1,261 Matching Annotations
  1. May 2019
    1. ATPconcentrationin yeast cells was measuredby luminometricluciferase-luciferinbased assayusingATPbioluminescent kit(Sigma # FLAA).Briefly, log-phase yeast
    2. Determination of intracellular ATPlevels
    3. Estimation of total glycogen in cells was performed asdescribed previously (Parrou et al., 1997) with slightmodifications.Briefly, YPD medium-grown C. glabratacells were harvested, washed once with 1 ml ice-cold waterandresuspendedin 250 μl sodium carbonate(0.25 M)solution. After incubation at95 ̊C for 4 hin water bath with occasional stirring, cell suspension was cooled and pH of the suspension was adjusted to 5.2 by adding 150 μl 1 M acetic acid. Tothis suspension,600 μl 0.2M sodium acetatewas added and cell suspension was incubated with 1-2 U/ml of α-amyloglucosidase from A.niger(Sigma #A7420)at 57 ̊C for overnight with constant agitation.Resultant glucose liberated by α-amyloglucosidase digestion was collected in the supernatant fraction and quantifiedby phenol-sulphuric acid methodof carbohydratedetermination.For quantification, commercially available purified glucose was used as a standard and total glycogen incells was expressed as μg/2 x 107cells tonormalizeagainstcell density
    4. Estimation of glycogenlevels
    5. Trehalose from C. glabratacells was extracted by trichloro acetic acid (TCA)solutionas described previously (Lillie et al.,1980). Cells grown in YPDmediumwere collected at different time pointsof growth and washed thrice with ice-cold sterile water. Cells were immediatelystored at-20 ̊Ctill further use.For trehalose isolation, 10-20 OD600cells were thawed in 500 μl TCA (0.5 M) solutionon ice and incubated at room temperaturefor 1 h.Supernatant fraction was collected by sedimenting cells at 14,000 rpm for 5 minat 4 ̊C.TCA extractionwas repeated withcells once more and the resultingsupernatant was mixed with the earlier fraction.Extractedtrehalose was measuredby phenol-sulphuric acid methodof carbohydratedeterminationwithcommercially available purified trehalose(Becton, Dickinson and Co.) as a standard.Total trehalosecontent was normalized to the cell densityand expressed as μg/2 x 107cells
    6. Estimation of trehalosecontent
    7. Estimation oftrehalose, glycogen and ATPlevels
    8. Quantitative measurement of periplasmic acid phosphatase activity in phosphate-starved C. glabratacells was performedas mentioned previously (Orkwis et al., 2010). A total of 0.5 OD600YNB-grown and phosphate-starved cells were collected, washed thrice with cold water and oncewith cold 0.1 M sodium acetatebuffer (pH 4.2). Washed cells were resuspendedin 500 μl sodium acetate (0.1 M)and incubated at 30 ̊C with constant stirring. After 10 min incubation, 500 μl freshly-prepared solution of 20 mM p-nitrophenyl phosphate in 0.1 M sodium acetate(pH 4.2) was added to the cell suspension. Enzymatic activity was stopped after incubation at 25 ̊C for 20 min by addition of 250 μl sodium carbonate (1 M)tothe reaction mix. Resultant colour change was measured by monitoring absorbance at 400 nm. Acid phosphatase activity was expressed as a ratio of OD400to OD600 to normalize against cell density
    9. Determination of acid phosphatase activity
    10. Cells grown overnight in YNBmedium wereinoculated in fresh YNB mediumand incubated at 30 ̊C with shaking at 200 rpm. Cells were harvested when the cell density reached to an OD600of 0.6-0.8.Cells were consecutively washed with sterile MQ water and YNB without phosphate (YNB-Pi) medium. Washed cells were inoculated either in YNB orYNB-Pimediumto the initial OD600of 0.1. Cells were incubated at 30 ̊C for 3-4 h, harvested and resuspendedin 100 μlYNB-Pimedium. Radioactive P32-labelled o-phosphoric acid(Jonaki# LCP 32)was added to the cell suspension to a final concentration of 1 μCi/mlandcells were incubated for 30 min.For determining phosphate uptake, a10-12 μl cell suspensionaliquot,after every5 min,was removed and kept on ice.To this cell suspension, 500 μl ice-cold YNB-Pimediumwas addedand cells were harvested by centrifugation at 5,000 g for 5 minat 4 ̊C.These cells were washed with ice-cold YNB-Pimedium thrice and resuspendedin 100 μlPBS(1X). 10-20 μl of this cell suspension was added to5 ml scintillation fluid and β-decay counts were measured in ascintillation counter(Tri-Carb 2910 TR Liquid Scintillation Analyzer, PerkinElmer).Scintillation counts were normalized to total cell number and plotted with respect to time. Total phosphateuptake was expressed as P32c.p.m/OD600cellswhere c.p.m refers tocounts per min
    11. Phosphate uptake assay
    12. Total cellular polyphosphates were quantified viapolyacrylamide-Tris borate gel electrophoresis (PAGE-TBE).Briefly, PAGEwas performed with Tris-borate buffer (pH 8.3) todeterminethe quantityand the typeof polyphosphatesextracted fromyeaststrains. Equal amount of total RNA (20 to 100 μg) was loadedon 34%PAGE-TBE gel (22cm long, 16 cm wide and 0.8 mm thick) and electrophoresedat 500Voltsfor 20-24 hin cold-roomtill the marker dye bromophenol blue(BPB)had migrated 15-16 cm awayfrom the well.After electrophoresis, total polyphosphates werevisualizedby staining the gel with 0.05%toluidine blue staining solutionfollowed by destaining. Polyphosphates wereobserved both as asmearin the top most portion of the gel as well asdiscreet bands of long chain polyphosphatesand shortchain polyphosphatesin middle andbottom half of the gel,respectively.Polyphosphateband intensity in the gelwas quantified using ImageJ software (http://rsbweb.nih.gov/ij/)and relative amountsof long chain and short chain polyphosphatesin C. glabratacells werecalculated
    13. Quantitative analysisof polyphosphates
    14. Polyphosphates from yeast cells were extracted with phenol-chloroform solutionas described previously(Neefand Kladde,2003). Cells grown eitherovernight or to logarithmic phase in YPDmediumwere harvested by centrifugation at 1,700 rpm for 5 min. Cells were washed with 10 ml sterile MQ water and resuspendedin ice-cold 500 μl20%trichloro acetic acid (TCA) solution to the final cell densityof 100 OD. Cell suspension was transferred toa1.5 ml microcentrifuge tube. After incubation at room temperature for 5 min, cells were harvested by centrifugation at 12,000 g for 10 minat 4 ̊C and resuspendedin 250-350 μlpolyphosphate extraction buffer.Equal volume of phenol-chloroform (25:24) was addedtothe microcentrifuge tube and aqueous phase was extracted by centrifugation at 12,000 g for 8 minat room temperature. Top aqueous layer was collected with a 200 μl tip. Aqueous layer extraction was repeated once more after removal of DNA with chloroform.After centrifugation,aqueous phasecontaining RNA and polyphosphates wascollected,RNA was quantified at A260nmandstored at -20 ̊C
    15. Polyphosphate extraction
    16. were maintained in log-phase by continuous passaging in fresh YNB medium every 4 h
    17. For phosphate starvation,yeastcells grown to log-phase in YNB medium were harvested,washed with water,transferred to either regular YNBor YNB medium lackingphosphate and were grown for 16 h at 30 ̊C. Cells cultured in YNB medium
    18. Phosphate starvationof yeast cells
    19. Plasma membrane H+-ATPase activitywas measured inthe total membrane fraction as described previously (Nakamura et al., 2001).5μg totalmembrane fraction was incubated at 30 ̊C in 120 μl reaction buffer containing 10 mM MgSO4and 50 mM KCl in 50 mM MES (pH 5.7) with 5mM adenosine tri-phosphate (ATP). To eliminate possible contribution of residual ATPases, viz.,vacuolar ATPases, mitochondrial ATPases or non-specific phosphatases, 50mM KNO3, 5mM NaN3and 0.2mM ammonium molybdate were used, respectively, in the assay mixture. Reaction was stoppedafter 30 minby adding 130μl stop-developing solution containing 1% (w/v) SDS, 0.6M H2SO4, 1.2%(w/v)ammonium molybdate and 1.6%(w/v) ascorbic acid. Amount of inorganic phosphate (Pi) liberated was measured at A750nmafter 10 minincubation at room temperature. A standard curve prepared with0-50 μmolesof KH2PO4 was used fordetermination of total Piamount.ATPase activity of the plasma membrane was expressed in micromoles of Pireleased per milligram protein per min. ATPase activity was also determined in the presence of plasma membrane H+-ATPase inhibitor diethylstilbestrol (DES,Sigma# D4628),wherein total membrane fraction was incubated with 0.2mM DES for 5 min, prior to the enzymatic measurement
    20. Plasma membrane H+-ATPase activity assay
    21. dithiothreitol and1X protease inhibitor cocktail. Cell suspension was rapidly frozen at -80 ̊C,thawed and lysed with 0.5mm acid-washed glass beadsin a homogenizer (FastPrep®-24,MP Biomedicals)at maximum speed of 60 secfive times. Homogenate wasdiluted with 5mlTris-HCl (0.1M; pH 8.0)solutioncontaining 0.33M sucrose, 5mM EDTAand 2mM dithiothreitoland centrifuged at 1,000g for 3 minat 4 ̊C. Supernatant was collected and centrifuged again at 3,000g for 5 minat 4 ̊C to remove unbrokencells. The resulting supernatant was centrifuged at 19,000g for 45 minat 4 ̊C to obtain total membrane fraction. Total membrane pellet was resuspendedin 100μl membrane suspension buffer and stored at -80 ̊Ctill further use. Total protein concentration in the membrane fraction was estimated using BCAprotein assay kit (Thermo Scientific, US) with bovine serum albumin (BSA) used as astandard
