treatment with PHS accumulates PHS in the endoplasmic reticulum. How do the authors know where exogenously added PHS ends up in the cell? It would also be important to determine the steady state levels of sphingolipids after treatment with PHS. Or in other words, how much PHS is taken up by the cells when 40 µM PHS is added?<br /> 6.) Previous studies have observed that myriocin treatment itself results in vacuolar fragmentation (e.g. Hepowit et al. biorXivs 2022, Fröhlich et al. eLife 2015). Why does both, depletion and accumulation of PHS lead to vacuolar fragmentation?<br /> 7.) The experiments regarding the NVJ genes are not conclusive. While the authors mention that a NVJ1/2/3 MDM1 mutant was shown to result in a complete loss of the NVJ the observed effects cannot be simply correlated. It is also not clear why PHS would be transported towards the vacuole. In the cited study (Girik et al.) the authors show PHS transport from the vacuole towards the ER. Here the authors claim that PHS is transported via the NVJ towards the vacuole. Also, the origin of the rationale of this study is the negative genetic interaction of tcb1/2/3Δ with nvj1. This interaction appears to result in a strong growth defect according to the Developmental Cell paper. What are the phenotypes of the mutants used here? Does the additional deletion of NVJ genes or MDM1 results in stronger growth phenotypes?<br /> 8.) As a consequence of the above points, several results are over-interpreted in the discussion. Most important, it is not clear that indeed the accumulation of PHS causes the observed phenotypes.

    1. Reviewer #2 (Public Review):

      It is well known that DMRT proteins and more specifically, DMRT1 plays a key role in sex determination processes of many species. While DMRT1 has been shown to be critical for the sex determination of fish, birds, and reptiles, it seems less crucial at the sex determination stages of the mice. It is important though for adult sex maintenance in mice.

      Unlike its minor role in mouse sex determination, it seems that variants in DMRT1 in humans cause 46, XY DSD and sex reversal.

      The paper by Dujardin et al., is a beautiful study that provides an answer to this long-lasting discrepancy of the difference between the two common mammal species: human and mouse. It is a really nice example of how working with other mammal species, like the rabbit, could serve as a nice model for understanding mammalian sex determination.

      In this study the researchers first described the expression patterns of DMRT1 in the rabbit XY and XX gonads throughout the window of sex determination.

      They then used CRISPR/Cas9 to generate DMRT1 KO rabbits and analysed the phenotype in XY and XX rabbits. They show that XY rabbits present with complete XY male-to-female sex reversal, very similar to what was observed in human 46, XY DSD patients (but not the mice model). They further show that in the XY sex-reversed gonads, germ cells fail to enter meiosis. They next analysed XX gonads and while there is no major effect on sex determination (as expected), the germ cells in these ovaries fail to enter meiosis, highlighting the critical role that DMRT1 has in germ cells.

      I think it is really important that we start to embrace other mammal models that are not the mouse as we find many instances that the mouse is not the optimal system for understanding human sex determination. The study is well explained and presented. The data is clear, and the paper is fluent to read.

    1. Reviewer #2 (Public Review):

      Lin et al attempt to examine the role of lncRNAs in human evolution in this manuscript. They apply a suite of population genetics and functional genomics analyses that leverage existing data sets and public tools, some of which were previously built by the authors, who clearly have experience with lncRNA binding prediction. However, I worry that there is a lack of suitable methods and/or relevant controls at many points and that the interpretation is too quick to infer selection. While I don't doubt that lnc RNAs contribute to the evolution of modern humans, and certainly agree that this is a question worth asking, I think this paper would benefit from a more rigorous approach to tackling it.

      At this point, my suggestions are mostly focused on tightening and strengthening the methods; it is hard for me to predict the consequence of these changes on the results or their interpretation, but as a general rule I also encourage the authors to not over-interpret their conclusions in terms of what phenotype was selected for when as they do at certain points (eg glucose metabolism).

      I note some specific points that I think would benefit from more rigorous approaches, and suggest possible ways forward for these.

      1. Much of this work is focused on comparing DNA binding domains in human-unique long-noncoding RNAs and DNA binding sites across the promoters of genes in the human genome, and I think the authors can afford to be a bit more methodical/selective in their processing and filtering steps here. The article begins by searching for orthologues of human lncRNAs to arrive at a set of 66 human-specific lncRNAs, which are then characterised further through the rest of the manuscript. Line 99 describes a binding affinity metric used to separate strong DBS from weak DBS; the methods (line 432) describe this as being the product of the DBS or lncRNA length times the average Identity of the underlying TTSs. This multiplication, in fact, undoes the standardising value of averaging and introduces a clear relationship between the length of a region being tested and its overall score, which in turn is likely to bias all downstream inference, since a long lncRNA with poor average affinity can end up with a higher score than a short one with higher average affinity, and it's not quite clear to me what the biological interpretation of that should be. Why was this metric defined in this way?

      2. There is also a strong assumption that identified sites will always be bound (line 100), which I disagree is well-supported by additional evidence (lines 109-125). The authors show that predicted NEAT1 and MALAT1 DBS overlap experimentally validated sites for NEAT1, MALAT1, and MEG3, but this is not done systematically, or genome-wide, so it's hard to know if the examples shown are representative, or a best-case scenario.

      It's also not quite clear how overlapping promoters or TSS are treated - are these collapsed into a single instance when calculating genome-wide significance? If, eg, a gene has five isoforms, and these differ in the 3' UTR but their promoter region contains a DBS, is this counted five times, or one? Since the interaction between the lncRNA and the DBS happens at the DNA level, it seems like not correcting for this uneven distribution of transcripts is likely to skew results, especially when testing against genome-wide distributions, eg in the results presented in sections 5 and 6. I do not think that comparing genes and transcripts putatively bound by the 40 HS lncRNAs to a random draw of 10,000 lncRNA/gene pairs drawn from the remaining ~13500 lncRNAs that are not HS is a fair comparison. Rather, it would be better to do many draws of 40 non-HS lncRNAs and determine an empirical null distribution that way, if possible actively controlling for the overall number of transcripts (also see the following point).

      3. Thresholds for statistical testing are not consistent, or always well justified. For instance, in line 142 GO testing is performed on the top 2000 genes (according to different rankings), but there's no description of the background regions used as controls anywhere, or of why 2000 genes were chosen as a good number to test? Why not 1000, or 500? Are the results overall robust to these (and other) thresholds? Then line 190 the threshold for downstream testing is now the top 20% of genes, etc. I am not opposed to different thresholds in principle, but they should be justified.

      Likewise, comparing Tajima's D values near promoters to genome-wide values is unfair, because promoters are known to be under strong evolutionary constraints relative to background regions; as such it is not surprising that the results of this comparison are significant. A fairer comparison would attempt to better match controls (eg to promoters without HS lncRNA DBS, which I realise may be nearly impossible), or generate empirical p-values via permutation or simulation.

      4. There are huge differences in the comparisons between the Vindija and Altai Neanderthal genomes that to me suggest some sort of technical bias or the such is at play here. e.g. line 190 reports 1256 genes to have a high distance between the Altai Neanderthal and modern humans, but only 134 Vindija genes reach the same cutoff of 0.034. The temporal separation between the two specimens does not seem sufficient to explain this difference, nor the difference between the Altai Denisovan and Neanderthal results (2514 genes for Denisovan), which makes me wonder if it is a technical artefact relating to the quality of the genome builds? It would be worth checking.

      5. Inferring evolution: There are some points of the manuscript where the authors are quick to infer positive selection. I would caution that GTEx contains a lot of different brain tissues, thus finding a brain eQTL is a lot easier than finding a liver eQTL, just because there are more opportunities for it. Likewise, claims in the text and in Tables 1 and 2 about the evolutionary pressures underlying specific genes should be more carefully stated. The same is true when the authors observe high Fst between groups (line 515), which is only one possible cause of high Fst - population differentiation and drift are just as capable of giving rise to it, especially at small sample sizes.

    1. Reviewer #2 (Public Review):

      In this manuscript, the authors have screened the ReFRAME library and identified candidate small molecules that can activate YAP. The found that SM04690, an inhibitor of the WNT signaling pathway, could efficiently activate YAP through CLK2 kinase which has been shown to phosphorylate SR proteins to alter gene alternative splicing. They further demonstrated that SM04690 mediated alternative splicing of AMOTL2 and rendered it unlocalized on the membrane. Alternatively spliced AMOTL2 prevented YAP from anchoring to the cell membrane which results in decreased YAP phosphorylation and activated YAP. Previous findings showed that WNT signaling more or less activate YAP. The authors revealed that an inhibitor of WNT siganaling could activate YAP. Thus, these findings are potentially interesting and important. However, the present manuscript provided a lot of indirect data and lacked key experiments.

      Major points:<br /> 1. In Figure S3, since inhibition of CLK2 resulted in extensive changes in alternative splicing, why did the authors choose AMOTL2? How to exclude other factors such as EEF1A1 and HSPA5, do they affect YAP activation? Angiomotin-related AMOTL1 and AMOTL2 were identified as negative regulators of YAP and TAZ by preventing their nuclear translocation. It has been reported that high cell density promoted assembly of the Crumbs complex, which recruited AMOTL2 to tight junctions. Ubiquitination of AMOTL2 K347 and K408 served as a docking site for LATS2, which phosphorylated YAP to promote its cytoplasmic retention and degradation. How to determine that alternative splicing rather than ubiquitination of AMOTL2 affects YAP activity? Does AMOTL2 Δ5 affect the ubiquitination of AMOTL2? Does overexpression of AMOTL2 Δ5Δ9 cause YAP and puncta to co-localize?<br /> 2. The author proposed that AMOTL2 splicing isoform formed biomolecular condensates,.However, there was no relevant experimental data to support this conclusion. AMOTL2 is located not only on the cell membrane but also on the circulating endosome of the cell, and the puncta formed after AMOTL2 dissociation from the membrane is likely to be the localization of the circulating endosome. The author should co-stain AMOTL2 with markers of circulating endosomes, or conduct experiments to prove the liquidity of puncta to verify the phase separation of AMOTL2 splicing isoform.<br /> 3. The localization of YAP in cells is regulated by cell density, and YAP usually translocates to the nucleus at low cell density. In Figure 2E, the cell densities of DMSO and SM04690-treated groups are inconsistent. In Figure 4A, the magnification of t DMSO and SM04690-treated groups is inconsistent, and the SM04690-treated group seems to have a higher magnification.<br /> 4. There have been many reports that the WNT signaling pathway and the Hippo signaling pathway can crosstalk with each other. The authors should exclude the influence of the WNT signaling pathway by using SM04690.

    1. Reviewer #2 (Public Review):

      In their study, Podkowik et al. elucidate the protective role of the accessory gene regulator (agr) system in Staphylococcus aureus against hydrogen peroxide (H2O2) stress. Their findings demonstrate that agr safeguards the bacterium by controlling the accumulation of reactive oxygen species (ROS), independent of agr activation kinetics. This protection is facilitated through a regulatory interaction between RNAIII and Rot, impacting virulence factor production and metabolism, thereby influencing ROS levels. Notably, the study highlights the remarkable adaptive capabilities of S. aureus conferred by agr. The protective effects of agr extend beyond the peak of agr transcription at high cell density, persisting even during the early log-phase. This indicates the significance of agr-mediated protection throughout the infection process. The absence of agr has profound consequences, as observed by the upregulation of respiration and fermentation genes, leading to increased ROS generation and subsequent cellular demise. Interestingly, the study also reveals divergent effects of agr deficiency on susceptibility to hydrogen peroxide compared to ciprofloxacin. While agr deficiency heightens vulnerability to H2O2, it also upregulates the expression of bsaA, countering the endogenous ROS induced by ciprofloxacin. These findings underscore the complex and context-dependent nature of agr-mediated protection. Furthermore, in vivo investigations using murine models provide valuable insights into the importance of agr in promoting S. aureus fitness, particularly in the context of neutrophil-mediated clearance, with notable emphasis on the pulmonary milieu. Overall, this study significantly advances our understanding of agr-mediated protection in S. aureus and sheds light on the sophisticated adaptive mechanisms employed by the bacterium to fortify itself against oxidative stress encountered during infection.

      The conclusions of this paper are mostly well supported by the data; however, certain aspects regarding the impact of agr loss on bacterial metabolic status require additional experimental clarification.

      1) The RNA-seq analysis revealed that the Δagr strain exhibited increased expression of genes involved in respiration and fermentation, suggesting enhanced energy generation. However, metabolic modeling based on transcriptomic data indicated a decrease in tricarboxylic acid (TCA) cycle and lactate flux per unit of glucose uptake in the Δagr mutant. Additionally, intracellular ATP levels were significantly lower in the Δagr mutant compared to the wild-type strain, despite the carbon being directed into an acetate-generating, ATP-yielding carbon "overflow" pathway. Furthermore, growth analysis in nutrient-constrained medium demonstrated a decrease in the growth rate and yield of the Δagr mutant. Given that S. aureus actively utilizes the electron transport chain (ETC) to replenish NAD pools during aerobic growth on glucose, supporting glycolytic flux and pyruvate dehydrogenase complex (PDHC) activity while restricting TCA cycle activity through carbon catabolite repression (CCR), it is suggested that the authors analyze glucose consumption rates in conjunction with the determination of intracellular levels of pyruvate, AcCoA, and TCA cycle intermediates such as citrate and fumarate. These additional experiments will provide valuable insights into the metabolic fate of glucose and pyruvate and their subsequent impact on cellular respiration and fermentation in the Δagr mutant.

      2) The authors highlighted the importance of redox balance in Δagr cells by emphasizing the tendency of these cells to prioritize NAD+-generating lactate production over generating additional ATP from acetate. However, the results regarding acetate and lactate production in Δagr cells during aerobic growth suggest that carbon is directed towards acetate generation rather than lactate.

      3) The authors mentioned that respiration and fermentation typically reduce the NAD+/NADH ratios, and since these activities are elevated in Δagr strains (Figure 5F-G), they initially anticipated a lower NAD+/NADH ratio compared to wild-type agr cells. However, the increase in respiration and activation of fermentative pathways leads to a decrease in NADH levels, therefore resulting in an increase in the NAD+/NADH ratio.

    1. Reviewer #2 (Public Review):

      In this study the authors try to understand the interaction of a 110 kDa ß-glucosidase from the mollusk Aplysia kurodai, named akuBGL, with its substrate, laminarin, the main storage polysaccharide in brown algae. On the other hand, brown algae produce phlorotannin, a secondary metabolite that inhibits akuBGL. The authors study the interaction of phlorotannin with the protein EHEP, which protects akuBGL from phlorotannin by sequestering it in an insoluble complex.

      The strongest aspect of this study is the outstanding crystallographic structures they obtained, including akuBGL (TNA soaked crystal) structure at 2.7 Å resolution, EHEP structure at 1.15 Å resolution, EHEP-TNA complex at 1.9 Å resolution, and phloroglucinol soaked EHEP structure at 1.4 Å resolution. EHEP structure is a new protein fold, constituting the major contribution of the study.

      The drawback on EHEP structure is that protein purification, crystallization, phasing and initial model building were published somewhere else by the authors, so this structure is incremental research and not new.

      Most of the conclusions are derived from the analysis of the crystallographic structures. Some of them are supported by other experimental data, but remain incomplete. The impossibility to obtain recombinant samples, implying that no mutants can be tested, makes it difficult to confirm some of the claims, especially about the substrate binding and the function of the two GH1Ds from akuBGL.

      The authors hypothesize from their structure that the interaction of EHEP with phlorotannins might be pH dependent. Then they succeed to confirm their hypothesis, showing they can recover EHEP from precipitates at alkaline pH, and that the recovered EHEP can be reutilized.

      A weakness in the model is raised by the fact that the stoichiometry of the complex EHEP:TNA is proposed to be 1:1, but in Figure 1 they show that 4 µM of EHEP protects akuBGL from 40 µM TNA, meaning EHEP sequesters more TNA than expected, this should be addressed in the manuscript.

      The authors study the interaction of akuBGL with different ligands using docking. This technique is good for understanding the possible interaction between the two molecules but should not be used as evidence of binding affinity. This implies that the claims about the different binding affinities between laminarin and the inhibitors should be taken out of the preprint.

      In the discussion section there is a mistake in the text that contradicts the results. It is written "EHEP-TNA could not dissolve in the buffer of pH > 8.0" but the result obtained is the opposite, the precipitate dissolved at alkaline pH.

      Solving a new protein fold, as the authors report for EHEP, is relevant to the community because it contributes to the understanding of protein folding. The study is also relevant dew to the potential biotechnological application of the system in biofuel production. The understanding on how an enzyme as akuBGL can discriminate between substrates is important for the manipulation of such enzyme in terms of improving its activity or changing its specificity. The authors also provide with preliminary data that can be used by others to produce the proteins described or to design a strategy to recover EHEP from precipitates with phlorotannin at industrial scales.

      In general methods are not carefully described, the section should be extended to improve the manuscript.

    1. Reviewer #2 (Public Review):

      In their manuscript, Kato et al investigate a key aspect of membrane protein quality control in plant photosynthesis. They study the turnover of plant photosystem II (PSII), a hetero-oligomeric membrane protein complex that undertakes the crucial light-driven water oxidation reaction in photosynthesis. The formidable water oxidation reaction makes PSII prone to photooxidative damage. PSII repair cycle is a protein repair pathway that replaces the photodamaged reaction center protein D1 with a new copy. The manuscript addresses an important question in PSII repair cycle - how is the damaged D1 protein recognized and selectively degraded by the membrane-bound ATP-dependent zinc metalloprotease FtsH in a processive manner? The authors show that oxidative post-translational modification (OPTM) of the D1 N-terminus is likely critical for the proper recognition and degradation of the damaged D1 by FtsH. Authors use a wide range of approaches and techniques to test their hypothesis that the singlet oxygen (1O2)-mediated oxidation of tryptophan 14 (W14) residue of D1 to N-formylkynurenine (NFK) facilitates the selective degradation of damaged D1. Overall, the authors propose an interesting new hypothesis for D1 degradation and their hypothesis is supported by most of the experimental data provided. The study certainly addresses an elusive aspect of PSII turnover and the data provided go some way in explaining the light-induced D1 turnover. However, some of the data are correlative and do not provide mechanistic insight. A rigorous demonstration of OPTM as a marker for D1 degradation is yet to be made in my opinion. Some strengths and weaknesses of the study are summarized below:

      Strengths:

      1. In support of their hypothesis, the authors find that FtsH mutants of Arabidopsis have increased OPTM, especially the formation of NFK at multiple Trp residues of D1 including the W14; a site-directed mutation of W14 to phenylalanine (W14F), mimicking NFK, results in accelerated D1 degradation in Chlamydomonas; accelerated D1 degradation of W14F mutant is mitigated in an ftsH1 mutant background of Chlamydomonas; and that the W14F mutation augmented the interaction between FtsH and the D1 substrate.

      2. Authors raise an intriguing possibility that the OPTM disrupts the hydrogen bonding between W14 residue of D1 and the serine 25 (S25) of PsbI. According to the authors, this leads to an increased fluctuation of the D1 N-terminal tail, and as a consequence, recognition and binding of the photodamaged D1 by the protease. This is an interesting hypothesis and the authors provide some molecular dynamics simulation data in support of this. If this hypothesis is further supported, it represents a significant advancement.

      3. The interdisciplinary experimental approach is certainly a strength of the study. The authors have successfully combined mass spectrometric analysis with several biochemical assays and molecular dynamics simulation. These, together with the generation of transplastomic algal cell lines, have enabled a clear test of the role of Trp oxidation in selective D1 degradation.

      4. Trp oxidative modification as a degradation signal has precedent in chloroplasts. The authors cite the case of 1O2 sensor protein EXECUTER 1 (EX1), whose degradation by FtsH2, the same protease that degrades D1, requires prior oxidation of a Trp residue. The earlier observation of an attenuated degradation of a truncated D1 protein lacking the N-terminal tail is also consistent with authors' suggestion of the importance of the D1 N-terminus recognition by FtsH. It is also noteworthy that in light of the current study, D1 phosphorylation is unlikely to be a marker for degradation as posited by earlier studies.

      Weaknesses:

      1. The study lacks some data that would have made the conclusions more rigorous and convincing. It is unclear why the level of Trp oxidation was not analyzed in the Chlamydomonas ftsH 1-1 mutant as done for the var 2 mutant. Increased oxidation of W14 OPTM in Chlamydomonas ftsH 1-1 is a key prediction of the hypothesis. It is also unclear to me what is the rationale for showing D1-FtsH interaction data only for the double mutant but not for the single mutant (W14F). Why is the FtsH pulldown of D2 not statistically significant (p value = {less than or equal to}0.1). Wouldn't one expect FtsH pulls down the RC47 complex containing D1, D2, and RC47. Probing the RC47 level would have been useful in settling this. A key proposition of the authors' is that the hydrogen bonding between D1 W14 and S25 of PsbI is disrupted by the oxidative modification of W14. Can this hypothesis be further tested by replacing the S25 of PsbI with Ala, for example?

      2. Although most of the work described is in vivo analysis, which is desirable, some in vitro degradation assays would have strengthened the conclusions. An in vitro degradation assay using the recombinant FtsH and a synthetic peptide encompassing D1 N-terminus with and without OPTM will test the enhanced D1 degradation that the authors predict. This will also help to discern the possibility that whether CP43 detachment alone is sufficient for D1 degradation as suggested for cyanobacteria.

      3. The rationale for analyzing a single oxidative modification (W14) as a D1 degradation signal is unclear. D1 N-terminus is modified at multiple sites. Please see Mckenzie and Puthiyaveetil, bioRxiv May 04 2023. Also, why is modification by only 1O2 considered while superoxide and hydroxide radicals can equally damage D1?

      4. The D1 degradation assay seems not repeatable for the W14F mutant. High light minus CAM results in Fig. 3 shows a statistically significant decrease in D1 levels for W14F at multiple time points but the same assay in Fig. 4a does not produce a statistically significant decrease at 90 min of incubation. Why is this? Accelerated D1 degradation in the Phe mutant under high light is key evidence that the authors cite in support of their hypothesis.

      5. The description of results at times is not nuanced enough, for e.g. lines 116-117 state "The oxidation levels in Trp-14 and Trp-314 increased 1.8-fold and 1.4-fold in var2 compared to the wild type, respectively (Fig. 1c)" while an inspection of the figure reveals that modification at W314 is significant only for NFK and not for KYN and OIA. Likewise, the authors write that CP43 mutant W353F has no growth phenotype under high light but Figure S6 reveals otherwise. The slow growth of this mutant is in line with the earlier observation made by Anderson et al., 2002. In lines 162-163, the authors talk about unchanged electron transport in some site-directed mutants and cite Fig. 2c but this figure only shows chl fluorescence trace and nothing else.

      6. The authors rightly discuss an alternate hypothesis that the simple disassembly of the monomeric core into RC47 and CP43 alone may be sufficient for selective D1 degradation as in cyanobacteria. This hypothesis cannot yet be ruled out completely given the lack of some in vitro degradation data as mentioned in point 2. Oxidative protein modification indeed drives the disassembly of the monomeric core (Mckenzie and Puthiyaveetil, bioRxiv May 04 2023).

    1. Reviewer #2 (Public Review):

      The authors have used microfluidic channels to study the response of budding yeast to variable environments. Namely, they tested the ability of the cells to divide when the medium was repeatedly switched between two different conditions at various frequencies. They first characterized the response to changes in glucose availability or in the presence of hyper-osmotic stress via the addition of sorbitol to the medium. Subsequently, the two stresses were combined by applying the alternatively or simultaneously (in-phase). Interestingly, the observed that the in-phase stress pattern allowed more divisions and low levels of cell mortality compared to the alternating stresses where cells were dividing slowly and many cells died. A number mutants in the HOG pathway were tested in these conditions to evaluate their responses. Moreover, the activation of the MAPK Hog1 and the transcriptional induction of the hyper-osmotic stress promoter STL1 were quantified by fluorescence microscopy.

      Overall, the manuscript is well structured and data are presented in a clear way. The time-lapse experiments were analyzed with high precision. The experiments confirm the importance of performing dynamic analysis of signal transduction pathways. While the experiments reveal some unexpected behavior, I find that the biological insights gained on this system remain relatively modest.

      In the discussion section, the authors mention two important behaviors that their data unveil: resource allocation (between glycolysis and HOG-driven adaptation) and regulation of the HOG-pathway based on the presence of glucose. These behaviors had been already observed in other reports (Sharifan et al. 2015 or Shen et al. 2023, for instance). I find that this manuscript does not provide a lot of additional insights into these processes. One clear evidence that is presented, however, is the link between glycerol accumulation during the sorbitol treatment and the cell death phenotype upon starvation in alternating stress condition. However, no explanations or hypothesis are formulated to explain the mechanism of resource allocation between glycolysis and HOG response that could explain the poor growth in alternating stresses or the lack of adaptation of Hog1 activity in absence of glucose.

      Another key question is to what extent the findings presented here can be extended to other types of perturbations. Would the use of alternative C-source or nitrogen starvation change the observed behaviors in dynamic stresses? If other types of stresses are used, can we expect a similar growth pattern between alternating versus in-phase stresses?

    1. Reviewer #2 (Public Review):

      The authors identify a bottleneck in cryoEM data collection, namely path optimization, and provide a method and software to attempt to solve this problem, then evaluate the solution based on several metrics including full downstream processing. In addition, the authors report on a cryoEM data collection simulator, which could be used to more efficiently train users and microscope operators if released. I have experience with cryo-EM and applications of machine learning to cryoEM. In my opinion, the results are convincing insofar as showing that the algorithm employed by cryoRL performs at least as well as humans and with greater consistency than humans. I think combining cryoRL with existing square & hole targeting algorithms and collection software has the potential to result in a complete and efficient automated solution for high-resolution cryoEM data collection.

    1. Reviewer #2 (Public Review):

      The authors provide solid molecular and cellular evidence that ULK4 and STK36 not only interact, but that STK36 is targeted (transported?) to the cilium by ULK4. Their data helps generate a model for ULK4 acting as a scaffold for both STK36 and its substrate, Gli2, which appear to co-localise through mutual binding to ULK4. This makes sense, given the proposed role of most pseuodkinases as non-catalytic signaling hubs. There is also an important mechanistic analysis performed, in which ULK4 phosphorylation in an acidic consensus by STK36 is demonstrated using IP'd STK36 or an inactive 'AA' mutant, which suggests this phosphorylation is direct.

      The major strength of the study is the well-executed combination of logical approaches taken, including expression of various deletion and mutation constructs and the careful (but not always quantified in immunoblot) effects of depleting and adding back various components in the context of both STK36 and ULK3, which broadens the potential impact of the work. The biochemical analysis of ULK4 phosphorylation appears to be solid, and the mutational study at a particular pair of phosphorylation sites upstream of an acidic residue (notably T2023) is further strong evidence of a functional interaction between ULK4/STK36. The possibility that ULK4 requires ATP binding for these mechanisms is not approached, though would provide significant insight: for example it would be useful to ask if Lys39 in ULK4 is involved in any of these processes, because this residue is likely important for shaping the ULK4 substrate-binding site as a consequence of ATP binding; this was originally shown in PMID 24107129 and discussed more recently in PMID: 33147475 in the context of the large amount of ULK4 proteomics data released.

      The discussion is excellent, and raises numerous important future work in terms of potential transportation mechanisms of this complex. It also explains why the ULK4 pseudokinase domain is linked to an extended C-terminal region. Does AF2 predict any structural motifs in this region that might support binding to Gli2?

      A weakness in the study, which is most evident in Figure 1, where Ulk4 siRNA is performed in the NIH3T3 model (and effects on Shh targets and Gli2 phosphorylation assessed), is that we do not know if ULK4 protein is originally present in these cells in order to actually be depleted. Also, we are not informed if the ULK4 siRNA has an effect on the 'rescue' by HA-ULK4; perhaps the HA-ULK4 plasmid is RNAi resistant, or if not, this explains why phosphorylation of Gli2 never reaches zero? Given the important findings of this study, it would be useful for the authors to comment on this, and perhaps discuss if they have tried to evaluate endogenous levels of ULK4 (and Stk36) in these cells using antibody-based approaches, ideally in the presence and absence of Shh. The authors note early on the large number of binding partners identified for ULK4, and siRNA may unwittingly deplete some other proteins that could also be involved in ULK4 transport/stability in their cellular model.

      The sequence of ULK4 siRNAs is not included in the materials and methods as far as I can see.

    1. Reviewer #2 (Public Review):

      This study explores the breadth of effects of one important metabolite, azelaic acid, on marine microbes, and reveals in-depth its pathway of uptake and catabolism in one model bacterial strain. This compound is known to be widely produced by phytoplankton and plants, and to have complex effects on associated microbiomes.

      This work uses transcriptomics to assay the response of two strains that show contrasting responses to the metabolite: one catabolizes the compound and assimilates the carbon, while the other shows growth inhibition and stress response. A highly induced TRAP transporter, adjacent to a previously identified regulator, is inferred to be the specific uptake system for azelaic acid. However the transport function was not directly tested via genetic or biochemical methods. Nevertheless, this is a significant finding that will be useful for exploring the distribution of azelaic acid uptake capability across metagenomes and other bacteria.

      The authors use pulse-chase style metabolomics experiments to beautifully demonstrate the fate of azelaic acid through catabolic pathways. They also measure an assimilation rate per cell, though it remains unclear how this measured rate relates to natural systems. The metabolomics approach is an elegant way to show carbon flux through cells, and could serve as a model for future studies.

      The study seeks to extend the results from two model strains to complex communities, using seawater mesocosm experiments and soil/Arabidopsis experiments. The seawater experiments show a community shift in mesocosms with added azelaic acid. However, the mechanisms for the shift were not determined; further work is necessary to demonstrate which community members are directly assimilating the compound vs. benefitting indirectly or experiencing inhibition. In my opinion the soil and Arabidopsis experiments are quite preliminary. I appreciate the authors' desire to broaden the scope beyond marine systems, but I believe any conclusions regarding different modes of action in aquatic vs terrestrial microbial communities are speculative at this stage.

      This work is a nice illustration of how we can begin to tease apart the effects of chemical currencies on marine ecosystems. A key strength of this work is the combination of transcriptomics and metabolomics methods, along with assaying the impacts of the metabolite on both model strains of bacteria and whole communities. Given the sheer number of compounds that probably play critical roles in community interactions, a key challenge for the field will be navigating the tradeoffs between breadth and depth in future studies of metabolite impacts. This study offers a good compromise and will be a useful model for future studies.

    1. Reviewer #2 (Public Review):

      The authors set out to show how hibernation is linked to brain size in frogs. If there were broader aims it is hard to decipher them. The authors present an extremely impressive dataset and a thorough set of cutting-edge analyses. However not all details are well explained. The main result about hibernation and brain size is fairly convincing, but it is hard to think of broader implications for this study. Overall, the manuscript is very confusing and hard to follow.

    1. Reviewer #2 (Public Review):

      The research study presented by Rice et al. set out to further profile the host defense properties of the mitochondrial protein MOTS-c. To do this they studied i. the potential antimicrobial effects of MOTS-c on common bacterial pathogens E.coli and MRSA, ii. the effects of MOTS-c on the stimulation and differentiation of monocytes into macrophages. This is a well performed study that utilizes relevant methods and cell types to base their conclusions on. However, there appear to be a few weaknesses to the current study that hold it back from more broad application.

      Comment 1: From reading the manuscript methods and results, it is unclear exactly what the synthetic MOTS-c source is. Therefore it is hard to determine whether there may be any impurities in the production of this synthetic protein that may interfere with the results presented throughout the manuscript. Though, the data presented in Supplemental Figure 4F, where E.coli expressing intracellular MOTS-c inhibited bacterial growth certainly support MOTS-c specific effects. Similarly with the experiments showing endogenous MOTS-c levels rising in stimulation and differentiated macrophages (Figure 3).

      Comment 2: It is interesting that the mice receiving bacteria coupled with MOTS-c lost about 10% of their body weight. It would have been interesting to demonstrate the cause of this weight loss since the effect appears to be separate from mere PAMPs as shown by using heat-killed MRSA in Supplemental Figure 5. Was inflammation changed? Is this due to changes in systemic metabolism? Would have been interesting to have seen CRP levels or circulating liver enzymes.

      Despite these concerns, the data are well suited to answering their research question, and they open up the door to studying how mitochondrial peptides like MOTS-c could have roles outside of the mitochondria.

    1. Reviewer #2 (Public Review):

      The introduction is plotted with two parallel stories about PfKBP35 and FK506, with ribosome biogenesis as the central question at the end. In its current form, the manuscript suffers from two stories that are not entirely interconnected, unfinished, and somewhat confusing. I recommend focusing only on one story - either characterizing PfBP35 and its role in Plasmodium falciparum biology - future investigation of PfBP35 control of cellular processes or focusing on the actual targets of the FK506 drug (identified in figure 4). Both stories need additional experiments to make the manuscript(s) more complete. The results from PfFBP35 need more evidence for the proposed ribosome biogenesis pathway control. On the other hand, the results from the drug FK506 point to different targets with lower EC50, and other follow-up experiments are needed to substantiate the authors' claims. The strengths of the manuscript are the figures and experimental design. The combination of omics methods is informative and gives an opportunity for follow-up experiments.

    1. Reviewer #2 (Public Review):

      In this study, the investigators describe an unbiased phosphoproteomic analysis of cardiac-specific overexpression of adenylyl cyclase type 8 (TGAC8) mice that was then integrated with transcriptomic and proteomic data. The phosphoproteomic analysis was performed using tandem mass tag-labeling mass spectrometry of left ventricular (LV) tissue in TGAC8 and wild-type mice. The initial principal component analysis showed differences between the TGAC8 and WT groups. The integrated analysis demonstrated that many stress-response, immune, and metabolic signaling pathways were activated at transcriptional, translational, and/or post-translational levels.

      The authors are to be commended for a well-conducted study with quality control steps described for the various analyses. The rationale for following up on prior transcriptomic and proteomic analyses is described. The analysis appears thorough and well-integrated with the group's prior work. Confirmational data using Western blot is provided to support their conclusions. Their findings have the potential of identifying novel pathways involved in cardiac performance and cardioprotection.

    1. Reviewer #2 (Public Review):

      Among ionotropic glutamate receptors, kainate receptors (KAR) are still the object of intense investigation to understand their role in normal and pathological excitatory synaptic transmission. Like other receptors, KAR appear under different splicing variants and their respective physiological function is still debated. In this manuscript Dhingra et al explored the impact of the presence and of the absence of Exon9 of the GluK1 receptors on the pharmacological, biophysical and structural properties of the receptors. They further investigated how it is impacted by the association of KAR with their cognate auxiliary subunit Neto 1 and 2. This study represents a large body of work and data. The authors addressed the issue in a very systematic and rigorous manner.

      First, by exploring RNAseq database, authors showed that GluK1 transcripts containing the exon 9 are present in many brain structures and especially in the cerebellum suggesting that a large part of GluK1 contains effectively this exon9.<br /> Using HEK cells as an expression system, they characterized many gating and biophysical properties of GluK1 receptors containing or not the exon9. Evaluated parameters were desensitization, relative potency of glutamate versus kainite, polyamine block.

      It is known that the association of GluK1 with auxiliary proteins Neto1/2 modulate the properties of the receptors. Authors investigated systematically whether Neto1 and 2 similarly alter GluK1 properties in function of the presence of exon9. This study provides many quantitative data that could be reused for modeling the role of kainate receptors. Given the change shown by the authors, the presence of exon in GluK1 is noticeable and likely should have an impact of synaptic transmission.<br /> Interestingly, authors used a mutational approach to identify critical residue encoded by exon9 that are responsible for the functional differences between the two splice variants. In many cases, the replacement of a single amino acid lead to the absence of current confirming the crucial role of the segment of the receptor. However, it made the comparison and the identification of critical residues more challenging.<br /> Authors attempted to establish the structure GluK1 receptors comprising the exon9 using different preparation methods. They succeeded in obtaining structures with equivalent or lower resolution compared with previous report on GluK1 and GluK2 receptors. However, the organization of the peptide coded by exon is poorly defined and limited possible analyses. Despite this they could observe that the presence of the exon9 does not alter significantly the structure of GluK1.

    1. Reviewer #2 (Public Review):

      In this manuscript, the authors present a novel interactome focused on human and fly alpha-arrestin family proteins and demonstrate its application in understanding the functions of these proteins. Initially, the authors employed AP/MS analysis, a popular method for mapping protein-protein interactions (PPIs) by isolating protein complexes. Through rigorous statistical and manual quality control procedures, they established two robust interactomes, consisting of 6 baits and 307 prey proteins for humans, and 12 baits and 467 prey proteins for flies. To gain insights into the gene function, the authors investigated the interactors of alpha-arrestin proteins through various functional analyses, such as gene set enrichment. Furthermore, by comparing the interactors between humans and flies, the authors described both conserved and species-specific functions of the alpha-arrestin proteins. To validate their findings, the authors performed several experimental validations for TXNIP and ARRDC5 using ATAC-seq, siRNA knockdown, and tissue staining assays. The experimental results strongly support the predicted functions of the alpha-arrestin proteins and underscore their importance.

    1. Reviewer #2 (Public Review):

      Tuller et al. first made the curious observation, that the first ∼30-50 codons in most organisms are encoded by scarce tRNAs and appear to be translated slower than the rest of the coding sequences (CDS). They speculated that this has evolved to pace ribosomes on CDS and prevent ribosome collisions during elongation - the "Ramp" hypothesis. Various aspects of this hypothesis, both factual and in terms of interpretating the results, have been challenged ever since. Sejour et al. present compelling results confirming the slower translation of the first ~40 codons in S. cerevisiae but providing alternative explanation for this phenomenon. Specifically, they show that the higher amino acid sequence divergence of N-terminal ends of proteins and accompanying lower purifying selection (perhaps the result of de novo evolution) is sufficient to explain the prevalence of rare slow codons in these regions. These results are an important contribution in understanding how aspects of evolution of protein coding regions can affect translation efficiency on these sequences and directly challenge the "Ramp" hypothesis proposed by Tuller et al.

      I believe the data is presented clearly and the results generally justify the conclusions. I do have one specific concern related to interpretating the data. The authors show that the conservation score of the last 40 codons is not dissimilar to the conservation score of the first 40 (Fig. 4 A & C). They also show that the calculated translational speed of the first 40 codons is significantly lower than the rest of the CDS. At the same time, they show lack of statistically significant decrease of calculated translational speed for the last 40 codons (Figure S1). If the poor conservation of the first 40 codon explains the slower speed of their translation what is the authors' explanation for the absence of statistically significant reduction of calculated translational speed for the last 40 codons?

      "Although the reporter is GFP, the N- terminal region of this particular protein is derived from yeast HIS3, not GFP, and has little if any effect on the fluorescence of the GFP fused downstream."

      The statement above is logical and reasonable; however, it is not supported by any reference or control experiments. At the very least this fact should be explicitly acknowledged. Also, the RNA levels of reporters were not measured, which means it cannot be categorically concluded that the observed effect is due to changes of translational efficiency. This is an important caveat.

    1. Reviewer #2 (Public Review):

      In this manuscript, the authors generated a novel transgenic C. elegans model with inducible expression and secretion of human GFP-tagged human Aβ1-42. Using this model, they investigated the role of ECM in the aggregation of Aβ. They identified collagens that regulate Aβ aggregate formation, and found the metalloproteases ADM-2 modulates ECM and assist in the removal of extracellular Aβ aggregates. The results suggest that ECM composition is critical for Aβ aggregate and removal. These data add in an interesting way to the ongoing discussion on the aggregation and clearance of amyloid through the extracellular matrix. However, some issues remain to be addressed.

      1) The authors developed a novel C.elegans model for studying extracellular amyloid beta aggregation and is therefore likely to be taken up broadly by the field. However, the new model should be fully characterized. Throughout the manuscript, the only method to detect amyloid deposition was the GFP fluorescence intensity and morphology, while direct characterization of amyloid aggregates is lacking.

      2) A targeted RNA interference (RNAi) screen was used to identify the key regulators of Aβ aggregation and clearance, which is one of the strengths of the study. There should be evidence that RNAi works to knockdown the specific genes. Similarly, there should be evidence indicating that ADM-2 is indeed expressed in the overexpression experiments.

      3) It remains unknown whether ADM-2 directly degrades Aβ or facilitates the clearance of Aβ by remoulding the ECM. The effect of ADM-2 on ECM remodeing should be examined.

