32 Matching Annotations
  1. Oct 2024
    1. neural sequence transduction model

      神经序列转导模型(seq转seq)

      神经序列转导模型是一种用于处理序列数据的深度学习模型,主要用于将输入序列转换为输出序列。这类模型广泛应用于自然语言处理、语音识别、机器翻译等任务。

      最出名:Transformer

    2. import altair as alt

      是什么

      Altair 是一个基于 Vega 和 Vega-Lite 的声明式统计可视化库。它提供了一种简单而强大的 API,可以创建各种类型的数据可视化。以下是 Altair 的一些主要功能:

      1. 数据可视化: Altair 支持创建各种类型的图表,包括散点图、折线图、柱状图、饼图、热力图等。它提供了一个高度抽象的 API,使得创建复杂的可视化变得非常简单。

      2. 交互式可视化: Altair 支持创建交互式可视化,用户可以通过缩放、平移等操作来探索数据。它还支持添加鼠标悬停、点击等交互事件。

      3. 数据转换: Altair 提供了丰富的数据转换功能,包括聚合、过滤、排序等。这使得在创建可视化之前就可以对数据进行预处理。

      4. 可定制性: Altair 提供了大量的配置选项,允许用户自定义图表的外观,如颜色、标签、图例等。

      5. 可重复性: Altair 的声明式 API 使得可视化的创建和修改变得非常容易。用户可以轻松地保存和共享可视化代码。

      6. 集成性: Altair 可以与其他 Python 数据分析库(如 Pandas、Numpy)无缝集成,使得数据处理和可视化可以在同一个环境中完成。

      总之, Altair 是一个功能强大、易用的数据可视化库,广泛应用于数据分析和探索性数据分析领域。

      与Matplotlib 区别

      Altair 和 Matplotlib 都是 Python 中常用的数据可视化库,但它们在设计理念和使用方式上有一些重要的区别:

      1. 编程范式:
      2. Matplotlib 采用命令式编程范式,用户需要手动设置各种图形属性和参数。
      3. Altair 采用声明式编程范式,用户只需要描述想要的可视化效果,Altair 会自动处理底层的实现细节。

      4. 抽象层次:

      5. Matplotlib 提供了更底层的接口,用户可以完全控制图形的每个细节。
      6. Altair 提供了更高层次的抽象,用户只需要关注数据和视觉编码,而不需要关心具体的实现。

      7. 学习曲线:

      8. Matplotlib 有较陡的学习曲线,需要掌握大量的概念和API。
      9. Altair 的学习曲线较平缓,用户只需要学习几个核心概念就可以创建复杂的可视化。

      10. 交互性:

      11. Matplotlib 支持交互性,但需要额外的库和编程工作。
      12. Altair 内置了丰富的交互功能,用户可以轻松创建可交互的可视化。

      13. 可重复性:

      14. Matplotlib 的代码较为冗长和复杂,不利于代码的复用和共享。
      15. Altair 的声明式API使得可视化代码更加简洁和可读,有利于代码的复用和共享。

      总的来说, Altair 更加注重用户体验和可重复性,而 Matplotlib 则提供了更底层的控制能力。两者各有优缺点,适用于不同的使用场景。对于需要快速创建可视化并注重可重复性的场景,Altair 更加合适;而对于需要精细控制图形细节的场景,Matplotlib 可能更加合适。

    3. import spacy

      德语tokenizer包

  2. Jun 2023
  3. Mar 2023
  4. cocktailpeanut.github.io cocktailpeanut.github.io
    1. 컴퓨터에서 LLAMMA AI를 실행하는 매우 간단한 방법인 Dalai cpp 파일 빌드, github 복제, 파일 다운로드 등을 귀찮게 할 필요가 없음. 모든 것이 자동화 됨

  5. Nov 2022
  6. Oct 2022
  7. Jun 2022
  8. Nov 2021
    1. Cognitive neuroscience proves that no two learners are alike. Designing for a "mythical" average (as Todd Rose explains in the Myth of Average) is to design for no-one.

      Designing for average is designing for no one! Recommend the video as well.

    1. Solicit feedback. One of the easiest ways to solicit feedback from your students is to use a survey. Keep surveys short and consider asking students to share in a few words how the course is going or what they find most challenging.

      Soliciting feedback serves other purposes as well: it's another "touch" with your students, and it demonstrates to students that you are listening.

    1. Offer alternatives for visual information (checkpoint 1.3)

      Note that for these purposes, text is considered a form of visual information.

  9. Feb 2021
    1. Regression Loss Functions

      回归损失函数

    2. Neural network models learn a mapping from inputs to outputs from examples and the choice of loss function must match the framing of the specific predictive modeling problem, such as classification or regression. Further, the configuration of the output layer must also be appropriate for the chosen loss function.

      神经网络模型根据例子学习输入到输出的映射,损失函数的选择必须跟特定预测模型相匹配,比如分类和回归。而且,输出层必须与使用的损失函数配置恰当。

  10. Aug 2019
  11. Feb 2019
    1. Engineering Challenges
      • Communication 通常的存储都是kv,更新粒度是单个数值,但是ML算法通常的数据集类型是matrix,vector,tensor,更新的是part matrix或者vector,所以可以更进一步优化通信数据类型。

      • Fault tolerance

  12. May 2018
    1. Thesemodels are often shared globally by all worker nodes,which must frequently accesses the shared parameters asthey perform computation to refine it.

      传统模型训练流程在超大数据集上分布式训练时其模型需要所有节点都有才能训练。那么由此带来的问题:

      • 网络带宽的巨大消耗
      • 很多算法是顺序的。这种同步的训练方式很低效
      • 分布式的话容错性差
  13. Nov 2017
    1. Adversarial networks provide a strong algorithmic framework for building unsupervised learning models that incorporate properties such as common sense, and we believe that continuing to explore and push in this direction gives us a reasonable chance of succeeding in our quest to build smarter AI.
    2. This demonstration of unsupervised generative models learning object attributes like scale, rotation, position, and semantics was one of the first.
    3. Practically, this property of adversarial networks translates to better, sharper generations and higher-quality predictive models.
    4. The adversarial network learns its own cost function — its own complex rules of what is correct and what is wrong — bypassing the need to carefully design and construct one.
    5. This cost function forms the basis of what the neural network learns and how well it learns. A traditional neural network is given a cost function that is carefully constructed by a human scientist.
    6. While previous attempts to use CNNs to train generative adversarial networks were unsuccessful, when we modified their architecture to create DCGANs, we were able to visualize the filters the networks learned at each layer, thus opening up the black box.
    7. This type of optimization is difficult, and if the model weren't stable, we would not find this center point.
    8. Instead of having a neural network that takes an image and tells you whether it's a dog or an airplane, it does the reverse: It takes a bunch of numbers that describe the content and then generates an image accordingly.
    9. An adversarial network has a generator, which produces some type of data — say, an image — from some random input, and a discriminator, which gets input either from the generator or from a real data set and has to distinguish between the two — telling the real apart from the fake.
  14. May 2017
  15. Sep 2015