    22. Isolation of total membrane fractions from C. glabratastrains were carried out as described previously (Fernandes et al., 1998). Cells grown to log-phase under different environmental conditionswere harvested, washed and suspended to afinal density of 20 OD600cells in 1 ml solution containing100mM Tris (pH 10.7),5mM EDTA,2mM
    23. Total membrane preparation
    24. To assess the activity of plasma membrane proton pump, CgPma1, in cells grown in differentexternal pH environment,whole cell acidification assaywas carried out.This assay is a measurement of glucose-responsive proton pump activityin live cellsand is based on a decrease inthe pH of a weakly-buffered solutionupon extrusion of H+ions from thecell. The amount of change in the pH of the medium represents a crude measurement of the activity of functional plasma membrane proton pump in live cells. Whole cell acidification assay was conductedwithcellsgrown in YNB pH 5.5 and YNB pH 2.0medium as described previously (Martinez-Munoz and Kane, 2008) with slight modifications.After growth at30 ̊C for 2 h, cells were harvested, washed and resuspended(1.5-3.0 mg wet weight/ml) in 15ml MES/TEA (1mM; pH 5.0) buffer. Cell suspension was kept at 25 ̊C with continuousagitation. Extracellular pH of the buffer solution was recorded at 1 mininterval for 20 minwith the help of a pH meter(BT-600, BoecoGermany). To activate plasma membrane proton pumping, glucose and KCl were added to a final concentration of 40mM after 3 and 8 minincubation, respectively. Plasma membrane proton pump activitywas plotted as a change in the pH of the extracellular solutionversustime
    25. Whole cell acidification assay
    26. Measurement of plasma membrane H+-ATPase activity
    27. Log-phasecells grown in YPD medium containing or lacking CaCl2and FK506 were collected, PBS-washed and loaded with ratiometric, high affinity, membrane-permeable calcium indicator, Fura-2 AM (10 M; Sigma #47989). After 30 min incubation at 30◦C, labelled cells were washed thrice with cold PBS, suspended in PBS and fluorescence was recorded at 505 nm with dual excitation at 340 and 380 nm. The ratio of fluorescence intensities between 340 and 380 nm, representing Ca-bound and Ca-free Fura-2 molecules, respectively, reflected free intracellular calcium concentrations
    28. Measurement of intracellular calciumlevels
    29. Intracellular reactive oxygen species (ROS)levels in yeast cells weredetermined usingfluorescent probe 2',7'-dichlorofluorescein diacetate (DCFH-DA; Sigma# D6883). Cellular esterasesremove the diacetate groups ofthe DCFH-DAand produceDCFHwhich getsreadily oxidized to highly fluorescent product 2′,7′-dichlorofluorescein (DCF) by intracellular ROS. The fluorescent intensity of DCF corresponds to the amount ofintracellular ROSpresent in the cell.Cells grown under different environmental conditions were harvested,washed once with tissue-culture grade phosphate-buffered saline (PBS) and resuspendedin PBS to the final cell density of 1 OD. Freshly-prepared DCFH-DA (0.01M stock in DMSO) was added to the cell suspension toafinal concentration of 100 μM. Cell suspension was mixed and incubated at 30 ̊C for 30 min. After incubation,cells were washed 2-3 times with 1 ml PBS and then resuspendedin 200 μlPBS. Fluorescence intensity values wererecorded usingspectrofluorophotometer (Varioskan flash-3001, Thermo Scientific) with excitation and emission at 488and 530 nm,respectively.Fluorescenceintensityvalues obtained from probe-loaded cells were subtracted from the fluorescence intensity values obtainedfrom cells-alone samplesto remove background fluorescence
    30. Determination of intracellular reactive oxygen species (ROS)levels
    31. For determiningthe intracellular pH from fluorescence intensity values of CFDA-SE-loaded cells, anin vivocalibration curve was prepared between fluorescent intensity and pre-adjusted environmental pH values. Briefly,CFDA-SE-loaded wild-typeC. glabratacellswere incubatedwith 0.5 mM carbonyl cyanide m-chlorophenylhydrazone (CCCP; Sigma# C2759) at 30 ̊C for 10 min in 50 mM CP buffer adjusted to different pH values ranging from 4.0 to 7.5, with an interval of 0.5 unit.CCCP is an ionophore which dissipates the plasma membrane pH gradient, thus, rendering the intracellular pH similar to the extracellular pH. Fluorescent intensities were determinedand a calibration curvewas plotted between the ratio of intensity at 490 to430 nm versuspH.A polynomial distribution of fluorescent intensity signal and pH was observed for CFDA-SE probe(Figure2.1)and the graphequation was used todeterminethe intracellular pHof C. glabratacells
    32. In vivointracellular pH calibration curve
    33. OD600of 0.5and transferred to a 1.5 ml microcentrifuge tube. Probe loading was carried out by adding freshly-prepared CFDA-SE solution (0.01 M stock in DMSO) tocell suspension to a final concentration of 160 μM. Cell suspension was mixed on vortex mixerfor 10 secand incubated at 37 ̊C for 1 hwith shaking at 300 rpmon thermo mixer.Cells were harvested, washed twice with 1 ml 50 mM CP buffer to remove unloaded probe,resuspendedin 250 μl CP buffer andwereincubated at 30 ̊C for 30 minwith shaking to recover from the stress induced during probe loading. Afterincubation,fluorescent intensitywasdetermined with spectrofluorophotometer (Varioskan flash-3001, Thermo Scientific) by excitation at 430 nm (pH-independent) and 490 nm (pH-dependent) with emission at 525 nm. Background fluorescence of the probe was removed by subtracting the fluorescence intensity of the probe in CP buffer from the fluorescence intensity of the probe-loaded cells
    34. Intracellular pH(pHi)in yeast cells was determinedusing fluorescent 5,(6)-carboxyfluorescein diacetate succinimidyl ester (CFDA-SE; Molecular Probes) asdescribed previously (Bracey et al.1998). For pHiprobe estimation,YNB medium-grown log-phase cells were inoculatedin YNB, YNB-pH 2.0 or YNB medium supplemented with acetic acid and incubated at 30 ̊C for different time points.Log-phase C. glabratacells were harvested and washed twice with 50 mM citric-phosphate (CP) buffer (pH 4.0). Washed cells were resuspendedin 1ml 50 mM CP buffer to an
    35. Measurementof intracellular pH (pHi)
    36. Following transfer,membrane was either stained with Ponceau reagent for checking the efficiency of transfer or directly processed for proteindetectionusing protein-specificantibodies.For immunoblotting, membranes were blockedwith 5% (w/v)non-fat milk solutioneitherin PBS-T or TBS-T for 2 hat RTand probedwith primary antibodies against the target proteins.For detection of CgPma1, membranes were probed with1:1000 dilution of polyclonal anti-Pma1antibody raised against S. cerevisiaePma1 (Santa Cruz #sc-33735)in PBS-T with 5% (w/v)fat-free milk for overnight at 4°C.For detection of phosphorylated form of CgSlt2,immunoblotting analysis was done withan anti-phospho-p44/42 MAPK (Thr202/Tyr204) primary antibody raised against human p44 MAPK(Cell signalingtechnology# 4370S) at a dilution of 1:6000 in TBS-T with 5% (w/v)fat-free milk for overnight at 4°C.For detection of CgCPY, membrane was incubated with polyclonal anti-CPY antibody raised against S. cerevisiaeCPY(Thermo Scientific # PA 1-27244) at a dilution of 1:10,000 in TBS-T with 5% (w/v)fat-free milk for overnight at 4°C.For CgGapdhdetection,anti-Gapdh primary antibody raised againsthuman Gapdh(Abcam # ab22555) at a dilution of 1:7000was usedin TBS-T with 5% (w/v)fat-free milk.Secondary antibodies conjugated with horseradish peroxidase(HRP)enzymewereusedin 1:10,000 dilutionto detect the immune-reactivity of primary antibodieswith the help of ECL plus Western blotting system (GE Healthcare)as per manufacturer’sinstructions
    37. Total proteins resolved bySDS-PAGE were transferred to PVDFnylon membrane by Western blotting using a Bio-Rad Mini Trans-Blot electrophoretic transfer unit in Tris-glycinetransfer bufferat 4 ̊C either at 100 Voltsfor 3 hr or 30 Voltsfor overnight
    38. Western blot analysis
    39. SDS-PAGEwas performed as described previously (Laemilli, 1970).10-40 μg protein samples were mixed with 4X SDS loading buffer and either incubated at 50 ̊C or 90 ̊C for 10 min. Denatured samples were loaded either on8%or 10%SDS-PAGEgel and run in Tris-Glycine-SDSgel running buffer at 70-100 Volts for 2-3 hin a Mini-PROTEAN®3electrophoresis unit(Bio-Rad).After electrophoresis,gels were either visualized by coomassie brilliant blue (CBB) stainingor processedfor western blotting as described below
    40. Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis(SDS-PAGE)
