6,770 Matching Annotations
  1. Jul 2025
    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      General Statement

      *Our lab was totally destroyed on June 15th by an Iranian missile. All stocks, equipment and reagents were lost. While we performed many of the experiments requested by the reviewers, unfortunately some were never completed. We thank you for your understanding. *

      We thank the three reviewers for their thoughtful comments and useful suggestions on how to improve our paper. Some of the reviewers claimed that the paper is “preliminary”. We would like to highlight that in our opinion “preliminary” has two possible meanings in this context: 1) the data does not yet support the claims that the authors wrote; 2) the story is short and should be extended. While we totally agree that type 1 “preliminary” should be addressed (and we have addressed that to the best of our abilities), type 2 “preliminary” is a matter of scope, the length of the paper/project and the publication home. We believe that this story, which has been led by an outstanding master’s student (and as such has had a limited timespan) is worthwhile of publication in its current scope.

      2. Point-by-point description of the revisions

      Reviewers’ comments are in BLUE while our responses are in BLACK.

      Reviewer 1 Summary: This study reports a role for matrix metalloproteinases (MMPs) in the developmental pruning of gamma Kenyon cells (KCs) in the fruit fly Mushroom Body during larval-pupal metamorphosis. The authors show through gene expression studies that MMP genes are upregulated in late larval stages as part of the early program for this type of neuronal pruning. They show through cell-targeted RNAi studies of both secreted MMP-1 and membrane-anchored MMP-2, that both genes are required in glial cells and to a lesser extent within KCs.

      Both MMPs have secreted and membrane-anchored isoforms and we did not assess whether the secreted/anchored isoforms are involved; e.g. see LaFever et al. 2017.

      The authors show that MMP secreted from glial is required for normal levels of Mushroom Body developmental neuronal pruning. They mention that MMP genes have been identified in schizophrenic patient screens in patients, and that perhaps a comparable pruning mechanism could be involved in the loss of grey matter (loss of synapses) in patients. The authors propose that MMP levels may be a potential therapeutic marker in the future.

      We thank the reviewer for his comments. We find it important to clarify that we do not think our work suggests that the MMPs levels may be a potential therapeutic marker without much additional work in the future. In the original text we added a claim from another paper suggesting MMPs as therapeutic target. However, due to the arising confusion, we decided to delete this statement from the text (original line 198). We also added a general disclaimer towards the end of the discussion regarding the genetic power of Drosophila but its limited implication into human health (new lines 276-278).

      Major Comments: Overall, the work is of a reasonable standard, but very preliminary

      Please see general note on two types of “preliminary” – we thank the reviewer for helping us substantiate our claims and strengthen our paper but we do not plan to significantly increase its scope.

      The study lacks the substance to completely convince me of any of the results. There is SUBSTANTIAL work that needs to be done to make this publishable. There are a lot of writing mistakes; so many that I do not list them in detail here

      We are not absolutely sure that we understand to which mistakes this reviewer is eluding. However, we carefully rewrote the manuscript, streamlined many of our claims and added many new and more recent references.

      The references citations are fairly old, but I do not list update replacements here

      Thanks – we added many newer and relevant citations.

      The text is very brief, and the overall writing needs to include significantly more description and detail

      We have included more descriptions and details, as will be elaborated later on, but – again - this is a short report and will remain as such.

      This is evident in all aspects of the manuscript, but especially notable in the Methods and Figure Legends

      Thanks for raising this comment, which was reverberated also by other reviewers – we have now included more details, with a particular focus on the genotypes (Table 2), that somehow were erroneously not included in the original submission, as well as more detailed figure legends.

      None of the Figure Legends include full genotypes of any of the fly lines, and these full fly lines are also not included in the Methods. This is vital to compare the experimental lines to the controls

      True – our apologies for this mistake, we now added the full genotypes in Table 2.

      Major points are listed below:

      1. Figure 2: It is important to note of the specific age of animals in these images when talking about the loss of genes in development. Are all the animals age-matched? High levels of synaptic pruning occur post-eclosion), and it is important to understand when these pruning defects occur. It is mentioned that that overlap for the gene expression data is upregulated during 6-18h APF is this when these images are taken? This is very important in the context of pruning as SCZ symptom presentation is very late relative to these early events.

      We thank the reviewer for this comment which suggests we were not clear enough in our description. We do not claim to have generated an SCZ model and have clarified this better in the text (lines 275-278). Furthermore, axon pruning happens during pupal development, but in all the main figures in this manuscript we dissected young adult flies (3-5 days post eclosion) and show the remnants of unpruned axons (as we have done in numerous studies). To make sure that initial development occurred normally, we also include larval brains in the Figure S7. We now clarified the fact that we are imaging adult brains as a readout to investigate whether pruning occurred during metamorphosis or not (line 124-126).

      1. Figure 2: In the figure legend, it is indicated that the arrows are unpruned axons, however in the controls these areas appear to be highly innervated. Further explanation is needed about the context of the arrows, as there are clear visual differences between these images and the controls, but they appear to have a more expansive phenotype than "unpruned axons". The data does not match the visual representation in comparison to the control.

      We apologize for this confusion. Unfortunately, the driver which we use to label the γ-axons, R71G10-QF2, is not absolutely specific to the γ type KCs but also expressed (sometimes) in the ɑ/β KCs. As the ɑ/β axons are very stereotypic in shape and also express high levels of FasII (which we stain for), we can easily distinguish between the ɑ lobe and unpruned γ axons. To clarify this point, we now clearly demarcate all lobes in the control images and specifically the ɑ lobe in all panels. Additionally, we added new schemes in Figure 2A and 2O to better clarify the anatomy and experimental design.

      1. Figure 2: There needs to be more descriptive definitions and clarifications to the defects labeled in panel K. This could be done in the figure legend, but it would be more useful to label the images provided. For example, if Mmp2 is a "mild pruning affect, put that in the pie chart somewhere, to help guide the description of the phenotype to what those confocal images look like.

      We understand that the pie chart in Figure 2 was confusing and therefore simplified it in the current version (Fig. 2B and 2P). Also, thanks to this great point, we now include a new Figure S3 that includes examples for the ranking categories, which were now performed by two independent investigators in a blind manner.

      Figure 3: The time points of the images of the Mushroom Body (MB) are vital to understanding the process and regulation of these genes.

      Please see our comment to point #1 – unless specifically stated otherwise, all images are MBs of adult flies, as now clearly mentioned in the figure legends, in the text and in the Material and Methods section.

      1. Figure 3D: Significant description of this graph needs to be added for clarity. What parameters separate each phenotypic defect? Labeling the images and showing images that belong in different groups would be very helpful and improve the paper significantly.

      We now included a new Figure S3 (also see our response to comment #3).

      1. Figure S1: Additional experiments would help answer the strength of the phenotype for the ALG-Gal 4 driver. The authors need to perform the rescue experiment. Use a MMP-2 null and then drive it back in the ALG-GAL4 to see if this is sufficient to rescue the neuron pruning. This also isolates the mechanisms to one subtype of glia.

      These are excellent suggestions that are, unfortunately, not doable. To perform a rescue experiment, one would need a viable loss-of-function phenotype of an Mmp2 mutant. There is one published Mmp2 loss-of-function null allele which is lethal during pupal development (Page-McCaw et al, 2003). Our previous data, using tissue specific (ts)CRISPR, suggested the involvement of Mmp2 in neurons for their remodeling (Meltzer et al, 2019). We therefore independently generated an Mmp2 germline mutant using CRISPR (harboring an indel resulting in a premature stop codon and predicted to encode a truncated, 77 amino-acid long protein), now described in Fig. S5A (and in the Materials and Methods). This allele is, as expected, unfortunately also lethal. We attempted to overcome lethality by generating MARCM (mosaic) clones in neurons, but as expected, because Mmp2 is largely secreted, there was no pruning defect phenotype (Fig. S5B-C). Unfortunately, it is not yet possible to generate glial clones.

      Figure 3 and 4: The other glial subtypes need to be analyze to make any conclusion about their involvement, as well as the involvement of the astrocytes. Running these exact same experiments on the cortex glial and ensheathing glia will provide essential insight into what glial subtype is involved. The presumed lack of phenotypes in these other glial subtypes will also strengthen the argument that the astrocytes are specifically involved in this process. These are vital experiments.

      We currently limited our analysis (and conclusions) to astrocytes. Despite the fact that this experiment is beyond our initial scope, we obtained reagents and performed preliminary experiments (using the R77A03-Gal4 driver for cortex glia, and the R83E12-Gal4 for ensheathing glia). In both cases, we observed extremely mild pruning defects, not comparable to those with Repo- or Alrm-Gal4. In these preliminary experiments we lacked a proper control, and now, unfortunately, due to the loss of our lab, we are unable to complete these experiments in a reasonable amount of time.

      1. Figure 4: Again, description of the phenotypes and examples of these would improve the quality of this figure substantially.

      Absolutely agree – see our response to comment #3 (and Fig. S3).

      1. Figure 5: An improvement on the quantifications of these phenotypes would strengthen the paper substantially. More detailed description of the phenotypes and how they related to the control would significantly improve the overall quality of the work.

      Thanks again for highlighting that we neglected to include the full genotypes that are now added (Table 2). We also thank the reviewer for raising the point regarding quantification. First, we generated a new Fig. S3A-E to show examples of the ranking by two independent rankers. Second, ranking was performed by looking at TdTomato positive vertical axons that are outside of the ɑ lobe (high FasII) – this is now better explained in the materials and methods. Additionally, while we would love to have a better scoring, and automatic, system – and even published a semi-automated scoring algorithm in Alyagor et al. 2018 (Figure 3O in the Alyagor paper), because the driver also labels vertical axons (ɑ/β) and because unpruned γ axons often express FasII, this quantification method does not always work. What we have done in previous cases, as we have also done here, is to provide independent ranking by two investigators and compare their ranking (Fig. S3F-G). Finally, we are working with our AI hub to develop automatic scoring systems that will not require human ranking – however this is beyond the scope for this manuscript.

      Minor Comments: 1. Figure 1A: I would suggest labeling the KC (gamma) and potentially one of the others (a/B, a'/B') to orient the reader to the differences between these two subsets of the KCs, and to emphasize which neurons are undergoing pruning and where the cell bodies are and where the axons project.

      Thanks for the suggestions – we now better annotated the scheme in Figure 1A as well as additional schematics in Figure 2 and, finally, better annotations in selected panels. Specifically, the ɑ lobe is outlined in magenta throughout all relevant panels.

      1. Figure 1C: This panel needs further labeling to explain the findings in the heat map. Labeling some of the genes that were found and where they were would be helpful. This could also be done in the figure legend, however without any further labeling or context the heatmap is confusing.

      We apologize for the incomplete figure. We did not want to overload the figure with data, which is why we are showing only the important clusters and did not include gene names. To keep the figure simple, but at the same time provide the complete information, we now include the full data in Fig. S1 (that includes the original heatmap with all the dynamic clusters I-IX, and including all the gene names). For the full raw data, including non-dynamic clusters, the reader is referred to look in Supplemental excel file 1. We hope this provides the clarity that this reviewer rightfully asks for.

      1. Figure 3B,C: The full genotypes need to be labeled. What is the exact genotype used for the control?

      The full genotypes of all figure panels are now included in Table 2 in the Materials and Methods.

      1. Figure S1: The stock number for the ALG-GAL4 is missing, there are multiple different drivers, therefore this could be helpful in understanding this phenotype, as some are better than others.

      Indeed, Alrm-Gal4 comes on two chromosomes – we used BDSC #67032, which is on chromosome III and this is now clearly mentioned the Materials and Methods section.

      1. Figures 3 and 4: Labeling needs to remain consistent; Figure 3 "Glia-Gal4", Figure 4 "glia-gal4".

      Thanks, done.

      Reviewer #1 (Significance (Required)):

      General Assessment: An interesting study on MMP function during an unusual type of neural development (axon pruning). Most of the MMP function appears to be in glia, although the MMP role in this context in unclear. The MMP function in the neurons being pruned is unexpected and even less clear. The study is somewhat poorly described in terse language lacking essential information, which gives the overall impression of a preliminary report.

      Advance: Glial MMP function has been described for neuronal clearance mechanisms following injury. The main advance here is to describe a similar function during normal development. Audience: Developmental neuroscientists, MMP biologists, possibly schizophrenia clinician researchers

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Neuropsychiatric conditions are often influenced by genetic factors. Schizophrenia is a complex mental disorder characterised by a mixture of hallucinations, delusions and disorganised thinking that causes lifelong problems in daily life. GWAS have identified a number of genes associated with the risk of developing schizophrenia, although genetic predisposition alone is not sufficient and additional environmental factors are required. In the current manuscript, the authors aim to exploit the strength of the Drosophila system to explore a link between schizophrenia-associated genes and neuronal remodelling during development. They focus on the mushroom body in the adult brain, where pronounced neuronal remodelling occurs during metamorphosis. To assess the potential role of the genes identified by the GWAS, they performed a targeted RNAi-based screen. They focus on the role of metalloproteases and find that they are required in neurons and in glia for the pruning of mushroom body axons. The study starts with a selection of 32 genes, 29 of which are listed (a bit hidden) in materials and methods and the identification of the Drosophila orthologs. The expression patterns of these genes in Kenyon cells are presented in Figure 1 - but unfortunately no information is given on who is expressed when

      We apologize for the confusion. We attempted to keep Figure 1 simple but this resulted in the absence of critical information, as the reviewer suggests. We now include a Figure S1 that includes the entire heatmap of the dynamically expressed clusters I-IX with all the gene names. Additionally, we now augmented the information in Table 1 to include the screen phenotypes. Finally, Supplemental excel file 1, also included in our original submission, includes all the data, and is now better referred to throughout the text.

      In a next step, Kenyon cell specific RNAi knockdown experiments are shown that identify a pruning phenotype for several genes. They demonstrate that Mmp2 (and similarly Mmp1) is also required in glia. Although Mmp2 was identified by neuronal RNAi-based knockdown, double knockdown experiments led the authors conclude that its primary function is in glia. The study emphasises the use of the advanced genetic model to understand complex human diseases. However, the paper does not go far enough in making use of the excellent genetics available. Basically, the report is about the identification of a few hits in a small RNAi screen, which is fine in itself, but leaves many questions unanswered. Do mmp1/2 mutants have a phenotype?

      This is a very important question that cannot be answered, unfortunately. There is one published Mmp2 loss of function null allele which is lethal during pupal development (Page-MaCaw et al, 2003). Our previous data, using tissue specific (ts)CRISPR, suggested the involvement of Mmp2 in neurons for their remodeling (Meltzer et al, 2019). We therefore independently generated an Mmp2 germline mutant using CRISPR (harboring an indel resulting in a premature stop codon and predicted to encode a truncated, 77 amino-acid long protein), now described in Fig. S5A (and in the Materials and Methods). This allele is, as expected, unfortunately also lethal. We attempted to overcome lethality by generating MARCM (mosaic) clones in neurons, but as expected, because Mmp2 is largely secreted, there was no pruning defect phenotype (Fig. S5B-C). Unfortunately, it is not yet possible to generate glial clones. Additionally, available Mmp1 mutants are, sadly, also homozygous lethal. That said, in our revised manuscript we now include data demonstrating that expression of a dominant negative variant of Mmp1 inhibits pruning (Fig. 3J-K). We strengthened the evidence regarding the reliability of Mmp1 RNAi using an antibody mix (Fig. S4), and for Mmp2 – we refer to a manuscript that tested its efficiency (Harmansa et al., 2023). Lastly, we added new data using an additional RNAi line targeting Mmp2 from the VDRC collection (Fig. 3L).

      Can the phenotype be rescued?

      Unfortunately, without a viable mutant LOF phenotype, a rescue experiment is impossible. Regardless, in an attempt to rescue the RNAi phenotype, we designed and generated an RNAi-resistant Mmp2 overexpression transgene. Unfortunately, due to the destruction of our lab – several days after we received this transgenic line from Bestgene – this experiment is not included in the revision.

      Does TIMP expression lead to similar phenotypes?

      This is an interesting question which we addressed in our experiments but did not include in the text. Unfortunately, overexpression of TIMP did not have any effect on MB development. We are adding this figure here as Reviewer Figure 1, but we think that adding this information to the paper will not improve it for several reasons. The lack of phenotype by overexpression of Timp can result from a technical issue such as low expression or mislocalization of the protein, or a biological issue such as more complicated involvement of TIMP or other MMP inhibitors.

      What is the temporal requirement for Mmp1/2?

      This is an excellent suggestion, not an easy experiment, but one that we initiated, using a temperature sensitive Gal80 to control the expression of the RNAi only during metamorphosis. However, to the unfortunate destruction of our lab, this experiment was never completed.

      What are the target proteins of Mmp2?

      This is the million-dollar question – but unfortunately is beyond the scope of this short report.

      Is Mmp2 still required when astrocyte motility is blocked? What is the morphology of glia after Mmp1/2 knockdown?

      Thank you for this wonderful suggestion. We initiated two types of experiments using sparse labeling techniques (both MARCM and SPARC) to identify the morphology of single astrocytes in WT vs. MMP KD. However, these are complicated crosses that were not completed prior to the destruction of our lab.

      Reviewer #2 (Significance (Required)):

      The strength of the study is to identify a pruning phenotype after RNAi-based knockdown. The limitations is that this study is very superficial, it is the beginning of a paper. The initial claim to use Drosophila because to its advanced genetics is not met. The results section is shorter than the discussion.

      While we agree with much of the reviewer’s statement this also relates to our general comment about “preliminary” type 1 and type 2 – True, this could be the beginning of a big paper and it would definitely be a more comprehensive and deep story. Most of the papers from my lab are indeed a 5 year endeavor. However, this short report (which is now longer, more detailed, and includes additional experiments) is a result of the work of an outstanding master’s student who came up with the idea for the project entirely by herself. Thus – given the data that she has acquired, and the fact that my lab will not continue to study MMPs or schizophrenia, the question needs to be whether the data supports the claims and whether this is an advance of science worthwhile of publication in a respectable journal. Our clear and decisive opinion is that the answer to that question is yes.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      In this work, Schuldiner and colleagues explore the role of Mmp1 and Mmp2 in neuronal remodeling in the mushroom body of Drosophila. Overall, this work is very interesting, but in its current form seems quite preliminary. The biggest limitation of the study is that single RNAi lines are used with no validation that the lines are working, despite the fact that Mmp antibodies are available as are endogenously tagged Mmp lines that could have been used to validate the genetic manipulations. Specific concerns are listed below.

      We thank reviewer 3 for his generally positive assessment of our work and we now performed additional experiments to strengthen and validate the original RNAi findings – for specifics see our reply to the points below.

      Major concerns 1) The scoring system for pruning of mushroom body neurons seems very variable, even in controls (where scoring can range from very mild to moderate), and it is very hard to assess from the images what one is looking at (rather than using our own judgment, we rely on the authors' words). It would be necessary to have better labeling and examples of what phenotypes are considered "mild", "severe", "wild type-like". It would also help to understand how phenotype assessment is guided by the overlap between the signals from TdTomato fluorescence and FasII stain.

      We thank the reviewer for raising this point, that has also been highlighted by other reviewers in some form. First, we have generated Figure S3A-E to show examples of the ranking, which was now performed by two independent investigators. Second, ranking was performed by looking at TdTomato positive vertical axons that are outside of the αlobe (high FasII) – this is now better explained in the materials and methods. Additionally, while we would love to have a better scoring, and automatic, system – and even published a semi-automated scoring algorithm in Alyagor et al. 2018 (Figure 3O in the Alyagor paper), because the driver also labels vertical axons (ɑ/β) and because unpruned γ axons often express FasII, this quantification method does not always work. What we have done in previous cases, as we have also done here, is to provide independent ranking by two investigators and compare their ranking (Fig. S3F-G). Finally, we are working with our AI hub to develop automatic scoring systems that will not require human ranking – however this is beyond the scope for this manuscript.

      2) The biggest limitations of the approach are that single RNAi lines are used to screen, with no accompanying validation of the tool (see above)

      We agree. Unfortunately not all RNAis are “equal” and thus not all of them work. To support the RNAi data, we have better clarified previous experiments that demonstrate the importance of neuronal Mmp2 via tissue specific (ts) CRISPR (Meltzer, et al, 2019). Unfortunately, the Mmp2 null mutant that is available is lethal during pupal development (Page-MaCaw et al, 2003). We therefore independently generated an Mmp2 germline mutant using CRISPR (harboring an indel resulting in a premature stop codon and predicted to encode a truncated, 77 amino-acid long protein), now described in Fig. S5A (and in the Materials and Methods). This allele is, as expected, unfortunately also lethal. We attempted to overcome lethality by generating MARCM (mosaic) clones in neurons, but as expected, because Mmp2 is largely secreted, there was no pruning defect phenotype (Fig. S5B-C). Unfortunately, it is not yet possible to generate glial clones. Additionally, available Mmp1 mutants are, sadly, also homozygous lethal. That said, in our revised manuscript we now include data demonstrating that expression of a dominant negative variant of Mmp1 inhibits pruning (Fig. 3J-K). We strengthened the evidence regarding the reliability of Mmp1 RNAi using an antibody mix (Fig. S4), and for Mmp2 – we refer to a manuscript that tested its efficiency (Harmansa et al., 2023). Lastly, we added new data using an additional RNAi line targeting Mmp2 from the VDRC collection (Fig. 3L).

      3) RNAi-based knockdown is used to infer epistatic information-this is not appropriate as epistasis experiments need to be done with null alleles to make firm conclusions. Additional concerns: ● Even with the same driver, knockdown efficiency for 2 different genes could be variable and dependent of the specific RNAi used. ● The comparison between drivers is even harder, as driver strength varies greatly. ● The knockdown efficiency drops with increasing numbers of RNAi used. ● The specific genotypes used for this experiment should be clarified, as it would be very important to ensure that the UAS dosage is equal across conditions.

      We agree that RNAi is not optimal to assess epistasis. And indeed, we did not mean to claim epistasis relationship between Mmp1 and Mmp2, nor between neurons and glia. We now use better language to clarify this. To define epistatic relationships, the use of mutants would be required, unfortunately the use of nulls is not possible because they are lethal and secreted (thus not enabling mosaic analyses). We agree that increasing the number of RNAi lines is expected to reduce their efficiency – this is why it is even more significant when we see an increased defective phenotype in the double knockdown experiments. Finally, we totally agree about the genotype comment and apologize that it was erroneously omitted in the original submission– all of which have been now added (Table 2 in materials and methods).

      4) To further deepen the rigor of this work, a few simple yet important things could have been done. First, it would be important to rule out that knocking down Mmps does not affect astrocyte numbers and health (could be assessed by counting numbers and observing their morphology). Also, the authors previously showed that astrocytes actively infiltrate the axon bundle prior to pruning to facilitate axon defasciculation and pruning (Marmor-Kollet et al., 2023). It would have provided an important insight to examine if astrocytes can infiltrate the axon bundle if Mmp2 and/or Mmp1 are knocked down.

      Thank you for these wonderful suggestions. We embarked on a few experiments as detailed below, unfortunately these are complicated crosses that were not completed prior to the destruction of our lab. 1) We initiated two types of experiments using sparse labeling techniques (both MARCM and SPARC) to identify the morphology of single astrocytes in WT vs. MMP KD. 2) Testing astrocytic infiltrations requires three binary systems, we obtained and generated stocks required for these experiments, but these were prematurely terminated. 3) We initiated experiments to count the number of glial nuclei in the vicinity of the degenerating axonal lobe (at the onset of pruning). Preliminary experiments with a small n (3 controls, 4 Mmp1 RNAi, and 5 Mmp2 RNAi) suggest that the number of glial nuclei is not significantly different between these conditions.

      Minor The introduction puts big emphasis on the role of glia, but then to narrows down candidate genes for the screen a γ-KCs transcriptional data set is used, and the initial screen is done via knockdown of those candidates in neurons (there is a disconnect between rationale and approach).

      We totally agree with this reviewer which is why we now changed the paper to include both neuronal and glial loss-of-function screens. Figure 1 is now augmented with the glial data.

      Rationale for looking into axon pruning and how that translates into insights about synaptic pruning defects in schizophrenia should be more clearly stated.

      Indeed, our belief that synapse pruning and axon pruning share molecular mechanisms remains yet unproven. However, both are steps during neuronal remodeling, which has been previously implicated in schizophrenia. That said, we now added an additional disclaimer to acknowledge the limitation of our findings in the context of human disease and synapse elimination (lines 275-279).

      Figure 1C: data visualization for this heat map should be improved. Parts of the data are faded, and the differences between gene clusters are unclear.

      We apologize for the incomplete figure. We did not want to overload the figure with data, which is why we are showing only the important clusters and did not include gene names. To keep the figure simple, but at the same time provide the complete information, we now include the full data in Fig. S1 (that includes the original heatmap with all the dynamic clusters I-IX, and including all the gene names). For the full raw data, including non-dynamic clusters, the reader is referred to look in Supplemental excel file 1. We hope this provides the clarity that this reviewer rightfully asks for.

      Reviewer #3 (Significance (Required)):

      In this work, Schuldiner and colleagues explore the role of Mmp1 and Mmp2 in neuronal remodeling in the mushroom body of Drosophila. Overall, this work is very interesting, but in its current form seems quite preliminary. The biggest limitation of the study is that single RNAi lines are used with no validation that the lines are working, despite the fact that Mmp antibodies are available as are endogenously tagged Mmp lines that could have been used to validate the genetic manipulations.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      We thank the reviewers for providing us the opportunity to revise our manuscript titled “Identifying regulators of associative learning using a protein-labelling approach in C. elegans.” We appreciate the insightful feedback that we received to improve this work. In response, we have extensively revised the manuscript with the following changes: we have (1) clarified the criteria used for selecting candidate genes for behavioural testing, presenting additional data from ‘strong’ hits identified in multiple biological replicates (now testing 26 candidates, previously 17), (2) expanded our discussion of the functional relevance of validated hits, including providing new tissue-specific and neuron class-specific analyses, and (3) improved the presentation of our data, including visualising networks identified in the ‘learning proteome’, to better highlight the significance of our findings. We also substantially revised the text to indicate our attempts to address limitations related to background noise in the proteomic data and outlined potential refinements for future studies. All revisions are clearly marked in the manuscript in red font. A detailed, point-by-point response to each comment is provided below.

      1. Point-by-point description of the revisions

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      Summary:

      Rahmani et al., utilize the TurboID method to characterize the global proteome changes in the worm's nervous system induced by a salt-based associative learning paradigm. Altogether, Rahmani et al., uncover 706 proteins that are tagged by the TurboID method specifically in samples extracted from worms that underwent the memory inducing protocol. Next, the authors conduct a gene enrichment analysis that implicates specific molecular pathways in salt-associative learning, such as MAP-kinase and cAMP-mediated pathways. The authors then screen a representative group of the hits from the proteome analysis. The authors find that mutants of candidate genes from the MAP-kinase pathway, namely dlk-1 and uev-3, do not affect the performance in the learning paradigm. Instead multiple acetylcholine signaling mutants significantly affected the performance in the associative memory assay, e.g., acc-1, acc-3, gar-1, and lgc-46. Finally, the authors demonstrate that the acetylcholine signaling mutants did not exhibit a phenotype in similar but different conditioning paradigms, such as aversive salt-conditioning or appetitive odor conditioning, suggesting their effect is specific to appetitive salt conditioning.

      Major comments:

      1. The statistical approach and analysis of the behavior assay: The authors use a 2-way ANOVA test which assumes normal distribution of the data. However, the chemotaxis index used in the study is bounded between -1 and 1, which prevents values near the boundaries to be normally distributed.

      Since most of the control data in this assay in this study is very close to 1, it strongly suggests that the CI data is not normally distributed and therefore 2-way ANOVA is expected to give skewed results.

      I am aware this is a common mistake and I also anticipate that most conclusions will still hold also under a more fitting statistical test.

      We appreciate the point raised by Reviewer 1 and understand the importance of performing the correct statistical tests.

      The statistical tests used in this study were chosen since parametric tests, particularly ANOVA tests to assess differences between multiple groups, are commonly used to assess behaviour in the C. elegans learning and memory field. Below is a summary of the tests used by studies that perform similar behavioural tests cited in this work, as examples:

      Table 1 | A summary for the statistical tests performed by similar studies for chemotaxis assay data. References (listed in the leftmost column) were observed to (A) use parametric tests only or (B) performed either a parametric or non-parametric test on each chemotaxis assay dataset depending on whether the data passed a normality test. Listings for ANOVA tests are in bold to demonstrate their common use in the C. elegans learning and memory field.

      Reference

      Parametric test/s used in the reference

      Non-parametric test/s used in the reference

      Beets et al., 2020

      Two-way ANOVA

      None

      Hiroki & Iino 2022

      One-way ANOVA

      None

      Hiroki et al., 2022

      One-way ANOVA

      None

      Hukema et al., 2006

      T-tests

      None

      Hukema et al., Learn. Mem. 2008

      T-tests

      None

      Jang et al., 2019

      ANOVA

      None

      Kitazono et al., 2017

      Two-way ANOVA and t-tests

      None

      Lans et al., 2004

      One-way ANOVA

      None

      Lim et al., 2018

      Two-way ANOVA

      Wilcoxon rank sum test adjusted with the Benjamini–Hochberg method

      Lin et al., 2010

      Two-way or three-way ANOVA

      None

      Nagashima et al., 2019

      One-way ANOVA

      None

      Ohno et al., 2014

      None

      Sakai et al., 2017

      One-way ANOVA or t-tests

      None

      Stein & Murphy 2014

      Two-way ANOVA and t-tests

      None

      Tang et al., 2023

      One-way ANOVA or t-tests

      None

      Tomioka et al., 2006

      T tests

      None

      Watteyne et al., 2020

      One-way ANOVA

      Two-sided Kruskal–Wallis

      We note Reviewer 1's concern that this may stem from a common mistake. As stated, Two-way ANOVA generally relies on normally distributed data. We used GraphPad Prism to perform the Shapiro-Wilk normality test on our chemotaxis assay data as it is generally appropriate for sample sizes Table 2 | Shapiro-Wilk normality test results for chemotaxis assay data in Figure S8C. Chemotaxis assay data was generated to assess salt associative learning capacity for wild-type (WT) versus lgc-46(-) mutant C. elegans. Three experimental groups were prepared for each C. elegans strain (naïve, high-salt control, and trained). From top-to-bottom, the data below displays the ‘W’ value, ‘P value’, a binary yes/no for whether the data passes the Shapiro-Wilk normality test, and a ‘P value summary’ (ns = non-significant). W values measure the similarity between a normal distribution and the chemotaxis assay data. Data is considered normal in the Shapiro-Wilk normality test when a W value is near 1.0 and the null hypothesis is not rejected (i.e., P value > 0.05).*

      WT naïve

      WT high-salt control

      WT trained

      lgc-46 naïve

      lgc-46 high-salt control

      lgc-46 trained

      W

      0.9196

      0.9114

      0.8926

      0.8334

      0.8151

      0.8769

      P value

      0.5272

      0.4758

      0.3705

      0.1475

      0.1070

      0.2954

      Passed normality test (alpha=0.05)?

      Yes

      Yes

      Yes

      Yes

      Yes

      Yes

      P value summary

      ns

      ns

      ns

      ns

      ns

      ns

      The manuscript now includes the use of the Shapiro-Wilk normality test to assess chemotaxis assay data before using two-way ANOVA on page 51.

      Nevertheless an appropriate statistical analysis should be performed. Since I assume the authors would wish to take into consideration both the different conditions and biological repeats, I can suggest two options:

      • Using a Generalized linear mixed model, one can do with R software.
      • Using a custom bootstrapping approach. We thank Reviewer 1 for suggesting these two options. We carefully considered both approaches and consulted with the in-house statistician at our institution (Dr Pawel Skuza, Flinders University) for expert advice to guide our decision. In summary:

      • Generalised linear mixed models: Generalised linear mixed models (GLMMs) are generally most appropriate for nested/hierarchal data. However, our chemotaxis assay data does not exhibit such nesting. Each biological replicate (N) consists of three technical replicates, which are averaged to yield a single chemotaxis index per N. Our statistical comparisons are based solely on these averaged values across experimental groups, making GLMMs less applicable in this context.

      • __Bootstrapping: __Based on advice from our statistician, while bootstrapping can be a powerful tool, its effectiveness is limited when applied to datasets with a low number of biological replicates (N). Bootstrapping relies on resampling existing data to simulate additional observations, which may artificially inflate statistical power and potentially suggest significance where the biological effect size is minimal or not meaningful. Increasing the number of biological replicates to accommodate bootstrapping could introduce additional variability and compromise the interpretability of the results. The total number of assays, especially controls, varies quite a bit between the tested mutants. For example compare the acc-1 experiment in Figure 4.A., and gap-1 or rho-1 in Figure S4.A and D. It is hard to know the exact N of the controls, but I assume that for example, lowering the wild type control of acc-1 to equivalent to gap-1 would have made it non significant. Perhaps the best approach would be to conduct a power analysis, to know what N should be acquired for all samples.

      We thoroughly evaluated performing the power analysis: however, this is typically performed with the assumption that an N = 1 represents a singular individual/person. An N =1 in this study is one biological replicate that includes hundreds of worms, which is why it is not typically employed in our field for this type of behavioural test.

      Considering these factors, we have opted to continue using a two-way ANOVA for our statistical analysis. This choice aligns with recent publications that employ similar experimental designs and data structures. Crucially, we have verified that our data meet the assumptions of normality, addressing key concerns regarding the suitability of parametric testing. We believe this approach is sufficiently rigorous to support our main conclusions. This rationale is now outlined on page 51.

      To be fully transparent, our aim is to present differences between wild-type and mutant strains that are clearly visible in the graphical data, such that the choice of statistical test does not become a limiting factor in interpreting biological relevance. We hope this rationale is understandable, and we sincerely appreciate the reviewer’s comment and the opportunity to clarify our analytical approach.

      We hope that Reviewer 1 will appreciate these considerations as sufficient justification to retain the statistical tests used in the original manuscript. Nevertheless, to constructively address this comment, we have performed the following revisions:

      1. __Consistent number of biological replicates: __We performed additional biological replicates of the learning assay to confirm the behavioural phenotypes for the key candidates described (KIN-2 , F46H5.3, ACC-1, ACC-3, LGC-46). We chose N = 5 since most studies cited in this paper that perform similar behavioural tests do the same (see the table below). Table 3 | A summary for sample sizes generated by similar studies for chemotaxis assay data. References (listed in the leftmost column) were observed to the sample sizes (N) below corresponding to biological replicates of chemotaxis assay data. N values are in bold when the study uses N ≤ 5.

      Reference

      N used in the study for chemotaxis assay data

      Beets et al., 2020

      8

      Hiroki & Iino 2022

      5-8

      Hiroki et al., 2022

      6-7

      Hukema et al., 2006

      ≥ 4

      Hukema et al., Learn. Mem. 2008

      ≥ 4

      Jang et al., 2019

      ≥ 4

      Kitazono et al., 2017

      ≥ 4

      Kauffman et al., 2010

      ≥ 3

      Kauffman et al., J. Vis. Exp. 2011

      ≥ 3

      Lans et al., 2004

      2

      Lim et al., 2018

      2-4

      Lin et al., 2010

      ≥ 4

      Nagashima et al., 2019

      ≥ 7

      Ohno et al., 2014

      ≥ 11

      Sakai et al., 2017

      ≥ 4

      Stein & Murphy 2014

      3-5

      Tang et al., 2023

      ≥ 9

      Watteyne et al., 2020

      ≥ 10

      __Grouped presentation of behavioural data: __We now present all behavioural data by grouping genotypes tested within the same biological replicate, including wild-type controls, rather than combining genotypes tested separately. This ensures that each graph displays data from genotypes sharing the same N, also an important consideration for performing parametric tests. Accordingly, we re-performed statistical analyses using this reduced Nfor relevant graphs. As anticipated, this rendered some comparisons non-significant. All statistical comparisons are clearly indicated on each graph. Improved clarity of figure legends: __We revised figure legends for __Figures 5, 6, S7, S8, & S9 to make clear how many biological replicates have been performed for each genotype by adding N numbers for each genotype in all figures.

      The authors use the phrasing "a non-significant trend", I find such claims uninterpretable and should be avoided. Examples: Page 16. Line 7 and Page 18, line 16.

      This is an important point. While we were not able to find the specific phrasing "a non-significant trend" from this comment in the original manuscript, we acknowledge that referring to a phenotype as both a trend and non-significant may confuse readers, which was originally stated in the manuscript in two locations.

      The main text has been revised on pages 27 & 28 when describing comparisons between trained groups between two C. elegans lines, by removing mentions of trends and retaining descriptions of non-significance.

      Neuron-specific analysis and rescue of mutants:

      Throughout the study the authors avoid focusing on specific neurons. This is understandable as the authors aim at a systems biology approach, however, in my view this limits the impact of the study. I am aware that the proteome changes analyzed in this study were extracted from a pan neuronally expressed TurboID. Yet, neuron-specific changes may nevertheless be found. For example, running the protein lists from Table S2, in the Gene enrichment tool of wormbase, I found, across several biological replicates, enrichment for the NSM, CAN and RIG neurons. A more careful analysis may uncover specific neurons that take part in this associative memory paradigm. In addition, analysis of the overlap in expression of the final gene list in different neurons, comparing them, looking for overlap and connectivity, would also help to direct towards specific circuits.

      This is an important and useful suggestion. We appreciate the benefit in exploring the data from this study from a neuron class-specific lens, in addition to the systems-level analyses already presented.