    1. Reviewer #2 (Public Review):

      During meiosis, mitotic cohesin complexes are replaced by meiosis-specific cohesins to enable a stepwise loss of sister chromatid cohesion. The identity of the cohesin complex is defined by its kleisin subunit. In the early meiotic prophase, the mitotic kleisin Scc1 is replaced by a meiotic counterpart Rec8. C. elegans expresses two additional meiotic kleisins, COH-3 and COH-4; however, how meiotic cohesin complexes differ in their loading and function has been unclear. In this paper, Castellano-Pozo and colleagues unveil their differential dynamics and functions using elegant approaches that include auxin-mediated depletion and TEV-mediated removal of meiotic kleisins. The association of COH-3/4 with chromosomes is dynamic and is under the control of two cohesin regulators, WAPL-1 and SCC-2, while REC-8 remains more stably associated. The authors established that COH-3/4 is involved in maintaining the structural integrity of chromosome axes, whereas the REC-8 cohesin is solely responsible for sister chromatid cohesion throughout meiosis. They further demonstrated the role of REC-8 in the repair of meiotic DSBs.

      Overall, this solid work unequivocally establishes the distinct regulation and requirements for REC-8 and COH-3/4 cohesin complexes during C. elegans meiosis. However, as the authors acknowledged, the role of REC-8 cohesins in sister chromatid cohesion has been shown previously using genetic mutants (Crawley et al., 2016 eLife). While the authors highlighted the advantages of removing cohesin subunits in establishing their distinct requirements, many of the results were recapitulated from their previous work (e.g. rec-8; spo-11 and coh-3/4; spo-11). It might be helpful for the readers to compare the results between the two studies and point out uniquely illuminating results.

      The role of REC-8 in DNA repair has also been shown in different contexts. Chromosomes fragmentation and DNA bridges are observed in rec-8; syp-1 or rec-8; syp-2 (RNAi) animals (Colaiacovo et al., 2003 Dev Cell; Crawley et al., 2016 eLife), suggesting a role of REC-8 in inter-sister repair. Persistent RAD-51 foci are also observed on asynapsed chromosomes in rec-8 mutants, suggesting a role for REC-8 in DNA repair (Cahoon et al., 2019 Genetics). The authors must cite these papers and discuss the results in the context of prior work.

    1. Reviewer #2 (Public Review):

      This manuscript tackles the important and vexing problem of mapping alleles for TB. It is a really important problem, and this paper presents the largest genetic data set. It does so by amalgamating data from multiple cohorts. The manuscript rightly points out that many studies have not produced reproducible results, and most alleles are population specific, and rarely seen in multiple studies.

      1. Authors find a strong HLA associated SNP. They do conduct HLA imputation, but there is little effective fine-mapping. Authors should report which classical alleles are consistent with this allelic association (e.g. which classical alleles are in phase with it). Authors comment on DQA1-0301, but it isn't clear in the main text how significant it is. I think the authors should dig a little deeper. Imputing amino acids and assessing association might be useful. Finding classical alleles that explain the SNP associations and are seen across populations might be useful. If the authors think that the SNP might be a regulatory allele, the authors should make a case for that based on genomic annotations, eQTL analyses etc.<br /> 2. The authors comment on ancestry. Are ancestry components disease associated in any cohort? It might be interesting to demonstrate this.

    1. Reviewer #2 (Public Review):

      - Overall, the authors sought to determine whether children with autism spectrum disorder (ASD) or typical development (TD) would both benefit from a 5-day intervention designed to improve numerical problem-solving. They were particularly interested in how learning across training would be associated with pre-post intervention changes in brain activity, measured with functional magnetic resonance imaging (fMRI). They also examined whether brain-behavior associations driven by learning might be moderated by a classic cognitive inflexibility symptom in ASD ("insistence on sameness").

      - The study is reasonably well-powered, uses a 5-day evidence-based intervention, and uses a multivariate correlation-based metric for examining neuroplastic changes that may be less susceptible to random variation over time than conventional mass univariate fMRI analyses.

      - The study did have some weaknesses that draw into question the specific claims made based on the present set of analyses, as well as limit the generalizability of the findings to the significant proportion of individuals with ASD that are outside of the normative range of general cognitive functioning. The study also found minimal evidence for transfer between trained and untrained mathematical problems, limiting enthusiasm for the intervention itself.

      - The majority of the authors' claims were rooted in the data and the team was generally able to accomplish their aims. I am sensitive to the fact that one of the main limitations I noted would have significant ethical implications-i.e. NOT offering potentially beneficial numerical training to children randomized to a sham or control group.

      - I think the authors' work will represent a welcome addition to a growing corpus of studies showing similar neuropsychological test performance across several cognitive domains (e.g. learning, memory, proactive cognitive control, etc.) in ASD and TD. However, these relatively preserved cognitive functions still appear to be implemented by unique neural systems and demonstrate unique correlations to clinical symptoms in youth with ASD relative to TD, which may have implications for both educational and clinical contexts.

    1. Reviewer #2 (Public Review):

      Lindsay Fuzzell and her team of researchers have performed an extremely well-executed survey study, which captures a wide spectrum of providers who perform cervical cancer screening in the US. The researchers have captured a vast amount of demographic data in this study in attempting to determine whether cervical cancer screening continued to be reduced in the year immediately after the lockdown period caused by the COVID-19 pandemic.

      The authors have uncovered some important and revealing concerns regarding the current state of cancer screening during the public health crisis caused by the COVID-19 pandemic. The most notable implication from their survey was a statistically higher reported reduction in cervical cancer screening in Internal medicine and family medicine providers as well as for community health and safety net clinics. These findings are important as they represent a large portion of primary care and a vulnerable patient population that has been shown to have worse cancer-related outcomes.

      This study is more sobering information about the magnitude of ramifications of the COVID-19 pandemic on the US public health system. Decreases in cancer screening may have lasting implications for cancer-related mortality for many years to come. The implications of not going back to pre-pandemic cancer screening rates are daunting, to say the least.

      The scope of this survey, the amount of data attained, and the sound methodology of the data acquisition and statistical analysis are the strengths of this study. Weaknesses are inherent to the study relying on survey answers rather than data from cervical cancer screening registries. Reporting biases are complex in surveys and answers given may not reflect the true rates of screening. The authors have also reported a disproportionate and statistically significant reduction in cervical cancer screening for Black and Asian providers. I would conclude more cautiously here with confidence intervals crossing one in both for this statistical analysis.

      Overall, this is a survey study with a great magnitude, which has important implications for cancer screening and public health in the US.

    1. Reviewer #2 (Public Review):

      The authors seek to explore the mechanistic basis for enhancement binding to DNA by SsrB at lower pH. Their evidence supports the conclusions listed in the Evaluation Summary. Multiple additional conclusions are not supported by the data as described below:

      1. The experiment displayed in Figure 5 is deeply flawed for multiple reasons and should be removed from the manuscript entirely. A Michaelis-Menton plot compares the initial rate of a reaction versus substrate concentration. Instead, the authors plotted the fraction of SsrB that is phosphorylated after 10 minutes at various substrate concentrations. Such a plot must reach saturation because the enzyme is limiting, whereas it is not always possible to achieve saturation in a genuine Michaelis-Menton plot. Because no reaction rates were measured, it is not possible to derive kcat values from the data. There are also at least three potential problems with the reaction conditions themselves: (i) Increasing the concentration of the phosphoramidite substrate increased ionic strength. Response regulator active sites contain many charged moieties and autophosphorylation of at least one response regulator (CheY) is inhibited by increasing ionic strength (PMID 10471801). (ii) Autophosphorylation with phosphoramidite is pH dependent because the nitrogen on the donor must be protonated to form a good leaving group (PMID 9398221). The pKa of phosphoramidite is ~8. Therefore, the fraction of phosphoramidite that is reactive (i.e., protonated) will be very different at pH 6.1 and 7.4. (iii) Response regulator autophosphorylation absolutely depends on the presence of a divalent metal ion (usually Mg2+) in the active site (PMID 2201404). There is no guarantee that the 20 mM Mg2+ included in the reaction is sufficient to saturate SsrB. Furthermore, as the authors themselves note, the amino acid at SsrB position 12 is likely to affect the affinity of Mg2+ binding. Therefore, the fraction of SsrB that is reactive (i.e. has Mg2+ bound) may differ between wildtype and the H12Q mutant, and/or between wildtype at different pHs (because the protonation state of His12 changes).

      2. The data in Figures 1abcd and 3de are clearly sigmoidal rather than hyperbolic, indicating cooperativity. However, there are insufficient data points between the upper and lower bounds to accurately calculate the Hill coefficient or KD values. This limitation of the data means that comparisons of apparent Hill coefficient or KD values under different conditions cannot be the basis of credible conclusions.

      3. There are hundreds of receiver domain structures in PDB. There is some variation, but to a first approximation receiver domain structures, all exhibit an (alpha/beta)5 fold. The structure of SsrB predicted by i-TASSER breaks the standard beta-2 strand into two parts, which throws off the numbering for subsequent beta strands. Given the highly conserved receiver domain fold, I am skeptical that the predicted i-TASSER structure is correct or adds any value to the manuscript. If the authors wish to retain the structure of the manuscript, then they should point out the unusual feature and the consequence of strand numbering.

      4. The detailed predictions of active site structure in Supplementary Figure 5 are not physiologically relevant because Mg2+ was not included in the simulation. The presence of a divalent cation binding to Asp10 and Asp11 is likely to substantially alter interactions between Asp 10, Asp11, His12, and Lys109.

      5. The authors present an AlphaFold model of an SsrB dimer, and note that His12 is at the dimer interface. However, the authors also believe that a higher-order oligomer of SsrB binds to DNA in a pH-dependent manner. Do the authors have any suggestions or informed speculation about how His12 might affect higher-order oligomerization than dimerization?

    1. Reviewer #2 (Public Review):

      This is a very interesting paper with several important findings related to the working mechanism of the cartwheel cells (CWC) in the dorsal cochlear nucleus (DCN). These cells generate spontaneous firing that is inhibited by the activation of α2-adrenergic receptors, which also enhances the synaptic strength in the cells, but the mechanisms underlying the spontaneous firing and the dual regulation by α2-adrenergic receptor activation have remained elusive. By recording these cells with the NALCN sodium-leak channel conditionally knocked, the authors discovered that both the spontaneous firing and the regulation by noradrenaline (NA) require NALCN. Mechanistically, the authors found that activation of the adrenergic receptor or GABAB receptor inhibits NALCN. Interestingly, these receptor activations also suppress the low [Ca2+] "activation" of NALCN currents, suggesting crosstalk between the pathways. The finding of such dominant contribution of the NALCN conductance to the regulation of firing by NA is somewhat surprising considering that NA is known to regulate K+ conductances in many other neurons.

      The studies reveal the molecular mechanisms underlying well known regulations of the neuronal processes in the auditory pathway. The results will be important to the understanding of auditory information processing in particular, and, more generally, to the understanding of the regulation of inhibitory neurons and ion channels. The results are convincing and are clearly presented.

    1. Reviewer #2 (Public Review):

      Previous studies have shown that two hair cell transcription factors, Pou4f3 and Gfi1, are both necessary for the survival of cochlear hair cells, and that Gfi1 is regulated by Pou4f3. The authors have previously also shown that mosaic inactivation of the RNA-binding protein RBM24 leads to outer hair cell death.

      In the present study, the authors show that hair cells die in Pou4f3 and Gfi1 mutant mice. They show that Gfi1 is regulated by Pou4f3. Both these observations have been published before. They then show that RBM24 is absent in Pou4f3 knockouts, but not Gfi1 knockouts. They ectopically activate RMB24 in the hair cells of Pou4f3 knockouts, but this does not rescue the hair cell death. Finally, the authors validate three RMB24 enhancers that are active in young hair cells and which have been previously shown to bind Pou4f3.

      The experiments are well-executed and the data are clear. The results support the conclusions of the paper.

      Much of the work in the paper has been reported before. The result that hair cell transcription factors operate in a network, with some transcription factors activating only a subset of hair cell genes, is an expected result. Since RMB24 is only one of many genes regulated directly by Pou4f3, it is not surprising that it cannot rescue the Pou4f3 knockout hair cell degeneration.

      The identification of new hair cell enhancers may be of use to investigators wishing to express genes in hair cells.

      In sum, this work, although carefully performed, does not shed significant new light on our understanding of hair cell development or survival.

    1. Reviewer #2 (Public Review):

      Kelly et al. strategically leverage state-of-the art scRNA-seq methods combined with unique strengths of the zebrafish larval model to identify gene expression patterns that underlie the different functional output of different neuronal circuits that converge on similar muscle groups. The results lead to the identification of ion channel and synapse associated genes that distinguish the neuronal components of a fast circuit mediating escape behavior from a rhythmic circuit mediating graded swimming.

      The authors develop methods for isolation of single spinal cord neurons from 4 day post fertilization (dpf) zebrafish larvae. The 4 dpf neuronal circuits mediating escape vs. rhythmic swimming behavior have been extensively characterized allowing knowledge of the specific motor neuron and interneuron populations involved in one vs. the other circuit. (Work from the authors' research group has contributed to this strong starting point for this study.)

      The transcriptomic analyses lead to the identification of clusters of cells sharing significant gene expression that distinguishes them from other clusters. Using well-known neuron subtype specific markers, the authors are able to assign a specific neuronal identity to about 2/3 of the cluster. Moreover, one other cluster results in the recognition in zebrafish of a neuronal cell type identified in the mammalian spinal cord, v0c, that they confirm to be present in zebrafish using solid markers. In addition, the results show that the zebrafish v0c population expressed markers of both cholinergic and glutamatergic neurons, while the mammalian v0c population is known to be cholinergic. (It is not clear whether the possibility that mammalian v0c neurons also express glutamatergic markers has been specifically tested, but it seems, at present, there is no evidence to suggest that might be the case.)

      To zoom in on the question of molecular differences between the fast vs. rhythmic circuits, the authors focus on motor neurons as two different populations of neurons are involved in each circuit. (Along the way, they also identify markers that mark different subtypes of motor neurons.) They find that primary motor neurons (PMNs) involved in the fast circuit express a distinguishing cassette of ion channel and synapse associated genes. Moreover, the cassette of genes also is expressed by interneurons that function in the fast circuit. The results are illuminating and set the stage for many future exacting experiments.

      As is true for significant work, the results open up and permit yet more rigorous and strategic analyses, running the gamut from specific molecules to behavior, of the circuit mechanisms underlying unique behaviors.

      Overall, the work is carried out to high rigorous standards and the vast majority of conclusions are strongly supported by the results. However, there are a few instances of potential over-interpretation and points that could be further clarified/discussed:

      1 - lines 412-414. The authors conclude that "Most importantly, and as detailed below, our scRNA seq revealed the ion channel and synaptic genes that serve to match specific neuronal function to behavior." That the authors have identified a gene cassette that distinguishes neurons of the fast escape circuit is a laudable finding. However, at this stage, to say that this gene cassette is the basis for unique circuit function and resultant behavior is a well-supported hypothesis that requires rigorous testing and not yet a solid conclusion. (Maybe that is what the authors meant, and I have misinterpreted the sentence.)

      2 - lines 323-324: Given that ~ 6 hrs separates PMN from SMN birthdates (Myers et al. 1986) and that the study was done using 4dpf larval tissue, the possibility that the higher level of expression of transcription factors and RNA-biding factors in SMNs reflects "the less well differentiated state that accompanies the later birthdate of the SMns" seems unlikely.

      3 - Fig 5 and Sup Fig 1:The authors mention that the unidentified cluster in the motor neuron set shares markers with non-skeletal muscle. I realize that this cluster is tangential to their focus. However, given that this cluster predominantly arises from the FACS sorted cells, it is worth considering that the cells might correspond to the pancreas.

      4 - lines 113-115 and Fig. 1: The authors indicate that three clusters reflect cells that have mixed glial and neuronal cell expression. Is there any possibility that in a few instances, in the final single cell capture, that two rather than one cell were collected? (Again, not a major focus of the study but the cluster is commented on.)

      Finally, as the transcriptomic information about glial cells will be of interest to many in the field, the authors are to be commended for depositng the data in congratulations to the authors for depositing the data in the publicly accessible Gene Expression Omnibus.

    1. Reviewer #2 (Public Review):

      The authors analysed functional MRI recordings of brain activity at rest, using state-of-the-art methods that reveal the diverse ways in which the information can be integrated in the brain. In this way, they found brain areas that act as (synergistic) gateways for the 'global workspace', where conscious access to information or cognition would occur, and brain areas that serve as (redundant) broadcasters from the global workspace to the rest of the brain. The results are compelling and consisting with the already assumed role of several networks and areas within the Global Neuronal Workspace framework. Thus, in a way, this work comes to stress the role of synergy and redundancy as complementary information processing modes, which fulfill different roles in the big context of information integration.

      In addition, to prove that the identified high-order interactions are relevant to the phenomenon of consciousness, the same analysis was performed in subjects under anesthesia or with disorders of consciousness (DOC), showing that indeed the loss of consciousness is associated with a deficient integration of information within the gateway regions.

      However, there is something confusing in the redundancy and synergy matrices shown in Figure 2. These are pair-wise matrices, where the PID was applied to identify high-order interactions between pairs of brain regions. I understand that synergy and redundancy are assessed in the way the brain areas integrate information in time, but it is still a little contradictory to speak about high-order in pairs of areas. When talking about a "synergistic core", one expects that all or most of the areas belonging to that core are simultaneously involved in some (synergistic) information processing, and I do not see this being assessed with the currently presented methodology. Similarly, if redundancy is assessed only in pairs of areas, it may be due to simple correlations between them, so it is not a high-order interaction. Perhaps it is a matter of language, or about the expectations that the word 'synergy' evokes, so a clarification about this issue is needed. Moreover, as the rest of the work is based on these 'pair-wise' redundancy and synergy matrices, it becomes a significative issue.

    1. Reviewer #2 (Public Review):

      This article is focused on investigating incremental speech processing, as it pertains to building higher-order syntactic structure. This is an important question because speech processing in general is lesser studied as compared to reading, and syntactic processes are lesser studied than lower-level sensory processes. The authors claim to shed light on the neural processes that build structured linguistic interpretations. The authors apply modern analysis techniques, and use state-of-the-art large language models in order to facilitate this investigation. They apply this to a cleverly designed experimental paradigm of EMEG data, and compare neural responses of human participants to the activation profiles in different layers of the BERT language model.

      Strengths:

      [1] The study aims to investigate an under-explored aspect of language processing, namely syntactic operations during speech processing

      [2] The study is taking advantage of technological advancements in large language models, while also taking linguistic theory into account in building the hypothesis space

      [3] The data combine EEG and MEG, which provides a valuable spatio-temporally resolved dataset

      [4] The use of behavioural validation of high/low transitive was an elegant demonstration of the validity of their stimuli

      Weaknesses:

      [1] The manuscript is quite hard to understand, even for someone well-versed in both linguistic theory and LLMs. The questions, design, analysis approach, and conclusions are all quite dense and not easy to follow.

      [2] The analyses end up seeming overly complicated when the underlying difference between sentence types is a simple categorical distinction between high and low transitivity. I am not sure why tree depth and BERT are being used to evaluate the degree to which a sentence is being processed as active or passive. If this is necessary, it would be helpful for the authors to motivate this more clearly.

      [3] The main data result figures comparing BERT and the EMEG brain data are hard to evaluate because only t-values are provided, and those, only for significant clusters. It would be helpful to see the full 600 ms time course of rho values, with error bars across subjects, to really be able to evaluate it visually. This is a summary statistic that is very far away from the input data

      [4] Some details are omitted or not explained clearly. For example, how was BERT masked to give word-by-word predictions? In its default form, I believe that BERT takes in a set of words before and after the keyword that it is predicting. But I assume that here the model is not allowed to see linguistic information in the future. How were the auditory stimuli recorded? Was it continuous speech or silences between each word? How was prosody controlled? Was it a natural speaker or a speech synthesiser?

      It is difficult for me to fully assess the extent to which the authors achieved their aims, because I am missing important information about the setup of the experiment and the distribution of test statistics across subjects.

    1. Reviewer #2 (Public Review):

      Language skills are traditionally associated with a network of brain regions in the left hemisphere. In this intriguing study, Esteban Villar-Rodríguez and collaborators examined if atypical hemispheric lateralization for language determines the functional and structural organisation of the network for inhibitory control as well as its relationship with schizotypy and autistic spectrum traits. The results suggest that individuals who have atypical lateralisation of the language function have also an atypical (mirrored) lateralisation of the inhibitory control network, compared to the typical group (individuals with left-lateralised language function). Furthermore, the atypical organization of language production is associated with a greater white matter volume of the corpus callosum, and atypical lateralization of inhibitory control is related to a higher interhemispheric functional coupling of the IFC, suggesting a link between atypical functional lateralisation (language and inhibitory control) and structural and functional changes in the brain.

      This study also provides interesting evidence on how atypical language lateralisation impacts some aspects of language behaviour (reading), i.e., atypical lateralization predicts worse reading accuracy. Furthermore, the results suggest an association between atypical lateralization and increased schizotypy and autistic traits.

      The strength of this work is that it presents a collection of measurements on the same individuals (including task-related behavioural, functional and structural neuroimaging measures) to reveal if (and how) atypical language lateralisation might be associated with: (1) atypical neural organisation of other non-linguistic cognitive systems, (2) behavioural performance associated with language tasks, and finally (3) personality traits. As such the results presented in this manuscript have the potential to be informative for various disciplines. For instance, if clarifications/corrections are provided (see below), the results might provide some insight into the role of the right hemisphere for language processing in healthy individuals as well as patient populations with acquired linguistic impairment including stroke and dementia.

      One important weakness of this manuscript is that several areas, including the characteristics of participants tested, and the hypotheses/predictions, are underspecified or incomplete. Furthermore, in some cases the types of analysis do not seem to be appropriate for addressing the questions of the present study and very little explanation for those choices is provided.

    1. Reviewer #2 (Public Review):

      The manuscript by Est and Murphy tested the feasibility of using brain microvascular endothelial-like cells (BMECs) derived from induced pluripotent stem cells (iPSCs) as a model for studying retinoid uptake and transport across the blood-brain barrier (BBB). Establishing this experimental model is an important step towards obtaining greater mechanistic insight into the specificity of retinol trafficking between blood and retinoid-dependent tissues. The authors validated the iPSC-derived BMECs by detecting the expression of specific protein markers for BBB. They also demonstrated that BMECs form a tight barrier when cultured in a Transwell chamber, allowing for the quantification of permeability across the cells rather than through paracellular leakage. Finally, they confirmed the expression of the transporter (STRA6), binding protein (CRBP1), and enzyme (LRAT), which are key elements of the molecular machinery involved in the cellular uptake of circulating retinol. The carefully established model of the human BBB served as an experimental platform for the authors to investigate the uptake and transcellular transport of retinol. For this purpose, they compared the kinetics and efficiency of retinoid accumulation delivered to the cell as free retinol, retinol bound to serum retinol-binding protein (RBP), or retinol-RBP in complex with transthyretin (TTR), a physiological binding partner for retinol-loaded RBP.

      Although the development and thorough characterization of the experimental model of the BBB have great value and meaningfully contribute to ongoing efforts to better understand the mechanisms of retinoid homeostasis, the premise and interpretation of cellular uptake appear controversial. In particular:

      1. The authors assume that there is a significant fraction of free ROL, 20% for ROH/RBP and 7% for RBP/TTR complexes (summarized in Table 1). This implies that at the physiological concentration of ROH/RBP in the plasma of 2 uM, free ROL represents 0.4 uM. However, the concentration of free ROL is limited by its poor solubility in the aqueous phase, which is around 0.06 uM (Szuts EZ, 1991, Arch Biochem Biophys). Moreover, taking into account the large concentration of other potential nonspecific carriers for lipids, it is safe to assume that there is virtually no free ROH in the plasma. There is also an important physiological reason for the limited amount of free ROL. Its rapid and nonspecific partition into cells (also observed in this study) would work against the highly specific RBP/STRA6-dependent ROH uptake pathway, undermining its physiological function.

      2. The advantage of the experimental system used in this report is that it allows for the assessment of the permeability across BMECs. Interestingly, the basolateral accumulation of ROH represented only a small fraction (1 - 1.5%) of the total ROH taken up by the cells. Moreover, the overall permeability was comparable regardless of the source of ROL added at the apical side. However, a question remains: would the outcome of the experiment be different if the basolateral chamber contained an ROH acceptor (retinol-binding proteins) rather than Hank's balanced salt solution, to which the partition of ROL is limited by its water solubility? In fact, the maximum concentration of ROH on the basolateral side did not exceed 40 nM (Fig 5D and 7C), which is roughly the maximum water solubility of ROH. Thus, this experimental design limits extrapolation of the data to in vivo conditions.

      3. The authors claim that transthyretin (TTR) increases BMECs permeability when compared to ROH/RBP. However, the mechanistic explanation for this phenomenon remains unclear. Do the authors imply the presence of a putative TTR receptor whose signaling could affect the efflux of ROL at the basolateral side of BMECs? TTR is an ubiquitous plasma protein. The concentration of TTR is tightly regulated and maintained between 300 - 330 mg/L. Therefore, it is questionable how TTR can serve as a signaling molecule modulating retinoid homeostasis in the brain.

      4. Although overexpression of LRAT in response to increased uptake of ROH is well-documented, the postulate that TTR stimulates the expression of LRAT in an RBP-independent manner is puzzling, for the reasons mentioned in point 3. Moreover, LRAT is a highly efficient enzyme that operates under physiological conditions with substrate concentrations below the Km value. The rate of esterification is primarily limited by the intracellular transport of ROH to the ER. Therefore, without kinetic studies, it is unclear whether an increased number of LRAT copies (x2) would have a significant effect on the rate of accumulation of retinyl esters (REs).

      5. The conclusion that cellular uptake of ROH is biphasic appears to be correct. However, the proposed interpretation of the mechanistic principles of this phenomenon is oversimplified. It assumes that loading CRBP1 with ROL to its capacity triggers the synthesis of REs. However, the saturation of CRBP1 with ROH is not required for REs formation. In fact, studies on CRBP1-deficient mice indicate that this protein is not necessary for the efficient esterification of ROL but rather affects the intracellular turnover of retinoids. It is likely that with increasing concentration of ROH, the specific and controlled mechanism of intracellular retinoid transport becomes saturated, allowing for spontaneous diffusion-driven partitioning of retinoids within cells.

      Additional technical issues that could affect the experimental outcomes:

      1. The formation of the ROH/RBP-TTR complex should be confirmed and purified using gel filtration to separate free TTR and ROH/RBP. Only fractions containing the complex should be used in the experiments. Assuming that the complex is formed with 100% efficiency is overly optimistic.

      2. Reloading RBP with isotopically labeled ROH requires an additional purification step. Stripping ROL from the ROH/RBP complex with organic solvent (diethyl ether) is appropriate but relatively harsh, causing partial unfolding of a fraction of RBP. Therefore, assuming that 100% of stripped RBP remains functional and can be reloaded with ROH is inaccurate. Reloading apo-RBP with a stoichiometric amount of ROH without an additional purification step (e.g., ion exchanger) leads to an excess of free ROL and/or its nonspecific association with nonfunctional RBP fractions. Measuring absorbance at 330 nm is not sufficient proof of binding since free ROH also absorbs at the same wavelength.

    1. Reviewer #2 (Public Review):

      The authors tried to diagnose cancers and pinpoint tissues of origin using cfDNA. To achieve the goal, they developed a framework to assess methylation, CNA, and other genomic features. They established discovery and validation cohorts for systematic assessment and successfully achieved robust prediction power.

      Still, there are places for improvement. The diagnostic effect can be maximized if their framework works well in early stage cancer patients. According to Table 1, about 10% of the participants are stage I. Do these cancers also perform well as compared to late stage cancers?

      Can authors show a systematic comparison of their method to other previous methods to summarize what their algorithm can achieve compared to others.

    1. Reviewer #2 (Public Review):

      Ghasemahmad et al. report findings on the influence of salient vocalization playback, sex, and previous experience, on mice behaviors, and on cholinergic and dopaminergic neuromodulation within the basolateral amygdala (BLA). Specifically, the authors played back mice vocalizations recorded during two behaviors of opposite valence (mating and restraint) and measured the behaviors and release of acetylcholine (ACh), dopamine (DA), and serotonin in the BLA triggered in response to those sounds.

      Strength: The authors identified that mating and restraint sounds have a differential impact on cholinergic and dopaminergic release. In male mice, these two distinct vocalizations exert an opposite effect on the release of ACh and DA. Mating sounds elicited a decrease of Ach release and an increase of DA release. Conversely, restraint sounds induced an increase in ACh release and a trend to decrease in DA. These neurotransmission changes were different in estrus females for whom the mating vocalization resulted in an increase of both DA and ACh release.

      Weaknesses: The behavioral analysis and results remain elusive, and although addressing interesting questions, the study contains major flaws, and the interpretations are overstating the findings.

    1. Reviewer #2 (Public Review):

      In the manuscript, the authors highlighted the importance of T-cell receptor (TCR) analysis and the lack of amino acid embedding methods specific to this domain. The authors proposed a novel bi-directional context-aware amino acid embedding method, catELMo, adapted from ELMo (Embeddings from Language Models), specifically designed for TCR analysis. The model is trained on TCR sequences from seven projects in the ImmunoSEQ database, instead of the generic protein sequences. They assessed the effectiveness of the proposed method in both TCR-epitope binding affinity prediction, a supervised task, and the unsupervised TCR clustering task. The results demonstrate significant performance improvements compared to existing embedding models. The authors also aimed to provide and discuss their observations on embedding model design for TCR analysis: 1) Models specifically trained on TCR sequences have better performance than models trained on general protein sequences for the TCR-related tasks; and 2) The proposed ELMo-based method outperforms TCR embedding models with BERT-based architecture. The authors also provided a comprehensive introduction and investigation of existing amino acid embedding methods. Overall, the paper is well-written and well-organized.

      The work has originality and has potential prospects for immune response analysis and immunotherapy exploration. TCR-epitope pair binding plays a significant role in T cell regulation. Accurate prediction and analysis of TCR sequences are crucial for comprehending the biological foundations of binding mechanisms and advancing immunotherapy approaches. The proposed embedding method presents an efficient context-aware mathematical representation for TCR sequences, enabling the capture and analysis of their structural and functional characteristics. This method serves as a valuable tool for various downstream analyses and is essential for a wide range of applications.

    1. Reviewer #2 (Public Review):

      In this project, Schmidig, Ruch and Henke examined whether word pairs that were presented during slow-wave sleep would leave a detectable memory trace 12 and 36 hours later. Such an effect was found, as participants showed a bias to categorize pseudowords according to a familiar word that they were paired with during slow-wave sleep. This behavior was not accompanied by any sign of conscious understanding of why the judgment was made, and so demonstrates that long-term memory can be formed even without conscious access to the presented content. Unconscious learning occurred when pairs were presented during troughs but not during peaks of slow-wave oscillations. Differences in brain responses to the two types of presentation schemes, and between word pairs that were later correctly- vs. incorrectly-judged, suggest a potential mechanism for how such deep-sleep learning can occur.

      The results are very interesting, and they are based on solid methods and analyses. Results largely support the authors' conclusions, but I felt that there were a few points in which conclusions were not entirely convincing:

      1) As a control for the critical stimuli in this study, authors used a single pseudoword simultaneously played to both ears. This control condition (CC) differs from the experimental condition (EC) in a few dimensions, among them: amount of information provided, binaural coherence and word familiarity. These differences make it hard to conclude that the higher theta and spindle power observed for EC over CC trials indicate associative binding, as claimed in the paper. Alternative explanations can be made, for instance, that they reflect word recognition, as only EC contains familiar words.

      2) The entire set of EC pairs were tested both following 12 hours and following 36 hours. Exposure to the pairs during test #1 can be expected to have an effect over memory one day later, during test #2, and so differences between the tests could be at least partially driven by the additional activation and rehearsal of the material during test #1. Therefore, it is hard to draw conclusions regarding automatic memory reorganization between 12 and 36 hours after unconscious learning. Specifically, a claim is made regarding a third wave of plasticity, but we cannot be certain that the improvement found in the 36 hour test would have happened without test #1.

      3) Authors claim that perceptual and conceptual processing during sleep led to increased neural complexity in troughs. However, neural complexity was not found to differ between EC and CC, nor between remembered and forgotten pairs. It is therefore not clear to me why the increased complexity that was found in troughs should be attributed to perceptual and conceptual word processing, as CC contains meaningless vowels. Moreover, from the evidence presented in this work at least, I am not sure there is room to infer causation - that the increase in HFD is driven by the stimuli - as there is no control analysis looking at HFD during troughs that did not contain stimulation.

    1. Reviewer #2 (Public Review):

      Chakraborty et al. present a comprehensive analysis of the role of the IP3R in regulating SOCE in neuronal cells starting with human neurons derived from stem cells and continuing with SH-SY5Y cells after careful characterization of the maintenance of the inhibitory role of IP3R. They also show differential effects in non-neuronal cell lines. The work is careful and the data convincing. The conclusion that IP3Rs somehow stabilize ER-PM MCS to enhance SOCE is supported by the findings especially the surprising finding that the IP3R effect does not require a functional pore but does require IP3 binding to IP3R. Overall this is a careful, well-done analysis. However, the conclusion that IP3R stabilizes ER-PM MCS is mostly inferred from the current data. The authors need to extend the finding by directly assessing the size, density, and the number of ER-PM MCS using endogenous STIM1 (there are reliable antibodies for STIM1) to confirm their conclusion that when IP3R is knocked down ER-PM MCS are smaller/less dense. Another interesting experiment that would support their conclusion is expressing tagged STIM1 and Orai1 and observing their interaction in real time after store depletion. These experiments would need to be carefully controlled to select cells with low levels of expression of STIM1-Orai1 as there are hints from their current data that high expressors would not exhibit the IP3R dependence on SOCE. So, some independent experimental evidence that IP3R knockdown is affecting ER-PM MCS and not STIM1-Orai1 interaction directly to support the presented PLA data would greatly support the final conclusion of the paper. From the PLA assay alone it is difficult to differentiate between poor direct STIM1-Orai1 interaction versus stability of ER-PM MCS.

    1. Reviewer #2 (Public Review):

      McCormick, Cleary et al., explore the question of how the nucleotide state of the tubulin heterodimer affects the interaction between adjacent tubulins.

      (1) The setup of the authors' model, which attributes the dynamic properties of the growing microtubule only to the differences in interface binding affinities, is unrealistic. They excluded the influence of the nucleotide-dependent global conformational changes even in the 'Self-Acting Nucleodide' model (Fig. 1A). As the authors have found earlier, tubulin in its unassembled state may be curved irrespective of the species of the bound nucleotide (Rice et al., 2008, doi: 10.1073/pnas.0801155105), but at the growing end of microtubules, the situation could be different. Considering the recently published papers from other laboratories, it may be more appropriate to include the nucleotide-dependent change in the tubulin conformation in the Self-Acting Nucleotide model.

      (2) The result that the minus end is insensitive to GDP (Fig. 2) was previously published in a paper by Tanaka-Takiguchi et al. (doi: 10.1006/jmbi.1998.1877). The exact experimental condition was different from the one used in Fig. 2, but the essential point of the finding is the same. The authors should cite the preceding work, and discuss the similarities and differences, as compared to their own results.

    1. Reviewer #2 (Public Review):

      Schmid et al present a lovely study looking at the effect of passive auditory exposure on learning a categorization task.

      The authors utilize a two-alternative choice task where mice have to discriminate between upward and downward-moving frequency sweeps. Once mice learn to discriminate easy stimuli, the task is made psychometric and additional intermediate stimuli are introduced (as is standard in the literature). The authors introduce an additional two groups of animals, one that was passively exposed to the task stimuli before any behavioral shaping, and one that had passive exposure interleaved with learning. The major behavioral finding is that passive exposure to sounds improves learning speed. The authors show this in a number of ways through linear fits to the learning curves. Additionally, by breaking down performance based on the "extreme" vs "psychometric" stimuli, the authors show that passive exposure can influence responses to sounds that were not present during the initial training period. One limitation here is that the presented analysis is somewhat simplistic, does not include any detailed psychometric analysis (bias, lapse rates etc), and primarily focuses on learning speed. Ultimately though, the behavioral results are interesting and seem supported by the data.

      To investigate the neural mechanisms that may underlie their behavioral findings, the authors turn to a family of artificial neural network models and evaluate the consequences of different learning algorithms and schedules, network architectures, and stimulus distributions, on the learning outcomes. The authors work through five different architectures that fail to recapitulate the primary behavior findings before settling on a final model, utilizing a combination of supervised and unsupervised learning, that was capable of reproducing the key aspects of the experiments. Ultimately, the behavioral results presented are consistent with network models that build latent representations of task-relevant features that are determined by statistical properties of the input distribution.

    1. Reviewer #2 (Public Review):

      Knowles et al. investigated the developmental roles of Erk1/2 expression in cells from the Nkx2.1-lineage, which includes the PV and SST classes of cortical inhibitory interneurons (CINs) and glial subtypes. They find that embryonic expression of Erk1/2 regulates the number of Nkx2.1-derived oligodendrocytes and astrocytes, but not CINs, observed in postnatal mice. However, Erk1/2 is necessary for the expression of SST in subset of Nkx2.1-derived CINs, which can be partially rescued by postnatal depolarization via chemogenetic stimulation with DREADDs. Finally, loss of Erk1/2 from these cells impairs activity-dependent expression of FOSB. Collectively, this revised paper demonstrates differential roles of Erk1/2 for the development of glia and neurons. Furthermore, it suggests SST CINs may be particularly vulnerable to loss of Erk1/2 signaling during both early embryonic and later postnatal developmental stages.

      Strengths:<br /> This paper uses multiple transgenic mouse lines to investigate the contributions of Erk1/2 loss and over-expression and MEK overexpression for interneuron and glial development. Furthermore, they consider how Erk1/2 signaling may evolve over the course of development from embryonic to postnatal juvenile and adult stages. Thus, they investigate Erk1/2's early role in cell differentiation and its later role in activity dependent signaling. This approach to studying gene function throughout development is important but not often attempted within a single study.

      The authors investigate Erk1/2 using several techniques, including immunohistochemistry, sequencing of translated genes using the Ribotag method, electrophysiology, and chemogenetic stimulation using DREADDs. Thus, they aim to apply a comprehensive battery of approaches to assay Erk1/2 signaling in Nkx2.1-derived cells throughout development.

      Weaknesses:<br /> This paper describes a series of mostly separate observations that are not directly linked. The mechanisms underlying their observations and the significance of the findings are often unclear.

      The authors use Erk1-/-; Erk2fl/wt; Nkx2.1Cre as "het" controls throughout the manuscript. However, there is no explanation for why this is a valid control except for a statement that they are "grossly intact", without elaboration. It is unclear why the authors did not use Nkx2.1Cre mice for their control. Figure 1 - Supplemental Figure 1 provides the only comparison between Erk1-/-; Erk2fl/wt; Nkx2.1Cre and Erk1-/-; Erk2wt/wt; Nkx2.1Cre mice. This figure shows a single example of immune staining for Erk2, but it is not obvious that Nkx2.1 control or "het control" cells even express Erk2 in this image. There is no quantification. Thus, their choice of control condition is not obviously appropriate.

    1. Reviewer #2 (Public Review):

      In "Behavioral entrainment to rhythmic auditory stimulation can be modulated by tACS depending on the electrical stimulation field properties" Cabral-Calderin and collaborators aimed to document 1) the possible advantages of personalized tACS montage over standard montage on modulating behavior; 2) the inter-individual and inter-session reliability of tACS effects on behavioral entrainment and, 3) the importance of the induced electric field properties on the inter-individual variability of tACS.

      To do so, in two different sessions, they investigated how the detection of silent gaps occurring at random phases of a 2Hz- amplitude modulated sound could be enhanced with 2Hz tACS, delivered at different phase lags. In addition, they evaluated the advantage of using spatially optimized tACS montages (information-based procedure - using anatomy and functional MRI to define the target ROI and simulation to compare to a standard montage applied to all participants) on behavioral entrainment. They first show that the optimized and the standard montages have similar spatial overlap to the target ROI. While the optimized montage induced a more focal field compared to the standard montage, the latter induced the strongest electric field. Second, they show that tACS does not modify the optimal phase for gap detection (phase of the frequency-modulated sound) but modulates the strength of behavioral entrainment to the frequency-modulated sound in a phase-lag specific manner. However, and surprisingly, they report that the optimal tACS lag, and the magnitude of the phasic tACS effect were highly variable across sessions. Finally, they report that the inter-individual variability of tACS effects can be explained by the strength of the inward electric field as a function of the field focality and on how well it reached the target ROI.

      The article is interesting and well-written, and the methods and approaches are state-of-the-art.

      Strengths:<br /> - The information-based approach used by the authors is very strong, notably with the definition of subject-specific targets using a fMRI localizer and the simulation of electric field strength using 3 different tACS montages (only 2 montages used for the behavioral experiment).<br /> - The inter-session and inter-individual variability are well documented and discussed. This article will probably guide future studies in the field.