    41. Log-phase yeast cell cultures were harvested and total protein was extracted by lysingyeast cells using glass beads. Briefly,10 mllog-phase yeast culturesgrownin appropriate medium were harvested,washed once with ice-cold water and suspended in 250 μl homogenizing buffer containing 1 mM phenylmethylsulfonylfluoride(inhibitsserine proteases), 10 mM sodium fluoride(inhibit Ser/Thr and acid phosphatases), 1 mM sodium orthovanadate (inhibits Tyr and alkaline phosphatases) and 1X concentration of protease inhibitor cocktail(RocheCat # 04693159001). Cells were lysedwith glass beads by vortexing five times at high speed for 1 min with intermittent 1 min ice breaks. Unbroken cells and cell debris were removed by centrifugation at 1,000 g for 5 min at 4 ̊C. Cell lysate was collected and protein was quantified using bicinchoninic acid (BCA)protein assay kit (Thermo Scientific # 23227) as per supplier’s instructions
    42. Protein extraction
    43. Biochemical techniques
    44. 1 μg good quality RNA was treated with DNase I (amplification grade, Invitrogen) to remove DNA contamination and used for complementary DNA (cDNA) synthesis using reverse transcriptase enzyme and oligo-dT primers.SuperScript®III First-Strand Synthesis System (Invitrogen) was used to carry out cDNA synthesis reaction according to the manufacturer’s instructions. cDNA was stored at -20 ̊C
    45. Complementary DNA (cDNA) synthesis
    46. Themethod was used for isolation of good quality genomic DNA that wasused to map Tn7insertionin C. glabratamutants.Briefly,10 mlsaturated yeast culturewasharvested, resuspendedin 1 ml sterile water and transferred toa2 ml microcentrifuge tube. Cells were pelleteddown by centrifugation at 4,000 rpm for 5 min. Supernatant was discarded and the pellet was resuspendedin 500 μl freshly prepared solutioncontaining100mM EDTAand 5% β-mercaptoethanol andincubated at 42 ̊C for 10 min. After incubation,cells were spun down at 5,000 rpm for 1 minand resuspendedin 500μl freshly-prepared BufferB. One tip full of lyticase(Sigma # L4025) was added and cellsuspension was incubated at 37 ̊C for 1 h. Following incubation,cell suspension was spun down at 6,000 rpm to recover spheroplasts.Spheroplasts weregently resuspendedin 500μl BufferCand DNA was twice extracted with 500μl phenol:chloroform:isoamyl alcohol (25:24:1)solution.Aqueous layer was collected in a new 2ml microcentrifuge tube and DNA was precipitated with 1ml ethanol and 1/10thvolume of 3M sodium acetate (pH 5.2)by centrifugation at 13,000 rpm for 5 min. Pellet was resuspendedin 200 μl TE containing 0.3 μl of RNase Cocktail™and incubated at 37 ̊C for 30 min.After incubation, 300 μl additional TE was added and DNAwas re-precipitated withethanol and 3 M sodium acetateas described above. Pellet was washed with 70% ethanol anddried under air. DNA pellet was finally suspended in 100 μl TE and stored at -20 ̊C
    47. Protocol III(Spheroplast lysis method
    48. Yeast cell viability was measured by plating appropriate dilutions of cell cultureonYPD plates at various time intervalsduringgrowth.Cell suspension was diluted in1X PBS. YPD plates were incubated at 30 ̊C for 2-3 daysand total colony forming units(CFUs)were calculated by counting the number of coloniesthat appeared onYPDplatesand dividing that number by anappropriate dilution factor
    49. Yeast cell viability assessment viacolony forming unit (CFU) assay
    50. Genomic DNAisolation buffersBuffer A:50 mM Tris-HCl10mM EDTA150 mM NaCl 1% Triton-X 1% SDSBuffer B:50 mM Tris-HCl (pH 7.5)10 mM EDTA1.1 M Sorbitol50 mM β-mercaptoethanol(To be added just before use
    51. Buffer C:100 mM Tris-HCl (pH 7.5)10 mM EDTA10% SDSRNA isolation bufferAE buffer: 3 M Sodium acetate0.5 M EDTA(pH 8.0)Phenol:Chloroform:Isoamyl Alcohol (25:24:1)solution:25 volume of Phenol24 volume of Chloroform1 volume of Isoamyl alcholDNA sampleloading buffer:0.25% Bromophenol blue0.25% Xylene cyanol15% Ficoll
    52. Genomic DNA and RNA isolation buffers
    53. 0.67% Yeast Nitrogen Base2% DextroseYeast Carbon Base (YCB):1.17% Yeast CarbonBase1% DextroseCAA:0.67% Yeast Nitrogen Base 2% Dextrose0.6% Casamino acids Plates weremade by adding 2% agar
    54. Yeast Extract-Peptone-Dextrose (YPD):1% Yeast extract2% Peptone 2% DextroseYeast Nitrogen Base (YNB)
    55. Yeast medium
    56. Luria Bertani (LB):0.5% Yeast Extract1% Tryptone 1% NaCl LB-ampicillinand LB-kanamycin plates:LB medium50 μg/ml ampicillin30 μg/ml kanamycinSuper Optimal Broth (SOB): 0.5% Yeast extract2% Peptone 10 mM NaCl2.5 mM KCl10 mM MgCl210 mM MgSO4
    57. Bacterial medium
  2. sg.inflibnet.ac.in sg.inflibnet.ac.in
    1. PI-3kinase reaction was set up ina total volume of50μlin a 1.5 ml microcentrifuge tube as described below.PI-3 kinase reaction buffer = 25 μlSpheroplast lysate = 20 μl (equivalent to 10 μg protein)Sonicated phosphatidyl inositol = 5 μlReaction mix was incubated at 25ºC for 20 min and enzyme reaction was stopped by adding 80μlHCL (1N) solution. To extract phospholipids, 160 μl chloroform:methanol (1:1) was added to the reaction mix withcontinuous mixing. Organic phase containing phopholipidswas separated fromaqueous phase by centrifugation at 7,500g for 4 min at 4ºC and transferred to a new vial. Using vacuum evaporator apparatus, solvent was evaporated and phospholipidsweredissolved in 10 μl chloroform
    2. PI-3 kinase reaction set up and phopsholipid extraction
    3. For protein extraction, yeast cells were suspended in 50-100μl protein extraction buffer containing 320 mM (NH4)2SO4, 200 mM Tris-Cl (pH 8), 20 mM EDTA (pH 8), 10 mM EGTA (pH 8), 5 mM MgCl2, 1 mMDTT, 10% glycerol and protease inhibitorsand disrupted using glass beads.Cell lysate was centrifuged at 7,500g and4oC for 15 min. 30 μg of total protein was resolved on a 15% SDS-PAGE gelat 32 mA till the dye front reachedthe bottom. Resolved proteins were transferred to Hybond-P membrane at 350 mA for 1.5 h in the cold room.Transfer of the proteins was visually confirmed by examining marker’s lane and membranes wereincubated in a small box for 2 h in 5% fat free milkprepared in 1X TBST for blocking. Blocking solutions were discarded and primary antibody, appropriately diluted in 5% fat free milkprepared in 1X TBST,was added to the box containing membrane. After overnight incubation in primary antibody, membranes were washed thrice with 1X TBST for 10 min. Membranes wereincubated for 2 h inappropriate secondary antibodydiluted in 5% fat free milkprepared in 1X TBST. Blots were either developedby chemiluminescence based ECL-Plus western detection system orChemidocTMgel imagingsystem. CgGapdhwas used as a loading control. To exclude the possibility of any contribution of THP-1 proteins tocell extracts prepared frommacrophage-internalized yeast, two control experiments wereperformed. First, we probedthe blots with antibodies specific for mammalian tubulin and actin.As expected, we neitherdetectedanysignal for mammalian actin nor formammalian tubulin. In the second control experiment, we treated macrophage lysates with proteinase-K prior to the yeast pellet disruptionand probed yeast lysates for different histone modifications.This proteinase-K treatmentdid not alter the epigenetic signature of C. glabratacells.Together, these data indicate that yeast protein samples were devoid ofany mammalian protein contamination
    4. Protein extraction and immunoblotting
    5. CgRTT107(3.3 kb),CgRTT109(1.3 kb),CgVPS15(3.4kb) and CgVPS34(2.4kb) ORFs were PCR amplified from genomic DNA of the wild-type strain using high fidelity Platinum Pfx DNA polymerase with primers carrying restriction sites for SmaI-SalI,BamHI-SalI,XmaI-XhoIandSalI-XmaI,respectively.Amplified fragments werecloneddownstream of the PGK1promoterin the pGRB2.2 plasmid. Clones were verified by bacterial colony PCR, sequencing and complementation analysis
    6. Cloningof C. glabrataORFs
    7. After restriction enzyme digestion, digested products wereresolved on agarose gels and desired DNA fragmentswereextracted from the gel. Concentration of gel-extracted DNA fragments was determined usingspectrophotometerand ligation reactions were set up using a molar ratio of vector to insert of 1:3 and 1:1 for sticky and blunt end ligations, respectively. Ligation mixwas incubatedeither at 22ºC for 4 hor at 16°Cfor 14-16 h. After incubation,T4DNA ligase was inactivatedat 65ºC for 20 min
    8. Ligation
    9. QIAGEN QIAquick PCR purification kit containing buffers, spin columns and collection tubes wasused topurify DNA fragments from PCR andenzymatic digestion reactions as per the kit manufacturer’s instructions
    10. Purification of restriction enzyme-digestedand PCR amplifiedproducts
    11. QIAGEN QIAquick Gel extraction kit containing required buffers, spin columns and collection tubes was used to extract and purify DNA from agarose gels. Digested DNA sample was resolved on 1-1.2% agarose gel and gel piece containing desired fragment was cut ona UV-transilluminator. DNA fragment was purified as per the kit manufacturer’s instructions
    12. Gel extraction of DNA