      The WormBase gene enrichment tool is indeed valuable for broad transcriptomic analyses (the findings from utilising this tool are now on page 16); however, its use of Anatomy Ontology (AO) terms also contains annotations from more abundant non-neuronal tissues in the worm. To strengthen our analysis and complement the Wormbase tool, we also used the CeNGEN database as suggested by Reviewer 3 Major Comment 1 (Taylor et al., 2021), which uses single cell RNA-Seq data to profile gene expression across the C. elegans nervous system. We input our learning proteome data into CeNGEN as a systemic analysis, identifying neurons highly represented by the learning proteome (on pages 16-20). To do this, we specifically compared genes/proteins from high-salt control worms and trained worms to identify potential neurons that may be involved in this learning paradigm. Briefly, we found:

      • WormBase gene enrichment tool: Enrichment for anatomy terms corresponding to specific interneurons (ADA, RIS, RIG), ventral nerve cord neurons, pharyngeal neurons (M1, M2, M5, I4), PVD sensory neurons, DD motor neurons, serotonergic NSM neurons, and CAN.
      • CeNGEN analysis: Representation of neurons previously implicated in associative learning (e.g., AVK interneurons, RIS interneurons, salt-sensing neuron ASEL, CEP & ADE dopaminergic neurons, and AIB interneurons), as well as neurons not previously studied in this context (pharyngeal neurons I3 & I6, polymodal neuron IL1, motor neuron DA9, and interneuron DVC). Methods are detailed on pages 50 & 51. These data are summarised in the revised manuscript as Table S7 & Figure 4.

      To further address the reviewer’s suggestion, we examined the overlap in expression patterns of the validated learning-associated genes acc-1, acc-3, lgc-46, kin-2, and F46H5.3 across the neuron classes above, using the CeNGEN database. This was done to explore potential neuron classes in which these regulators may act in to regulate learning. This analysis revealed both shared and distinct expression profiles, suggesting potential functional connectivity or co-regulation among subsets of neurons. To summarise, we found:

      • All five learning regulators are expressed in RIM interneurons and DB motor neurons.
      • KIN-2 and F46H5.3 share the same neuron expression profile and are present in many neurons, so they may play a general function within the nervous system to facilitate learning.
      • ACC-3 is expressed in three sensory neuron classes (ASE, CEP, & IL1).
      • In contrast, ACC-1 and LGC-46 are expressed in neuron classes (in brackets) implicated in gustatory or olfactory learning paradigms (AIB, AVK, NSM, RIG, & RIS) (Beets et al., 2012, Fadda et al., 2020, Wang et al., 2025, Zhou et al., 2023, Sato et al., 2021), neurons important for backward or forward locomotion (AVE, DA, DB, & VB) (Chalfie et al., 1985), and neuron classes for which their function is yet detailed in the literature (ADA, I4, M1, M2, & M5). These neurons form a potential neural circuit that may underlie this form of behavioural plasticity, which we now describe in the main text on pages 16-20 & 34-35 and summarise in Figure 4.

      OPTIONAL: A rescue of the phenotype of the mutants by re-expression of the gene is missing, this makes sure to avoid false-positive results coming from background mutations. For example, a pan neuronal or endogenous promoter rescue would help the authors to substantiate their claims, this can be done for the most promising genes. The ideal experiment would be a neuron-specific rescue but this can be saved for future works.

      We appreciate this suggestion and recognise its potential to strengthen our manuscript. In response, we made many attempts to generate pan-neuronal and endogenous promoter re-expression lines. However, we faced several technical issues in transgenic line generation, including poor survival following microinjection likely due to protein overexpression toxicity (e.g., C30G12.6, F46H5.3), and reduced animal viability for chemotaxis assays, potentially linked to transgene-related reproductive defects (e.g., ACC-1). As we have previously successfully generated dozens of transgenic lines in past work (e.g. Chew et al., Neuron 2018; Chew et al., Phil Trans B 2018; Gadenne/Chew et al., Life Science Alliance 2022), we believe the failure to produce most of these lines is not likely due to technical limitations. For transparency, these observations have been included in the discussion section of the manuscript on pages 39 & 40 as considerations for future troubleshooting.

      Fortunately, we were able to generate a pan-neuronal promoter line for KIN-2 that has been tested and included in the revised manuscript. This new data is shown in Figure 5B __and described on __pages 23 & 24. Briefly, this shows that pan-neuronal expression of KIN-2 from the ce179 mutant allele is sufficient to reproduce the enhanced learning phenotype observed in kin-2(ce179) animals, confirming the role of KIN-2 in gustatory learning.

      To address the potential involvement of background mutations (also indicated by Reviewer 4 under ‘cross-commenting’), we have also performed experiments with backcrossed versions of several mutants. These experiments aimed to confirm that salt associative learning phenotypes are due to the expected mutation. Namely, we assessed kin-2(ce179) mutants that had been backcrossed previously by another laboratory, as well as C30G12.6(-) and F46H5.3(-) animals backcrossed in this study. Although not all backcrossed mutants retained their original phenotype (i.e., C30G12.6) (Figure 6D, a newly added figure), we found that backcrossed versions of KIN-2 and F46H5.3 both robustly showed enhanced learning (Figures 5A & 6B). This is described in the text on pages 23-26.

      __Minor comments: __

      1. Lack of clarity regarding the validation of the biotin tagging of the proteome. The authors show in Figure 1 that they validated that the combination of the transgene and biotin allows them to find more biotin-tagged proteins. However there is significant biotin background also in control samples as is common for this method. The authors mention they validated biotin tagging of all their experiments, but it was unclear in the text whether they validated it in comparison to no-biotin controls, and checked for the fold change difference.

      This is an important point: We validated our biotin tagging method prior to mass spectrometry by comparing ‘no biotin’ and ‘biotin’ groups. This is shown in Figure S1 in the revised manuscript, which includes a western blot comparing untreated and biotin treated animals that are non-transgenic or expressing TurboID. As expected, by comparing biotinylated protein signal for untreated and treated lanes within each line, biotin treatment increased the signal 1.30-fold for non-transgenic and 1.70-fold for TurboID C. elegans. This is described on __page 8 __of the revised manuscript.

      To clarify, for mass spectrometry experiments, we tested a no-TurboID (non-transgenic) control, but did not perform a no-biotin control. We included the following four groups: (1) No-TurboID ‘control’ (2) No-TurboID ‘trained’, (3) pan-neuronal TurboID ‘control’ and (4) pan-neuronal TurboID ‘trained’, where trained versus control refers to whether ‘no salt’ was used as the conditioned stimulus or not, respectively (illustrated in Figure 1A). Due to the complexity of the learning assay (which involves multiple washes and handling steps, including a critical step where biotin is added during the conditioning period), and the need to collect sufficient numbers of worms for protein extraction (>3,000 worms per experimental group), adding ‘no-biotin’ controls would have doubled the number of experimental groups, which we considered unfeasible for practical reasons. This is explained on __pages 8 & 9 __of the revised manuscript.

      Also, it was unclear which exact samples were tested per replicate. In Page 9, Lines 17-18: "For all replicates, we determined that biotinylated proteins could be observed ...", But in Page 8, Line 24 : "We then isolated proteins from ... worms per group for both 'control' and 'trained' groups,... some of which were probed via western blotting to confirm the presence of biotinylated proteins".

      • Could the authors specify which samples were verified and clarify how?

      Thank you for pointing out these unclear statements: We have clarified the experimental groups used for mass spectrometry experiments as detailed in the response above on pages 8 &____ 9. In addition, western blots corresponding to each biological replicate of mass spectrometry data described in the main text on page 10 and have been added to the revised manuscript (as Figure S3). These western blots compare biotinylation signal for proteins extracted from (1) No-TurboID ‘control’ (2) No-TurboID ‘trained’, (3) pan-neuronal TurboID ‘control’ and (4) pan-neuronal TurboID ‘trained’. These blots function to confirm that there were biotinylated proteins in TurboID samples, before enrichment by streptavidin-mediated pull-down for mass spectrometry.

      OPTIONAL: include the fold changes of biotinylated proteins of all the ones that were tested. Similar to Figure 1.C.

      This is an excellent suggestion. As recommended by the reviewer, we have included fold-changes for biotinylated protein levels between high-salt control and trained groups (on pages 9 & 10 for replicate #1 and in __Table S2 __for replicates #2-5). This was done by measuring protein levels in whole lanes for each experimental group per biological replicate within western blots (__Figure 1C __for replicate #1 and __Figure S3 __for replicates #2-5) of protein samples generated for mass spectrometry (N = 5).

      Figure 2 does not add much to the reader, it can be summarized in the text, as the fraction of proteins enriched for specific cellular compartments.

      • I would suggest to remove Figure 2 (originally written as figure 3) to text, or transfer it to the supplementry material.

      As noted in cross-comment response to Reviewer 4, there were typos in the original figure references, we have corrected them above. Essentially, this comment is referring to Figure 2.

      We appreciate this feedback from Reviewer 1. We agree that the original __Figure 2 __functions as a visual summary from analysis of the learning proteome at the subcellular compartment level. However, it also serves to highlight the following:

      • Representation for neuron-specific GO terms is relatively low, but even this small percentage represents entire protein-protein networks that are biologically meaningful, but that are difficult to adequately describe in the main text.
      • TurboID was expressed in neurons so this figure supports the relevance of the identified proteome to biological learning mechanisms.
      • Many of these candidates could not be assessed by learning assay using single mutants since related mutations are lethal or substantially affect locomotion. These networks therefore highlight the benefit in using strategies like TurboID to study learning. We have chosen to retain this figure, moving it to the supplementary material as Figure S4 in the revised manuscript, as suggested.

      • OPTIONAL- I would suggest the authors to mark in a pathway summary figure similar to Figure 3 (originally written as Figure 4) the results from the behavior assay of the genetic screen. This would allow the reader to better get the bigger picture and to connect to the systemic approach taken in Figures 2 and 3.

      We think this is a fantastic suggestion and thank Reviewer 1 for this input. In the revised manuscript, we have added Figure 7, which summarises the tested candidates that displayed an effect on learning, mapped onto potential molecular pathways derived from networks in the learning proteome. This figure provides a visual framework linking the behavioural outcomes to the network context. This is described in the main text on pages 32-33.

      Typo in Figure 3: the circle of PPM1: The blue right circle half is bigger than the left one.

      We thank the Reviewer for noticing this, the node size for PPM-1.A has been corrected in what is now Figure 2 in the revised work.

      Unclarity in the discussions. In the discussion Page 24, Line 14, the authors raise this question: "why are the proteins we identified not general learning regulators?. The phrasing and logic of the argumentation of the possible answers was hard to follow. - Can you clarify?

      We appreciate this feedback in terms of unclarity, as we strive to explain the data as clearly and transparently as possible. Our goal in this paragraph was to discuss why some candidates were seen to only affect salt associative learning, as opposed to showing effects in multiple learning paradigms (i.e., which we were defining as a ‘general learning regulator’). We have adjusted the wording in several places in this paragraph now on pages 36 & 37 to address this comment. We hope the rephrased paragraph provides sufficient rationalisation for the discussion regarding our selection strategy used to isolate our protein list of potential learning regulators, and its potential limitations.

      ***Cross-Commenting** *

      Firstly, we would like to express our appreciation for the opportunity for reviewers to cross-comment on feedback from other reviewers. We believe this is an excellent feature of the peer review process, and we are grateful to the reviewers for their thoughtful engagement and collaborative input.

      I would like to thank Reviewer #4 for the great cross comment summary, I find it accurate and helpful.

      I also would like to thank Reviewer #4 for spotting the typos in my minor comments, their page and figure numbers are the correct ones.

      We have corrected these typos in the relevant comments, and have responded to them accordingly.

      Small comment on common point 1 - My feeling is that it is challanging to do quantitative mass spectrometry, especially with TurboID. In general, the nature of MS data is that it hints towards a direction but a followup validation work is required in order to assess it. For example, I am not surprised that the fraction of repeats a hit appeared in does not predict well whether this hit would be validated behavioraly. Given these limitations, I find the authors' approach reasonable.

      We thank Reviewer 1 for this positive and thoughtful feedback. We also appreciate Reviewer 4’s comment regarding quantitative mass spectrometry and have addressed this in detail below (see response to Reviewer 4). However, we agree with Reviewer 1 that there are practical challenges to performing quantitative mass spectrometry with TurboID, primarily due to the enrichment for biotinylated proteins that is a key feature of the sample preparation process.

      Importantly, we whole-heartedly agree with Reviewer 1’s statement that “In general, the nature of MS data is that it hints towards a direction but a follow-up validation work is required in order to assess it”. This is the core of our approach: however, we appreciate that there are limitations to a qualitative ‘absent/present’ approach. We have addressed some of these limitations by clarifying the criteria used for selecting candidate genes, based additionally on the presence of the candidate in multiple biological replicates (categorised as ‘strong’ hits). Based on this method, we were able to validate the role of several novel learning regulators (Figures 5, 6, & S7). We sincerely hope that this manuscript can function as a direction for future research, as suggested by this Reviewer.

      I also would like to highlight this major comment from reviewer 4:

      "In Experimental Procedures, authors state that they excluded data in which naive or control groups showed average CI 0.5499 for N2 (page 36, lines 5-7). "

      This threshold seems arbitrary to me too, and it requires the clarifications requested by reviewer 4.

      As detailed in our response to Reviewer 4, Major Comment 2, data were excluded only in rare cases, specifically when N2 worms failed to show strong salt attraction prior to training, or when trained N2 worms did not exhibit the expected behavioural difference compared to untrained controls – this can largely be attributed to clear contamination or over-population issues, which are visible prior to assessing CTX plates and counting chemotaxis indices.

      These criteria were initially established to provide an objective threshold for excluding biological replicates, particularly when planning to assay a large number of genetic mutants. However, after extensive testing across many replicates, we found that N2 worms (that were not starved, or not contaminated) consistently displayed the expected phenotype, rendering these thresholds unnecessary. We acknowledge that emphasizing these criteria may have been misleading, and have therefore removed them from page 50 in the revised manuscript to avoid confusion and ensure clarity.

      Reviewer #1 (Significance (Required)):

      This study does a great job to effectively utilize the TurboID technique to identify new pathways implicated in salt-associative learning in C. elegans. This technique was used in C. elegans before, but not in this context. The salt-associative memory induced proteome list is a valuable resource that will help future studies on associative memory in worms. Some of the implicated molecular pathways were found before to be involved in memory in worms like cAMP, as correctly referenced in the manuscript. The implication of the acetylcholine pathway is novel for C. elgeans, to the best of my knowledge. The finding that the uncovered genes are specifically required for salt associative memory and not for other memory assays is also interesting.

      However overall I find the impact of this study limited. The premise of this work is to use the Turbo-ID method to conduct a systems analysis of the proteomic changes. The work starts by conducting network analysis and gene enrichment which fit a systemic approach. However, since the authors find that ~30% of the tested hits affect the phenotype, and since only 17/706 proteins were assessed, it is challenging to draw conclusive broad systemic claims. Alternatively, the authors could have focused on the positive hits, and understand them better, find the specific circuits where these genes act. This could have increased the impact of the work. Since neither of these two options are satisfied, I view this work as solid, but not wide in its impact and therefore estimate the audience of this study would be more specialized.

      My expertise is in C. elegans behavior, genetics, and neuronal activity, programming and machine learning.

      We thank the Reviewer for these comments and appreciate the recognition of the value of the proteomic dataset and the identification of novel molecular pathways, including the acetylcholine pathway, as well as the specificity of the uncovered genes to salt-associative memory.

      Regarding the reviewer’s concern about the overall impact and scope of the study, we respectfully offer the following clarification. Our aim was to establish a systems-level approach for investigating learning-related proteomic changes using TurboID, and we acknowledge that only a subset of the identified proteins was experimentally tested (now 26/706 proteins in the revised manuscript). Although only five of the tested single gene mutants showed a robust learning phenotype in the revised work (after backcrossing, more stringent candidate selection, improved statistical analysis in addressing reviewer comments), our proteomic data provides us a unique opportunity to define these candidates within protein-protein networks (as illustrated in Figure 7). Importantly, our functional testing focused on single-gene mutants, which may not reveal phenotypes for genes that act redundantly (now mentioned on pages 28-30). This limitation is inherent to many genetic screens and highlights the value of our proteomic dataset, which enables the identification of broader protein-protein interaction networks and molecular pathways potentially involved in learning.

      To support this systems-level perspective, we have added Figure 7, which visually integrates the tested candidates into molecular pathways derived from the learning proteome for learning regulators KIN-2 and F46H5.3. We also emphasise more explicitly in the text (on pages 32-33) the value of our approach by highlighting the functional protein networks that can be derived from our proteomics dataset.

      We fully acknowledge that the use of TurboID across all neurons limits the resolution needed to pinpoint individual neuron contributions, and understand the benefit in further experiments to explore specific circuits. Many circuits required for salt sensing and salt-based learning are highly explored in the literature and defined explicitly (see Rahmani & Chew, 2021), so our intention was to complement the existing literature by exploring the protein-protein networks involved in learning, rather than on neuron-neuron connectivity. However, we recognise the benefit in integrating circuit-level analyses, given that our proteomic data suggests hundreds of candidates potentially involved in learning. While validating each of these candidates is beyond the scope of the current study, we have taken steps to suggest candidate neurons/circuits by incorporating tissue enrichment analyses and single-cell transcriptomic data (Table S7 & Figure 4). These additions highlight neuron classes of interest and suggest possible circuits relevant to learning.

      We hope this clarification helps convey the intended scope and contribution of our study. We also believe that the revisions made in response to Reviewer 1’s feedback have strengthened the manuscript and enhanced its significance within the field.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      __Summary: __

      In this study by Rahmani in colleagues, the authors sought to define the "learning proteome" for a gustatory associative learning paradigm in C. elegans. Using a cytoplasmic TurboID expressed under the control of a pan-neuronal promoter, the authors labeled proteins during the training portion of the paradigm, followed by proteomics analysis. This approach revealed hundreds of proteins potentially involved in learning, which the authors describe using gene ontology and pathways analysis. The authors performed functional characterization of some of these genes for their requirement in learning using the same paradigm. They also compared the requirement for these genes across various learning paradigms, and found that most hits they characterized appear to be specifically required for the training paradigm used for generating the "learning proteome".

      Major Comments:

      1. The definition of a "hit" from the TurboID approach is does not appear stringent enough. According to the manuscript, a hit was defined as one unique peptide detected in a single biological replicate (out of 5), which could give rise to false positives. In figure S2, it is clear that there relatively little overlap between samples with regards to proteins detected between replicates, and while perhaps unintentional, presenting a single unique peptide appears to be an attempt to inflate the number of hits. Defining hits as present in more than one sample would be more rigorous. Changing the definition of hits would only require the time to re-list genes and change data presented in the manuscript accordingly. We thank Reviewer 2 for this valuable comment, and the following related suggestion. We agree with the statement that “Defining hits as present in more than one sample would be more rigorous”. Therefore, to address this comment, we have now separated candidates into two categories in Table 2 __in the revised manuscript: ‘__strong’ (present in 3 or more biological replicates) and ‘weak’ candidates (present in 2 or fewer biological replicates). However, we think these weaker candidates should still be included in the manuscript, considering we did observe relationships between these proteins and learning. For example, ACC-1, which influences salt associative learning in C. elegans, was detected in one replicate of mass spectrometry as a potential learning regulator (Figure S8A). We describe this classification in the main text on pages 21-22.

      We also agree with Reviewer 2 that the overlap between individual candidate hits is low between biological replicates; the inclusion of Figure S2 __in the original manuscript serves to highlight this limitation. However, it is also important to consider that there is notable overlap for whole molecular pathways between biological replicates of mass spectrometry data as shown in __Figure 2 __in the revised manuscript (this consideration is now mentioned on __pages 13-14). We have included Figure 3 to illustrate representation for two metabolic processes across several biological replicates normally indispensable to animal health, as an example to provide additional visual aid for the overlap between replicates of mass spectrometry. We provide this figure (described on pages 13 & 15) to demonstrate the strength of our approach in that it can detect candidates not easily assessable by conventional forward or reverse genetic screens.

      We also appreciate the opportunity to explain our approach. The criteria of “at least one unique peptide” was chosen based on a previous work for which we adapted for this manuscript (Prikas et al., 2020). It was not intended to inflate the number of hits but rather to ensure sensitivity in detecting low-abundance neuronal proteins. We have clarified this in our Methods (page 46).

      The "hits" that the authors chose to functionally characterize do not seem like strong candidate hits based on the proteomics data that they generated. Indeed, most of the hits are present in a single, or at most 2, biological replicate. It is unclear as to why the strongest hits were not characterized, which if mutant strains are publicly available, would not be a difficult experiment to perform.

      We thank the reviewer for this important suggestion. To address this, we have described two molecular pathways with multiple components that appear in more than one biological replicate of mass spectrometry data in Figure 3 (main text on page 13). In addition, we have included __Figures 6 & S7 __where 9 additional single mutants corresponding to candidates in three or more biological replicates of mass spectrometry were tested for salt associative learning. Briefly, we found the following (number of replicates that a protein was unique to TurboID trained animals is in brackets):

      • Novel arginine kinase F46H5.3 (4 replicates) displays an effect in both salt associative learning and salt aversive learning in the same direction (Figures 6A, 6B, & S9A, pages 31-32 & 37-38).
      • Worms with a mutation for armadillo-domain protein C30G12.6 (3 replicates) only displayed an enhanced learning phenotype when non-backcrossed, not backcrossed. This suggests the enhanced learning phenotype was caused by a background mutation (Figure 6, pages 24-25).
      • We did not observe an effect on salt associative learning when assessing mutations for the ciliogenesis protein IFT-139 (5 replicates), guanyl nucleotide factors AEX-3 or TAG-52 (3 replicates), p38/MAPK pathway interactor FSN-1 (3 replicates), IGCAM/RIG-4 (3 replicates), and acetylcholine components ACR-2 (4 replicates) and ELP-1 (3 replicates) (Figure S7, on pages 27-30). However, we note throughout the section for which these candidates are described that only single gene mutants were tested, meaning that genes that function in redundant or compensatory pathways may not exhibit a detectable phenotype. Because of the lack of strong evidence that these are indeed proteins regulated in the context of learning based on proteomics, including evidence of changes in the proteins (by imaging expression changes of fluorescent reporters or a biochemical approach), would increase confidence that these hits are genuine.

      We thank Reviewer 2 for this suggestion – we agree that it would have been ideal to have additional evidence suggesting that changes in candidate protein levels are associated directly with learning. Ideally, we would have explored this aspect further; however, as outlined in response to Reviewer 1 Major Comment 2 (OPTIONAL), this was not feasible within the scope of the current study due to several practical challenges. Specifically, we attempted to generate pan-neuronal and endogenous promoter rescue lines for several candidates, but encountered significant challenges, including poor survival post-microinjection (likely due to protein overexpression toxicity) and reduced viability for behavioural assays, potentially linked to transgene-related reproductive defects. This information is now described on pages 39 & 40 of the revised work.

      To address these limitations, we performed additional behavioural experiments where possible. We successfully generated a pan-neuronal promoter line for kin-2, which was tested and included in the revised manuscript (Figure 5B, pages 30 & 31). In addition, to confirm that observed learning phenotypes were due to the expected mutations and not background effects, we conducted experiments using backcrossed versions of several mutant lines as suggested by Reviewer 4 Cross Comment 3 (Figure 6, pages 23-24 & 24-26). Briefly, this shows that pan-neuronal expression of KIN-2 from the ce179 mutant allele is sufficient to repeat the enhanced learning phenotype observed in backcrossed kin-2(ce179) animals, providing additional evidence that the identified hits are required for learning. We also confirmed that F46H5.3 modulates salt associative learning, given both non-backcrossed and backcrossed F46H5.3(-) mutants display a learning enhancement phenotype. The revised text now describes this data on the page numbers mentioned above.

      Minor Comments:

      1. The authors highlight that the proteins they discover seem to function uniquely in their gustatory associative paradigm, but this is not completely accurate. kin-2, which they characterize in figure 4, is required for positive butanone association (the authors even say as much in the manuscript) in Stein and Murphy, 2014. We appreciate this correction and thank the Reviewer for pointing this out. We have amended the wording appropriately on page 31 to clarify our meaning.

      2. “Although kin-2(ce179) mutants were not shown to impact salt aversive learning, they have been reported previously to display impaired intermediate-term memory (but intact learning and short-term memory) for butanone appetitive learning (Stein and Murphy, 2014).”*

      Reviewer #2 (Significance (Required)):

      • General Assessment: The approach used in this study is interesting and has the potential to further our knowledge about the molecular mechanisms of associative behaviors. Strengths of the study include the design with carefully thought out controls, and the premise of combining their proteomics with behavioral analysis to better understand the biological significance of their proteomics findings. However, the criteria for defining hits and prioritization of hits for behavioral characterizations were major wweaknesses of the paper.
      • Advance: There have been multiple transcriptomic studies in the worm looking at gene expression changes in the context of behavioral training (Lakhina et al., 2015, Freytag 2017). This study compliments and extends those studies, by examining how the proteome changes in a different training paradigm. This approach here could be employed for multiple different training paradigms, presenting a new technical advance for the field.
      • Audience: This paper would be of interest to the broader field of behavioral and molecular neuroscience. Though it uses an invertebrate system, many findings in the worm regarding learning and memory translate to higher organisms.
      • I am an expert in molecular and behavioral neuroscience in both vertebrate and invertebrate models, with experience in genetics and genomics approaches. We appreciate Reviewer 2’s thoughtful assessment and constructive feedback. In response to concerns regarding definition and prioritisation of hits, we have revised our approach as detailed above to place more consideration on ‘strong’ hits present in multiple biological replicates. We have also added new behavioural data for additional mutants that fall into this category (Figures 6 & S7). We hope these revisions strengthen our study and enhance its relevance to the behavioural/molecular neuroscience community.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      __Summary: __

      In the manuscript titled "Identifying regulators of associative learning using a protein-labelling approach in C. elegans" the authors attempted to generate a snapshot of the proteomic changes that happen in the C. elegans nervous system during learning and memory formation. They employed the TurboID-based protein labeling method to identify the proteins that are uniquely found in samples that underwent training to associate no-salt with food, and consequently exhibited lower attraction to high salt in a chemotaxis assay. Using this system they obtained a list of target proteins that included proteins represented in molecular pathways previously implicated in associative learning. The authors then further validated some of the hits from the assay by testing single gene mutants for effects on learning and memory formation.

      Major Comments:

      In the discussion section, the authors comment on the sources of "background noise" in their data and ways to improve the specificity. They provide some analysis on this aspect in Supplementary figure S2. However, a better visualization of non-specificity in the sample could be a GO analysis of tissue-specificity, and presented as a pie chart as in Figure 2A. Non-neuronal proteins such as MYO-2 or MYO-3 repeatedly show up on the "TurboID trained" lists in several biological replicates (Tables S2 and S3). If a major fraction of the proteins after subtraction of control lists are non-specific, that increases the likelihood that the "hits" observed are by chance. This analysis should be presented in one of the main figures as it is essential for the reader to gauge the reliability of the experiment.

      We agree with this assessment and thank Reviewer 3 for this constructive suggestion. In response, we have now incorporated a comprehensive tissue-specific analysis of the learning proteome in the revised manuscript. Using the single neuron RNA-Seq database CeNGEN, we identified the proportion of neuronal vs non-neuronal proteins from each biological replicate of mass spectrometry data. Specifically, we present Table 1 __on page 17 (which we originally intended to include in the manuscript, but inadvertently left out), which shows that 87-95% (i.e. a large majority) of proteins identified across replicates corresponded to genes detected in neurons, supporting that the TurboID enzyme was able to target the neuronal proteome as expected. __Table 1 is now described in the main text of the revised work on page 16.

      In addition, we performed neuron-specific analyses using both the WormBase gene enrichment tool and the CeNGEN single-cell transcriptomic database, which we describe in detail on our response to Reviewer 1 Major Comment 2. To summarise, these analyses revealed enrichment of several neuron classes, including those previously implicated in associative learning (e.g., ASEL, AIB, RIS, AVK) as well as neurons not previously studied in this context (e.g., IL1, DA9, DVC) (summarised in Table S7). By examining expression overlap across neuron types, we identified shared and distinct profiles that suggest potential functional connectivity and candidate circuits underlying behavioural plasticity (Figure 4). Taken together, these data show that the proteins identified in our dataset are (1) neuronal and (2) expressed in neurons that are known to be required for learning. Methods are detailed on pages 50-51.

      Other than the above, the authors have provided sufficient details in their experimental and analysis procedures. They have performed appropriate controls, and their data has sufficient biological and technical replaictes for statistical analysis.

      We appreciate this positive feedback and thank the Reviewer for acknowledging the clarity of our experimental and analysis procedures.

      Minor Comments:

      There is an error in the first paragraph of the discussion, in the sentences discussing the learning effects in gar-1 mutant worms. The sentences in lines 12-16 on page 22 says that gar-1 mutants have improved salt-associative learning and defective salt-aversive learning, while in fact the data and figures state the opposite.

      We appreciate the Reviewer noting this discrepancy. As clarified in our response to Reviewer 1, Major Comment 1 above, we reanalysed the behavioural data to ensure consistency across genotypes by comparing only those tested within the same biological replicates (thus having the same N for all genotypes). Upon this reanalysis, we found that the previously reported phenotype for gar-1 mutants in salt-associative learning was not statistically different from wild-type controls. Therefore, we have removed references to GAR-1 from the manuscript.

      __Reviewer #3 (Significance (Required)): __Strengths and limitations: This study used neuron-specific TurboID expression with transient biotin exposure to capture a temporally restricted snapshot of the C. elegans nervous system proteome during salt-associative learning. This is an elegant method to identify proteins temporally specific to a certain condition. However, there are several limitations in the way the experiments and analyses were performed which affect the reliability of the data. As the authors themselves have noted in the discussion, background noise is a major issue and several steps could be taken to improve the noise at the experimental or analysis steps (use of integrated C. elegans lines to ensure uniformity of samples, flow cytometry to isolate neurons, quantitative mass spec to detect fold change vs. strict presence/absence). Advance: Several studies have demonstrated the use of proximity labeling to map the interactome by using a bait protein fusion. In fact, expressing TurboID not fused to a bait protein is often used as a negative control in proximity labeling experiments. However, this study demonstrates the use of free TurboID molecules to acquire a global snapshot of the proteome under a given condition. Audience: Even with the significant limitations, this study is specifically of interest to researchers interested in understanding learning and memory formation. Broadly, the methods used in this study could be modified to gain insights into the proteomic profiles at other transient developmental stages. The reviewer's field of expertise: Cell biology of C. elegans neurons.

      We thank the reviewer for their thoughtful evaluation of our work. We appreciate the recognition of the novelty and potential of using neuron-specific TurboID to capture a temporally restricted snapshot of the C. elegans nervous system proteome during learning. We agree that this approach offers a unique opportunity to identify proteins associated with specific behavioural states in future studies.

      We also appreciate the reviewer’s comments regarding limitations in experimental and analytical design. In revising the manuscript, we have taken several steps to address these concerns and improve the clarity, rigour, and interpretability of our data. Specifically:

      • We now provide a frequency-based representation of proteomic hits (Table 2), which helps clarify how candidate proteins were selected and highlights differences between trained and control groups.
      • We have added neuron-specific enrichment analyses using both WormBase and CenGEN databases (Table S7 & Figure 4), which help identify candidate neurons and potential circuits involved in learning (methods on pages 50-51).
      • We have clarified the rationale for using qualitative proteomics in the context of TurboID, in addition to acknowledging the challenges of integrating quantitative mass spectrometry with biotin-based enrichment (page 39). Additional methods for improving sample purity, such as using integrated lines or FACS-enrichment of neurons, could further refine this approach in future studies. For transparency, we did attempt to integrate the TurboID transgenic line to improve the strength and consistency of biotinylation signals. However, despite four rounds of backcrossing, this line exhibited unexpected phenotypes, including a failure to respond reliably to the established training protocol. As a result, we were unable to include it in the current study. Nonetheless, we believe our current approach provides a valuable proof-of-concept and lays the groundwork for future refinement. By addressing the major concerns of peer reviewers, we believe our study makes a significant and impactful contribution by demonstrating the feasibility of using TurboID to capture learning-induced proteomic changes in the nervous system. The identification of novel learning-related mutants, including those involved in acetylcholine signalling and cAMP pathways, provides new directions for future research into the molecular and circuit-level mechanisms of behavioural plasticity.

      Reviewer #4 (Evidence, reproducibility and clarity (Required)):

      Summary:

      In this manuscript, authors used a learning paradigm in C. elegans; when worms were fed in a saltless plate, its chemotaxis to salt is greatly reduced. To identify learning-related proteins, authors employed nervous system-specific transcriptome analysis to compare whole proteins in neurons between high-salt-fed animals and saltless-fed animals. Authors identified "learning-specific genes" which are observed only after saltless feeding. They categorized these proteins by GO analyses and pathway analyses, and further stepped forward to test mutants in selected genes identified by the proteome analysis. They find several mutants that are defective or hyper-proficient for learning, including acc-1/3 and lgc-46 acetylcholine receptors, gar-1 acetylcholine receptor GPCR, glna-3 glutaminase involved in glutamate biosynthesis, and kin-2, a cAMP pathway gene. These mutants were not previously reported to have abnormality in the learning paradigm.

      Major comments:

      1) There are problems in the data processing and presentation of the proteomics data in the current manuscript which deteriorates the utility of the data. First, as the authors discuss (page 24, lines 5-12), the current approach does not consider amount of the peptides. Authors state that their current approach is "conservative", because some of the proteins may be present in both control and learned samples but in different amounts. This reviewer has a concern in the opposite way: some of the identified proteins may be pseudo-positive artifacts caused by the analytical noise. The problem is that authors included peptides that are "present" in "TurboID, trained" sample but "absent" in the "Non-Tg, trained" and "TurboID, control" samples in any one of the biological replicates, to identify "learning proteome" (706 proteins, page 8, last line - page 9, line 8; page 32, line 21-22). The word "present" implies that they included even peptides whose amounts are just above the detection threshold, which is subject to random noise caused by the detector or during sample collection and preparation processes. This consideration is partly supported by the fact that only a small fraction of the proteins are common between biological replicates (honestly and respectably shown in Figure S2). Because of this problem, there is no statistical estimate of the identity in "learning proteome" in the current manuscript. Therefore, the presentation style in Tables S2 and S3 are not very useful for readers, especially because authors already subtracted proteins identified in Non-Tg samples, which must also suffer from stochastic noise. I suggest either quantifying the MS/MS signal, or if authors need to stick to the "present"/"absent" description of the MS/MS data, use the number of appearances in biological replicates of each protein as estimate of the quantity of each protein. For example, found in 2 replicates in "TurboID, learned" and in 0 replicates in "Non-Tg, trained". One can apply statistics to these counts. This said, I would like to stress that proteins related to acquisition of memory may be very rare, especially because learning-related changes likely occur in a small subset of neurons. Therefore, 1 time vs 0 time may be still important, as well as something like 5 times vs 1 time. In summary, quantitative description of the proteomics results is desired.

      We thank the reviewer for these valuable comments and suggestions.

      We acknowledge that quantitative proteomics would provide beneficial information; however, as also indicated by Reviewer 1 (in cross-comment), it is practically challenging to perform with TurboID. We have included discussion of potential future experiments involving quantitative mass spectrometry, as well as a comprehensive discussion of some of the limitations of our approach as summarised by this Reviewer, in the Discussion section (page 39). However, we note that our qualitative approach also provides beneficial knowledge, such as the identification of functional protein networks acting within biological pathways previously implicated in learning (Figure 2), and novel learning regulators ACC-1/3, LGC-46, and F46H5.3.

      We agree with the assessment that the frequency of occurrence for each candidate we test per biological replicate is useful to disclose in the manuscript as a proxy for quantification. This was also highlighted by Reviewer 2 (Major Comment 1). As detailed above in response to R2, we have now separated candidates into two categories: ‘strong’ (present in 3 or more biological replicates) and ‘weak’ candidates (present in 2 or fewer biological replicates). We have also added behavioural data after testing 9 of these strong candidates in Figures 6 & S7.

      We have also added Table 2 to the revised manuscript, which summarises the frequency-based representation of the proteomics results, as suggested. This is described on pages 22-23. Briefly, this shows the range of candidates further explored using single mutant testing. Specifically, this data showed that many of the tested candidates were more frequently detected in trained worms compared to high-salt controls. This includes both strong and weak candidates, providing a clearer view of how proteomic frequency informed our selection for functional testing.

      2) There is another problem in the treatment of the behavioural data. In Experimental Procedures, authors state that they excluded data in which naive or control groups showed average CI 0.5499 for N2 (page 36, lines 5-7). How were these values determined? One common example for judging a data point as an outlier is > mean + 1.5, 2 or 3 SD, or Thank you for pointing this out. As mentioned by both Reviewer 1 and Reviewer 4, the original manuscript states the following: “Data was excluded for salt associative learning experiments when wild-type N2 displayed (1) an average CI ≤ 0.6499 for naïve or control groups and/or (2) an average CI either 0.5499 for trained groups.”

      To clarify, we only excluded experiments in rare cases where N2 worms did not display robust high salt attraction before training, or where trained N2 did not display the expected behavioural difference compared to untrained or high-salt control N2. These anomalies were typically attributable to clear contamination or starvation issues that could clearly be observed prior to counting chemotaxis indices on CTX plates.

      We established these exclusion criteria in advance of conducting multiple learning assays to ensure an objective threshold for identifying and excluding assays affected by these rare but observable issues. However, these criteria were later found to be unnecessary, as N2 worms robustly displayed the expected untrained and trained phenotypes for salt associative learning when not compromised by starvation or contamination.

      We understand that the original criteria may have appeared to introduce arbitrary bias in data selection. To address this concern, we have removed these criteria from the revised manuscript from page 50.

      Minor comments:

      1) Related to Major comments 1), the successful effect of neuron-specific TurboID procedure was not evaluated. Authors obtained both TurboID and Non-Tg proteome data. Do they see enrichment of neuron-specific proteins? This can be easily tested, for example by using the list of neuron-specific genes by Kaletsky et al. (http://dx.doi.org/10.1038/nature16483 or http://dx.doi.org/10.1371/journal.pgen.1007559), or referring to the CenGEN data.

      We thank this Reviewer for this helpful suggestion, which was echoed by Reviewer 3 (Major Comment 1). As indicated in the response to R3 above, the revised manuscript now includes Table 1 as a tissue-specific analysis of the learning proteome, using the single neuron RNA-Seq database CeNGEN to identify the proportion of neuronal proteins from each biological replicate of mass spectrometry data. Generally, we observed a range of 87-95% of proteins corresponded to genes from the CeNGEN database that had been detected in neurons, providing evidence that the TurboID enzyme was able to target the neuronal proteome as expected. Table 1 is now described in the main text of the revised work on pages 16 & 17.