      Weaknesses:<br /> - The addition of simultaneous EEG recording would have been beneficial to understand the relationship between tACS entrainment and the entrainment to rhythmic auditory stimulation.<br /> - It would have been interesting to develop the fact that tACS did not "overwrite" neural entrainment to the auditory stimulus. The authors try to explain this effect by mentioning that "tACS is most effective at modulating oscillatory activity at the intended frequency when its power is not too high" or "tACS imposes its own rhythm on spiking activity when tACS strength is stronger than the endogenous oscillations but it decreases rhythmic spiking when tACS strength is weaker than the endogenous oscillations". However, it is relevant to note that the oscillations in their study are by definition "not endogenous" and one can interpret their results as a clear superiority of sensory entrainment over tACS entrainment. This potential superiority should be discussed, documented, and developed.<br /> - The authors propose that "by applying tACS at the right lag relative to auditory rhythms, we can aid how the brain synchronizes to the sounds and in turn modulate behavior." This should be developed as the authors showed that the tACS lags are highly variable across sessions. According to their results, the optimal lag will vary for each tACS session and subtle changes in the montage could affect the effects.<br /> - In a related vein, it would be very useful to show the data presented in Figure 3 (panels b,d,e) for all participants to allow the reader to evaluate the quality of the data (this can be added as a supplementary figure).

    1. Reviewer #2 (Public Review):

      In their article titled "Brain mechanisms of reversible symbolic reference: a potential singularity of the human brain", van Kerkoerle et al address the timely question of whether non-human primates (rhesus macaques) possess the ability for reverse symbolic inference as observed in humans. Through an fMRI experiment in both humans and monkeys, they analyzed the bold signal in both species while observing audio-visual and visual-visual stimuli pairs that had been previously learned in a particular direction. Remarkably, the findings pertaining to humans revealed that a broad brain network exhibited increased activity in response to surprises occurring in both the learned and reverse directions. Conversely, in monkeys, the study uncovered that the brain activity within sensory areas only responded to the learned direction but failed to exhibit any discernible response to the reverse direction. These compelling results indicate that the capacity for reversible symbolic inference may be unique to humans.

      In general, the manuscript is skillfully crafted and highly accessible to readers. The experimental design exhibits originality, and the analyses are tailored to effectively address the central question at hand. Although the first experiment raised a number of methodological inquiries, the subsequent second experiment thoroughly addresses these concerns and effectively replicates the initial findings, thereby significantly strengthening the overall study. Overall, this article is already of high quality and brings new insight into human cognition.

      I identified three weaknesses in the manuscript:<br /> - One major issue in the study is the absence of significant results in monkeys. Indeed, authors draw conclusions regarding the lack of significant difference in activity related to surprise in the multi-demand network (MDN) in the reverse congruent versus reverse incongruent conditions. Although the results are convincing (especially with the significant interaction between congruency and canonicity), the article could be improved by including additional analyses in a priori ROI for the MDN in monkeys (as well as in humans, for comparison).<br /> - While the authors acknowledge in the discussion that the number of monkeys included in the study is considerably lower compared to humans, it would be informative to know the variability of the results among human participants.<br /> - Some details are missing in the methods.

    1. Reviewer #2 (Public Review):

      The manuscript by Bull et al investigates the relationship between metabolic features, in particular different lipoproteins and fatty acids, and colorectal cancer. They combine different data sources to analyze forward and reverse Mendelian Randomization associations in children and adults. Their results indicate that polyunsaturated fatty acids may be implicated in the risk for colorectal cancer.

      Overall, the paper is well-written, and the methods used are solid. The use of different data (cohort individual data and summary stats) and stratifications strengthens the analyses. The conclusions drawn from the results are balanced and supported by the data although the novelty of the findings is modest.

    1. Reviewer #2 (Public Review):

      This study presents novel findings on the metabolic fuel preference shift regulated by PTPMT1, a target of interest, in skeletal and cardiac muscle cells.

      Zheng et al. have investigated the effects of PTPMT1 Knock-out on cellular metabolic flexibility. Since the authors used several types of appropriate tissue-specific mouse models, it seems to be a broad significance at the first glance. However, most of the data lack the quantification, consequently they don't provide statistical significance. In addition, the functional data such as echocardiography shows partial and limited data.<br /> Therefore, it is only a matter of speculation that the absence of PTPMT1 inhibits glucose (pyruvate) utilization and promotes FAO.

    1. Reviewer #2 (Public Review):

      Members of the EphB family of tyrosine kinase receptors are involved in a multitude of diverse cellular functions, ranging from the control of axon growth to angiogenesis and synaptic plasticity. In order to provide these diverse functions, it is expected that these receptors interact in a cell-type-specific manner with a diverse variety of downstream signalling molecules.

      The authors have used proteomics approaches to characterise some of these molecules in further detail. This molecule, myc-binding protein 2 (MYCBP2) also known as highwire, has been identified in the context of establishment of neural connectivity. Another molecule coming up on this screen was identified as FBXO45.

      The authors use classical methods of co-IP to show a kinase-independent binding of MYCBP2 to EphB2. They further showed that FBXO45 within a ternary complex increased the stability of the EphB2/MYCBP2 complex.

      To define the interacting domains, they used clearly designed swapping experiments to show that the extracellular and transmembrane domains are necessary and sufficient for the formation of the ternary complex.

      Using a cellular contraction assay, the authors showed the necessity of MYCBP2 in mediating the cytoskeletal response of EphB2 forward signalling. Furthermore, they used the technically challenging stripe assay of alternating lanes of ephrinB-Fc and Fc to show that also in this migration-based essay MYCBP2 is required for EphB mediated differential migration pattern.

      MYCBP2 in addition is necessary to stabilize EphB2, that is in the absence of MYCBP2, EphB2 is degraded in the lysosomal pathway.

      Interestingly, the third protein in this complex, Fbxo45, was further characterized by overexpression of the domain of MYCBP2, known to interact with Fbxo45. Here the authors showed that this approach led to the disruption of the EphB2 / MYCBP2 complex, and also abolished the ephrinB-mediated activation of EphB2 receptors and their differential outgrowth on ephrinB2-Fc / Fc stripes.

      Finally, the authors demonstrated an in vivo function of this complex using another model system, C elegans where they were able to show a genetic interaction.

      Data shows in a nice set of experiments a novel level of EphB2 forward signalling where a ternary complex of this receptor with multifunctional MYCBP2 and Fbxo45 controls the activity of EphB2, allowing a further complex regulation of this important receptor. Additionally, the authors challenge pre-existing concepts of the function of MYCBP2 which might open up novel ways to think about this protein.

      Of interest is this work also in terms of the development of the retinotectal projection in zebrafish where MYCBP2/highwire plays a crucial role, and thus might lead to a better understanding of patterning along the DV axis, for which it is known that EphB family members are crucial.

      Overall, the experiments are classical experiments of co-immunoprecipitations, swapping experiments, collapse assays, and stripe assays which all are well carried out and are convincing.

    1. Reviewer #2 (Public Review):

      In this manuscript, Smith et al. delineated novel mechanistic insights into the structure-function relationships of the C-terminal repeat domains within the mouse DUX protein. Specifically, they identified and characterised the transcriptionally active repeat domains, and narrowed down to a critical 6aa region that is required for interacting with key transcription and chromatin regulators. The authors further showed how the DUX active repeats collaborate with the C-terminal acidic tail to facilitate chromatin opening and transcriptional activation at DUX genomic targets.

    1. Reviewer #2 (Public Review):

      In this study, Yan et al. report that a cleaved form of METTL3 (termed METTL3a) plays an essential role in regulating the assembly of the METTL3-METTL14-WTAP complex. Depletion of METTL3a leads to reduced m6A level on TMEM127, an mTOR repressor, and subsequently decreased breast cancer cell proliferation. Mechanistically, METTL3a is generated via 26S proteasome in an mTOR-dependent manner.

      The manuscript follows a smooth, logical flow from one result to the next, and most of the results are clearly presented. Specifically, the molecular interaction assays are well-designed. This model represents a significant addition to the current understanding of m6A-methyltransferase complex formation.

    1. Reviewer #2 (Public Review):

      In this study, the authors utilize a compendium of public genomic data to identify transcription factors (TF) that can identify their DNA binding motifs in the presence of nuclosome-wrapped chromatin and convert the chromatin to open chromatin. This class of TFs are termed Pioneer TFs (PTFs). A major strength of the study is the concept, whose premise is that motifs bound by PTFs (assessed by ChIP-seq for the respective TFs) should be present in both "closed" nucleosome wrapped DNA regions (measured by MNase-seq) as well as open regions (measured by DNAseI-seq) because the PTFs are able to open the chromatin. Use of multiple ENCODE cell lines, including the H1 stem cell line, enabled the authors to assess if binding at motifs changes from closed to open. Typical, non-PTF TFs are expected to only bind motifs in open chromatin regions (measured by DNaseI-seq) and not in regions closed in any cell type. This study contributes to the field a validation of PTFs that are already known to have pioneering activity and presents an interesting approach to quantify PTF activity.

      For this reviewer, there were a few notable limitations. One was the uncertainty regarding whether expression of the respective TFs across cell types was taken into account. This would help inform if a TF would be able to open chromatin. Another limitation was the cell types used. While understandable that these cell types were used, because of their deep epigenetic phenotyping and public availability, they are mostly transformed and do not bear close similarity to lineages in a healthy organism. Next, the methods used to identify PTFs were not made available in an easy-to-use tool for other researchers who may seek to identify PTFs in their cell type(s) of interest. Lastly, some terms used were not defined explicitly (e.g., meaning of dyads) and the language in the manuscript was often difficult to follow and contained improper English grammar.

    1. Reviewer #2 (Public Review):

      Dr. Kia Davis and colleagues present a thoughtful analysis of disruptions to cancer care during COVID-19 in the article, "Understanding disruptions in cancer care to reduce increased cancer burden: a cross-sectional study." The article is based on an online survey of 680 residents in the Siteman Cancer Center catchment area in Summer 2020. The authors aim to characterize demographic differences in cancer care disruptions. Information about the causes and distribution of care disruption can help reduce the impacts of COVID-19 and guide the recovery of programs and services. The article provides a clear and detailed assessment of factors associated with care disruption and return to care during the first six months of the pandemic.

      A strength of the study is the focus on the catchment area of the cancer center during a period of dramatic change. The results would provide timely and actionable data to address emerging barriers to care and associated social or contextual factors. This information helps the Community Outreach and Engagement efforts to be responsive to community priorities despite rapidly evolving circumstances.

      The analysis would benefit from greater detail in three areas. First, it would be helpful to have more information about how the outcome measures were originally developed or tested. Second, for the regression analysis, it would be helpful to show the demographic characteristics of the two strata to better understand the sample composition. Third, the authors should demonstrate that the data do not violate the assumptions for conducting logistic regression to improve confidence in the findings.

      COVID-19 affected all aspects of the cancer continuum. The study reports factors associated with postponing or canceling cancer-related appointments during the pandemic. It will be of great interest to researchers and practitioners in cancer prevention and control.

    1. Reviewer #2 (Public Review):

      In this manuscript, the authors study the generation of joint torques in stick insects under external electrical excitation. The goal of this paper is to develop a model for the relationship between torque and excitation period, with a specific focus on accounting for inter-individual variances in the model. The long-term motivation for this work is to be able to generate controlled external excitation of insect muscle to create "cyborg" systems where computer-controlled electronics generate movement of living systems.

      The authors performed measurements of joint torque generated from three different muscles across two excitation parameters (voltage and excitation time). The authors study the relationship between excitation parameters and muscle torque comparing a linear relationship, and a non-linear (power-law) relationship between torque and voltage. In addition, the authors also compare a hierarchical version of the model which includes inter-individual differences, with a pooled model that ignores individual differences. The authors use an information criteria metric to then identify the best model.

      I believe that the methods of this paper and the findings are all sound; however, I have the following comments and questions.

      Main questions:<br /> 1. It is interesting to find that inter-individual differences are important in the torque output from the joint. However, in some sense, this is what I would have expected. I am curious if these inter-individual differences can be related to any distinct differences among the insects studied: for example body mass, limb length, cross-sectional muscle area, and age all would likely influence torque. Now I am not advocating that all of the above parameters (age, size, etc) be added into a more complex model because I don't think that is necessarily the right path. However, I do think it would be beneficial to present the known information about the variance in individual size/age/etc, some of which may be unknown.

      2. Line 145 states that "Models 1-2 and 2-1 most accurately predicted the posterior predictive distribution.", but is this not a typo? I thought Models 1-2 and 2-2 are the best as they are the linear and nonlinear models with hierarchical slopes.

      In the paragraph starting at line 147 and the subsequent paragraph it is argued that while the nonlinear model 2-2 worked well, the linear model is still better. "The comparison of the linear model (model 1-2) with the nonlinear model (model 2-2) using the WAIC for all conditions (muscle type and applied voltage) resulted in lower values for the linear model." But certainly, both are quite close in WAIC, and my question is, might there be reasons from muscle physiology on stick insects to expect a non-linear model? While the linear model had the lowest WAIC (marginally from looking at Fig 2) without any prior assumptions about the torque-duration curve, certainly much is known about the effect of stimulation on force production, and might including that information validate the non-linear model over linear?

      Alternatively, if the goal is to just model the data under 500ms stimulation because this is the relevant timescale for walking behavior (line 181) then the linear model is fine. But reading the manuscript I got the impression the goal was to best model the torque-voltage relationship, which I would think includes the full excitation range and incorporates known information from muscle physiology.

      3. Fig 3 is a bit confusing as this is meant to compare the experimental data with the hierarchical model distribution. However, all the model distributions across the 10 insects look identical. I thought the point of the hierarchical model is that the slope parameter varies across individuals (isn't this what Fig 4 demonstrates?). So shouldn't the distributions and green fit lines all be different for the individuals?

      I have some questions that should be clarified about the methods:<br /> 4. It is stated that 20 insects were tested, but all the plots show only 10. Is this just because the other 10 were not presented? Or were observations discarded from the other 10 insects for some reason? This is important to describe so that readers can assess the results.

      5. More information should be provided about the ordering of the different excitation experiments. The methods do not describe what the time duration between excitations was, how many were performed over what time period, etc. Additionally, it looks like four different voltage amplitudes were performed which I could only observe from figures 2 and 4. It would be beneficial to describe in detail the full sequence of data collection on an insect.

      6. What is the order of presentation of different voltages? It is stated that muscle fatigue should be negligible for under 50 stimulations, but the range of the 2V experiments alone was between 49-79 stimulations. So were another ~50 stimulations performed at the three other voltages? And if so was fatigue a possible issue?<br /> Also, were there "warm up" effects too where the muscle force increased with subsequent stimulations? It would be useful to provide some characterization of this.

    1. Reviewer #2 (Public Review):

      In the present study, Castano et al. discovered a chemical inhibitor that is specifically effective against the kinase activity of CDKL5 and applied it in the in vitro and the brain slice culture to reveal the acute effects of the loss of function (LOF) of CDKL5. LOF has been modeled in gene knockout mice, but these are loss-of-function models with the added developmental time effects of the absence of CDKL5 from developmental stages. The present authors' approach is the fastest timescale study to date, examining CDKL5 LOF effects in seconds to minutes.

      The authors showed that chemical inhibition of CDKL5 kinase activity suppresses postsynaptically derived LTP in rat brain slice experiments, indicating that the previously controversial results of CDKL5 LOF on LTP in knockout mice and rats are possibly due to combined effects of the loss of the kinase and compensation by other factors.

      The authors employed state-of-the-art methodologies and presented their data clearly and convincingly.

    1. Reviewer #2 (Public Review):

      In this work, the authors examine the antineoplastic effects of a combined treatment with the impridone ONC201/Tic10 and everolimus against ER+ breast cancer models. The combination was shown to have enhanced activity against everolimus resistant cells especially in 3D models as well as against primary cells derived from patients that have received treatment with everolimus in the past.

      The authors address the important issue of drug resistance in ER+ breast cancer by using resistant cell models. Moreover, patient-derived cells were used in this work. From a molecular point of view, current mechanisms of action of ONC201/Tic10 were explored including effects on ERK/AKT pathways, integrated stress response and oxphos. Overall, this interesting work opens a venue for further exploration of imipridones in ER+ breast cancer resistant to current first- and second-line therapies.

    1. Reviewer #2 (Public Review):

      Past systems for identifying and tracking rodent vocaliztions have relied on triangulating positions using only a few high-quality ultrasonic microphones. There are also large arrays of less sensitive microphones, called acoustic cameras that don't capture the detail of the sounds, but do more accurately locate the sound in 3D space. Therefore the key innovation here is that the authors combine these two technologies by primarily using the acoustic camera to accurately find the emitter of each vocalization, and matching it to the high-resolution audio and video recordings. They show that this strategy (HyVL) is more accurate than other methods for identifying vocalizing mice and also has greater spatial precision. They go on to use this setup to make some novel and interesting observations. The technology and the study are timely, important, and have the potential to be very useful. As machine learning approaches to behavior become more widespread in use, it is easy to imagine this being incorporated and lowering entry costs for more investigators to begin looking at rodent vocalizations. I have a few comments.

      1) What is the relationship of the current manuscript to this: https://www.biorxiv.org/content/10.1101/2021.10.22.464496v1 which has a number of very similar figures and presents a SLIM-only method that reportedly has lower precision than the current HyVL approach. Is this superseded by the submitted paper?

      2) Can the authors provide any data showing the accuracy of their system in localizing sounds emitted from speakers as a function of position and amplitude? I am imagining that it would be relatively easy to place multiple speakers around the arena as ground truth emitting devices to quantify the capabilities of the system.

      3) How is the system's performance affected by overlapping vocalizations? It might be useful to compare the accuracy of caller identification for periods where only one animal is calling at a time vs. periods where multiple animals are simultaneously calling.

      4) Can the authors comment on how sound shadows cast by animals standing between the caller and a USM4 affect either the accuracy of identification or the fidelity of the vocal recording?

      5) I'm a bit confused about how the algorithm uses the information from the video camera. Reading through the methods, it seems like they primarily calculate competing location estimates by the two types of microphone data and then make sure that a mouse is in close proximity to one location, discarding the call if there isn't. Why did the authors choose this procedure rather than use the tracked position of the snouts as constrained candidate locations and use the microphone data to arbitrate between them? Do they think that their tracking data are not reliable or accurate enough?

      6) I guess the authors have code that we can run, but I couldn't access it. The manuscript describes the algorithms and equations that are used to calculate the location, but this doesn't really give me a feel for how it works. If you want to have the broadest impact possible, I think you would do well to make the code user-friendly (maybe it is, I don't know). In pursuit of that goal, I would suggest that the authors devote some of the paper to a guided example of how to use it.

    1. Reviewer #2 (Public Review):

      In the present study, Castano et al. discovered a chemical inhibitor that is specifically effective against the kinase activity of CDKL5 and applied it in the in vitro and the brain slice culture to reveal the acute effects of the loss of function (LOF) of CDKL5. LOF has been modeled in gene knockout mice, but these are loss-of-function models with the added developmental time effects of the absence of CDKL5 from developmental stages. The present authors' approach is the fastest timescale study to date, examining CDKL5 LOF effects in seconds to minutes.

      The authors showed that chemical inhibition of CDKL5 kinase activity suppresses postsynaptically derived LTP in rat brain slice experiments, indicating that the previously controversial results of CDKL5 LOF on LTP in knockout mice and rats are possibly due to combined effects of the loss of the kinase and compensation by other factors.

      The authors employed state-of-the-art methodologies and presented their data clearly and convincingly.

    1. Reviewer #2 (Public Review):

      Schmit et al. analyze and compare different strategies for the allocation of funding for insecticide-treated nets (ITNs) to reduce the global burden of malaria. They use previously published models of Plasmodium falciparum and Plasmodium vivax malaria transmission to quantify the effect of ITN distribution on clinical malaria numbers and the population at risk. The impact of different resource allocation strategies on the reduction of malaria cases or a combination of malaria cases and achieving pre-elimination is considered to determine the optimal strategy to allocate global resources to achieve malaria eradication.

      Strengths:<br /> Schmit et al. use previously published models and optimization for rigorous analysis and comparison of the global impact of different funding allocation strategies for ITN distribution. This provides evidence of the effect of three different approaches: the prioritization of high-transmission settings to reduce the disease burden, the prioritization of low-transmission settings to "shrink the malaria map", and a resource allocation proportional to the disease burden.

      Weaknesses:<br /> The analysis and optimization which provide the evidence for the conclusions and are thus the central part of this manuscript necessitate some simplifying assumptions which may have important practical implications for the allocation of resources to reduce the malaria burden. For example, seasonality, mosquito species-specific properties, stochasticity in low transmission settings, and changing population sizes were not included. Other challenges to the reduction or elimination of malaria such as resistance of parasites and mosquitoes or the spread of different mosquito species as well as other beneficial interventions such as indoor residual spraying, seasonal malaria chemoprevention, vaccinations, combinations of different interventions, or setting-specific interventions were also not included. Schmit et al. clearly state these limitations throughout their manuscript.

      The focus of this work is on ITN distribution strategies, other interventions are not considered. It also provides a global perspective and analysis of the specific local setting (as also noted by Schmit et al.) and different interventions as well as combinations of interventions should also be taken into account for any decisions. Nonetheless, the rigorous analysis supports the authors' conclusions and provides evidence that supports the prioritization of funding of ITNs for settings with high Plasmodium falciparum transmission. Overall, this work may contribute to making evidence-based decisions regarding the optimal prioritization of funding and resources to achieve a reduction in the malaria burden.

    1. Reviewer #2 (Public Review):

      Marmor et al. mine a previously published dataset to examine whether recent reward/stimulus history influences responses in sensory (and other) cortices. Bulk L2/3 calcium activity is imaged across all of the dorsal cortex in transgenic mice trained to discriminate between two textures in a go/no-go behavior. The authors primarily focus on comparing responses to a specific stimulus given that the preceding trial was or was not rewarded. There are clear differences in activity during stimulus presentation in the barrel cortex along with other areas, as well as differences even before the second stimulus is presented. These differences only emerge after task learning. The data are of high quality and the paper is clear and easy to follow. My only major criticism is that I am not completely convinced that the observed difference in response is not due to differences in movement by the animal on the two trial types. That said, the demonstration of differences in sensory cortices is relatively novel, as most of the existing literature on trial history effect demonstrates such differences only in higher-order areas.

      Major:

      1a. The claim that body movements do not account for the results is in my view the greatest weakness of the paper - if the difference in response simply reflects a difference in movement, perhaps due to "excitement" in anticipation of reward after not receiving one on CR-H vs. H-H trials, then this should show up in movement analysis. The authors do a little bit of this, but to me, more is needed.

      First, given the small sample size and use of non-parametric tests, you will only get p<.05 if at least 6 of the 7 mice perform in the same way. So getting p>.05 is not surprising even if there is an underlying effect. This makes it especially important to do analyses that are likely to reveal any differences; using whisker angle and overall body movement, which is poorly explained, is in my opinion insufficient. An alternative approach would be to compare movements within animals; small as the dataset is, it is feasible to do an animal-by-animal analysis, and then one could leverage the large trial count to get much greater statistical power, foregoing summary analyses that pool over only n=7.

      The authors only consider a simple parametrization of movement (correlation across successive frames), and given the high variability in movement across animals, it is likely that different mice adopt different movements during the task, perhaps altering movement in specific ways. Aggregating movement across different body parts after an analysis where body parts are treated separately seems like an odd choice - perhaps it is fine, but again, supporting evidence for this is needed. As it stands, it is not clear if real differences were averaged out by combining all body parts, or what averaging actually entails.

      If at all possible, I would recommend examining curvature and not just the whisker angle, since the angle being the same is not too surprising given that the stimulus is in the same place. If the animal is pressing more vigorously on CR-H trials, this should result in larger curvature changes.

      Finally, the authors presumably have access to lick data. Are reaction times shorter on CR-H trials? Is lick count or lick frequency shorter?

      If movement differs across trial types, it is entirely plausible that at least barrel cortex activity differences reflect differences in sensory input due to differences in whisker position/posture/etc. This would mitigate the novelty of the present results.

      1b. Given the importance of this control to the story, both whisker and body movement tracking frames should be explicitly shown either in the primary paper or as a supplement. Moreover, in the methods, please elaborate on how both whisker and body tracking were performed.

      2. Did streak length impact the response? For instance, in Fig. 1f "Learning", there is a 6-trial "no-go" streak; if the data are there, it would be useful to plot CR-H responses as a function of preceding unrewarded trials.

    1. Reviewer #2 (Public Review):

      In this manuscript, Franco et al show that the mitofusin 2 mutation MFN2 Q400 impaires mitochondrial fusion with normal GTPase activity. MFN2 Q400 fails to recruit Parkin and further disrupts Parkin-mediated mitophagy in cultured cardiac cells. They also generated MFN2 Q400 knock-in mice to show the development of lethal perinatal cardiomyopathy, which had an impairment in multiple metabolic pathways.

      The major strength of this manuscript is the in vitro study that provides a thorough understanding in the characteristics of the MFN2 Q400 mutant in function of MFN2, and the effect on mitochondrial function. However, the in vivo MFN2 Q/Q400 knock-in mice are more troubling given the split phenotype of MFN2 Q/Q400a vs MFN2 Q/Q400n subtypes. Their main findings towards impaired metabolism in mutant hearts fail to distinguish between the two subtypes.

      While the data support the conclusion that MFN2 Q400 causes cardiomyopathy, several experiments are needed to further understand mechanism. This manuscript will likely impact the field of MFN2 mutation-related diseases and show how MFN2 mutation leads to perinatal cardiomyopathy in support of previous literature.

    1. Reviewer #2 (Public Review):

      MCM8 and MCM9 together form a hexameric DNA helicase that is involved in homologous recombination (HR) for repairing DNA double-strand breaks. The authors have previously reported on the winged-helix structure of the MCM8 (Zeng et al. BBRC, 2020) and the N-terminal structure of MCM8/9 hexametric complex (MCM8/9-NTD) (Li et al. Structure, 2021). This manuscript reports the structure of a near-complete MCM8/9 complex and the conformational change of MCM8/9-NTD in the presence of its binding protein, HROB, as well as the residues important for its helicase activity.

      The presented data might potentially explain how MCM8/9 works as a helicase. However, additional studies are required to conclude this point because the presented MCM8/9 structure is not a DNA-bound form and HROB is not visible in the presented structural data. Taking into these accounts, this work will be of interest to biologists studying DNA transactions.

      A strength of this paper is that the authors revealed the near-complete MCM8/9 structure with 3.66A and 5.21A for the NTD and CTD, respectively (Figure 1). Additionally, the authors discovered a conformational change in the MCM8/9-NTD when HROB was included (Figure 4) and a flexible nature of MCM8/9-CTD (Figure S6 and Movie 1).

      The revised version of "Structural and mechanistic insights into the MCM8/9 helicase complex" by Weng et al. includes only very minor changes in the text and incorporates two additional supplementary figures (S8 and S11) illustrating the size of MCM8/9 mutants.

      In the previous version, I raised two important concerns that required addressing. 1) The presented structures exclusively depicted the unbound forms of DNA. It is crucial to elucidate the structure of a DNA-bound form. 2) The MCM8/9 activator, HROB, was not visible in the structural data. Although HROB induced a conformational change in MCM8/9-NTD, it is essential to visualize the structure of an MCM8/9-HROB complex.

      The authors neither addressed nor provided new data in response to these issues. Consequently, I maintain my initial stance and have no further comments on the revised version.

    1. Reviewer #2 (Public Review):

      The authors present an important study on the potential of small extracellular vesicle (sEV)-derived RNAs as biomarkers for the early detection of colorectal cancer (CRC) and precancerous adenoma (AA). The authors provide a detailed analysis of the RNA landscape of sEVs isolated from participants, identifying differentially expressed sEV-RNAs associated with T1a stage CRC and AA compared to normal controls. The paper further categorises these sEV-RNAs into modules and constructs a 60-gene model that successfully distinguishes CRC/AA from NC samples. The authors also validate their findings using RT-qPCR and propose an optimised classifier with high specificity and sensitivity. Additionally, the authors discuss the potential of sEV-RNAs in understanding CRC carcinogenesis and suggest that a comprehensive biomarker panel combining sEV-RNAs and proteins could be promising for identifying both early and advanced CRC patients. Overall, the study provides valuable insights into the potential clinical application of sEV-RNAs in liquid biopsy for the early detection of CRC and AA.

      Major strengths:<br /> 1. Comprehensive sEV RNA profiling: The study provides a valuable dataset of the whole-transcriptomic profile of circulating sEVs, including miRNA, mRNA, and lncRNA. This approach adds to the understanding of sEV-RNAs' role in CRC carcinogenesis and facilitates the discovery of potential biomarkers.

      2. Detection of early-stage CRC and AA: The developed 60-gene t-SNE model successfully differentiated T1a stage CRC/AA from normal controls with high specificity and sensitivity, indicating the potential of sEV-RNAs as diagnostic markers for early-stage colorectal lesions.

      3. Independent validation cohort: The study combines RNA-seq, RT-qPCR, and modelling algorithms to select and validate candidate sEV-RNAs, maximising the performance of the developed RNA signature. The comparison of different algorithms and consideration of other factors enhance the robustness of the findings.

      Major weaknesses:<br /> 1. Lack of analysis on T1-only patients in the validation cohort: While the study identifies key sEV-RNAs associated with T1a stage CRC and AA, the validation cohort is only half of the patients in T1(25 out of 49). It would be better to do an analysis using only the T1 patients in the validation cohort, so the conclusion is not affected by the T2-T3 patients.

      2. Lack of performance analysis across different demographic and tumor pathology factors listed in Supplementary Table 12. It's important to know if the sEV-RNAs identified in the study work better/worse in different age/sex/tumor size/Yamada subtypes etc.

    1. Reviewer #2 (Public Review):

      In this study, the authors identified the complex TOR, HOG, and CWI signaling networks-involved genes that relatively modulate the development, aflatoxin biosynthesis and pathogenicity of A. flavus by gene deletions combined with phenotypic observation.

      They also analyzed the specific regulatory process and proposed that the TOR signaling pathway interacts with other signaling pathways (MAPK, CWI, calcineurin-CrzA pathway) to regulate the responses to various environmental stresses. Notably, they found that FKBP3 is involved in sclerotia and aflatoxin biosynthesis and rapamycin resistance in A. flavus, and that the conserved site K19 of FKBP3 plays a key role in regulating the aflatoxin biosynthesis. In general, there is a heavy workload task carried in this study and the findings are interesting and important for understanding or controlling aflatoxin biosynthesis. However, findings have not been deeply explored and conclusions mostly are based on parallel phenotypic observations. In addition, there are some concerns that exist surrounding the conclusions.

    1. Reviewer #2 (Public Review):

      This study by Syed et al identifies Prmt5 as a novel and broad modulator of gene expression and genome architecture during the early stages of adipogenesis. Specifically, Prmt5 is reported to be required to maintain strong insulation at TAD boundaries.

      This is a logically and clearly conducted study that relies on the integration of public datasets (PCHi-C) to identify chromatin loops, with its own new genomics datasets, including Prmt5 ChIPseq and Hi-C data in control and Prmt5 kd cells. Despite showing relatively model effects of Prmt5 kd on genome architecture, the results are informative and contribute to advancing our knowledge of chromatin-linked processes during early adipogenesis.

      The manuscript would benefit from incorporating ATACseq data (public or own) to better appreciate binding profiles of Prmt5 at H3K27ac sites. A more detailed analysis of these relative enrichments would also be useful, particularly if linked to a transcription factor footprint from ATAC data.

    1. Reviewer #2 (Public Review):

      The Kinesin superfamily motors mediate the transport of a wide variety of cargos which are crucial for cells to develop into unique shapes and polarities. Kinesin-3 subfamily motors are among the most conserved and critical classes of kinesin motors which were shown to be self-inhibited in a monomeric state and dimerized to activate motility along microtubules. Recent studies have shown that different members of this family are uniquely activated to undergo a transition from monomers to dimers.

      Niwa and colleagues study two well-described members of the kinesin-3 superfamily, unc104 and KLP6, to uncover the mechanism of monomer to dimer transition upon activation. Their studies reveal that although both Unc104 and KLP6 are both self-inhibited monomers, their propensities for forming dimers are quite different. The authors relate this difference to a region in the molecules called CC2 which has a higher propensity for forming homodimers. Unc104 readily forms homodimers if its self-inhibited state is disabled while KLP6 does not.

      The work suggests that although mechanisms for self-inhibited monomeric states are similar, variations in the kinesin-3 dimerization may present a unique form of kinesin-3 motor regulation with implications on the forms of motility functions carried out by these unique kinesin-3 motors.

    1. Reviewer #2 (Public Review):

      Yu et al. investigated the structural landscape of 'secreted in xylem' (SIX) effector (virulence and avirulence) proteins from the plant-pathogenic fungus, Fusarium oxysporum f. sp. lycopersici (Fol), with the goal of better understanding effector function and recognition by host (tomato) immune receptors. In recent years, several experimental and computational studies have shown that many effector proteins of plant-associated fungi can be assigned to one of a few major structural families. In the study by Yu et al., X-ray crystallography was used to show that two avirulence effectors of Fol, Avr1 (SIX4) and Avr3 (SIX1), which are recognized by the tomato immune receptors I and I-3, respectively, form part of a new structural family, the Fol dual-domain (FOLD) family, found across three fungal divisions. Using AlphaFold2, an ab initio structural prediction tool, the authors then predicted the structures of all proteins within the Fol SIX effector repertoire (and other effector candidates) and provided evidence that two other effectors, SIX6 and SIX13, also belong to this family.

      In addition to identifying members of the FOLD family, structural prediction revealed that proteins of the Fol effector repertoire can largely be classified into a reduced set of structural families. Examples included four members of the ToxA-like family (including Avr2 (SIX3) and SIX8), as well as four members of a new family, Family 4 (including SIX5 and PSL1). Given previous studies had demonstrated that Avr2 (ToxA-like) and SIX5 (Family 4) interact and function together and that the genes encoding these proteins are divergently transcribed, and because homologues of SIX8 (ToxA-like) and PSL1 (Family 4) from another Fusarium pathogen are functionally dependent on each other and, in the case of Fol, are encoded by genes that are next to each other in the genome, the authors hypothesized that SIX8 and PSL1 may also physically interact. In line with this, co-incubation of the SIX8 and PSL1 proteins, followed by size exclusion chromatography (SEC), gave elution and gel migration profiles consistent with interaction in the form of a heterodimer. AlphaFold2-Multimer modelling then suggested that this interaction was mediated through an intermolecular disulfide bond. Such a prediction was subsequently confirmed through mutational analysis of the relevant cysteine residue in each protein in conjunction with SEC.

      Finally, using a variant (homologue) of Avr1 from another Fusarium pathogen, as well as chimeric forms of this protein that integrated regions of Avr1 from Fol, Yu et al. determined through co-expression assays in Nicotiana benthamiana with the I immune receptor, as well as subsequent ion leakage assays, that the C-domain of Avr1 is recognized by the I immune receptor. Furthermore, through these assays, the authors were also able to show that surface-exposed residues in the C-domain enable Avr1 to evade recognition by a variant of the I receptor in Moneymaker tomato that does not provide resistance to Fol.

      Overall, the manuscript presents a large body of work that is well supported by the data. A key strength of the manuscript is the validation (benchmarking) of protein structures predicted using AlphaFold2, which is a first for largescale effector structure prediction papers published to date. Another key strength is the use of largescale effector structure predictions to make hypotheses about functional relationships or interactions that are then tested (i.e. the SIX8-PSL1 protein interaction and recognition of Avr1 by the I immune receptor). This testing again goes above and beyond the large scale effector structure prediction papers published to date. Taken together, this showcases how experimental and computational experiments can be effectively combined to provide biologically relevant data for the plant protection and molecular plant-microbe interactions fields.

      In terms of weaknesses, the manuscript could have validated the SIX8-PSL1 protein interaction with in planta experiments, such as co-immunoprecipitation assays or co-localization experiments in conjunction with confocal microscopy, to provide support for the interaction in a plant setting. However, given what is already known about the Avr2-SIX5 interaction, these additional experiments are not crucial and could instead form part of a follow-up study. With regards to the Agrobacterium tumefaciens-mediated transient expression assays involving co-expression of the Avr1 effector and I immune receptor, the authors need to make clear how many biological replicates were performed as this information is only provided for the ion leakage assay.

    1. Reviewer #2 (Public Review):

      In this manuscript, the authors address how cerebellar Purkinje cells (PC) control the firing of nuclear cells (CbN), the output stage of the cerebellar. They used patch-clamp recordings in acute cerebellar slices, and combined dynamic clamp with simulations of nuclear cell firing rate.

      This article addresses one of the most fundamental unresolved question of the cerebellar physiology: how inhibitory PCs control the output stage of the cerebellum?<br /> They first described a developmental evolution of the that PC-CbN synapses. Inhibitory synaptic weights become highly variable after three weeks of age, with a group of very large PC inputs. They used dynamic clamp to examine the influence of these variable inputs on CbN firing rate. They demonstrate that while all input size affect CbN discharge, larger ones can stop them for a few milliseconds. Using a distribution of variable input size, they showed that increasing the variability of PC inputs favor CbN discharge, while increasing the magnitude of a constant inhibitory conductance decrease their firing rate. By varying the frequency of PC inputs, they suggest that CbNs faithfully transmit rate code, but larger inputs are more effective to decrease their firing rate. Finally, addressing how synchrony of variable PC inputs influence CbN discharge, dynamic clamp studies and simulations showed that input synchronization enhance firing, but driven by the total charge of the inhibitory input.

      The keystone observations that PC inputs are highly variable is very interesting and convincing and open new questions about PC-CbN plasticity. More importantly the combination of dynamic clamp and simulations is a real strength of the study, allowing the authors to test many combinations of inputs in real cells and extrapolating their hypotheses in silico. Weaknesses result from the assumptions made on the construction of the distribution of inputs and the many different conditions explored. The organization of the article could be difficult to read for a non-specialist of cerebellar physiology.

    1. Reviewer #2 (Public Review):

      The authors of this paper use a "digital twin" computational model of electrophysiology to investigate the pathology of Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC) in several patients undergoing Electro-Physiological Studies (EPS) to treat Ventricular Tachycardias (VTs). The digital twin computational models are customised to the individual patient in two ways. Firstly, information on the patient's heart geometry and muscle/fibrous structure is extracted from Late Gadolium-Enhanced Magnetic Resonance Image (LGE-MRI) scans. Secondly, information from the patient's genotype is used to decide the particular electrophysiological cell model to use in the computational model. The two patient genotypes investigated include a Gene Ellusive (GE) group characterised by abnormal fibrous but normal cell electrical physiology and a palakophilin-2 (PKP2) group in which patients have abnormal fibrotic remodelling and distorted electrical conduction. The computational model predicts the locations and pathways of re-entrant circuits that cause VT. The model results are compared to previous recordings of induced VTs obtained from EPS studies.

      The paper is very well written, and the modelling study is well thought out and thorough and represents an exemplar in the field. The major strengths of the paper are the use of a personalised patient model (geometry, fibrous structure and genotype) in a clinically relevant setting. Such a comprehensive personal model puts this paper at the forefront of such models in the field. The main weaknesses of the paper are more of a reflection on what is required for creating such models than on the study itself. As the authors acknowledge, the number of patients in each group is small. Additional patients would allow for statistical significance to be investigated.

      The paper's authors set out to demonstrate the use of a "digital twin" computational model in the clinical setting of ARVC. The main findings of the paper were threefold. Firstly, the locations of VTs could be accurately predicted. There was a difference in the abnormal fibrous structure between the two genotype groups. Finally, there was an interplay between the fibrous structure of the heart and the cellular electrophysiology in that the fibrous remodelling was responsible for VTs in the GE group, but in the PKP2 group VTs were caused by slowed electrical conduction and altered restitution. The study successfully met the aims of the paper.

      The major impact of the paper will be in demonstrating that a personalised computational model can a) be developed from available measurements (albeit at the high end of what would normally be measured clinically) and b) generate accurate results that may prove helpful in a clinical setting. Another impact is the finding in the paper that the cause of VTs may be different for the two genotypes investigated. The different interplay between fibrous and electrophysiology suggested by the modelling results may provide insights into different treatments for the different genotypes of the pathology. The authors use open-source software and have deposited all non-confidential data in publically available repositories.

    1. Reviewer #2 (Public Review):

      The mechanisms that mediate female aggression remain poorly understood. Chiu, Schretter, and colleagues, employed circuit dissection techniques to tease apart the specific roles of particular doublesex and fruitless expressing neurons in the fly Drosophila in generating a persistent aggressive state. They find that activating the fruitless positive alPg neurons, generated an aggressive state that persisted for >10min after the stimulation ended. Similarly, activating the doublesex positive pC1de neurons also generated a persistent state. Activating pC1d or pC1e individually did not induce a persistent state. Interestingly, while neural activation of alPGs and pC1d+e neurons induced persistent behavioural states it did not induce persistent activity in the neurons being activated.