    13. C. glabratacells grown either in RPMI medium or harvested from THP-1 macrophages were collected, washed with DEPC treated water and were disrupted with glass beads in trizol. Total RNA was isolated using acid phenol extraction method and frozen at -80C. Quality of RNA was examined by determiningtheRNAintegrity number (RIN) before microarrayanalysis.Microarray experiments wereperformed atOcimum Biosolutions Ltd., Hyderabad (http://www.ocimumbio.com). Briefly, a4x44K GE Agilent array comprised of 10,408 probes representing 5,205 ORFs of C. glabratawas used wherein average number of replicates for each probe was four to five. Feature Extraction software version 10.7.3.1. (Agilent) and Quantile normalization was used for data analysis. Hierarchical clustering was performed using Complete Linkage methodwith Euclidean Distance as distance measure. Data arethe average of two hybridizations from biological replicates ofeach sample and raw data sets for this study areavailable at the Gene Expression Omnibus database(Accession number -GSE38953)
    14. Microarray Analysis
    15. To preclude the possibility of human RNA contamination, cDNA prepared from internalized yeast was examined for the presence of human transcripts encoding Ccl5 and histone H3. However,no amplification forhuman genes was observed, thus, eliminating any possiblecontamination of THP-1 RNA with yeast RNA
    16. Primersfor real-timePCR analysisweredesigned using Primer3 plus software and are listed in Table 4. To extractRNA from macrophage-ingested C. glabratacells, infected THP-1cells were washed twice with PBS and lysed in 1 ml ice-cold water. Lysate was centrifuged followed by two quick washes with DEPC-treated water andwashed yeast cell pellets were frozen on dry ice.For RNA extraction, yeast cells were disrupted with glass beads in trizol and total RNAwas isolated usingacid phenol extraction method described above.Optimal primer and cDNA concentrations were standardizedand qRT-PCR was performedusing ABI 7500 Fast Real-Time PCR System (Applied Biosystems).In brief, 0.5 μl cDNA,0.1 to 0.2picomoles of gene specific primers and 10 μl 2X MESA GREENqPCR™ Mastermix Plus containing SYBR green dye (Eurogentec)were mixed in thewellsof a 96-well PCRplate (Axygen). Final reaction volume was adjusted to 20 μl with DEPC-treated water. Transcript levels were quantified with an end-point value known as Ct(cyclethreshold). Expression of TDH3, which encodes CgGapdh,was used asaninternal control. The Ct defines the number of PCR cycles required for the fluorescent signalof SYBR green dye to cross beyondthe background level.Fold-change in transcript expression was determined usingfollowing formula.Fold change in expression = 2-ΔΔCtΔΔCt= ΔCttreated -ΔCtuntreatedΔCttreated = Ctvalue forthe gene of interest under treated condition -Ctvalue forthe internal control gene (TDH3) under treated conditionΔCt untreated = Ctvalue forthegene of interest under untreated condition -Ctvalue forthe internal control (TDH3) gene under untreated condition
    17. Quantitative real-timePCR
    18. Complementary-DNA synthesis was doneusing reverse transcriptase enzyme and oligo-dT primers. For this, 1 μg good quality RNA was treated with1μl(1 unit) DNase I for 15 min to remove DNA contamination. Next, SuperScript III First-Strand Synthesis System kit (Invitrogen) was used to synthesize cDNA according to the manufacturer’s instructions. cDNA synthesized was stored at -20 ̊C till further use
    19. Synthesis of complementary DNA (cDNA)
    20. For RNA experiments, all solutions were prepared in RNase free diethylpyrocarbonate (DEPC) water. Microcentrifuge tubes and tips used for RNAworkwere autoclaved twice and driedat 70 ̊C for overnight before use. Non-autoclavable plastic items were wiped with Ambion RNAseZap to remove RNAse contamination, if any. RNA was extracted from C.glabrata cells usingacid phenol extraction method. C. glabratacells were harvested at 2,500g for 5 minat 4 ̊C, resuspended in 1 ml ice-cold DEPC water and were transferred toa2 ml microcentrifuge tube. Cells were spun down at 6,000g for 3 minat 4 ̊C and resuspended in 350 μl AE solution. Next, 50 μl SDS and 400 μl acid phenol(pH 4.5)solutions were added to thetube and mixed well by vortexing. The tube wasincubated at 65 ̊C for 15 min with continuous mixing. After incubation, tube was kept on ice for 5 minand centrifuged at 7,500g for 5 minat 4 ̊C. Aqueous phase was transferred toa new 1.5 ml microcentrifuge tube and RNAwasextracted with an equal volume of chloroform. Total RNA was precipitated at room temperature with 1/10thvolume of 3 M sodium acetate (pH 5.2) and 2.5 volumesof chilledabsolute ethanol for 20 min. Precipitated RNA was collected by centrifugation at 7,500g for 5 minat 4 ̊C. RNA pellet was washed with chilled 70% ethanol and resuspended in 50 μl nuclease-free water. RNA concentration was determined by measuring absorbance at 260 nm. Quality of extracted RNA was examined by gel electrophoresis on 0.8% agarose gel prepared in DEPC-treated TAE buffer
    21. RNA extraction
    22. Nucleosomal-associated DNA was extracted from RPMI-grownand macrophage-internalized C. glabratacells using EZ NucleosomalDNA prep kit (ZYMO Research),treated withmicrococcal nuclease digestionfor 2.5, 5, 7.5 and 10 min at 25ºC andwasresolved on 2% agarose gel
    23. Micrococcal nuclease digestion assay
    24. temperature. Genomic DNA pellet was dissolvedeitherin 50 μl 0.1X TE or molecular biology grade water containing 0.3 μlAmbion RNAse cocktail and incubated at 37ºC for 30 min.After RNA digestion, 100 μl of 0.1X TE or nuclease-free water was added to the tube and stored at -20ºC. Quality of extracted genomic DNA was checkedon 0.6% agarosegel by electrophoresis
    25. Desired C. glabratastrain wasgrownovernight in YPD liquid medium and yeast cells were harvested by centrifugation at 2,500g in 15 ml polypropylene tube.Yeast cells were washed with PBS, resuspendedin 500μl lysis buffer (Buffer A) andwere transferred toa2ml microcentrifuge tube. Yeast cells were incubated for 15 minon a thermomixer set at 65 ̊C and 750 rpm. After incubation, 0.5 gm glass beads (0.5 mm) and 500 μl PCI solution were added to thetube. Yeast cells were lysedthree times for 45 seconds each on a bead beating apparatus with intermittent cooling on ice to prevent overheating. Cell lysates were centrifugedat 7,500gfor 5 minandupperaqueous phase (300-350 μl) wastransferred carefully to a new 1.5 ml microcentrifuge tube. 1 mlabsolute ethanol was added andmixedwellby inverting the tube3-4 times. To precipitate genomic DNA, suspension was centrifuged at 7,500g for 10min.Precipitated genomic DNA was washedwith 70% ethanolanddried at room
    26. Genomic DNA isolationby glass bead lysis method
    27. C. glabrata cells were grown overnight in 10 ml YPD liquid medium. Cells were harvested at 2,500g for 5 min, resuspended in 400 μl Buffer A (50 mM Tris-HCl, 10 mM EDTA, 150 mM NaCl, 1% Triton X-100 and 1% SDS) and were transferred to a 2 ml microcentrifuge tube. Equal volume of phenol-chloroform-isoamyl alcohol (PCI) solution was added tocell suspension and tubes were vortexed for 2-3 min. After incubation at 42 ̊C for 30 minon a thermomixer set at 800 rpm (Eppendorf), cell debris was removed by centrifugation at 7,500g for 10 minand aqueous phase (300-350 μl) was carefully transferred to a new 2 ml microcentrifuge tube. Genomic DNA was precipitated with800 μl chilled absolute ethanol and 35 μl sodium acetate (3 M, pH 5.2). DNA pellet was washed with chilled 70% ethanol and dried at room temperature for 5-10 min. Genomic DNA pellet was dissolved either in 50 μl 0.1X TE or molecular biology grade water containing 0.3 μl Ambion RNase cocktail and incubated at 37 ̊C for 30 minfor digestionof RNA. After RNA degradation, 100 μl of 0.1X TE or nuclease-free water was added to the tube and stored at -20ºC. Quality of extracted genomic DNA was checkedon 0.6% agarosegel by electrophoresis
    28. Genomic DNA isolationby quick genomic DNA extraction method
    29. Stripping of membranes in buffer containing 0.4 M NaCl yielded slightly better results. Hybond membranes were reused for 5-10 times after stripping
    30. Radiolabeled-bound probes were stripped from the membrane by boiling in 1% SDS containing 0.1X SSC for 15 min. Alternatively, membraneswereincubatedtwicein stripping solution (0.4 M NaOH)at 45°C for 30 minto remove the bound probes
    31. Stripping of probes from hybridized membranes
    32. After 2-3 h exposure,phosphorimagerscreenwas scannedon Fuji FLA-9000 to acquire hybridization images. Next,signal intensity for each spot on the membrane for both input and outputsampleswas quantifiedusing Fuji Multi Gauge V3.0 software andpercentage intensity foreach spot relative tothe whole signal intensity ofthe membranewas determined.To identify mutants with altered survival profiles,ratio of output (Op) to input (Ip) signal for each spot (oligonucleotide tag)present on the membranewas calculated.Mutantsdisplaying at least 6-fold higher and 10-fold lower survival were selectedas “up’ (Op/Ip= 6.0) and ‘down’ (Op/Ip = 0.1) mutants, respectively
    33. Data analysis