      2) The behavioural paradigm needs to be described accurately. Page 5, line 16-17, "C. elegans normally have a mild attraction towards higher salt concentration": in fact, C. elegans raised on NGM plates, which include approximately 50mM of NaCl, is attracted to around 50mM of NaCl (Kunitomo et al., Luo et al.) but not 100-200 mM.

      We thank the Reviewer for pointing this out. We agree that clarification is necessary. The revised text reads as follows on page 5: “C. elegans are typically grown in the presence of salt (usually ~ 50 mM) and display an attraction toward this concentration when assayed for chemotaxis behaviour on a salt gradient (Kunitomo et al., 2013, Luo et al., 2014). Training/conditioning with ‘no salt + food’ partially attenuates this attraction (group referred to ‘trained’).”

      Authors call this assay "salt associative learning", which refers to the fact that worms associate salt concentration (CS) and either presence or absence of food (appetitive or aversive US) during conditioning (Kunitomo et al., Luo et al., Nagashima et al.) but they are looking at only association with presence of food, and for proteome analysis they only change the CS (NaCl concentration, as discussed in Discussion, p24, lines 4-5). It is better to attempt to avoid confusion to the readers in general.

      Thank you Reviewer 4 for highlighting this clarity issue. We clarify our definition of “salt associative learning” for the purpose of this study in the revised manuscript on page 6 with the following text:

      “Similar behavioural paradigms involving pairings between salt/no salt and food/no food have been previously described in the literature (Nagashima et al. 2019). Here, learning experiments were performed by conditioning worms with either ‘no salt + food’ (referred to as ‘salt associative learning’) or ‘salt + no food’ (called ‘salt aversive learning’).”

      3) page 32, line 23: the wording "excluding" is obscure and misleading because the elo-6 gene was included in the analysis.

      We appreciate this Reviewer for pointing out this misleading comment, which was unintentional. We have now removed it from the text (on page 21).

      4) Typo at page 24, line 18: "that ACC-1" -> "than ACC-1".

      This has been corrected (on page 37).

      5) Reference. In "LEO, T. H. T. et al.", given and sir names are flipped for all authors. Also, the paper has been formally published (http://dx.doi.org/10.1016/j.cub.2023.07.041).

      We appreciate the Reviewer drawing our attention to this – the reference has been corrected and updated.

      I would like to express my modest cross comments on the reviews:

      1) Many of the reviewers comment on the shortage in the quantitative nature of the proteome analysis, so it seems to be a consensus.

      Thank you Reviewer 4 for this feedback. We appreciate the benefit in performing quantitative mass spectrometry, in that it provides an additional way to parse molecular mechanisms in a biological process (e.g., fold-changes in protein expression induced by learning). However, we note that quantitative mass spectrometry is challenging to integrate with TurboID due to the requirement to enrich for biotinylated peptides during sample processing (we now mention this on page 39). Nevertheless, it would be exciting to see this approach performed in a future study.

      To address the limitations of our original qualitative approach and enhance the clarity and utility of our dataset, we have made the following revisions in the manuscript:

      • Candidate selection criteria: We now clearly define how candidates were selected for functional testing, based on their frequency across biological replicates. Specifically, “strong candidates” were detected in three or more replicates, while “weak candidates” appeared in two or fewer.
      • Frequency-based representation (_Table 2_):__We appreciate the suggestion by Reviewer 4 (Major Comment 1) to quantify differences between high-salt control and trained groups. We now provide the frequency-based representation of the candidates tested in this study within our proteomics data in __Table 2. This data showed that many of the tested candidates were more frequently detected in trained worms compared to high-salt controls. This includes both strong and weak candidates We hope these additions help clarify our approach and demonstrate the value of the dataset, even within the constraints of qualitative proteomics.

      2) Also, tissue- or cell-specificity of the identified proteins were commonly discussed. In reviewer #3's first Major comment, appearance of non-neuronal protein in the list was pointed out, which collaborate with my (#4 reviewer's) question on successful identification of neuronal proteins by this method. On the other hand, reviewer #1 pointed out subset neuron-specific proteins in the list. Obviously, these issues need to be systematically described by the authors.

      We agree with Reviewer 4 that these analyses provide a critical angle of analysis that is not explored in the original manuscript.

      Tissue analysis (Reviewer 3 Major Comment 1): We have used the single neuron RNA-Seq database CeNGEN, to identify that 87-95% (i.e. a large majority) of proteins identified across replicates corresponded to genes detected in neurons. These findings support that the TurboID enzyme was able to target the neuronal proteome as expected. Table 1 provides this information as is now described in the main text of the revised work on page 16.

      __Neuron class analyses (Reviewer 1 Major Comment 2): __In response, we have used the suggested Wormbase gene enrichment tool and CeNGEN. We specifically input proteins from the learning proteome into Wormbase, after filtering for proteins unique to TurboID trained animals. For CeNGEN, we compared genes/proteins from control worms and trained worms to identify potential neurons that may be involved in this learning paradigm.

      Briefly, we found highlight a range of neuron classes known in learning (e.g., RIS interneurons), cells that affect behaviour but have not been explored in learning (e.g., IL1 polymodal neurons), and neurons for which their function/s are unknown (e.g., pharyngeal neuron I3). Corresponding text for this new analysis has been added on pages 16-20, with a new table and figure added to illustrate these findings (Table S7 & Figure 4). Methods are detailed on pages 50-51.

      3) Given reviewer #1's OPTIONAL Major comment, as an expert of behavioral assays in C. elegans, I would like to comment based on my experience that mutants received from Caenorhabditis Genetics Center or other labs often lose the phenotype after outcrossing by the wild type, indicating that a side mutation was responsible for the observed behavioral phenotype. Therefore, outcrossing may be helpful and easier than rescue experiments, though the latter are of course more accurate.

      Thank you for this suggestion. To address the potential involvement of background mutations, we have done experiments with backcrossed versions of mutants tested where possible, as shown in Figure 6. We found that F46H5.3(-) mutants maintained enhanced learning capacity after backcrossing with wild type, compared to their non-backcrossed mutant line. This was in contrast to C30G12.6(-) animals which lost their enhanced learning phenotype following backcrossing using wild type worms. This is described in the text on pages 24-26.

      4) Just let me clarify the first Minor comment by reviewer #2. Authors described that the kin-2 mutant has abnormality in "salt associative learning" and "salt aversive learning", according to authors' terminology. In this comment by reviewer #2, "gustatory associative learning" probably refers to both of these assays.

      Reviewer 4 is correct. We have amended the wording appropriately on page 31 to clarify our meaning to address Reviewer 2’s comment.

      • “Although kin-2(ce179) mutants were not shown to impact salt aversive learning, they have been reported previously to display impaired intermediate-term memory (but intact learning and short-term memory) for butanone appetitive learning (Stein and Murphy, 2014).”*

      5) There seem to be several typos in reviewer #1's Minor comments.

      "In Page 9, Lines 17-18" -> "Page 8, Lines 17-18".

      "Page 8, Line 24" -> "Page 7, Line 24".

      "I would suggest to remove figure 3" -> "I would suggest to remove figure 2"

      "summary figure similar to Figure 4" -> "summary figure similar to Figure 3"

      "In the discussion Page 24, Line 14" -> "In the discussion Page 23, Line 14"

      (I note that because a top page was inserted in the "merged" file but not in art file for review, there is a shift between authors' page numbers and pdf page numbers in the former.)

      It would be nice if reviewer #1 can confirm on these because I might be wrong.

      We appreciate Reviewer 4 noting this, and can confirm that these are the correct references (as indicated by Reviewer 1 in their cross-comments)

      Reviewer #4 (Significance (Required)):

      1) Total neural proteome analysis has not been conducted before for learning-induced changes, though transcriptome analysis has been performed for odor learning (Lakhina et al., http://dx.doi.org/10.1016/j.neuron.2014.12.029). This guarantees the novelty of this manuscript, because for some genes, protein levels may change even though mRNA levels remain the same. We note an example in which a proteome analysis utilizing TurboID, though not the comparison between trained/control, has led to finding of learning related proteins (Hiroki et al., http://dx.doi.org/10.1038/s41467-022-30279-7). As described in the Major comments 1) in the previous section, improvement of data presentation will be necessary to substantiate this novelty.

      We appreciate this thoughtful feedback. We agree that while the neuronal transcriptome has been explored in Lakhina et al., 2015 for C. elegans in the context of memory, our study represents the first to examine learning-induced changes in the total neuronal proteome. We particularly agree with the statement that “for some genes, protein levels may change even though mRNA levels remain the same”. This is essential rationale that we now discuss on page 42.

      Additionally, we acknowledge the relevance of the study by Hiroki et al., 2022, which used TurboID to identify learning-related proteins, though not in a trained versus control comparison. Our work builds on this by directly comparing trained and control conditions, thereby offering new insights into the proteomic landscape of learning. This is now clarified on page 36.

      To substantiate the novelty and significance of our approach, we have revised the data presentation throughout the manuscript, including clearer candidate selection criteria, frequency-based representation of proteomic hits (Table 2), and neuron-specific enrichment analyses (Table S7 & Figure 4). We hope these improvements help convey the unique contribution of our study to the field.

      2) Authors found six mutants that have abnormality in the salt learning (Fig. 4). These genes have not been described to have the abnormality, providing novel knowledge to the readers, especially those who work on C. elegans behavioural plasticity. Especially, involvement of acetylcholine neurotransmission has not been addressed. Although site of action (neurons involved) has not been tested in this manuscript, it will open the venue to further determine the way in which acetylcholine receptors, cAMP pathway etc. influences the learning process.

      Thank you Reviewer 4, for this encouraging feedback. To further strengthen the study and expand its relevance, we have tested additional mutants in response to Reviewer 3’s comments, as shown in Figures 6 & S7. These results provide even more candidate genes and pathways for future exploration, enhancing the significance and impact of our study.

  2. www.tripleeframework.com www.tripleeframework.com
    1. where the technology may simply be replacing a traditional method of instruction

      I think it is very important to remember this as an educator and parent. We have to be sure to maximize use and make it beneficial and worthwhile, not just replacing other instruction.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      A) The presentation of the paper must be strengthened. Inconsistencies, mislabelling, duplicated text, typos, and inappropriate colour code should be changed.

      We spotted and corrected several inconsistencies and mislabelling issues throughout the text and figures. Thanks!  

      B) Some claims are not supported by the data. For example, the sentence that says that "adolescent mice showed lower discrimination performance than adults (l.22) should be rewritten, as the data does not show that for the easy task (Figure 1F and Figure 1H).

      We carefully reviewed the specific claims and fixed some of the wording so it adheres to the data shown.

      C) In Figure 7 for example, are the quantified properties not distinct across primary and secondary areas?

      We now carried out additional analysis to test this. We found that while AUDp and AUDv exhibit distinct tuning properties, they show similar differences between adolescent and adult neurons (see Supplementary Table 6, Fig. S7-1a-h). Note that TEa and AUDd could not be evaluated due to low numbers of modulated neurons in this protocol.

      D) Some analysis interpretations should be more cautious. (..) A lower lick rate in general could reflect a weaker ability to withhold licking- as indicated on l.164, but also so many other things, like a lower frustration threshold, lower satiation, more energy, etc).

      That is a fair comment, and we refined our interpretations. Moreover, we also addressed whether impulsiveness impacted lick rates. In the Educage, we found that adolescent mice had shorter ITIs only after FAs (Fig. S2-1). In the head-fixed setup, we examined (1) the proportion of ITIs where licks occurred (Fig. S3-1c) and (2) the number of licks in these ITIs (Fig. S3-1d). We found no differences between adolescents and adults, indicating that the differences observed in the main task are not due to general differences in impulsiveness (Fig. S2-1, Fig. S3-1c, d). Finally, we note that potential differences in satiation were already addressed in the original manuscript by carefully examining the number of trials completed across the session. See also Review 3, comment #1 below.

      Reviewer #2 (Public review):

      A) For some of the analyses that the authors conducted it is unclear what the rationale behind them is and, consequently, what conclusion we can draw from them.

      We reviewed the manuscript carefully and revised the relevant sections to clarify the rationale behind the analyses. See detailed responses to all the reviewer’s specific comments.

      B) The results of optogenetic manipulation, while very interesting, warrant a more in-depth discussion.

      We expanded our discussion on these experiments (L495-511) and also added an additional analysis to strengthen our findings (Fig. S3-2e).

      Reviewer #3 (Public review):

      (1) The authors report that "adolescent mice showed lower auditory discrimination performance compared to adults" and that this performance deficit was due to (among other things) "weaker cognitive control". I'm not fully convinced of this interpretation, for a few reasons. First, the adolescents may simply have been thirstier, and therefore more willing to lick indiscriminately. The high false alarm rates in that case would not reflect a "weaker cognitive control" but rather, an elevated homeostatic drive to obtain water. Second, even the adult animals had relatively high (~40%) false alarm rates on the freely moving version of the task, suggesting that their behavior was not particularly well controlled either. One fact that could help shed light on this would be to know how often the animals licked the spout in between trials. Finally, for the head-fixed version of the task, only d' values are reported. Without the corresponding hit and false alarm rates (and frequency of licking in the intertrial interval), it's hard to know what exactly the animals were doing.

      irst, as requested, we added the Hit rates and FA rates for the head-fixed task (Fig. S3-1a). Second, as requested by the reviewr, we performed additional analyses in both the Educage and head-fixed versions of the task. Specifically, we analyzed the ITI duration following each trial outcome. We found that adolescent mice had shorter ITIs only after Fas (Fig. S2-1). In the head-fixed setup, we examined (1) the proportion of ITIs during which licks occurred (Fig. S3-1c) and (2) the number of licks in these ITIs (Fig. S3-1d). We found no differences between adolescents and adults, indicating that the differences observed in the main task are not due to general differences in impulsiveness (Fig. S2-1, Fig. S3-1c, d). See also comment #D of reviewer #1 above.

      B) There are some instances where the citations provided do not support the preceding claim. For example, in lines 64-66, the authors highlight the fact that the critical period for pure tone processing in the auditory cortex closes relatively early (by ~P15). However, one of the references cited (ref 14) used FM sweeps, not pure tones, and even provided evidence that the critical period for this more complex stimulus occurred later in development (P31-38). Similarly, on lines 72-74, the authors state that "ACx neurons in adolescents exhibit high neuronal variability and lower tone sensitivity as compared to adults." The reference cited here (ref 4) used AM noise with a broadband carrier, not tones.

      We carefully checked the text to ensure that each claim is accurately supported by the corresponding reference.

      C) Given that the authors report that neuronal firing properties differ across auditory cortical subregions (as many others have previously reported), why did the authors choose to pool neurons indiscriminately across so many different brain regions?

      We appreciate the reviewer’s concern. While we acknowledge that pooling neurons across auditory cortical subregions may obscure region-specific effects, our primary focus in this study is on developmental differences between adolescents and adults, which were far more pronounced than subregional differences.

      To address this potential limitation: (1) We analyzed firing differences across subregions during task engagement (see Fig. S4-1, S4-2, S4-3; Supplementary Tables 2 and 3). (2) We have now added new analyses for the passive listening condition in AUDp and AUDv (Fig. S7-1; Supplementary Table 6).

      These analyses support our conclusion that developmental stage has a greater impact on auditory cortical activity than subregional location in the contexts examined. For clarity and cohesion, the main text emphasizes developmental differences, while subregional analyses are presented in the Supplement.

      D) And why did they focus on layers 5/6? (Is there some reason to think that age-related differences would be more pronounced in the output layers of the auditory cortex than in other layers?)

      We agree that other cortical layers, particularly supragranular layers, are important for auditory processing and plasticity. Our focus on layers 5/6 was driven by both methodological and biological considerations. Methodologically, our electrode penetrations were optimized to span multiple auditory cortical areas, and deeper layers provided greater mechanical stability for chronic recordings. Biologically, layers 5/6 contain the principal output neurons of the auditory cortex and are well-positioned to influence downstream decision-making circuits. We acknowledge the limitation of our recordings to these layers in the manuscript (L268; L464-8).

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      (1) The presentation of the paper must be strengthened. As it is now, it makes it difficult to appreciate the strengths of the results. Here are some points that should be addressed:

      a) The manuscript is full of inconsistencies that should be fixed to improve the reader's understanding. For example, the description on l.217 and the Figure. S3-1b, the D' value of 0 rounded to 0.01 on l. 735 (isn't it rather the z-scored value that is rounded? A D' of 0 is not a problem), the definition of lick bias on l. 750 and the values in Fig.2, the legend of Figure 7F and what is displayed on the graph (is it population sparseness or responsiveness?), etc.

      We adjusted the legend and description of former Fig. S3-1b (now Fig. S3-2b).

      We now clarify that the rounded values refer to z-scored hit and false alarm rates that we used in the d’ calculation. We adjusted the definition of the lick bias in Fig. 2 and Fig. S3-1b (L804).

      We replaced ‘population responsiveness’ with ‘population sparseness’ throughout the figures, legend and the text.

      b) References to figures are sometimes wrong (for example on l. 737,739).

      c) Some text is duplicated (for example l. 814 and l. 837).

      d) Typos should be corrected (for example l. 127, 'the', l. 787, 'upto').

      We deleted the incorrect references of this section, removed the duplicated text, and corrected the typos.

      e) Color code should be changed (for example the shades of blue for easy and hard tasks - they are extremely difficult to differentiate).

      After consideration, we decided to retain the blue color code (i.e., Fig. 1d, Fig. 3d, Fig. 4e-g, Fig. 5c, Fig. 6d–g), where the distinction between the shades of blue appears sufficiently clear and maintains visual consistency and aesthetic appeal. We did however, made changes in the other color codes (Fig. 4, Fig. 5, Fig. 6, Fig. 7).

      f) Figure design should be improved. For example, why is a different logic used for displaying Figure 5A or B and Figure 1E?

      We adjusted the color scheme in Fig. 5. We chose to represent the data in Fig. 5 according to task difficulty, as this arrangement best illustrates the more pronounced deficits in population decoding in adolescents during the hard task.

      f) Why use a 3D representation in Figure 4G? (2)

      The 3D representation in Fig. 4g was chosen to illustrate the 3-way interactions between onset-latency, maximal discriminability, and duration of discrimination.

      g) Figure 1A, lower right panel- should "response" not be completed by "lick", "no lick"?

      We changed the labels to “Lick” and “No Lick” in Fig. 1a.

      h) l.18 the age mentioned is misleading, because the learning itself actually started 20 days earlier than what is cited here.

      Corrected.

      i) Explain what AAV5-... is on l.212.

      We added an explanation of virus components (see L216-220).

      (2) The comparison of CV in Figure 2 H-J is interesting. I am curious to know whether the differences in the easy and hard tasks could be due to a decrease in CV in adults, rather than an increase in CV in adolescents? Also, could the difference in J be due to 3 outliers?

      We agree that the observed CV differences may reflect a reduction in variability in adults rather than an increase in adolescents. We have revised the Results section accordingly to acknowledge this interpretation.

      Regarding the concern about potential outliers in Fig. 2J, we tested the data for outliers using the isoutlier function in MATLAB (defining outliers as values exceeding three standard deviations from the mean) and found no such cases.

      (3) Figure 2c shows that there is no difference in perceptual sensitivity between adolescents and adults, whereas the conclusion from Figure 4 is that adolescents exhibit lower discriminability in stimulus-related activity. Aren't these results contradictory?

      This is a nuanced point. The similar slopes of the psychometric functions (Fig. 2c) indicating comparable perceptual sensitivity and the lower AUC observed in the ACx of adolescents (Fig. 4) do not necessarily contradict each other. These two measures capture related but distinct issues: psychometric slopes reflect behavioral output, which integrates both sensory encoding and processing downstream to ACx, while the AUC analysis reflects stimulus-related neural activity in ACx, which may still include decision-related components.<br /> Note that stimulus-related neural discriminability outside the context of the task is not different between adolescent and adult experts (Fig. 7h; p = 0.9374, Kruskal Willis Test after Tukey-Kramer correction for multiple comparisons; not discussed in the manuscript). This suggests that there are differences that emerge when we measure during behavior. Also note that behavior may rely on processing beyond ACx, and it is possible that downstream areas compensate for weaker cortical discriminability in adolescents — but this issue merits further investigation.

      (4) Why do you think that the discrimination in hard tasks decreases with learning (Figure 6D vs Figure 6F)?

      This is another nuanced point, and we can only speculate at this stage. While it may appear counterintuitive that single-neuron discriminability (AUC) for the hard task is reduced after learning (Fig. 6D vs. 6F), we believe this may reflect a shift in sensory coding in expert animals. In a recent study (Haimson et al., 2024; Science Advances), we found that learning alters single-neuron responses in the easy versus hard task in complex and distinct ways, which may account for this result. It is also possible that, in expert mice, top-down mechanisms such as feedback from higher-order areas act to suppress or stabilize sensory responses in auditory cortex, reducing the apparent stimulus selectivity of single neurons (e.g., AUC), even as behaviorally relevant information is preserved or enhanced at the population level.

      Reviewer #2 (Recommendations for the authors):

      This is very interesting work and I enjoyed reading the manuscript. See below for my comments, queries and suggestions, which I hope will help you improve an already very good paper.

      We thank the reviewer for the meticulous and thoughtful review.

      (1) Line 107: x-axis of panel 1e says 'pre-adolescent'.

      (2) Line 130: replace 'less' with 'fewer'.

      (3) Line 153: 'both learned and catch trials': I find the terminology here a bit confusing. I would typically understand a catch trial to be a trial without a stimulus but these 'catch' trials here have a stimulus. It's just that they are not rewarded/punished. What about calling them probe trials instead?

      We corrected the labelling (1), reworded to ‘fewer’ and ‘probe trials’ (2,3).

      (4) Line 210: The results of the optogenetics experiments are very interesting. In particular, because the effect is so dramatic and much bigger than what has been reported in the literature previously, I believe. Lick rates are dramatically reduced suggesting that the mice have pretty much stopped engaging in the task and the authors very rightly state that the 'execution' of the behavior is affected. I think it would be worth discussing the implications of these results more thoroughly, perhaps also with respect to some of the lesion work. Useful discussions on the topic can be found, for instance, in Otchy et al., 2015; Hong et al., 2018; O'Sullivan et al., 2019; Ceballo et al., 2019 and Lee et al., 2024. Are the mice unable to hear anything in laser trials and that is why they stopped licking? If they merely had trouble distinguishing them then we would perhaps expect the psychometric curves to approach chance level, i.e. to be flat near the line indicating a lick rate of 0.5. Could the dramatic decrease in lick rate be a motor issue? Can we rule out spillover of the virus to relevant motor areas? (I understand all of the 200nL of the virus were injected at a single location) Or are the effects much more dramatic than what has been reported previously simply because the GtACR2 is much more effective at silencing the auditory cortex? Could the effect be down to off-target effects, e.g. by removing excitation from a target area of the auditory cortex, rather than the disruption of cortical processing?

      We have now expanded the discussion in the manuscript to more thoroughly consider alternative interpretations of the strong behavioral effect observed during ACx silencing (L495–511). In particular, we acknowledge that the suppression of licking may reflect not only impaired sensory discrimination but also broader disruptions to arousal, motivation, or motor readiness. We also discuss the potential impact of viral spread, circuit-level off-target effects, and the potency of GtACR2 as possible contributors. We highlight the need for future work using more graded or temporally precise manipulations to resolve these issues.

      (5) Line 226: Reference 19 (Talwar and Gerstein 2001) is not particularly relevant as it is mostly concerned with microstimulation-induced A1 plasticity. There are, however, several other papers that should be cited (and potentially discussed) in this context. In particular, O'Sullivan et al., 2019 and Ceballo et al., 2019 as these papers investigate the effects of optogenetic silencing on frequency discrimination in head-fixed mice and find relatively modest impairments. Also relevant may be Kato et al., 2015 and Lee et al., 2024, although they look at sound detection rather than discrimination.

      We changed the references and pointed the reader to the (new section) Discussion.

      (6) Line 253: 'engaged [in] the task.

      (7) Figure 4: It appears that panel S4-1d is not referred to anywhere in the main text.

      Fixed.

      (8) Line 260: Might be useful to explain a bit more about the motivation behind focusing on L5/L6. Are there mostly theoretical considerations, i.e. would we expect the infragranular layers to be more relevant for understanding the difference in task performance? Or were there also practical considerations, e. g. did the data set contain mostly L5/L6 neurons because those were easier to record from given the angle at which the probe was inserted? If those kinds of practical considerations played a role, then there is nothing wrong with that but it would be helpful to explain them for the benefit of others who might try a similar recording approach.

      There were no deep theoretical considerations for targeting L5/6.  Our focus on layers 5/6 was driven by both methodological and biological considerations. Methodologically, our electrode penetrations were optimized to span multiple auditory cortical areas, and deeper layers provided greater mechanical stability for chronic recordings. Biologically, layers 5/6 contain the principal output neurons of the auditory cortex and are well-positioned to influence downstream decision-making circuits. We acknowledge the limitation of our recordings to these layers in the manuscript (L268; L463–467). See also comment D of reviewer 3.

      (9) Supplementary Table 2: The numbers in brackets indicate fractions rather than percentages.

      Fixed.

      (10) Figure S4-3: The figure legend implies that the number of neurons with significant discriminability for the hard stimulus and significant discriminability for choice was identical. (adolescent neurons = 368, mice = 5, recordings = 10; adult n = 544, mice = 6, recordings = 12 in both cases). Presumably, that is not actually the case and rather the result of a copy/paste operation gone wrong. Furthermore, I think it would be helpful to state the fractions of neurons that can discriminate between the stimuli and between the choices that the animal made in the main text.

      Thank you for spotting the mistake. We corrected the n’s and added the percentage of neurons that discriminate stimulus and choice in the main text and the figure legend.

      (11) Line 301: 'We used a ... decoder to quantify hit versus correct reject trial outcomes': I'm not sure I understand the rationale here. For the single unit analysis hit and false alarm trials were compared to assess their ability to discriminate the stimuli. FA and CR trials were compared to assess whether neurons can encode the choice of the mice. But the hit and CR trials which are contrasted here differ in terms of both stimulus and behavior/choice so what is supposed to be decoded here, what is supposed to be achieved with this analysis?

      Thank you for this important point. You're correct that comparing hit and CR trials captures differences in both stimulus and choice, or task-related differences. We chose this contrast for the population decoding analysis to achieve higher trial counts per session and similar number of trials which are necessary for the reliability of the analysis. While this approach does not isolate stimulus from choice encoding, it provides an overall measure of how well population activity distinguishes task-relevant outcomes. We explicitly acknowledge this issue in L313-314.

      (12) Line 332: What do you mean when you say the novice mice were 'otherwise fully engaged' in the task when they were not trained to do the task and are not doing the task?

      By "otherwise fully engaged," we mean that novice mice were actively participating in the task environment, similar to expert mice — they were motivated by thirst and licked the spout to obtain water. The key distinction is that novice mice had not yet learned the task rules and likely relied on trial-and-error strategies, rather than performing the task proficiently.

      (13) Line 334: 'regardless of trial outcome': Why is the trial outcome not taken into account? What is the rationale for this analysis? Furthermore, in novice mice a substantial proportion of the 'go' trials are misses. In expert mice, however, the proportion of 'miss trials' (and presumably false alarms) will by definition be much smaller. Given this, I find it difficult to interpret the results of this section.

      This approach was chosen to reliably decode a sufficient number of trials for each task difficulty (i.e. expert mice predominantly performed CRs on No-Go trials and novice mice often showed FAs). Utilizing all trial outcomes ensured that we had enough trials for each stimulus type to accurately estimate the AUCs. This approach avoids introducing biases due to uneven trial numbers across learning stages.

      (14) Line 378: 'differences between adolescents and adults arise primarily from age': Are there differences in any of the metrics shown in 7e-h between adolescents and adults?

      We confirm that differences between adolescents and adults are indeed present in some metrics but not others in Figure 7e–h. Specifically, while tuning bandwidth was similar in novice animals, it was significantly lower in adult experts (Fig. 7e; novice: p = 0.0882; expert: p = 0.0001 Kruskal Willis Test after Tukey-Kramer correction for multiple comparisons; not discussed in the manuscript). The population sparseness was similar in both novice and expert adolescent and adult neurons (Fig. 7f; novice: p = 0.2873; expert: p = 0.1017, Kruskal Willis Test after Tukey-Kramer correction for multiple comparisons; not discussed in the manuscript). The distance to the easy go stimulus was similar in novice animals, but lower in adult experts (Fig. 7g; novice: p = 0.7727; expert: p = 0.0001, Kruskal Willis Test after Tukey-Kramer correction for multiple comparisons; not discussed in the manuscript). The neuronal d-prime was similar in both novice and expert adolescent and adult neurons (Fig. 7h; novice: p = 0.7727; expert: p = 0.0001, Kruskal Willis Test after Tukey-Kramer correction for multiple comparisons; not discussed in the manuscript).

      (15) Line 475: '...well and beyond...': something seems to be missing in this statement.

      (16) Line 487: 'onto' should be 'into', I think.

      (17) Line 610 and 613: '3 seconds' ... '2.5 seconds': Was the response window 3s or 2.5s?

      (18) Line 638: 'set' should be 'setup', I believe.

      All the mistakes mentioned above, were fixed. Thanks.

      (19) Line 643: 'Reward-reinforcement was delayed to 0.5 seconds after the tone offset': Presumably, if they completed their fifth lick later than 0.5 seconds after the tone, the reward delivery was also delayed?

      Apologies for the lack of clarity. In the head-fixed version, there was no lick threshold. Mice were reinforced after a single lick. If that lick occurred after the 0.5-second reinforcement delay following tone offset, the reward or punishment was delivered immediately upon licking.

      (20) Line 661: 'effect [of] ACx'.

      (21) Line 680: 'a base-station connected to chassis'. The sentence sounds incomplete.

      (22) Line 746: 'infliction', I believe, should say 'inflection'.

      (23) Line 769: 'non-auditory responsive units': Shouldn't that simply say 'non-responsive units'? The way it is currently written I understand it to mean that these units were responsive (to some other modality perhaps) but not to auditory stimulation.

      (24) Line 791: 'bins [of] 50ms'.

      (25) Line 811: 'all of' > 'of all'.

      (26) Line 814: Looks like the previous paragraph on single unit analysis was accidentally repeated under the wrong heading.

      (27) Line 817: 'encoded' should say 'calculated', I believe.

      All the mistakes mentioned above were fixed. Thanks.

      (28) Line 869: 'bandwidth of excited units': Not sure I understand how exactly the bandwidth, i.e. tuning width was measured.

      We acknowledge that our previous answer was unclear and expanded the Methods section. To calculate bandwidth, we identified significant tone-evoked responses by comparing activity during the tone window to baseline firing rates at 62 dB SPL (p < 0.05). For each neuron, we counted the number of contiguous frequencies with significant excitatory responses, subtracting isolated false positives to correct for chance. We then converted this count into an octave-based bandwidth by multiplying the number of frequency bins by the octave spacing between them (0.1661 octaves per step).

      (29) Line 871: 'population sparseness': Is that the fraction of tone frequencies that produced a significant response? I would have thought that this measure is very highly correlated to your measure of bandwidth, to the point of being redundant, but I may have misunderstood how one or the other is calculated. Furthermore, the Y label of Figure 7f says 'responsiveness' rather than sparseness and that would seem to be the more appropriate term because, unless I am misunderstanding this, a larger value here implies that the neuron responded to more frequencies, i.e. in a less sparse manner.

      We have clarified the use of the term "population sparseness" and updated the Y-axis label in Figure 7f to better reflect this measure. This metric reflects the fraction of tone–attenuation combinations that elicited a significant excitatory response across the entire population of neurons, not within individual units.

      While this measure is related to bandwidth, it captures a distinct property of the data. Bandwidth quantifies how broadly or narrowly a single neuron responds across frequencies at a fixed intensity, whereas population sparseness reflects how distributed responsiveness is across the population as a whole. Although the two measures are related, since broadly tuned neurons often contribute to lower population sparseness, they capture distinct aspects of neural coding and are not redundant.

      (30) Line 881: I think this line should refer to Figure 7h rather than 7g.

      Fixed.

      Reviewer #3 (Recommendations for the authors):

      (1) In the Educage, water was only available when animals engaged in the task; however, there is no mention of whether/how animal weight was monitored.

      In the Educage, mice had continuous access to water by voluntarily engaging in the task, which they could perform at any time. Although body weight was not directly monitored, water access was essentially ad libitum, and mice performed hundreds of trials per day, thereby ensuring sufficient daily intake. This approach allowed us to monitor hydration (ad libitum food is supplied in the home cage). The 24/7 setup, including automated monitoring of trial counts and water consumption, was reviewed and approved by our institutional animal care and use committee (IACUC).

      (2) In Figure 2B-C and Figure 2E, the y-axis reads "lick rate". At first glance, I took this to mean "the frequency of licking" (i.e. an animal typically licks at a rate of 5 Hz). However, what the authors actually are plotting here is the proportion of trials on which an animal elicited >= 5 licks during the response window (i.e. the proportion of "yes" responses). I recommend editing the y-axis and the text for clarity.

      We replaced the y-label and adjusted the figure legend (Fig. 2).

      (3) I didn't see any examples of raw (filtered) voltage traces. It would be worth including some to demonstrate the quality of the data.

      We have added an example of a filtered voltage trace aligned to tone onset in Fig. S4-1a to illustrate data quality. In addition, all raw and processed voltage traces, along with relevant analysis code, are available through our GitHub repository and the corresponding dataset on Zenodo.

      (4) The description of the calculation of bias (C) in the methods section (lines 749-750) is incorrect. The correct formula is C = -0.5 * [z(hit rate) + z(fa rate)]. I believe this is the formula that the authors used, as they report negative C values. Please clarify or correct.

      Thanks for spotting this. It is now corrected.

      (5) The authors use the terms 'naïve' and 'novice' interchangeably. I suggest sticking with one term to avoid potential confusion.

      (6) Multiple instances: "less trials/day" should be "fewer trials/day"

      (7) Supplementary Table 2: The values reported are proportions, not percentages. Please correct.

      (8) Line 270: Table 2 does not show the number of neurons in the dataset categorized by region. Perhaps the authors meant Supplementary Table 2?

      Fixed. Thank you for pointing these mistakes out.

      (9) Figure 5C: the data from the hard task are entirely obscured by the data from the easy task. I recommend splitting it into two different plots.

      We agree and split the decoding of the easy and the hard task into two graphs (left: easy task; right: hard task). Thank you!

      (10) How many mice contributed to each analyzed data set? Could the authors provide a breakdown in a table somewhere of how many neurons were recorded in each mouse and which ones were included in which analyses?

      We added an overview of the analyzed datasets in supplementary Table 7. Please note that the number of mice and neurons used in each analysis is also reported in the main text and legends. Importantly, all primary analyses were conducted using LME models, which explicitly account for hierarchical data structure and inter-mouse variability, thereby addressing potential concerns about data imbalance or bias.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Weakness#1: The authors claim to have identified drivers that label single DANs in Figure 1, but their confocal images in Figure S1 suggest that many of those drivers label additional neurons in the larval brain. It is also not clear why only some of the 57 drivers are displayed in Figure S1.

      As described in the Results section, we screened 57 GAL4 driver lines based on previous reports. These included drivers that had been shown to label a single dopaminergic neuron (DAN) or a small subset of DANs in the larval or adult brain hemisphere, suggesting potential for specific DAN labeling in larvae.

      In Figure 1, TH-GAL4 was used to cover all neurons in the DL1 cluster, while R58E02 and R30G08 were well known drivers for pPAM. Fly strains in Figure 1h, k, l, and m were reported as single DAN strains in larvae[1], while strains in Figure 1e, f, g were reported identifying only several DANs in adult brains[2,3]. We examined these strains and only some of them labeled single DANs in 3rd instar larval brain hemisphere (Figure 1f, g, h, l and m). Among them, only strains in Figure 1f and h labeled single DAN in the brain hemisphere, without labeling other non-DANs. Other strains labeled non-DANs in addition to single DANs (Figure 1g, l and m). Taking ventral nerve cord (VNC) into consideration, strain in Figure 1h also labeled neurons in VNC (Figure S1e), while strain in Figure 1f did not (Figure S1c).

      In summary, the driver shown in Figure 1f (R76F02AD;R55C10DBD, labeling DAN-c1) is the only line we identified that labels a single DAN in the 3rd instar larval brain hemisphere without additional labeling. The other lines shown in Figure 1 (g, h, l, m) label a single DAN but also include some non-DANs. Figure 1 focuses on strains that label a single or a pair of DANs.

      Labeling patterns for all 57 driver lines are summarized in Table 1. Figure S1 includes representative examples; full confocal images for all screened strains are available upon request, as stated in the figure legend.

      Weakness #2: Critically, R76F02-AD; R55C10-DBD labels more than one neuron per hemisphere in Figure S1c, and the authors cite Xie et al. (2018) to note that this driver labels two DANs in adult brains. Therefore, the authors cannot argue that the experiments throughout their paper using this driver exclusively target DAN-c1.

      Figure S1c shows a single dopaminergic (DA) neuron in each brain hemisphere. While additional GFP-positive signals were occasionally observed, they did not originate from the cell bodies of DA neurons, as these were not labeled by the tyrosine hydroxylase (TH) antibody. These additional GFP signals primarily appeared to be neurites, including axonal terminals, although we cannot rule out the possibility that some represent false-positive signals or weakly stained non-neuronal cell bodies. This interpretation is based on the analysis of 22 third-instar larval brains.

      To clarify this point in the manuscript, we added the following sentence to the Results section: “Based on the analysis of 22 brain samples, we observed this driver strain labels one neuron per hemisphere in the third-instar larval brain (Figure 2a–d, Figure S1c, Table S3).” Additionally, Table S3 was included to summarize the DAN-c1 labeling pattern across all 22 samples. An enlarged inset highlighting GFP-positive signals was also added to Figure S1c.

      Weakness #3: Missing from the screen of 57 drivers is the driver MB320C, which typically labels only PPL1-γ1pedc in the adult and should label DAN-c1 in the larva. If MB320C labels DAN-c1 exclusively in the larva, then the authors should repeat their key experiments with MB320C to provide more evidence for DAN-c1 involvement specifically.