      The conclusions of this paper are well supported by the data, there were only a few points where clarification might help:

      1) Figure 3 is a little confusing. This is a circuit behavioural epistasis experiment where the authors activate alPg with CsChrimson while inhibiting pC1d with Kir2.1. In Fig. 2 flies were separated for 10 min following stimulation which allowed for identification of a persistent state. However, in Fig 3 it appears as if flies were allowed to freely interact during and immediately post-stimulation. It is unclear why flies were not separated as in Fig. 2, which makes it difficult to compare the two results. Some discussion of this point would help. Also, from the rasters it appears as if inhibition of pC1d reduced aggression induced by alPg during the stimulation period. Is this true?

      2) pC1e neurons also have recurrent connectivity with alPg neurons. It might help to also discuss the potential role of this arm of the microcircuit.

    1. Reviewer #2 (Public Review):

      Clark and Nolan's study aims to test whether the stability of grid cell firing fields is associated with better spatial behavior performance on a virtual task. Mice were trained to stop at a rewarded location along a virtual linear track. The rewarded location could be marked by distinct visual stimuli or be unmarked. When the rewarded location was unmarked, the animal had to estimate its distance run from the beginning of the trial to know where to stop. When the mouse reached the end of the virtual track, it was teleported back to the start of the virtual track.

      The authors found that grid cells could fire in at least two modes. In the "virtual position" mode, grid firing fields had stable positions relative to the virtual track. In the "distance run" mode, grid fields were decoupled from the virtual cues and appeared to be located as a function of distance run on the running wheel. Importantly, on trials in which the rewarded location was unmarked, the behavioral performance of mice was better when grid cells fired in the "virtual position" mode.

      This study is very timely as there is a pressing need to identify/delimitate the contribution of grid cells to spatial behaviors. More studies in which grid cell activity can be associated with navigational abilities are needed. The link proposed by Clark and Nolan between "virtual position" coding by grid cells and navigational performance is a significant step toward better understanding how grid cell activity might support behavior. It should be noted that the study by Clark and Nolan is correlative. Therefore, the effect of selective manipulations of grid cell activity on the virtual task will be needed to evaluate whether the activity of grid cells is causally linked to the behavioral performance on this task. In a previous study by the same research group, it was shown that inactivating the synaptic output of stellate cells of the medial entorhinal cortex affected mice's performance of the same virtual task (Tennant et al., 2018). Although this manipulation likely affects non-grid cells, it is still one of the most selective manipulations of grid cells that are currently available.

      When interpreting the "position" and "distance" firing mode of grid cells, it is important to appreciate that the "position" code likely involves estimating distance. The visual cues on the virtual track appear to provide mainly optic flow to the animal. Thus, the animal has to estimate its position on the virtual track by estimating the distance run from the beginning of the track (or any other point in the virtual world).

      It is also interesting to consider how grid cells could remain anchored to virtual cues. Recent work shows that grid cell activity spans the surface of a torus (Gardner et al., 2022). A run on the track can be mapped to a trajectory on the torus. Assuming that grid cell activity is updated primarily from self-motion cues on the track and that the grid cell period is unlikely to be an integer of the virtual track length, having stable firing fields on the virtual track likely requires a resetting mechanism taking place on each trial. The resetting means that a specific virtual track position is mapped to a constant position on the torus. Thus, the "virtual position" mode of grid cells may involve 1) a trial-by-trial resetting process anchoring the grid pattern to the virtual cues and 2) a path integration mechanism. Just like the "virtual position" mode of grid cell activity, successful behavioral performance on non-beaconed trials requires the animal to anchor its spatial behavior to VR cues.

      One main conclusion of this study is that better performance on the VR task was observed when the grid cells were anchored to the reference frame that was the most behaviorally relevant.

    1. Reviewer #2 (Public Review):

      Schwarz et al. have presented a study aiming to investigate whether circulating factors in sera of subjects are able to synchronize depending on age, circadian rhythms of fibroblast. The authors used human serum taken from either old (age 70-76) or young (age 25-30) individuals to synchronise cultured fibroblasts containing a clock gene promoter driven luciferase reporter, followed by RNA sequencing to investigate whole gene expression.

      This study has the potential to be very interesting, as evidence of circulating factors in sera that mediate peripheral rhythms has long been sought after. Moreover, the possibility that those factors are affected by age which could contribute to the weaken circadian rhythmicity observed with aging.

      Here, the authors concluded that both old and young sera are equally competent at driving robust 24 hour oscillations, in particular for clock genes, although the cycling behaviour and nature of different genes is altered between the two groups, which is attributed to the age of the individuals. This conclusion could however be influenced by individual variabilities within and between the two age groups. The groups are relatively small, only four individual two females and two males, per group. And in addition, factors such as food intake and exercise prior to blood drawn, or/and chronotype, known to affect systemic signals, are not taken into consideration. As seen in figure 4, traces from different individuals vary heavily in terms of their patterns, which is not addressed in the text. Only analysing the summary average curve of the entire group may be masking the true data. More focus should be attributed to investigating the effects of serum from each individual and observing common patterns. Additionally, there are many potential causes of variability, instead or in addition to age, that may be contributing to the variation both, between the groups and between individuals within groups. All of this should be addressed by the authors and commented appropriately in the text.

      The authors also note in the introduction that rhythms in different peripheral tissues vary in different ways with age, however the entire study is performed on only fibroblast, classified as peripheral tissue by the authors. It would be very interesting to investigate if the observed changes in fibroblast are extended or not to other cell lines from diverse organ origin. This could provide information about whether circulating circadian synchronising factors could exert their function systemically or on specific tissues. At the very least, this hypothesis should be addressed within the discussion.

      In addition to the limitations indicated above I consider that the data of the study is an insufficiently analysis beyond the rhythmicity analysis. Results from the STRING and IPA analysis were merely descriptive and a more comprehensive bioinformatic analysis would provide additional information about potential molecular mechanism explaining the differential gene expression. For example, enrichment of transcription factors binding sites in those genes with different patters to pinpoint chromatin regulatory pathways.

    1. Reviewer #2 (Public Review):

      The authors investigate the transcriptional regulation of cysteine dioxygenase (CDO-1) in C. elegans and its role in maintaining cysteine homeostasis. They show that high cysteine levels activate cdo-1 transcription through the hypoxia-inducible transcription factor HIF-1. Using transcriptional and translational reporters for CDO-1, the authors propose a negative feedback pathway involving RHY-1, CYSL-1, EGL-9, and HIF-1 in regulating cysteine homeostasis.

      Genetics is a notable strength of this study. The forward genetic screen, gene interaction, and epistasis analyses are beautifully designed and rigorously conducted, yielding solid and unambiguous conclusions on the genetic pathway regulating CDO-1. The writing is clear and accessible, contributing to the overall high quality of the manuscript.

      Addressing the specifics of cysteine supplementation and interpretation regarding the cysteine homeostasis pathway would further clarify the paper and strengthen the study's conclusions.

      First, the authors show that the supplementation of exogenous cysteine activates cdo-1p::GFP. Rather than showing data for one dose, the author may consider presenting dose-dependency results and whether cysteine activation of cdo-1 also requires HIF-1 or CYSL-1, which would be important data given the focus and major novelty of the paper in cysteine homeostasis, not the cdo-1 regulatory gene pathway. While the genetic manipulation of cdo-1 regulators yields much more striking results, the effect size of exogenous cysteine is rather small. Does this reflect a lack of extensive condition optimization or robust buffering of exogenous/dietary cysteine? Would genetic manipulation to alter intracellular cysteine or its precursors yield similar or stronger effect sizes?

      Second, there remain several major questions regarding the interpretation of the cysteine homeostasis pathway. How much specificity is involved for the RHY-1/CYSL-1/EGL-9/HIF-1 pathway to control cysteine homeostasis? Is the pathway able to sense cysteine directly or indirectly through its metabolites or redox status in general? Given the very low and high physiological concentrations of intracellular cysteine and glutathione (GSH, a major reserve for cysteine), respectively, there is a surprising lack of mention and testing of GSH metabolism. In addition, what are the major similarities and differences of cysteine homeostasis pathways between C. elegans and other systems (HIF dependency, transcription vs post-transcriptional control)? These questions could be better discussed and noted with novel findings of the current study that are likely C. elegans specific or broadly conserved.

    1. Reviewer #2 (Public Review):

      In this paper Sasani, Quinlan and Harris present a new method for identifying genetic factors affecting germline mutation, which is particularly applicable to genome sequence data from mutation accumulation experiments using recombinant inbred lines. These are experiments where laboratory organisms are crossed and repeatedly inbred for many generations, to build up a substantial number of identifiable germline mutations. The authors apply their method to such data from mice, and identify two genetic factors at two separate genetic loci. Clear evidence of such factors has been difficult to obtain, so this is an important finding. They further show evidence of an epistatic interaction between these factors (meaning that they do not act independently in their effects on the germline mutation process). This is exciting because such interactions are difficult to detect and few if any other examples have been studied.

      The authors present a careful comparison of their method to another similar approach, quantitative trait locus (QTL) analysis, and demonstrate that in situations such as the one analysed it has greater power to detect genetic factors with a certain magnitude of effect. They also test the statistical properties of their method using simulated data and permutation tests. Overall the analysis is rigorous and well motivated, and the methods explained clearly.

      The main limitation of the approach is that it is difficult to see how it might be applied beyond the context of mutation accumulation experiments using recombinant inbred lines. This is because the signal it detects, and hence its power, is based on the number of extra accumulated mutations linked to (i.e. on the same chromosome as) the mutator allele. In germline mutation studies of wild populations the number of generations involved (and hence the total number of mutations) is typically small, or else the mutator allele becomes unlinked from the mutations it has caused (due to recombination), or is lost from the population altogether (due to chance or perhaps selection against its deleterious consequences).

      Nevertheless, accumulation lines are a common and well established experimental approach to studying mutation processes in many organisms, so the new method could have wide application and impact on our understanding of this fundamental biological process.

      The evidence presented for an epistatic interaction is convincing, and the authors suggest some plausible potential mechanisms for how this interaction might arise, involving the DNA repair machinery and based on previous studies of the proteins implicated. However as with all such findings, given the higher degree of complexity of the proposed model it needs to be treated with greater caution, perhaps until replicated in a separate dataset or demonstrated in follow-up experiments exploring the pathway itself.

    1. Reviewer #2 (Public Review):

      Qin, Sanbo and Zhou, Huan-Xiang created a model, SeqDYN, to predict nuclear magnetic resonance (NMR) spin relaxation spectra of intrinsically disordered proteins (IDPs), based primarily on amino acid sequence. To fit NMR data, SeqDYN uses 21 parameters, 20 that correspond to each amino acid, and a sequence correlation length for interactions. The model demonstrates that local sequence features impact the dynamics of the IDP, as SeqDYN performs better than a one residue predictor, despite having similar numbers of parameters. SeqDYN is trained using 45 IDP sequences and is retrained using both leave-one-out cross validation and five-fold cross validation, ensuring the model's robustness. While SeqDYN can provide reasonably accurate predictions in many cases, the authors note that improvements can be made by incorporating secondary structure predictions, especially for alpha-helices that exceed the correlation length of the model. The authors apply SeqDYN to study nine IDPs and a denatured ordered protein, demonstrating its predictive power. The model can be easily accessed via the website mentioned in the text.

      While the conclusions of the paper are primarily supported by the data, there are some points that could be extended or clarified.

      1. The authors state that the model includes 21 parameters. However, they exclude a free parameter that acts as a scaling factor and is necessary to fit the experimental data (lambda). As a result, SeqDYN does not predict the spectrum from the sequence de-novo, but requires a one parameter fitting. The authors mention that this factor is necessary due to non-sequence dependent factors such as the temperature and magnetic field strength used in the experiment. Given these considerations, would it be possible to predict what this scaling factor should be based on such factors?

      2. The authors mention that the Lorentzian functional form fits the data better than a Gaussian functional form, but do not present these results.

      3. The authors mention that they conducted five-fold cross validation to determine if differences between amino acid parameters are statistically significant. While two pairs are mentioned in the text, there are 190 possible pairs, and it would be informative to more rigorously examine the differences between all such pairs.

    1. Reviewer #2 (Public Review):

      Jarysta and colleagues set out to define how similar GNAI/O family members contribute to the shape and orientation of stereocilia bundles on auditory hair cells. Previous work demonstrated that loss of particular GNAI proteins, or inhibition of GNAIs by pertussis toxin, caused several defects in hair bundle morphogenesis, but open questions remained which the authors sought to address. Some of these questions include whether all phenotypes resulting from expression of pertussis toxin stemmed from GNAI inhibition; which GNAI family members are most critical for directing bundle development; whether GNAI proteins are needed for basal body movements that contribute to bundle patterning. These questions are important for understanding how tissue is patterned in response to planar cell polarity cues.

      To address questions related to the GNAI family in auditory hair cell development, the authors assembled an impressive and nearly comprehensive collection of mouse models. This approach allowed for each Gnai and Gnao gene to be knocked out individually or in combination with each other. Notably, a new floxed allele was generated for Gnai3 because loss of this gene in combination with Gnai2 deletion was known to be embryonic lethal. Besides these lines, a new knockin mouse was made to conditionally express untagged pertussis toxin following cre induction from a strong promoter. The breadth and complexity involved in generating and collecting these strains makes this study unique, and likely the authoritative last word on which GNAI proteins are needed for which aspect of auditory hair bundle development.

      Appropriate methods were employed by the authors to characterize auditory hair bundle morphology in each mouse line. Conclusions were carefully drawn from the data and largely based on excellent quantitative analysis. The main conclusions are that GNAI3 has the largest effect on hair bundle development. GNAI2 can compensate for GNAI3 loss in early development but incompletely in late development. The Gnai2 Gnai3 double mutant recapitulates nearly all the phenotypic effects associated with pertussis toxin expression and also reveals a role for GNAIs in early movement of the basal body. Although these results are not entirely unexpected based on earlier reports, the current results both uncover new functions and put putative functions on more solid ground.

      Based on this study, loss of GNAI1 and GNAO show a slight shortening of the tallest row of stereocilia but no other significant changes to bundle shape. Antibody staining shows no change in GNAI localization in the Gnai1 knockout, suggesting that little to no protein is found in hair cells. One caveat to this interpretation is that the antibody, while proposed to cross-react with GNAI1, is not clearly shown to immunolabel GNAI1. More than anything, this reservation mostly serves to illustrate how challenging it is to nail down every last detail. In turn, the comprehensive nature of the current study seems all the more impressive.

    1. Reviewer #2 (Public Review):

      Aw et al presents a new stability-guided fine-mapping method by extending the previously proposed PICS method. They applied their stability-based method to fine-map cis-eQTLs in the GEUVADIS dataset and compared it against what they call residualization-based method. They evaluated the performance of the proposed method using publicly available functional annotations and claimed the variants identified by their proposed stability-based method are more enriched for these functional annotations.

      While the reviewer acknowledges the contribution of the present work, there are a couple of major concerns as described below.

      Major:

      1. It is critical to evaluate the proposed method in simulation settings, where we know which variants are truly causal. While I acknowledge their empirical approach using the functional annotations, a more unbiased, comprehensive evaluation in simulations would be necessary to assess its performance against the existing methods.

      2. Also, simulations would be required to assess how the method is sensitive to different parameters, e.g., LD threshold, resampling number, or number of potential sets.

      3. Given the previous studies have identified multiple putative causal variants in both GWAS and eQTL, I think it's better to model multiple causal variants in any modern fine-mapping methods. At least, a simulation to assess its impact would be appreciated.

      4. Relatedly, I wonder what fraction of non-matching variants are due to the lack of multiple causal variant modeling.

      5. I wonder if you can combine the stability-based and the residualization-based approach, i.e., using the residualized phenotypes for the stability-based approach. Would that further improve the accuracy or not?

      6. The authors state that confounding in cohorts with diverse ancestries poses potential difficulties in identifying the correct causal variants. However, I don't see that they directly address whether the stability approach is mitigating this. It is hard to say whether the stability approach is helping beyond what simpler post-hoc QC (e.g., thresholding) can do.

      7. For non-matching variants, I wonder what the difference of posterior probabilities is between the stable and top variants in each method. If the difference is small, maybe it is due to noise rather than signal.

      8. It's a bit surprising that you observed matching variants with (stable) posterior probability ~ 0 (SFig. 1). What are the interpretations for these variants? Do you observe functional enrichment even for low posterior probability matching variants?

    1. Reviewer #2 (Public Review):

      This manuscript reports on an important study that aims to identify symptom trajectories for the early detection of pancreatic cancer. The study's findings are based on the analysis of two complementary data sources: structured data obtained from the Danish National Patient Registry and unstructured information extracted from the free-text sections of patient notes. The researchers successfully identified various symptoms and disease trajectories that are strongly associated with pancreatic cancer, with compelling evidence from both data sources. Additionally, the study provides a detailed comparison and contrast of the results obtained from each data source, adding valuable insights into the strengths and limitations of each method.

      Strengths:

      The work is well motivated by the urgent need for early detection of pancreatic cancer, which is often difficult due to the lack of effective (computational) methods. The manuscript is generally well-written and includes relevant studies, providing a comprehensive overview of the current state of the field.

      One of the unique contributions of this work is its use of both structured registry data and unstructured clinical notes to leverage complementary information. This approach enables a more nuanced and comprehensive understanding of the disease symptom trajectories, which is critical for improving early disease diagnosis and prognosis.

      The methodology employed in this study is sound and robust, and the authors have candidly discussed its limitations. The results are significant and highlight previously unknown insights into symptom disease trajectories, which have important implications for the management of pancreatic cancer.

      Overall, this is a well-designed and executed study that makes an important contribution to the field of cancer/informatics research, and it should be of great interest to both researchers and clinicians.

      Weaknesses:

      To complement the results in Figure 1, I'd also suggest that the authors compile a list of the most common (known) symptoms of pancreatic cancer as a reference. In other words, not only can you compare results found from the two sources but also compare them with existing knowledge. This is something you discussed partly in lines 245 but including this early as part of the results in Figure 1 would be more informative.

      In terms of the text mining evaluation results, providing information on recall errors would be beneficial to better understand the performance of the method. Additionally, line 144 mentions 53 words, but it is still not clear to me what these words refer to. Could you please clarify this point or provide more context?

      The disparities between Figure 2A and 2B are noteworthy, from very different initial symptoms to the proportion of short median survival dates (<=90 days), with much more pronounced differences than those observed in Figure 1 comparing two data sources. The highlighted trajectories are almost completely different. Should this be expected? I was hoping to see at least some overlap between the two results.

      All trajectories shown in Figure 2 include three symptoms. Is this by design? Could there be meaningful trajectories with different numbers of symptoms (e.g. 4 or more)?

      Considering those patients with both clinical notes and registry data, it may be beneficial to merge their symptoms to generate more informative trajectories.

      Given that results from two sources are being compared in Figures 1 and 2, have you considered calculating the top 20 most significant symptoms from the registry data as well?

      While there is a discussion related to cardiovascular diseases, I noticed no mention of cataracts or gonarthrosis, which were found to be prevalent among patients with short survival in Figure 2.

      Ultimately, the goal of this research is to improve the early detection and prognosis of pancreatic cancer, thus it is important to discuss how the findings of this work could be applied in practice towards this goal (e.g. used by disease prediction algorithms?)

    1. Reviewer #2 (Public Review):

      The manuscript "Nation-wide mammography screening participation in Denmark during the COVID-19 pandemic: An observational study" aims at assessing the impact of COVID-19 on the participation to the breast cancer national screening program in Denmark.

      Using a cohort of almost one million women, the authors used ageneralised linear model to estimate the prevalence ratios of participation to the screening program within 3, 6, and 12 months since the start of the pandemic.

      The high quality of the data used represents the strongest point of the study, which provided a strong, reliable basis on which conduct the analysis. Some limitations are related to the way the date of invitation (to the screening program) is handled, the vaccination status of the cohort of interest (information not available) and the transferability of the study to other countries, for different countries handled the pandemic in different ways.

      The authors show that there was an overall slight decrease in screening participation despite the screening program remained open throughout the pandemic and discuss likely reasons of why that may have happened. Further, they identified that groups of women who were already characterised by low participation rates, experienced a further reduction in attending screening. Those were mostly composed by immigrants and low income individuals. They also discuss the barrier that language may have posed in relation to the distribution of guidelines form the government, as those were delivered in Danish.

      In conclusion, the study indicates that social iniquity, which usually relates to disparity in screening participation, has been slightly exacerbated during the pandemic. Although the authors do not discuss in detail what the consequences of those findings can be, it would be interesting to assess (through a follow-up study) whether they will have an impact on the cancer incidence and, in particular, the staging of cancers at detection for the interested groups.

    1. Reviewer #2 (Public Review):

      In this work, Herron et al. investigated the impact of mTORC1 and CFIm on the expression of the Trim9/TRIM9 isoforms in both mouse and human. They extend upon their cTAG-PAPERCLIP method and demonstrated that systemic AAV injection of cell type-specific Cre recombinases to cTag-PABP mice is a feasible method of APA profiling. From this they show that mTORC1 hyperactivation promotes a shift towards the long Trim9 isoform, Trim9-L. They further provide evidence that the mTORC1 signalling pathway controls Trim9/TRIM9 isoform usage in both human and mouse with high mTORC1 promoting usage of the long isoform and low mTORC1 favouring the short isoform. They also show that the CFIm subunits CPSF6 and NUDT21 play a crucial role in the use of the TRIM9-S/Trim9-S isoform and demonstrate the importance of a twin UGUA motif in this PAS for its regulation by CPSF6. Additionally, they find that this twin UGUA motif is functionally present in the human BMPR1B, MOB4 and BRD4 genes and that insertion of the twin UGUA motif into a heterologous PAS is enough to confer regulation by both CPSF6 and mTORC1. Critically, the position of the twin UGUA motif directs preferential cleavage and polyadenylation to generate an isoform, such that it's presence can result in the use of a short isoform (TRIM9) or a long isoform (BMPR1B, MOB4 and BRD4). The work expands upon the known cis-regulatory motifs for CPSF6 and provides further evidence of a connection between the mTORC1 signalling pathway and CPSF6-mediated alternative polyadenylation. The mechanistic connection between TORC1 signalling and CPSF6 function is, however, still opaque. An experiment probing the connection between TORC1 signalling and the nuclear-cytoplasmic shuttling of CPSF6 with its activity (regulating APA) would significantly strengthen the study. Most conclusions are well supported by the presented data.

    1. Reviewer #2 (Public Review):

      Hoang, Tsutsumi et al provide a comprehensive functional mapping of cerebellar climbing fiber responses in Lobule Crus II. The study derives from analysis of a dataset originally published in Tsutsumi et al eLife 2019, using two photon Ca2+ imaging throughout the learning of a Go/No-go reward-driven licking behavior. Each recording session yielded data from a ~two-hundred micron patch of tissue, with neurons spatially localized relative the "zebrin" banding pattern of the cerebellar cortex as reported by an aldolaceC-tdTomato transgenic line. In the present work, complex spike times were extracted at higher temporal resolution using subframe raster line-scan timing information, and then decomposed at the trial-averaged population level using tensor component analysis.

      The central conclusion is that the entirety of crus II climbing fiber responses decomposes into just a few patterns that capture key features of the behavior. Some of these patterns strengthen with learning, i.e., feature climbing fiber spiking that increases in frequency, while others decay with learning, i.e., feature climbing fiber responses that are prominent only in novice animals. These different climbing fiber activity components are in some cases associated with either positive or negative aldolace-C compartments of crus II. Finally, synchronization is concentrated among cells contributing to the same tensor components, and synchrony levels increase or decrease for different components over learning.

      The analysis therefore suggests that distinct principles of climbing fiber function can be present simultaneously in distinct cerebellar modules (and, according to the TCA cell weightings, potentially simultaneously in individual climbing fibers). This conclusion is contrary to the implied dichotomy in the literature that climbing fibers either function as "error signals" or as "timing signals" in a particular behavioral context or cerebellar region. The authors speculate that resolution of this dichotomy could result from the biophysics of the inferior olive, in which flexibly coupled oscillators might self-organize into a low dimensional decomposition of task dynamics. Relatedly, the authors speculate that changes in synchronization that contrast between different components could serve to either regulate instructive signal dimensionality or climbing fiber timing functions, depending on each component's functional contribution. From a theoretical standpoint, this is a helpful new direction. The framework is more agnostic to the details of the activity profiles of any specific group of climbing fibers, but more attuned to the systems-level distribution of activity profiles and how these might collectively serve a behavior.

      A valuable feature of the study is the simultaneous analysis of many imaging fields spanning 17 subjects and the entire dorsal surface of crus II. This bypasses some of the recurring interpretational issues with climbing fiber recordings that stem from their spatial organization across the cerebellar surface with often abrupt transitions at compartmental boundaries. By decomposing responses across many compartments simultaneously (at the trial-averaged level), the authors provide a quantitative estimate of the diversity of response patterns and their distribution across space and cells. It's worth noting that this approach is also a double-edged sword, as the trial-averaged decomposition does not depend on single-trial correlations between neurons, thus strictly speaking leaving it an open question whether apparently similar climbing fiber patterns present in distant imaging fields exhibit correlated variability either across trials or across learning.

      The data convincingly show that several dominant tensor components explain a large amount of climbing fiber variance across crus II. The authors speculate that this reflects an olivary decomposition of task dynamics. Due to the nature of the analysis - TCA applied over an entire dataset - there is not a clear test of this hypothesis in the present manuscript.

      The authors also present the interesting and compelling result that different CF response patterns undergo opposite learned changes in synchronization. They speculate that different trajectories of synchronization, specifically, increases for TC1 (hit) and decreases for TC2 (false alarm), could reflect different functional uses of TC1 and TC2, although it is difficult to assess the likelihood of this being true based on the data and analyses presented.

    1. Reviewer #2 (Public Review):

      In this study, the authors set out to investigate factors that have been neglected in existing mathematical models for the paradoxical activation (PA) of RAF by pharmacological inhibitors. The PA phenomenon is well known and is thought to be an important factor in limiting the effectiveness of RAF inhibitors. The authors primarily use mathematical models, first to examine the importance of conformational autoinhibition of RAF monomers, and later to investigate the potential role played by binding of 14-3-3 proteins to either autoinhibited monomers or active dimers. The authors develop several model variants containing different candidate mechanisms and generate analytical solutions that demonstrate under which parameter conditions PA may occur within these models. The use of analytical solutions is a strong point of the paper, as it allows evaluation of the models independently of specific parameter values. This analysis suggests that conformational autoinhibition is a very strong contributor to paradoxical activation, as models that include this mechanism show substantially larger concentration ranges under which RAF is activated by inhibitors. Fitting the parameters of the model to a published dataset on multiple inhibitors further suggests that conformational activation is important, as models containing this mechanism can fit the dataset with significantly lower error. Another interesting observation is that the different types of RAF inhibitors (1, 1.5, 2) fit the data with parameter values that are reasonably similar within each type. A moderate weakness in this analysis is that all of these observations provide indirect evidence for the importance of conformational autoinhibition. A direct test of whether PA is reduced when conformational autoinhibition is removed would be more compelling, but such a test could be difficult to set up experimentally.

      The authors then perform an analysis of how 14-3-3 binding to either autoinhibited monomers or active dimers might enhance PA. A new model is constructed that contains these binding events in the context of conformational activation, but without negative cooperativity or dimer potentiation included, for the sake of limiting complexity. These models implicate monomer binding, but not dimer binding as a contributor to PA. They follow up on this model result by overexpressing 14-3-3 proteins in two RAS-mutant cell lines, which leads to both higher baseline ERK phosphorylation and to a wider range of inhibitor-induced PA, as predicted by the model. A cell-based RAF dimerization assay also shows higher dimerization effects when 14-3-3 plasmids are transfected as well. This experimental evidence provides strong support for the model, although one drawback, which is noted by the authors in the discussion, is that 14-3-3 overexpression could potentially exert effects on RAF activity through pleiotropic effects other than the binding actions included in the model.

      Overall, this study makes a strong contribution to understanding the paradoxical effects of RAF inhibitors on the RAS/ERK signaling pathway, which remains a significant problem in the use of targeted inhibitors for cancer. Demonstrating that both conformational activation and 14-3-3 binding strongly contribute to the PA effect is an important step forward, as it establishes that these mechanisms should not be overlooked when designing strategies to use Raf inhibitors.

    1. Reviewer #2 (Public Review):

      This is a descriptive paper in the field of metascience, which documents levels of accessibility and reproducible research practices in the field of cardiovascular science. As such, it does not make a theoretical contribution, but it argues, first, that there is a problem for this field, and second, it provides a baseline against which the impact of future initiatives to improve reproducibility can be assessed. The study was pre-registered and the methods and data are clearly documented. This kind of study is extremely labour-intensive and represents a great deal of work.

      I have a major concern about the analysis. It is stated that to be fully reproducible, publications must include sufficient resources (materials, methods, data and analysis scripts). But how about cases where materials are not required to reproduce the work? In line 128-129 it is noted that the materials criterion was omitted for meta-analyses, but what about other types of study where materials may be either described adequately in the text, readily available (eg published questionnaires), or impossible to share (e.g. experimental animals).

      To see how valid these concerns might be, I looked at the first 4 papers in the deposited 'EmpricalResearchOnly.csv' file. Two had been coded as 'No Materials availability statement' and for two the value was blank.<br /> Study 1 used registry data and was coded as missing a Materials statement. The only materials that I could think might be useful to have might be 'standardized case report forms' that were referred to. But the authors did note that the Registry methods were fully documented elsewhere (I am not sure if that is the case).<br /> Study 2 was a short surgical case report - for this one the Materials field was left blank by the coder.<br /> Study 3 was a meta-analysis; the Materials field was blank by the coder<br /> Study 4 was again coded as lacking a Material statement. It presented a model predicting outcome for cardiac arrhythmias. The definitions of the predictor variables were provided in supplementary materials. I am not clear what other materials might be needed.<br /> These four cases suggest to me that it is rather misleading to treat lack of a Materials statement as contributing to an index of irreproducibility. Certainly, there are many studies where this is the case, but it will vary from study to study depending on the nature of the research. Indeed, this may also be true for other components of the irreproducibility index: for instance, in a case study, there may be no analysis script because no statistical analysis was done. And in some papers, the raw data may all be present in the text already - that may be less common, but it is likely to be so for case studies, for instance.

      A related point concerns the criteria for selecting papers for screening: it was surprising that the requirement for studies to have empirical data was not imposed at the outset: it should be possible to screen these out early on by specifying 'publication type'; instead, they were included and that means that the numbers used for the actual analysis are well below 400. The large number of non-empirical papers is not of particular relevance for the research questions considered here. In the Discussion, the authors expressed surprise at the large number of non-emprical papers they found; I felt it would have been reasonable for them to depart from their preregistered plan on discovering this, and to review further papers to bring the number up to 400, restricting consideration to empirical papers only - also excluding case reports, which pose their own problems in this kind of analysis.

      A more minor point is that some of the analyses could be dropped. The analysis of authorship by country had too few cases for many countries to allow for sensible analysis.

      Overall, my concern is that the analysis presented here may create a backlash against metascientific analyses like this because it appears unfair on authors to use a metric based on criteria that may not apply to their study. I am strongly in favour of open, reproducible science, and agree it is important to document the state of the science for different disciplines. But what this study demonstrates to me is that if you are going to evaluate papers as to whether they include things like materials/data/ availability statements, then you need to have a N/A option. Unfortunately, I suspect it may not be possible to rely on authors' self-evaluation of N/A and that means that metascientists doing an evaluation would need to read enough of the paper to judge whether such a statement should apply.

    1. Reviewer #2 (Public Review):

      The authors undertook a review of studies describing the effects of the COVID-19 pandemic on breast cancer screening in countries across the world. The major strengths of the study are its breadth and the rigour of the literature search and review. The volume of studies included, and their different contexts and designs, make it challenging to summarize succinctly and the authors have done a good job. The weakness of this review, or any like it, is that we have limited data to explain the findings which a likely a complex mix of societal, structural, and personal reasons. The importance of the findings lies in the consistency of the overall trend and what the implications of potential delayed/missed breast cancer screening are and how far into the future these implications will reach.

    1. Reviewer #2 (Public Review):

      The submitted manuscript deals with the intricate and complex network among different members of the p53 family with a specific focus on TAp73alpha and TAp73 gamma. The authors provide in vitro and in vivo evidence on the oncogenic role of TAp73 gamma which opposes the tumor suppressor activity of TAp73 alpha. Mice carrying exon 11 loss which is the molecular event leading to the switch to TAp73 gamma, are obese when compared to their counterparts. Interestingly, the authors propose that obesity in E11 mice relies on TAp73 gamma-induced aberrant expression of Leptin. The strength of the reported findings resides mainly in the combination of in vitro and in vivo approaches, while its weaknesses are related to the validation of reported findings in human tumoral contexts.

    1. SOUND SUPPORT PHRASINGThe last performance directive to cover is quite important, and one that is often overlooked~ that of sound support phrasing ~ the direction as when to start and when to stop produc-ing a sound irrelative to pitch change.Whether the sound is produced by blowing, plucking, scrapping or hitting, there is a pointwhen the performer needs to take a breath, raise the arm, or move the bow toa starting posi-tion; all affect the phrase qualicy ofa melody. There are two considerations the composermust make; (1) how long the sound production can last depending on the tempo of theperformance and the abilities of the performer, and (2) how will the pause ro take a breathor raise a bow affect the phrasing of the melody. Careful preplanning is required to assure asuccessful interpretation of your melody.
    2. ARTICULATIONS AND EFFECTSThis subject is beyond the scope of this book ~ one really should refer to an orchestrationor arranging text for this, bur to provide a quick access and a review, the following descrip-tions of articulations are included.ARTICULATIONSIchasbeenstatedthatforajazzperformance,onlytwoarticulationsareneeded:staccatoandtenuto-thereisnoneedtobesospartan.To review:Staccato and tenuto refer to note length ~ how long the pitch is held - with no change in vol-ume or emphasis.
    3. Non-western scales (octatonic and more)
    4. THE ELEMENTS OF A MELODYThe elements ofa melody are comprised of the following groups: source materials, a meansof creation and development, phrase organization, tessitura, contour and expressive devices.In addition, a goal and point of climax should be devised for each section or phrase of amelody.A, SOURCE MATERIALSMelodies may be based on any of the following sources:1. Single notes2. Tritonic scale fragments3. Tetratonic scale fragments (tetrachords - see Vol. 1)4. Pentatonic scales(a) diatonic(b) altered(c) add note (sextatonic)(d) blues scalesDiatonic and altered diatonic modes (septatonic)Symmetric scalesHarmonic references(a) arpeggiations/guidetones(b) common tones/pivot points_(c) leading tones/neighbor tones8. Quotes9. Non-western scales (octatonic and more)AWA melodic source is the pitch organization of a motif, phrase, section, or any area of a melodythat shows musical unity. A group of asymmetrically organized pitches numbering four ormore in a scalar format can imply a modality and its perceived emotional qualicy (see Vol. 1,Chapter IV).If an example is not scalar - having consecutive skips - in most cases it will have notes incommon with a particular modality. Ir is possible char if the phrase is long enough, morethan one scalar source can be detected. In addition, the modal qualicy of the motif or phrasecan be enhanced or obscured by its relationship to the harmonic foundation of that partic-ular area.EXAMPLES OF MELODIC SOURCE MATERIALSThe following, like most of the examples found in the remainder of the book, are excerpts,ofa length sufficient to illustrate the defined concept. To put the example in context, it issuggested the student refer to the recommended listenings and readings found at the end ofche chapter as a source of scores and recordings for further study1. SINGLE NOTEThe starting point of the categories of melodic source materials, having no pitch compari-son it is a melodic device in which the rhythmic development of the motif or phrase createsmusical cohesion. Very effective in jazz melodies, it is a device chat Horace Silver and JoeHenderson use extensively.Example 1.1a: “Caribbean Fire Dance” (B section) by Joe HendersonG- F E Eb Db Eb
    5. STYLEThe styles of jazz melodies can be categorized into two main groups:ROMANTICJazz ballads, bossa novas, boleros and some medium and fast tempo songs have melodiesthar are constructed following the developmental procedures that have come from the melo-dic style of Tchaikovsky and Rachmaninoffby way of the popular music composers of the20s to the 50s. Included are the efforts of expert film composers from the earliest to con-temporary times. With this in mind, it is very importanc chat the jazz composer as well asthose aspiring to compose for the popular market: CDs, radio, television and films, be ableto compose a romantic melody.IDIOMATICThesejazzmelodiesareconstructedtoconformtoparticularqualitiesthataredefinedbyanhistoricera:bebop,swing,Dixieland,hardbop;afolk/ethnicreference:blues,Caribbean,pentatonic,pop;orbytheperformancepeculiarities ofaninstrumentorvoice.Melodiescanalsobedescribedbyanynoteworthyuseofcheelements:angular,lyrical,programmatic,symmetric,tetrachordic,oranyoftheothers.THE GENERAL MELODIC STYLE CATEGORIESRomantic/Ideal: these melodies/compositions are based on the Romantic period philosoph-ically, melodically and to some degree, harmonically.Romantic/Melodic: these melodies show consistencies with romantic melody writing proce-dures but differ in philosophy, harmonic materials and emotional goals.idiomatic/Referential:modeledonthemelodicdescriptionsofastyleera,folkreferenceorinstrument/voiceperformancecharacteristics.Idiomatic/Abstract: these melodies are constructed to have a quality described as jagged,smooth, consonant, chromatic and similar depictions.Idiomatic/Programmatic: the construction ofa melody to define an emotional, modal orprogrammatic goal: pastoral, energetic, dark, mysterious and so forth.In the main, jazz melodies are either romantic or non-romantic. The non-romantic melodiesare so diverse - having so many variables in their descriptions - that a comprehensive repre-sentation of how the elements of melody writing were co be applied for each would bebeyond the scope of this book. In addition, there are many melodies that have mixed influ-ences: folk/modal, riff/pentatonic, and many more,Another point to consider is that many compositions have different styles of melodies indifferent sections. Some examples arSONG SECTION STYLE - Contrasted and Combined Melodic Styles
    1. Reviewer #2 (Public Review):

      Machold and colleagues develop and describe an intersectional genetic mouse (Id2Cre:Dlx5/6FlpE) that allows for the targeting of a cortical interneuron subpopulation predominantly consisting of the neurogliaform cell subtype (NGFCs). The strategy is a modification of that previously published by the authors (Id2cre:Nkx2-1Flpo; Valero et al., 2021) in which a subset of deep layer 6 NGFCs with distinct embryonic origins were targeted. Conversely, using the NDNF transgenic mouse lines previous studies, including those from the Rudy laboratory, have clearly shown the prevalence of NGFCs in the outermost cortical Layer 1 region. Thus, the Id2Cre:Dlx5/6FlpE mouse poses an advantage over these previous approaches permitting the targeting of NGFCs in Layers 2-5. NGFCs in these regions have been hitherto difficult to study in an expedited manner.

      The manuscript is of the resource/toolbox type and the authors are thorough in their description of the distribution and molecular characteristics of the ID2 neurons labelled by this intersectional approach. Furthermore, the authors perform a series of in vivo experiments. These entail the identification of NGFCs, the assessment of their influence on other neuronal populations, and the ability to delineate their activity during various network and behavioral states. Indeed, the authors reveal an activity pattern that is unique to NGFCs across epochs of specific network states. Therefore, this clearly demonstrates the applicability of the ID2Cre:Dlx5/6Flpe mouse to study the role of L2-5 NGFCs in a whole brain setting and these in vivo experiments constitute a major strength of the current study.

      However, as with many transgenic mice, they are not always perfect, and the authors are very transparent regarding the additional, albeit a relatively smaller number of reported non-NGFCs particularly those of the CCK IN subtype. Indeed, clear morpho-functional divergence is revealed by the authors between these ID2 IN subpopulations. Furthermore, it is possible that this variability may differ across varying cortical regions. Thus, careful consideration of this caveat is necessary when using this mouse for future in vitro and in vivo studies. Related to this matter is a concern regarding the framing of the manuscript. The authors term the ID2 mixed population as the "4th group" since they do not express PV, SST, and VIP. One could argue this is a matter of semantics but to combine IN types that display distinct morphological and physiological properties into a single "group" based on one molecular feature is not consistent with that proposed by the widely accepted Petilla terminology (Ascoli et al., 2008).