    34. After14-16 hincubation, hybridization buffer was decanted to a radioactive liquid waste container.Membraneswere washedtwice with 2X SSC (saline-sodium citrate) containing 0.1% SDS for 15 min at 55°C followed by two washes with 1X SSC containing 0.1% SDS for 15 min at room temperature. Post washes,membranes were rinsed with 1XSSC buffer at room temperature and exposed to phosphorimager screen for 2-3 h
    35. Post-hybridization washes
    36. Primers (OgRK 25 and OgRK 26, 200 pM ) –1 μl, eachTaq DNA polymerase –0.5 μlαP32-dCTP( specific activity-3,000 Ci/mMol)–2.5 μlWater –38.5 μlαP32-dCTPlabeled PCR productswere denatured by incubatingtubesat100°C for 5 min followed by immediatechilling on ice. After 2 h prehybridization, radiolabeleddenatured input and output probes were added to respective bottles and bottles were transferred to a hybridization oven set at 42ºC and 6 rpm
    37. Two Hybond-N membranes,each carrying 96 immobilized DNA with unique signature sequences,were transferred to 15 cm long hybridization bottlesandlabeledas input and output. 10 mlprehybridization buffer was added to each bottle and bottles were transferred to a hybridization oven setat 42ºC and 6 rpm. To prepare input and output probes,genomic DNAsfrom input and output C. glabratacell pelletswere extracted using glass bead lysismethodandunique signature tags were PCR amplifiedwith nucleotide mix containing αP32-dCTP using primerscomplementary to the invariant region flanking each unique oligonucleotide sequence.Following is the composition of50 μlPCR cocktail used to prepare radiolabeledinput and output probes.10X PCR buffer–5 μldNTP mix (without dCTP, 2mM) –0.5 μldCTP (0.05 mM) –1 μl
    38. Southern hybridization
    39. E. colistrains containing plasmids with unique oligonucleotide signature sequences were inoculated in LBmedium containing ampicillin and grown overnight at 37°Cand 200 rpm. Plasmids were extracted, quantitated anddenatured in alkaline denaturing solution. Approximately, 200 ng of each plasmid DNA was transferred to theHybond-Nmembraneusing96-well Dot Blot apparatus. Membranes were neutralized in 2X SSC and denatured plasmids were cross-linked to Hybond-N membranes usingUV cross linker
    40. Membrane preparation
    41. E. colistrains carrying plasmids were inoculated and grown overnight at 37ºC and 200 rpm in LB-liquid medium supplemented with either 50 μg/ml ampicillinor 30 μg/ml kanamycin. Cells were harvested by centrifugation at 2,500g for 5 min. Plasmids were extracted using Qiagen plasmid miniprep kit following the manufacturer’s instructions. Concentration of the extracted plasmid DNAs was measured using spectrophotometerat 280 nmandstored at -20ºC
    42. Plasmid DNA purification
    43. Molecular biology methods
    44. at 30°C andimages were captured after 2-8daysof incubationdepending upon the medium used
    45. Yeast strains were grown in YPD medium for 14-16 hat 30°Cunder continuous shaking at 200 rpm. Cells were harvested from 1 mlculture, washed with PBS and were diluted to an OD600of 1. Five ten-fold serial dilutions were preparedfrom aninitial culture of 1OD600.4 μl cultureof each dilution was spotted onYNB-agar plates containing different carbon sources. For spotting on YPD plates containing different compounds, 3 μl cultureof each dilution was spotted. Plates were incubated
    46. Serial dilution spotting assay
    47. weretransferred toa sterile 100 mm cell culture dishcontaining 11 mlfresh and prewarmed completemedium andculturedin tissue culture incubatorat37°C and 5% CO2.After 12hincubation, medium was replacedwith fresh prewarmed mediumand cells were allowed to proliferate till they acquire 80% confluence
    48. Freezer stocks of THP-1 and Lec-2 cells were prepared either in commercial cell preservation medium (Gibco) or completemedium supplemented with 10%heat inactivated serum and 10% DMSO. For cryopreservation, 5-6 million cells were resuspended in 0.5 mlfreezing medium in 2 ml cryopreservation vials,stored in an isopropanol bath and were transferred to-70°C freezer. Aftertwo days, freezer stocks were transferred to liquid nitrogen containertill further use. To revive the cells, freezer stocks were taken outfrom liquid nitrogen container and transferred immediately to37°C water bath. After2-3 min, when freezing medium hadthawed completely,cells
    49. Cryopreservationand revival of cell lines
    50. SDS-loading buffer was prepared as a 4X stock solutionin H2Oand used at a 1X concentration.SDS-PAGE running buffer0.25 M Tris-HCl (pH 8.0)1.92 M Glycine1% SDSRunning buffer was preparedas a 10X stock solution and diluted to 1X concentration before use.Buffers for Western blotanalysisTransfer buffer (10X stock solution)0.25 M Tris-HCl (pH 8.0)1.92 M Glycine1% SDSTransfer buffer was prepared as a 10X stock solution and diluted to 1X concentration.1X Transfer buffer (1 litre)200 ml of methanol100 ml of 10X transfer buffer700 ml of waterTris-BufferSaline (TBS)25 mM Tris150 mM NaClpH was adjusted to 7.4 with HCl.TBS buffer was prepared asa10X stock solution and diluted to 1X concentration.Blocking and wash buffers (PBS-T and TBS-T)5% Fat-free milk0.1% Tween-20Volume was made to 100 ml with 1X TBS
    51. 1 mM sodium orthovanadate1 X protease inhibitor cocktail SDS-PAGE30% Acrylamide solution29 g Acrylamide1 gBis-acrylamideDissolved in 100 ml H2O.10% Sodium Dodecyl Sulfate (SDS)10 g SDS in 100 ml H2OResolving gel mix (12%) (20 ml)6.6 ml H2O8 ml 30% acrylamide:bisacrylamide (29:1) mix5 ml 1.5 M Tris-HCl (pH 8.8)200 μl 10% SDS200 μl 10% Ammonium persulfate(APS)8 μl N,N,N′,N′-Tetramethylethylenediamine(TEMED)Stacking gel mix (5%, 6 ml)4.1 ml H2O1 ml 30% acrylamide:bisacrylamide (29:1) mix750 μl 1 M Tris-HCl (pH 6.8)60 μl 10% SDS60 μl 10% APS6 μl TEMEDSDS loading buffer130 mM Tris-HCl (pH 8.0)20% (v/v) Glycerol4.6% (w/v) SDS0.02% Bromophenol Blue2% DTT
    52. Whole cell lysis buffer (Homogenizing buffer)50 mM Tris-HCl (pH 7.5)2 mM EDTA10 mM sodium fluoride
    53. Buffers for protein extraction and analysis by SDS-PAGE (sodium dodecyl sulphate-polyacrylamide gel electrophoresis)
    54. Oligonucleotides used in this study were designed either by freely available online tool Primer 3 plus (http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi/)or Generunner software. Oligonucleotides were commercially synthesised at MWG Biotech Pvt. Ltd., Bangalore, India. Oligonucleotides used in this study are listed in Table 2.3
    55. Oligonucleotides
    1. competent cells pre-inoculum was prepared. A single bacterial colony was picked from LB agar plate that has been incubated for 16-20 hours at 37 °C and inoculated into 3 mlLB medium and incubated overnight at 37 °C temperature with 200 rpm shaking. 1% of this pre-inoculum was sub cultured in 100 ml LB-broth and incubated at 18 °C until OD 600 reached 0.5 -0.6 (approx.). Culture was kept on ice for 10 min. with constant shaking. Cells were pelleted by centrifugation at 2000xg/4°C/8 min. Pellet was resuspended in 40 ml of ice-cold Innoue buffer. Bacterial suspension was kept on ice for 30 min, re-spun at 2000 xg/4°C/8 min. Pellet was resuspended in 8 ml of TB buffer inwhich final concentration of DMSO was 7% and left on ice for 10 min. 100μl aliquots were made and snap frozenin liquid nitrogen and stored at -80 °C
    2. All the salts (10 mM PIPES, 15 mM CaCl2.2H2O, 250 mM KCl,55 mM MnCl2. 2H2O) except MnCl2were dissolved in water and pH was adjusted to 6.7 with 1N KOH. MnCl2was dissolved separately in water. MnCl2was added drop wise while stirring (MnCl2if added directly will give a brown colour to the solution and precipitates;hence it needs to be dissolved separately). Solution was then sterilized by filteringand stored. To prepare
    3. PreparationofUltra competent cells
    4. Of theligation mixture,2μl (of total volume of 10 μl reaction)was added to atube of 100μlultra competent DH5α bacterial cells and incubated in ice for 30 minutes. The tubewas quickly transferred to a water bath maintained at 42°C to give a heat shock for 90 seconds and again quickly transferred to ice. 1ml of LB broth was added to the tube and then incubated at 37°C for 1 hour. The bacterial cells were then pelletdownby centrifugation at 6000 rpm for 5 minutes and plated on LB agarcontaining appropriate antibiotic
    5. Transformation of ligated DNA
    6. A total of 100-200ng of DNA was used in each ligation reaction. Vector to insert ratio of 1:3 to 1:5was maintained. The reaction volume was generally maintained at 10μl containing 1μl of 10X ligation buffer (provided by the manufacturer) and 0.05 Weissunit of T4-DNA ligase. The reaction was carried outat 16ºC for 14-to 16-hrs or at room temperature for 4hours
    7. Ligation of DNA
    8. Digested DNA fragments required for ligation were eluted from the agarose gel after electrophoresis. The gel was visualised over a UV illuminator and section of it containing the desired DNA fragment was carefully sliced out from the gel. The sliced agarose gel was then processed using commercially available gel elution kitsfor this purpose. The elution efficiency was checked by running a small aliquot of DNA sample on agarose gel
    9. Purification of DNA by gel elution