      We thank the reviewer for this insightful suggestion. The MB320C driver primarily labels the PPL1-γ1pedc neuron in the adult brain, along with one or two additional weakly labeled cells. It would indeed be interesting to examine the expression pattern of this driver in third-instar larval brains. If it is found to label only DAN-c1 at this stage, we could consider using it to knock down D2R and assess whether this recapitulates our current findings.

      While we agree that this is a promising direction for future studies, we believe it is not essential for the current manuscript, given the specificity of the DAN-c1 driver (please see our response to Reviewer #3 for details). Nonetheless, we appreciate the reviewer’s suggestion, and we recognize that MB320C could be a valuable tool for future experiments.

      Weakness #4: The authors claim that the SS02160 driver used by Eschbach et al. (2020) labels other neurons in addition to DAN-c1. Could the authors use confocal imaging to show how many other neurons SS02160 labels? Given that both Eschbach et al. and Weber et al. (2023) found no evidence that DAN-c1 plays a role in larval aversive learning, it would be informative to see how SS02160 expression compares with the driver the authors use to label DAN-c1.

      We did not have our own images showing DANs in brains of SS02160 driver cross line. However, Extended Data Figure 1 in the paper of Eschbach et al. shows strongly labeled four neurons on each brain hemisphere[4], indicating that this driver is not a strain only labeling one neuron, DAN-c1.

      Weakness #5: The claim that DAN-c1 is both necessary and sufficient in larval aversive learning should be reworded. Such a claim would logically exclude any other neuron or even the training stimuli from being involved in aversive learning (see Yoshihara and Yoshihara (2018) for a detailed discussion of the logic), which is presumably not what the authors intended because they describe the possible roles of other DANs during aversive learning in the discussion.

      We agree with the reviewer that the terms “necessary” and “sufficient” may be too exclusive and could unintentionally exclude contributions from other neurons. As noted in the Discussion section, we acknowledge that additional dopaminergic neurons may also play roles in larval aversive learning. To reflect this, we have revised our wording to use “important” and “mediates” instead of the more definitive terms “necessary” and “sufficient,” making our conclusions more accurate and appropriately measured.

      Weakness #6: Moreover, if DAN-c1 artificial activation conveyed an aversive teaching signal irrespective of the gustatory stimulus, then it should not impair aversive learning after quinine training (Figure 2k). While the authors interpret Figure 2k (and Figure 5) to indicate that artificial activation causes excessive DAN-c1 dopamine release, an alternative explanation is that artificial activation compromises aversive learning by overriding DAN-c1 activity that could be evoked by quinine.

      This is an excellent point, and we agree that we cannot rule out the possibility that artificial activation interferes with aversive learning by overriding the natural activity of DAN-c1 that would normally be evoked by quinine. The observed results with TRPA1 could potentially be attributed to dopamine depletion, inactivation due to prolonged depolarization, or neural adaptation. However, we believe that our hypothesis - that over-excitation of DAN-c1 impairs learning - is more consistent with our experimental findings and with previously published data. Our rationale is as follows: (1) Associative learning in larvae occurs only when the conditioned stimulus (CS, e.g., an odor such as pentyl acetate) and unconditioned stimulus (US, e.g., quinine) are paired. In wild-type larvae, the CS depolarizes a subset of Kenyon cells in the mushroom body (MB), while the US induces dopamine (DA) release from DAN-c1 into the lower peduncle (LP) compartment (Figure 7a). When both stimuli coincide, calcium influx from CS activation and Gαs signaling via D1-type dopamine receptors activate the MB-specific adenylyl cyclase, rutabaga, which functions as a coincidence detector (Figure 7d). (2) Rutabaga converts ATP to cAMP, activating the PKA signaling pathway and modifying synaptic strength between Kenyon cells and mushroom body output neurons (MBONs) (Figure 7d). These changes in synaptic strength underlie learned behavioral responses to future presentations of the same odor. (3) Our results show that D2R is expressed in DAN-c1, and that D2R knockdown impairs aversive learning. Since D2Rs typically inhibit neuronal excitability and reduce cAMP levels[5], we hypothesize that D2R acts as an autoreceptor in DAN-c1 to restrict DA release. When D2R is knocked down, this inhibition is lifted, leading to increased DA release in response to the US (quinine). The resulting excess DA, in combination with CS-induced calcium influx, would elevate cAMP levels in Kenyon cells excessively - disrupting normal learning processes (Figure 7b). This is supported by studies showing that dunce mutants, which have elevated cAMP levels, also exhibit aversive learning deficits[6]. (4) The TRPA1 activation results are consistent with our over-excitation model. When DAN-c1 was artificially activated at 34°C in the distilled water group, this mimicked the natural activation by quinine, producing an aversive learning response toward the odor (Figure 2k or new Figure 2i, DW group). Similarly, in the sucrose group, artificial activation mimicked quinine, producing a learning response that reflected both appetitive and aversive conditioning (Figure 2k, SUC group). (5) Over-excitation impairs learning in the quinine group. When DAN-c1 was activated during quinine exposure, both artificial and natural activation combined to produce excessive DA release. This over-excitation likely disrupted the cAMP balance in Kenyon cells, impairing learning and resulting in failure of aversive memory formation (Figure 2k, QUI group). This phenotype closely mirrors the effect of D2R knockdown in DAN-c1. (6) Optogenetic activation of DAN-c1 during aversive training similarly produced elevated DA levels due to both natural and artificial stimulation. This again would result in MBN over-excitation and a corresponding learning deficit. When optogenetic activation occurred during non-training phases (resting or testing), no additional DA was released during training, and aversive learning remained intact (Figure 5b). (7) Notably, when optogenetic activation was applied during training, we observed no aversive learning in the distilled water group and no reduction in the sucrose group (Figure 5c, 5d). We interpret this as evidence that the optogenetic stimulation was strong enough to cause elevated DA release in both groups, impairing learning in a manner similar to D2R knockdown or TRPA1 overactivation. (8) We extended this over-excitation framework to directly activate Kenyon cells (MBNs). Since MBNs are involved in both appetitive and aversive learning, their over-excitation disrupted both types of learning (Figure 6), further supporting our hypothesis. In summary, we propose that DAN-c1 activity is tightly regulated by D2R autoreceptors to ensure appropriate levels of dopamine release during aversive learning. Disruption of this regulation - either through D2R knockdown or artificial overactivation of DAN-c1 - results in excessive DA release, over-excitation of Kenyon cells, and impaired learning. This over-excitation model is consistent with both our experimental results and prior literature.

      Weakness #7: The authors should not necessarily expect that D2R enhancer driver strains would reflect D2R endogenous expression, since it is known that TH-GAL4 does not label p(PAM) dopaminergic neurons.

      Just like the example of TH-GAL4, it is possible that the D2R driver strains may partially reflect the expression pattern of endogenous D2R in larval brains. When we crossed the D2R driver strains with the GFP-tagged D2R strain, however, we observed co-localization in DM1 and DL2b dopaminergic neurons, as well as in mushroom body neurons (Figure S3c to h). In addition, D2R knockdown with D2R-miR directly supported that the GFP-tagged D2R strain reflected the expression pattern of endogenous D2R (Figure 4b to d, signals were reduced in DM1). In summary, we think the D2R driver strains supported the expression pattern we observed from the GFP-tagged D2R strain, especially in DM1 DANs.

      Weakness #8: Their observations of GFP-tagged D2R expression could be strengthened with an anti-D2R antibody such as that used by Lam et al., (1999) or Love et al., (2023).

      Love et al. (2023) used the antibody originally described by Draper et al.[6]. We attempted to use the same antibody in our experiments; however, we were unable to detect clear signals following staining. This may be due to a lack of specificity for neurons in the Drosophila larval brain or incompatibility with our staining protocol. Unfortunately, we were unable to locate a copy of the Lam (1999) paper for further reference.

      Weakness #9: Finally, the authors could consider the possibility other DANs may also mediate aversive learning via D2R. Knockdown of D2R in DAN-g1 appears to cause a defect in aversive quinine learning compared with its genetic control (Figure S4e). It is unclear why the same genetic control has unexpectedly poor aversive quinine learning after training with propionic acid (Figure S5a). The authors could comment on why RNAi knockdown of D2R in DAN-g1 does not similarly impair aversive quinine learning (Figure S5b).

      We re-analyzed the data related to DAN-g1. Interestingly, knockdown of D2R in DAN-g1 larvae trained with quinine (QUI) showed a significant difference in response index (R.I.) compared to the distilled water (DW) control group. However, it also differed significantly from the DAN-g1 genetic control group trained with QUI (two-way ANOVA with Tukey’s multiple comparisons, p = 0.0002), while it was not significantly different from the UAS-D2R-miR genetic control group (p = 0.2724). Furthermore, knockdown of D2R in DAN-g1 did not lead to aversive learning deficits when larvae were trained with a different odorant, propionic acid (ProA; Figure S5a). Similarly, using an RNAi line to knock down D2R in DAN-g1 did not result in learning impairment when larvae were trained with pentyl acetate (PA; Figure S5b). These inconsistencies may stem from differences in stimulus intensity across odorants, as well as the variable efficiency of the knockdown strategies (microRNA vs. RNAi). Based on these results, we propose that D2Rs in DAN-g1 may modulate larval aversive learning in a quantitative manner but do not play as critical a role as those in DAN-c1, where knockdown produces a clear qualitative effect. We have added this paragraph to the Discussion section of the manuscript.

      Reviewer #2 (Public review):

      Weakness#1: Is not completely clear how the system DAN-c1, MB neurons and Behavioral performance work. We can be quite sure that DAN-c1;Shits1 were reducing dopamine release and impairing aversive memory (Figure 2h). Similarly, DAN-c1;ChR2 were increasing dopamine release and also impaired aversive memory (Figure 5b). However, is not clear what is happening with DAN-c1;TrpA1 (Figure 2K). In this case the thermos-induction appears to impair the behavioral performance of all three conditions (QUI, DW and SUC) and the behavior is quite distinct from the increase and decrease of dopamine tone (Figure 2h and 5b).

      The study successfully examined the role of D2R in DAN-c1 and MB neurons in olfactory conditioning. The conclusions are well supported by the data, with the exception of the claim that dopamine release from DAN-c1 is sufficient for aversive learning in the absence of unconditional stimulus (Figure 2K). Alternatively, the authors need to provide a better explanation of this point.

      Please refer to our response to Weakness #6 of Reviewer #1 above.

      Reviewer #3 (Public review):

      Weakness #1: It is a strength of the paper that it analyses the function of dopamine neurons (DANs) at the level of single, identified neurons, and uses tools to address specific dopamine receptors (DopRs), exploiting the unique experimental possibilities available in larval Drosophila as a model system. Indeed, the result of their screening for transgenic drivers covering single or small groups of DANs and their histological characterization provides the community with a very valuable resource. In particular the transgenic driver to cover the DANc1 neuron might turn out useful. However, I wonder in which fraction of the preparations an expression pattern as in Figure 1f/ S1c is observed, and how many preparations the authors have analyzed. Also, given the function of DANs throughout the body, in addition to the expression pattern in the mushroom body region (Figure 1f) and in the central nervous system (Figure S1c) maybe attempts can be made to assess expression from this driver throughout the larval body (same for Dop2R distribution).

      We thank the reviewer for the positive comments and thoughtful suggestions.

      Regarding the R76F02AD; R55C10DBD strain, we examined 22 third instar larval brains expressing GFP, Syt-GFP, or Den-mCherry. All brains clearly labeled DAN-c1. In approximately half of the samples, only DAN-c1 was labeled. In the remaining samples, 1 to 5 additional weakly labeled soma were observed, typically without associated neurites. Only 1 or 2 strongly labeled non-DAN-c1 cells were occasionally detected. These additional labeled neurons were rarely dopaminergic. In the ventral nerve cord (VNC), 8 out of 12 samples showed no labeled cells. The remaining 4 samples had 2–4 strongly labeled cells. These results support our conclusion that the R76F02AD; R55C10DBD combination predominantly and specifically labels DAN-c1 in the third instar larval brain. As for the reviewer’s question about the expression pattern of R76F02AD; R55C10DBD and D2R in the larval body, we agree that this is a very interesting avenue for further investigation. However, our current study is focused on the central nervous system and larval learning behaviors. We hope to explore this question more fully in future work.

      We added the following sentence to the Results section: “Based on analysis of 22 brain samples, we believe this driver strain consistently labels one neuron per hemisphere in the third-instar larval brain (Figure 2a - d, Figure S1c, Table S3).” In addition, we included Table S3 to summarize the DAN-c1 labeling patterns observed across these samples.

      Weakness #2: A first major weakness is that the main conclusion of the paper, which pertains to associative memory (last sentence of the abstract, and throughout the manuscript), is not justified by their evidence. Why so? Consider the paradigm in Figure 2g, and the data in Figure 2h (22 degrees, the control condition), where the assay and the experimental rationale used throughout the manuscript are introduced. Different groups of larvae are exposed, for 30min, to an odour paired with either i) quinine solution (red bar), ii) distilled water (yellow bar), or iii) sucrose solution (blue bar); in all cases this is followed by a choice test for the odour on one side and a distilled-water blank on the other side of a testing Petri dish. The authors observe that odour preference is low after odour-quinine pairing, intermediate after odour-water pairing and high after odour-sucrose pairing. The differences in odour preference relative to the odour-water case are interpreted as reflecting odour-quinine aversive associations and odour-sucrose appetitive associations, respectively. However, these differences could just as well reflect non-associative effects of the 30-min quinine or sucrose exposure per se (for a classical discussion of such types of issues see Rescorla 1988, Annu Rev Neurosci, or regarding Drosophila Tully 1988, Behav Genetics, or with some reference to the original paper by Honjo & Furukubo-Tokunaga 2005, J Neurosci that the authors reference, also Gerber & Stocker 2007, Chem Sens).

      As it stands, therefore, the current 3-group type of comparison does not allow conclusions about associative learning.

      We adopted the single-odor larval learning paradigm from Honjo et al., who first developed and validated this method for studying larval olfactory associative learning7,8. To address the reviewer’s concern regarding potential non-associative effects from 30-minute exposure to quinine or sucrose, we refer to multiple lines of evidence provided in Honjo’s studies: (1) Honjo et al. demonstrated that only larvae receiving paired presentations of odor and unconditioned stimulus (quinine or sucrose) exhibited learned responses. Exposure to either stimulus alone, or temporally dissociated presentations, failed to induce any learning response. (2) When tested with a second, non-trained odorant, larvae only responded to the odorant previously paired with the unconditioned stimulus. This rules out generalized olfactory suppression and confirms odor-specific associative learning. (3) Well-characterized learning mutants (e.g., rutabaga, dunce) that show deficits in adult reciprocal odor learning also failed to exhibit learned responses in this single-odor paradigm, further supporting its validity. (4) In our study, we used two distinct odorants (pentyl acetate and propionic acid) and two independent D2R knockdown approaches (UAS-miR and UAS-RNAi). We consistently observed that D2R knockdown in DAN-c1 impaired aversive learning. Importantly, naïve olfactory, gustatory, and locomotor assays ruled out general sensory or motor defects. Comparisons with control groups (odor paired with distilled water) also ruled out non-associative effects such as habituation. Taken together, these results strongly support that the single-odor paradigm is a robust and reliable assay for assessing larval olfactory associative learning in Drosophila. We have added a section in the Discussion to clarify and defend the use of this paradigm in our study.

      Weakness #3: A second major weakness is apparent when considering the sketch in Figure 2g and the equation defining the response index (R.I.) (line 480). The point is that the larvae that are located in the middle zone are not included in the denominator. This can inflate scores and is not appropriate. That is, suppose from a group of 30 animals (line 471) only 1 chooses the odor side and 29, bedazzled after 30-min quinine or sucrose exposure or otherwise confused by a given opto- or thermogenetic treatment, stay in the middle zone... a P.I. of 1.0 would result.

      We gave 5 min during the testing stage to allow the larvae to wander on the testing plate. Under most conditions, more than half of larvae (>50%) will explore around, and the rest may stay in the middle zone (will not be calculated). We used 25-50 larvae in each learning assay, so finally around 10-30 larvae will locate in two semicircular areas. Indeed, based on our raw data, a R.I. of 1 seldom appears. Most of the R.I.s fall into a region from -0.2 to 0.8. We should admit that the calculation equation of R. I. is not linear, so it would be sharper (change steeply) when it approaches -1 and 1. However, as most of the values fall into the region from -0.2 to 0.8, we think ‘border effects’ can be neglected if we have enough numbers of larvae in the calculation (10-30).

      Weakness #4: Unless experimentally demonstrated, claims that the thermogenetic effector shibire/ts reduces dopamine release from DANs are questionable. This is because firstly, there might be shibire/ts-insensitive ways of dopamine release, and secondly because shibire/ts may affect co-transmitter release from DANs.

      Shibire<sup>ts1</sup> gene encodes a thermosensitive mutant of dynamin, expressing this mutant version in target neurons will block neurotransmitter release at the ambient temperature higher than 30C, as it represses vesicle recycling[7]. It is a widely used tool to examine whether the target neuron is involved in a specific physiological function. We cannot rule out that there might be Shibire<sup>ts1</sup> insensitive ways of dopamine release exist. However, blocking dopamine release from DAN-c1 with Shibire<sup>ts1</sup> has already led to learning responses changing (Figure 2h). This result indicated that the dopamine release from DAN-c1 during training is important for larval aversive learning, which has already supported our hypothesis.

      For the second question about the potential co-transmitter release, we think it is a great question. Recently Yamazaki et al. reported co-neurotransmitters in dopaminergic system modulate adult olfactory memories in Drosophila[9], and we cannot rule out the roles of co-released neurotransmitters/neuropeptides in larval learning. Ideally, if we could observe the real time changes of dopamine release from DAN-c1 in wild type and TH knockdown larvae would answer this question. However, live imaging of dopamine release from one dopaminergic neuron is not practical for us at this time. On the other hand, the roles of dopamine receptors in olfactory associative learning support that dopamine is important for Drosophila learning. D1 receptor, dDA1, has been proven to be involved in both adult and larval appetitive and aversive learning[10,11]. In our work, D2R in the mushroom body showed important roles in both larval appetitive and aversive learning (Figure 6a). All this evidence reveals the importance of dopamine in Drosophila olfactory associative learning. In addition, there is too much unknow information about the co-release neurotransmitter/neuropeptides, as well as their potential complex ‘interaction/crosstalk’ relations. We believe that investigation of co-released neurotransmitter/neuropeptides is beyond the scope of this study at this time.

      Weakness #5: It is not clear whether the genetic controls when using the Gal4/ UAS system are the homozygous, parental strains (XY-Gal4/ XY-Gal4 and UAS-effector/ UAS-effector), or as is standard in the field the heterozygous driver (XY-Gal4/ wildtype) and effector controls (UAS-effector/ wildtype) (in some cases effector controls appear to be missing, e.g. Figure 4d, Figure S4e, Figure S5c).

      Almost all controls we used were homozygous parental strains. They did not show abnormal behaviors in either learnings or naïve sensory or locomotion assays. The only exception is the control for DAN-c1, the larvae from homozygous R76F02AD; R55C10DBD strain showed much reduced locomotion speed (Figure S6). To prevent this reduced locomotion speed affecting the learning ability, we used heterozygous R76F02AD; R55C10DBD/wildtype as control, which showed normal learning, naïve sensory and locomotion abilities (Figure 4e to i).

      For Figure 4d, it is a column graph to quantify the efficiency of D2R knockdown with miR. Because we need to induce and quantify the knockdown effect in specific DANs (DM1), only TH-GAL4 can be used as the control group, rather than UAS-D2R-miR. For the missing control groups in Figure S4e and S5c, we have shown them in other Figures (Figure 4e).

      We described this in the Materials and Methods part, “All control strains used in learning assays were homozygous (except DAN-c1×WT), while all experimental groups (D2R knockdown and thermogenetics) used were heterozygous by crossing the corresponding control strains”.

      We also re-organized the Figure S4e and S5c along with the control groups to make it easier to understand.

      Weakness #6: As recently suggested by Yamada et al 2024, bioRxiv, high cAMP can lead to synaptic depression (sic). That would call into question the interpretation of low-Dop2R leading to high-cAMP, leading to high-dopamine release, and thus the authors interpretation of the matching effects of low-Dop2R and driving DANs.

      We appreciate the reviewer’s suggestion. We read through this literature, which also addresses the question we mentioned in the Discussion section, about the discrepancy between the cAMP elevation in the mushroom body neurons and the reduced MBN-MBON synaptic plasticity after olfactory associative learning in Drosophila. The author gave an explanation to the existing D1R-cAMP elevation-MBN-MBON LTD axis, which is really helpful to our understanding about the learning mechanism. However, unfortunately, we do not think this offers a possible explanation for our D2R-related mechanisms. We added this literature into our citation.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      (1) Throughout the behavioral experiments, a defect in aversive learning is defined as a relative increase in the response index (RI) after olfactory training with quinine (red) and a defect in appetitive learning as a relative decrease in RI after training with sucrose (blue). Training with distilled water (yellow) is intended to be a control for comparisons within genotypes/treatment groups but causes interpretation issues if it is also affected by experimental manipulations.

      The authors typically make comparisons between quinine, water, and sucrose within each group, but this often forces readers to infer the key comparisons of interest. For example, the key comparison in Figure 2h is the statistically significant difference between the red groups, which differ only in the temperature used during training. Many other figure panels in the paper would also benefit from more direct statistical comparisons, particularly Figure 2k.

      While I recognize the value of the water control, I strongly recommend that the authors make statistical comparisons directly between genotypes/treatment groups where possible and to interpret results with more caution when the water RI score differs substantially between groups. Also, since the authors are conducting two-way ANOVAs before Dunnett's multiple comparisons tests, they ideally should report the p-value for the main effect of each factor, plus the interaction p-value between the two factors before making multiple comparisons.

      We appreciate the reviewer’s suggestion. In response, we re-analyzed all learning assay data in Figures 2 and 4 using two-way ANOVA followed by Tukey’s multiple comparisons test. Unlike our previous analysis, which only compared each experimental group to its corresponding DW control, we now compared all groups against one another. First, we found that most R.I. values from different temperature conditions (Figure 2) or genotypes (Figure 4) trained with DW were not significantly different, with the exception of the data in Figure 2i (formerly Figure 2k; discussed further below). The R.I. from DAN-c1 × D2R-miR larvae trained with QUI was significantly different from both genotype control groups (DAN-c1 × WT and UAS-D2R-miR), while no significant difference was observed between the two controls trained with QUI. Thus, this more comprehensive statistical approach supports the conclusions we previously reported. Second, as the reviewer noted, the new analysis allows for a more direct interpretation of our findings. For example, in the thermogenetic experiments using the Shibire<sup>ts1</sup> strain, the R.I. of DAN-c1 × UAS-Shibire<sup>ts1</sup> larvae trained with QUI at 34°C was not significantly different from the DW group at 34°C, but was significantly different from the QUI group at 22°C. Both findings support our conclusion that blocking dopamine release from DAN-c1 impairs larval aversive learning (Figure 2f).

      In the dTRPA1 activation experiments, the R.I. of DAN-c1 × UAS-dTRPA1 larvae trained with DW at 34°C was significantly lower than that of the DW group at 22°C and the QUI group at 34°C, but not significantly different from the QUI group at 22°C (Figure 2i). These results indicate that activating DAN-c1 during training is sufficient to drive aversive learning even in the absence of QUI. Interestingly, when DAN-c1 × UAS-dTRPA1 larvae were trained with QUI at 34°C, their R.I. was significantly higher than that of the DW group at 34°C and significantly different from the QUI group at 22°C, but not significantly different from the DW group at 22°C (Figure 2i). We interpret this as evidence that simultaneous activation of DAN-c1 by both QUI and dTRPA1 leads to over-excitation, which in turn impairs aversive learning.

      We have revised the figures (Figures 2, 4, 5, and 6) and updated the corresponding Results sections to reflect this new statistical analysis. Additionally, we now report the p-values for interaction, row factor, and column factor - either in Table S4 (for Figure 2) or in the figure captions for Figures 4, 5, 6, S4, S5, and S7.

      (2) The authors' motivation to find tools that label DANs other than DAN-c1 was unclear until much later in the paper when I saw the screening experiments in Figures S4 and S5. The authors could provide a clearer justification for why they focus on DAN-c1 in Figure 2 rather than another DAN for which they found a specific driver in Figure 1. The motivation for looking at individual pPAM neurons was also unclear.

      We sincerely appreciate the reviewer’s thoughtful suggestion. Our study was initially motivated by the goal of characterizing the expression pattern of D2R in the larval brain. From there, we aimed to identify DAN drivers that label specific pairs of dopaminergic neurons, enabling us to assess the functional role of D2R in distinct DAN subtypes through targeted knockdown experiments. This approach ultimately led us to focus on DAN-c1, as it was the only neuronal population for which D2R knockdown resulted in a learning deficit. We then returned to examine the functional significance of DAN-c1 in aversive learning. While we recognize that a more comprehensive narrative might be desirable, the current structure of our manuscript reflects the most logical progression of our work based on our research priorities and experimental outcomes. We did explore alternative manuscript structures - such as beginning with the D2R expression pattern - but found that the current format best conveys our findings and rtionale.

      Regarding our motivation to study individual PAM neurons: we aimed to identify whether D2R plays a role in a specific pair of pPAM neurons involved in larval appetitive learning. However, we were unable to find a driver that exclusively labels DAN-j1, which we believe to be the key neuron in this context (see Figure 1). As a result, our investigation into appetitive learning did not progress beyond the observation of D2R expression in pPAM neurons (Figure 3d), and we did not proceed with learning assays in this context. While we acknowledge the limitations of our study, we believe that our focus on DAN-c1 is well-justified based on both our findings and the tools currently available. We respectfully note that a major restructuring of the manuscript would not necessarily clarify the rationale for focusing on DAN-c1, and therefore we have maintained the current organization.

      (3) The authors should also double-check and update the expression patterns of the drivers in Table 1 using references such as the FlyLight online resource. For example, MB438B labels PPL1-α'2α2, PPL1-α3, PPL1-γ1pedc according to FlyLight, not just PPL1-γ1pedc as initially reported by Aso and Hattori et al. (2014).

      We appreciate the reviewer’s suggestion. We have double-checked and updated the driver expression patterns in Table 1, using FlyLight data as a reference.

      (4) Interpreting overlaid green-and-red fluorescence confocal images would be difficult for any colorblind readers; I suggest that the authors consider using a more friendly color set.

      We thank the reviewer for the suggestion. In our study, we need three distinct colors to represent different channels. We also tested an alternative color scheme using and cyan , magenta, and yellow (CMY) instead of the standard red, green, and blue (RGB). As a comparison (see below), we used a R76F02AD;R55C10DBD (DAN-c1) GFP-labeled brain as an example. In our evaluation, the RGB combination provided clearer visualization and appeared more natural, while the CMY scheme looked somewhat artificial. Therefore, we decided to retain the original RGB color scheme and did not modify the colors in the figures.

      Author response image 1.

      (5) For Figure 4d, counting each DAN as an individual N would violate the assumption of independence made by the unpaired t test, since multiple DANs are found in each brain and therefore are not independent. Instead, it would be better to count each individual N as the average intensity of the four DANs measured in each brain.

      We revised the analysis of microRNA efficiency by averaging the fluorescence intensity of DANs within each brain, treating each brain as a single sample. Based on this approach, we re-plotted Figure 4d.

      (6) Finally, the authors ought to make it clearer throughout the paper that they have implicated a pair of DAN-c1 neurons in aversive learning, not just a single DAN as currently stated in the title.

      We thank the reviewer for the suggestion about the phrase we are using under this scenario. We have changed all “single neuron” to “a pair of neurons”.

      Reviewer #2 (Recommendations for the authors):

      (1) The results section presents: "Activation of DAN-c1 with dTRPA1 at 34°C during training induced repulsion to PA in the distilled water group (Figure 2k). These data suggested that DAN-c1 excitation and presumably increased dopamine release is sufficient for larval aversive learning in the absence of gustatory pairing."<br /> An alternative interpretation is that 30 min of TrpA activation depletes synaptic vesicle pool, or inactivates neurons because of prolonged depolarization, or DAN shows firing rate adaptation (e.g. see Pulver et al. 2009; doi:10.1152/jn.00071.2009). In such a case DA release would be reduced and not increased. Therefore, the interpretation that DAN-c1 activation is both necessary and sufficient in larval aversive learning is difficult to be sustained.

      In this regard it is important to know how the sensory motor abilities are during a thermos-induction at 34°C during 30 min.

      We thank the reviewer for the thoughtful suggestion. Regarding the concern about potential dopamine depletion or neuronal inactivation, we believe a comparison with the Shibire<sup>ts1</sup> experiments helps clarify the interpretation. Activation of Shibire<sup>ts1</sup> during training with distilled water did not result in aversive learning (Figure 2f), which is a distinct phenotype from that observed with dTRPA1 activation (Figure 2i). This suggests that the phenotypes seen with dTRPA1 activation are not due to reduced dopamine release. Additionally, as the reviewer suggested, we have revised our conclusion to state that “DAN-c1 is important for larval aversive learning,” rather than claiming it is both necessary and sufficient.

      (2) The GRASP system can label the contact of a cell in close proximity like synaptic contacts, but also other situations like no synaptic contact. It would be useful to use a more specific synaptic labelling tool, like the trans-synaptic tracing system (Talay et al., 2017 https://doi.org/10.1016/j.neuron.2017.10.011), which provides a better label of synaptic contact.

      We really appreciate the reviewer’s suggestion. First, we acknowledge that there are four general methods to reveal synaptic connections between neurons: immunohistochemistry (IHC), neuron labeling, viral tracing, GRASP, and electron microscopy (EM). Among these, IHC is not sufficiently convincing, viral tracing is challenging and rarely used in Drosophila, and EM, while the most accurate, is prohibitively expensive for our current goals. For these reasons, we chose the GRASP system to demonstrate the synaptic connections from dopaminergic neurons to the mushroom body. Second, we utilized an activity-dependent version of the GRASP system, linking split-GFP1-10 with synaptic proteins (e.g., synaptobrevin)[12] rather than with cell surface proteins like CD4 or CD8. This version significantly reduces false positive signals compared to the previous version, which was tagged with cell surface proteins. While we admit that this method does not provide as solid evidence of synaptic connections as EM, it is the most efficient method available to us for showing the synaptic connections from dopaminergic neurons to the mushroom body. Finally, we thank the reviewer for suggesting the literature on trans-synaptic tracing methods. Unfortunately, this method is not suitable for our goal, as it labels the entire postsynaptic neuron. In our study, we use GRASP to identify the specific dopaminergic neurons based on the synaptic locations and compartments within the mushroom body lobe. We require a labeling system at the subcellular level because, as noted, DAN-c1 forms synapses specifically in the lower peduncle (LP) of the mushroom body lobe, which is part of the axonal bundles from mushroom body neurons. Using the trans-synaptic tracing method would label the entire mushroom body, making it impossible to distinguish DAN-c1 from other DL1 dopaminergic neurons.

      (3) Previously, Honjo et al (2009) used a petri dish of 8.5 cm and a filter paper for reinforcement of 5.5 cm. In this study the petri dish was 10 cm and the size of the filter paper was not informed. That is important information because it will determine the probability of conditioning.

      A piece of filter paper (0.25cm<sup>2</sup> square) was used to hold odorants in this study. We have added this information to the Materials and Methods.

      (4) Statistic analysis of Behavioral performance of Fig 2H-I was made by ANOVA followed by Dunnett multiple comparisons test. Which was the control group? In each graph 2 independent Dunnett tests were performed against the DW control group?

      We have re-analyzed the data using a two-way ANOVA followed by Tukey’s multiple comparison test, as suggested by Reviewer #1. In Figure 2f-j (previously Figure 2h-l), the DW groups serve as the control groups. In our new analysis, we compared data across all groups using Tukey’s multiple comparison test, with particular focus on comparisons to the corresponding DW control groups.

      (5) The sample size in staining experiments of figures 1-4 were not informed.

      We have added Table S2 in the supplementary materials to provide the N numbers for brain samples used in the figures.

      (6) Color code in Fig 5 is missing, I assumed that is the same as in figure 4e

      We added color code in the figure legend of Figure 5.

      (7) Line 506 "0.1% QH solutions" should be 0.1% QUI solutions

      Changed.

      (8) There is no information on the availability of data

      We added Data Availability Statement: Data will be made available on request.

      Reviewer #3 (Recommendations for the authors):

      (1) Axes of behavioural experiments should better show the full span of possible values (-1;1) to allow a fair assessment.

      We have adjusted the axes in all learning assay graphs to a range from -1 to 1 for consistency and clarity.

      (2) Ns should better be given within the figures.

      We have added Table S2 in the supplementary materials to provide the N numbers for brain samples used in the figures. Additionally, Tables S4 to S6 include the N numbers for the learning assays. While we initially considered including the N numbers within the figure captions, we found it challenging to present this information clearly and efficiently. Therefore, we decided to summarize the N numbers in the tables instead.

      (3) Dot- or box-plots would be better for visualizing the data than means and SEMs.

      We agree with the reviewer’s suggestion. In the behavioral assay graphs, both dot plots and mean ± SEM have been included for better visualization of the data.

      (4) The paper reads as if Dop2R would reduce neuronal activity, rather than "just" cAMP levels. Such a misunderstanding should be avoided.

      We appreciate the reviewer’s comment. Under most conditions, dopamine binding to D2Rs activates the Gαi/o pathway, which inhibits adenylyl cyclase (AC) and reduces cAMP levels. This reduction in cAMP ultimately leads to decreased neuronal activity. In other words, D2R activation typically has an inhibitory effect on neurons. Additionally, D2R can exert inhibitory effects through other signaling pathways, such as the inhibition of voltage-gated associative learning, we continue to emphasize the importance of the D2R-mediated AC-cAMP-PKA signaling pathway. However, we do not rule out the potential involvement of additional signaling pathways, such as inhibition of voltage-gated calcium channels via Gβγ subunits[5]. As noted in the Introduction, dopamine receptors are also involved in other signaling cascades, including PKC, MAPK, and CaMKII pathways. In the context of our study, based on current understanding of molecular signaling in Drosophila olfactory, we still think D2R mediated AC-cAMP-PKA signaling pathway would be the most important one. However, we cannot rule out the involvement of other signaling pathways.

      (5) It would be better if citations were more clearly separated into ones that refer to adult flies versus work on larvae.

      We separated the citations related to adult flies from those working on larvae.

      (6) Line 81-83. DopECR is not found in mammals, is it?

      You are correct. DopECR is not found in mammals. This non-canonical receptor shares structural homology with vertebrate β-adrenergic-like receptors. It can be activated rapidly by dopamine as well as insect ecdysteroids[13,14].

      (7) Line 99: Better "a" learning center (some forms of learning work without mushroom bodies).

      We have revised the text from "the learning center" to "a learning center," as suggested by the reviewer.

      (8) Supplemental figures should be numbered according to the sequence in which they are mentioned in the text.

      We have rearranged the sequence of supplemental figures to match the order in which they are referenced in the text.

      (9) It is striking that dTRPA1-driving DANc1 is punishing in the water condition but that this effect does not summate with quinine punishment (but rather seems to impair it). Maybe you can back this up by ChR- or Chrimson-driving DANc1? Or by silencing DANc1 by GtACR1?

      We appreciate the reviewer’s suggestion. Indeed, we observed similar but not identical results when we used ChR2 to activate DAN-c1 during the training stage (Figure 5b and c). We found that activating DAN-c1 with quinine (QUI) impaired aversive learning (Figure 5b), consistent with our findings using dTRPA1 activation of DAN-c1 when trained in QUI at 34°C (Figure 2i). We propose that the over-excitation of DAN-c1, whether induced by QUI or artificial manipulation (optogenetics and thermogenetics), impairs aversive learning, which aligns with our findings for D2R knockdown (Figure 4e). However, there are some differences between dTRPA1 and ChR2 activation. While dTRPA1 activation induced aversive learning when trained with distilled water (DW) at 34°C (Figure 2i), ChR2 did not induce aversive learning under the same conditions (Figure 5c). We believe this difference is due to the varying activation levels between the two manipulations. Our optogenetic stimulus may have been stronger than the thermogenetic one, potentially leading to over-excitation in the DW group, preventing aversive learning. In the QUI group, the more severe over-excitation impaired aversive learning, producing a phenotype similar to that observed with other over-excitation methods (e.g., thermogenetics or D2R knockdown), where the phenotype reached a maximum level. We have also addressed these points in the Discussion section.

      (10) Unless I got the experimental procedure wrong, isn't it surprising that Figure S7b does not uncover a punishing effect of driving TH-Gals neurons?

      This optogenetic experiment with ChR2 expression in TH-GAL4 neurons was a pioneering attempt to activate DAN-c1 using ChR2. As explained in response to question (9), the failure to observe a punishing effect in the DW group when TH-GAL4 neurons were activated during training may be due to our optogenetic stimulus being too strong. This likely resulted in over-excitation of DAN-c1 (among the neurons labeled by TH-GAL4), impairing aversive learning and preventing the appearance of typical aversive behaviors.

      (11) It seems that Figure1f´ is repeated, in a mirrored manner, in Figure 2e.

      We have removed Figure 2e, as it was deemed redundant and not necessary for this section.