      Of interest to many who investigate cortical INs is the ability to genetically target specific subtypes during development. To this end, a potential and welcome addition to the manuscript would be an analysis (perhaps restricted to distribution/molecular characterization) highlighting whether the Id2cre:Dlx5/6Flpe strategy allows genetic access to layer 2-5 NGFCs during postnatal development following maternal tamoxifen administration.

      Regardless, the experiments in the current study are, in general, well performed and clearly presented with the authors' conclusions supported by the results. Thus, it is clear that further refinements to genetic strategies are obviously required to exclusively target NGFCs throughout the cortical depth. Nevertheless, in the interim, the approach described in this current manuscript will be of use to the neuroscience community and help to further unravel the physiological role of this relatively understudied neuronal subtype.

    1. Reviewer #2 (Public Review):

      Pinheiro et al unravel the role of a new scavenger receptor in tubular morphogenesis. To do so they use the Drosophila respiratory network, the tracheal system. Here, the apical extracellular matrix (aECM) and the apical cytoskeleton are essential players in tube length regulation. A few years ago, a feedback mechanism between the aECM and the underlying cells was proposed (Ozturk-Çolak et al., eLife 2016), by which the aECM and the apical F-actin could regulate levels of phosphorylated Src protein to ensure proper tube morphogenesis. However, the connection between the aECM and the cells had not been found. In this manuscript, that Emp, a Drosophila scavenger receptor homologous to human CD36, could fulfill such a role. The authors show that Emp localizes in apical epithelial membranes and shows cargo selectivity for LDLr-domain-containing proteins. They show that emp mutant embryos fail to internalize the luminal chitin deacetylases Serp and Verm at the final stages of airway maturation and die at hatching with liquid-filled airways and over-elongated tracheal tubes with increased levels of the apical proteins Crb, DE-cad and phosphorylated Src (p-Src). Overexpression or loss of the Emp cargo protein Serp leads to abnormal apical accumulations of Emp and perturbations in p-Src levels. They propose a model linking aECM with cell elongation and open new lines of research in downstream signalling effectors.

      Strengths:<br /> The finding of a novel receptor involved in the modulation of aECM-cellular homeostasis. A solid genetic and cellular analysis was provided. The implications for a scavenger receptor function during morphogenesis and overall implications in ECM to cell interactions and downstream signalling.

      Weaknesses:<br /> The authors fail to clearly show the localization of Emp at the apical membrane and its connection to apical actin structures and chitinous aECM.

    1. Reviewer #2 (Public Review):

      The study was highly interesting personally as it tries to address a very important question of light induced brain development. The study uses a very efficient model system of birds. Using in-vivo MRI and a contrast agent increases the confidence on the results but also makes the experiments more challenging. I feel that the protocol will help fellow researchers interested in such questions a lot.

    1. Reviewer #2 (Public Review):

      This is a well-conceived and interesting study that investigates how a targeted protein phosphorylation (TPP) approach could be implemented to reconstitute PKA regulation of the cardiac KCNQ1/KCNE1 (IKs) potassium channel in the absence of an A-kinase anchoring protein (AKAP9). Using a genetically encoded GFP/YFP nanobody-based system they showed distinctive modulation of cAMP-mediated IKs activity. To that aim, they used an anti-GFP nanobody to recruit either the PKA holoenzyme RIIα or Cα subunits to YFP-tagged Q1 or YFP-E1 of reconstituted IKs channel complexes in CHO and HEK cells. They showed that targeted recruitment of endogenous Cα to E1-YFP using nano-RIIα modestly enhanced PKA-mediated IKs activity, whereas tethering of either nano-RIIα or nano-Cα to Q1-YFP retained KCNQ1 in the ER and Golgi thereby reducing IKs function. Using (LC-MS/MS), they further demonstrated that compared to free Cα, Cα targeted to Q1-YFP phosphorylated KCNQ1 subunit in multiple sites. Overall, the experiments are nicely done and yield sound data. The contribution of the paper is significant because it provides knowledge about the distinctive regulation of IKs by PKA, which could be used in the future to develop potential new drugs to prevent exercise-induced sudden cardiac death.

    1. Reviewer #2 (Public Review):

      This work uses broadband NIRS to investigate metabolic and hemodynamic changes in the brains of infants watching social or non-social stimuli, with simultaneous EEG providing the reference for specialization. The authors postulate that metabolic changes and neurovascular coupling will correlate better with power in the high-frequency beta and gamma band, but this is only justified by references to adult work. I suggest to justify better this assumption at the end of the introduction line 115 and discussing why this should be the case in infants as well.

      The authors test the hypothesis that metabolic, hemodynamic, and high-frequency EEG activity will show similar spatial localization. The results support the claim. The methods are sound and thoroughly described, graphics are excellent.

      At the moment though, the GitHub repository for code is empty and could not be used (sentence "All code used to analyse the NIRS data and the integration of the NIRS and EEG data is available on GitHub (https://github.com/maheensiddiqui91/NIRS-EEG)" line 346.

      The Discussion is appropriate, although limitations could be more elaborate, particularly concerning spatial coverage issues and the methodological improvements required for improved fNIRS spatial resolution.

    1. Reviewer #2 (Public Review):

      Qing et al conducted high-resolution single-cell RNA sequencing and spatial transcriptomic profiling to characterize the immunological state of oral mucosa tissue from non-erosive OLP and erosive OLP patients. They find that tissue from erosive OLP patients possessed greater numbers and displayed enhanced activation of CD8+ tissue-resident memory T (CD8+ Trm) cells when compared to non-erosive OLP patients. The authors also designed a cohort study that demonstrated that tissues from patients with recent bouts of erosion displayed a more activated immunological state assessed by transcriptional profiling. Finally, the authors conducted immunological assays to demonstrate greater recovery and higher activation of CD8+ Trm cells from erosive OLP patients.

      The sequencing data presented in the study are of high quality and demonstrate key immunological differences between patients with non-erosive OLP and erosive OLP. The authors focused on T cells due to their strong correlation with OLP pathogenesis, but they also observe significant changes to B cell and mast cell levels in erosive OLP compared to non-erosive OLP. Further commentary on the contribution(s) of B cells and mast cells to OLP pathogenesis would be helpful to fully capture the importance of the sequencing dataset.

      My major criticism of the study is that the authors argue for CD8+ Trm activity as a key mechanism for OLP pathogenesis but have presented mostly descriptive datasets. The data strongly argue for CD8+ Trm cells as a defining feature of erosive OLP, but there is no data to support their involvement in disease pathogenesis. The authors note the lack of a mouse model for OLP which represents a significant technical barrier to interrogating the role of CD8+ Trm cells in OLP pathogenesis.

      Another criticism is the lack of strong findings in the analysis of CD8+ Trm cells isolated from non-erosive and erosive OLP tissues. The authors note increases in CD8+ Trm cell recovery, however, they only observe minor changes in CD8+ Trm activity upon restimulation. Analyzing the activation status or proliferative capacity of CD8+ Trm cells from non-erosive and erosive OLP could be informative and more robust measures of functional changes.

      A minor criticism is the formatting of the data presented in Figure 4. The authors should clearly label each marker used in the flow cytometry experiments as well as clearly labeling y-axes for graphs 4H and 4I.

    1. Reviewer #2 (Public Review):

      This research brings togethor an impressively long timescale dataset of fin whale song vocalisations in the North Atlantic, measuring the note frequency content and inter-note intervals and thereby tracking shifts in both over time. Different time periods are covered in different regions of the north Atlantic during the course of the study. There are two principal results - the study documents a shift in the inter-note interval (INI) in an ICES eco-region termed 'Oceanic Northeast Atlantic' (although the relevance of this to fin whale populations is unclear) occuring relatively rapidly in the years 2000-2001. This shift is discontuous and appears to show an abrupt change in note intervals in most (though not all) of the songs recorded. The second key result is that this INI measure and also the peak frequency of song element termed the 'HF note' both show consistent directional change over timescales of 12 years. The INI measure begins to change back toward the value it held prior to the 2000/2001 shift, suggestive of a cyclical process of change coupled with resets. The average HF note peak frequency descended by about 5Hz during the study period but there was no evidence of abrupt shifts.

      The research significance is largely in the description of these processes in a new area, similar changes in rorqual song have been examined in the Southern Ocean and Mediterranean, and the argued interpretation of these changes as evidence for cultural learning processes in song change - the debate over whether these changes have environmental causation or are due to learning processes similar to song change in humpbacks is ongoing and this study therefore contributes interesting evidence from a newly covered population.

      I think the methods and analyses broadly support the claims but also that there are weaknesses in interpretation and presentation that should be addressed. I think perhaps the degree to which this is evidence of vocal learning may be a bit overplayed. Definitely there is change, but it is tricky to compare this to e.g. experimental demonstrations. For example, age-related changes in a changing post-whaling demographic scenario should at least be considered? Is there also any possibility for large-scale oceanographic variations to be included in some way - temperature shifts, for example? This could help understand the different roles of environment and learning in these processes. I think it is also important that these results be placed in a more detailed context of current knowledge of fin whale population structure in the north Atlantic - could population range shifts be a factor? The INI data show an interesting variation in the recordings from the Barents Sea and this could be discussed in the light of population structure knowledge also. It is unclear from the presentation whether the INI shift in 2000/2001 was coupled with any frequency shifts - if not, it suggests different trajectories and processes affecting these two aspects of the acoustic display.

      I am not convinced the main story here is about conformity, and I think it would be a mistake to too easily reach for the humpback comparison but there are certainly questions to be asked about the 2000/2001 shift in terms of the processes that led to it.

    1. Reviewer #2 (Public Review):

      The Author's chose to limit their response to re-doing the Lhx5 immuno using the correct antibody which now displays the expected staining: Lhx5 expression is limited to the hem. They have not however presented a characterization of where the RxCre acts, although this was pointed out by other reviewers as well. It would have been useful to demonstrate the expression domain in particular with respect to the time of its initiation, to explain how it causes a phenotype close to that described for the Lhx5 knockout (Zhao et al., 1999). From the decrease of Lhx5 expression and the CR cells which arise from the hem, it appears that the RxCre does indeed act in the hem. However, the timing and spatial pattern is important to establish, as I had pointed out in my first review, "If [the expression of RxCre] it has a dorso-ventral bias in the early embryo, it could explain the regional difference in the COUPTF phenotypes."

      The major interpretive criticisms I made have not been addressed even though these would have only required a re-writing and re-interpretation of the data. The revised manuscript continues to include major errors of interpretation such as the idea that Lhx2 and Lhx5 "inhibit each other", something that is unsupported since the expression domains of these two genes are mutually exclusive as is clear from the authors' own new data and the literature.Lines 355-360: "The expression of Lhx2 was comparable between the control and double-mutant mice at E11.5 (Figure 5Be-h, e'-h'). Interestingly, the expression of the Lhx2 protein was increased in the hippocampal primordium in the COUP-TF double-mutant mice at E13.5 and E14.5 (Figure 5Bm-p, m'-p', u-x, u'-x'). The upregulation of Lhx2 expression is most likely associated with the reduced expression of the Lhx5 gene"There's clearly no Lhx5 in the hippocampal primordium so how is this possible?

      The authors have missed the insights from key papers that they cite, e.g. (lines 352-354) " The expression of Lhx2 was expanded ventrally into the choroid plexus in the Lhx5 null mutant mice (Zhao et al., 1999)" - this paper in fact shows there is no choroid plexus. Lhx2 appears to extend to the midline likely because the hem isn't specified. The authors would benefit from reading https://doi.org/10.1101/2022.10.25.513532 in which Lmx1a is shown to be the master regulator of the hem.<br /> A sentence like (lines 77-81) further blurs the literature: "Intriguingly, deficiency of either Lhx5 or Lhx2 results in agenesis of the hippocampus, and more particularly, these genes inhibit each other (Hébert & Fishell, 2008; Mangale et al., 2008; Roy, Gonzalez-Gomez, Pierani, Meyer, & Tole, 2014; Zhao et al., 1999), indicating that the Lhx5 and Lhx2 genes may generate an essential regulatory axis to ensure the appropriate hippocampal development"<br /> First, none of the papers they cite shows that these two factors inhibit each other. Second, the "agenesis of the hippocampus" in the Lhx2 knockout mentioned in Porter et al. (1997) was later shown to be due to a transformation of the hippocampal primordium into an EXPANDED hem (Mangale et al.) In contrast, the "agenesis of the hippocampus" in the Lhx5 mutant appears to be due to the near-complete LOSS of the hem and evidenced by the loss of its derivatives, the choroid plexus and the CR cells (Zhao et al., 1999). The fact that loss of these two factors have opposite effects on the hem (each resulting in loss of the hippocampus, one due to transformation of the hippocampal primordium into hem and the other because of a lack of hipopcampal induction) does not mean that there is an Lhx5-Lhx2 "axis" regulating hippocampal development.

      I won't repeat my other comments here, but the majority of them were not addressed in any way.

      In conclusion, I find it unfortunate that the authors have chosen not to use the detailed input provided by the reviewers which would have greatly improved their manuscript.

    1. Reviewer #2 (Public Review):

      Barlow and colleagues describe a role for the Na+/K+ pump in sleep/wake regulation. They discovered this role starting with a forward genetic screen in which they tested a biased sample of virus insertion fish lines for sleep phenotypes. They found an insertion in a gene they named dreammist, which is homologous to the gene FXYD1 encoding single membrane-pass modifiers of Na/K pumps. They go on to show that genetic manipulations of either FXYD1 or the Na/K pump also reduce sleep. They use pharmacology and sleep deprivation experiments to provide further evidence that the NA/K pump regulates intracellular sodium and rebound sleep. This study provides additional evidence for the important role of membrane excitability in sleep regulation (prior studies have implicated K+ channel subunits as well as a sodium leak ion channel).

      The study is well done and convincing with regard to its major conclusions. I had some minor comments/questions, which they properly addressed in their revision and rebuttal.

    1. Reviewer #2 (Public Review):

      This paper presents a valuable contribution to ongoing methods for understanding and modeling structure via latent variable models for neural and behavioral data. Building on the PS-VAE model of Whiteway et al. (2021), which posited a division of latent variables into unsupervised (i.e., useful for reconstruction) and supervised (useful for predicting selected labeled features) variables, the authors propose an additional set of "constrained subspace" latent variables that are regularized toward a prespecified prior via a Cauchy-Schwarz divergence previously proposed.

      The authors contend that the added CS latents aid in capturing both patterns of covariance across the data and individual-specific features that are of particular benefit in multi-animal experiments, all without requiring additional labels. They substantiate these claims with a series of computational experiments demonstrating that their CS-VAE outperforms the PS-VAE in several tasks, particularly that of capturing differences between individuals, consistency in behavioral phenotyping, and predicting correlations with neural data.

      Strengths of the present work include an extensive and rigorous set of validation experiments that will be of interest to those analyzing behavioral video. Weaknesses include a lack of discussion of key theoretical ideas motivating the design of the model, including the choice of a Cauchy-Schwarz divergence, the specific form of the prior, and arguments for sorts of information the CS latents might capture and why. In addition, the model makes use of a moderate number of key hyperparameters whose effect on training outcomes are not extensively analyzed. As a result, the model may be difficult for less experienced users to apply to their own data. Finally, as with many similar VAE approaches, the lack of a ground truth against which to validate means that much of evidence provided for the model is necessarily subjective, and its appeal lies in the degree to which the discovered latent spaces appear interpretable in particular applications.

      In all, this work is a valuable contribution that is likely to have appeal to those interested in applying latent space methods, particularly to multi-animal video data.

    1. Reviewer #2 (Public Review):

      The contribution of glial cells to the pathogenesis of amyotrophic lateral sclerosis (ALS) is of substantial interest and the investigators have contributed significantly to this emerging field via prior publications. In the present study, authors use a SOD1G93A mouse model to elucidate the role of astrocyte ephrinB2 signaling in ALS disease progression. Erythropoietin-producing human hepatocellular receptors (Ephs) and the Eph receptor-interacting proteins (ephrins) signaling is an important mediator of signaling between neurons and non-neuronal cells in the nervous system. Recent evidence suggests that dysregulated Eph-ephrin signaling in the mature CNS is a feature of neurodegenerative diseases. In the ALS model, upregulated Eph4A expression in motor neurons has been linked to disease pathogenesis. In the present study, authors extend previous findings to a new class of ephrinB2 ligands. Urban et al. hypothesize that upregulated ephrinB2 signaling contributes to disease pathogenesis in ALS mice. The authors successfully test this hypothesis and their results generally support their conclusion.

      Major strengths of this work include a robust study design, a well-defined translational model, and complementary biochemical and experimental methods such that correlated findings are followed up by interventional studies. Authors show that ephrinB2 ligand expression is progressively upregulated in the ventral horn of the cervical and lumbar spinal cord through pre-symptomatic to end stages of the disease. This novel association was also observed in lumbar spinal cord samples from post-mortem samples of human ALS donors with a SOD1 mutation. Further, they use a lentiviral approach to drive knock-down of ephrinB2 in the central cervical region of SOD1G93A mice at the pre-symptomatic stage. Interestingly, in spite of using a non-specific promoter, authors note that the lentiviral expression was preferentially driven in astrocytes.

      Since respiratory compromise is a leading cause of morbidity in the ALS population, the authors proceed to characterize the impact of ephrinB2 knockdown on diaphragm muscle output. In mice approaching the end stage of the disease, electrophysiological recordings from the diaphragm muscle show that animals in the knock-down group exhibited a ~60% larger amplitude. This functional preservation of diaphragm function was also accompanied by the preservation of diaphragm neuromuscular innervation. However, it must be noted that this cervical ephrinB2 knockdown approach had no impact on disease onset, disease duration, or animal survival. Furthermore, there was no impact of ephrinB2 knockdown on forelimb or hindlimb function.

      The major limitation of the manuscript as currently written is the conclusion that the preservation of diaphragm output following ephrinB2 knockdown in SOD1 mice is mediated primarily (if not entirely) by astrocytes. The authors present convincing evidence that a reduction in ephrinB2 is observed in local astrocytes (~56% transduction) following the intraspinal injection of the lentivirus. However, the proportion of cell types assessed for transduction with the lentivirus in the spinal cord was limited to neurons, astrocytes, and oligodendrocyte lineage cells. Microglia comprise a large proportion of the glial population in the spinal grey matter and have been shown to associate closely with respiratory motor pools. This cell type, amongst the many others that comprise the ventral gray matter, have not been investigated in this study. Thus, the primary conclusion that astrocytes drive ephrinB2-mediated pathogenesis in ALS mice is largely correlative. Further, it is interesting to note that no other functional outcomes were improved in this study. The C3-C5 region of the spinal cord consists of many motor pools that innervate forelimb muscles. CMAP recordings conducted at the diaphragm are a reflection of intact motor pools. This type of assessment of neuromuscular health is hard to re-capitulate in the kind of forelimb task that is being employed to test motor function (grip strength). Thus, it would be interesting to see if CMAP recordings of forelimb muscles would capture the kind of motor function preservation observed in the diaphragm muscle.

      On a similar note, the functional impact of increased CMAP amplitude has not been presented. An increase in CMAP amplitude does not necessarily translate to improved breathing function or overall ventilation. Thus, the impact of this improvement in motor output should be clearly presented to the reader. Further, to the best of my knowledge, expression of Eph (or EphB) receptors has not been explicitly shown at the phrenic motor pool. It is thus speculative at best that the mechanism that the authors suggest in preserving diaphragm function is in fact mediated through Eph-EphrinB2 signaling at the phrenic motor pool. This aspect of the study would warrant a deeper discussion. Lastly, although authors include both male and female animals in this investigation, they do not have sufficient power to evaluate sex differences. Thus, this presents another exciting future of investigation, given that ALS has a slightly higher preponderance in males as compared to females.

      In summary, this study by Urban et al. provides a valuable framework for Eph-Ephrin signaling mechanisms imposing pathological changes in an ALS mouse model. The role of glial cells in ALS pathology is a very exciting and upcoming field of investigation. The current study proposes a novel astrocyte-mediated mechanism for the propagation of disease that may eventually help to identify potential therapeutic targets.

    1. Reviewer #2 (Public Review):

      This study connects prior findings on MicroRNA15/16 and Malat1 to demonstrate a functional interaction that is consequential for T cell activation and cell fate.

      The study uses mice (Malat1scr/scr) with a precise genetic modification of Malat1 to specifically excise the sites of interaction with the microRNA, but sparing all other sequences, and mice with T-cell specific deletion of miR-15/16. The effects of genetic modification on in vivo T-cell responses are detected using specific mutations and shown to be T-cell intrinsic.

      It is not known where in the cell the consequential interactions between MicroRNA15/16 and Malat1 take place. The authors depict in the graphical abstract Malat1 to be a nuclear lncRNA. Malat 1 is very abundant, but it is unclear if it can shuttle between the nucleus and cytoplasm. As the authors discuss future work defining where in the cell the relevant interactions take place will be important.

      In addition to showing physiological phenotypic effects, the mouse models prove to be very helpful when the effects measured are small and sometimes hard to quantitate in the context of considerable variation between biological replicates (for example the results in Figure 4D).

      The impact of the genetic modification on the CD28-IL2- Bcl2 axis is quantitatively small at the level of expression of individual proteins and there are likely to be additional components to this circuitry.

    1. Reviewer #2 (Public Review):

      This paper purports to unveil a mechanism controlling telomere length through SUMO modifications controlling interactions between PCNA unloader Elg1 and the CST complex that functions at telomeres. This is an extremely interesting mechanism to understand, and this paper indeed reveals some interesting genetic results, leading to a compelling model, with potential impact on the field. Overall, however, the data do not provide sufficient support for the claims. The model may be correct but it is not yet convincingly demonstrated.

      The current version addressed some of the issues regarding language describing conclusions and more experimental detail has been provided. However, the authors have not provided new data supporting the model, so the overall evaluation is that the work remains inconclusive.

    1. Reviewer #2 (Public Review):

      The pear psylla Cacopsylla chinensis has two morphologically different forms, winter- and summer-forms depending on the temperatures. The authors provided solid data showing that the cold sensor CcTRPM is responsible for switching summer- to winter forms, which is in turn regulated by the miRNA miR-252. This finding is interesting and novel.

    1. Reviewer #2 (Public Review):

      This study examines the role of the Locus Coeruleus (LC)/noradrenergic (NA) system in extinction in male and female rats. The behavioural task involves three phases i) training on a discriminative procedure in which operant responding was rewarded only during the presentation of a stimulus ii) extinction iii) testing for the expression of extinction at both short (1 day) or long (7 days) delays. Targeting LC/NA cells with optogenetic in TH::Cre rats, the authors found that photoexcitation during extinction led to an increase in the expression of extinguished responding at both short and long delays. By contrast, photo inhibition was found to be without an effect.

      1. In such discrimination training, Pavlovian (CS-Food) and instrumental (LeverPress-Food) contingencies are intermixed. It would therefore be very interesting if the authors provided evidence of other behavioural responses (e.g. magazine visits) during extinction training and tests.<br /> 2. In Figure 1, the authors show the behavioural data of the different groups of control animals which were later collapsed in a single control group. It would be very nice if the authors could provide the data for each step of the discrimination training.<br /> 3. Inspection of Figures 2C & 2D shows that responding in control animals is about the same at test 2 as at the end of extinction training. Therefore, could the authors provide evidence for spontaneous recovery in control animals? This is of importance given that the main conclusion of the authors is that LC stimulation during extinction training led to an increased expression of extinction memory as expressed by reduced spontaneous recovery.<br /> 4. Current evidence suggests that there are differences in LC/NA system functioning between males and females. Could the authors provide details about the allocation of male and female animals in each group?<br /> 5. The histology section in both experiments looks a bit unsatisfying. Could the authors provide more details about the number of counted cells and also their distribution along the antero-posterior extent of the LC. Could the authors also take into account the sex in such an analysis?

    1. Reviewer #2 (Public Review):

      This work aggregates data across 5 openly available stopping studies (3 at 7 tesla and 2 at 3 tesla) to evaluate activity patterns across the common contrasts of Failed Stop (FS) > Go, FS > stop success (SS), and SS > Go. Previous work has implicated a set of regions that tend to be positively active in one or more of these contrasts, including the bilateral inferior frontal gyrus, preSMA, and multiple basal ganglia structures. However, the authors argue that upon closer examination, many previous papers have not found subcortical structures to be more active on SS than FS trials, bringing into question whether they play an essential role in (successful) inhibition. In order to evaluate this with more data and power, the authors aggregate across five datasets and find many areas that are *more* active for FS than SS, specifically bilateral preSMA, caudate, GPE, thalamus, and VTA, and unilateral M1, GPi, putamen, SN, and STN. They argue that this brings into question the role of these areas in inhibition, based upon the assumption that areas involved in inhibition should be more active on successful stop than failed stop trials, not the opposite as they observed.

      As an empirical result, I believe that the results are robust, but this work does not attempt a new theoretical synthesis of the neuro-cognitive mechanisms of stopping. Specifically, if these many areas are more active on failed stop than successful stop trials, and (at least some of) these areas are situated in pathways that are traditionally assumed to instantiate response inhibition like the hyperdirect pathway, then what function are these areas/pathways involved in? I believe that this work would make a larger impact if the author endeavored to synthesize these results into some kind of theoretical framework for how stopping is instantiated in the brain, even if that framework may be preliminary.

      I also have one main concern about the analysis. The authors use the mean method for computing SSRT, but this has been shown to be more susceptible to distortion from RT slowing (Verbruggen, Chambers & Logan, 2013 Psych Sci), and goes against the consensus recommendation of using the integration with replacement method (Verbruggen et al., 2019). Therefore, I would strongly recommend replacing all mean SSRT estimates with estimates using the integration with replacement method.

    1. Reviewer #2 (Public Review):

      This report by Hur et al. examines simultaneous activity in the cerebellum and anterior cingulate cortex (ACC) to determine how activity in these regions is coordinated during social behavior. To accomplish this, the authors developed a recording device named the E-scope, which combines a head-mounted mini-scope for in vivo Ca2+ imaging with an extracellular recording probe (in the manuscript they use a 32-channel silicon probe). Using the E-scope, the authors find subpopulations of cerebellar neurons with social-interaction-related activity changes. The activity pattern is predominantly decreased firing in PCs and increases in DNs, which is the expected reciprocal relationship between these populations. They also find social-interaction-related activity in the ACC. The authors nicely show the absence of locomotion onset and offset activity in PCs and DNs ruling out that is movement driven. Analysis showed high correlations between cerebellar and ACC populations (namely, Soc+ACC and Soc+DN cells). The finding of correlated activity is interesting because non-motor functions of the cerebellum are relatively little explored. However, the causal relationship is far from established with the methods used, leaving it unclear if these two brain regions are similarly engaged by the behavior or if they form a pathway/loop. Overall, the data are presented clearly, and the manuscript is well written, however, the biological insight gained is rather limited.

    1. Reviewer #2 (Public Review):

      The study provides a valuable contribution by demonstrating the use of an allocentric spatial reference frame in the perception of the location of a dimly lit target in the dark. While the evidence presented in support of the authors' claims is solid and convincing, it would be beneficial for the study to address potential limitations, such as its ecological validity.

      Strengths:<br /> Unlike previous research where observers were stationary during a visual-spatial perception task, this recent study expanded upon prior findings by incorporating bodily movements for the observers. This study is a valuable addition to the literature as it not only discovered that the intrinsic bias is grounded on the home base, but also identified several key characteristics through a series of follow-up experiments. The findings suggest that this "allocentric" spatial coding decays over time, requires attentional resources, can be based solely on vestibular signals, and is most effective in the horizontal direction. In general, this study is interesting, clearly presented, well-thought-out and executed. The results confirmed the conclusions and the study's comprehensive approach offers valuable insights into the nature of intrinsic bias in spatial perception.

      The counter-intuitive results presented in the manuscript are intriguing and add to the study's overall appeal. Moreover, the manuscript draws an interesting parallel between human spatial navigation and that of desert ants. This comparison helps to underscore the importance of understanding spatial coding mechanisms across different species and highlights potential avenues for future research.

      One aspect I particularly valued about this study was the authors' thorough description of the experimental methods. This level of detail not only highlights the rigor of the research but also enhances the reproducibility of the study, making it more accessible for future researchers.

      Weaknesses:<br /> While the current study provides valuable insights into the nature of intrinsic bias in spatial perception, there is a concern regarding its ecological validity. The experimental design involved stringent precautions, such as a very dark room and a small target, to minimize the presence of depth cues. This is in contrast to the real world, where depth information is readily available from the ground and surrounding objects, aiding in our perception of space and depth. As a result, it is unclear to what extent this "allocentric" intrinsic bias is involved in our everyday spatial perception. To provide more context for the general audience, it would be beneficial for the authors to address this issue in their discussion.

      The current findings on the "allocentric" coding scheme raise some intriguing questions as to why such a mechanism would be developed and how it could be beneficial. The finding that the "allocentric" coding scheme results in less accurate object localization and requires attentional resources seems counterintuitive and raises questions about its usefulness. However, this observation presents an opportunity for the manuscript to discuss the potential evolutionary advantages or trade-offs associated with this coding mechanism.

      The manuscript lacks a thorough description of the data analysis process, particularly regarding the fitting of the intrinsic bias curve (e.g., the blue and gray dashed curve in Figure 3c) and the calculation of the horizontal separation between the curves. It would be beneficial for the authors to provide more detailed information on the specific function and parameters used in the fitting process and the formula used for the separation calculation to ensure the transparency and reproducibility of the study's results.

    1. Reviewer #2 (Public Review):

      This work aims at answering whether activity in the primate visual cortex is modulated by locomotion, as was reported for the mouse visual cortex. The finding that the activity in the mouse visual cortex is modulated by running has changed the concept of primary sensory cortical areas. However, it was an open question whether this modulation generalizes to primates.

      To answer this fundamental question the authors established a novel paradigm in which a head-fixed marmoset was able to run on a treadmill while watching a visual stimulus on a display. In addition, eye movements and running speed were monitored continuously and extracellular neuronal activity in the primary visual cortex was recorded using high-channel-count electrode arrays. This paradigm uniquely permitted investigation of whether locomotion modulates sensory-evoked activity in the visual cortex of a marmoset. Moreover, to directly compare the responses in the marmoset visual cortex to responses in the mouse visual cortex the authors made use of a publicly-available mouse dataset from the Allen Institute. In this dataset, the mouse was also running on a treadmill and observing a set of visual stimuli on a display. The authors took extra care to have the marmoset and mouse paradigms as comparable as possible.

      To characterize the visually driven activity the authors present a series of moving gratings and estimate receptive fields with sparse noise. To estimate the gain modulation by running the authors split the dataset into epochs of running and non-running which allowed them to estimate the visually evoked firing rates in both behavioral states.

      Strengths:<br /> The novel paradigm of head-fixed marmosets running on a treadmill while being presented with a visual stimulus is unique and ideally tailored to answering the question that the authors aimed to answer. Moreover, the authors took extra care to ensure that the paradigm in the marmoset matched as closely as possible to the conditions in the mouse experiments such that the results can be directly compared. To directly compare their data the authors re-analyzed publicly available data from the visual cortex of mice recorded at the Allen Institute. Such a direct comparison, and reuse of existing datasets, is another strong aspect of the work. Finally, the presented new marmoset dataset appears to be of high quality, the comparison between the mouse and marmoset visual cortex is well done and the results and interpretation are straightforward.

      Weaknesses:<br /> While the presented results are clear and support the main conclusion of the authors, additional analysis and experimental details could have further strengthened and clarified some aspects of the results. For example, it is known that the locomotion gain modulation varies with layer in the mouse visual cortex, with neurons in the infragranular layers expressing a diversity of modulations (Erisken et al. 2014 Current Biology). However, for the marmoset dataset, it was not reported from which cortical layer the neurons are from, leaving this point unanswered.

      Nonetheless, the aim of comparing the locomotion-induced modulation of activity in primate and mouse primary visual cortex was convincingly achieved by the authors. The results shown in the figures support the conclusion that locomotion modulates the activity in primate and mouse visual cortex differently. While mice show a profound gain increase, neurons in the primate visual cortex show little modulation or even a reduction in response strength.

      This work will have a strong impact on the field of visual neuroscience but also on neuroscience in general. It revives the debate of whether results obtained in the mouse model system can be simply generalized to other mammalian model systems, such as non-human primates. Based on the presented results, the comparison between the mouse and primate visual cortex is not as straightforward as previously assumed. This will likely trigger more comparative studies between mice and primates in the future, which is important and absolutely needed to advance our understanding of the mammalian brain.

      Moreover, the reported finding that neurons in the primary visual cortex of marmosets do not increase their activity during running is intriguing, as it makes you wonder why neurons in the mouse visual cortex do so. The authors discuss a few ideas in the paper which can be addressed in future experiments. In this regard, it is worth noting that the authors report an interesting difference between the foveal and peripheral parts of the visual cortex in marmoset. It will be interesting to investigate these differences in more detail in future studies. Likewise, while running might be an important behavioral state for mice, other behavioral states might be more relevant for marmosets and do modulate the activity of the primate visual cortex more profoundly. Future work could leverage the opportunities that the marmoset model system offers to reveal new insights about behavioral-related modulation in the primate brain.

    1. Reviewer #2 (Public Review):

      In this study, multiple biophysical techniques were employed to investigate the activation mechanism of BTK, a multi-domain non-receptor protein kinase. Previous studies have elucidated the inhibitory effects of the SH3 and SH2 domains on the kinase and the potential activation mechanism involving the membrane-bound PIP3 inducing transient dimerization of the PH-TH domain, which binds to lipids.

      The primary focus of the present study was on three new constructs: a full-length BTK construct, a construct where the PH-TH domain is connected to the kinase domain, and a construct featuring a kinase domain with a phosphomimetic at the autophosphorylation site Y551. The authors aimed to provide new insights into the autoinhibition and allosteric control of BTK.

      The study reports that SAXS analysis of the full-length BTK protein construct, along with cryoEM visualization of the PH-TH domain, supports a model in which the N-terminal PH-TH domain exists in a conformational ensemble surrounding a compact/autoinhibited SH3-SH2-kinase core. This finding is interesting because it contradicts previous models proposing that each globular domain is tightly packed within the core.

      Furthermore, the authors present a model for an inhibitory interaction between the N-lobe of the kinase and the PH-TH domain. This model is based on a study using a tethered complex with a longer tether than a previously reported construct where the PH-TH domain was tightly attached to the kinase domain (ref 5). The authors argue that the new structure is relevant. However, this assertion requires further explanation and discussion, particularly considering that the functional assays used to assess the impact of mutating residues within the PH-TH/kinase domain contradict the results of the previous study (ref 5).

      Additionally, the study presents the structure of the kinase domain with swapped activation loops in a dimeric form, representing a previously unseen structure along the trans-phosphorylation pathway. This structure holds potential relevance. To better understand its significance, employing a structure/function approach like the one described for the PH-TH/kinase domain interface would be beneficial.

      Overall, this study contributes to our understanding of the activation mechanism of BTK and sheds light on the autoinhibition and allosteric control of this protein kinase. It presents new structural insights and proposes novel models that challenge previous understandings. However, further investigation and discussion would significantly strengthen the study.

    1. Reviewer #2 (Public Review):

      The manuscript by Nishikawa et al. addresses time-dependent changes in the electron transfer energetics in the photosynthetic reaction center from Blastochloris viridis, whose time-dependent structural changes upon light illumination were recently demonstrated by time-resolved serial femtosecond crystallography (SFX) using X-ray free-electron laser (XFEL) (Dods et al., Nature, 2021). Based on the redox potential Em values of bacteriopheophytin in the electron transfer active branch (BL) by solving the linear Poisson-Boltzmann equation, the authors found that Em(HL) values in the charge-separated 5-ps structure obtained by XFEL are not clearly changed, suggesting that the P+HL- state is not stabilized owing to protein reorganization. Furthermore, chlorin ring deformation upon HL- formation, which was expected from their QM/MM calculation, is not recognized in the 5-ps XFEL structure. Then the authors concluded that the structural changes in the XFEL structures are not related to the actual time course of charge separation. They argued that their calculated changes in Em and chlorin ring deformations using the XEFL structures may reflect the experimental errors rather than the real structural changes; they mentioned this problem is due to the fact that the XFEL structures were obtained at not high resolutions (mostly at 2.8 Å). I consider that their systematic calculations may suggest a useful theoretical interpretation of the XFEL study. However, the present manuscript insists as a whole negatively that the experimental errors may hamper to provide the actual structural changes relevant to the electron transfer events. My concerns are the following two points:<br /> Is the premise of the authors for the electron transfer energetics obviously valid?<br /> Could the authors find any positive aspect(s) in the XFEL study?

      The authors' argument is certainly due to their premise "Em(HL) is expected to be exclusively higher in the 5-ps and 20-ps structures than in the other XFEL structures due to the stabilization of the [PLPM]•+HL•- state by protein reorganization" as noted in the Results and Discussion (p. 12, lines 180-182); however, it is unknown whether this premise can be applied to the ps-timescale electron transfer events. The above premise is surely based on the Marcus theory, as the authors also noted in the Introduction "The anionic state formation induces not only reorganization of the protein environment (ref. 5: Marcus and Sutin, 1985) but also out-of-plane distortion of the chlorin ring (ref. 6: two of the authors, Saito and Ishikita, co-authored, 2012)"; however, it is unknown whether protein reorganization can follow the ps-timescale electron transfer events. Indeed, Dods et al. mentioned in the Nature paper (2021) "The primary electron-transfer step from SP (special pair PLPM) to BPhL (HL) occurs in 2.8 {plus minus} 0.2 ps across a distance of 10 Å by means of a two-step hopping mechanism via the monomeric BChL molecule and is more rapid than conventional Marcus theory". It was also mentioned, "By contrast, the 9 Å electron-transfer step from BPhL to QA has a single exponential decay time of 230 {plus minus} 30 ps, which is consistent with conventional Marcus theory". As for the primary electron-transfer step from PLPM to HL, Wang et al. (2007, Science 316, 747; cited as ref. 8 in the Nature paper 2021) reported, by monitoring tryptophan absorbance changes in various reaction centers in which the driving forces (namely, the Em gaps between PLPM and HL) are different, that the protein relaxation kinetics is independent of the charge separation kinetics on the picosecond timescale. On the other hand, in the EPR study cited by the authors as ref. 7 (Muh et al. (1998) Biochemistry 37, 13066), although the authors described "two distinct conformations of HL- were reported in spectroscopic studies" (p. 3, lines 44-45), it should be noted that conformation of HL- was formed by 1 or 45 s illumination prior to freezing, and hence the second-order reorganized conformations may differ from picosecond-order conformations observed by the XFEL study (Nature, 2021) and/or the transient absorption spectroscopy (Science, 2007).

      Therefore, I consider there is a possibility that the authors' findings may reflect not experimental errors but the actual ps-timescale phenomena presented by the first-time XFEL study on the timescale of the primary charge-separation reactions of photosynthesis. Thus I would like to suggest that the authors reconsider the premise for the electron transfer energetics on the picosecond timescale.

      In any case, to discuss the experimental errors in the XFEL study, it is better to calculate the Em(QA) changes in the 300-ps and 8-us XFEL structures, which showed distinctive structural changes even at the 2.8 Å resolution as discussed by Dods et al. Then, if the Em(QA) values are changed as expected from theoretical calculations, such calculated results may suggest a useful theoretical interpretation of the XFEL study as a positive aspect. If the Em(QA) values are not higher in the 300-ps and 8-us structures than in the other structures, it may be argued that the experimental errors would be so large that the XFEL structures are irrelevant to the electron transfer events expected from theoretical calculations.

    1. Reviewer #2 (Public Review):

      This is an interesting study with high-quality imaging and quantitative data. The authors devise a robust quantitative parameter that is easily applicable to any experimental system. The drug screen data can potentially be helpful to the wider community studying nucleolar architecture and the effects of chemotherapy drugs. Additionally, the authors find Treacle phosphorylation as a potential link between CDK9 inhibition, rDNA transcription, and nucleolar stress. Therefore I think this would be of broad interest to researchers studying transcription, CDKs, nucleolus, and chemotherapy drug mechanisms. However, the study has several weaknesses in its current form as outlined below.

      1. Overall the study seems to suffer from a lack of focus. At first, it feels like a descriptive study aimed at characterizing the effect of chemotherapy drugs on the nucleolar state. But then the authors dive into the mechanism of CDK inhibition and then suddenly switch to studying biophysical properties of nucleolus using NPM1. Figure 6 does not enhance the story in any way; on the contrary, the findings from Fig. 6 are inconclusive and therefore could lead to some confusion.

      2. The justification for pursuing CDK inhibitors is not clear. Some of the top hits in the screen were mTOR, PI3K, HSP90, Topoisomerases, but the authors fail to properly justify why they chose CDKi over other inhibitors.