    10. For restriction digestion(either single or double), 0.5 to 1μg of DNA was used in a reaction containing2 to 5units of commercially available restriction enzyme(s)and 5μl of the recommended buffer (suppliedas 10X concentrationsby the vendor)in atotal reaction volume of 50μl. The reaction mixture was incubated for 2 h or overnight at 37°C. The digested DNA fragments were then visualised by ethidium bromide staining after electrophoresis on agarose gels. Commercially available DNA size markers were loaded along with the samples to ascertain or estimate the sizes of the digestedfragments
    11. Restriction enzyme digestion
    12. Overnight grown bacterial culture (3ml)was pellet down by centrifugationat4ºC for10-min at 6000 rpm. The cells were re-suspended in 200μl of Resuspension solution(solutionI). 400μl of freshly prepared Lysissolution(solution II)was then added and mixed by gently inverting the tubesfor 4-6 times and allowed to lyse for 5 min at room temperature.The complete lysis was ascertained by uniformity and clarityof the contents. Subsequently, 400μl of Neutralization solution(solution III)was added and the tubes were inverted 4-6 timesand gently for homogeneous mixing followed byincubation for 5 min on ice. After centrifuging at 12,000 rpm for 15-min, supernatant was decanted into a fresh tube, and0.7 volume of iso-propanol was added.Theprecipitated nucleic acids were then recovered by centrifugation at 12,000 rpm for 30-min. The pellet was washed once with 70% ethanol, air-dried and re-suspended in 100μl of TE-buffer. It was treated with RNase at a concentration of 20μg/ml by incubating at 37ºC for 1hour. It was further extracted with an equal volume of phenol: chloroform: isoamyl alcohol (25:24:1) mixture. After centrifugation, the clear supernatant was used for recovering the nucleic acids. The nucleic acids were precipitated with 2.5 volumesof ethanolin presence of3 M sodium acetate. In case where high purity plasmid preparations are required (for transfection to cells) the plasmid isolation was carried out with the commercially available midiprep or miniprep kits following the manufacturer’s instruction. Plasmids were observed on 1% agarose gel
    13. Isolation of plasmid DNA
    14. Recombinant DNA techniques
    15. 2μg of total RNA was reverse-transcribed using SuperScript III Reverse Transcriptase which is a commercially available version of M-MLVRT with reduced RNase H activity and increased thermal stability.According to manufacturer’s protocol1μg of RNA,1μl oligo(dT)(500ng),1μl 10mM dNTPand nuclease freewater was added to afinal volume of 13μlin a PCR tube.Thismixture was then incubated at 65°C for 5 minutesin a thermo cyclerand then quicklytransferredtoicefor 1minute. To this 4μl of 5X first strand buffer 1μl of 0.1MDTTand1μl ofRNaseOUT (40U/μl) were added. Then contents were then mixed and 1μl (200 units/μl) of SuperScript III RT was added. Themixture was then incubated at 50°C for 60 minutesin a thermo cycler.Lastlythe reaction was stopped byincubating the mixture at 70°C for 15 minutes. The cDNA thus prepared was then usedas a template for PCR
    16. RT-PCR (Reverse Transcriptase PCR)
    17. drop wiseaddition and kept at 4⁰C for 24h. Cells were then washed with PBS and stained with DNA staining solutionat 370C in darkwith intermittent shaking. The DNA content of cells was measured by flow cytometryusing FACS-Aria (Beckton-Dickenson) at 695 ±20 nm using a 655 long pass filter.The DNA content was then analysed by FACSDivaor FlowJosoftwareto evaluate the various phases of cell cycle. The diploid 2N DNA content was referred as G1/G0 population and the 4N DNA content was referred as G2/M population. Cells with intermediary DNA content (between 2N -4N) content were considered as S phasecells and those below 2N DNA content as sub G0 cells
    18. Thecells were collected at various time points by trypsinization, washed in phosphate buffered saline (PBS, pH 7.2) and fixed in chilled 70% methanol: ethanol (1:1) solution by
    19. Cell cycle analysis
    20. Malachite green reagent
    21. DNA loading dye
    22. Neutralization solution(Solution III)
    23. EMSA Buffer
    24. Blocking buffer: 2% BSA
    25. Stripping Buffer
    26. Blocking Buffer
    27. TBST
    28. Transfer Buffer
    29. Running Buffer
    30. Stacking and resolving AcrylamidegelsResolving gel (10 ml)
    31. 6X protein loading buffer (Laemmlibuffer)
    32. Cell lysis buffer(RIPA Buffer)
    33. For Immunoblotting
    34. Sodium Chloride (NaCl)ComponentsFinal concentrationFor 100 mlNaCl5M29.22gH2Oq.s
    1. Briefly, cells were cultured on 35 mm culture dishes (Corning) and were transfected with pcDNA3.1 (+) empty vector or pcDNA3.1 (+) profilin-1 clone (encodes for neomycin resistance for selection in mammalian cells) using Lipofectamine 2000 reagent. The following day, cells were trypsinized and plated in four 10 cm culture dishes separately for each cell clones in selective media containing 800μg/ml of Geneticin, G418 (whose concentration was obtained from kill curve based on MTT assay). Over the time,it will select only those cells that have stably incorporated the plasmid into their genomic DNA. Cells were selected in G418 for about two weeks until colonies appeared. Meanwhile, cells were regularly washed with sterile PBSto remove dead cells from culture dishes. Colonies were picked using a pipettewith a sterile tip by loweringitto the surface of the colony of interest, followed by gentle scraping and rapid sucking.About 20 colonies were picked, followed by dilution plating in 96-well plates until single cell per well was obtained to establish a pure colony. Once colonies have reached to fair confluency, they were further expanded by dilution plating and screened for stable expression of profilinby immunoblotting and semi-quantitative RT-PCR. Once the clonal cell line is established, aliquots were freezed for future use and rest were maintained in lower concentration of G418 with proper track of passage number
    2. Generation of profilin stable MDA-MB-231 cells
    3. 5X EMSA buffer
    4. 6X DNA loading dye
    5. Blocking buffer: 2% BSA
    6. Permeabilisation buffer: 0.2% Triton X100
    7. 4% Formaldehyde fixative
    8. For Immunofluorescence(IF)
    9. (c) 6X Protein loading buffer (Lammeli buffer)
    10. Wild type or H133S mutant of profilin-1 witheither FLAG or un-tagged werecloned in pcDNA3.1 (+).Mdm2 gene upstreampromoter region having p53 binding site was cloned in pLUC vector (designated as p53-Luc). The constructs of NF-κB-SEAP, p65 (RelA), wild type and dominant negativeIKKβ(IKKβ-WT and IKKβ-DN, respectively)were a kind gift fromProf.Bharat B. Aggarwal (M. D. Anderson Cancer Center,Houston, TX). The constitutive active mutant of IKKβ, in which two serine residues are mutated to glutamic acid, at position 177 and 181 (referred as IKKβ-EE or IKKβ-CA) was gifted byProf. GourisankarGhosh (University of California, San Diego, USA).FLAG or Myc tagged Full length andtruncationmutants of PTEN wereprovided by Dr.M.Subba Reddy (CDFD, Hyderabad).For p53 gene knockdownstudies, TP53 mission shRNA were obtained from Sigma Aldrich (St Louis, MO, USA). For PTEN silencing, retroviral vector based PTEN shRNA (shRNA#1-AGGCGCTATGTGTATTATTAT; shRNA#2-CCACAGCTAG-AACTTATCAAA; shRNA#3-CCACAAATGAAGGGATATAAA)wasgifted by Dr. M.Subba Reddy (CDFD, Hyderabad)
    11. Plasmids
    1. To monitor yeast cell death 1 OD600equivalent cellsfrom mid-log and overnight growncultures were pelleted, washed in PBS and the cell pellet was suspended in 100 μL of PBS. 20 μLof 0.4% trypan bluesolution was added to 20 μLof cell suspension and incubated for 10 min. 20 μL of this suspension was placed on a slide, covered with a cover slip, and cell death was measured by scoring dead cells that take up the dye.To monitor cell viability, cells equivalent to 10-5OD600 from mid-log and stationary phase cultures were plated on YPD-agar, incubated at 30°C for 48 h, and colonies were counted to extrapolate viable cell count per OD600
    2. To determine yeast cell mass, cells equivalent to 5 OD600were harvested from mid-log and overnight growncultures, and washed twice with PBS. Cell pellets were dried at 50°C for 20 minand the dry weight of yeast was measured. To assess the cell number, cells in mid-log or stationary phase were counted using a Neubauer chamber and the number of cells present in 1 OD600was calculated
    3. Cell mass, cell numberand viability assessment
    4. 20 mM HEPES500 mM NaCl 2 mM EDTA1% Triton-XYeast protease inhibitor cocktail and phosphatase inhibitor cocktail (added fresh to the buffer C)IP7 reaction buffer(10X)250 mM HEPES,pH 7.4500 mM NaCl60 mM MgCl210 mM DTT (1 M stock was made separately, aliquoted into 100 μL and stored at -20oC).10X buffer was made and stored at 4oC. An appropriate amount was added to the reaction mix to get a final concentration of 1X.DTT was added fresh to the reaction buffer just before use
    5. Buffer C
    6. 50 mM Tris-HCl,pH7.450 mM NH4Cl12 mM MgCl21 mM DTT0.1%DEPC37% sucrose solution