      Reference

      (1) Saumweber, T. et al. Functional architecture of reward learning in mushroom body extrinsic neurons of larval Drosophila. Nat Commun 9, 1104 (2018). https://doi.org/10.1038/s41467-018-03130-1

      (2) Aso, Y. & Rubin, G. M. Dopaminergic neurons write and update memories with cell-type-specific rules. Elife 5 (2016). https://doi.org/10.7554/eLife.16135

      (3) Xie, T. et al. A Genetic Toolkit for Dissecting Dopamine Circuit Function in Drosophila. Cell Rep 23, 652-665 (2018). https://doi.org/10.1016/j.celrep.2018.03.068

      (4) Eschbach, C. et al. Recurrent architecture for adaptive regulation of learning in the insect brain. Nat Neurosci 23, 544-555 (2020). https://doi.org/10.1038/s41593-020-0607-9

      (5) Neve, K. A., Seamans, J. K. & Trantham-Davidson, H. Dopamine receptor signaling. J Recept Signal Transduct Res 24, 165-205 (2004). https://doi.org/10.1081/rrs-200029981

      (6) Draper, I., Kurshan, P. T., McBride, E., Jackson, F. R. & Kopin, A. S. Locomotor activity is regulated by D2-like receptors in Drosophila: an anatomic and functional analysis. Dev Neurobiol 67, 378-393 (2007). https://doi.org/10.1002/dneu.20355

      (7) Honjo, K. & Furukubo-Tokunaga, K. Induction of cAMP response element-binding protein-dependent medium-term memory by appetitive gustatory reinforcement in Drosophila larvae. J Neurosci 25, 7905-7913 (2005). https://doi.org/10.1523/JNEUROSCI.2135-05.2005

      (8) Honjo, K. & Furukubo-Tokunaga, K. Distinctive neuronal networks and biochemical pathways for appetitive and aversive memory in Drosophila larvae. J Neurosci 29, 852-862 (2009). https://doi.org/10.1523/JNEUROSCI.1315-08.2009

      (9) Yamazaki, D., Maeyama, Y. & Tabata, T. Combinatory Actions of Co-transmitters in Dopaminergic Systems Modulate Drosophila Olfactory Memories. J Neurosci 43, 8294-8305 (2023). https://doi.org/10.1523/jneurosci.2152-22.2023

      (10) Selcho, M., Pauls, D., Han, K. A., Stocker, R. F. & Thum, A. S. The role of dopamine in Drosophila larval classical olfactory conditioning. PLoS One 4, e5897 (2009). https://doi.org/10.1371/journal.pone.0005897

      (11) Kim, Y. C., Lee, H. G. & Han, K. A. D1 dopamine receptor dDA1 is required in the mushroom body neurons for aversive and appetitive learning in Drosophila. J Neurosci 27, 7640-7647 (2007). https://doi.org/10.1523/JNEUROSCI.1167-07.2007

      (12) Macpherson, L. J. et al. Dynamic labelling of neural connections in multiple colours by trans-synaptic fluorescence complementation. Nat Commun 6, 10024 (2015). https://doi.org/10.1038/ncomms10024

      (13) Abrieux, A., Duportets, L., Debernard, S., Gadenne, C. & Anton, S. The GPCR membrane receptor, DopEcR, mediates the actions of both dopamine and ecdysone to control sex pheromone perception in an insect. Front Behav Neurosci 8, 312 (2014). https://doi.org/10.3389/fnbeh.2014.00312

      (14) Lark, A., Kitamoto, T. & Martin, J. R. Modulation of neuronal activity in the Drosophila mushroom body by DopEcR, a unique dual receptor for ecdysone and dopamine. Biochim Biophys Acta Mol Cell Res 1864, 1578-1588 (2017). https://doi.org/10.1016/j.bbamcr.2017.05.015

    1. Author Response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      Summary:

      The authors use analysis of existing data, mathematical modelling, and new experiments, to explore the relationship between protein expression noise, translation efficiency, and transcriptional bursting.

      Strengths:

      The analysis of the old data and the new data presented is interesting and mostly convincing.

      Thank you for the constructive suggestions and comments. We address the individual comments below. 

      Weaknesses:

      (1) My main concern is the analysis presented in Figure 4. This is the core of mechanistic analysis that suggests ribosomal demand can explain the observed phenomenon. I am both confused by the assumptions used here and the details of the mathematical modelling used in this section. Firstly, the authors' assumption that the fluctuations of a single gene mRNA levels will significantly affect ribosome demand is puzzling. On average the total level of mRNA across all genes would stay very constant and therefore there are no big fluctuations in the ribosome demand due to the burstiness of transcription of individual genes. Secondly, the analysis uses 19 mathematical functions that are in Table S1, but there are not really enough details for me to understand how this is used, are these included in a TASEP simulation? In what way are mRNA-prev and mRNA-curr used? What is the mechanistic meaning of different terms and exponents? As the authors use this analysis to argue ribosomal demand is at play, I would like this section to be very much clarified.

      Thank you for raising two important points. Regarding the first point, we agree that the overall ribosome demand in a cell will remain mostly the same even with fluctuations in mRNA levels of a few genes. However, what we refer to in the manuscript is the demand for ribosomes for translating mRNA molecules of a single gene. This demand will vary with the changes in the number of mRNA molecules of that gene. When the mRNA copy number of the gene is low, the number of ribosomes required for translation is low. At a subsequent timepoint when the mRNA number of the same gene goes up rapidly due to transcriptional bursting, the number of ribosomes required would also increase rapidly. This would increase ribosome demand. The process of allocation of ribosomes for translation of these mRNA molecules will vary between cells, and this process can lead to increased expression variation of that gene among cells. We have now rephrased the section between the lines 321 and 331 to clarify this point.

      Regarding the second point, each of the 19 mathematical functions was individually tested in the TASEP model and stochastic simulation. The parameters ‘mRNA-curr’ and ‘mRNA-prev’ are the mRNA copy numbers at the present time point and the previous time point in the stochastic simulations, respectively. These numbers were calculated from the rate of production of mRNA, which is influenced by the transcriptional burst frequency and the burst size, as well as the rate of mRNA removal. We have now incorporated more details about the modelling part along with explanation for parameters and terms in the revised manuscript (lines 390 to 411; lines 795 to lines 807). 

      (2) Overall, the paper is very long and as there are analytical expressions for protein noise (e.g. see Paulsson Nature 2004), some of these results do not need to rely on Gillespie simulations. Protein CV (noise) can be written as three terms representing protein noise contribution, mRNA expression contribution, and bursty transcription contribution. For example, the results in panel 1 are fully consistent with the parameter regime, protein noise is negligible compared to transcriptional noise. 

      Thank you for referring to the paper on analytical expressions for protein noise. We introduced translational bursting and ribosome demand in our model, and these are linked to stochastic fluctuations in mRNA and ribosome numbers. In addition, our model couples transcriptional bursting with translational bursting and ribosome demand. Since these processes are all stochastic in nature, we felt that the stochastic simulation would be able to better capture the fluctuations in mRNA and protein expression levels originating from these processes. For consistency, we used stochastic simulations throughout even when the coupling between transcription and translation were not considered. 

      Reviewer #1 (Recommendations for the authors):  

      (1) Figure 1B shows noise as Distance to Median (DM) that can be positive or negative. It is therefore misleading that the authors say there is a 10-fold increase in noise (this would be relevant if the quantity was strictly positive). How is the 10-fold estimated? Similar comments apply to Figure 1F and the estimated 37-fold. I also wonder if the datasets combined from different studies are necessarily compatible.

      We have now changed the statements and mentioned the actual noise values for different classes of genes rather than the fold-changes (lines 111-113 and 143-145). We agree that the measurements for mRNA expression levels, protein synthesis rates and protein noise were obtained from experiments done by different research labs, and this could introduce more variation in the data. However, it is unlikely the experimental variations are likely to be random and do not bias any specific class of genes (in Fig. 1B and Fig. 1F) more than others.  

      (2)   How Figure 1D has been generated seems confusing, the authors state this is based on the Gillespie algorithm, but in panel 1C and also in the methods, they are writing ODEs and Equations 3 and 4 stating the Euler method for the solution of ODEs. Also, I am concerned if this has been done at steady-state. The protein noise for the two-state model can be analytically obtained, and instead of simulations, the authors could have just used the expression. Also, Figure 1D shows CV while the corresponding data Figure 1B is showing mean adjusted DM. So, I am not sure if the comparison is valid. I am also very confused about the fact that the authors show CV does not depend on the mean expression of proteins and mRNA. Analytical solutions suggested there is always an inverse relationship exists between CV and mean and this has also been experimentally observed (see for example Newman et al 2006).

      We used Gillespie algorithm for stochastic simulations and identified the time points when an event (for example, switching to ON or OFF states during transcriptional bursting) occurred. If an event occurred at a time point, the rates of the reactions were guided by the equations 3 and 4, as the rates of reactions were dependent on the number of mRNA (or protein) molecules present, production rates and removal rates. 

      For all published datasets where we had measurements from many genes/promoters, we used the measures of adjusted noise (for mRNA noise) and Distance-to-median (DM, for protein noise). These measures of noise are corrected mean-dependence of expression noise (Newman et al., 2006). For simulations, which we performed for a single gene, and for experiments that we performed on a limited number of promoters, we used the measure of coefficient of variation (CV) to quantify noise, as calculation of adjusted noise or DM was not possible for a single gene. 

      The work of Newman et al. (2006) measures noise values of different genes with different transcriptional burst characteristics and different mRNA and protein removal rates. We also see similar results in our simulations (Fig. 1E), where as we increase the mean expression by changing the transcriptional burst frequency, the protein noise goes down.     

      (3) Estimating parameters of gene expression using reference 44 ignores the effect of variability in capture efficiency and cell size. In a recent paper, Tang et al Bioinformatics 39 (7), btad395 2023 addressed this issue.

      Thank you for referring to the work of Tang et al. (2023). We note that the cell size and capture efficiency have a small effect on the burst frequency (Kon) but has a more pronounced effect on burst size (Tang et al., 2023). In our analysis, we considered only burst frequency and even with likely small inaccuracies in our estimation of Kon, we can capture interesting association of burst frequency with noise trends. 

      (4) In the methods "αp = 0.007 per mRNA molecule per unit time", I believe it should be per protein molecule per unit time.

      Corrected.

      (5)  Figure 3 uses TASEP modelling but the details of this modelling are not described well.

      We have now expanded the description of the modelling approach in the revised manuscript (lines 391-412; lines 693-776 and lines 797-809). In addition, we have also added more details in the figure captions. 

      (6) Another overall issue is that when the authors talk about changes in burst frequency or changes in translation efficiency, it is not always clear, is this done while keeping all the other parameters constant therefore changing mean expressions, or is this done by keeping the mean expressions constant?

      To test for the association between mean protein expression and protein noise, we have varied the mean expression by changing the translation initiation rate (TLinit) for the most part of the manuscript while keeping other parameters constant. In figure 5, where we decoupled TLinit from ribosome traversal rate (V), we changed the mean protein expression by changing the ribosome traversal rate while keeping other parameters constant. We have now mentioned this in the manuscript. 

      (7)   I believe Figures 5 and 6 present the same data in different ways, I wonder if these can be combined or if some aspect of the data in Figure 5 could go to supplementary. Also, the statistical tests in Figure 5E and F are not clear what they are testing.

      We have now moved figures 5E and 5F to the supplement (Fig. S20). We have also added details of the statistical test in the figure caption. 

      Reviewer #2 (Public review): 

      This work by Pal et al. studied the relationship between protein expression noise and translational efficiency. They proposed a model based on ribosome demand to explain the positive correlation between them, which is new as far as I realize. Nevertheless, I found the evidence of the main idea that it is the ribosome demand generating this correlation is weak. Below are my major and minor comments.

      Thank you for your helpful suggestions and comments. We note that the direct experimental support required for the ribosome demand model would need experimental setups that are beyond the currently available methodologies. We address the individual comments below. 

      Major comments: 

      (1) Besides a hypothetical numerical model, I did not find any direct experimental evidence supporting the ribosome demand model. Therefore, I think the main conclusions of this work are a bit overstated.

      Direct experimental evidence of the hypothesis would require generation of ribosome occupancy maps of mRNA molecules of specific genes at the level of single cells and at time intervals that closely match the burst frequency of the genes. This is beyond the currently available methodologies. However, there are other evidences that support our model. For example, earlier work in cell-free systems have showed that constraining cellular resources required for transcription or translation can increase expression heterogeneity (Caveney et al., 2017). In addition, the ribosome demand model had two predictions both of which could be validated through modelling as well as from our experiments. 

      To further investigate whether removing ribosome demand from our model could eliminate the positive mean-noise correlation for a gene, we have now tested two additional sets of models where we decoupled the translation initiation rate (TLinit) from the ribosome traversal speed (V). In the first model, we changed the mean protein expression by changing the translation initiation rate but keeping the ribosome traversal speed constant. Thus, in this scenario, ribosome demand varied according to the variation in the translation initiation rate. As expected, the positive correlation between mean expression and protein noise was maintained in this condition (Fig. 5B). In the second model, we changed the mean expression by changing the ribosome traversal speed but keeping the translation initiation rate (and therefore, the ribosome demand) constant. In this situation, the relationship between mean expression and protein noise turned negative (Fig. 5B and fig. S16). These results further pointed that the ribosome demand was indeed driving the positive relationship between mean expression and protein noise. 

      (2) I found that the enhancement of protein noise due to high translational efficiency is quite mild, as shown in Figure 6A-B, which makes the biological significance of this effect unclear.

      We agree with the reviewer’s comment that the effect of translational efficiency on protein noise may not be as substantial as the effect of transcriptional bursting, but it has been observed in studies across bacteria, yeast, and Arabidopsis (Ozbudak et al., 2003; Blake et al., 2003; Wu et al., 2022). In addition, the relationship between translational efficiency and protein noise is in contrast with the inverse relationship observed between mean expression and noise (Newman et al., 2006; Silander et al., 2012). We also note that the goal of the manuscript was not to evaluate the relative strength of these associations, but to understand the molecular basis of the influence of translational efficiency on protein noise. 

      (3) The captions for most of the figures are short and do not provide much explanation, making the figures difficult to read.

      We have revised the figure captions to include more details as per the reviewer’s suggestion. 

      (4)  It would be helpful if the authors could define the meanings of noise (e.g., coefficient of variation?) and translational efficiency in the very beginning to avoid any confusion. It is also unclear to me whether the noise from the experimental data is defined according to protein numbers or concentrations, which is presumably important since budding yeasts are growing cells. 

      For all published datasets where we had measurements from many genes/promoters, we used the measures of adjusted noise (for mRNA noise) and Distance-tomedian (DM, for protein noise). These measures of noise are corrected mean-dependence of expression noise. For simulations, which we performed for a single gene, and for experiments that we performed on a limited number of promoters, we used the measure of coefficient of variation (CV) to quantify noise, as calculation of adjusted noise or DM was not possible for a single gene. We now mention this in line 123-124. We used the measure of protein synthesis rate per mRNA as the measure of translational efficiency (Riba et al., 2019; line 100). Alternatively, we also used tRNA adaptation index (tAI) as a measure of translational efficiency, as codon choice could also influence the translation rate per mRNA molecule (Tuller et al., 2010) (line 193). 

      The protein noise was quantified from the signal intensity of GFP tagged proteins (Newman et al., 2006; and our data), which was proportional to protein numbers without considering cell volume. For quantification of noise at the mRNA level, single-cell RNA-seq data was used, which provided mRNA numbers in individual cells.  

      (5) The conclusions from Figures 1D and 1E are not new. For example, the constant protein noise as a function of mean protein expression is a known result of the two-state model of gene expression, e.g., see Equation (4) in Paulsson, Physics of Life Reviews 2005.

      Yes, they may not be new, but we included these results for setting the baseline for comparison with simulation results that appear in the later part of the manuscript where we included translational bursting and ribosome demand in our models. 

      (6) In Figure 4C-D, it is unclear to me how the authors changed the mean protein expression if the translation initiation rate is a function of variation in mRNA number and other random variables.

      The translation initiation rate varied from a basal translation initiation rate depending on the mRNA numbers and other variables. We changed the basal translation initiation rate to alter the mean protein expression levels. We have now elaborated the modelling section to incorporate these details in the revised manuscript (lines 404 to 412). 

      (7) If I understand correctly, the authors somehow changed the translation initiation rate to change the mean protein expression in Figures 4C-D. However, the authors changed the protein sequences in the experimental data of Figure 6. I am not sure if the comparison between simulations and experimental data is appropriate.

      It is an important observation. Even though we changed the basal translation initiation rate to change the mean expression (Fig. 4C-D), we noted in the description of the model that the changes in the translation initiation rate were also linked to changes in the translation elongation rate (Fig. 3D). Thus, an increase in the translation initiation rate was associated with faster ribosome traversal through an mRNA molecule. This has also been observed in an experimental study by Barrington et al. (2023). Therefore, the models can also be expressed in terms of the translation elongation rate or ribosome traversal speed, instead of the translation initiation rate, and this modification will not change the results of the simulations due to interconnectedness of the initiation rate and the elongation rate.  

      Reviewer #2 (Recommendations for the authors):

      Minor comments:

      (1)  The discussion from lines 180 to 182 appears consistent with Figure 1E. It seems that the twostate model can already explain why the genes with high burst frequency and high protein synthesis rate showed a small protein noise. It is unclear to me the purpose of this discussion.

      Yes, the results from Fig. 1E were from stochastic simulations, whereas the results discussed in the lines 191 to 193 (in the revised manuscript) were based on our analysis of experimental data that is shown in Fig. 2D.

      (2)  If I understand correctly, "translational efficiency" is the same as "protein synthesis rate" in this work. It would be helpful if the authors could keep the same notation throughout the paper to avoid confusion.

      The protein synthesis rate per mRNA molecule is the best measure of translational efficiency, and we used the experimental data from Riba et al. (2019) for this purpose (line 99-100). Alternatively, we also used tRNA Adaptation Index (tAI) as a measure of translational efficiency, as the codon choice also influences the rate at which an mRNA molecule is translated (Tuller et al., 2010) (line 192). 

      (3) On line 227, does "higher translation rate" mean "higher translation initiation rate"? The same issues happen in a few places in this paper.

      Corrected now (line 243 in the revised manuscript and throughout the manuscript). 

      (4) The discussion from lines 296 to 301 is unclear. It is not obvious to me how the authors obtained the conclusion that lowering translational efficiency would decrease the protein expression noise.

      High translational efficiency will require more ribosomes and hence, will increase ribosome demand. If ribosome demand is the molecular basis of high expression noise for genes with bursty transcription and high translational efficiency, then we can expect a reduction in ribosome demand and a reduction in noise if we lower the translational efficiency. We have rephrased this section for clarity between the lines 334 and 339 in the revised manuscript.   

      (5)  On line 324, should slower translation mean a shorter distance between neighboring ribosomes? One can imagine the extreme limit in which ribosomes move very slowly so that the mRNA is fully packed with ribosomes. 

      Slower translation or ribosome traversal rate would also lower the translation initiation rate (Barrington et al., 2023). Slower traversal of ribosomes reduces the chances of collision in case of transient slow-down of ribosomes due to occurrence of one or more non-preferred codons. We have now clarified this part in the lines 360 to 369 in the revised manuscript.

      (6) The text from lines 423 to 433 can be put in Methods.

      We have already added this part to the methods section (lines 900 to 910) and now minimize this discussion in the results section. 

      (7)  The discussion from lines 128 to 130 is unclear, and the statement appears to be consistent with the two-state model (see Figure 1E). The meaning of "initial mRNA numbers" is also unclear.

      An earlier study has proposed that essential genes in yeast employs high transcription and low translation strategy for expression, likely to maintain low expression noise in these genes and to prevent detrimental effects of high expression noise (Fraser et al., 2004). However, there has been no direct supportive evidence. Therefore, we were testing whether the differences in mRNA levels and translational efficiency of genes can lead to differences in protein noise through stochastic simulations. The discussion between the lines 130 and 132 in the revised manuscript summarises the results of the simulations. 

      Initial mRNA numbers - mRNA copy numbers that are present in the cell at the start of stochastic simulations. However, we have now changed it to ‘mRNA levels’ in the revised manuscript for clarity (line 131 in the revised manuscript).

      (8)  On line 212, is the translation initiation rate TL_init the same thing as beta_p in Figure 3A?

      βp refers to the rate of protein synthesis, which is influenced by the translational burst kinetics as well as the translation initiation rate, whereas TLinit refers to the translation initiation rate. So, these parameters are related, but are not the same.

    1. Author Response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      In this study, Floedder et al report that dopamine ramps in both Pavlovian and Instrumental conditions are shaped by reward interval statistics. Dopamine ramps are an interesting phenomenon because at first glance they do not represent the classical reward prediction errors associated with dopamine signaling. Instead, they seem somewhat to bridge the gap between tonic and phasic dopamine, with an intense discussion still being held in the field about what is their actual behavioral role. Here, in tests with head-fixed mice, and dopamine being recorded with a genetically encoded fluorescent sensor in the nucleus accumbens, the authors find that dopamine ramps were only present when intertrial intervals were relatively short and the structure of the task (Pavlovian cue or progression in a VR corridor) contained elements that indicated progression towards the reward (e.g., a dynamic cue). The authors show that these findings are well explained by their previously published model of Adjusted Net Contingency of Causal Relation (ANCCR).

      Strengths:

      This descriptive study delineates some fundamental parameters that define dopamine ramps in the studied conditions. The short, objective, and to-the-point format of the manuscript is great and really does a service to potential readers. The authors are very careful with the scope of their conclusions, which is appreciated by this reviewer.

      We thank the reviewer for their overall support of the formatting and scope of the manuscript. 

      Weaknesses:

      The discussion of the results is very limited to the conceptual framework of the authors' preferred model (which the authors do recognize, but it still is a limitation). The correlation analysis presented in panel l of Figure 3 seems unnecessary at best and could be misleading, as it is really driven by the categorical differences between the two conditions that were grouped for this analysis. There are some key aspects of the data and their relationship with each other, the previous literature, and the methods used to collect them, that could have been better discussed and explored.

      We agree with the reviewer that a weakness of the discussion was the limited framing of the results within the ANCCR model. To address this, we have expanded our introduction and discussion sections to provide a more thorough explanation of our model and possible leading alternatives.

      We thank the reviewer for pointing out that Figure 3l may be misleading for readers; we removed this panel from the revised Figure 4.

      We have further addressed the specific concerns raised by the reviewer in their comments to the authors. Indeed, we agree with the reviewer that the original manuscript was narrow in its focus regarding relationships between different aspects of the data. To more thoroughly explore how key variables – including dopamine ramp slope and onset response as well as licking behavior slope – could relate to each other, we have added Extended Data Figure 8. In this figure, we show that no correlations exist between any of these key variables in either dynamic tone condition; it is our hope that this additional analysis highlights the significance of the clear relationship between dopamine ramp slope and ITI duration. 

      Reviewer #2 (Public Review):

      In this manuscript by Floeder et al., the authors report a correlation between ITI duration and the strength of a dopamine ramp occurring in the time between a predictive conditioned stimulus and a subsequent reward. They found this relationship occurring within two different tasks with mice, during both a Pavlovian task as well as an instrumental virtual visual navigation task. Additionally, they observed this relationship only in conditions when using a dynamic predictive stimulus. The authors relate this finding to their previously published model ANCCR in which the time constant of the eligibility trace is proportionate to the reward rate within the task.

      The relationship between ITI duration and the extent of a dopamine ramp which the authors have reported is very intriguing and certainly provides an important constraint for models for dopamine function. As such, these findings are potentially highly impactful to the field. I do have a few questions for the authors which are written below.

      We thank the reviewer for their interest in our findings and belief in their potential to be impactful in the field. 

      (1) I was surprised to see a lack of counterbalance within the Pavlovian design for the order of the long vs short ITI. Ramping of the lick rate does increase from the long-duration ITIs to the short-duration ITI sessions. Although of course, this increase in ramping of the licking across the two conditions is not necessarily a function of learning, it doesn't lend support to the opposite possibility that the timing of the dynamic CS hasn't reached asymptotic learning by the end of the long-duration ITI. The authors do reference papers in which overtraining tends to result in a reduction of ramping, which would argue against this possibility, yet differential learning of the dynamic CS would presumably be required to observe this effect. Do the authors have any evidence that the effect is not due to heightened learning of the timing of the dynamic CS across the experiment?

      We appreciate the reviewer expressing their surprise regarding the lack of counterbalance in our Pavlovian experimental design. We previously did not explicitly do this because the ramps disappeared in the short ITI/fixed tone condition, indicating that their presence is not just a matter of total experience in the task. However, we agree that this is incidental, but not direct evidence. To address this drawback, we repeated the Pavlovian experiment in a new cohort of animals with a revised training order, switching conditions such that the short ITI/dynamic tone (SD) condition preceded the long ITI/dynamic tone (LD) condition (see revised Figure 2a). Despite this change in the training order, the main findings remain consistent: positive dLight slopes (i.e., dopamine ramps) are only observed in the SD condition (Figure 2b-d). 

      We thank the reviewer for raising these questions regarding licking behavior and learning and their relationship with dopamine ramps. Indeed, a closer look at the average licking behavior reveals subtle differences across conditions (Figure 1f and Extended Data Figure 5a). While the average lick rate during the ramp window does not differ across conditions (Extended Data Figure 5c), the ramping of the lick rate during this window is higher for dynamic tone conditions compared to fixed tone conditions (Extended Data Figure 5d). Despite these differences, we still believe that the main comparison between the dopamine slope in the SD vs LD condition remains valid given their similar lick ramping slopes. Furthermore, our primary measure of learning is not lick slope, but anticipatory lick rate during the 1 s trace preceding reward delivery, which is robustly nonzero across cohorts and conditions (Figure 1g and Extended Data Figure 5b). 

      Taken together, we hope that the results from our counterbalanced Pavlovian training and more rigorous analysis of lick behavior across conditions provide sufficient evidence to assuage concerns that the differences in ramping dopamine simply reflect differences in learning. 

      (2) The dopamine response, as measured by dLight, seems to drop after the reward is delivered. This reduction in responding also tends to be observed with electrophysiological recordings of dopamine neurons. It seems possible that during the short ITI sessions, particularly on the shorter ITI duration trials, that dopamine levels may still be reduced from the previous trial at the onset of the CS on the subsequent trial. Perhaps the authors can observe the dynamics of the recovery of the dopamine response following a reward delivery on longer-duration ITIs in order to determine how quickly dopamine is recovering following a reward delivery. Are the trials with very short ITIs occurring within this period that dopamine is recovering from the previous trial? If so, how much of the effect may be due to this effect? It should be noted that the lack of observance of a ramp on the condition of shortduration ITIs with fixed CSs provides a potential control for this effect, yet the extent to which a natural ramp might occur following sucrose deliveries should be investigated.

      We thank the reviewer for highlighting the possibility that ramps may be due to the dopamine response recovery following reward delivery. Given that peak reward dopamine responses tend to be larger in long ITI conditions, however, we felt that it was inappropriate to compare post-reward dopamine recovery times across conditions. Instead, we decided to directly compare the dLight slope 2s before cue onset (“pre-cue window,” a proxy for recovery from previous trial) with the dLight slope during our ramp window from 3 to 8s after cue onset (Extended Data Figure 6a). There were no significant differences in pre-cue dLight slope across conditions (Extended Data Figure 6b); this suggests that the ramping slopes seen in the SD condition, but not other conditions, is not simply due to the natural dopamine recovery response following reward delivery. Furthermore, if the dopamine ramps observed in the SD condition were a continuation of the post-reward dopamine recovery from the previous trial, we would expect to see a positive correlation between the dLight slope before and during the cue. However, there is no such correlation between the dLight slopes in the ramp window vs. pre-cue window in the SD condition (Extended Data Figure 6c-d). We believe that this observation, along with the builtin control of the SF condition mentioned by the reviewer, serves as evidence against the possibility of our ramp results being due to a natural ramp after reward delivery.

      (3) The authors primarily relate the finding of the correlation between the ITI and the slope of the ramp to their ANCCR model by suggesting that shorter time constants of the eligibility trace will result in more precisely timed predictors of reward across discrete periods of the dynamic cue. Based on this prediction, would the change in slope be more gradual, and perhaps be more correlated with a broader cumulative estimate of reward rate than just a single trial?

      To clarify, we do not propose that a smaller eligibility trace time constant results in more precise timing per se. Instead, we believe that the rapid eligibility trace decay from smaller time constants gives greater causal predictive power for later periods in the dynamic cue (see Extended Data Figure 1) since the memory of the earlier periods of the cue is weaker. 

      We appreciate the reviewer’s curiosity regarding the influence of a broader cumulative estimate of reward vs. only the immediately preceding ITI on dopamine ramp slopes. Indeed, in several instrumental tasks (e.g., Krausz et al., Neuron, 2023), recent reward rate modulates the magnitude of dopamine ramps, making this an important variable to investigate. We chose to use linear regression for each mouse separately to analyze the relationship between the trial dopamine slope and the average previous ITI for the past 1 through 10 most recent trials. In the SD condition, as reported in our earlier manuscript, there was a significantly negative dependence of trial dopamine slope with the single previous ITI (i.e., if the previous ITI was long, the next trial tends to have a weaker ramp). This negative dependence, however, only held for a single previous trial; there was no clear relationship between the per-trial dopamine slope and the average of the past 2 through 10 ITIs (Extended Data Figure 7a). For the LD condition, on the other hand, there is no clear relationship between the per-trial dopamine slope and the average previous ITI for any of the past 1 through 10 trials, with one exception: there is a significantly negative dependence of trial dopamine slope with the average ITI of the previous 2 trials (Extended Data Figure 7b). This longer timescale relationship in the LD condition suggests that the adaptation of the eligibility trace time constant is nuanced and depends on the general ITI length. 

      In general, though we reason that the eligibility trace time constant should depend on overall event rates, we do not currently propose a real-time update rule for the eligibility trace time constant depending on recent event rates. Accordingly, we are currently agnostic about the actual time scale of history of recent event rate calculation that mediates the eligibility trace time constant. Our experimental results suggest that when the ITI is generally short for Pavlovian conditioning, the eligibility trace time constant adapts to ITI on a rapid timescale. However, only a small fraction of the variability of this rapid fluctuation is captured by recent ITI history. A more thorough investigation of this real-time update rule would need to be done in the future.

      Reviewer #3 (Public Review):

      Summary:

      Floeder and colleagues measure dopamine signaling in the nucleus accumbens core using fiber photometry of the dLight sensor, in Pavlovian and instrumental tasks in mice. They test some predictions from a recently proposed model (ANCCR) regarding the existence of "ramps" in dopamine that have been seen in some previous research, the characteristics of which remain poorly understood.

      They find that cues signaling a progression toward rewards (akin to a countdown) specifically promote ramping dopamine signaling in the nucleus accumbens core, but only when the intertrial interval just experienced was short. This work is discussed in the context of ongoing theoretical conceptions of dopamine's role in learning.

      Strengths:

      This work is the clearest demonstration to date of concrete training factors that seem to directly impact whether or not dopamine ramps occur. The existence of ramping signals has long been a feature of debates in the dopamine literature and this work adds important context to that. Further, as a practical assessment of the impact of a relatively simple trial structure manipulation on dopamine patterns, this work will be important for guiding future studies. These studies are well done and thoughtfully presented.

      We thank the reviewer for recognizing the context that our study adds to the dopamine literature and the potential for our experiments to guide future work. 

      Weaknesses:

      It remains somewhat unclear what limits are in place on the extent to which an eligibility trace is reflected in dopamine signals. In the current study, a specific set of ITIs was used, and one wonders if the relative comparison of ITI/history variables ("shorter" or "longer") is a factor in how the dopamine signal emerges, in addition to the explicit length ("short" or "long") of the ITI. Another experimental condition, where variable ITIs were intermingled, could perhaps help clarify some remaining questions.

      Though we used ITIs of fixed means, due to the exponential nature of their distribution, we did intermingle ITIs of various durations in both our long and short ITI conditions. The distribution of ITI durations is visualized in Figure 1c for Pavlovian conditioning and Extended Data Figure 9b for VR navigation. 

      The relative comparison between consecutive ITIs was not something we originally explored, so we thank the reviewer for wondering how it impacts the dopamine signal. To investigate this, we quantified both the change in ITI (+ or - Δ ITI for relatively longer or shorter, respectively) and the change in dopamine ramp slope between consecutive trials in the SD condition (Figure 3d). Across each mouse separately, we found a significantly negative relationship between Δ slope and Δ ITI (Figure 3e-f). Also, the average Δ slope was significantly greater for consecutive trials with a Δ ITI below -1 s compared to trials with a Δ ITI above +1 s (Figure 3g). Altogether, these findings suggest that relative comparison of ITIs does correlate with changes in the dopamine signal; a relatively longer ITI tends to have a weaker ramp, which fits in nicely with the expected inverse relationship between ITI and dopamine ramp slope from our ANCCR model.

      In both tasks, cue onset responses are larger, and longer on long ITI trials. One concern is that this larger signal makes seeing a ramp during the cue-reward interval harder, especially with a fluorescence method like photometry. Examining the traces in Figure 1i - in the long, dynamic cue condition the dopamine trace has not returned to baseline at the time of the "ramp" window onset, but the short dynamic trace has. So one wonders if it's possible the overall return to baseline trend in the long dynamic conditions might wash out a ramp.

      This is a good point, and we thank the reviewer for raising it. Certainly, the cue onset response is significantly larger in long ITI conditions (see Figure 1i-j and Figure 4h-j). To avoid any bleed over effect, we intentionally chose ramp window periods during later portions of the trial (in line with work from others e.g., Kim et al., Cell, 2020). While the cue onset dopamine pulse seems to have flatlined by the start of the ramp window period, the dopamine levels clearly remain elevated relative to pre-cue baseline. This type of signal has been observed with fiber photometry in other Pavlovian conditioning paradigms with long cue durations (e.g., Jeong et al., Science, 2022). Because of the persistently elevated dopamine levels, it is certainly possible that a ramping signal during the cue is getting washed out; with the bulk fluorescence photometry technique we employed in this study, this possibility is unfortunately difficult to completely rule out. However, the long ITI/fixed tone (LF) condition could serve as a potential control given the overall similarity in the dopamine signal between the LF and LD conditions: both conditions have large cue onset responses with elevated dopamine throughout the duration of the cue (see Extended Data Figures 2c and 3c). Critically, the LD condition lacks a noticeable ramp despite the dynamic tone providing information on temporal proximity to reward, which is thought to be necessary for dopamine ramps to occur. Importantly, regardless of whether a ramp is masked in the long ITI dynamic condition, most studies investigate such a condition in isolation and would report the absence of dopamine ramps. Thus, at a descriptive level, we believe it remains true that observable dopamine ramps are only present when the ITI is short. 

      Not a weakness of this study, but the current results certainly make one ponder the potential function of cue-reward interval ramps in dopamine (assuming there is a determinable function). In the current data, licking behavior was similar on different trial types, and that is described as specifically not explaining ramp activity.

      We agree that this work naturally raises the question of the function of dopamine ramps. However, selective and precise manipulation of only the dopamine ramps without altering other features such as phasic responses, or inducing dopamine dips, is highly technically challenging at this moment; due to this challenge, we intentionally focused on the conditions that determine the presence or absence of dopamine ramps rather than their function. We agree with the reviewer that studying the specific function of dopamine ramps is an interesting future question. 

      Reviewing Editor:

      The reviewers felt the results are of considerable and broad interest to the neuroscience community, but that the framing in terms of ANCCR undermined the scope of the findings as did the brief nature of the formatting of the manuscript. In addition, the reviewers felt that the relationship between ramp dynamics, behavior, and ITI conditions requires more in-depth analyses. Relatedly, the lack of counterbalancing of the ITI durations was considered to be a drawback and needs to be addressed as it may affect the baseline. Addressing these issues in a satisfactory manner would improve the assessment of the manuscript to important/convincing.

      We truly appreciate the valuable feedback provided on this manuscript by all three reviewers and the reviewing editor. Based on this input, we have significantly revised the manuscript to address the issues brought up by the reviewers. Firstly, we have conducted additional experiments to counterbalance the ITI conditions for Pavlovian conditioning; this strengthened our results by confirming our original findings that ITI duration, rather than training order, is the key variable controlling the presence or absence of dopamine ramps. Secondly, we completed more rigorous analyses to further explore the relationship between dopamine dynamics, animal behavior, and ITI duration; we generally found no significant correlations between these variables, with a notable exception being our main finding between ITI duration and dopamine ramp slope. Finally, we revised and expanded our writing to both explain predictions from our ANCCR model in less technical language and explore how alternative theoretical frameworks could potentially explain our findings. In doing so, we hope that our manuscript is now more accessible and of interest to a broad audience of neuroscience readers.

      Reviewer #1 (Recommendations For The Authors):

      The study could be improved if the authors performed a more detailed comparison of how other theoretical frameworks, beyond ANCCR could account for the observed findings. Also, the correlation analysis presented in the panel I of Figure 3 seems unnecessary and potentially spurious, as the slope of the correlation is clearly mostly driven by the categorical differences between the two ITI conditions, which were combined for the analysis - it's not clear what is the value of this analysis beyond the group comparison presented in the following panel.

      Again, we thank the reviewer for elaborating on their concern regarding Figure 3l – we have removed it from the revised Figure 4. 

      The relationship between ramp dynamics with the behavior and the large differences in cue onset responses between short and long ITI conditions could have been better explored. If I understand correctly the overarching proposal of this and other publications by this group, then the differences in cue responses is determined by the spacing of rewards in a somewhat similar way that the ramps are. So, is there a trial-by-trial correlation between the amplitude of the cue responses and the slope of the ramps? Is there a correlation between any of these two measures with the licking behavior, and if so, does it change with the ITI condition? A more thorough exploration of these relationships would help support the proposal of the primacy of inter-event spacing in determining the different types of dopamine responses in learning.

      There are certainly interesting relationships between dopamine dynamics, behavior, and ITI that we failed to explore in our original manuscript – we appreciate the reviewer bringing them up. We found no correlation between dopamine ramp slope and cue onset response in either the SD or LD condition (Extended Data Fig 8a-b). Moreover, we found no correlation between either of these variables and the trial-by-trial licking behavior (Extended Data Fig 8c-f). Finally, there is no relationship between licking behavior and previous ITI duration (Extended Data Fig 8g-h), suggesting that behavioral differences do not account for differences in the dopamine ramp slope. Together, the lack of significant relationships between these other variables highlights the specific, clear relationship between ITI duration and dopamine ramp slope. 