      3. In addition to poor justification, it seems like a very superficial attempt at deciphering the mechanism of CDK9i-mediated nucleolar stress. I think the most interesting part of the study is the link between CDK9, Pol I transcription, and nucleolar stress. But the data presented is not entirely convincing. There are several important controls missing as detailed below.

      4. The authors did not test if inhibition of CDK7 and/or CDK12 also induces nucleolar stress. CDK7 and CDK12 are also major kinases of RNAPII CTD, just like CDK9. Importantly, there are well-established inhibitors against both these kinases. It is not clear from the text whether these inhibitors were included in the screen library.

      5. In Figure 4E, the authors show that Pol I is reduced in nucleolus/on rDNA. The authors should include an orthogonal method like chromatin fractionation and/or ChIP

      6. In Fig. 5D, in vitro kinase lacks important controls. The authors should include S to A mutants of Treacle S1299A/S1301A to demonstrate that CDK9 phosphorylates these two residues specifically.

      7. To support their model, the authors should test if overexpression of Treacle mutants S1299A/S1301A can partially phenocopy the nucleolar stress seen upon CDK9 inhibition. This would considerably strengthen the author's claim that reduced Treacle phosphorylation leads to Pol I disassociation from rDNA and consequently leads to nucleolar stress.

      8. Additionally, it would be interesting if S1299D/S1301D mutants could partially rescue CDK9 inhibition.

    1. Reviewer #2 (Public Review):

      This paper illustrates that PSCs can model myogenesis in vitro by mimicking the in vivo development of the somite and dermomyotome. The advantages of this 3D system include (1) better structural distinctions, (2) the persistence of progenitors, and (3) the spatial distribution (e.g. migration, confinement) of progenitors. The finding is important with the implication in disease modeling. Indeed the authors tried DMD model although it suffered the lack of deeper characterization.

      The differentiation protocol is based on a current understanding of myogenesis and compelling. They characterized the organoids in depth (e.g. many time points and immunofluorescence). The evidence is solid, and can be improved more by rigorous analyses and descriptions as described below.

      Major comments:

      1. Consistency between different cell lines.<br /> I see the authors used a few different PSC lines. Since organoid efficiency differ between lines, it is important to note the consistency between lines.

      2. Heterogeneity among each organoid<br /> Let's say authors get 10 organoids in one well. Are they similar to each other? Does each organoid possess similar composition of cells? To determine the heterogeneity, the authors could try either FACS or multiple sectioning of each organoid.

      3. Consistency of Ach current between organoids.<br /> Related to comment 2, are the currents consistent between each organoid? How many organoids were recorded in the figures? Also, please comment if the current differ between young and aged organoids.

      4. Communication between neural cells and muscle?<br /> The authors did scRNAseq, but have not gone deep analysis. I would recommend doing Receptor-ligand mapping and address if neural cells and muscle are interacting.

      5. More characterization of DMD organoids.<br /> One of the key applications of muscle organoids is disease model. They have generated DMD muscle organoids, but rarely characterized except for currents. I recommend conducting immunofluorescence of DMA organoids to confirm structure change. Very intriguing to see scRNAseq of DMD organoids and align with disease etiology.

      6. More characterization of engraft.<br /> Authors could measure the size of myotube between mice and human. Does PAX7+ Sattelite cell exist in engraft? To exclude cell fusion events make up the observation, I recommend to engraft in GFP+ immunodeficient mice. Could the authors comment how long engraft survive.

    1. Reviewer #2 (Public Review):

      This is the first comprehensive study aimed at assessing the impact of landscape modification on the prevalence of P. knowlesi malaria in non-human primates in Southeast Asia. This is a very important and timely topic both in terms of developing a better understanding of zoonotic disease spillover and the impact of human modification of landscape on disease prevalence.

      This study uses the meta-analysis approach to incorporate the existing data sources into a new and completely independent study that answers novel research questions linked to geospatial data analysis. The challenge, however, is that neither the sampling design of previous studies nor their geospatial accuracy are intended for spatially-explicit assessments of landscape impact. On the one hand, the data collection scheme in existing studies was intentionally opportunistic and does not represent a full range of landscape conditions that would allow for inferring the linkages between landscape parameters and P. knowlesi prevalence in NHP across the region as a whole. On the other hand, the absolute majority of existing studies did not have locational precision in reporting results and thus sweeping assumptions about the landscape representation had to be made for the modeling experiment. Finally, the landscape characterization was oversimplified in this study, making it difficult to extract meaningful relationships between the NHP/human intersection on the landscape and the consequences for P. knowlesi malaria transmission and prevalence.

      Despite many study limitations, the authors point to the critical importance of understanding vector dynamics in fragmented forested landscapes as the likely primary driver in enhanced malaria transmission. This is an important conclusion particularly when taken together with the emerging evidence of substantially different mosquito biting behaviors than previously reported across various geographic regions.

      Another important component of this study is its recognition and focus on the value of geospatial analysis and the availability of geospatial data for understanding complex human/environment interactions to enable monitoring and forecasting potential for zoonotic disease spillover into human populations. More multi-disciplinary focus on disease modeling is of crucial importance for current and future goals of eliminating existing and preventing novel disease outbreaks.

    1. Reviewer #2 (Public Review):

      In the study conducted by Verdikt et al, the authors employed mouse Embryonic Stem Cells (ESCs) and in vitro differentiation techniques to demonstrate that exposure to cannabis, specifically Δ9-tetrahydrocannabinol (Δ9-THC), could potentially influence early embryonic development. Δ9-THC was found to augment the proliferation of naïve mouse ESCs, but not formative Epiblast-like Cells (EpiLCs). This enhanced proliferation relies on binding to the CB1 receptor. Moreover, Δ9-THC exposure was noted to boost glycolytic rates and anabolic capabilities in mESCs. The metabolic adaptations brought on by Δ9-THC exposure persisted during differentiation into Primordial Germ Cell-Like Cells (PGCLCs), even when direct exposure ceased, and correlated with a shift in their transcriptional profile. This study provides the first comprehensive molecular assessment of the effects of Δ9-THC exposure on mouse ESCs and their early derivatives. The manuscript underscores the potential ramifications of cannabis exposure on early embryonic development and pluripotent stem cells. However, it is important to note the limitations of this study: firstly, all experiments were conducted in vitro, and secondly, the study lacks analogous experiments in human models.

    1. Reviewer #2 (Public Review):

      In the manuscript entitled 'Unveiling the Domain-Specific and RAS Isoform-Specific Details of BRAF Regulation', the authors conduct a series of in vitro experiments using N-terminal and C-terminal BRAF fragments (SPR, HDX-MS, pull-down assays) to interrogate BRAF domain-specific autoinhibitory interactions and engagement by H- and KRAS GTPases. Of the three RAF isoforms, BRAF contains an extended N-terminal domain that has yet to be detected in X-ray and cryoEM reconstructions but has been proposed to interact with the KRAS hypervariable region. The investigators probe binding interactions between 4 N-terminal (NT) BRAF fragments (containing one more NT domain (BRS, RBD, and CRD)), with full-length bacterial expressed HRAS, KRAS as well as two BRAF C-terminal kinase fragments to tease out the underlying contribution of domain-specific binding events. They find, consistent with previous studies, that the BRAF BSR domain may negatively regulate RAS binding and propose that the presence of the BSR domain in BRAF provides an additional layer of autoinhibitory constraints that mediate BRAF activity in a RAS-isoform-specific manner. One of the fragments studied contains an oncogenic mutation in the kinase domain (BRAF-KDD594G). The investigators find that this mutant shows reduced interactions with an N-terminal regulatory fragment and postulate that this oncogenic BRAF mutant may promote BRAF activation by weakening autoinhibitory interactions between the N- and C-terminus.

      While this manuscript sheds light on B-RAF specific autoinhibitory interactions and the identification and partial characterization of an oncogenic kinase domain (KD) mutant, several concerns exist with the vitro binding studies as they are performed using tagged-isolated bacterial expressed fragments, 'dimerized' RAS constructs, lack of relevant citations, controls, comparisons and data/error analysis. Detailed concerns are listed below.

      1. Bacterial-expressed truncated BRAF constructs are used to dissect the role of individual domains in BRAF autoinhibition. Concerns exist regarding the possibility that bacterial expression of isolated domains or regions of BRAF could miss important posttranslational modifications, intra-molecular interactions, or conformational changes that may occur in the context of the full-length protein in mammalian cells. This concern is not addressed in the manuscript.

      2. The experiments employ BRAF NT constructs that retain an MBP tag and RAS proteins with a GST tag. Have the investigators conducted control experiments to verify that the tags do not induce or perturb native interactions?

      3. The investigators state that the GST tag on the RAS constructs was used to promote RAS dimerization, as RAS dimerization is proposed to be key for RAF activation. However, recent findings argue against the role of RAS dimers in RAF dimerization and activation (Simanshu et al, Mol. Cell 2023). Moreover, while GST can dimerize, it is unclear whether this promotes RAS dimerization as suggested. In methods for the OpenSPR experiments probing NT BRAF:RAS interactions, it is stated that "monomeric KRAS was flowed...". This terminology is a bit confusing. How was the monomeric state of KRAS determined and what was the rationale behind the experiment? Is there a difference in binding interactions between "monomeric vs dimeric KRAS"?

      4. The investigators determine binding affinities between GST-HRAS and NT BRAF domains (NT2 7.5 {plus minus} 3.5; NT3 22 {plus minus} 11 nM) by SPR, and propose that the BRS domain has an inhibitory role HRAS interactions with the RAF NT. However, it is unclear whether these differences are statistically meaningful given the error.

      5. It is unclear why NT1 (BSR+RBD+CRD) was not included in the HDX experiments, which makes it challenging to directly compare and determine specific contributions of each domain in the presence of HRAS. Including NT1 in the experimental design could provide a more comprehensive understanding of the interplay between the domains and their respective roles in the HRAS-BRAF interaction. Further, excluding certain domains from the constructs, such as the BSR or CRD, may overlook potential domain-domain interactions and their influence on the conformational changes induced by HRAS binding.

      6. The authors perform pulldown experiments with BRAF constructs (NT1: BSR+RBD+CRD, NT2: BSR+RBD, NT3: RBD+CRD, NT4: RBD alone), in which biotinylated BRAF-KD was captured on streptavidin beads and probed for bound His/MBP-tagged BRAF NTs. Western blot results suggest that only NT1 and NT3 bind to the KD (Figure 5). However, performing a pulldown experiment with an additional construct, CRD alone, it would help to determine whether the CRD alone is sufficient for the interaction or if the presence of the RBD is required for higher affinity binding. This additional experiment would strengthen the authors' arguments and provide further insights into the mechanism of BRAF autoinhibition.

      7. While the investigators state that their findings indicate that H- and KRAS differentially interact with BRAF, most of the experiments are focused on HRAS, with only a subset on KRAS. As SPR & pull-down experiments are only conducted on NT1 and NT2, evidence for RAS isoform-specific interactions is weak. It is unclear why parallel experiments were not conducted with KRAS using BRAF NT3 & NT4 constructs.

      8. The investigators do not cite the AlphaFold prediction of full-length BRAF (AF-P15056-F1) or the known X-ray structure of the BRAF BRS domain. Hence, it is unclear how Alpha-Fold is used to gain new structural information, and whether it was used to predict the structure of the N-terminal regulatory or the full-length protein.

      9. In HDX-MS experiments, it is unclear how the authors determine whether small differences in deuterium uptake observed for some of the peptide fragments are statistically significant, and why for some of the labeling reaction times the investigators state " {plus minus} HRAS only" for only 3 time points?

      10. The investigators find that KRAS binds NT1 in SPR experiments, whereas HRAS does not. However, the pull-down assays show NT1 binding to both KRAS and HRAS. SI Fig 5 attributes this to slow association, yet both SPR (on/off rates) and equilibrium binding measurements are conducted. This data should be able to 'tease' out differences in association.

      11. The model in Figure 7B highlights BSR interactions with KRAS, however, BSR interactions with the KRAS HVR (proximal to the membrane) are not shown, as supported by Terrell et al. (2019).

      12. The investigators state that 'These findings demonstrate that HRAS binding to BRAF directly relieves BRAF autoinhibition by disrupting the NT1-KD interaction, providing the first in vitro evidence of RAS-mediated relief of RAF autoinhibition, the central dogma of RAS-RAF regulation. However, in Tran et al (2005) JBC, they report pull-down experiments using N-and C-terminal fragments of BRAF and state that 'BRAF also contains an N-terminal autoinhibitory domain and that the interaction of this domain with the catalytic domain was inhibited by binding to active HRAS'. This reference is not cited.

      13. In Fig 2, panels A and C, it is unclear what the grey dotted line in is each plot.

      14. In Fig 3, error analysis is not provided for panel E.

      15. How was RAS GMPPNP loading verified?

    1. Reviewer #2 (Public Review):

      Fuentes et al. provide a detailed and thoughtful commentary on the evolutionary and behavioral implications of complex behaviors associated with a small-brained hominin, Homo naledi. Within the Rising Star Cave of South Africa, Berger et al. 2023a,b proposed evidence that Homo naledi intentionally buried their dead through complex mortuary practices and engaged in symbolic expression by engraving the cave walls in cross-hatching motifs. Two burials were identified in the Rising Star cave subsystems: Feature 1 in the Dinaledi Chamber and a feature in the Hill Antechamber. The engravings are located in the Hill Antechamber near the passageway leading into the Dinaledi chamber. The authors aimed to provide evidence for burials by (1) testing sediment samples for mineral composition from within and outside the burial feature; (2) demonstrating an interruption in the stratigraphy indicative of a "bowl-shaped" feature; (3) evaluating the anatomical coherence of the skeletal remains; (4) demonstrate matrix-supported positioning of skeletal elements; and (5) determine the compatibility of non-articulated material with decomposition and subsequent collapse. Berger et al. 2023b evaluated the engravings through high resolution photography, cross-polarization, and 3D photogrammetry. Neither article involved radiometric dating of materials. While the review by Fuentes et al. highlights important assumptions about the relationship between hominin brain size, cognition, and complex behaviors, the evidence presented by Berger et al. 2023a,b does not support the claim that Homo naledi engaged in burial practices or symbolic expression through wall engravings.

      The major weaknesses for Berger et al. 2023a are as follows:

      1) The mineral composition from sediment sampled from within Dinaledi Feature 1 is not different compared to the surrounding sediment, which is one rationale proposed by the authors that would lead to the conclusion of a burial pit. An effort to replicate the multivariate statistical analysis using the data provided in SI Table 1 by this reviewer failed, and thus, the results are not replicable.

      2) The authors failed to provide clear visualizations or analysis that showed an unambiguous interruption in the stratigraphy surrounding the Dinaledi Feature 1.

      3) Attempts 1 and 2 were applied solely to Dinaledi Feature 1, not the Hill Antechamber Feature.

      4) Skeletal cohesion does suggest that the bodies were likely covered or protected by external environment. However, given the geological context, there is minimal opportunity for scavengers or other agents to scatter the skeletal remains within such an isolated location. Thus, this alone cannot solely support intentional burials as this line of evidence is subject to equifinality.

      5) Similar to the preceding statement, evidence for matrix-supported elements was inconclusive at best. There was no mention of sedimentary rate or expectations for how quickly sediments would naturally bury the remains of whole bodies in the chamber compared with the rate of decomposition of buried remains.

      The major weaknesses for Berger et al. 2023b are as follows:

      6) While this is incredibly difficult to accomplish, dating rock art or other cave wall engravings is the only method to ensure that the etchings were created during the time of Homo naledi. Unfortunately, this was not attempted. Instead, the authors state that "This description is intended to document the discovery and provide spatial and contextual information prior to any further analyses that may require invasive sampling." Yet, the authors assign a date to the engravings in the title of the paper. Here, the authors are generating interpretations before analyses are attempted.

      7) The engravings are indeed very interesting and are likely anthropogenic in origin. However, the argument that these engravings were created by Homo naledi is based on the bold assumption that "No physical or cultural evidence of any other hominin population occurs within this part of the cave system, and there is no evidence that recent humans or earlier hominins ever entered any adjacent area of the cave until surveys by human cave explorers during the last 40 years." (page 6). To assume that no other individual entered the cave system from the time of Homo naledi until 40 years ago is an unrealistic and faulty assumption. This reviewer does not discount that the engravings could have been made by Homo naledi, but the evidence must be sufficient to support this statement or provide other alternatives as working hypotheses.

      As a discipline, paleoanthropology aims to understand the evolutionary history of the hominin clade through fossil remains, material culture, and, most recently, ancient DNA. The methods and approaches that we as paleoanthropologists use to understand the past often bridge both the humanities and the hard sciences to create a unique understanding of our shared history. We are only limited by the conditions in which time and attrition has erased pieces of our collective story from the earth. Thus, it is our responsibility to ensure that our interpretations of the past are supported by measurable and testable means, to the best of our ability, and that hypotheses are not presented as conclusions.

      Unfortunately, this is not the case for Berger et al. 2023a,b. The work presented by the authors is imprudent and incomplete and does not meet the requirements set forth by our discipline. While it is important that scholars publish their work in a dutiful timeline, it is arguably more critical for scholars to take the necessary time to ensure the integrity and resolution of the work. The consequences for rushing publications with such a significant unsubstantiated find will likely result in perilous ramifications, as it is more difficult to correct an idea than to introduce one.

    1. Reviewer #2 (Public Review):

      Patterns scored into or painted on durable media have long been considered important markers of the cognitive capabilities of hominins. More specifically, the association of such markers with Homo sapiens has been used to argue that our evolutionary success was in part shaped by our unique ability to code, store and convey information through abstract conventions.

      That singularity of association has been cast into doubt in the last decade with finds of designs apparently painted or carved by Neanderthals, and potentially by even earlier hominins. Even allowing for these developments, however, extending the capability to generate putatively abstract designs to a relatively small-brained hominin like Homo naledi is contentious. The evidential bar for such claims is necessarily high, and I don't believe that it has been cleared here.

      The central issue is that the engravings themselves are not dated. As the authors themselves note, the minimum age constraint provided by U/Th on flowstone does not necessarily relate to the last occupation of the Dinaledi cave system, as the earlier ESR age on teeth does not necessarily document first use of the cave. The authors state that "At present we have no evidence limiting the time period across which H. naledi was active in the cave system". On those grounds though, assigning the age range of presently dated material within the cave system to the engravings - as the current title unambiguously does - is not justifiable.

      Because we don't know when they were made, the association between the engravings and Homo naledi rests on the assertion that no humans entered and made alterations to the cave system between its last occupation by Homo naledi, and its recent scientific recording. This is argued on page 6 with the statement that "No physical or cultural evidence of any other hominin population occurs within this part of the cave system".

      There is an important contrast between the quotes I have referred to in the last two paragraphs. In the earlier quote, the absence of evidence for Homo naledi in the cave system >335 ka and <241 ka is not considered evidence for their absence before or after these ages. Just because we have no evidence that Homo naledi was in the cave at 200 ka doesn't mean they weren't there, which is an argument I think most archaeologists would accept. When it comes to other kinds of humans, though - per the latter quote - the opposite approach is taken. Specifically, the present lack of physical evidence of more recent humans in the cave is considered evidence that no such humans visited the cave until its exploration by cavers 40 years ago. I don't think many archaeologists would consider that argument compelling. I can see why the authors would be drawn to make that assertion, but an absence of evidence cannot be used to argue in one way for use of the cave by Homo naledi and in another way for use of the cave by all other humans.

      A second problem is with what Homo naledi might have made engravings. The authors state that "The lines appear to have been made by repeatedly and carefully passing a pointed or sharp lithic fragment or tool into the grooves". The authors then describe one rock with superficial similarities to a flake from the more recent site of Blombos to suggest that sharp-edge stones with which to make the engravings were available to Homo naledi. Blombos is considered relevant here presumably because it has evidence for Middle Stone Age engravings. The authors do not, however, demonstrate any usewear on that stone object such as might be expected if it was used to carve dolomite. Given that it is presented as the only such find in the cave system so far, this seems important.

      My greater concern is that the authors did not compare the profile morphology of the Dinaledi engravings with the extensive literature on the morphology of scored lines caused by sharp-edge stone implements (e.g., Braun et al. 2016, Pante et al. 2017). I appreciate that the research group is reticent to undertake any invasive work until necessary, but non-destructive techniques could have been used to produce profiles with which to test the proposition that the engravings were made with a sharp edge stone.

      One thing I noticed in this respect is that the engravings seem very wide, both in absolute terms and relative to their depth. The data I collected from the Middle Stone Age engraved ochre from Klein Kliphuis suggested average line widths typically around 0.1-0.2 mm (Mackay and Welz 2008). The engraved lines at Dinaledi appear to be much wider, perhaps 2-5 mm. This doesn't discount the possibility that the engravings in the Dinaledi system were carved with a sharp edge stone - the range of outcomes for such engravings in soft rock can be quite variable (Hodgskiss 2010) - only that detailed analysis should precede rather than follow any assertion about their mode of formation.

      None of this is to say that the arguments mounted here are wrong. It should be considered possible that Homo naledi made the engravings in the Dinaledi cave system. The problem is that other explanations are not precluded.

      As an example, the western end of the Dinaledi subsystem has a particular geometry to the intersection of its passages, with three dominant orientations, one vertical (which is to say, north-south), and two diagonal (Figure 1). The major lines on Panel A have one repeated vertical orientation and two repeated diagonal orientations (Figure 16), particularly in the upper area not impacted by stromatolites. The lines in both the cave system and engravings in Panel A appear to intersect at similar angles. Several of the cave features appear, superficially at least, to be replicated. In fact, scaled, rotated, and super-imposed, Figure 16 is a plausible 'mud map' of the western end of the Dinaledi system carved incrementally by people exploring the caves. A figure showing this is included here:

      Of course, there are problems with this suggestion. The choice of the upper part of Panel A is selective, the similarity is superficial, and the scales are not necessarily comparable. (Note, btw, that all of those caveats hold equally well for the comparison the authors make between the unmodified rock from Dinaledi and the flake from Blombos in Figure 19). However, the point is that such a 'mud map hypothesis' is, as with the arguments mounted in this paper, both plausible and hard to prove.

      Having read this paper a few times, I am intrigued by the engravings in the Dinaledi system and look forward to learning more about them as this research unfolds. Based on the evidence presently available, however, I feel that we have no robust grounds for asserting when these engravings were made, by whom they were made, or for what reason they were made.

      References:

      • Braun, D. R., et al. (2016). "Cut marks on bone surfaces: influences on variation in the form of traces of ancient behaviour." Interface Focus 6: 20160006.

      • Hodgskiss, T. (2010). "Identifying grinding, scoring and rubbing use-wear on experimental ochre pieces." Journal of Archaeological Science 37: 3344-3358.

      • Mackay, A. & A. Welz (2008). "Engraved ochre from a Middle Stone Age context at Klein Kliphuis in the Western Cape of South Africa." Journal of Archaeological Science 35: 1521-1532.

      • Pante, M. C., et al. (2017). "A new high-resolution 3-D quantitative method for identifying bone surface modifications with implications for the Early Stone Age archaeological record." J Hum Evol 102: 1-11.

    1. Reviewer #2 (Public Review):

      In this study (Berger et al.), geological and fossil data from the Rising Star Cave System in South Africa are presented to provide evidence for intentional burials of Homo naledi individuals. The authors focus on describing and interpreting what they refer to as "delimited burial features." These features include two located on the floor of the Dinaledi Chamber (referred to as 'Dinaledi Features' 1 and 2) and one from the floor of the Hill Antechamber.

      'Dinaledi Feature 1' consists of a collection of 108 skeletal elements recovered from sub-unit 3b deposits. These remains are believed to primarily represent the remains of a single adult individual, along with at least one additional juvenile individual. Although additional anatomical elements associated with 'Dinaledi Feature 1' are mentioned, they are not described as they remain unexcavated. The study states that the spatial arrangement of the skeletal remains is indicative of the primary burial of a fleshed body. On the other hand, 'Dinaledi Feature 2' is not extensively discussed, and its complete extent was not thoroughly investigated.

      Regarding the Hill Antechamber feature, it was divided into three separate plaster jackets for removal from the excavation. Through micro-CT and medical CT scans of these plaster jackets, a total of 90 skeletal elements and 51 dental elements were identified. From these data, three individuals were identified, along with a fourth individual described as significantly younger. Individuals 1 and 2 are classified as juveniles.

      I feel that there is a significant amount of missing information in the study presented here, which fails to convince me that the human remains described represent primary burials, i.e. singular events where the bodies are placed in their final resting places. Insufficient evidence is provided to differentiate between natural processes and intentional funerary practices. In my opinion, the study should include a section that distinguishes between taphonomic changes and deliberate human modifications of the remains and their context, as well as reconstruct the sequence and timeline of events surrounding death and deposition. A deliberate burial involves a complex series of changes, including decomposition of soft tissues, disruption of articulations between bones, and the sequence of skeletonization. While the geological information is detailed, the archaeothanatological reasoning (see below) is largely absent and, when presented, it lacks clarity and unambiguousness.

      My main concern is that the study does not apply or cite the basic principles of archaeothanatology, which combines taphonomy, anatomy, and knowledge of human decomposition to interpret the arrangement of human bones within the Dinaledi Chamber and the Hill Antechamber. Archaeothanatology has been developed since the 1970s (see Duday et al., 1990; Boulestin and Duday, 2005; Duday and Guillon, 2006) and has been widely used by archaeologists and osteologists to reconstruct various aspects such as the original treatment of the body, associated mortuary practices, the sequence of body decomposition, and the factors influencing changes in the skeleton within the burial.

      Specifically, the study lacks a description of the relative sequence of joint disarticulation during decomposition and the spatial displacement of bones. A detailed assessment of the anatomical relationships of bones, both articulated and disarticulated, as well as the direction and extent of bone displacement, is missing. For instance, while it is mentioned that "many elements are in articulation or sequential anatomical position," a comprehensive list of these articulated elements and their classification (as labile or not) is not provided.

      Furthermore, the patterns described are not illustrated in sufficient detail. If Homo naledi was deliberately buried, it would be crucial to present illustrations depicting the individuals in their burial positions, as well as the representation and proportions of the larger and smaller anatomical elements for each individual. While Figure 2B provides an overall view of 'Dinaledi Feature 1,' it is challenging to determine the relationships of bones, whether articulated or disarticulated, in Figures 2C or 2D. Such information is essential to determine whether the bones are in a primary or secondary position, differentiate between collective and multiple burials, ascertain the body's stage of decomposition at the time of burial, identify postmortem and post-depositional manipulation of the body and grave (e.g., intentional removal of bodies/body parts), and establish whether burial occurred immediately after death or was delayed.

      Moreover, the study does not address bone displacements within secondary voids created after the decomposition of soft tissues, nor does it provide assessments of the position of bones within or outside of the original body volume. Factors such as variations in soft tissue volume between individuals of different sizes/corpulence, and the progressive filling (i.e., sediment continually fills newly formed voids) or delayed filling (causing the 'flattening' of the ribcage and 'hyper-flexed' burials, for instance) of secondary open spaces with sediment over time should also be discussed.

      In conclusion, while I acknowledge the importance of investigating potential deliberate burials in Homo naledi, I do not think that in its present form, the evidence presented in this study is as robust as it should be.

    1. Reviewer #2 (Public Review):

      The authors have addressed most of the concerns. Yet, I still think the authors should at least mention in the article the residues involved in the intra-pore lipid binding pockets for further experimental validation (not only for those residues involve in disease). This is important because the lipid-like density information usually does not come integrated into the PDB structures, so it is not easily accessible for non-structural biologists. The structural data seems solid, and the MD data supports the notion that the GJC is in a putative close state.

    1. Reviewer #2 (Public Review):

      The Xerces Blue is an iconic species, now extinct, that is a symbol for invertebrate conservation. Using genomic sequencing of century-old specimens of the Xerces Blue and its closest living relatives, the authors hypothesize about possible genetic indicators of the species' demise. Although the limited range and habitat destruction are the most likely culprits, it is possible that some natural reasons have been brewing to bring this species closer to extinction.

      The importance of this study is in its generality and applicability to any other invertebrate species. The authors find that low effective population size, high inbreeding (for tens of thousands of years), and higher fraction of deleterious alleles characterize the Xerces colonies prior to extinction. These signatures can be captured from comparative genomic analysis of any target species to evaluate its population health.

      It should be noted that it remains unclear if these genomic signatures are indeed predictive of extinction, or populations can bounce back given certain conditions and increase their genetic diversity somehow.

      Methods are detailed and explained well, and the study could be replicated. I think this is a solid piece of work. Interested researchers can apply these methods to their chosen species and eventually, we will assemble datasets to study extinction process in many species to learn some general rules.

      Several small questions/suggestions:

      1) The authors reference a study concluding that Shijimiaeoides is Glaucopsyche. Their tree shows the same, confirming previous publications. And yet they still use Shijimiaeoides, which is confusing. Why not use Glaucopsyche for all these blues?

      2) Plebejus argus is a species much more distant from P. melissa than Plebejus anna (anna and melissa are really very close to each other), and yet their tree shows the opposite. What is the problem? Misidentification? Errors in phylogenetic analyses?

      3) Wouldn't it be nicer to show the underside of butterfly pictures that reveals the differences between xerces and others? Now, they all look blue and like one species, no real difference.

      4) The authors stated that one of five xerces specimens failed to sequence, and yet they show 5 specimens in the tree. Was the extra specimen taken from GenBank?

    1. Reviewer #2 (Public Review):

      Accumulating data suggests that the presence of immune cell infiltrates in the meninges of the multiple sclerosis brain contributes to the tissue damage in the underlying cortical grey matter by the release of inflammatory and cytotoxic factors that diffuse into the brain parenchyma. However, little is known about the identity and direct and indirect effects of these mediators at a molecular level. This study addresses the vital link between an adaptive immune response in the CSF space and the molecular mechanisms of tissue damage that drive clinical progression. In this short report the authors use a spatial transcriptomics approach using Visium Gene Expression technology from 10x Genomics, to identify gene expression signatures in the meninges and the underlying brain parenchyma, and their interrelationship, in the PLP-induced EAE model of MS in the SJL mouse. MRI imaging using a high field strength (11.7T) scanner was used to identify areas of meningeal infiltration for further study. They report, as might be expected, the upregulation of genes associated with the complement cascade, immune cell infiltration, antigen presentation, and astrocyte activation. Pathway analysis revealed the presence of TNF, JAK-STAT and NFkB signaling, amongst others, close to sites of meningeal inflammation in the EAE animals, although the spatial resolution is insufficient to indicate whether this is in the meninges, grey matter, or both.

      UMAP clustering illuminated a major distinct cluster of upregulated genes in the meninges and smaller clusters associated with the grey matter parenchyma underlying the infiltrates. The meningeal cluster contained genes associated with immune cell functions and interactions, cytokine production, and action. The parenchymal clusters included genes and pathways related to glial activation, but also adaptive/B-cell mediated immunity and antigen presentation. This again suggests a technical inability to resolve fully between the compartments as immune cells do not penetrate the pial surface in this model or in MS. Finally, a trajectory analysis based on distance from the meningeal gene cluster successfully demonstrated descending and ascending gradients of gene expression, in particular a decline in pathway enrichment for immune processes with distance from the meninges.

      Although these results confirm what we already know about processes involved in the meninges in MS and its models and gradients of pathology in sub-pial regions, this is the first to use spatial transcriptomics to demonstrate such gradients at a molecular level in an animal model that demonstrates lymphoid like tissue development in the meninges and associated grey matter pathology. The mouse EAE model being used here does reproduce many, although not all, of the pathological features of MS and the ability to look at longer time points has been exploited well. However, this particular spatial transcriptomics technique cannot resolve at a cellular level and therefore there is a lot of overlap between gene expression signatures in the meninges and the underlying grey matter parenchyma.

      The short nature of this report means that the results are presented and discussed in a vague way, without enough molecular detail to reveal much information about molecular pathogenetic mechanisms.

      The trajectory analysis is a good way to explore gradients within the tissues and the authors are to be applauded for using this approach. However, the trajectory analysis does not tell us much if you only choose 2 genes that you think might be involved in the pathogenetic processes going on in the grey matter. It might be more useful to choose some genes involved in pathogenetic processes that we already know are involved in the tissue damage in the underlying grey matter in MS, for which there is already a lot of literature, or genes that respond to molecules we know are increased in MS CSF, although the animal models may be very different. Why were C3 and B2m chosen here?

      Strengths:<br /> - The mouse model does exhibit many of the features of the compartmentalized immune response seen in MS, including the presence of meningeal immune cell infiltrates in the central sulcus and over the surface of the cortex, with the presence of FDC's HEVs PNAd+ vessels and CXCL13 expression, indicating the formation of lymphoid like cell aggregates. In addition, disruption of the glia limitans is seen, as in MS. Increased microglial reactivity is also present at the pial surface.<br /> - Spatial transcriptomics is the best approach to studying gradients in gene expression in both white matter and grey matter and their relationship between compartments.<br /> - It would be useful to have more discussion of how the upregulated pathways in the two compartments fit with what we know about the cellular changes occurring in both, for which presumably there is prior information from the group's previous publications.

      Limitations:<br /> - EAE in the mouse is not MS and may be far removed when one considers molecular mechanisms, especially as MS is not a simple anti-myelin protein autoimmune condition. Therefore, this study could be following gene trajectories that do not exist in MS. This needs a significant amount of discussion in the manuscript if the authors suggest that it is mimicking MS.<br /> - The model does not have the cortical subpial demyelination typical of MS and it is unknown whether neuronal loss occurs in this model, which is the main feature of cytokine-mediated neurodegeneration in MS. If it does not then a whole set of genes will be missing that are involved in the neuronal response to inflammatory stimuli that may be cytotoxic.<br /> - Visium technology does not get down to single cell level and does not appear to allow resolution of the border between the meninges and the underlying grey matter.<br /> - Neuronal loss in the MS cortex is independent of demyelination and therefore not related to remyelination failure. There does not appear to be any cortical grey matter demyelination in these animals, so it is difficult to relate any of the gene changes seen here to demyelination.<br /> - No mention of how the ascending and descending patterns of gene expression may be due to the gradient of microglial activation that underlies meningeal inflammation, which is a big omission.

    1. Reviewer #2 (Public Review):

      The authors succeed in generalizing the pre-alignment procedure for their cell identification method to allow it to work effectively on data with only small subsets of cells labeled. They convincingly show that their extension accurately identifies head angle, based on finding auto fluorescent tissue and looking for a symmetric l/r axis. They demonstrate that the method works to identify known subsets of neurons with varying accuracy depending on the nature of underlying atlas data. Their approach should be a useful one for researchers wishing to identify subsets of head neurons in C. elegans, for example in whole brain recording, and the ideas might be useful elsewhere.

      The authors also strive to give some general insights on what makes a good atlas. It is interesting and valuable to see (at least for this specific set of neurons) that 5-10 ideal examples are sufficient. However, some critical details would help in understanding how far their insights generalize. I believe the set of neurons in each atlas version are matched to the known set of cells in the sparse neuronal marker, however this critical detail isn't explicitly stated anywhere I can see. In addition, it is stated that some neuron positions are missing in the neuropal data and replaced with the (single) position available from the open worm atlas. It should be stated how many neurons are missing and replaced in this way (providing weaker information). It also is not explicitly stated that the putative identities for the uncertain cells (designated with Greek letters) are used to sample the neuropal data. Large numbers of openworm single positions or if uncertain cells are misidentified forcing alignment against the positions of nearby but different cells would both handicap the neuropal atlas relative to the matched florescence atlas. This is an important question since sufficient performance from an ideal neuropal atlas (subsampled) would avoid the need for building custom atlases per strain.

    1. Reviewer #2 (Public Review):

      This manuscript presents a comprehensive investigation into the role of condensin complexes in telomere segregation in fission yeast. The authors employ chromatin immunoprecipitation analysis to demonstrate the enrichment of condensin at telomeres during anaphase. They then use condensin conditional mutants to confirm that this complex plays a crucial role in sister telomere disjunction as well as the unclustering of telomeric regions from the preceding Rabl configuration. Interestingly, they show that condensin's role in telomere disjunction is unlikely related to catenation removal but rather related to the organization of telomeres in cis and/or the elimination of structural constraints or proteins that hinder separation.

      The authors also investigate the regulation of condensin localization to telomeres and reveal the involvement of the shelterin subunit Taz1 in promoting condensin's association with telomeres while demonstrating that the chromatin remodeler Mit1 prevents excessive loading of condensin onto telomeres. Finally, they show that cohesin acts as a negative regulator of telomere separation, counteracting the positive effects of condensin.

      Overall, the manuscript is well-executed, and the authors provide sufficient supporting evidence for their claims. There are a couple of aspects that arise from this study that when fully elucidated will lead to a mechanistic understanding of important biological processes. For instance, the exact mechanism by which Taz1 affects condensin loading or the mechanistic link between cohesin and condensin, especially in the context of their opposing roles, are exciting prospects for the future and it is possible that future work within the context of telomeres might provide valuable insights into this question.

      Another crucial point emphasized by the manuscript is that the role of condensin in telomere segregation extends beyond facilitating catenation removal.

    1. Reviewer #2 (Public Review):

      Antibody-dependent enhancement (ADE) of Dengue is largely driven by cross-reactive antibodies that target the DENV fusion loop or pre-membrane protein. Screening polyclonal sera for antibodies that bind to these cross-reactive epitopes could increase the successful implementation of a safe DENV vaccine that does not lead to ADE. However, there are few reliable tools to rapidly assess the polyclonal sera for epitope targets and ADE potential. Here the authors develop a live viral tool to rapidly screen polyclonal sera for binding to fusion loop and pre-membrane epitopes. The authors performed a deep mutational scan for viable viruses with mutations in the fusion loop (FL). The authors identified two mutations functionally tolerable in insect C6/36 cells, but lead to defective replication in mammalian Vero cells. These mutant viruses, D2-FL and D2-FLM, were tested for epitope presentation with a panel of monoclonal antibodies and polyclonal sera. The D2-FL and D2-FLM viruses were not neutralized by FL-specific monoclonal antibodies demonstrating that the FL epitope has been ablated. However, neutralization data with polyclonal sera is contradictory to the claim that cross-reactive antibody responses targeting the pre-membrane and the FL epitopes wane over time.

      Overall the central conclusion that the engineered viruses can predict epitopes targeted by antibodies is supported by the data and the D2-FL and D2-FLM viruses represent a valuable tool to the DENV research community.

    1. Reviewer #2 (Public Review):

      In the present study, Masson et al. provide an elegant and profound demonstration of utilization of systems genetics data to fuel discovery of actionable therapeutics. The strengths of the study are many: generation of a novel skeletal muscle genetics proteomic dataset which is paired with measures of glucose metabolism in mice, systematic utilization of these data to yield potential therapeutic molecules which target insulin resistance, cross-referencing library screens from connectivity map with an independent validation platform for muscle glucose uptake and preclinical data supporting a new mechanism for thiostrepton in alleviating muscle insulin resistance. Future studies evaluating similar integrations of omics data from genetic diversity with compound screens, as well as detailed characterization of mechanisms such as thiostrepton on muscle fibers will further inform some remaining questions. In general, the thorough nature of this study not only provides strong support for the conclusions made but additionally offers a new framework for analysis of systems-based data. I had made several comments on the prior submission, all of which have been fully addressed and incorporated.

    1. Reviewer #2 (Public Review):

      This study is carefully designed and well executed, including a comprehensive suite of endpoint measures and large sample sizes that give confidence in the results. I have a few general comments and suggestions that the authors might find helpful.

      1) I found it difficult to fully grasp the experimental design, including the length of light treatment in the three different experiments (which appears to extend from 2 weeks up to 8 weeks). A graphical description of the experimental design along a timeline would be very helpful to the reader. I suggest adding the respective sample sizes to such a graphic, because this information is currently also difficult to keep track of.

      2) The authors use a lot of terminology that is second nature to a chronobiologist but may be difficult for the general reader to keep track of. For example, what is the difference between "photoinducibility" and "photosensitivity"? Similarly, "vernal" and "autumnal" should be briefly explained at the outset, or maybe simply say "spring equinox" and "fall equinox."

      3) What was the rationale for using only male birds in this study? The authors may want to include a brief discussion on whether the expected results for females might be similar to or different from what they found in males, and why.

      4) The authors used the Bonferroni correction method to account for multiple hypothesis testing of measures of testes mass, body mass, fat score, vimentin immunoreactivity and qPCR analyses in Study 1. I don't think Bonferroni is ever appropriate for biological data: these methods assume that all variables are independent of each other, an assumption that is almost never warranted in biology. In fact, the data show clear relationships between these endpoint measures. Alternatively, one might use Benjamini-Hochberg's FDR correction or various methods for calculating the corrected alpha level.

      5) The graphical interpretations of the results shown in Figure 1n and Figure 3e, along with the hypothesized working model shown in Figure S5, might best be combined into a single figure that becomes part of the Discussion. As is, I do not think these interpretative graphics (which are well done and super helpful!) are appropriate for the Results section.