    7. 100mM NaCl30mM MgCl250μg/mLcycloheximide 200μg/mL heparin All the components were made in DEPC treated water.Gradient buffer10% sucrose gradient buffer50 mM Tris-HCl,pH7.450 mM NH4Cl12 mM MgCl21 mM DTT0.1%DEPC10% sucrose solutionTo analyse individual ribosome subunits, MgCl2 was eliminated from the gradient buffer.30% sucrose gradient buffer50 mM Tris-HCl,pH7.450 mM NH4Cl12 mM MgCl21 mM DTT0.1%DEPC30% sucrose To analyse individual ribosome subunits, MgCl2 was eliminated from the gradient buffer.50% sucrose gradient buffer50 mM Tris-HCl,pH7.450 mM NH4Cl12 mM MgCl21 mM DTT0.1%DEPC50% sucrose To analyse individual ribosome subunits, MgCl2 was eliminated from the gradient buffer.37% sucrose gradient buffer
    8. Lysis buffer10mM Tris, pH7.4
    9. Buffers for ribosome and polysome analysis
    10. Oligonucleotides used in this study were designed manually by examining the relevant DNA sequences. Oligonucleotides were commercially synthesised at MWG Biotech Pvt. Ltd., Bangalore, Indiaor Ocimum biosolutions, Hyderabad, India. Oligonucleotides used inthis study are listed in Table 2.4 and 2.5
    11. Oligonucleotides
    1. PCR product was incubated with 1ul of Dpnl restriction enzyme for 2-3 hours at 37ºC, following which Dpn1 treated PCR product was transformed into DH5α competent bacterialcells. Mutant colonies were screened andconfirmed using DNA sequencing
    2. PCR product was incubated with 1ul of Dpnl restriction enzyme for 2-3 hours at 37ºC, following which Dpn1 treated PCR product was transformed into DH5α competent bacterialcells. Mutant colonies were screened andconfirmed using DNA sequencing
    3. The various mutant plasmids were generatedbyusing PCR-based site-directed mutagenesis protocol (Stratagene).Briefly, primers carrying the desired nucleotide changes were used in a PCR reaction to amplify the nascent mutantplasmids from the wild type parent plasmid. The PCR reaction was set up according to manufacturer’s protocol(Table 5)using a high-fidelity Pfu DNApolymerase and donor-plasmids of the desired geneas the template. Following reactionmixture and the cycling conditions were used for site-directed mutagenesis
    4. Site-directed mutagenesis
    5. All the primers (sequences)used for cloning the above-mentioned genes are providedin AppendixI
    6. using gateway cloning method (Invitrogen). P73domain deletions were cloned in SFB destination vector. WWP2, WWP1, HACE1, E6AP, and PPM1G were cloned into SFB (S-protein/Flag/streptavidin binding protein (SBP) triple tag), GFP,and Myc mammalian destination vectors using the Gateway cloning technology (Invitrogen). WWP2 domain deletions were cloned into Myc-destination vector. WWP1 domain deletions were cloned into SFB-destination vector. PPM1G domain deletions were cloned into SFB mammalian destination vector using Gateway cloning. Bacterially expressing GST-p73, GST-∆Np73, GST-PPM1G, MBP-WWP1, MBP-WWP2, GST-WWP2, GST-WWP1 and GST-HACE1 were generated by using gateway technology. Ubiquitin WT and all the mutants were cloned into hemagglutinin (HA) mammalian destination vector. Flag-tagged Dvl2was purchased from Addgene. Dvl2 domain deletions were cloned into SFB-destination vectors. All the plasmid constructs generated in the present study are mentioned in table 2.Table 2: Plasmids used in the study
    7. TAp73α and ∆Np73α were kindly gifted by Alex Zaika, Vanderbilt University. Full-length p73 and ∆Np73 were cloned into Myc and HA mammalian destination vectors
    8. Expression plasmids
    1. Four week old tomato S-22 cultivar (acts as non-host for Xanthomonas oryzae pv. oryzicola) were syringe-infiltrated with a suspension of Xocstrains and water control. Plants were incubated in green house for 24 h with minimum and maxium temperature of 26 and 28°C, respectively and relative humidity of 65%. Callose deposition assay was performed as a marker for hypersensitvity response in non host plant as described previously (Hauck et al., 2003). Leaf picture was captured at this stage to observe the HR browning of leaf. For assaying callose deposition by aniline blue staining, infilterated leaves were removed from plant,dipped in lactophenol solution and incubated at 65°C in water bath until the cholorohyll is completely removed. Leaves were rehydrated by washing with 50% ethanol, and finally rinsed with water. For aniline blue staining, leaves were incubated in 0.01% aniline blue solution, prepared in 100 mM K2HPO4(pH 9.5), for 15-20 min in dark. Subsequently, leaves were washed with water and observed for callose deposition in epifluorescence microscope (Stereo, Lumar V7, Zeiss) under UV illumination
    2. In plantahypersensitive response (HR) and callose deposition assay
    3. flash (Thermoscientific). β-Glucuronidase activity for GUS was expressed as nanomoles of MU produced/minute/108 cells
    4. In planta siderophore gene expression was studied by measuring β-glucuronidase activity. GUS marked BXOR1 strain and wild-typeBXOR1 (control) were inoculated in the leaves of 14 day old susceptible Taichung Native 1 (TN-1) variety of rice. After 10 days of inoculation, leaves were crushed and dissolved in 1 ml of MUG extraction buffer without adding MUG substrate (4-methylumbelliferyl β-D-glucuronide). Subsequently, 250 μl extraction buffer containing MUG was added, and incubated at 37°C for appropriate time (Jefferson et al., 1987). Next, 75-μl aliquots were taken from each reaction mixture, and the reaction was terminated by the addition of 675 μl Na2CO3 (0.2 M). Fluorescence was measured against 4-methyl-umbelliferone (MU; Sigma) as standard at excitation/emission wavelength of 365/455 nm, respectively in
    5. In plantaGUS expression assay for siderophore cluster
    6. grown culture was inoculated in fresh PS medium with or without 50 μM 2, 2’-dipyridyl and grown at 28°C. At regulartime intervals, 1 ml culture was removed to determine OD at 600 nm. Furthermore, for GUS assay, 1 ml culture was centrifuged to obtain the pellet, which was washed once in sterile miliQ water, and resuspended in 250 μl volume of 1 mM MUG (4-methylumbelliferyl β-D-glucuronide) extraction buffer (50 mM sodium dihydrogen phosphate [pH 7.0], 10 mM EDTA, 0.1% Triton X-100, 0.1% sodium lauryl sarcosine, and 10 mM β-mercaptoethanol),and incubated at 37°C (Jefferson et al., 1987). After appropriate time intervals, 75 μl aliquotes were taken from each reaction mixture, and reaction was terminated by adding 675 μl Na2CO3 (0.2 M). Fluorescence was measured against 4-methyl-umbelliferone as the standard at excitation/emission wavelength of 365/455 nm, respectively. Likewise, GFP activity was measured in Varioscan flash (Thermoscientific) at exitation/emission wavelength of 472/512 nm, respectively by taking 200 μl of culture directly
    7. For reporter assay, GUS and GFP marked Xanthomonas oryzaepv. oryzicolastrains and control strains were grown overnight in PS medium. 0.2
    8. Reporter assays with β-Glucuronidase (GUS) and green fluorescent protein (GFP)
    9. 2 bed volumes of methanol, and equilibrated with 5 bed volumes of distilled water. In order to reduce the water solubility of siderophore in the supernatant, it was acidified to pH 2 using concentarted HCl. This acidified supernatant was passsed through the column, and finally eluted with 160 ml methanol by collecting approximately 60 fractions (2 ml each) of the flow through. Siderophore assay was done on CAS plate with each collected fraction. Fraction that gave orangish-yellow halo for the siderophore on CAS plate, was combined together, dried in rotary evaporator and finally reconstituted in 1 ml methanol for further quantification using HPLC as described previously (Amin et al., 2009).For HPLC analysis, siderophore samples were filtered through filter membrane (porosity, 0.45 μ). Next, 10 μl sample was injected into Agilent C18 (4.6mm×250mm×5μm) column (gradient:(A=H2O/0.1%TFA), (B= CH3CN/0.1%TFA) 0-30% B in 10 min, 30-45% B in 15 min,45-0%B in 20 min at a flow rate of 1 ml/min). Similarly, standard vibrioferrin (siderophore produced by Xanthomonas) was also estimated through HPLC for comparison. Fe(III) bound vibrioferrin complex was prepared by incubating FeCl3.6H2O and apo-vibrioferrin for overnight. This complex was detected at300 nm (RT 10.998 min), whereas apo-vibrioferrin was detected at 220 nm at RT 10.988 min. The siderophore concentration in the samples were determined by peak area and calculated against the standard curves obtained from standard vibrioferrin. The siderophore from the test samples were detected at 300 nm, which confirms that majority of the vibrioferrin isolated from the culture was present in bound form
    10. Different Xanthomonas oryzaepv. oryzicola strains were grown overnight in PS medium at 28 °C and 200 rpm. 0.2% of the overnight grown culture was inoculated in the the fresh PS medium supplemented with 50 μM 2, 2’-dipyridyl, and grown till OD600 reached to 1. Cultures were centrifuged at 12,000 g for 50 min to get the cell free culture supernantant, which was collected into acid treated bottles. Excess exoplysaccharide was removed by centrifugation for longer time. Siderophore was initially isolated by column chromatography as described previously (Wright, 2010). Briefly, 220 g of XAD-16 resin was soaked overnight and packed into the column (2.4×30 cm), column was wa