      Finally, another issue I feel could have been better discussed is how the particular settings of both tasks might be biasing the results. For example, there is an issue to be considered about how the dopamine ramp dynamics reported here, especially the requirement of a dynamic cue for ramps to be present, square with the previous published results by one of the authors - Mohebi et al, Nature, 2019. In that manuscript, rats were executing a bandit task where, to this reviewer's understanding, there was no explicit dynamic cue aside from the standard sensory feedback of the rats moving around in the behavior boxes to approach a nose poke port. Is the idea that this sensory feedback could function as a dynamic cue? If that's the case, then this short-scale, movement-related feedback should also function as a dynamic cue in a freely moving Pavlovian condition, when the animals must also move towards a reward delivery port, right? Therefore, could it be that the experimental "requirement" of a dynamic cue is only present in a head-fixed condition? One could phrase this in a different way to Steelman and potentially further the authors' proposal: perhaps in any slightly more naturalistic setting, the interaction of the animals with their environment always functions as a dynamic cue indicating proximity to reward, and this relationship was experimentally isolated by the use of head fixation (but not explicitly compared with a freely moving condition) in the present study. I think that would be an interesting alternative to consider and discuss, and perhaps explore experimentally at some point.

      We thank the reviewer for raising this important point regarding the influence of our experimental settings on our results. At first glance, it could appear that our results demonstrating the necessity of a dynamic cue for ramps in a head-fixed setting do not fit neatly with other results in a freely moving setup (e.g., Collins et al., Scientific Reports, 2016; Mohebi et al., Nature, 2019). Exactly as the reviewer states though, we believe that sensory feedback from the environment in freely moving preparations serves the same function as a dynamic progression of cues. We have considered the implications of methodological differences between head-fixed and freely moving preparations in the discussion section. 

      Reviewer #2 (Recommendations For The Authors):

      This comment relates indirectly to comment 3, in that the authors intermix theory throughout the manuscript. I think this would be fine if the experiment was framed directly in terms of ANCCR, but the authors specifically mention that this experiment wasn't developed to distinguish between different theories. As such, it seems difficult to assess the scope of the comments regarding theory within the paper because they tend to be specifically related to ANCCR. For instance, the last comment has broad implications of how the ramp might be related to the overall reward rate, an interesting finding that constrains classes of dopamine models rather than evidence just for ANCCR. Perhaps adding a discussion section that allows the authors to focus more on theory would be beneficial for this manuscript.

      We appreciate this suggestion by the reviewer. We have updated both our introduction and discussion sections to elaborate more thoroughly on theory.

      Reviewer #3 (Recommendations For The Authors):

      The paper could potentially benefit from the use of more accessible language to describe the conceptual basis of the work, and the predictions, and a bit of reformatting away from the brief structure with lots of supplemental discussion.

      For example, in the introduction, the line - "Varying the ITI was critical because our theory predicts that the ITI is a variable controlling the eligibility trace time constant, such that a short ITI would produce a small time constant relative to the cue-reward interval (Supplementary Note 1)". As far as I can tell, this is meant to get across the notion that dopamine represents some aspect of the time between rewards - dopamine signals will differ for cues following short vs long intervals between rewards.

      As written, the language of the paper takes a fair bit of parsing, but the notions are actually pretty simple. This is partly due to the brief format the paper is written in, where familiarity with the previous papers describing ANCCR is assumed.

      From a readability standpoint, and the potential impact of the paper on a broad audience, perhaps this could be considered as a point for revision.

      We thank the reviewer for pointing out the drawbacks of our technical language and brief formatting. To address this, we have removed the majority of the supplementary notes and expanded our introduction and discussion sections. In doing so, we hope that the conceptual foundations of this work, and potential alternative theoretical explanations, are accessible and impactful for a broad audience of readers.

    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1 (Public Review):

      Summary:

      This valuable study by Wu and Zhou combined neurophysiological recordings and computational modelling to investigate the neural mechanisms that underpin the interaction between sensory evaluation and action selection. The neurophysiological results suggest non-linear modulation of decision-related LIP activity by action selection, but some further analysis would be helpful in order to understand whether these results can be generalised to LIP circuitry or might be dependent on specific spatial task configurations. The authors present solid computational evidence that this might be due to projections from choice target representations. These results are of interest for neuroscientists investigating decision-making.

      Strengths:

      Wu and Zhou combine awake behaving neurophysiology for a sophisticated, flexible visual-motion discrimination task and a recurrent network model to disentangle the contribution of sensory evaluation and action selection to LIP firing patterns. The correct saccade response direction for preferred motion direction choices is randomly interleaved between contralateral and ipsilateral response targets, which allows the dissociation of perceptual choice from saccade direction.

      The neurophysiological recordings from area LIP indicate non-linear interaction between motion categorisation decisions and saccade choice direction.

      The careful investigation of a recurrent network model suggests that feedback from choice target representations to an earlier sensory evaluation stage might be the source for this non-linear modulation and that it is an important circuit component for behavioural performance.

      The paper presents a possible solution to a central controversy about the role of LIP in perceptual decision-making, but see below.

      Weaknesses:

      The paper presents a possible solution to a central controversy about the role of LIP in perceptual decision-making. However, the authors could be more clear and upfront about their interpretational framework and potential alternative interpretations.

      Centrally, the authors' model and experimental data appears to test only that LIP carries out sensory evaluation in its RFs. The model explicitly parks the representation of choice targets outside the "LIP" module receiving sensory input. The feedback from this separate target representation provides then the non-linear modulation that matches the neurophysiology. However, they ignore the neurophysiological results that LIP neurons can also represent motor planning to a saccade target.

      The neurophysiological results with a modulation of the direction tuning by choice direction (contralateral vs ipsilateral) are intriguing. However, the evaluation of the neurophysiological results are difficult, because some of the necessary information is missing to exclude alternative explanations. It would be good to see the actual distributions and sizes of the RF, which were determined based on visual responses not with a delayed saccade task. There might be for example a simple spatial configuration, for example, RF and preferred choice target in the same (contralateral) hemifield, for which there is an increase in firing. It is a shame that we do not see what these neurons would do if only a choice target would be put in the RF, as has been done in so many previous LIP experiments. The authors exclude also some spatial task configurations (vertical direction decisions), which makes it difficult to judge whether these data and models can be generalised. The whole section is difficult to follow, partly also because it appears to mix reporting results with interpretation (e.g. "feedback").

      The model and its investigation is very interesting and thorough, but given the neurophysiological literature on LIP, it is not clear that the target module would need to be in a separate brain area, but could be local circuitry within LIP between different neuron types.

      Reviewer #2 (Public Review):

      Summary:

      In this manuscript, the authors recorded activity in the posterior parietal cortex (PPC) of monkeys performing a perceptual decision-making task. The monkeys were first shown two choice dots of two different colors. Then, they saw a random dot motion stimulus. They had to learn to categorize the direction of motion as referring to either the right or left dot. However, the rule was based on the color of the dot and not its location. So, the red dot could either be to the right or left, but the rule itself remained the same. It is known from past work that PPC neurons would code the learned categorization. Here, the authors showed that the categorization signal depended on whether the executed saccade was in the same hemifield as the recorded PPC neuron or in the opposite one. That is, if a neuron categorized the two motion directions such that it responded stronger for one than the other, then this differential motion direction coding effect was amplified if the subsequent choice saccade was in the same hemifield. The authors then built a computational RNN to replicate the results and make further tests by simulated "lesions".

      Strengths:

      Linking the results to RNN simulations and simulated lesions.

      Weaknesses:

      Potential interpretational issues due to a lack of evidence on what happens at the time of the saccades.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) The neurophysiological results with a modulation of the direction tuning by choice direction are intriguing. However, the evaluation of the neurophysiological results are difficult because some of the necessary information is missing to exclude alternative explanations.

      We thank the reviewer for the helpful comments. We have addressed this point in detail in the following response.

      (a) Clearly state in the results how the response field "RF", where the stimulus was placed, was mapped. The methods give as "MGS"" (i.e., spatial selectivity during stimulus presentation and delay)" task rather than the standard delayed saccade. And also "while for those neurons which did not show a clear RF during the MGS task, we presented motion stimuli in the positions (always in the visual field contralateral to the recorded hemisphere) in which neurons exhibited the strongest response to the motion stimuli." All this sounds more like a sensory receptive field not an eye movement response filed". What was the exact task and criterion?

      We agree with the reviewer that the original description of how we mapped the response fields (RFs) of LIP neurons lacked sufficient detail. In this study, we used the memory-guided saccade (MGS) task to map the RFs of all isolated LIP neurons. Both MGS and delayed saccade tasks are commonly used to map a neuron's response field in previous decision-making studies.

      In the MGS task, monkeys initially fixate on the center of the screen. Subsequently, a dot randomly flashes at one of the eight possible locations surrounding the fixation dot with an eccentricity of 8 degree, requiring the monkeys to memorize the location of the flashed dot. After a delay of 1000 ms, the monkeys are instructed to saccade to the remembered location once the fixation dot disappears. The MGS task is a standard behavior task for mapping visual, memory, and motor RFs, particularly in brain regions involved in eye movement planning and control, such as LIP, FEF, and the superior colliculus.

      We believe the reviewer's confusion may stem from whether we mapped the visual, memory, or motor RFs of LIP neurons in the current study, as these "RFs" are not always consistent across individual neurons. In our study, we primarily mapped the visual and memory RFs of each LIP neuron by analyzing their activity during both the target presentation and delay periods. To focus on sensory evaluation-related activity, we presented the visual motion stimulus within the visual-memory RF of each neuron. For neurons that did not show a significant visual-memory RF, we used a different approach: we tested the neurons with the main task by altering the spatial configuration of the task stimuli to identify the visual field that elicited the strongest response when the motion stimulus was presented within it. This approach was used to guide the placement of the stimulus during the recording sessions.

      Following the reviewer’s suggestion, we have added the following clarification to the results section to better describe how we mapped the RF of LIP neurons:

      ‘We used the memory-guided saccade (MGS) task, which is commonly employed in LIP studies, to map the receptive fields (RFs) of all isolated LIP neurons. Specifically, we mapped both the visual and memory RFs of each neuron by analyzing their activity during the target presentation and delay periods of the MGS task (see Methods).’.

      (b) l.85 / l126: What do you mean by "orthogonal to the axis of the neural RF" - was the RF shape asymmetric, if so how did you determine this? OR do you mean the motion direction axis? Please explain.

      We realized that the original description of this point may have been unclear and could lead to confusion. The axis of the neural RF refers to the line connecting the center of the RF (which coincides with the center of the motion stimulus) to the fixation dot. We have revised this sentence in the revised manuscript as follows:

      ‘To examine the neural activity related to the evaluation of stimulus motion, we presented the motion stimuli within the RF of each neuron, while positioning the saccade targets at locations orthogonal to the line connecting the center of the RF (which also marks the center of the motion stimulus) and the fixation dot.’

      (c) Behavioural task. Figure 1 - are these example session? Please state this clearly. Can you show the examples (psychometric function and reaction times) separated for trials where correct choice direction aligning with the motion preference (within 90 degrees) and those that did not?

      Figure 1 shows the averaged behavioral results from all recording sessions. We have added this detail in the revised legend of Figure 1.

      We are uncertain about the reviewer’s reference to the “correct choice direction aligning with the motion preference,” as the term “motion preference” is specific to the neuron response, which are different for different neurons recorded simultaneously using multichannel recording probe.

      Nonetheless, following the reviewer’s suggestion, we grouped the trials in each recording session into two groups based on the relationship between the saccade direction and the preferred motion direction of the identified LIP neuron during one example single-channel recording. Both the RT and the performance accuracy during one example session were shown in the following figure.

      Author response image 1.

      Give also the performance averaged across all sites included in this study and range.<br /> If performance does differ for different configuration, please, show that the main modulatory effect does not align with this distinction.

      To clarify this point, we have plotted performance accuracy and RTs for horizontal, oblique, and vertical target position configurations separately, which are shown for both monkeys in the following figures. We did not observe any systematic influences of task configurations on the monkeys' performance accuracy. While the RTs did differ across different configurations, we believe these differences are likely attributable to several factors, such as varying levels of familiarity introduced by our training process and the intrinsic RT difference between different saccade directions.

      Author response image 2.

      (d) Show the distribution of RF positions and the direction preferences for the recording sites included in the quantitative analysis of this study. (And if available, separately those excluded).

      Following the reviewer’s suggestion, we have plotted the centers of the RFs for all neurons with identifiable RFs, categorizing them by their preferred motion directions. To determine each neuron’s RF, we analyzed the average firing rates from both the target presentation and delay periods during each trial of the memory-guided saccade (MGS) task. The RF centers of neurons with significant RFs were determined through a two-step process. First, we selected neurons that exhibited significant RFs in the MGS based on the following criteria: 1) there must be a significant activity difference between the eight target locations, and 2) the mean activity during the selected periods should be significantly greater than the baseline activity during the fixation period. Second, we fitted the activity data from the eight conditions to a Gaussian distribution, using the center of the fitted distribution as the RF center. A significant proportion of neurons from both monkeys that exhibited significant response to motion stimuli did not exhibited notable RFs based our current method. The following figures show the distributions of RFs and motion direction preference for all LIP neurons with identifiable RFs separately for each monkey. Since this is not the focus of the current study, we are not planning to include this result in the revised manuscript.

      Author response image 3.

      (e) Following on from d), was there a systematic relationship between RF position or direction preference and modulation by choice direction? For instance could the responses be simply explained by an increase in modulation for choices into the same (contralateral) hemifield as where the stimulus was placed?

      The reviewer raised a good point. To address whether there was a systematic relationship between RF position or direction preference and modulation by choice direction, we calculated a modulation index for each neuron to quantify the influence of saccade direction on neuronal responses to motion stimuli. We then plotted the modulation index against the RF position for each LIP neuron, shown as following:

      Author response image 4.

      As shown in the figures above, neurons with RFs farther from the horizontal meridian were more likely to exhibit stronger modulation by the saccade direction, while neurons with RFs closer to the horizontal meridian showed inconsistent and weaker modulation. This is because when the RFs was on the horizontal meridian, saccade directions were aligned with the vertical axis (with no contralateral or ipsilateral directions). This is consistent with the finding in Figure S3—no significant differences in direction selectivity between the CT and IT conditions in the data sessions where the saccade targets were aligned close to the vertical direction. Since fewer than half of the identified neurons showed clear receptive fields using our method, the figure above did not include all the neurons used in the analysis in the manuscript. Therefore, we chose not to include this figure in the revised manuscript.

      Additionally, we quantified the relationship between the modulation index and direction preference for neurons in sessions where the monkeys’ saccades were aligned to either horizontal or oblique directions. As shown in the following figure, no systematic relationship was found between direction preference and modulation by the choice direction for LIP neurons at the population level.

      Author response image 5.

      We have added this result as Figure S 2 in the revised manuscript.

      Notably, the observed modulation of saccade direction on LIP neurons’ response to motion stimuli cannot be simply explained by saccade direction selectivity. We presented two more evidence to rule out such possibility in the original manuscript. First, the modulation effect we observed was nonlinear; specifically, the firing rate of neurons increased for the preferred motion direction but decreased for the non-preferred motion direction (Figure 2i and Figure S1A-D). This phenomenon is unlikely to be attributed to a linear gain modulation driven by saccade directions. Second, we plotted the averaged neural activity for contralateral and ipsilateral saccade directions separately, and found that LIP neurons showed similar levels of activity between two saccade directions (revised Figure 2L).

      Additionally, we added a paragraph in the Methods section to describe the way we calculated modulation index as follows:

      “We have calculated a modulation index for each neuron to reflect the influence of saccade direction on neuron’s response to visual stimuli. The modulation index is calculated as:

      where represents the average firing rate from 50ms to 250ms after sample onset for all contralateral saccade trails with a neuron’s preferred moving direction of visual stimuli. The naming conventions are the same for , , and . An MI value between 0 and 1 indicate higher modulation in contralateral saccade trials, and an MI value between -1 and 0 indicates higher modulation in ipsilateral saccade trials.”

      Please split Figures 2G,H,I J,K, by whether the RF was located contralaterally or ipsilaterally. If there are only a small number of ipsilateral RFs, please show these examples, perhaps in an appendix.

      This is a reasonable suggestion; however, it is not applicable to our study. Among all the neurons included in our analysis, only one neuron from each monkey exhibited ipsilateral receptive fields (RFs). Therefore, we believe it may not be necessary to plot the result for this outlier.

      (f) Were the choice targets always equi-distant from the stimulus and at what distance was this? Please give quantitative details in methods.

      The review was correct that the choice targets were always equidistant form the stimulus. The distance between the motion stimulus and the target was typically 12-15 degree. We have added the details in the revised Methods section as follows:

      ‘Therefore, the two saccade targets were equidistant from the stimulus, with the distance typically ranging from 12 to 15 degrees.

      (2) For Figure 3E, how do you explain that there is an up regulation of for contralateral choices before the stimulus onset, i.e. before the animal can make a decision? Is this difference larger for error trials?

      This is a good question, which we have attempted to clarify in the revised manuscript. We believe that the observed upregulation in neural activity for contralateral choices may reflect the monkeys’ internal choice bias or expectation (choice between two motion directions) prior to stimulus presentation, which could influence their subsequent decisions. In Figure 3E, we calculated the r-choice to assess the correlation between the neuron’s direction selectivity and the monkeys’ decisions on motion stimuli, separately for contralateral and ipsilateral choice conditions. The increased r-decision during the pre-stimulus period indicates stronger neural activity for trials in which the monkeys later reported that the upcoming stimulus was in the preferred direction, and weaker activity for trials where the stimulus was judged to be in the non-preferred direction. This correlation was more pronounced for contralateral choices than for ipsilateral ones. It is important to note that while the monkeys cannot predict the upcoming stimulus direction with greater-than-chance accuracy, these results suggest that pre-stimulus neural activity in LIP is correlated with the monkeys’ eventual decision for that trial. Furthermore, LIP neural activity was more strongly correlated with the monkeys’ decisions in the contralateral choice condition compared to the ipsilateral one.

      Additionally, we clarify that the r-decision was calculated using both correct and error trials. When comparing Figure 2J with Figure 2K, the correlation between neural activity and the monkeys’ upcoming decision during the pre-stimulus period was most prominent in low- and zero-coherence trials, where the monkeys either made more errors or based decisions on guesswork. We infer that the monkeys' confidence in these decisions was likely lower compared to high-coherence trials. Thus, the decision process appears to be influenced by pre-stimulus neural activity, particularly in low-coherence and zero-coherence trials.

      Although it is unclear precisely what covert process this pre-stimulus activity reflects, similar patterns of choice-predictive pre-stimulus activity have been observed in LIP and other brain areas (Shadlen, M.N. and Newsome,T.W., 2001; Coe, B., at al. 2002; Baso, M.A. and Wurtz, R.H., 1998; Z. M. Williams at al. 2003). We have clarified this point in the revised manuscript, including a revision of the relevant sentence in the Results section for clarity, shown as follows:

      “Furthermore, we used partial correlation analysis to examine decision- and stimulus-related components of DS (i.e., r-decision and r-stimulus, Figure 3E and 3F) using all four coherence levels. The decision-related component of LIP DS was significantly greater in the CT condition than in the IT condition (Figure 3E; nested ANOVA: P = 1.07e-6, F= 25.72), and this difference emerged even before motion stimulus onset. This suggests that the LIP DS was more closely correlated with monkeys’ decisions in the CT condition than in the IT condition. The upregulation in r-decision for contralateral choices may reflect the monkeys’ internal choice bias or expectation (choice between two motion directions) prior to stimulus presentation, which could influence their subsequent decisions more in the CT condition”

      (3) Figure 2K: what is the very large condition-independent contribution? It almost seems as most of what these neurons code for is neither saccade or motion related.

      The condition-independent contribution is the time-dependent component that is unrelated to saccade, motion, or their interaction. Our findings are consistent with previous methodological studies, where this time-dependent component was shown to account for a significant portion of the variance in population activity (Kobak, D. et al., 2016)

      (4) Abstract:

      a) "We found that the PPC activity related to monkeys' abstract decisions about visual stimuli was nonlinearly modulated by monkeys' following saccade choices directing outside each neuron's response field."

      This sentence is not clear/precise in two regards:

      Should "directing" be "directed"?

      Also, it is not just saccades directed outside the RF, but towards the contralateral hemifield.

      We thank the reviewer for the suggestion. We agree that ‘directing’ should be ‘directed’ and revised it accordingly. However, we do not believe that ‘directed outside each neuron's response field’ should be replaced with “towards the contralateral hemifield”. There are two major reasons. First, the modulation effect was identified as the difference between contralateral and ipsilateral saccade directions. We cannot conclude that the modulation mainly happened in the contralateral saccade direction. Second, we used ‘directed outside each neuron's response field’ to emphasize that this modulation cannot be simply explained by saccade direction selectivity, whereas ‘towards the contralateral hemifield’ cannot fulfill this purpose.

      (b) " Recurrent neural network modeling indicated that the feedback connections, matching the learned stimuli-response associations during the task, mediated such feedback modulation."

      - should be "that feedback connection .... might mediate". A model can only ever give a possible explanation.

      Thanks for the help on the writing again! We have revised this sentence as following: “Recurrent neural network modeling indicated that the feedback connections, matching the learned stimuli-response associations during the task, might mediate such feedback modulation.”

      (c) "thereby increasing the consistency of flexible decisions." I am not sure what is really meant by increasing the consistency of flexible decisions? More correct or more the same?

      We apologize for the confusion. In the manuscript, "decision consistency" refers to the degree of agreement in the model's decisions under specific conditions. A higher decision consistency indicates that the model is more likely to produce the same choice when encountering encounters a stimulus in that condition. We have incorporated your suggestion and revise this sentence as “thereby increasing the reliability of flexible decisions”. We also clarified the definition of consistency in the main text as follows:

      “These disrupted patterns of saccade DS observed in the target module following projection-specific inactivation aligned with the decreased decision consistency of RNNs, where decision consistency reflects the degree of agreement in the model's choices under specific task conditions. This suggests a diminished reliance on sensory input and an increased dependence on internal noise in the decision-making process.”.

      (5) Results: headers should be changed to reflect the actual results, not the interpretation:

      "Nonlinear feedback modulation of saccade choice on visual motion selectivity in LIP"

      "Feedback modulation specifically impacted the decision-correlated activity in LIP"

      These first parts of the results describe neurophysiological modulations of LIP activity, the source cannot be known from the presented data alone. I thought that this feedback is suggested by the modelling results in the last part of the results. It is confusing to the reader that the titles already refer to the source of the modulation as "feedback". The titles should more accurelty describe what is found, not pre-judge the interpretation.

      We thank the reviewer for those valuable suggestions. We have updated the subtitles to: “Nonlinear modulation of saccade choice on visual motion selectivity in LIP” and “Decision-correlated but not stimulus-correlated activity was modulated in LIP.”

      (6) page 8, l366-380. Can you link the statements more directly to panels in Figure 6. For Figure 6H-K, it needs to be clarified that the headers for 6D-G also apply to H-K.

      ­We have added headers for Figure 6H-K in the revised version, and revised the corresponding results section as follows.

      ‘We further examined how the energy landscape in the 1-D subspace changed in relation to task difficulty (motion coherence). Consistent with prior findings, trials with lower decision consistency (trials using lower motion coherence) exhibited shallower attractor basins at the time of decision for all types of RNNs (Fig. 6H-K). However, both the depth and the positional separation of attractor basins in the network dynamics significantly decreased for all non-zero motion coherence levels after the ablation of all feedback connections (comparing Figure 6I with Figure 6H; P(depth) = 5.20e-25, F = 122.80; P(position) = 1.82e-27, F = 137.75; two-way ANOVA). Notably, this reduction in basin depth and separation was more pronounced in the specific group compared to the nonspecific groups after ablating the feedback connections (comparing Figure 6J with Figure 6K; P(depth) = 2.65e-13, F =57.35; P(position) = 3.73e-14, F = 61.79; two-way ANOVA). These results might underlie the computational mechanisms that explain the observed reduction in the decision consistency of RNNs following projection-specific inactivation: the shallower and closer attractor basins after ablating feedback connections resulted in less consistent decisions. This happened because the variability in neural activity made it more likely for population activity to stochastically shift out of the shallower basins and into nearby alternative ones.’

      (7) line 556-557: Please provide a reference or data for the assertion that nearby recording sites in LIP (100 microns apart) have similar RFs.

      The reviewer raised an interesting question that we are unable to address in depth with the current data, as we lack information on the specific cortical location for each recording session. In the original manuscript, we suggested that nearby recording sites in LIP have similar receptive fields (RFs), based on both our own experience with LIP recordings and previous studies. Specifically, we observed that neurons recorded within a single penetration using a single-channel electrode typically exhibited similar RFs. Similarly, the majority of neurons recorded from the same multichannel linear probe within a single session also showed comparable RFs. Additionally, several studies (both electrophysiological and fMRI) have reported topographic organization of RFs in LIP (Gaurav H. Patel et al., 2010; S. Ben Hamed et al., 2001; Gene J. Blatt et al., 1990).

      (8) Line 568, Methods: a response criterion of a maximum firing rate of 2 spikes/s seems very low, especially for LIP. How do the results change if this lifted to something more realistic like 5 spikes/s or 10 spikes/s?

      We chose this criterion to ensure we included as many neurons as possible in our analysis. To further clarify, we have plotted the distribution of maximum firing rates across all neurons. Based on our findings, relaxing this criterion is unlikely to affect the results, as the majority of neurons exhibit maximum firing rates well above 5 spikes/s, and many exceed 10 spikes/s. We hope this explanation addresses the concern.

      Author response image 6.

      Reviewer #2 (Recommendations For The Authors):

      In this manuscript, the authors recorded activity in the posterior parietal cortex (PPC) of monkeys performing a perceptual decision-making task. The monkeys were first shown two choice dots of two different colors. Then, they saw a random dot motion stimulus. They had to learn to categorize the direction of motion as referring to either the right or left dot. However, the rule was based on the color of the dot and not its location. So, the red dot could either be to the right or left, but the rule itself remained the same. It is known from past work that PPC neurons would code the learned categorization. Here, the authors showed that the categorization signal depended on whether the executed saccade was in the same hemifield as the recorded PPC neuron or in the opposite one. That is, if a neuron categorized the two motion directions such that it responded stronger for one than the other, then this differential motion direction coding effect was amplified if the subsequent choice saccade was in the same hemifield. The authors then built a computational RNN to replicate the results and make further tests by simulated "lesions".

      The data are generally interesting, and the manuscript is generally well written (but see some specific comments below on where I was confused). However, I'm still not sure about the conclusions. The way the experiment is setup, the "contra" saccade target is essentially in the same hemifield as the motion patch stimulus. Given that the RF's can be quite large, isn't it important to try to check whether the saccade itself contributed to the effects? i.e. if the RF is on the left side, and the "contra" saccade is to the left, then even if it is orthogonal to the location of the stimulus motion patch itself, couldn't the saccade still be part of a residual edge of the RF? This could potentially contribute to elevating the firing rate on the preferred motion direction trials. I think it would help to align the data on saccade onset to see what happens. It would also help to have fully mapped the neurons' movement fields by asking the monkeys to generate saccades to all screen locations in the monitor. The authors mention briefly that they used a memory-guided saccade task to map RF's, but it is also important to map with a visual target. And, in any case, it would be important to show the mapping results aligned on saccade onset.

      Another comment is that the authors might want to mention this other recent related paper by the Pack group: https://www.biorxiv.org/content/10.1101/2023.08.03.551852v2.full.pdf

      We thank the reviewer for the comments and realized that we did not explain our results clearly in the original manuscript. We agree with the reviewer that saccade direction selectivity might be a confounding factor for the modulation of the saccade choice direction onto LIP neurons’ activity responded to visual motion stimuli. Because the RFs of LIP neurons might be large and the saccade target might be presented within the edge of the RFs. However, we believe that the observed modulation of saccade direction on LIP neurons’ response to motion stimuli cannot be simply explained by saccade direction selectivity. We presented several pieces of evidence to rule out such possibility. First, the modulation effect we observed was not linear; specifically, the firing rate of neurons increased for the preferred motion direction but decreased for the non-preferred motion direction (Figure 2i and Figure S1A-D). This phenomenon is unlikely to be attributed to a linear gain modulation driven by saccade directions. Second, we plotted the averaged neural activity for contralateral and ipsilateral saccade directions separately, aligned the activity to either motion stimulus onset or saccade onset, and found that LIP neurons showed similar levels of activity between the contralateral and ipsilateral directions (revised Figure 2L), which is not consistent with obvious saccade direction selectivity.

      To better control for this confound, we have added figures plotting the mean neural activity aligned to saccade onset for both contralateral and ipsilateral saccades, which are now included in the revised main Figure 2. These figures are presented in the detailed response below. Additionally, we have revised the corresponding results section to clarify our points, as outlined below:

      “Figure 2A-2F shows three example LIP neurons that exhibited significant motion coherence correlated DS. Surprisingly, LIP neurons showed greater DS in the CT condition than in the IT condition, even though the same motion stimuli were used in the same spatial location for both conditions. The averaged population activity showed this DS difference between CT and IT conditions for all four coherence levels (Figure 2G, 2H). During presentation of their preferred motion direction, LIP neurons showed significantly elevated activity in the CT relative to the IT at all coherence levels (Figure S1A, S1B, nested ANOVA: P(high) = 0.0326, F = 4.65; P(medium) = 0.0088, 142 F = 7.03; P(low) = 0.0076, F = 7.32; P(zero) = 0.0124, F = 6.4), and a trend toward lower activity to the nonpreferred direction for CT vs. IT (Figure S1C, S1D, nested ANOVA: P(high) = 0.0994, F = 2.75; P(medium) = 0.0649, F = 3.12; P(low) = 0.0311, F = 4.73; P(zero) = 0.0273, F = 4.96). Most of the LIP neurons (48 of 83) showed such opposing trends in activity modulation between the preferred and nonpreferred directions (Figure 2I). These results indicated a nonlinear modulation of saccade choice on motion DS in LIP, aligned precisely with the response property of each neuron. This is unlikely to be driven by a linear gain modulation of saccade direction selectivity. Receiver operating characteristic (ROC) analysis further confirmed significantly greater motion DS in the CT condition than in the IT condition (Figure 2J 148 and 2K; nested ANOVA: P(high) = 5.0e-4, F= 12.44; P(medium) = 9.53e-6, F = 20.91; P(low) = 9.33e-7, F 149 = 26.03; P(zero) = 2.56e-8, F= 34.3). Such DS differences were observed even before stimulus onset. Moreover, LIP neurons exhibited similar levels of mean activity between different saccade directions (CT vs. IT) before monkeys’ saccade choice (Figure 2L), further supporting that saccade direction selectivity did not significantly contribute to the observed modulation of LIP neurons’ responses to motion stimuli.

      We also thank the reviewer for pointing out the missing of this relevant study, we have added the suggested refence in the revised discussion section as follows:

      ‘A recent study demonstrated that neurons in the middle temporal area responded more strongly to motion stimuli when monkeys saccaded toward their RFs in a standard decision task with a fixed mapping between motion stimuli and saccade directions. This modulation emerged through the training process and contributed causally to the monkeys' following saccade choices. Consistently, we found that the response of LIP neurons to motion stimuli was more strongly correlated with the monkeys' decisions in the CT condition (saccades toward RFs) than in the IT condition, in a more flexible decision task. Together, these results suggest that the modulation of action selection on sensory processing may be a general process in perceptual decision-making. However, the observed modulation of saccade direction on LIP neurons' responses to motion stimuli cannot be simply explained by saccade direction selectivity. Several lines of evidence argue against this possibility. First, the modulation effect was nonlinear; specifically, neuronal firing rates increased for preferred motion directions but decreased for non-preferred directions (Figure 2I and Figure S1). This pattern is unlikely to be driven by a linear gain modulation based on saccade directions. Second, we found that LIP neurons exhibited similar levels of activity in both the CT and IT conditions (Figure 2L), which is inconsistent with the presence of clear saccade direction selectivity.

      Some more specific comments are below:

      - I had a bit of a hard time with the abstract. It does not appear to be crystal clear to me, and it is the first thing that I am reading after the title. For example, if there is a claim about both perceptual decision-making and later target selection, then I feel that the task should be explained a bit more clearly than saying "flexible decision" task. Also, "..modulated by monkeys' following saccade choices directing outside each neuron's response field" was hard to read. It needs to be rewritten. Maybe just say "...modulated by the subsequent eye movement choices, even when these eye movement choices always directed the eyes away from the recorded neuron's response field". Also, I don't fully understand what "selectivity-specific feedback" means. Then, the concept of "consistency" in flexible decisions is brought up, again without much context. The above are examples of why I had a hard time with the abstract.

      We realize that our original statement may have been unclear and potentially caused confusion for the readers. Following the reviewer’s suggestions, we have revised the abstract as follows:

      ‘Neural activity in the primate brain correlates with both sensory evaluation and action selection aspects of decision-making. However, the intricate interaction between these distinct neural processes and their impact on decision behaviors remains unexplored. Here, we examined the interplay of these decision processes in posterior parietal cortex (PPC) when monkeys performed a flexible decision task, in which they chose between two color targets based on a visual motion stimulus. We found that the PPC activity related to monkeys’ abstract decisions about visual stimuli was nonlinearly modulated by their subsequent saccade choices, which were directed outside each neuron’s response field. Recurrent neural network modeling indicated that the feedback connections, matching the learned stimuli-response associations during the task, might mediate such feedback modulation. Further analysis on network dynamics revealed that selectivity-specific feedback connectivity intensified the attractor basins of population activity underlying saccade choices, thereby increasing the reliability of flexible decisions. These results highlight an iterative computation between different decision processes, mediated primarily by precise feedback connectivity, contributing to the optimization of flexible decision-making.’

      Specifically, selectivity-specific feedback refers to the feedback connections with positive or negative weights between selectivity-matched and selectivity-nonmatched unit pairs, respectively.

      Regarding "decision consistency," we define it as the degree to which the model’s decisions remain congruent under specific conditions. A higher level of decision consistency indicates that the model is more likely to produce the same choice each time it is presented with a stimulus under those conditions, in another words, decision reliability. We have revised the corresponding results section to make these concepts clearer.

      - Line 69: I'm not fully sure, but I think that some people might suggest that superior colliculus is also involved in the sensory aspect of the evaluation. But, I guess the sentence itself is correct as you write it. So, I don't think anyone should argue with it. However, if someone does argue with it, then they would flag the next sentence, since if the colliculus does both, then do the sensory and motor parts really employ distinct neural processes? Anyway, I think this is very minor.

      This is an interesting point. We have also noticed a recent study that demonstrates that the superior colliculus is causally involved in the sensory aspect of decision-making, specifically in visual categorization. However, the study also distinguishes between neural activity related to categorical decisions and that related to saccade planning. This suggests that the sensory and motor aspects of decision-making likely involve distinct neural processing, even within the same brain region—potentially reflecting separate populations of neurons. Therefore, we stand by our statement in the ‘next sentence’.

      - Line 79-80: you might want to look at this work because I feel that it is relevant to cite here: https://www.biorxiv.org/content/10.1101/2023.08.03.551852v2

      We have discussed this reference in the revised discussion section of the manuscript, please refer to the above response.

      - For a result like that shown in Fig. 2, I feel that it is important to show RF mapping with a saccade task alone. i.e. for the same neurons, have a monkey make a delayed visually guided saccade task to all possible locations on the display, and demonstrate that there is no modulation by saccades to the targets. Otherwise, the result in Fig. 2 could reflect first an onset response by a motion, and then the saccade-related response that would happen anyway, even without the decision task. So, I feel that now, it is not entirely clear whether the result reflects this so-called feedback modulation, or whether simply planning the saccade to the target itself activates the neurons. With large RF's, this is a distinct possibility in my opinion.

      - Line 174: this would also be predicted if the neuron's were responding based on the saccade target plan independent of the motion stimulus

      - On a related note, I would recommend plotting all data also aligned on saccade onset. This can help establish what the cause of the effects described is

      We understand the reviewer’s concern that the modulation might be related to saccade planning, and we acknowledge that the original manuscript might not adequately address this potential confound. Unfortunately, we did not map the LIP neurons' receptive fields (RFs) using a saccade-only task. However, as mentioned earlier, we believe that the modulation of LIP neurons' responses to motion stimuli based on saccade choice direction cannot be simply attributed to saccade direction selectivity. Several lines of evidence support this conclusion. First, the modulation we observed was nonlinear: the firing rate of neurons increased for the preferred motion direction but decreased for the non-preferred motion direction (Figure 2i and Figure S1A-D). This pattern is inconsistent with a simple linear gain modulation driven by saccade direction selectivity. Second, we directly compared LIP neuronal activity for contralateral and ipsilateral target conditions, and found no significant differences between the two. This suggests that saccade direction selectivity is unlikely to be the primary contributor to the observed modulation. In the revised figure, we added a plot (Figure 2L) that aligns neural activity to saccade onset, in addition to the original alignment to motion stimulus onset (Figure S1E). This new analysis further supports our interpretation.

      Author response image 7.

      - Even when reading the simulation results, I'm still not 100% sure I understand what is meant by this idea of "consistency" of flexible decision-making

      We have addressed this issue in a previous comment and please refer to the response above.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      Summary: 

      Early and accurate diagnosis is critical to treating N. fowleri infections, which often lead to death within 2 weeks of exposure. Current methods-sampling cerebrospinal fluid are invasive, slow, and sometimes unreliable. Therefore, there is a need for a new diagnostic method. Russell et al. address this need by identifying small RNAs secreted by Naegleria fowleri (Figure 1) that are detectable by RT-qPCR in multiple biological fluids including blood and urine. SmallRNA-1 and smallRNA-2 were detectable in plasma samples of mice experimentally infected with 6 different N. fowleri strains, and were not detected in uninfected mouse or human samples (Figure 4). Further, smallRNA-1 is detectable in the urine of experimentally infected mice as early as 24 hours post-infection (Figure 5). The study culminates with testing human samples (obtained from the CDC) from patients with confirmed N. fowleri infections; smallRNA-1 was detectable in cerebrospinal fluid in 6 out of 6 samples (Figure 6B), and in whole blood from 2 out of 2 samples (Figure 6C). These results suggest that smallRNA-1 could be a valuable diagnostic marker for N. fowleri infection, detectable in cerebrospinal fluid, blood, or potentially urine. 

      Strengths: 

      This study investigates an important problem, and comes to a potential solution with a new diagnostic test for N. fowleri infection that is fast, less invasive than current methods, and seems robust to multiple N. fowleri strains. The work in mice is convincing that smallRNA1 is detectable in blood and urine early in infection. Analysis of patient blood samples suggest that whole blood (but not plasma) could be tested for smallRNA-1 to diagnose N. fowleri infections. 