    1. Reviewer #2 (Public Review):

      The authors applied existing ReadZS and the SpliZ methods, previously developed to analyze RNA process in scRNA-seq data, to Visium data to study spatial splicing and RNA processing events in tissues by Moran's I. The authors showed several example genes in mouse brain and kidney, whose processing are spatially regulated, such as Rps24, Myl6, Gng13.

      The paper touches on an important question in RNA biology about how RNA processing is regulated spatially. Both experimental and computational challenges remain to address it. Despite some potentially interesting findings, most claims remain to be validated by orthogonal methods such as RNA FISH and simulations. In addition, the percentage of spatial processing events (splicing in 0.8-2.2% of detected genes, i.e. 8-17 genes and RNA processing in 1.1-5.5% of detected genomic windows, i.e. 57-161 windows) discovered is low. Does it suggest that most of RNA processing events were not spatially regulated across the tissue? Or does it question the assumption of treating spatial transcriptomics data similar to scRNA-seq data? The unique features for ST data, such as mixture of neighboring cells, different capture biases and much smaller number of spots (pseudo cells here), may have significant effects on the power of scRNA-seq based methods, but it is not discussed in the manuscript. The lack of careful evaluation and low discovery rates could limit application of the approach to other tissues and subcellular data.

    1. Reviewer #2 (Public Review):

      This manuscript by Touray, et al. provides a significant new twist to our understanding of how antigenic variation may be regulated in T. brucei. Key aspects of antigenic variation are the mutually exclusive expression of a single antigen per cell and the periodic switching from expression of one antigen isoform to another. In this manuscript, the authors show, as they have previously shown, that depletion of the nuclear phosphatidylinositol 5-phosphatase (PIP5Pase) results in a loss of mutually exclusive VSG expression. Furthermore, using ChIP-seq, the authors show that the repressor/activator protein 1 (RAP1) binds to regions upstream and downstream of VSG genes located in transcriptionally repressed expression sites and that this binding is lost in the absence of a functional PIP5Pase. Importantly, the authors decided to further investigate this link between PIP5Pase and RAP1, a protein that has previously been implicated in antigenic variation in T. brucei, and found that inactivation of PIP5Pase results in the accumulation of PI(3,4,5)P3 bound to the RAP1 N-terminus and that this binding impairs the ability of RAP1 to bind DNA. Based on these observations, the authors suggest that the levels of PI(3,4,5)P3 may determine the cellular function of RAP1, either by binding upstream of VSG genes and repressing their function, or by not binding DNA and allowing the simultaneous expression of multiple VSG genes in a single parasite.

      While I find most of the data presented in this manuscript compelling, there are aspects of Figure 1 that are not clear to me. Based on Figure 1F, the authors claim that transient inactivation of PIP5Pase results in a switch from the expression of one VSG isoform to another. However, I am not exactly sure what the authors are showing in this panel, nor do the data in Figure 1F seem to be consistent with those shown in Figure 1C. Based on Figure 1F, a transient inactivation of PIP5Pase appears to result in an almost exclusive switch to a VSG located in BES12. However, based on Figure 1E, the VSG transcripts most commonly found after a transient inactivation of PIP5Pase are those from the previously active VSG (BES1) and VSGs located on chr 1 and 6 (I believe). The small font and the low resolution make it impossible to infer the location of the expressed VSG genes, nor to confirm that ALL VSG genes located in expression sites are activated, as the authors claim. Also, I was not able to access the raw ChIP-seq and RNA-seq reads. Thus, could not evaluate the quality of the sequencing data.

    1. Reviewer #2 (Public Review):

      The authors develop SPRAWL (Subcellular Patterning Ranked Analysis With Labels), a statistical framework to identify cell-type specific subcellular RNA localization from multiplexed imaging datasets. The tool is able to assign to each gene and in each annotated cell type, a score (with a p-value) that measures:<br /> - Peripheral/central localization of RNAs within the cell, based on a previous segmentation step defining cell boundaries and the centroid coordinate.<br /> - Radial/punctuate localization of RNAs within the cell

      The method is applied to three multiplexed imaging datasets, identifying defined and cell-type specific patterns for several transcripts.

      In the second part of the manuscript, the authors couple SPRAWL with ReadZS, a computational tool developed by the same group and recently published (Meyer et al, 2022). Starting from single-cell datasets, ReadZS is able to quantify 3'UTR length in each cell type. The authors find a subset of genes showing a positive, or negative correlation between the predicted localization and the predicted 3'UTR length across cell types.

      Strengths:<br /> As the authors state in the introduction, the study of subcellular RNA localization, with the characterization of organizational principles and of molecular regulation mechanisms, is extremely relevant. The authors develop a strategy to detect statistically significant and non-random patterns of RNA sub-cellular localization in MERFISH and SeqFISH+ datasets, i.e. emerging platforms producing spatially resolved maps of hundreds of transcripts with cellular resolution.

      Weaknesses:<br /> Although the method and the presented results have strengths in principle, the main weakness of the paper is that these strengths are not directly demonstrated. That is, insufficient validations are performed to show the biological significance of the results and to fully support the key claims in the manuscript by the data presented.

      In particular, the authors imply that their tool is unique and not comparable to any other method. Therefore there is no comparison of SPRAWL with any other method. For example, a comparison could be made with Baysor (Petukhov, V et al. Nat Biotechnol. https://doi.org/10.1038/s41587-021-01044-w). According to the authors, this method is able to identify "small molecular neighbourhoods with stereotypical transcriptional composition" and provides a "General approach for statistical labeling of spatial data".

      The authors claim that SPRAWL is able to identify spatial patterns of localization and generated relevant hypotheses to be tested, yet the manuscript contains little proof that the results have biological significance (for example association of RNAs with specific subcellular compartments) and there is no experimental validation for the results obtained applying this method.

      The correlation between localization scores and 3'UTR length across cell types for certain genes is also not experimentally validated: results are based on inference from single-cell or imaging data, with no complementary experimental validation.

      It is therefore very difficult to assess the biological relevance of the results produced by SPRAWL.

    1. Reviewer #2 (Public Review):

      The manuscript by Ma et al, "Two RNA-binding proteins mediate the sorting of miR223 from mitochondria into exosomes" examines the contribution of two RNA-binding proteins on the exosomal loading of miR223. The authors conclude that YBX1 and YBAP1 work in tandem to traffic and load miR223 into the exosome. The manuscript is interesting and potentially impactful. It proposes the following scenario regarding the exosomal loading of miR223: (1) YBAP1 sequesters miR223 in the mitochondria, (2) YBAP1 then transfers miR223 to YBX1, and (3) YBX1 then delivers miR223 into the early endosome for eventual secretion within an exosome. While the authors propose plausible explanations for this phenomenon, they do not specifically test them and no mechanism by which miR223 is shuttled between YBAP1 and YBX1, and the exosome is shown. Thus, the paper is missing critical mechanistic experiments that could have readily tested the speculative conclusions that it makes.

      Comments:<br /> 1. The major limitation of this paper is that it fails to explore the mechanism of any of the major changes it describes. For example, the authors propose that miR223 shuttles from mitochondrially localized YBAP1 to P-body-associated YBX1 to the exosome. This needs to be tested directly and could be easily addressed by showing a transfer of miR223 from YBAP1 to YBX1 to the exosome.<br /> 2. If YBAP1 retains miR223 in mitochondria, what is the trigger for YBAP1 to release it and pass it off to YBX1? The authors speculate in their discussion that sequestration of mito-miR223 plays a "role in some structural or regulatory process, perhaps essential for mitochondrial homeostasis, controlled by the selective extraction of unwanted miRNA into RNA granules and further by secretion in exosomes...". This is readily testable by altering mitochondria dynamics and/or integrity.<br /> 3. Much of the miRNA RT-PCR analysis is presented as a ratio of exosomal/cellular. This particular analysis assumes that cellular miRNA is unaffected by treatments. For example, Figure 1a shows that the presence of exosomal miR223 is significantly reduced when YBX1 is knocked out. This analysis does not consider the possibility that YBX1-KO alters (up or down-regulates) intracellular miR223 levels. Should that be the case, the ratiometric analysis is greatly skewed by intracellular miRNA changes. It would be better to not only show the intracellular levels of the miRs but also normalize the miRNA levels to the total amount of RNA isolated or an irrelevant/unchanged miRNA.<br /> 4. In figure 1, the authors show that in YBX1-KO cells, miR223 levels are decreased in the exosome. They further suggest this is because YBX1 binds with high affinity to miR223. This binding is compared to miR190 which the authors state is not enriched in the exosome. However, no data showing that miR190 is not present in the exosome is shown. A figure showing the amount of cellular and exosomal miR223 and 190 should be shown together on the same graph.<br /> 5. Figure 2 Supplement 1 - As to determine the nucleotides responsible for interacting with YBX1, the authors made several mutations within the miR223 sequence. However, no explanation is given regarding the mutant sequences used or what the ratios mean. Mutant sequences need to be included. How do the authors conclude that UCAGU is important when the locations of the mutations are unclear? Also, the interpretation of this data would benefit from a binding affinity curve as shown in Fig 2C.<br /> 6. While the binding of miR223mut to YBX1 is reduced, there is still significant binding. Does this mean that the 5nt binding motif is not exact? Do the authors know if there are multiple nucleotide possibilities at these positions that could facilitate binding? Perhaps confirming binding "in vivo" via RIP assay would further solidify the UCAGU motif as critical for binding to YBX1.<br /> 7. Figures 2g, h - It would be nice to show that miR190mut also packages in the cell-free system. This would confirm that the sequence is responsible. Also, to confirm that the sorting of miR223 is YBX1-dependent, a cell-free reaction using cytosol and membranes from YBX1 KO cells is needed.<br /> 8. In Figure 3a, the authors show that miR223 is mitochondrially localized. Does the sequence of miR223 (WT or Mut) matter for localization? Does it matter for shuttling between YBAP1 and YBX1?<br /> 9. Supplement 3c - Is it strange that miR190 is not localized to any particular compartment? Is miR190 present ubiquitously and equally among all intracellular compartments?<br /> 10. Figure 3h - Why would the miR223 levels increase if you remove mitochondria? Does CCCP also cause miR223 upregulation? I would have thought miR223 would just be mis-localized to the cytosol.<br /> 11. Figure 3i - What is the meaning of "Urd" in the figure label? This isn't mentioned anywhere.<br /> 12. Figure 3j - The data is presented as a ratio of EV/cell. Again, this inaccurately represents the amount of miR223 in the EV. This issue is apparent when looking at Figures 3h and 3j. In 3h, CCCP causes an upregulation of intracellular miR223. As such, the presumed decrease in EV miR233 after CCCP (3j) could be an artifact due to increased levels of intracellular miR223. Both intracellular and EV levels of miRs need to be shown.<br /> 13. In Figure 4, the authors show that when overexpressed, YBX1 will pulldown YBAP1. Can the authors comment as to why none of the earlier purifications show this finding (Figure 1 for example)? Even more curious is that when YBAP1 is purified, YBX1 does not co-purify (Figure 4 supplement 1a, b).<br /> 14. Figure 4f, g - The text associated with these figures is very confusing, as is the labeling for the input. Also, what is "miR223 Fold change" in this regard? Seeing as your IgG should not have IP'd anything, normalizing to IgG can amplify noise. As such, RIP assays are typically presented as % input or fold enrichment.<br /> 15. Figure 4h - The authors show binding between miR223 and YBAP1 however it is not clear how significant this binding is. There is more than a 30-fold difference in binding affinity between miR223 and YBX1 than between miR223 and YBAP1. Even more, when comparing the EMSAs and fraction bound from figures 1 and 2 to those of Figure 4h, the binding between miR223 and YBAP1 more closely resembles that of miR190 and YBX1, which the authors state is a non-binder of YBX1. The authors will need to reconcile these discrepancies.<br /> 16. Can the authors present the Kd values for EMSA data?<br /> 17. Figure 5 - Does YBAP1-KO affect mitochondrial protein integrity or numbers?<br /> 18. Figure 6a - Are the authors using YBAP1 as their mitochondrial marker? Please include TOM20 and/or 22.<br /> 19. Figure 6b - Rab5 is an early endosome marker and may not fully represent the organelles that become MVBs. Co-localization at this point does not suggest that associating proteins will be present in the exosome, and it is possible that the authors are looking at the precursor of a recycling endosome. Even more, exosome loading does not occur at the early endosome, but instead at the MVB. Perhaps looking at markers of the late endosome such as Rab7 or ideally markers of the MVB such as M6P or CD63 would help draw an association between YBX1, YBAP1, and the exosome. Also, If the authors want to make the claim that interactions at the early endosome leads to secretion as an exosome, the authors should show that isolated EVs from Rab5Q79L-expressing cells contain miR223.<br /> 20. The mentioning of P-bodies is interesting but at no time is an association addressed. This is therefore an overly speculative conclusion. Either show an association or leave this out of the manuscript.<br /> 21. In lines 55-58, the authors make the comment "However, many of these studies used sedimentation at ~100,000 g to collect EVs, which may also collect RNP particles not enclosed within membranes which complicates the interpretation of these data." Do RNPs not dissolve when secreted? Can the authors give a reference for this statement?

    1. Reviewer #2 (Public Review):

      The authors tested TTFields' effect on TNT formation in two mesothelioma cell lines, MSTO-211H and VMAT. The MSTO-211H is a biphasic cell line with epithelioid and sarcomatoid features while VMAT only has sarcomatoid morphology. They treated their cell lines at 150 or 200 kHz either unidirectionally or bidirectionally. The experiments took place within 72 hours of plating, after which the cells will become confluent on coverslips and their TNT formation drops.

      Under these experimental conditions, they found: (i) Unidirectional is more effective than bidirectional TTFields in reducing TNT formation, (ii) TNT formation was markedly reduced after 48 hours of treatment in MSTO-211H but not VMAT cells, (iii) no difference in actin polymerization or actin filament bundling after one hour of TTFields treatment, (iv) reduced TNT formation when TTFields were combined with cisplatin but not with both cisplatin and pemetrexed, (v) analysis TNT cargo transport using markers of gondolas and mitochondria did not show changes in transport velocity, and (vi) in vivo spatial transcriptomic analysis revealed EMT markers and immunogenic markers.

    1. Reviewer #2 (Public Review):

      I've read the manuscript by Shin et al with great interest. The authors describe the identification of O-GlcNAcylation of DNMT1 and the impact this modification has on the maintenance activity of DNMT1 genome-wide and that modification of S878 leads to enzyme inhibition.<br /> The manuscript is written in a clear and understandable way making it easy for the reader to understand the logic as well as the steps of the experimental approach.

      The authors identify O-GlcNAcylation of DNMT1 in a number of different cell lines by combining inhibition studies and WB and further on they identify the modification sites with LC/MS, predictions, and mutational studies. I really like the experimental approach, which while being straightforward (albeit technically challenging), is powerful and well-controlled in this case to unequivocally prove the modification of DNMT1 and identify the site. However, mutation of the two identified modification sites does not remove all the O-GlcNAcylation signal associated with DNMT1, thus possibly not all the possible sites were identified. While this is not a criticism of this manuscript, it would be interesting to know what other sites are modified and the enzymatic/biological effects associated.

      Also, the authors isolate the modified DNMT1 from cells using immunoprecipitation, which is indeed useful to study the changes in catalytic activity but does not provide any information if the cellular localisation of modified DNMT1 changes. Subsequently, the authors checked the impact of high glucose diet on the genome-wide DNA methylation patterns. The observed effects (Fig 4A) are very strong, almost as strong as observed with Aza treatment and therefore I wonder if LINE/IAP or other elements are getting activated (as observed with genome-wide demethylation with Aza). Do the authors see any changes in cell phenotype, slower/faster proliferation, or increased apoptosis due to the activation of mobile elements (not only ROS)? Another point is that the S878A mutant seems not to be able to fully maintain the DNA methylation (Fig 4A). Does O-GlcNAcylation recruit any additional interactors? Given that the authors immunoprecipitated DNMT1 and use it for activity assay, it is possible, that the modification attracts an additional protein factor that could in turn inhibit DNMT1 activity (as observed). Therefore, the observed kinetic effect could be indirect, while still interesting and important, the mechanism of inhibition would be different.

      DNA methylation clock can be used to estimate the biological age of a tissue/cells. While not directly in the line of the manuscript, I was wondering if the DNA methylation changes in the high glucose diet would affect the methylation sites used for the DNAme clock. Meaning, would the cells/tissue epigenetically age faster when in high glucose media, and if the Ala mutant could provide resistance to that?

      In discussion, the authors write that this is the first investigation of O-GlcNAcylation in relation to DNA methylation, while this is true for DNMTs, TET enzymes, that oxidise 5mC and trigger active DNA demethylation have been shown before to also be modified.

      A nice and rigorous study, with important observations and connections to biological effects. It would be nice to prove that the effects are direct and not associated with other factors that could be recruited by the modification and impact the activity of DNMT1. I find it a bit surprising that phosphorylation of the target serine does not impact DNMT1 activity as well.

    1. Reviewer #2 (Public Review):

      Fuzzell et al. conducted a mixed-method study looking into the possible impact of COVID-19 on clinician perceptions of cervical cancer screening. The authors examined how the pandemic-related staffing changes might have affected the screening and abnormal results follow-up during the period October 2021 through July 2022.

      They found that 80% of the clinicians experienced decreased screening during the start of the pandemic and that ≈67% reported a return to pre-pandemic levels. The general barriers for not returning to pre-pandemic levels were staffing shortages and problems with structural systems for tracking overdue patients and those in need of follow-up after abnormal screening tests.

      Strengths:

      There is a high focus on the consequences and the need for action to prevent the ongoing impact of COVID-19 on cervical cancer screening. Some of the actions mentioned by the authors could be the use of HPV self-sampling kits, and it is interesting to be provided knowledge on the clinicians' views on HPV self-sampling. Both are of high interest to the general population in the US. Throughout the discussion, the authors and their claims are supported by other studies.

      Weaknesses:

      The lack of a National representative sample, where 63% of the responding clinicians were practicing in the Northeast, affects the possibility of generalization of the results found in the study. The overrepresentation of white females is not addressed in the discussion. This composition could have affected the results, especially when the authors report a need to look at higher salaries and better childcare to maintain adequate staffing.

      The conclusions are mostly supported by the data, however, some aspects of the data analysis need to be clarified.

    1. Reviewer #2 (Public Review):

      In this study, the authors sought to elucidate regulators of mitochondrial DNA (mtDNA) quality control in the germline. To this end, the authors used Caenorhabditis elegans as a model organism and 3.1kb mtDNA deletion mutation uaDf5 that is stably transmitted across generations. The key data presented were the heteroplasmy level of mtDNA, specifically the molar ratio of mutant vs. wildtype (WT) mtDNA molecules, at different ages. The authors specifically focused on the role of programmed cell death (PCD) signaling and a few well-known aging pathways in C. elegans. The data showed that attenuation of PCD has the general effect of increasing the steady-state mutant-to-WT ratio, while increasing PCD does not reduce this ratio. The data also showed that this mutant-to-WT ratio increases with age, an effect that is transmitted to progenies, and that perturbations to well-known insulin signaling and CLK-1 aging pathways affect the rate of this increase, where a longer lifespan is correlated with a slower increase. Finally, the data demonstrated an intergenerational reduction in mutant-to-WT ratio and that the degree of this reduction has a nonlinear ultrasensitive-like dependence on the ratio.

      A strength of the study is the comprehensive exploration of the role of key molecules of the PCD machinery in mtDNA quality control in the germline. Also, the data on the effects of age and aging pathways on the maintenance of mtDNA quality in the germline, as well as on intergenerational mtDNA quality control, are extremely interesting and have the potential to trigger transformative studies that connect mtDNA purifying selection and aging.

      A major weakness of the study is that the key findings are predominantly based on data of the mutant-to-WT mtDNA ratio. But, a higher mutant-to-WT ratio does not necessarily equate to an increase/accumulation of mutant mtDNA in the cell population, since the same increase can also be caused by a decrease in WT mtDNA. No data for copy numbers of WT and mutant mtDNA or their proxies were analyzed. As a consequence, some of the major findings, such as the non-canonical/non-apoptotic role of PCD machinery in mediating mitochondrial purifying selection and the accumulation of mutant mtDNA with age, cannot be uniquely concluded from the data. Alternative explanations could be given to explain the observed trends of mutant-to-WT ratios.

      Another weakness is that the connection between the two pathways in this study: PCD and aging, in regulating mtDNA quality control was not more deeply explored. The study did not delve into how the interplay of aging and PCD if any, affects mtDNA quality control in the germline.

      Finally, as the authors noted, the important role of stochasticity in purifying selection against pathogenic mtDNA is established. Yet, this aspect of purifying selection is not explored in this study (e.g., how such stochasticity is working with PCD in mtDNA quality control in the germline), nor it is accounted for in the analysis of the data and the discussion of the observation.

    1. Reviewer #2 (Public Review):

      In this work, Hänisch and colleagues investigate the relationship between neurotransmitter transporter and receptor's spatial heterogeneity and well-studied functional and structural brain gradients in the human brain. They calculate the spatial similarity between the distribution of the neurotransmitter transporters and receptors for each parcel, thus obtaining a new brain distribution comprising a similarity index of all neurotransmitters mapped to each brain area. They employ a nonlinear dimensionality reduction on this neurotransmitter similarity map to reveal three spatial gradients for cortical and subcortical levels, respectively. Based on this, they characterize their significance by comparing them with functional fMRI meta-analytic activations, MRI microstructure, architectural contextualization, MRI-based structural and functional connectivity, and gray matter atrophy-derived disease maps.

      The claim of the work is broad, and the motivation is general, but the data presented is specific and biologically diverse. The neurotransmitter system operates at different pre- and post-synaptic synaptic levels, and the general assumption that transporters are equivalent to receptors lacks appropriate discussion for supporting this claim. The motivations of the work are very broad, and the analysis used is sufficient for the general claims, but the data presented is specific and biologically diverse.

      Besides these conceptual issues, I find this work interesting as it jointly characterizes the cortical and subcortical PET neurotransmitter's distribution maps and their structural and functional meaning for the first time. In essence, the study presents several arguments to consider the organization of the characterized maps as an additional layer of brain organization. The results are convincing and clearly presented. Although this is a correlative study using unconnected datasets, I appreciate the use of multiple brain maps. I also appreciate that the authors made the data and code available for reproducibility. The data and analysis used in the current draft enable a powerful set of tools for hypothesis testing in the human brain's natural distribution of neurotransmitters beyond the usual pharmacological intervention strategy traditionally used in neurotransmitters' brain mapping area.

    1. Reviewer #2 (Public Review):

      Yadav et al have performed a careful systematic review and meta-analysis of mental health disorder prevalence ratios in PCOS to estimate the mental health-related excess economic burden associated with this common endocrine disorder. Using random effect modelling of prevalence ratios from quality-assessed, peer-reviewed publications, they determine the excess PCOS-related prevalence and healthcare costs associated with anxiety, depression, and eating disorders to be greater than $4 billion USD per year. In conjunction with previously reported direct economic burden estimates for PCOS, they determine that PCOS healthcare costs exceed $15 billion USD per year (in the US alone) and that mental health disorder-related costs account for nearly one-third of these costs. The findings of this paper will be impactful for a broad field of clinical and bench scientists investigating PCOS, endocrinologists, general practitioners, health economists, and policymakers. The findings of this paper demonstrate the significant contribution that mental health-related pathology makes to the total economic burden associated with PCOS and present a strong case for additional research and policy investment into this underfunded area.

      The important findings and claims presented in this paper are mostly clearly presented and well supported by strong evidence and careful analysis. However, some additional clarity and rationalisation of referenced healthcare cost input to the model would strengthen the conclusions.

      Strengths:<br /> This paper clearly describes the inclusion criteria and characteristics of the included studies. The papers included were quality assessed using a well-regarded assessment tool and only those with high-quality information were included in subsequent meta-analyses. Publication bias was assessed by multiple methods and data were interpreted accordingly.

      The authors combine their mental health-related findings with previously reported economic burden estimates for specific PCOS-related care and treatment to provide a comprehensive estimation of PCOS-related healthcare costs in the US. They discuss these findings in relation to healthcare-related costs reported for other prevalent disorders and make a compelling case for prioritising research and investment into PCOS.

      An important observation made by the authors is the relatively small contribution to PCOS economic burden made by diagnostic evaluation, supporting quality diagnosis and evaluation as a cost-effective measure to improve PCOS patient treatment.

      Weaknesses:<br /> The systematic review includes data from some studies where PCOS is self-reported. While self-reported PCOS information has been found to be largely sensitive and specific, it would be of interest to know if prevalence ratios of mental health-related were impacted by self-reporting. Likewise, the screening vs self-reported nature of the mental health disorders is not clear from the information included in the characteristics table.

      Calculated prevalence ratios were compared with prevalence values for the general population to determine the excess prevalence. However, the source of these general population statistics (i.e., whether these figures come from the control data in the included studies or other sources) is not clear. The estimated costs for anxiety-, depression- and eating disorder-related care are accessed in published papers and used to calculate the excess costs. Conclusions would be strengthened by a defence of these figures, particularly for anxiety where the source paper is from 1999. An inflation tool is used to adjust the figure, but this does not take into account changes in treatment or practice since this estimate was made. The accuracy of these estimated figures is central to the final conclusions.

    1. Reviewer #2 (Public Review):

      Gavagan et al. investigated the role of the scaffolding protein, Axin, in the cross-pathway inhibition of GSK3b. The authors utilize reconstituted Axin, b-catenin, GSK3b, and protein kinase A to test 2 models. In the first model, the formation of the complex consisting of Axin, b-catenin, and GSK3b overcomes inhibitory phosphorylation of serine 9 of GSK3b. In the second model, the binding of Axin to GSK3b inhibits serine 9 phosphorylation through allosteric effects.

      Previous literature has established that the phosphorylation of serine 9 of GSK3b inhibits its kinase activity. To provide a quantitative measure of inhibition, the authors determine the binding affinity and catalytic efficiency of GSK3b in comparison to GSK3b phosphoS9 towards b-catenin. Interestingly, the data demonstrate a 200-fold decrease in Kcat/Km and 7 fold increase in Km. It is unclear why serine 9 mutation to alanine increases the rate of B-catenin phosphorylation more than the GSK unphosphorylated protein in figure S10. Next, the authors tested if the addition of Axin could overcome this inhibition. Although the addition of Axin decreases the Km, thereby producing a 20-fold increase in catalytic efficiency, the addition of Axin does not rescue the catalytic turnover of the phosphorylated GSK3b. Hence, the authors propose that Axin does not rescue the kinase activity of GSK3b from the inhibitory effects of serine 9 phosphorylation.

      Next, the authors test if Axin protects GSK3b from phosphorylation by the upstream kinase PKA. Excitingly, the data show a decrease in binding affinity and catalytic efficiency of PKA with GSK3b phosphoS9 in comparison to GSK3b. The binding of Axin inhibits GSK3b serine 9 phosphorylation by PKA but does not inhibit the phosphorylation of other PKA substrates such as Creb. The authors demonstrate that a fragment of Axin, residues 384-518, behaves similarly to the full-length Axin to shield GSK3b from phosphorylation. However, it is unclear how this fragment may bind in the destruction complex and if Axin has allosteric effects on GSK3b.

    1. Reviewer #2 (Public Review):

      The aim of this work is to introduce a new pipeline for mapping the human auditory pathway using structural and diffusional MRI, and to examine the brain structural development of children with profound congenital sensorineural hearing loss (SNHL) at both the acoustic processing level and the speech perception level. The authors use this pipeline to investigate the structural development of the auditory-language network for profound SNHL children with normal peripheral structure and those with inner ear malformations and/or cochlear nerve deficiency (IEM&CND). The authors successfully developed a new pipeline for reconstructing the human auditory pathway and used it to investigate the structural development of the auditory-language network in children with profound SNHL. They segmented the subcortical auditory nuclei using super-resolution track density imaging (TDI) maps and T1-weighted images and tracked the auditory and language pathways using probabilistic tractography. The authors found that the language pathway was more sensitive to peripheral auditory condition than the central auditory pathway, highlighting the importance of early intervention for profound SNHL children to provide timely speech inputs. The authors also proposed a comprehensive pre-surgical evaluation extending from the cochlea to the auditory-language network, which has promising clinical potential.

      The major strengths of this work are the use of a new pipeline for mapping the human auditory pathway, the inclusion of children with profound SNHL with and without IEM&CND, and the finding that the language pathway is more sensitive to peripheral auditory condition than the central auditory pathway. However, a limitation of this study is the small sample size, which may limit the generalizability of the findings.

      The results support the conclusions that the language pathway is more sensitive to peripheral auditory condition than the central auditory pathway, highlighting the importance of early intervention for profound SNHL children to provide timely speech inputs.

      This work has the potential to have a significant impact on the field by providing new insights into the structural development of the auditory-language network in children with profound SNHL. The methods and data presented in this work may be useful to the community in developing comprehensive pre-surgical evaluation for children with profound SNHL extending from the cochlea to the auditory-language network.

    1. Reviewer #2 (Public Review):

      This paper by Rodbarg et al describes an interesting study on the role of beta noradrenergic receptors in action-related activity in the premotor cortex of behaving rats. This work is precious because even if the action of neuromodulatory systems in the cortex is thought to be critical for cognition, there is very little data to actually substantiate the theories. The study is well conducted and the paper is well written. I think, however, that the paper could benefit from several modifications since I can see 3 major issues:

      Both from a theoretical and from a practical point of view, the emphasis on 'cue-related' activity and the potential influence of NA on sensory processing is problematic. First, recent studies in rodents and primates have clearly demonstrated that LC activation is more closely related to actions than to stimulus processing (see Poe et al, 2020 for review). Second, the analysis of neural activity around cue onset should be examined with spikes aligned on the action, since M2 is a motor region and raster plots suggest that activity is strongly related to action (I'll be more specific below).

      The distinction between neural activity and behavior or cognition is not always clear. I understand that spike count can be related to motor preparation or decision, but it should not be taken for granted that neuronal activity is action planning. The analysis should be clarified and the relation between neural activity, behavior, and potential hidden cognitive operations should be explicated more clearly.<br /> The sex difference is interesting, but at the moment it seems anecdotal. From a theoretical point of view, is there any ecological/ biological reason for a sex dependency of noradrenergic modulation of the cortex? Is there any background literature on sex differences in motor functions in rats, or in terms of NA action? If not, why does it matter (how does it change the way we should interpret the data?) From a practical point of view, is there a functional sex difference in absence of treatment, or is it that the drug has a distinct effect on males vs females? This has very distinct consequences, I think.

      These issues could be clarified both in the introduction and in the discussion, but the authors might have a different view on what is theoretically relevant here. In the result section, however, I think that both the lack of specificity in the description of behavior and cognitive operation and the confusion between 'sensory' and 'motor' functions make it very difficult to figure out what is going on in these experiments, both at a behavioral and at a neurophysiological level.

      First, the description of the behavior in the task is clearly not sufficient, which makes the interpretation of the measures very difficult. One possible interpretation of the effects of the drug is a decrease in motivation, for instance, due to a decrease in reward sensitivity or an increase in sensitivity to effort. But there are others. More importantly, none of these measures can be used to tease apart action preparation from action execution, even though the study is supposed to be about the former.<br /> Also, but this is less critical: In Figures 2C and D, it looks like there is a bimodal distribution for the effect of propranolol in females. Is there something similar in the neuronal effects of the drug? And in the distribution of receptors? Can it be accounted for by hormonal cycles/ anything else?

      The description of neural activity is also very superficial.<br /> In general, it is not clear how spike count measures have been extracted. For example, legend and figure C are not clear, is the (long) period of cue presentation included in the 'decision time'?? "Cues were presented at a variable interval 200-700ms after initiation and until animals left the well, 'Well Exit'. The time from cue onset to well exit was identified as the decision time (yellow)." Yet on the figure only the period after cue presentation is in yellow. This is critical because, given the duration of the cue, the animals are probably capable of deciding (to exit the well) before the cue turns off. Indeed, as shown in fig 2D, the animals can decide within about 500 ms. So to what extent is the 'cue response' actually a 'decision response'? When looking at figure 3A, there is clearly a pattern on the raster, a line going from top left to bottom right. If the trials are sorted chronologically, something is happening over time. If, as I suspect, trials are sorted by ascending response time, this raster is showing that what authors are calling a 'response to cues' is actually a response around action. Basically, if propranolol slows down reaction time, the spikes will be delayed from cue onset only because they remain locked to the action. Then the whole analysis and interpretation need to be reconsidered. But it might be for the best: as I mentioned earlier, recent work on LC activity has clearly emphasized its influence on motor rather than sensory processing (Poe et al, 2020).

      Fig 2D-F: it is hard to believe that the increase in firing rate induced by propranolol in females is not significant. Presumably, because the range of the median firing rate is so high in the first place, distribution (2E) really indicates an increase in firing. Maybe some other test? e.g paired t.test, or standardized values (z.score) to get rid of variability in firing across neurons?

      Along those lines, would it be worth looking for effects on specific populations (interneurons) which are sometimes characterized by thinner spikes and higher mean firing rates? Given the distribution of beta receptors RNA on interneurons, one would actually expect an effect of propranolol on the firing rate irrespective of task events. Or what is it that prevents the influence of propranolol on interneurons from changing the firing rate? In any case, one of the strengths of this study is the localization of beta receptors on specific neuronal populations in the cortex, so I think that the authors should really try to build on it and find something related to the neurophysiological effects. Otherwise, one cannot exclude the possibility that the behavioral effects are not related to the influence of the drug on these receptors in that region.

      The conclusion that neuronal discrimination decreases because the proportion of neurons showing no effect increases is confusing (negative results, basically). It would be clearer if they were reporting the number of neurons that do show an effect, and presumably that this number shows a significant decrease.<br /> Figs 3F-I: a good proportion of neurons (at least 20%) show a significant encoding before cue onset. How is it possible? This raises the issue of noise level/ null hypothesis for this kind of repeated analysis. How did the author correct for multiple comparison issues?<br /> The description of the action-related activity is globally confusing. Again, how can the authors discriminate between activity related to planning vs action itself? What is significant and what is not, in males vs females? What is being measured here? For example, a very unclear statement on line 238: "Propranolol primarily disrupted active inhibition of irrelevant action selection in M2 activity, reducing the ability to maintain action plan representation in M2, delaying lever press responses (Figure 4L, 4M)." What is 'active inhibition? What is an irrelevant action plan? What is selection? All of that should be defined using objective behavioral criteria and tested formally.<br /> Also, the description of the classifier analysis should be more thorough. Referencing the toolbox is not sufficient to understand what has been done.<br /> Measuring Beta adrenoceptors is a great idea, and the results are interesting, especially the difference between neuron types. But again, how does that fit with neurophysiological results? Note, that since this is RNA measures, it should not be phrased as 'receptors' but 'receptors RNA' throughout. One possible interpretation of these anatomical results that cannot be reconciled with physiology is that protein expression at the membrane shows a distinct pattern.

      In conclusion, I think that this is a very interesting study and that the results are potentially relevant for a wide audience. But the paper would clearly benefit from revisions. If the authors could clearly identify a significant relationship between the action of NA on beta receptors on specific cortical neurons, at a physiological and behavioral level, that would be a seminal study. At the moment, the evidence is not convincing enough but the data suggest that it is the case.

    1. Reviewer #2 (Public Review):

      This is a very interesting and compelling paper reporting a method for analyzing the features of action potential conduction in cortical and spinal neurons in vitro using high-density CMOS micro-electrode arrays. The authors report the performances of their detection algorithm allowing them to reconstruct the functional map of single-branching axons. In particular, they compare the functional conduction maps of cortical and spinal axons, and they show that spinal axons display larger spike signals in their distal part compared to cortical axons, but a lower number of branches. In addition, they reveal that spinal axons display a higher conduction velocity compared to cortical ones.

      This study is particularly interesting as it constitutes a compelling methodological report of action potential propagation up to 5-8 mm in single axons in vitro.

    1. Reviewer #2 (Public Review):

      There are data to suggest that intratumour mutational heterogeneity (ITH; the proportion of all mutations that are found only within cancer subclones) is associated with worse therapeutic outcomes. Specifically, patients with more mutations (and thus neoantigens) mostly expressed by subclones (high ITH) have poorer responses to checkpoint immunotherapy. The authors set out to explore the mechanisms underlying this by studying 2 dimensions of neoantigen biology: firstly, distribution (clonal vs subclonal) and secondly, immunogenicity (weak vs strong binding to MHC class I). Using a panel of lung cancer cell lines modified to express individual or dual neoantigens in order to model clonal and subclonal expression, elegant studies show that clonal co-expression with a "strong" neoantigen can boost the immunogenicity of a "weak" neoantigen and result in tumour control. Mechanistically, this is related to engulfment of both neoantigens by cross presenting type 1 conventional dendritic cells and the associated enhanced activation state of this cell type. This is an interesting and potentially important finding that may be related to mechanisms of epitope spreading as immune responses diverge from targeting more to less immunogenic epitopes. Overall, the study is thought-provoking, informative in relation to how neoantigen immunogenicity is shaped and may have practical relevance.

    1. Reviewer #2 (Public Review):

      Summary:

      Zhou et al. use publicly available GTEx data of 18 metabolic tissues from 310 individuals to explore gene expression correlation patterns within-tissue and across-tissues. They detect signatures of known metabolic signaling biology, such as ADIPOQ's role in fatty acid metabolism in adipose tissue. They also emphasize that their approach can help generate new hypotheses, such as the colon playing an important role in circadian clock maintenance. To aid researchers in querying their own genes of interest in metabolic tissues, they have developed an easy-to-use webtool (GD-CAT).

      This study makes reasonable conclusions from its data, and the webtool would be useful to researchers focused on metabolic signaling. However, some misconceptions need to be corrected, as well as greater clarification of the methodology used.

      Strengths:

      GTEx is a very powerful resource for many areas of biomedicine, and this study represents a valid use of gene co-expression network methodology. The authors do a good job of providing examples confirming known signaling biology as well as the potential to discover promising signatures of novel biology for follow-up and future studies. The webtool, GD-CAT, is easy to use and allows researchers with genes and tissues of interest to perform the same analyses in the same GTEx data.

      Weaknesses:

      A key weakness of the paper is that this study does not involve genetic correlations, which is used in the title and throughout the manuscript, but rather gene co-expression networks. The authors do mention the classic limitation that correlation does not imply causation, but this caveat is even more important given that these are not genetic correlations. Given that the goal of their study aligns closely with multi-tissue WGCNA, which is not a new idea (e.g., Talukdar et al. 2016; https://doi.org/10.1016/j.cels.2016.02.002), it is surprising that the authors only use WGCNA for its robust correlation estimation (bicor), but not its latent factor/module estimation, which could potentially capture cross-tissue signaling patterns. It is possible that the biological signals of interest would be drowned out by all the other variation in the data but given that this is a conventional step in WGCNA, it is a weakness that the authors do not use it or discuss it.

    1. Reviewer #2 (Public Review):

      This study aims to describe a physical interaction between the kinase DYRK1A and the Tuberous Sclerosis Complex proteins (TSC1, TSC2, TBC1D7). Furthermore, this study aims to demonstrate that DYRK1A, upon interaction with the TSC proteins regulates mTORC1 activity and cell size. Additionally, this study identifies T1462 on TSC2 as a phosphorylation target of DYRK1A. Finally, the authors demonstrate the role of DYRK1A on cell size using human, mouse, and Drosophila cells.

      This study, as it stands, requires further experimentation to support the conclusions on the role of DYRK1A on TSC interaction and subsequently on mTORC1 regulation. Weaknesses include, 1) The lack of an additional assessment of cell growth/size (eg. protein content, proliferation), 2) the limited data on the requirement of DYRK1A for TSC complex stability and function, and 3) the limited perturbations on the mTORC1 pathway upon DYRK1A deletion/overexpression. Finally, this study would benefit from identifying under which nutrient conditions DYRK1A interacts with the TS complex to regulate mTORC1.

      The interaction described here is highly impactful to the field of mTORC1-regulated cell growth and uncovers a previously unrecognized TSC-associated interacting protein. Further characterization of the role that DYRK1A plays in regulating mTORC1 activation and the upstream signals that stimulate this interaction will be extremely important for multiple diseases that exhibit mTORC1 hyper-activation.