    11. HPLC based siderophore estimation from culture supernatant of different strains of X. oryzaepv. oryzicola
    12. concentarion in the samples were determined based on their peak area against standard oxalic acid plot.For GC-MS analysis, N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) derivatization was performed with the dried HPLC fraction of samples as well as standards as described previously (Šťávová et al., 2011). Briefly, 200 μl BSTFA, and 100 μl hexane were added to the sample, and incubated at 50 °C for 70 min. GC analyses were performed using a Shimazdu GP 2010 plus instrument equipped with an autosampler, and a split injector.Separations were accomplished using a 30-m long DB-5 capillary column, 0.25 mm internal diameter (I.D.) at a constant helium flow rate of 1.5 mL/min. Samples (10 μL) were injected with a split ratio of 10 into the column at 100 °C. The final column temperature program started at 100 °C and attained final temperature 280°C with a gradient increase of 5 °C/min. The MS data (total ion chromatogram,TIC) was acquired in the full scan mode (m/z of 50–500) at a scan rate of 1000 amu using the electron ionization (EI) with an electron energy of 70 eV. The acquired spectrum was searched against standard NIST-05 library
    13. Xanthomonas oryzaepv. oryzicola strains were grown overnight in PS medium supplemented with appropriate antibiotics. 0.2 % of the overnight grown culture was reinoculated in 250 ml of fresh PS medium supplemented with 50 μM 2,2’-dipyridyl, and allowed to grow till OD600reached 1. Cultures were centrifuged to obtain cell free culture supernatant, concentrated on vaccum evaporator, and freeze dried at regular time intervals to remove the water completely. Oxalic acid was estimated from the dried supernatant by using Agilent 1100 series HPLC system as described previously with slight modifications (Ding et al., 2006). In brief, dried supernatant fractions of different cultures were dissolved in mobile phase of pH 2.7, and allowed to stand for 3 h for the precipitation of humic substances. These samples were filtered through membrane filter (porosity, 0.45 μm), and 20 μl volume of the filtrate was injected into the Agilent C18 (4.6 mm× 250 mm× 5 μm) column. The mobile phase used was 10 mM KH2PO4-CH3OH (95:5, pH 2.7), and the samples were separated by isocratic elution at 0.8 mL/min at 26°C temperature. Standard oxalic acid was detected in similar way in mobile phase (pH 2.7 at 210 nm) with retention time (RT) of 6.7 min. Likewise, oxalic acid in the test samples were also detected at 210 nm with RT 6.7
    14. Oxalic acidestimation from culture supernatant of different strains of X. oryzaepv. oryzicola by HPLC and GCMS analysis
    15. CFUs/ml) onto fully expanded leaf, and pricking with sterile needle to facilitate the entry of bacteria inside the leaves through wound. To detrmine the growth of bacteria inside leaves, 1 cm2 leaf area surrounding the inoculation site was cut at regular time intervals, surface sterilized by dipping in 2% (vol/vol) sodium hypochlorite for 2 min, and washed twice in sterile water. For getting the CFUs, leaves were crushed using mortar and pestle, serially diluted, and plated on PSA medium containing appropriate antibiotics
    16. Exogenous iron supplementation was performed as described previously (Chatterjee and Sonti, 2002). Briefly, leaves of 40-day-old greenhouse-grown rice plants of the susceptible rice cultivar Taichung Native-1 (TN-1) were cut with scissors 2 cm above the junction of the leaf blade and leaf sheath. These cut leaves (25 leaves per flasks) were dipped in 250 ml conical flasks containing 200 ml 1μg/mlof Benzyl amino purine (BAP) in double distilled water. BAP (a cytokine hormone) maintain the detached rice leaves in fresh condition for longer period. For iron supplementation, FeCl3 was added to a final concentration of 50 μM (stock-10 mM). Prior to inoculation with different strains of Xanthomonas oryzaepv. oryzicola, the leaves were maintained overnight on a laboartory bench top. Strains were inoculated into the leaves by needle pricking method by dropping 20μl of bacterial suspension (approx. 1 × 108bacterial
    17. Exogenous iron supplementation and bacterial growth assay in rice leaves
    18. Ferric-iron-reduction activity of Xanthomonas oryzaepv. oryzicolawas measured using ferrozine, a chromogenic ferrous iron chelator, as described previously (Velayudhan etal., 2000; Worst et al., 1998). For estimating the ferric reductase activity, Xanthomonas oryzaepv. oryzicolastrains were grown in 20 ml PS medium carrying appropriate antibiotics for 24 h to OD600 of 1. Cell free PS media was incubated under similarcondition to be used as control. Chromogenic ferrous iron chelator, ferrozine was added to a final concentration of 1 mM, and FeCl3was added as ferric iron source to a final concentration of 50 μM, and incubated at 28ºC. At regular time intervals, 1 ml aliquotes were taken from the test culture and control, centrifuged to remove the cells, and absorbance of the magenta coloured Fe2+-ferrozine complex in the cell free culture supernantant was measured at 535 nm by using control supernatant as reference. The Fe2+reduction activity was quantified as micromoles of Fe2+-Ferrozine complex formed
    19. Assay for ferric reductase activity
    20. media containing 50 μM 2’2’-dipyridyland grown for 24 h at 28°C with continuous shaking at 200 rpm. Cells were harvested by centrifugation at 7000 g for 10 min at 4 °C, washed twice with 50 mM phosphate buffer (pH-7.4), and finally resuspended in phosphate buffer. The bacterial suspension was then diluted with chelex-100 treated PS to get a final OD600of 1.0 and incubated at 28°C for 5 min. Iron transport assay was initated by adding 55FeCl3(American radiolabeled chemicals, Inc., St. Louis, USA,specific activity 10.18 mci/mg) to a final concentration of 0.4 μM into the bacterial suspension. The radiolabelled stock solution was diluted with water and 1M sodium ascorbate for 55Fe3+uptake and 55Fe2+uptake studies, respectively. For uptake of FeCl3bound vibrioferrin, both vibrioferrin (7.6 mM stock) and 55FeCl3were incubated in 1:1 ratio by diluting it appropriately with water and uptake was initiated with a final concentartion of 0.4 μM. To stop the uptake, 200 μl of bacterial cell suspension was layered and immediately centifuged (13000 g; 1 min) through 300 μl of di-butylphthalate and di-octyl phthalate (1:1) mixture. The upper aqueous layer and organic solvent was aspirated, and pellet was resuspended in 100 μl Triton-X-100. The suspension was added to 5 ml scintillation cocktail, and radioactivity count was determined in the 3H channel of scintillation counter (Perkin Elmer, Liquid Scintillation analyzer, Tri-Carb 2910 TR, USA). As control, both Fe2+and Fe3+uptake assays were performed in presence of proton motive force uncoupler carbonylcyanidep-trifluoromethoxyphenylhydrazone (FCCP; 50 μM), to distinguish between non-specific uptake of readiolabelled Fe by the bacterial cells. However, no significant increase in the incorporation of Fe2+and Fe3+ was observed in presence of FCCP, which indicated that iron uptake by these strains is energy-dependent process
    21. In vitro transport assay was performed by using radiolabelled iron to measure the capacity of Xanthomonas oryzaepv. oryzicola strains to transport 55Fe(II) and 55Fe(III) forms of iron as described previously with slight modifications (Ardon et al., 1997; Velayudhan et al., 2000). For iron uptake asssay, Xocwild-type BXOR1 strain, ∆rpfF mutant and the complemented strain harboring full length rpfFgenewere grown overnight in PS medium. 0.2% of the overnight grown culture was inoculated in fresh P
    22. 55Fe uptake assay
    23. Intracellular iron content in different Xanthomonas oryzaepv. oryzicolastrains was measured by using atomic absorption spectroscopy as described previously with few modifications (Velayudhan et al., 2000). For estimation of intracellular iron, different strains of Xanthomonas oryzaepv. oryzicolawere grown overnight in 3 ml PS media with appropriate antibiotics for differentially marked strains. 0.2% of the overnight grown culture was inoculated in 250 ml PS medium alone or PS plus 2, 2’-dipyridyl for iron stravation, and grown to an OD600 of 1.2. Cells were then pelleted down by centrifuging at 7000 g for 10 min, and washed twice with phosphate buffer saline (PBS). After washing, cells were lyophilized, and their dry weights were determined. Lyophilized cells were then dissolved in 30% nitric acid at 80ºC for 12 h and diluted 10-fold with miliQ water. Iron content was determined by atomicabsorption spectroscopy using ICP-OES (JY 2000 sequential Inductively Coupled Plasma Optical Emisson spectrometer,Jobin Yvon, Horiba, France). Iron level was quantified against aqueous standard of iron traceable to NIST (National institute of standards and technology, India)