      Thank you for comments regarding the strengths of this study. We agree that our data for detecting the biomarker in biofluids from mice is convincing. In addition, our spike-in studies with human cerebrospinal fluid, plasma, and urine (Figure 6) suggest these biofluids from humans could be used for diagnosis.

      We appreciate the comment regarding plasma and recognize this was not fully explained in the manuscript. We do believe that plasma can be used to assess the biomarker. Firstly, we demonstrated equivalent sensitivity of the method to detect smallRNA-1 in plasma and urine in mice with end-stage PAM (Figure 5). In addition, spike in samples of human plasma, cerebrospinal fluid, and urine demonstrated equivalent sensitivity of detecting the biomarker (Figure 6). 

      The negative result for human plasma in Figure 6C requires clarification; this sample was convalescent plasma from a survivor. The patient presented to the hospital on August 7, 2016, was treated, made a remarkable recovery, and was released from the hospital later that month. The plasma sample in Figure 6C was collected September 7, 2016, which is a month after treatment was initiated and weeks after the patient was symptom free. Our interpretation of the convalescent plasma result is the patient had cleared the active amoeba infection and that is why we did not detect the biomarker. We have added text in the discussion and in the legend for Figure 6 to clarify the convalescent plasma result. 

      One additional caveat for consideration is that many of the samples we received from amoebaeinfected humans were stored at room temperatures for undefined periods of time before being moved to <-20°C (see details in Table S9). We can’t rule out possible sample degradation, but this is an unfortunate reality of obtaining human samples from individuals later confirmed to be infected with pathogenic free-living amoebae.

      Weaknesses: 

      (1) There are not many N. fowleri cases, so the authors were limited in the human samples available for testing. It is difficult to know how robust this biomarker is in whole blood (only 2 samples were tested, both had detectable smallRNA-1), serum (1 out of 1 sample tested negative), or human urine (presumably there is no material available for testing). This limitation is openly discussed in the last paragraph of the discussion section. 

      We agree the extremely limited availability of human samples is a limitation of this study. Given the rarity of these infections in the United States, even prospective studies to systematically collect samples would be very challenging. We hope that by publishing the details of this biomarker detection is that the method can be used by diagnostic reference centers, especially in areas where outbreaks of multiple cases per year have been reported.

      (2) There seems to be some noise in the data for uninfected samples (Figures 4B-C, 5B, and 6C), especially for those with serum (2E). While this is often orders of magnitude lower than the positive results, it does raise questions about false positives, especially early in infection when diagnosis would be the most useful. A few additional uninfected human samples may be helpful. 

      We agree; however, we would like to point out the progression of disease in humans and mice are similar. Typically, patients survive between 10-14 days after presumed exposure and mice have similar survival times following instillation of N. fowleri amoebae into a nare of the mouse. Therefore, detection of this biomarker as early as 72 h in mice is seemingly equivalent to the onset of initial symptoms in humans.  

      Reviewer #2 (Public review): 

      Summary: 

      The authors sought to develop a rapid and non-invasive diagnostic method for primary amoebic meningoencephalitis (PAM), a highly fatal disease caused by Naegleria fowleri. Due to the challenges of early diagnosis, they investigated extracellular vesicles (EVs) from N. fowleri, identifying small RNA biomarkers. They developed an RT-qPCR assay to detect these biomarkers in various biofluids. 

      Strengths: 

      (1)  This study has a clear methodological approach, which allows for the reproducibility of the experiments. 

      (2) Early and Non-Invasive Diagnosis - The identification of a small RNA biomarker that can be detected in urine, plasma, and cerebrospinal fluid (CSF) provides a non-invasive diagnostic approach, which is crucial for improving early detection of PAM. 

      (3) High Sensitivity and Rapid Detection - The RT-qPCR assay developed in the study is highly sensitive, detecting the biomarker in 100% of CSF samples from human PAM cases and in mouse urine as early as 24 hours post-infection. Additionally, the test can be completed in ~3 hours, making it feasible for clinical use. 

      (4)  Potential for Disease Monitoring - Since the biomarker is detectable throughout the course of infection, it could be used not only for early diagnosis but also for tracking disease progression and monitoring treatment efficacy. 

      (5)  Strong Experimental Validation - The study demonstrates biomarker detection across multiple sample types (CSF, urine, whole blood, plasma) in both animal models and human cases, providing robust evidence for its clinical relevance. 

      (6) Addresses a Critical Unmet Need - With a >97% case fatality rate, PAM urgently requires improved diagnostics. This study provides one of the first viable liquid biopsy-based diagnostic approaches, potentially transforming how PAM is detected and managed. 

      Thank you for summarizing the strengths of the study.

      Weaknesses: 

      (1) Limited Human Sample Size - While the biomarker was detected in 100% of CSF samples from human PAM cases, the number of human samples analyzed (n=6 for CSF) is relatively small. A larger cohort is needed to validate its diagnostic reliability across diverse populations. 

      As noted in response to Reviewer #1 above, we agree this is a limitation of the study; however, we were fortunate to obtain even 15 µL samples of cerebrospinal fluid, plasma, serum, or whole blood from as many patients as we did. There is an urgent need for more systematic collection and storage of samples for rare diseases like primary amoebic meningoencephalitis so that advancements in diagnostics and biomarker discovery can be conducted. It is our sincere hope that by publishing our detailed methods and experimental results in this manuscript, that additional hospitals and research centers can replicate our studies and help advance this or other techniques for early diagnosis of PAM.

      (2) Lack of Pre-Symptomatic or Early-Stage Human Data - Although the biomarker was detected in mouse urine as early as 24 hours post-infection, there is no data on whether it can be reliably detected before symptoms appear in humans, which is crucial for early diagnosis and treatment initiation. 

      It is difficult to envision a method to obtain these biofluids from infected humans prior to onset of symptoms. More likely the best we can hope for is that physicians include primary amoebic meningoencephalitis in their assessment of patients that present with prodromal symptoms of meningitis.

      (3)  Plasma Detection Challenges - While the biomarker was detected in whole blood, it was not detected in human plasma, which could limit the ease of clinical implementation since plasma-based diagnostics are more common. Further investigation is needed to understand why it is absent in plasma and whether alternative blood-based approaches (e.g., whole blood assays) could be optimized. 

      See response to Reviewer #1 above.

      Reviewer #1 (Recommendations for the authors): 

      (1) What is the evidence that these small RNAs are secreted specifically in EVs? I believe that they are, and ultimately it doesn't impact the conclusions, but I think the evidence here could be either stronger or presented in a more obvious way. 

      Our data demonstrates that smallRNA-1 is present in N. fowleri-derived EVs (Figures 2 and Supplemental Figure 7) and in the intact amoebae (Figure 3B).  Initial sequencing data to identify these smallRNA biomarkers came from PEG-precipitated EVs (Figure S1), by using methods we previously published (22). The PEG-precipitated EVs were extracted specifically for spike in studies. Finally, the smallRNAs in EVs were confirmed after extraction of EVs from 7 N. fowleri strains (Figure 2). We do not have evidence that they are secreted outside of EVs.

      (2) The figure legends would be more useful with some additional information. For example: why are there two points for Nf69 in Fig 2B? In Figure 3A-B, please add more detail as to what the graphs are showing (are they histograms binned by a number of amoebae? This does not seem obvious to me). 

      We agree the Figure legends should be edited for clarity and to add additional information. Both Figure legends have been updated.

      In Figure 2B, each point represents the mean of three technical replicates of EV preps for each N. fowleri strain.

      In Figure 3 the points indicate the Copy#/µL of a well from a 96-well plate. The histograms show the mean of these observations for each condition. 

      (3)  In Figure 2E, the FBS seems like it has near detectable levels of smallRNA-1 compared to Ac and Bm (albeit N. fowleri has 4 orders of magnitude higher levels than the FBS). Because cows are likely exposed to N. fowleri and have documented infections (e.g. doi: 10.1016/j.rvsc.2012.01.002), is it possible this signal is real? 

      Thank you for making this interesting observation. We agree that cows are likely to have significant exposure to N. fowleri, yet documented infections are rare. In this case we do not believe the near detectable levels of smallRNA-1 in FBS was due to an infected donor animal. This noise was likely due to extracting RNA from concentrated FBS rather than FBS diluted in cell culture media. In addition, as shown in Supplemental Figure 4, the qPCR product from EVs extracted from FBS were not the same as that from the N. fowleri-derived EVs. Please note we used a PEG extraction reagent that separates lipid particles, so this is additional evidence the smallRNAs are present in EVs.

      (4)  In Figure 6A, why was the sample size greater for water and unspiked urine? Similarly, why is the number of infected mice so variable in Figure 4B? 

      In Figure 6A we assayed de-identified biofluids provided by Advent Hospital in Orlando, Florida. The plasma and serum samples were pooled from multiple individuals; whereas, individual urine samples (n=8) were provided for this experiment. We have updated the legend for Figure 6A to include these details.

      For Figure 4B we used plasma collected at the end-stage of disease following infections with five different strains of N. fowleri. The sample sizes varied for two reasons. First, Nf69 was the strain used most by our lab and we had plasma from several in vivo experiments. The lower sample sizes for the other strains came from an experiment with 8 mice per group. Some of these strains were less virulent and did not succumb to disease with the number of amoebae inoculated in this experiment. Thus, plasma was only collected from animals that were euthanized due to severe N.

      fowleri infections. In follow up studies (e.g., Figure 5B), plasma was collected every 24 hr for analysis.

      Very minor points: 

      (1)  The number of acronyms (FLA, PAM, EVs, CNS, CSF, LOD) could be reduced to make this paper more reader-friendly. 

      Acronyms that were used infrequently in the manuscript (FLA, CNS, LOD, mNGS, UC) have been edited to spell out the complete names. We kept the acronyms EVs and CSF because they are each used more than twenty times in the manuscript.

      (2)  The decimal point in the Cq values is formatted strangely. 

      The decimal points have been edited to normal format in both the manuscript and supplementary material.

      (3)  Figure 3C is not intuitive. I do not understand the logic for the placement of the different samples (was row A only amoebae, B only Veros, C blank, D a mix, and F more Veros?). 

      Thank you for this comment; we agree the microtiter plate schematic (Fig 3C) was misleading. We have revised Figure 3C to make the point that we tested amoebae alone, Vero cells alone, and we combined supernatants from Vero cells (alone) plus amoebae (alone) to confirm that 1) smallRNA-1 was only detected in amoeba-conditioned media, and 2) that Vero-conditioned media does not affect detection of smallRNA-1.

      Reviewer #2 (Recommendations for the authors): 

      Minor corrections: 

      The abbreviation 'Nf' for Naegleria fowleri is not appropriate in a scientific publication. According to taxonomic conventions, the correct way to abbreviate a scientific name is as follows: 

      The first mention should be written in full: Naegleria fowleri. 

      In subsequent mentions, the genus name should be abbreviated to its initial in uppercase, followed by a period, while the species name remains in lowercase: N. fowleri. 

      The same rule applies to Balamuthia mandrillaris and Acanthamoeba species, which should be abbreviated as B. mandrillaris and Acanthamoeba spp. after their first mention. 

      We agree and each of the scientific names have been updated to the proper format. Please note Nf69 is the accepted nomenclature for this N. fowleri strain, so no changes were made when referring to this specific strain.

      Temperatures should be expressed in international units (°C). Please update the temperatures reported in Fahrenheit (°F) in the 'Materials and Methods' section, specifically in the 'Animal Studies' subsection. 

      These changes were made in the revised manuscript.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary

      This paper summarises responses from a survey completed by around 5,000 academics on their manuscript submission behaviours. The authors find several interesting stylised facts, including (but not limited to):

      - Women are less likely to submit their papers to highly influential journals (*e.g.*, Nature, Science and PNAS).

      - Women are more likely to cite the demands of co-authors as a reason why they didn't submit to highly influential journals.

      - Women are also more likely to say that they were advised not to submit to highly influential journals.

      Recommendation

      This paper highlights an important point, namely that the submissions' behaviours of men and women scientists may not be the same (either due to preferences that vary by gender, selection effects that arise earlier in scientists' careers or social factors that affect men and women differently and also influence submission patterns). As a result, simply observing gender differences in acceptance rates---or a lack thereof---should not be automatically interpreted as as evidence of for or against discrimination (broadly defined) in the peer review process. I do, however, make a few suggestions below that the authors may (or may not) wish to address.

      We thank the author for this comment and for the following suggestions, which we take into account in our revision of the manuscript.

      Major comments

      What do you mean by bias?

      In the second paragraph of the introduction, it is claimed that "if no biases were present in the case of peer review, then 'we should expect the rate with which members of less powerful social groups enjoy successful peer review outcomes to be proportionate to their representation in submission rates." There are a couple of issues with this statement.

      - First, the authors are implicitly making a normative assumption that manuscript submission and acceptance rates *should* be equalised across groups. This may very well be the case, but there can also be important reasons why not -- e.g., if men are more likely to submit their less ground-breaking work, then one might reasonably expect that they experience higher rejection rates compared to women, conditional on submission.

      We do assume that normative statement: unless we believe that men’s papers are intrinsically better than women’s papers, the acceptance rate should be the same. But the referee is right: we have no way of controlling for the intrinsic quality of the work of men and women. That said, our manuscript does not show that there is a different acceptance rate for men and women; it shows that women are less likely to submit papers to a subset of journals that are of a lower Journal Impact Factor, controlling for their most cited paper, in an attempt to control for intrinsic quality of the manuscripts.

      - Second, I assume by "bias", the authors are taking a broad definition, i.e., they are not only including factors that specifically relate to gender but also factors that are themselves independent of gender but nevertheless disproportionately are associated with one gender or another (e.g., perhaps women are more likely to write on certain topics and those topics are rated more poorly by (more prevalent) male referees; alternatively, referees may be more likely to accept articles by authors they've met before, most referees are men and men are more likely to have met a given author if he's male instead of female). If that is the case, I would define more clearly what you mean by bias. (And if that isn't the case, then I would encourage the authors to consider a broader definition of "bias"!)

      Yes, the referee is right that we are taking a broad definition of bias. We provide a definition of bias on page 3, line 92. This definition is focused on differential evaluation which leads to differential outcomes. We also hedge our conversation (e.g., page 3, line 104) to acknowledge that observations of disparities may only be an indicator of potential bias, as many other things could explain the disparity. In short, disparities are a necessary but insufficient indicator of bias. We add a line in the introduction to reinforce this. The only other reference to the term bias comes on page 10, line 276. We add a reference to Lee here to contextualize.

      Identifying policy interventions is not a major contribution of this paper

      In my opinion, the survey evidence reported here isn't really strong enough to support definitive policy interventions to address the issue and, indeed, providing policy advice is not a major -- or even minor -- contribution of your paper, so I would not mention policy interventions in the abstract. (Basically, I would hope that someone interested in policy interventions would consult another paper that much more thoughtfully and comprehensively discusses the costs and benefits of various interventions!)

      We thank the referee for this comment. While we agree that our results do not lead to definitive policy interventions, we believe that our findings point to a phenomenon that should be addressed through policy interventions. Given that some interventions are proposed in our conclusion, we feel like stating this in the abstract is coherent.

      Minor comments

      - What is the rationale for conditioning on academic rank and does this have explanatory power on its own---i.e., does it at least superficially potentially explain part of the gender gap in intention to submit?

      The referee is right: academic rank was added to control for career age of researchers, with the assumption that this variable would influence submission behavior. However, the rank information we collected was for the time that the individual respondent took the survey, which could be different from the rank they held concerning their submission behaviors mentioned in the survey. That is why we didn't consider rank as an independent variable of interest. But I do also agree with the reviewer that it could be related to their submission behaviors in some cases. Our initial analysis shows that academic rank is not a significant predictor of whether researchers submitted to SNP, but does contribute significantly to the SNP acceptance rates and desk rejection rates of individuals in Medical Sciences.

      Reviewer #2 (Public Review):

      Summary:

      In this manuscript, Basson et al. study the representation of women in "high-impact" journals through the lens of gendered submission behavior. This work is clear and thorough, and it provides new insights into gender disparities in submissions, such as that women were more likely to avoid submitting to one of these journals based on advice from a colleague/mentor. The results have broad implications for all academic communities and may help toward reducing gender disparities in "high-impact" journal submissions. I enjoyed reading this article, and I have several recommendations regarding the methodology/reporting details that could help to enhance this work.

      We thank the referee for their comments.

      Strengths:

      This is an important area of investigation that is often overlooked in the study of gender bias in publishing. Several strengths of the paper include:

      (1) A comprehensive survey of thousands of academics. It is admirable that the authors retroactively reached out to other researchers and collected an extensive amount of data.

      (2) Overall, the modeling procedures appear thorough, and many different questions are modeled.

      (3) There are interesting new results, as well as a thoughtful discussion. This work will likely spark further investigation into gender bias in submission behavior, particularly regarding the possible gendered effect of mentorship on article submission.

      Thank you for those comments.

      Weaknesses:

      (1) The GitHub page should be further clarified. A detailed description of how to run the analysis and the location of the data would be helpful. For example, although the paper says that "Aggregated and de-identified data by gender, discipline, and rank for analyses are available on GitHub," I was unable to find such data.

      We added the link to the Github page, as well as more details on the how to run the statistical analysis. Unfortunately, our IRB approval does not allow for the sharing of the raw data.

      (2) Why is desk rejection rate defined as "the number of manuscripts that did not go out for peer review divided by the number of manuscripts rejected for each survey respondent"? For example, in your Grossman 2020 reference, it appears that manuscripts are categorized as "reviewed" or "desk-rejected" (Grossman Figure 2). If there are gender differences in the denominator, then this could affect the results.

      We thank the referee for pointing this out. Actually, what the referee is proposing is how we calculated it in the manuscript; the calculation mentioned in the manuscript was a mistake. We corrected the manuscript.

      (3) Have you considered correcting for multiple comparisons? Alternatively, you could consider reporting P-values and effect sizes in the main text. Otherwise, sometimes the conclusions can be misleading. For example, in Figure 3 (and Table S28), the effect is described as significant in Social Sciences (p=0.04) but not in Medical Sciences (p=0.07).

      We highly appreciate the suggestion. We’ve added Odds Ratio values and p-values to the main manuscript.

      (4) More detail about the models could be included. It may be helpful to include this in each table caption so that it is clear what all the terms of the model were. For instance, I was wondering if journal or discipline are included in the models.

      We appreciate the suggestion. We’ve added model details to the figure and table captions in the manuscript and the supplemental materials.

      Reviewer #3 (Public Review):

      Summary:

      This is a strong manuscript by Basson and colleagues which contributes to our understanding of gender disparities in scientific publishing. The authors examine attitudes and behaviors related to manuscript submission in influential journals (specifically, Science, Nature and PNAS). The authors rightly note that much attention has been paid to gender disparities in work that is already published, but this fails to capture the unseen hurdles that occur prior to publication (which include decisions about where to publish, desk rejections, revisions and resubmissions, etc.). They conducted a survey study to address some of these components and their results are interesting:

      They find that women are less likely to submit their manuscript to Science, Nature or PNAS. While both men and women feel their work would be better suited for more specialized journals, women were more likely to think their work was 'less novel or groundbreaking.'

      A smaller proportion of respondents indicated that they were actively discouraged from submitting their manuscripts to these journals. In this instance, women were more likely to receive this advice than men.

      Lastly, the authors also looked at self-reported acceptance and rejection rates and found that there were no gender differences in acceptance or rejection rates.

      These data are helpful in developing strategies to mitigate gender disparities in influential journals.

      We thank the referee for their comments

      Comments:

      The methods the authors used are appropriate for this study. The low response rate is common for this type of recruitment strategy. The authors provide a thoughtful interpretation of their data in the Discussion.

      We thank the referee for their comments

      Reviewer #4 (Public Review):

      This manuscript covers an important topic of gender biases in the authorship of scientific publications. Specifically, it investigates potential mechanisms behind these biases, using a solid approach, based on a survey of researchers.

      Main strengths

      The topic of the MS is very relevant given that across sciences/academia representation of genders is uneven, and identified as concerning. To change this, we need to have evidence on what mechanisms cause this pattern. Given that promotion and merit in academia are still largely based on the number of publications and impact factor, one part of the gap likely originates from differences in publication rates of women compared to men.

      Women are underrepresented compared to men in journals with high impact factor. While previous work has detected this gap, as well as some potential mechanisms, the current MS provides strong evidence, based on a survey of close to 5000 authors, that this gap might be due to lower submission rates of women compared to men, rather than the rejection rates. The data analysis is appropriate to address the main research aims. The results interestingly show that there is no gender bias in rejection rates (desk rejection or overall) in three high-impact journals (Science, Nature, PNAS). However, submission rates are lower for women compared to men, indicating that gender biases might act through this pathway. The survey also showed that women are more likely to rate their work as not groundbreaking, and be advised not to submit to prestigious journals

      With these results, the MS has the potential to inform actions to reduce gender bias in publishing, and actions to include other forms of measuring scientific impact and merit.

      We thank the referee for their comments.

      Main weakness and suggestions for improvement

      (1) The main message/further actions: I feel that the MS fails to sufficiently emphasise the need for a different evaluation system for researchers (and their research). While we might act to support women to submit more to high-impact journals, we could also (and several initiatives do this) consider a broader spectrum of merits (e.g. see https://coara.eu/ ). Thus, I suggest more space to discuss this route in the Discussion. Also, I would suggest changing the terms that imply that prestigious journals have a better quality of research or the highest scientific impact (line 40: journals of the highest scientific impact) with terms that actually state what we definitely know (i.e. that they have the highest impact factor). And think this could broaden the impact of the MS

      We agree with the referee. We changed the wording on impact, and added a few lines were added on this in the discussion.

      (2) Methods: while methods are all sound, in places it is difficult to understand what has been done or measured. For example, only quite late (as far as I can find, it's in the supplement) we learn the type of authorship considered in the MS is the corresponding authorship. This information should be clear from the very start (including the Abstract).

      We performed the suggested edits.

      Second, I am unclear about the question on the perceived quality of research work. Was this quality defined for researchers, as quality can mean different things (e.g. how robust their set-up was, how important their research question was)? If researchers have different definitions of what quality means, this can cause additional heterogeneity in responses. Given that the survey cannot be repeated now, maybe this can be discussed as a limitation.

      We agree that this can mean something different for researchers—probably varies by discipline, but also by gender. But that was precisely the point: whether men/women considered their “best work” to be published in higher impact venue. While there may be heterogeneity in those perceptions, the fact that 1) men and women rate their research at the same level and 2) we control for disciplinary differences should mitigate some of that.

      I was surprised to see that discipline was considered as a moderator for some of the analyses but not for the main analysis on the acceptance and rejection rates.

      We appreciate the attention to detail. In our analysis of acceptance and rejection rates, we conducted separate regression analyses for each discipline to capture any field-specific patterns that might otherwise be obscured.

      We added more details on this to clarify.

      I was also suppressed not to see publication charges as one of the reasons asked for not submitting to selected journals. Low and middle-income countries often have more women in science but are also less likely to support high publication charges.

      That is a good point. However, both Science and Nature have subscription options, which do not require any APCs.

      Finally, academic rank was asked of respondents but was not taken as a moderator.

      Academic rank is included in the regression as a control variable (Figure 1).

      Reviewer #2 (Recommendations For The Authors):

      In addition to the points in the "Weaknesses" section of the my Public Review above, I have several suggestions to improve this work.

      (1) Can you please indicate what the error bars mean in each plot? I am assuming that they are 95% confidence intervals.

      We appreciate the attention to detail. Yes, they are 95% confidence intervals. We’ve clarified this in the captions of the corresponding figures. 

      (2) Can you provide a more detailed explanation for why the 7 journals were separated? I see that on page 3 of the supporting information you write that "Due to limited responses, analysis per journal was not always viable. The results pertaining to the journals were aggregated, with new categories based on the shared similarities in disciplinary foci of the journals and their prestige." Specifically, why did you divide the data into (somewhat arbitrary) categories as opposed to using all the data and including a journal term in your model?

      The survey covered 7 journals:

      • Science, Nature, and PNAS (S.N.P.)

      • Nature Communications and Science Advances (NC.SA.)

      • NEJM and Cell (NEJM.C.)

      We believe that the first three are a class of their own: they cover all fields (while NEJM and Cell are limited to (bio)medical sciences), and have a much higher symbolic capital than both Nature Comms and Science Advances (which are receiving cascading papers from Nature and Science, respectively). We believe that factors leading to submission to S.N.P. are much different than those leading to submission to the other groups of journals, which is why we separated the analysis in that manner.

      (3) You included random effects for linear regression but not for logistic regression. Please justify this choice or include additional logistic regression models with random effects.

      We used mixed-effect models for linear regressions (where number of submissions, acceptance rate, or rejection rate is the dependent variable). As mentioned in the previous comment, we tested using rank as the control variable and found it had a potential impact on the variables we analyzed using linear regressions in some disciplines. Therefore, we introduced it as a random effect for all the linear regression models.

      Reviewer #3 (Recommendations For The Authors):

      The limitations of this work are currently described in the Supplement. It may be helpful to bring several of these items into the Discussion so that they can be addressed more prominently.

      Added content

      Reviewer #4 (Recommendations For The Authors):

      (1) Line 40: add 'as leading authors of papers published in' before ' 'journals'

      Done

      (2) Explain what the direction in the ' relationship between' line 62 is

      Added

      (3) Lines 101-102 - this is a bit unclear. Please, provide some more info, also including what did these studies find.

      Added

      (4) Is 'sociodemographic' the best term in line 120

      Yes, we believe so.

      (5) Results would benefit from a short intro with the info on the number of respondents, also by gender.

      Those are present at the end of the intro (and in the methods, at the end). We nonetheless added gender.

      (6) Line 134 add how many woman and man did submit to Science, Nature, and PNAS

      Added. In all disciplines combined, 552 women and 1,583 men ever submitted to these three elite journals. More details can be found in SI Table 9

      (7) Add 'Self-' before reported, line 141

      Added

      (8) Add sample sizes to Figs 1 and 2

      Those are in the appendix

      (9) Line 168 - unclear if this is ever or as their first choice

      We do not discriminate – it is whether the considered it at all.

      (10) Add sample size in line 177

      Added. 480 women and 1404 men across all disciplines reported desk rejections by S.N.P. journals.

      (11) I would like to see some discussion on the fact that the highest citation paper will also be a paper that the authors have submitted earlier in their careers given that citations will pile up over time.

      Those are actually quite evenly distributed. We modified the supplementary materials.

      (12) Data availability - be clear that supporting info contains only summary data. Also, while the Data availability statement refers to de-identified data on Github, the Github page only contains the code, and the note that 'The STAT code used for our analyses is shared.

      We are unable to share the survey response details publicly per IRB protocols.' Why were de-identified data shared? This is extremely important to allow for the reproducibility of MS results. I would also suggest sharing data in a trusted repository (e.g. Dryad, ZENODO...) rather than on Github, as per current recommendations on the best practices for data sharing.

      Thank you for your careful reading and for highlighting the importance of clear data availability. We will revise our Data Availability Statement to explicitly state that the supporting information contains only summary data and that the complete analysis code is available on GitHub.

      We understand the importance of sharing de-identified data for reproducibility. However, our IRB strictly prohibits the sharing of any individual-level data, including de-identified files, to protect participant confidentiality. Consequently, the summary data included in the supporting information, together with the provided code, is intended to facilitate the verification of our core findings. Our previous statement regarding “de-identified” data sharing was inaccurate and thus has been removed. We apologize for the confusion.

      In light of your suggestion, we are also exploring depositing the summary data and code in a trusted repository (e.g., Dryad or Zenodo) to further align with current best practices for data sharing.

    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1 (Public Review):

      The authors of this study use electron microscopy and 3D reconstruction techniques to study the morphology of distinct classes of Drosophila sensory neurons *across many neurons of the same class.* This is a comprehensive study attempting to look at nearly all the sensory neurons across multiple sensilla to determine a) how much morphological variability exists between and within neurons of different and similar sensory classes, and 2) identify dendritic features that may have evolved to support particular sensory functions. This study builds upon the authors' previous work, which allowed them to identify and distinguish sensory neuron subtypes in the EM volumes without additional staining so that reconstructed neurons could reliably be placed in the appropriate class. This work is unique in looking at a large number of individual neurons of the same class to determine what is consistent and what is variable about their class-specific morphologies.

      This means that in addition to providing specific structural information about these particular cells, the authors explore broader questions of how much morphological diversity exists between sensory neurons of the same class and how different dendritic morphologies might affect sensory and physiological properties of neurons.

      The authors found that CO2-sensing neurons have an unusual, sheet-like morphology in contrast to the thin branches of odor-sensing neurons. They show that this morphology greatly increases the surface area to volume ratio above what could be achieved by modest branching of thin dendrites, and posit that this might be important for their sensory function, though this was not directly tested in their study. The study is mainly descriptive in nature, but thorough, and provides a nice jumping-off point for future functional studies. One interesting future analysis could be to examine all four cell types within a single sensilla together to see if there are any general correlations that could reveal insights about how morphology is determined and the relative contributions of intrinsic mechanisms vs interactions with neighboring cells. For example, if higher than average branching in one cell type correlated with higher than average branching in another type, if in the same sensilla. This might suggest higher extracellular growth or branching cues within a sensilla. Conversely, if higher branching in one cell type consistently leads to reduced length or branching in another, this might point to dendrite-dendrite interactions between cells undergoing competitive or repulsive interactions to define territories within each sensilla as a major determinant of the variability.

      We thank the reviewer for the insightful comments and appreciation for our study.

      Reviewer #2 (Public Review):

      The manuscript employs serial block‐face electron microscopy (SBEM) and cryofixation to obtain high‐resolution, three‐dimensional reconstructions of Drosophila antennal sensilla containing olfactory receptor neurons (ORNs) that detectCO2. This method has been used previously by the same lab in Gonzales et. al, 2021. (https://elifesciences.org/articles/69896), which had provided an exemplary model by integrating high-resolution EM with electrophysiology and cell-type-specific labeling.

      We thank the reviewer for expressing appreciation for our published study.

      The previous study ended up correlating morphology with activity for multiple olfactory sensillar types. Compared to the 2021 study, this current manuscript appears somewhat incomplete and lacks integration with activity.

      We thank the reviewer for their feedback. However, we would like to clarify that our previous study did not correlate morphology with activity to a greater extent than the current study. Both employed the same cryofixation, SBEM-based approach without recording odor-induced activity, but the focus of the current work is fundamentally different. While the previous study examined multiple sensillum types, the current study concentrates on a single sensillum type to address a distinct biological question regarding morphological heterogeneity. We appreciate the opportunity to clarify this distinction, and we hope that the revised manuscript more clearly conveys the unique scope and contributions of this study.

      In fact older studies have also reported two-dimensional TEM images of the putative CO2 neuron in Drosophila (Shanbhag et al., 1999) and in mosquitoes (McIver and Siemicki, 1975; Lu et al, 2007), and in these instances reported that the dendritic architecture of the CO2 neuron was somewhat different (circular and flattened, lamellated) from other olfactory neurons.

      We thank the reviewer for pointing this out. As noted in both the Introduction and Discussion sections, previous studies—including those cited by the reviewer—suggested that CO2-sensing neurons may have a distinct dendritic morphology. However, those earlier studies lacked the means to definitively link the observed morphology to CO2 neuron identity.

      In contrast, our study assigns neuronal identity based on quantitative morphometric measurements, allowing us to confidently associate the unique dendritic architecture with CO2 neurons. Furthermore, we extend previous observations by providing full 3D reconstructions and nanoscale morphometric analyses, offering a much more comprehensive and definitive characterization of these neurons. We believe this represents a significant advancement over earlier work.

      The authors claim that this approach offers an artifact‐minimized ultrastructural dataset compared to earlier. In this study, not only do they confirm this different morphology but also classify it into distinct subtypes (loosely curled, fully curled, split, and mixed). This detailed morphological categorization was not provided in prior studies (e.g., Shanbhag et al., 1999).

      We thank the reviewer for acknowledging the significance of our study.

      The authors would benefit from providing quantitative thresholds or objective metrics to improve reproducibility and to clarify whether these structural distinctions correlate with distinct functional roles.

      We thank the reviewer for raising this point. However, we would like to clarify that assigning neurons to strict morphological subtypes was not the primary aim of our study. In practice, dendritic architectures can be highly complex, with individual neurons often displaying features characteristic of multiple subtypes. This is precisely why we included a “mixed” subtype category—to acknowledge and capture this morphological heterogeneity rather than impose rigid classification boundaries.

      Our intent in defining subtypes was not to imply discrete functional classes, but rather to highlight the range of morphological variation observed across ab1C neurons. While we agree that exploring potential correlations between structure and function is an important future direction, the current study focuses on characterizing this diversity using 3D reconstruction and morphometric analysis. We hope this clarifies the purpose and scope of our morphological categorization.

      Strengths:

      The study makes a convincing case that ab1C neurons exhibit a unique, flattened dendritic morphology unlike the cylindrical dendrites found in ab1D neurons. This observation extends previous qualitative TEM findings by not only confirming the presence of flattened lamellae in CO₂ neurons but also quantifying key morphometrics such as dendritic length, surface area, and volume, and calculating surface area-to-volume ratios. The enhanced ratios observed in the flattened segments are speculated to be linked to potential advantages in receptor distribution (e.g., Gr21a/Gr63a) and efficient signal propagation.

      We thank the reviewer for appreciating the significance our current study.

      Weaknesses:

      While the manuscript offers valuable ultrastructural insights and reveals previously unappreciated heterogeneity among CO₂-sensing neurons, several issues warrant further investigation in addition to the points made above.

      (1) Although this quantitative approach is robust compared to earlier descriptive reports, its impact is somewhat limited by the absence of direct electrophysiological data to confirm that ultrastructural differences translate into altered neuronal function. A direct comparison or discussion of how the present findings align with the functional data obtained from electrophysiology would strengthen the overall argument.

      We thank the reviewer for this comment. We would like to clarify, however, that our study does not claim that the observed morphological heterogeneity necessarily leads to functional diversity. Rather, we consider this as a possible implication and discuss it as a potential question for future research. This idea is raised only in the Discussion section, and we are carefully not to present functional diversity as a conclusion of our study. Nonetheless, we have reviewed the relevant paragraph to ensure the language remains cautious and does not overstate our interpretation.

      We also acknowledge the significance of directly linking ultrastructural features to neuronal function through electrophysiological recordings. However, at present, it is technically challenging to correlate the nanoscale morphology of individual ORNs with their functional activity, as this would require volume EM imaging of the very same neurons that were recorded via electrophysiology. Currently, there is no dye-labeling method compatible with single-sensillum recording and SBEM sample preparation that allows for unambiguous identification and segmentation of recorded ORNs at the necessary ultrastructural resolution.

      To acknowledge this important limitation, we have added a paragraph in the Discussion section, as suggested, to clarify the current technical barriers and to highlight this as a promising direction for future methodological advances.

      (2) Clarifying the criteria for dendritic subtype classification with quantitative parameters would enhance reproducibility and interpretability. Moreover, incorporating electrophysiological recordings from ab1C neurons would provide compelling evidence linking structure and function, and mapping key receptor proteins through immunolabeling could directly correlate receptor distribution with the observed morphological diversity.

      Please see our response to the comment regarding the technical limitations of directly correlating ultrastructure with electrophysiological data.

      In addition, we would like to address the suggestion of using immunolabeling to map receptor distribution in relation to the 3D EM models. Currently, antibodies against Gr21a or Gr63a (the receptors expressed in ab1C neurons) are not available. Even if such antibodies were available, immunogold labeling for electron microscopy requires harsh detergent treatment to increase antibody permeability, damaging morphological integrity. These treatments would compromise the very morphological detail that our study aims to capture and quantify.

      (3) Even though Cryofixation is claimed to be superior to chemical fixation for generating fewer artifacts, authors need to confirm independently the variation observed in the CO2 neuron morphologies across populations. All types of fixation in TEMs cause some artifacts, as does serial sectioning. Without understanding the error rates or without independent validation with another method, it is hard to have confidence in the conclusions drawn by the authors of the paper.

      We thank the reviewer for raising concerns regarding potential artifacts in morphological analyses. However, we would like to clarify that cryofixation is widely regarded as a gold standard for ultrastructural preservation and minimizing fixation-induced artifacts, as supported by extensive literature. This is why we adopted high-pressure freezing and freeze substitution in our study.

      We have also published a separate methods paper (Tsang et al., eLife, 2018) directly comparing our cryofixation-based protocol with conventional chemical fixation, demonstrating substantial improvements in morphological preservation. This provides strong empirical support for the reliability of our approach.

      Regarding the suggestion to validate observed morphological variation across populations: we note that determining the presence of artifacts requires a known ground truth, which is inherently unavailable as we could not measure the morphometrics of fly olfactory receptor neurons in their native state. In the absence of such a benchmark, we have instead prioritized using the best-available preparation methods and high-resolution imaging to ensure structural integrity.

      Addressing these concerns and integrating additional experiments would significantly bolster the manuscript's completeness and advancement.

      We appreciate the reviewer’s feedback. As discussed in our responses to the specific comments above, certain suggested experiments are currently limited by technical constraints, particularly in the context of high-resolution volume EM for insect tissues enclosed in cuticles.

      Nevertheless, we have carefully addressed the reviewer’s concerns to the fullest extent possible within the scope of this study. We have revised the manuscript to clarify methodological limitations, added new explanatory content where appropriate, and ensured that our interpretations remain well grounded in the data. We hope these revisions strengthen the clarity and completeness of the manuscript.

      Reviewer #3 (Public Review):

      In the current manuscript entitled "Population-level morphological analysis of paired CO2- and odor-sensing olfactory neurons in D. melanogaster via volume electron microscopy", Choy, Charara et al. use volume electron microscopy and sensillum. They aim to investigate the degree of dendritic heterogeneity within a functional class of neurons using ab1Cand ab1D, which they can identify due to the unique feature of ab1 sensilla to house four neurons and the stereotypic location on the third antennal segment. This is a great use of volumetric electron imaging and neuron reconstruction to sample a population of neurons of the same type. Their data convincingly shows that there is dendritic heterogeneity in both investigated populations, and their sample size is sufficient to strongly support this observation. This data proposes that the phenomenon of dendritic heterogeneity is common in the Drosophila olfactory system and will stimulate future investigations into the developmental origin, functional implications, and potential adaptive advantage of this feature.