    1. Reviewer #2 (Public Review):

      The manuscript starts with a demonstration of pantoate binding to ASBTnm using a thermostability assay and ITC, and follows with structure determinations of ASBTnm with or without pantoate. The structure of ASBTnm in the presence of pantoate pinpoints the binding site of pantoate to the "crossover" region formed by partially unwinded helices TMs 4 and 9. Binding of pantoate induces modest movements of side chain and backbone atoms at the crossover region that are consistent with providing coordination of the substrate. The structures also show movement of TM1 that opens the substrate binding site to the cytosol and mobility of loops between the TMs. MD simulations of the ASBT structure embedded in lipid bilayer suggests a stabilizing effect of the two sodium ions that are known to co-transport with the substrate. Binding study on pantoate analogs further demonstrates the specificity of pantoate as a substrate.

      The weakness of the manuscript includes a lack of transport assay for pantoate and a lack of demonstration that the observed conformational changes in TM1 and the loops are relevant to the binding or transport of pantoate.

      Overall, the structural, functional and computational studies are solid and rigorous, and the conclusions are well justified. In addition, the authors discussed the significance of the current study in a broader perspective relevant to recent structures of mammalian BASS members.

    1. Reviewer #2 (Public Review):

      This is an excellent paper that uses structural work to determine the precise role of one of the few invariant proteins on the surface of the African trypanosome. This protein, ISG65, was recently determined to be a complement receptor and specifically a receptor of C3, whose binding to ISG65 led to resistance to complement-mediated lysis. But the molecular mechanism that underlies resistance was unknown.

      Here, through cryoEM studies, the authors reveal the interaction interface (two actually) between ISG65 and C3, and based on this, make inferences regarding downstream events in the complement cascade. Specifically, they suggest that ISG65 preferably binds the converted C3b (rather than the soluble C3). Moreover, while conversion to a C3bB complex is not blocked, the ability to bind complement receptors 1 and 3 is likely blocked.

      Of course, all this is work on proteins in isolation and the remaining question is - can this in fact happen on the membrane? The VSG-coated membrane is supposed to be incredibly dense (packed at the limits of physical density) and so it is unclear whether the interactions that are implied by the structural work can actually happen on the membrane of a live trypanosome. This is not necessarily a ding but it should be addressed in the manuscript perhaps as a caveat.

    1. Reviewer #2 (Public Review):

      In this study Hui Dong et al. identified and characterized two transporters of the monocarboxylate family, which they called Apcimplexan monocarboxylate 1 and 2 (AMC1/2) that the authors suggest are involved in the trafficking of metabolites in the non-photosynthetic plastid (apicoplast) of Toxoplasma gondii (the parasitic agent of human toxoplasmosis) to maintain parasite survival. To do so they first identified novel apicoplast transporters by conducting proximity-dependent protein labeling (TurboID), using the sole known apicoplast transporter (TgAPT) as a bait. They chose two out of the three MFS transporters identified by their screen based and protein sequence similarity and confirmed apicoplast localisation. They generated inducible knock down parasite strains for both AMC1 and AMC2, and confirmed that both transporters are essential for parasite intracellular survival, replication, and for the proper activity of key apicoplast pathways requiring pyruvate as carbon sources (FASII and MEP/DOXP). Then they show that deletion of each protein induces a loss of the apicoplast, more marked for AMC2 and affects its morphology both at its four surrounding membranes level and accumulation of material in the apicoplast stroma. This study is very timely, as the apicoplast holds several important metabolic functions (FASII, IPP, LPA, Heme, Fe-S clusters...), which have been revealed and studied in depth but no further respective transporter have been identified thus far. hence, new studies that could reveal how the apicoplast can acquire and deliver all the key metabolites it deals with, will have strong impact for the parasitology community as well as for the plastid evolution communities. The current study is well initiated with appropriate approaches to identify two new putatively important apicoplast transporters, and showing how essential those are for parasite intracellular development and survival. However, in its current state, this is all the study provides at this point (i.e. essential apicoplast transporters disrupting apicoplast integrity, and indirectly its major functions, FASII and IPP, as any essential apicoplast protein disruption does). The study fails to deliver further message or function regarding AMC1 and 2, and thus validate their study. Currently, the manuscript just describes how AMC1/2 deletion impacts parasite survival without answering the key question about them: what do they transport? The authors yet have to perform key experiments that would reveal their metabolic function. I would thus recommend the authors work further and determine the function of AMC1 and 2.

    1. Reviewer #2 (Public Review):

      In this work, the authors investigate the role of CRB3 in the formation of the primary cilium both in a mouse model and in human cells. They confirm in a conditional knock-out (KO) mouse model that Crb3 is necessary for the formation of the primary cilium in mammary and renal epithelial tissues and the new-born mice exhibit classical traits of ciliopathies. In the mouse mammary gland, the absence of Crb3 induces hyperplasia and tumorigenesis and in the human mammary tumor cells MCF10A the knock-down (KD) of CBR3 impairs ciliogenesis and the formation of a lumen in 3D-cultures with less apoptosis and spindle orientation defects during cell division.

      To determine the subcellular localization of CRB3 the authors have expressed exogenously a GFP-CRB3 in MCF10A and found that this tagged protein localizes in cell-cell junctions and around pericentrin, a centrosome marker while endogenous CRB3 localizes at the basal body. To dissect the molecular role of CRB3 the authors have performed proteomic analyses after a pull-down assay with the exogenous tagged-CRB3 and found that CRB3 interacts with Rab11 and is present in the endosomal recycling pathway. CRB3 KD also decreases the interactions between components of the gamma-TuRC. In addition, the authors showed that CRB3 interacts with a tagged-Rab11 by its extracellular domain and that CRB3 promotes the interaction between Rab11 and CEP290 while CRB3 KD decreased the co-localization of GCP6 with Rab11 and gamma-Tub.

      Finally, the authors showed that CRB3 depletion cannot activate the Hh pathway as opposed to the Wnt pathway.

    1. Reviewer #2 (Public Review):

      The authors aimed to understand how epistasis influences the genetic architecture of the DNA-binding domain (DBD) of steroid hormone receptor. An ordinal regression model was developed in this study to analyze a published deep mutational scanning dataset that consists of all combinatorial amino acid variants across four positions (i.e. 160,000 variants). This published dataset measured the binding of each variant to the estrogen receptor response element (ERE, sequence: AGGTCA) as well as the steroid receptor response element (SRE, sequence: AGAACA). This model has major strengths of being reference free and able to account for global nonlinearity in the genotype-phenotype relationship. Thorough analyses of the modelling results have performed, which provided convincing results to support the importance of epistasis in promoting evolution of protein functions. This conclusion is impactful because many previous studies have shown that epistasis constrains evolution. However, the model in this study requires transformation of continuous functional data into categorical form, which would reduce precision in estimating the genetic architecture. Besides, generalizability of the findings in this study is unclear. These limitations, which are acknowledged by the authors, are minor and should not affect the conclusion of this study. The novelty of this study will likely stimulate new ideas in the field. The model will also likely be utilized by other groups in the community.

    1. Reviewer #2 (Public Review):

      N6-methyladenosine (m6A), the most abundant mRNA modification, is deposited by the m6A methyltransferase complexes (MTC). While MTC in mammals/flies/plants consists of at least six subunits, yeast MTC was known to contain only three proteins. Ensinck, Maman, et al. revisited this question using a proteomic approach and uncovered three new yeast MTC components, Kar4/Ygl036w/Dyn2. By applying sequence and structure comparisons, they identified Kar4, Ygl036w, Slz1 as homologs of the mammalian METTL14, VIRMA. ZC3H13, respectively. While these proteins are essential for m6A deposition, the dynein light chain protein, Dyn2, is not involved in mRNA methylation. Interestingly, while mammalian and fly MTCs are configured as MAC (METTL3 and METTL14) and MACOM (other subunits) complexes, yeast MTC subunits appear to have different configurations. Finally, Kar4 has a different role as transcription regulator in mating, which is not mediated by other MTC members. These data establish fundamental framework for the yeast MTC and also provide novel insights for those studying m6A deposition.

    1. Reviewer #2 (Public Review):

      Harding et al have analysed 75 sedaDNA samples from Store Vidarvatn in Iceland. They have also revised the age-depth model of earlier pollen, macrofossil, and sedaDNA studies from Torfdalsvatn (Iceland), and they review sedaDNA studies for first detection of Betulaceae and Salicaceae in Iceland and surrounding areas. Their Store Vidarvatn data are potentially very interesting, with 53 taxa detected in 73 of the samples, but only results on two taxa are presented. Their revised age-depth model cast new light on earlier studies from Torfdalsvatn, which allows a more precise comparison to the other studies. The main result from both sedaDNA and the review is that Salicaceae arrives before Betulaceae in Iceland and the surrounding area. This is a well-known fact from pollen, macrofossil, and sedaDNA studies (Fredskild 1991 Nordic J Bot, Birks & Birks QSR 2014, Alsos et al. 2009, 2016, 2022) and as expected as the northernmost Salix reach the Polar Desert zone (zone A, 1-3{degree sign}C July temperature) whereas the northernmost Betula rarely goes beyond the Southern Tundra (zone D, 8-9{degree sign}C July temperature, Walker et al. 2005 J. Veg. Sci., Elven et al. 2011 http://panarcticflora.org/ ).

      My major concern is their conclusion that lag in shrubification may be expected based on the observations that there is a time gap between deglaciation and the arrival of Salicaceae and between the arrival of Salicaceae and Betulaceae. A "lag" in biological terms is defined as the time from when a site becomes environmentally suitable for a species until the species establish at the site (Alexander et al. 2018 Glob. Change Biol.). The climate requirement for Salicaceae highly depends on species. In the three northernmost zones (A-C), it appears as a dwarf shrub, and it only appears as a shrub in the Southern Tundra (D) and Shrub Tundra (E) zone, and further south it is commonly trees. Thus, Salicaceae cannot be used to distinguish between the shrub tundra and more northern other zones, and therefore cannot be used as an indicator for arctic shrubification. Betulaceae, on the other hand, rarely reach zone C, and are common in zone D and further south. Thus, if we assume that the first Betulaceae to arrive in Iceland is Betula nana, this is a good indicator of the expansion of shrub tundra. Thus, if they could estimate when the climate became suitable for B. nana, they would have a good indicator of colonisation lags, which can provide some valuable information about time lags in shrub expansion (especially to islands). They could use either independent proxy or information from the other species recorded in sedaDNA to reconstruct minimum July temperature (see e.g. Parducci et al. 2012a+b Science, Alsos et al. 2020 QSR).

      The study gives a nice summary of current knowledge and the new sedaDNA data generated are valuable for anyone interested in the post-glacial colonisation of Iceland. Unfortunately, neither raw nor final data are given. Providing the raw data would allow re-analysing with a more extensive reference library, and providing final data used in their publication will for sure interest many botanists and palaeoecologist, especially as 73 samples provide high time resolution compared to most other sedaDNA studies.

    1. Reviewer #2 (Public Review):

      Joshi et al. investigated the use of dantrolene, an RyR stabilizing drug, in improving contractile function and slowing pathological progression of pressure-overload heart failure. In a guinea pig model, they found that dantrolene treatment reduced cytosolic Ca2+ levels, improved contractility, reduced the incidence of arrhythmias, reduced fibrosis, and slowed the progression of heart failure. Importantly, delaying treatment until 3 weeks after aortic banding (when heart failure was already established) also resulted in improvements in function and decreased arrhythmogenesis. While some of the mechanistic details remain to be worked out, the data suggest that improving intracellular Ca2+ handling can break the vicious cycle of sympathetic activation, ROS production, and further deterioration of cardiac function.

      The functional ECG and echo data are convincing, and very clearly demonstrate the positive effects of dantrolene in heart failure. This is important because dantrolene is already FDA-approved to treat malignant hyperthermia and muscle spasms, so repurposing this drug as a heart failure therapeutic might have a straightforward path to clinical implementation. This also highlights the non-specific nature of dantrolene to interact with RyR1, and therefore, potential side effects. However, this does not detract from the main proof-of-concept demonstrated here.

      The guinea pig model employed here is also a strength, as the guinea pig has intracellular Ca2+ handling and ionic currents that are much more similar to human (vs. a murine model, for example).

      One weakness is the exclusion of female animals from the study. The authors report more heterogeneity in the progression of HF in the female guinea pig model, however it will be very important to determine effects of dantrolene in the female heart, as there are considerable known sex differences in intracellular Ca2+ handling and contractility. Therefore, it is possible that dantrolene could have sex-dependent effects.

      The title and parts of the discussion of the manuscript focus on 'repolarization reserve'. This term is often used in the realm of safety pharmacology, and 'reserve' refers to the fact that blocking a single K+ channel (for example) may not impact action potential duration because there may be enough other K+ currents to ensure proper repolarization. The repolarization reserve refers to this overall balance of depolarizing and repolarizing currents and potential redundancies to ensure proper repolarization. Although the present study clearly demonstrates QT shortening with dantrolene (thus, there must be a change in the balance of depolarizing and repolarizing currents), the study does not definitively demonstrate changes in any membrane currents. While this may seem like a minor point of terminology, it may mislead readers as to the main focus of the study, which is not at all on ionic currents, but on functional outcomes.

    1. Reviewer #2 (Public Review):

      I am not qualified to judge the narrow claim that certain units of the long calls are isochronous at various levels of the pulse hierarchy. I will assume that the modelling was done properly. I can however say that the broad claims that (i) this constitutes evidence for recursion in non-human primates, (ii) this sheds light on the evolution of recursion and/or language in humans are, when not made trivially true by a semantic shift, unsupported by the narrow claims. In addition, this paper contains errors in the interpretation of previous literature.

      The main difficulty when making claims about recursion is to understand precisely what is meant by "recursion" (arguably a broader problem with the literature that the authors engage with). The authors offer some characterization of the concept which is vague enough that it can include anything from "celestial and planetary movement to the splitting of tree branches and river deltas, and the morphology of bacteria colonies". With this appropriately broad understanding, the authors are able to show "recursion" in orangutans' long calls. But they are, in fact, able to find it everywhere. The sound of a plucked guitar string, which is a sum of self-similar periodic patterns, count as recursive under their definition as well.

      One can only pick one's definition of recursion, within the context of the question of interest: evolution of language in humans. One must try to name a property which is somewhat specific to human language, and not a ubiquitous feature of the universe we live in, like self-similarity. Only after having carved out a sufficiently distinctive feature of human language, can we start the work of trying to find it in a related species and tracing its evolutionary history. When linguists speak of recursion, they speak of in principle unbounded nested structure (as in e.g. "the doctor's mother's mother's mother's mother ..."). The author seems to acknowledge this in the first line of the introduction: "the capacity to *iterate* a signal within a self-similar signal" (emphasis added). In formal language theory, which provides a formal and precise definition of one notion of recursivity appropriate for human language, unbounded iteration makes a critical difference: bounded "nested structures" are regular (can be parsed and generated using finite-state machines), unbounded ones are (often) context-free (require more sophisticated automaton). The hierarchy of pulses and sub-pulses only has a fixed amount of layers, moreover the same in all productions; it does not "iterate".

      Another point is that the authors don't show that the constraints that govern the shape of orangutans long calls are due to cognitive processes. Any oscillating system will, by definition, exhibit isochrony. For instance, human trills produce isochronouns or near isochronous pulses. No cognitive process is needed to explain this; this is merely the physics of the articulators. Do we know that the rhythm of the pulses and sub-pulses in orangutans is dictated by cognition as opposed to the physics of the articulators?

      Even granting the authors' unjustified conclusion that wild orangutans have "recursive" structures and that these are the result of cognition, the conclusions drawn by the authors are too often fantastic leaps of induction. Here is a cherry-picked list of some of the far-fetched conclusions:

      - "our findings indicate that ancient vocal patterns organized across nested structural strata were likely present in ancestral hominids". Does finding "vocal patterns organized across nested structural strata" in wild orangutans suggest that the same were present in ancestral hominids?<br /> - "given that isochrony universally governs music and that recursion is a feature of music, findings (sic.) suggest a possible evolutionary link between great ape loud calls and vocal music". Isochrony is also a feature of the noise produced by cicadas. Does this suggest an evolutionary link between vocal music and the noise of cicadas?

      Finally, some passages also reveal quite glaring misunderstandings of the cited literature. For instance:

      - "Therefore, the search for recursion can be made in the absence of meaning-base operations, such as Merge, and more generally, semantics and syntax". It is precisely Chomsky's (disputable) opinion that the main operation that govern syntax, Merge, has nothing to do with semantics. The latter is dealt within a putative conceptual-intentional performance system (in Chomsky's terminology), which is governed by different operations.<br /> - "Namely, experimental stimuli have consisted of artificial recursive signal sequences organized along a single temporal scale (though not structurally linear), similarly with how Merge and syntax operate". The minimalist view advocated by Chomsky assumes that mapping a hierarchichal structure to a linear order (a process called linearizarion) is part of the articulatory-perceptual system. This system is likewise not governed by Merge and is not part of "syntax" as conceived by the Chomskyan minimalists.

    1. Reviewer #2 (Public Review):

      With a much higher spatiotemporal resolution of ground dynamics than any previous study, the authors uncover new "rules" of locomotory motor sequences during peristalsis and turning behaviors. These new motor sequences will interest the broad neuroscience community that is interested in the mechanisms of locomotion in this highly tractable model. The authors uncover new and intricate patterns of denticle movements and planting that seem to solve the problem of net motion under conditions of force-balance. Simply put, the denticulated "feet" or tail of the Drosophila larva are able to form transient and dynamic anchors that allow other movements to occur.

      The biology and dynamics are well-described. The physics is elementary and becomes distracting when occasionally overblown. For example, one doesn't need to invoke Newton's third law, per se, to understand why anchors are needed so that peristalsis can generate forward displacements. This is intuitively obvious. Another distracting allusion to "physics" is correlating deformation areas with displaced volume, finding that "volume is a consequence of mass in a 2nd order polynomial relationship". I have no idea what this "physics" means or what relevance this relationship has to the biology of locomotion.

      The ERISM and WARP methods are state-of-the-art, but aside from generally estimating force magnitudes, the detailed force maps are not used. The most important new information is the highly accurate and detailed maps of displacement itself, not their estimates of applied force using finite element calculations. In fact, comparing displacements to stress maps, they are pretty similar (e.g., Fig 4), suggesting that all experiments are performed in a largely linear regime. It should also be noted that the stress maps are assumed to be normal stresses (perpendicular to the plane), not the horizontal stresses that are the ones that actually balance forces in the plane of animal locomotion.

      But none of this matters. The real achievements are the new locomotory dynamics uncovered with these amazing displacement measurements. I'm only asking the authors to be precise and down-to-earth about the nature of their measurements.

      It would be good to highlight the strength of the paper -- the discovery of new locomotion dynamics with high-resolution microscopy -- by describing it in simple qualitative language. One key discovery is the broad but shallow anchoring of the posterior body when the anterior body undertakes a "head sweep". Another discovery is the tripod indentation at the tail at the beginning of peristalsis cycles.

      As far as I know, these anchoring behaviors are new. It is intuitively obvious that anchoring has to occur, but this paper describes the detailed dynamics of anchoring for the first time. Anchoring behavior now has to be included in the motor sequence for Drosophila larva locomotion in any comprehensive biomechanical or neural model.

    1. Reviewer #2 (Public Review):

      This is an important and large experimental study examining the effects of plant species richness, plant genotypic richness, and soil water availability on herbivory patterns on Piper species in tropical forests.

      A major strength is the size of the study and the fact that it tackled so many potentially important factors simultaneously. The authors examined both interspecific plant diversity and intraspecific plant diversity. They crossed that with a water availability treatment. And they repeated the experiment across five geographically separated sites.

      The authors find that both water availability and plant diversity, intraspecific and interspecific, influence herbivore diversity and herbivory, but that the effects differ in important ways across sites. I found the study to be solid and the results to be very convincing. The results will help the field grapple with the importance of environmental change and biodiversity loss and how they structure communities and alter species interactions.

    1. Reviewer #2 (Public Review):

      This manuscript describes a role for the ATM-E6AP-MASTL pathway in DNA damage checkpoint recovery. However, the data in the first version of the manuscript strongly suggest that E6AP is involved in checkpoint activation, which raises doubts about the exact function of this pathway. Additional minor issues were raised regarding the quality of some of the data. Although some minor points were addressed in the revised manuscript, the major issue whether the E6AP-MASTL pathway mediates checkpoint activation or checkpoint recovery was not experimentally addressed. Instead, the authors state that "the expression level of MASTL is not upregulated during the activation stages of the DNA damage checkpoint". However, their data show otherwise: MASTL upregulation coinciding with RPA phosphorylation and p-ATM/ATR signal.

      I am therefore not convinced the revised manuscript sufficiently addressed the comments to fully support the conclusions.

    1. Reviewer #2 (Public Review):

      Caveney et al have overexpressed an engineered construct of the human membrane receptor guanyl cyclase GC-C in hamster cells and co-purified it with the endogenous HSP90 and CDC37. They have then determined the structure of the resultant complex by single particle cryoEM reconstruction at sufficient resolution to dock existing structures of HSP90 and CDC37, plus an AlphaFold model of the pseudo-kinase domain of the guanylyl cyclase. The novelty of the work stems from the observation that the pseudo-kinase domain of GC-C associates with CDC37 and HSP90 similarly to how the bona fide protein kinases CDK4, CRAF and BRAF have been previously shown to interact.

    1. Reviewer #2 (Public Review):

      Brunner et al. present a new and promising application of functional ultrasound (fUS) imaging to follow the evolution of perfusion and haemodynamics upon thrombotic stroke in awake rats. The authors leveraged a chemically induced occlusion of the rat Medial Cerebral Artery (MCA) with ferric chloride in awake rats, while imaging with fUS cerebral perfusion with high spatio and temporal resolution (100µm x 110µm x 300µm x 0.8s). The authors also measured evoked haemodynamic response at different timepoints following whisker stimulation.

      As the fUS setup of the authors is limited to 2D imaging, Brunner and colleagues focused on a single coronal slice where they identified the primary Somatosensory Barrel Field of the Cortex (S1BF), directly perfused by the MCA and relay nuclei of the Thalamus: the Posterior (Po) and the Ventroposterior Medial (VPM) nuclei of the Thalamus. All these regions are involved in the sensory processing of whisker stimulation. By investigating these regions the authors present the hyper-acute effect of the stroke with these main results:

      - MCA occlusion results in a fast and important loss of perfusion in the ipsilesional cortex.<br /> - Thrombolysis is followed by Spreading Depolarisation measured in the Retrosplenial cortex.<br /> - Stroke-induced hypo-perfusion is associated with a significant drop in ipsilesional cortical response to whisker stimulation, and a milder one in ipsilesional subcortical relays.<br /> - Contralesional hemisphere is almost not affected by stroke with the exception of the cortex which presents a mildly reduced response to the stimulation.

      In addition, the authors demonstrate that their protocol allows to follow up stroke evolution up to five days post-induction. They further show that fUS can estimate the size of the infarcted volume with brilliance mode (B-mode), confirming the presence of the identified lesional tissue with post-mortem cresyl violet staining.

      Upon measuring functional response to whisker stimulation 5 days after stroke induction, the authors report that:<br /> - The ipsilesional cortex presents no response to the stimulation<br /> - The ipsilesional thalamic relays are less activated than hyper acutely<br /> - The contralesional cortex and subcortical regions are also less activated 5d after the stroke.

      These observations mainly validate the new method as a way to chronically image the longitudinal sequelae of stroke in awake animals. However, the potentially more intriguing results the authors describe in terms of functional reorganization of functional activity following stroke appear to be preliminary, and underpowered ( N = 5 animals were imaged to describe hyper-acute session, and N = 2 in a five day follow-up). While highly preliminary, the research model proposed by the author (where the loss of the infarcted cortex induces reduces activity in connected regions, whether by cortico-thalamic or cortico-cortical loss of excitatory drive), is interesting. This hypothesis would require a greatly expanded, sufficiently powered study to be validated (or disproven).

    1. Reviewer #2 (Public Review):

      Rossato et al present I-spin live, a software package to perform real-time blind-source separation-based sorting of motor unit activity. The core contribution of this manuscript is the development and validation of a software package to perform motor unit sorting, apply the resulting motor unit filters in real-time during muscle contractions, and provide real-time visual feedback of the motor unit activity.

      I have a few concerns with the work as presented:

      - I found it challenging to specifically understand the technical contributions of this manuscript. The authors do not appear to be claiming anything novel algorithmically (with respect to spike sorting) or methodologically (with respect to manual editing of spikes before the use of the algorithms in real-time). My takeaway is that the key contributions are C1) development of an open-source implementation of the Negro algorithm, C2) validating it for real-time application (evaluating its sorting efficacy, and closed-loop performance, etc), and developing a software package to run in closed-loop with visual feedback. I will comment on each of these items separately below. It would be great if the authors could more explicitly lay out the key contributions of this manuscript in the text.

      - Related to the above, much of the validation of the algorithms in this manuscript has a "trust me" feel - the authors note that the Negro et al. algorithm has already been validated, so very few details or presentations of primary data showing the algorithm's performance are shown. Similarly, the efficacy of the decomposition approach is evaluated using manual editing of the sorting output as a reference, which is a subjective process, and users would greatly benefit from explicit guidance. There are very few details of manual editing shown in this manuscript (I believe the authors reference the Hug et al. 2021 paper for these details), and little discussion of the core challenges and variability of that process, even though it seems to be a critical step in the proposed workflow. So this is very hard to evaluate and would be challenging for readers to replicate.

      - I found the User Guide in the Github package to be easy to follow. Importantly, it seems heavily tied to the specific hardware (Quattrocento). I understand it may be difficult to make the full software package work with different hardware, but it seems important to at least make an offline analysis of recorded data possible for this package to be useful more broadly.

      - While this may be a powerful platform, it is also very possible that without more details and careful guidance for users on potential pitfalls, many non-experts in sorting could use this as a platform for somewhat sloppy science.

      - The authors mention that data is included with the Github software package. I could not find any included data, or instructions on how to run the software offline on example data.

      - Given the centrality of the real-time visual feedback to their system, the authors should show some examples of the actual display etc. so readers can understand what the system in action actually looks like (I believe there is no presentation of the actual system in the manuscript, just in the User Guide). Similarly, it would be helpful to have a schematic figure outlining the full workflow that a user goes through when using this system.

      - The authors note all data was collected with male subjects because more motor units can be decomposed from male subjects relative to females. But what is the long-term outlook for the field if studies avoid female subjects because their motor units may be harder to decompose? This should at least be discussed - it is an important challenge for the field to solve, and it is unacceptable if new methods just avoid this problem and are only tested on male subjects.

      Specific comments on the core contributions of this paper:

      C1. Development of an open-source implementation of the Negro algorithm<br /> This seems an important contribution and useful for the community. There are very few figures showing any primary data, the efficacy of sorting, raw traces showing the waveforms that are identified, cluster shapes, etc. I realize the high-level algorithm has been outlined elsewhere, but the implementation in this package, and its efficacy, is a core component of the system and the claims being made in this paper. Much more presentation of data is needed to evaluate this.

      Similarly, more information on the offline manual editing process (e.g. showing before/after examples with primary data) would be important to gain confidence in the method. The current paper shows application to both surface EMG and intramuscular EMG, but I could not find IM EMG examples in the Hug paper (apologies if I missed them). Surface and IM data are very, very different, so one would imagine the considerations when working with them should also be different.

      All descriptions of math/algorithms are presented in text, without any actual math, variable definitions, etc. This presentation makes it difficult to understand what is done. I would strongly recommend writing out equations and defining variables where possible.

      More details on how the level of sparseness is controlled during optimization would be helpful. And how this sparseness penalty is weighed against other optimization costs.

      Overall the paper is not very rigorous about the accuracy of motor unit identification. For example, the authors note that SIL of 0.9 is generally used for offline evaluation (why is this acceptable?), but it was lowered to 0.8 for particular muscles in this study. But overall, it is unclear how sorting accuracy/inaccuracy affects performance in the target applications of this work.

      C2. For real-time experiments, variability/jitter is important to characterize. Fig. 4 seems to be presenting mean computational times, etc, but no presentation of variability is shown. It would be helpful to depict data distributions somehow, rather than just mean values.

      There is some description about the difference between units identified during baseline contractions, and how they might be misidentified during online contractions ("Accuracy of the real-time identification..."). This should be described in more detail.

      Fig. 6: Given that a key challenge in sorting should be that collisions occur during large contractions, much more primary data should be presented/visualized to show how the accuracy of sorting changes during larger contractions in online experiments.

      Fig.7: In presenting the accuracy of biofeedback, it is very hard to gain any intuition for performance by just looking at RMSE values. Showing the online decoded and edited trajectories would help readers understand the magnitude of errors.

    1. Reviewer #2 (Public Review):

      Motoneurons constitute the final common pathway linking central impulse traffic to behavior, and neurophysiology faces an urgent need for methods to record their activity at high resolution and scale in intact animals during natural movement. In this consortium manuscript, Chung et al. introduce high-density electrode arrays on a flexible substrate that can be implanted into muscle, enabling the isolation of multiple motor units during movement. They then demonstrate these arrays can produce high-quality recordings in a wide range of species, muscles, and tasks. The methods are explained clearly, and the claims are justified by the data. While technical details on the arrays have been published previously, the main significance of this manuscript is the application of this new technology to different muscles and animal species during naturalistic behaviors. Overall, we feel the manuscript will be of significant interest to researchers in motor systems and muscle physiology, and we have no major concerns. A few minor suggestions for improving the manuscript follow.

      The authors perhaps understate what has been achieved with classical methods. To further clarify the novelty of this study, they should survey previous approaches for recording from motor units during active movement. For example, Pflüger & Burrows (J. Exp. Biol. 1978) recorded from motor units in the tibial muscles of locusts during jumping, kicking, and swimming. In humans, Grimby (J. Physiol. 1984) recorded from motor units in toe extensors during walking, though these experiments were most successful in reinnervated units following a lesion. In addition, the authors might briefly mention previous approaches for recording directly from motoneurons in awake animals (e.g., Robinson, J. Neurophys. 1970; Hoffer et al., Science 1981).

      For chronic preparations, additional data and discussion of the signal quality over time would be useful. Can units typically be discriminated for a day or two, a week or two, or longer? A related issue is whether the same units can be tracked over multiple sessions and days; this will be of particular significance for studies of adaptation and learning.

      It appears both single-ended and differential amplification were used. The authors should clarify in the Methods which mode was used in each figure panel, and should discuss the advantages and disadvantages of each in terms of SNR, stability, and yield, along with any other practical considerations.

      Is there likely to be a motor unit size bias based on muscle depth, pennation angle, etc.?

      Can muscle fiber conduction velocity be estimated with the arrays?

      The authors suggest their device may have applications in the diagnosis of motor pathologies. Currently, concentric needle EMG to record from multiple motor units is the standard clinical method, and they may wish to elaborate on how surgical implantation of the new array might provide additional information for diagnosis while minimizing risk to patients.

    1. Reviewer #2 (Public Review):

      Kádková, Murach, Pedersen, and colleagues studied how three disease-causing missense mutations in SNAP25 affect synaptic vesicle exocytosis. These mutations have previously been studied by Alten et al., 2021. The authors observed similar impairments in spontaneous and evoked release as Alten et al., 2021, but the measurement of readily releasable pool (RRP) size differed between the two studies. The authors found that the V48F and D166Y mutations affect the interaction with the Ca2+ sensor synaptotagmin-1 (Syt1), but do not entirely phenocopy Syt1 loss-of-function because they also exhibit a gain-of-function. Thus, these mutations affect multiple aspects of the energy landscape for vesicle priming and fusion. The I67N mutation specifically increases the fusion energy barrier without affecting upstream vesicle priming.

      The strength of the study includes careful and technically excellent dissection of the synaptic release process and a combination of electrophysiology, biophysics, and modeling approaches. This study gained a deeper mechanistic understanding of these mutations in vesicle exocytosis than the previous study but did not result in a paradigm shift in our understanding of SNAP25-associated encephalopathy because the same spontaneous and evoked release phenotypes were previously identified.

      1) The authors discussed possible reasons for the different results of the RRP sizes between this study and Alten et al., 2021. One of them is how the hypertonic solution is applied. The authors thought that the long application of hypertonic solution in Alten et al., 2021 caused an overlapping release of RRP and upstream vesicle pools because Alten et al., 2021 measured 10-fold larger RRP size than what was measured in this study. However, Alten et al., 2021 measured RRP from IPSCs and a single inhibitory vesicle fusion causes larger charge transfer than an excitatory vesicle. The authors need to take this into consideration and 10-fold is likely an overestimate.

      2) Statistical tests should be performed for protein expression levels (Fig 2A and Fig 10A) and in vitro fusion assays (Fig 8D,E and Fig 9 B,C).

    1. Reviewer #2 (Public Review):

      In this study, Valk, Engert et al. investigated effects of stress-reducing behavioral intervention on hippocampal structure and function across different conditions of mental training and in relation to diurnal and chronic cortisol levels. The authors provide convincing multimodal evidence of a link between hippocampal integrity and stress regulation, showing changes in both volume and intrinsic functional connectivity, as measured by resting-state fMRI, in hippocampal subfield CA1-3 after socio-affective training as compared to training in a socio-cognitive module. In particular, increased CA1-3 volume following socio-affective training overlapped with increased functional connectivity to medial prefrontal cortex, and reductions in cortisol. The conclusions of this paper are well supported by the data, although some aspects of the data analysis would benefit from being clarified and extended.

      A main strength of the study is the rigorous design of the behavioral intervention, including test-retest cohorts, an active control group, and a previously established training paradigm, contributing to an overall high quality of included data. Similarly, systematic quality checking of hippocampal subfield segmentations contributes to a reliable foundation for structural and functional investigations.

      Another strength of the study is the multimodal data, including both structural and functional markers of hippocampal integrity as well as both diurnal and chronic estimates of cortisol levels. However, the included analyses are not optimally suited for elucidating multivariate interrelationships between these measures. Instead, effects of training on structure and function, and their links to cortisol, are largely characterized separately from each other. This results in the overall interpretation of results, and conclusions, being dependent on a large number of separate associations. Adopting multivariate approaches would better target the question of whether there is cortisol-related structural and functional plasticity in the hippocampus after mental training aimed at reducing stress.

      The authors emphasize a link between hippocampal subfield CA1-3 and stress regulation, and indeed, multiple lines of evidence converge to highlight a most consistent role of CA1-3. There are, however, some aspects of the results that limit the robustness of this conclusion. First, formal comparisons between subfields are incomplete, making it difficult to judge whether the CA1-3, to a greater degree than other subfields, display effects of training. Relatedly, it would be of interest to assess whether changes in CA1-3 make a significant contribution to explaining the link between hippocampal integrity and cortisol, as compared to structure and functional connectivity of the whole hippocampus. Second, both structural and functional effects (although functional to a greater degree), were most pronounced in the specific comparison of "Affect" and "Perspective" training conditions, possibly limiting the study's ability to inform general principles of hippocampal stress-regulation.

    1. Reviewer #2 (Public Review):

      The authors provide a comprehensive investigation of self-citation rates in the field of Neuroscience, filling a significant gap in existing research. They analyze a large dataset of over 150,000 articles and eight million citations from 63 journals published between 2000 and 2020. The study reveals several findings. First, they state that there is an increasing trend of self-citation rates among first authors compared to last authors, indicating potential strategic manipulation of citation metrics. Second, they find that the Americas show higher odds of self-citation rates compared to other continents, suggesting regional variations in citation practices. Third, they show that there are gender differences in early-career self-citation rates, with men exhibiting higher rates than women. Lastly, they find that self-citation rates vary across different subfields of Neuroscience, highlighting the influence of research specialization. They believe that these findings have implications for the perception of author influence, research focus, and career trajectories in Neuroscience.

      Overall, this paper is well written, and the breadth of analysis conducted by authors, with various interactions between variables (eg. gender vs. seniority), shows that the authors have spent a lot of time thinking about different angles. The discussion section is also quite thorough. The authors should also be commended for their efforts in the provision of code for the public to evaluate their own self-citations. That said, here are some concerns and comments that, if addressed, could potentially enhance the paper:

      1. There are concerns regarding the data used in this study, specifically its bias towards top journals in Neuroscience, which limits the generalizability of the findings to the broader field. More specifically, the top 63 journals in neuroscience are based on impact factor (IF), which raises a potential issue of selection bias. While the paper acknowledges this as a limitation, it lacks a clear justification for why authors made this choice. It is also unclear how the "top" journals were identified as whether it was based on the top 5% in terms of impact factor? Or 10%? Or some other metric? The authors also do not provide the (computed) impact factors of the journals in the supplementary.

      By exclusively focusing on high impact journals, your analysis may not be representative of the broader landscape of self-citation patterns across the neuroscience literature, which is what the title of the article claims to do.

      2. One other concern pertains to the possibility that a significant number of authors involved in the paper may not be neuroscientists. It is plausible that the paper is a product of interdisciplinary collaboration involving scientists from diverse disciplines. Neuroscientists amongst the authors should be identified.

      3. When calculating self-citation rate, it is important to consider the number of papers the authors have published to date. One plausible explanation for the lower self-citation rates among first authors could be attributed to their relatively junior status and short publication record. As such, it would also be beneficial to assess self-citation rate as a percentage relative to the author's publication history. This number would be more accurate if we look at it as a percentage of their publication history. My suspicion is that first authors (who are more junior) might be more likely to self-cite than their senior counterparts. My suspicion was further raised by looking at Figures 2a and 3. Considering the nature of the self-citation metric employed in the study, it is expected that authors with a higher level of seniority would have a greater number of publications. Consequently, these senior authors' papers are more likely to be included in the pool of references cited within the paper, hence the higher rate.

      While the authors acknowledge the importance of the number of past publications in their gender analysis, it is just as important to include the interplay of seniority in (1) their first and last author self-citation rates and (2) their geographic analysis.

      4. Because your analysis is limited to high impact journals, it would be beneficial to see the distribution of the impact factors across the different countries. Otherwise, your analysis on geographic differences in self-citation rates is hard to interpret. Are these differences really differences in self-citation rates, or differences in journal impact factor? It would be useful to look at the representation of authors from different countries for different impact factors.

      5. The presence of self-citations is not inherently problematic, and I appreciate the fact that authors omit any explicit judgment on this matter. That said, without appropriate context, self-citations are also not the best scholarly practice. In the analysis on gender differences in self-citations, it appears that authors imply an expectation of women's self-citation rates to align with those of men. While this is not explicitly stated, use of the word "disparity", and also presentation of self-citation as an example of self-promotion in discussion suggest such a perspective. Without knowing the context in which the self-citation was made, it is hard to ascertain whether women are less inclined to self-promote or that men are more inclined to engage in strategic self-citation practices.

    1. Reviewer #2 (Public Review):

      The authors provide a comprehensive analysis of vitamin D-mediated signaling through VDR, SIRT1, and Ace H3K9. They specifically emphasize the significance of K610 in SIRT1 within this signaling pathway. The article effectively presents a convincing and straightforward argument. The experiments conducted are meticulously executed, and the statistical analysis is sound. The inclusion of complex biochemistry details adequately covers the topic at hand. These findings hold great relevance to both normal and pathological physiology across different cell lineages, making them of considerable interest.

    1. Reviewer #2 (Public Review):

      The authors have used transcranial magnetic stimulation (TMS) and motor evoked potentials (MEPs) and TMS-electroencephalography (EEG) evoked potentials (TEPs) to determine how experimental heat pain could induce alterations in these metrics.
In Experiment 1 (n = 29), multiple sustained thermal stimuli were administered over the forearm, with the first, second, and third block of stimuli consisting of warm but non-painful (pre-pain block), painful heat (pain block) and warm but non-painful (post-pain block) temperatures respectively. Painful stimuli led to an increase in the amplitude of the fronto-central N45, with a larger increase associated with higher pain ratings. Experiments 2 and 3 studied the correlation between the increase in the N45 in pain and the effects of a sham stimulation protocol/higher stimulation intensity. They found that the centro-frontal N45 TEP was decreased in acute pain.

      The study comes from a very strong group in the pain fields with long experience in psychophysics, experimental pain, neuromodulation, and EEG in pain. They are among the first to report on changes in cortical excitability as measured by TMS-EEG over M1.

      While their results are in line with reductions seen in motor-evoked responses during pain and effort was made to address possible confounding factors (study 2 and 3), there are some points that need attention. In my view the most important are:<br /> 1. The method used to calculate the rest motor threshold, which is likely to have overestimated its true value : calculating highly abnormal RMT may lead to suprathreshold stimulations in all instances (Experiment 3) and may lead to somatosensory "contamination" due to re-afferent loops in both "supra" and "infra" (aka. less supra) conditions.<br /> 2. The low number of pulses used for TEPs (close to ⅓ of the usual and recommended), lack of measures to mask auditory noise.<br /> 3. A supra-stimulus heat stimulus not based on individual HPT, that oscillates during the experiment and that lead to large variations in pain intensity across participants is unfortunate. So is the lack of report on measures taken to correct for a fortuitous significance (multiple comparison correction) in such a huge number of serial paired tests.