      Moreover, the authors discovered that there is a difference between CO2- and odour-sensing neurons of which the first show a characteristic flattened and sheet-like structure not observed in other sensory neurons sampled in this and previous studies. They hypothesize that this unique dendritic organization, which increases the surface area to volume ratio, might allow more efficient CO2 sensing by housing higher numbers of CO2 receptors. This is supported by previous attempts to express CO2 sensors in olfactory sensory neurons, which lack this dendritic morphology, resulting in lower CO2 sensitivity compared to endogenous neurons.

      Overall, this detailed morphological description of olfactory sensory neurons' dendrites convincingly shows heterogeneity in two neuron classes with potential functional impacts for odour sensing.

      Strength:

      The volumetric EM imaging and reconstruction approach offers unprecedented details in single cell morphology and compares dendrite heterogeneity across a great fraction of ab1 sensilla. The authors identify specific shapes for ab1C sensilla potentially linked to their unique function in CO2 sensing.

      We thank the reviewer for the insightful comments and appreciation for our study.

      Weaknesses:

      While the morphological description is highly detailed, no attempts are made to link this to odour sensitivity or other properties of the neurons. It would have been exciting to see how altered morphology impacts physiology in these olfactory sensory cells.

      We agree that linking morphological variation to physiological properties, such as odor sensitivity, would be a highly valuable direction for future research. However, the aim of the current study is to provide an in-depth nanoscale characterization based on a substantial proportion of ab1 sensilla, highlighting morphological heterogeneity among homotypic ORNs.

      At present, it is technically challenging to correlate the nanoscale morphology of individual ORNs with their physiological responses, as this would require volume EM imaging of the exact neurons recorded via single-sensillum electrophysiology. Currently, no dye-labeling method exists that is compatible with both single-sensillum recording and the stringent requirements of SBEM sample preparation to allow for unambiguous identification and segmentation of recorded ORNs.

      To acknowledge this important limitation, we have added a paragraph in the Discussion section clarifying the current technical barriers and highlighting this as a promising area for future methodological development. Please also see our responses to the reviewer’s 4th comment below, where we present preliminary experiments examining whether odor sensitivity varies among homotypic ORNs.

      (Please see the following pages for additional responses to the reviewers’ specific comments. These responses are not intended for publication.)

      Reviewer #1 (Recommendations for the authors):

      As this is mainly a descriptive paper I have no suggestions for additional experiments. Minor Text Suggestions:

      (1) The authors might want to include a better description/definition of the fly antennae, olfactory sensilla and their basic structure/makeup, position of the sensory neurons and dendrites within, etc, in the introduction perhaps in cartoon form to help readers that are not familiar (i.e. non-Drosophila readers) with the terminology and basic organization can follow the paper more easily from the start.

      We thank the reviewer for the helpful suggestion to broaden the appeal of our study to a wider readership. In response, we added a new introductory paragraph at the beginning of the Results section, along with illustrations in a new supplementary figure (Figure 1—figure supplement 1). The new paragraph reads as follows.

      “The primary olfactory organ in Drosophila is the antenna, which contains hundreds olfactory sensilla on the surface of its third segment (Figure 1—figure supplement 1A) . Each sensillum typically encapsulates the outer dendrites of two to four ORNs. The outer dendrites are the sites where odorant receptors are expressed, enabling the detection of volatile chemicals. A small portion of the outer dendrites lies beneath the base of the sensillum cuticle. At the ciliary constriction, the outer dendrites connect to the inner dendritic segment, which then links to the soma of each ORN (Figure 1—figure supplement 1B).”

      (2) In Figure 4D, the letter annotations above the graphs are not clearly defined anywhere that I could easily find. Please clarify with different symbols and/or in the figure legend so readers can easily comprehend the stats that are presented.

      We thank the reviewer for raising this point. As suggested, in the revised Figure 4D legend, following the original sentence “Statistical significance is determined by Kruskal-Wallis one-way ANOVA on ranks and denoted by different letters”, we added “For example, labels “a” and “b” indicate a significant difference between groups (P < 0.05), whereas labels with identical or shared letters (e.g., “a” and “a”, “a,b” and “a”, or “a,b” and “b”) indicate no significant difference.”

      Reviewer #3 (Recommendations for the authors):

      There are several aspects that I would like the authors to consider to improve the current manuscript:

      (1) Line 331: "Our analysis highlights how structural scaling in ab1D neurons achieves enhanced sensory capacity while maintaining the biophysical properties of dendrites". This is a strong statement, and not shown by the authors. They speculate about this in the discussion, but I would like them to soften the language here.

      We thank the reviewer for raising this point. As suggested, we have softened the language in the sentence in question. The revised version is as follows.

      “Our analysis suggests that structural scaling in ab1D neurons may enhance sensory capacity while preserving the biophysical properties of dendrites.”

      (2) The Supplementary material is not well presented and is not cited in the manuscript. It is not clear what the individual data files show, where they refer to, etc. Please provide clear labels of all data, cite them at the appropriate location in the manuscript, and make them more accessible to the reader. Also, there are two Videos mentioned in the manuscript that are not included in the submission.

      We thank the reviewer for bringing this to our attention and apologize for the oversight. We appreciate the reviewer’s careful attention to the supplementary materials. We have addressed these issues accordingly: 1) all source data have been consolidated in to a single, clearly labeled Excel file to improve accessibility for readers; this file is now cited at the appropriate locations in the manuscript. 2) The supplementary videos mentioned in the manuscript have also been included in the re-submission.

      (3) In Figure 1B, it is hard to recapitulate the increase in dendritic density in the presented pictures. Could the authors please highlight dendrites in the raw imaging files (e.g. by colour coding as done later in the manuscript). Also, it might be helpful to indicate the measured parameters visually in this Figure (e.g. volume, length, etc.).

      We thank the reviewer for the helpful suggestion. As suggested, we have pseudocolored the dendrites in Figure 1B to enhance visual clarity.

      As noted, the original legend stated that “the sensilla were arranged from left to right in order of increasing dendritic branch counts”. To improve clarity, we have now added the number of dendritic branches above each sensillum to make this information more explicit.

      We hope these changes make the figure more accessible and informative for readers.

      (4) Given the strength of the authors in in vivo physiology and single sensilla recordings, I would be very curious about how the described morphological heterogeneity is reflected in the response properties of ab1Cs and ab1Ds. Can the authors provide data (already existing from their lab) of these two neurons on response heterogeneity? I acknowledge that spike sorting can be very challenging in ab1s, but maybe it is possible to show the range of response sensitivities upon CO2 stimulation in ab1Cs? The authors speculate in the discussion and presented data will only be correlative - however I think it would strengthen the manuscript to have some link to physiology included.

      We thank the reviewer for this insightful comment. We share the same curiosity about response variability among homotypic ORNs, including ab1C and ab1D. Ideally, this question could be addressed by recording from a large proportion of neurons of a given ORN type to assess the response variability within a single antenna. However, due to technical limitations, we are only able to reliably record from 3–4 ab1 sensilla per antennal preparation, representing approximately 8% of the total ab1 population.

      Moreover, our recordings are typically limited to ab1 sensilla located on the posterior-medial side of the antenna, as this region provides the best accessibility for our recording electrode. This spatial constraint may limit our ability to sample the full morphological diversity of ab1C and ab1D neurons.

      Given these limitations, it is technically challenging to rigorously assess physiological variability in ab1C and ab1D responses across the entire ab1 population. Nonetheless, we attempted to address this question using a different sensillum type where a larger proportion of the population is accessible to single-sensillum recording per antennal preparation. Specifically, we focused on ab2 sensilla in the following analysis because we can reliably record from 6 sensilla per antenna, representing approximately 25% of the total ab2 population.

      In the preliminary data presented below, we recorded from 6 ab2A ORNs per antenna across a total of 6 flies. Spike analysis revealed that odor-evoked responses were consistent across individual ab2A neurons (Author response image 1A). When analyzing the dose-response curve for each ORN, we found no statistically significant differences in odor sensitivity, either among ORNs within the same antenna or across different flies (Author response image 1B; two-way ANOVA: P > 0.99 within antennae, P > 0.99 across flies). This is further supported by the closely clustered EC50 values (Author response image 1C). This result suggests that odor sensitivity is largely uniform among homotypic ab2A ORNs.

      Author response image 1.

      Homotypic ab2A ORNs display similar odorant sensitivity. (A) Single-sensillum recording. Raster plots of ab2A/Or59b ORN spike responses. Six ab2A ORNs from the same antenna were recorded per fly. Odor stimulus: methyl acetate (10-6). (B) Dose-response relationships of peak spike responses, normalized to the maximum response of the ORN to facilitate comparison of odor sensitivity. Each curve represents responses from a single ab2A ORN fitted with the Hill equation (n=36 ab2 sensilla from 6 flies). Responses recorded from the same antenna are indicated by the same color. Statistical comparisons between different ab2A ORNs from the same antenna (P > 0.99) or across flies (P > 0.99) were performed by two-way ANOVA. (C) Quantification of individual pEC50 values from (B), defined as -logEC50.

      However, we are hesitant to include this result in the main manuscript for several reasons. First, it does not directly relate to the morphometric analysis of ab1C and ab1D neurons, which is the primary focus of our study. Second, while we were able to record from approximately 25% of the ab2 population, this level of coverage is still limited and potentially subject to sampling bias due to the spatial constraints of the antennal region accessible to the recording electrode.

      At best, our data suggest limited variability in odor sensitivity among the recorded ab2A ORNs. However, we are cautious about generalizing this finding to the entire ab2 population. In light of these considerations, we hope the reviewer can appreciate the technical challenges inherent in addressing what may appear to be a straightforward question.

      For these reasons, we have chosen to include this preliminary result in the response only, rather than in the main manuscript.

    1. Author response: 

      We thank the reviewers for their feedback on our paper. We have taken all their comments into account in revising the manuscript. We provide a point-by-point response to their comments, below.

      Reviewer #1:

      Major comments:

      The manuscript is clearly written with a level of detail that allows others to reproduce the imaging and cell-tracking pipeline. Of the 22 movies recorded one was used for cell tracking. One movie seems sufficient for the second part of the manuscript, as this manuscript presents a proof-of-principle pipeline for an imaging experiment followed by cell tracking and molecular characterisation of the cells by HCR. In addition, cell tracking in a 5-10 day time-lapse movie is an enormous time commitment.

      My only major comment is regarding "Suppl_data_5_spineless_tracking". The image file does not load.

      It looks like the wrong file is linked to the mastodon dataset. The "Current BDV dataset path" is set to "Beryl_data_files/BLB mosaic cut movie-02.xml", but this file does not exist in the folder. Please link it to the correct file.

      We have corrected the file path in the updated version of Suppl. Data 5.

      Minor comments:

      The authors state that their imaging settings aim to reduce photo damage. Do they see cell death in the regenerating legs? Is the cell death induced by the light exposure or can they tell if the same cells die between the movies? That is, do they observe cell death in the same phases of regeneration and/or in the same regions of the regenerating legs?

      Yes, we observe cell death during Parhyale leg regeneration. We have added the following sentence to explain this in the revised manuscript: "During the course of regeneration some cells undergo apoptosis (reported in Alwes et al., 2016). Using the H2B-mRFPruby marker, apoptotic cells appear as bright pyknotic nuclei that break up and become engulfed by circulating phagocytes (see bright specks in Figure 2F)."

      We now also document apoptosis in regenerated legs that have not been subjected to live imaging in a new supplementary figure (Suppl. Figure 3),  and we refer to these observations as follows: "While some cell death might be caused by photodamage, apoptosis can also be observed in similar numbers in regenerating legs that have not been subjected to live imaging (Suppl. Figure 3)."

      Based on 22 movies, the authors divide the regeneration process into three phases and they describe that the timing of leg regeneration varies between individuals. Are the phases proportionally the same length between regenerating legs or do the authors find differences between fast/slow regenerating legs? If there is a difference in the proportions, why might this be?

      Both early and late phases contribute to variation in the speed of regeneration, but there is no clear relationship between the relative duration of each phase and the speed of regeneration. We now present graphs supporting these points in a new supplementary figure (Suppl. Figure 2).  

      To clarify this point, we have added the following sentence in the manuscript: "We find that the overall speed of leg regeneration is determined largely by variation in the speed of the early (wound closure) phase of regeneration, and to a lesser extent by variation in later phases when leg morphogenesis takes place (Suppl. Figure 2 A,B). There is no clear relationship between the relative duration of each phase and the speed of regeneration (Suppl. Figure 2 A',B')."

      Based on their initial cell tracing experiment, could the authors elaborate more on what kind of biological information can be extracted from the cell lineages, apart from determining which is the progenitor of a cell? What does it tell us about the cell population in the tissue? Is there indication of multi- or pluripotent stem cells? What does it say about the type of regeneration that is taking place in terms of epimorphosis and morphallaxis, the old concepts of regeneration?

      In the first paragraph of Future Directions we describe briefly the kind of biological information that could be gained by applying our live imaging approach with appropriate cell-type markers (see below). We do not comment further, as we do not currently have this information at hand. Regarding the concepts of epimorphosis and morphallaxis, as we explain in Alwes et al. 2016, these terms describe two extreme conditions that do not capture what we observe during Parhyale leg regeneration. Our current work does not bring new insights on this topic.

      Page 5. The authors mention the possibility of identifying the cell ID based on transcriptomic profiling data. Can they suggest how many and which cell types they expect to find in the last stage based on their transcriptomic data?

      We have added this sentence: "Using single-nucleus transcriptional profiling, we have identified approximately 15 transcriptionally-distinct cell types in adult Parhyale legs (Almazán et al., 2022), including epidermis, muscle, neurons, hemocytes, and a number of still unidentified cell types."

      Page 6. Correction: "..molecular and other makers.." should be "..molecular and other markers.."

      Corrected

      Page 8. The HCR in situ protocol probably has another important advantage over the conventional in situ protocol, which is not mentioned in this study. The hybridisation step in HCR is performed at a lower temperature (37˚C) than in conventional in situ hybridisation (65˚C, Rehm et al., 2009). In other organisms, a high hybridisation temperature affects the overall tissue morphology and cell location (tissue shrinkage). A lower hybridisation temperature has less impact on the tissue and makes manual cell alignment between the live imaging movie and the fixed HCR in situ stained specimen easier and more reliable. If this is also the case in Parhyale, the authors must mention it.

      This may be correct, but all our specimens were treated at 37˚C, so we cannot assess whether hybridisation temperature affects morphological preservation in our specimens.

      Page 9. The authors should include more information on the spineless study. What been is spineless? What do the cell lineages tell about the spineless progenitors, apart from them being spread in the tissue at the time of amputation? Do spineless progenitors proliferate during regeneration? Do any spineless expressing cells share a common progenitor cell?

      We now point out that spineless encodes a transcription factor. We provide a summary of the lineages generating spineless-expressing cells in Suppl. Figure 6, and we explain that "These epidermal progenitors undergo 0, 1 or 2 cell divisions, and generate mostly spineless-expressing cells (Suppl. Figure 5)."

      Page 10. Regarding the imaging temperature, the Materials and Methods state "... a temperature control chamber set to 26 or 27˚C..."; however, in Suppl. Data 1, 26˚C and 29˚C are indicated as imaging temperatures. Which is correct?

      We corrected the Methods by adding "with the exception of dataset li51, imaged at 29°C"

      Page 10. Regarding the imaging step size, the Materials and Methods state "...step size of 1-2.46 µm..."; however, Suppl. Data 1 indicate a step size between 1.24 - 2.48 µm. Which is correct?

      We corrected the Methods.

      Page 11. Correct "...as the highest resolution data..." to "...at the highest resolution data..."

      The original text is correct ("standardised to the same dimensions as the highest resolution data").

      Page 11. Indicate which supplementary data set is referred to: "Using Mastodon, we generated ground truth annotations on the original image dataset, consisting of 278 cell tracks, including 13,888 spots and 13,610 links across 55 time points (see Supplementary Data)."

      Corrected

      p. 15. Indicate which supplementary data set is referred to: "In this study we used HCR probes for the Parhyale orthologues of futsch (MSTRG.441), nompA (MSTRG.6903) and spineless (MSTRG.197), ordered from Molecular Instruments (20 oligonucleotides per probe set). The transcript sequences targeted by each probe set are given in the Supplementary Data."

      Corrected

      Figure 3. Suggestion to the overview schematics: The authors might consider adding "molting" as the end point of the red bar (representing differentiation).

      The time of molting is not known in the majority of these datasets, because the specimens were fixed and stained prior to molting. We added the relevant information in the figure legend: "Datasets li-13 and li-16 were recorded until the molt; the other recordings were stopped before molting."

      Figure 4B': Please indicate that the nuclei signal is DAPI.

      Corrected

      Supplementary figure 1A. Word is missing in the figure legend: ...the image also shows weak…

      Corrected

      Supplementary Figure 2: Please indicate the autofluorescence in the granular cells. Does it correspond to the yellow cells?

      Corrected

      Video legend for video 1 and 2. Please correct "H2B-mREFruby" to "H2B-mRFPruby".

      Corrected

      Reviewer #2:

      Major comments:

      MC 1. Given that most of the technical advances necessary to achieve the work described in this manuscript have been published previously, it would be helpful for the authors to more clearly identify the primary novelty of this manuscript. The abstract and introduction to the manuscript focus heavily on the technical details of imaging and analysis optimization and some additional summary of the implications of these advances should be included here to aid the reader.

      This paper describes a technical advance. While previous work (Alwes et al. 2016) established some key elements of our live imaging approach, we were not at that time able to record the entire time course of leg regeneration (the longest recordings were 3.5 days long). Here we present a method for imaging the entire course of leg regeneration (up to 10 days of imaging), optimised to reduce photodamage and to improve cell tracking. We also develop a method of in situ staining in cuticularised adult legs (an important technical breakthrough in this experimental system), which we combine with live imaging to determine the fate of tracked cells. We have revised the abstract and introduction of the paper to point out these novelties, in relation to our previous publications.

      In the abstract we explain: "Building on previous work that allowed us to image different parts of the process of leg regeneration in the crustacean Parhyale hawaiensis, we present here a method for live imaging that captures the entire process of leg regeneration, spanning up to 10 days, at cellular resolution. Our method includes (1) mounting and long-term live imaging of regenerating legs under conditions that yield high spatial and temporal resolution but minimise photodamage, (2) fixing and in situ staining of the regenerated legs that were imaged, to identify cell fates, and (3) computer-assisted cell tracking to determine the cell lineages and progenitors of identified cells. The method is optimised to limit light exposure while maximising tracking efficiency."

      The introduction includes the following text: "Our first systematic study using this approach presented continuous live imaging over periods of 2-3 days, capturing key events of leg regeneration such as wound closure, cell proliferation and morphogenesis of regenerating legs with single-cell resolution (Alwes et al., 2016). Here, we extend this work by developing a method for imaging the entire course of leg regeneration, optimised to reduce photodamage and to improve cell tracking. We also develop a method of in situ staining of gene expression in cuticularised adult legs, which we combine with live imaging to determine the fate of tracked cells."

      MC 2. The description of the regeneration time course is nicely detailed but also very qualitative. A major advantage of continuous recording and automated cell tracking in the manner presented in this manuscript would be to enable deeper quantitative characterization of cellular and tissue dynamics during regeneration. Rather than providing movies and manually annotated timelines, some characterization of the dynamics of the regeneration process (the heterogeneity in this is very very interesting, but not analyzed at all) and correlating them against cellular behaviors would dramatically increase the impact of the work and leverage the advances presented here. For example, do migration rates differ between replicates? Division rates? Division synchrony? Migration orientation? This seems to be an incredibly rich dataset that would be fascinating to explore in greater detail, which seems to me to be the primary advance presented in this manuscript. I can appreciate that the authors may want to segregate some biological findings from the method, but I believe some nominal effort highlighting the quantitative nature of what this method enables would strengthen the impact of the paper and be useful for the reader. Selecting a small number of simple metrics (eg. Division frequency, average cell migration speed) and plotting them alongside the qualitative phases of the regeneration timeline that have already been generated would be a fairly modest investment of effort using tools that already exist in the Mastodon interface, I would roughly estimate on the order of an hour or two per dataset. I believe that this effort would be well worth it and better highlight a major strength of the approach.

      The primary goal of this work was to establish a robust method for continuous long-term live imaging of regeneration, but we do appreciate that a more quantitative analysis would add value to the data we are presenting. We tried to address this request in three steps:

      First, we examined whether clear temporal patterns in cell division, cell movements or other cellular features can be observed in an accurately tracked dataset (li13-t4, tracked in Sugawara et al. 2022). To test this we used the feature extraction functions now available on the Mastodon platform (see link). We could discern a meaningful temporal pattern for cell divisions (see below); the other features showed no interpretable pattern of variation.

      Second, we asked whether we could use automated cell tracking to analyse the patterns of cell division in all our datasets. Using an Elephant deep learning model trained on the tracks of the li13-t4 dataset, we performed automated cell tracking in the same dataset, and compared the pattern of cell divisions from the automated cell track predictions with those coming from manually validated cell tracks. We observed that the automated tracks gave very imprecise results, with a high background of false positives obscuring the real temporal pattern (see images below, with validated data on the left, automated tracking on the right). These results show that the automated cell tracking is not accurate enough to provide a meaningful picture on the pattern of cell divisions.

      Third, we tried to improve the accuracy of detection of dividing cells by additional training of Elephant models on each dataset (to lower the rate of false positives), followed by manual proofreading. Given how labour intensive this is, we could only apply this approach to 4 additional datasets. The results of this analysis are presented in Figure 4.

      Author response image 1.

      MC 3. The authors describe the challenges faced by their described approach:

      Using this mode of semi-automated and manual cell tracking, we find that most cells in the upper slices of our image stacks (top 30 microns) can be tracked with a high degree of confidence. A smaller proportion of cell lineages are trackable in the deeper layers.

      Given that the authors quantify this in Table 1, it would aid the reader to provide metrics in the manuscript text at this point. Furthermore, the metrics provided in Table 1 appear to be for overall performance, but the text describes that performance appears to be heavily depth dependent. Segregating the performance metrics further, for example providing DET, TRA, precision and recall for superficial layers only and for the overall dataset, would help support these arguments and better highlight performance a potential adopter of the method might expect.

      In the revised manuscript we have added data on the tracking performance of Elephant in relation to imaging depth in Suppl. Figure 3. These data confirm our original statement (which was based on manual tracking) that nuclei are more challenging to track in deeper layers.

      We point to these new results in two parts of the paper, as follows: "A smaller proportion of cells are trackable in the deeper layers (see Suppl. Figure 3)", and "Our results, summarised in Table 1A, show that the detection of nuclei can be enhanced by doubling the z resolution at the expense of xy resolution and image quality. This improvement is particularly evident in the deeper layers of the imaging stacks, which are usually the most challenging to track (Suppl. Figure 3)."

      MC 4. Performance characterization in Table 1 appears to derive from a single dataset that is then subsampled and processed in different ways to assess the impact of these changes on cell tracking and detection performance. While this is a suitable strategy for this type of optimization it leaves open the question of performance consistency across datasets. I fully recognize that this type of quantification can be onerous and time consuming, but some attempt to assess performance variability across datasets would be valuable. Manual curation over a short time window over a random sampling of the acquired data would be sufficient to assess this.

      We think that similar trade-offs will apply to all our datasets because tracking performance is constrained by the same features, which are intrinsic to our system; e.g. by the crowding of nuclei in relation to axial resolution, or the speed of mitosis in relation to the temporal resolution of imaging. We therefore do not see a clear rationale for repeating this analysis. On a practical level, our existing image datasets could not be subsampled to generate the various conditions tested in Table 1, so proving this point experimentally would require generating new recordings, and tracking these to generate ground truth data. This would require months of additional work.

      A second, related question is whether Elephant would perform equally well in detecting and tracking nuclei across different datasets. This point has been addressed in the Sugawara et al. 2022 paper, where the performance of Elephant was tested on diverse fluorescence datasets.

      Reviewer #3:

      Major comments:

      • The authors should clearly specify what are the key technical improvements compared to their previous studies (Alwes et al. 2016, Elife; Konstantinides & Averof 2014, Science). There, the approaches for mounting, imaging, and cell tracking are already introduced, and the imaging is reported to run for up to 7 days in some cases.

      In Konstantinides and Averof (2014) we did not present any live imaging at cellular resolution. In Alwes et al. (2016) we described key elements of our live imaging approach, but we were never able to record the entire time course of leg regeneration. The longest recordings in that work were 3.5 days long.

      We have revised the abstract and introduction to clarify the novelty of this work, in relation to our previous publications. Please see our response to comment MC1 of reviewer 2.

      • While the authors mention testing the effect of imaging parameters (such as scanning speed and line averaging) on the imaging/tracking outcome, very little or no information is provided on how this was done beyond the parameters that they finally arrived to.

      Scan speed and averaging parameters were determined by measuring contrast and signal-to-noise ratios in images captured over a range of settings. We have now added these data in Supplementary Figure 1.

      • The authors claim that, using the acquired live imaging data across entire regeneration time course, they are now able to confirm and extend their description of leg regeneration. However, many claims about the order and timing of various cellular events during regeneration are supported only by references to individual snapshots in figures or supplementary movies. Presenting a more quantitative description of cellular processes during regeneration from the acquired data would significantly enhance the manuscript and showcase the usefulness of the improved workflow.

      The events we describe can be easily observed in the maximum projections, available in Suppl. Data 2. Regarding the quantitative analysis, please see our response to comment MC2 of reviewer 2.  

      • Table 1 summarizes the performance of cell tracking using simulated datasets of different quality. However only averages and/or maxima are given for the different metrics, which makes it difficult to evaluate the associated conclusions. In some cases, only 1 or 2 test runs were performed.

      The metrics extracted from each of the three replicates, per dataset, are now included in Suppl. Data 4.

      We consistently used 3 replicates to measure tracking performance with each of the datasets. The "replicates" column label in Table 1 referred to the number of scans that were averaged to generate the image, not to the replicates used for estimating the tracking performance. To avoid confusion, we changed that label to "averaging".

      • OPTIONAL: An imaging approach that allows using the current mounting strategy but could help with some of the tradeoffs is using a spinning-disk confocal microscope instead of a laser scanning one. If the authors have such a system available, it could be interesting to compare it with their current scanning confocal setup.

      Preliminary experiments that we carried out several years ago on a spinning disk confocal (with a 20x objective and the CSU-W1 spinning disk) were not very encouraging, and we therefore did not pursue this approach further. The main problem was bad image quality in deeper tissue layers.

      Minor comments:

      • The presented imaging protocol was optimized for one laser wavelength only (561 nm) - this should be mentioned when discussing the technical limitations since animals tend to react differently to different wavelengths. Same settings might thus not be applicable for imaging a different fluorescent protein.

      In the second paragraph of the Results section, we explain that we perform the imaging at long wavelengths in order to minimise photodamage. It should be clear to the readers that changing the excitation wavelength will have an impact for long-term live imaging.

      • For transferability, it would be useful if the intensity of laser illumination was measured and given in the Methods, instead of just a relative intensity setting from the imaging software. Similarly,more details of the imaging system should be provided where appropriate (e.g., detector specifications).

      We have now measured the intensity of the laser illumination and added this information in the

      Methods: "Laser power was typically set to 0.3% to 0.8%, which yields 0.51 to 1.37 µW at 561 nm (measured with a ThorLabs Microscope Slide Power Sensor, #S170C)."

      Regarding the imaging system and the detector, we provide all the information that is available to us on the microscope's technical sheets.

      • The versions of analysis scripts associated with the manuscript should be uploaded to an online repository that permanently preserves the respective version.

      The scripts are now available on gitbub and online repositories. The relevant links are included in the revised manuscript.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Functional lateralization between the right and left hemispheres is reported widely in animal taxa, including humans. However, it remains largely speculative as to whether the lateralized brains have a cognitive gain or a sort of fitness advantage. In the present study, by making use of the advantages of domestic chicks as a model, the authors are successful in revealing that the lateralized brain is advantageous in the number sense, in which numerosity is associated with spatial arrangements of items. Behavioral evidence is strong enough to support their arguments. Brain lateralization was manipulated by light exposure during the terminal phase of incubation, and the left-to-right numerical representation appeared when the distance between items gave a reliable spatial cue. The light-exposure induced lateralization, though quite unique in avian species, together with the lack of intense inter-hemispheric direct connections (such as the corpus callosum in the mammalian cerebrum), was critical for the successful analysis in this study. Specification of the responsible neural substrates in the presumed right hemisphere is expected in future research. Comparable experimental manipulation in the mammalian brain must be developed to address this general question (functional significance of brain laterality) is also expected.

      We sincerely appreciate the Reviewer's insightful feedback and his/her recognition of the key contributions of our study.

      Reviewer #2 (Public review):

      Summary:

      This is the first study to show how a L-R bias in the relationship between numerical magnitude and space depends on brain lateralisation, and moreover, how is modulated by in ovo conditions.

      Strengths:

      Novel methodology for investigating the innateness and neural basis of an L-R bias in the relationship between number and space.

      We would like to thank the Reviewer for their valuable feedback and for highlighting the key contributions of our study.

      Weaknesses:

      I would query the way the experiment was contextualised. They ask whether culture or innate pre-wiring determines the 'left-to-right orientation of the MNL [mental number line]'.

      We thank the Reviewer for raising this point, which has allowed us to provide a more detailed explanation of this aspect. Rather than framing the left-to-right orientation of the mental number line (MNL) as exclusively determined by either cultural influences or innate pre-wiring, our study highlights the role of environmental stimulation. Specifically, prenatal light exposure can shape hemispheric specialization, which in turn contributes to spatial biases in numerical processing. Please see lines 115-118.

      The term, 'Mental Number Line' is an inference from experimental tasks. One of the first experimental demonstrations of a preference or bias for small numbers in the left of space and larger numbers in the right of space, was more carefully described as the spatial-numerical association of response codes - the SNARC effect (Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and numerical magnitude. Journal of Experimental Psychology: General, 122, 371-396).

      We have refined our description of the MNL and SNARC effect to ensure conceptual accuracy in the revised manuscript; please see lines 53-59.

      This has meant that the background to the study is confusing. First, the authors note, correctly, that many other creatures, including insects, can show this bias, though in none of these has neural lateralisation been shown to be a cause. Second, their clever experiment shows that an experimental manipulation creates the bias. If it were innate and common to other species, the experimental manipulation shouldn't matter. There would always be an L-R bias. Third, they seem to be asserting that humans have a left-to-right (L-R) MNL. This is highly contentious, and in some studies, reading direction affects it, as the original study by Dehaene et al showed; and in others, task affects direction (e.g. Bachtold, D., Baumüller, M., & Brugger, P. (1998). Stimulus-response compatibility in representational space. Neuropsychologia, 36, 731-735, not cited). Moreover, a very careful study of adult humans, found no L-R bias (Karolis, V., Iuculano, T., & Butterworth, B. (2011), not cited, Mapping numerical magnitudes along the right lines: Differentiating between scale and bias. Journal of Experimental Psychology: General, 140(4), 693-706). Indeed, Rugani et al claim, incorrectly, that the L-R bias was first reported by Galton in 1880. There are two errors here: first, Galton was reporting what he called 'visualised numerals', which are typically referred to now as 'number forms' - spontaneous and habitual conscious visual representations - not an inference from a number line task. Second, Galton reported right-to-left, circular, and vertical visualised numerals, and no simple left-to-right examples (Galton, F. (1880). Visualised numerals. Nature, 21, 252-256.). So in fact did Bertillon, J. (1880). De la vision des nombres. La Nature, 378, 196-198, and more recently Seron, X., Pesenti, M., Noël, M.-P., Deloche, G., & Cornet, J.-A. (1992). Images of numbers, or "When 98 is upper left and 6 sky blue". Cognition, 44, 159-196, and Tang, J., Ward, J., & Butterworth, B. (2008). Number forms in the brain. Journal of Cognitive Neuroscience, 20(9), 1547-1556.

      We sincerely appreciate the opportunity to discuss numerical spatialization in greater detail. We have clarified that an innate predisposition to spatialize numerosity does not necessarily exclude the influence of environmental stimulation and experience. We have proposed an integrative perspective, incorporating both cultural and innate factors, suggesting that numerical spatialization originates from neural foundations while remaining flexible and modifiable by experience and contextual influences. Please see lines 69–75.

      We have incorporated the Reviewer’s suggestions and cited all the recommended papers; please see lines 47–75.

      If the authors are committed to chicks' MN Line they should test a series of numbers showing that the bias to the left is greater for 2 and 3 than for 4, etc.

      What does all this mean? I think that the paper should be shorn of its misleading contextualisation, including the term 'Mental Number Line'. The authors also speculate, usefully, on why chicks and other species might have a L-R bias. I don't think the speculations are convincing, but at least if there is an evolutionary basis for the bias, it should at least be discussed.

      In the revised version of the manuscript, we have resorted to adopt the Spatial Numerical Association (SNA). We thank the Reviewer for this valuable comment.

      We appreciated the Reviewer’s suggestion regarding the evolutionary basis of lateralization and have included considerations of its relevance in chicks and other species; please see lines 143-151 and 381-386.

      This paper is very interesting with its focus on why the L-R bias exists, and where and why it does not.

      We wish to thank the Reviewer again for his/her work.

      Reviewer #1(Public review)

      (1) Introduction needs to be edited to make it much more concise and shorter. Hypotheses (from line 67 to 81) and predictions (from line 107 to 124) must be thoroughly rephrased, because (a) general readers are not familiar with the hypotheses (emotional valence and BAFT), (b) the hypotheses may or may not be mutually exclusive, and therefore (c) the logical linkage between the hypotheses and the predicted results are not necessarily clear. Most general readers may be embarrassed by the apparently complicated logical constructs of this study. Instead, it is recommended that focal spotlight should be given to the issue of functional contributions of brain lateralization to the cognitive development of number sense.

      We thank the Reviewer for these comments, which allowed us to improve the clarity of our hypotheses and predictions. We thoroughly rephrased them to ensure they are accessible to general readers and specified that the models may or may not be mutually exclusive. Additionally, we highlighted the functional contributions of brain lateralization to the cognitive development of number sense, addressing the suggested focal point. While we have shortened the introduction, we opted to retain essential background information to ensure readers are well-informed about the relevant scientific literature. Please review the entire introduction, particularly lines 84–118 and 218.

      (2) In relation to the above (a), abbreviations need to be reexamined. MNL (mental number line) appears early on lines 27 and 49, whereas the possibly related conceptual term SNA appeared first on line 213, without specification to "spatial numerical association".

      We thank the Reviewer for bringing this to our attention. We have addressed the suggestions, and the term SNA has been used specifically to refer to numerical spatialization in non-human animals. Please see lines 27-30.

      (3) By the way, what difference is there between MNL and SNA? Please specify the difference if it is important. If not important, is it possible that one of these two is consistently used in this report, at least in the Introduction?

      We clarified the distinction between MNL and SNA and have consistently used SNA in this report; please see lines 47-75.

      (4) In relation to the above (a and b), clarification of the hypotheses and their abbreviations in the form of a table or a graphical representation will strongly reinforce the general readers' understanding. It is also possible that some of these hypotheses are discussed later in the Discussion, rather than in Introduction.

      We appreciated this suggestion and have now clarified the hypotheses, also providing a table/graphical representation, aiming to enhance accessibility for general readers; please see lines 110-118, and 218.

      (5) Figures 1 and 2 are transparent and easily understandable; however, the statistical details in the Results may bother the readers as the main points are doubly represented in Figures 1, 2, and Table 1. These (statistics and Table 1) may go to the supplementary file, if the editor agrees.

      We would prefer to keep Table 1 and the statistical details as part of the main article to provide readers with a comprehensive overview of the experimental results. However, if the editors also suggest to move them to the supplementary file, we are open to making this adjustment.

      (6) In Figure 1D and E, and text lines 139-140. Figure 1D shows that the chick is looking monocularly by the right eye, but the text (line 139) says "left eye in use. Is it correct?

      We thank the reviewer for pointing out this incongruity. We have corrected the text to align with Figure 1D and E; please see lines 180-181.

      (7) Methods. The behavioral experiment was initiated on Wednesday (8 a.m.; line 479), but at what age? At what post-hatch day was the experiment terminated? A simple graphical illustration of the schedule will be quite helpful.

      We have added the requested details, specifying that experiments began on the third post-hatch day and ended on the fifth day; please see lines 533-539.

      Additionally, we have included a graphical illustration of the schedule to enhance clarity; please see line 666.  

      (8) Methods. How many chicks were excluded from the study in the course of Pre-training (line 525) and Training (line 535-536)? Was the exclusion rate high, or just negligible?

      We appreciate the reviewer's suggestion. We have now included the number of subjects excluded during the training phase; please see lines 593-597.

      We wish to thank the Reviewer again for his/her work.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The image analysis pipeline is tested in analysing microscopy imaging data of gastruloids of varying sizes, for which an optimised protocol for in toto image acquisition is established based on whole mount sample preparation using an optimal refractive index matched mounting media, opposing dual side imaging with two-photon microscopy for enhanced laser penetration, dual view registration, and weighted fusion for improved in toto sample data representation. For enhanced imaging speed in a two-photon microscope, parallel imaging was used, and the authors performed spectral unmixing analysis to avoid issues of signal cross-talk.

      In the image analysis pipeline, different pre-treatments are done depending on the analysis to be performed (for nuclear segmentation - contrast enhancement and normalisation; for quantitative analysis of gene expression - corrections for optical artifacts inducing signal intensity variations). Stardist3D was used for the nuclear segmentation. The study analyses into properties of gastruloid nuclear density, patterns of cell division, morphology, deformation, and gene expression.

      Strengths:

      The methods developed are sound, well described, and well-validated, using a sample challenging for microscopy, gastruloids. Many of the established methods are very useful (e.g. registration, corrections, signal normalisation, lazy loading bioimage visualisation, spectral decomposition analysis), facilitate the development of quantitative research, and would be of interest to the wider scientific community.

      We thank the reviewer for this positive feedback.

      Weaknesses:

      A recommendation should be added on when or under which conditions to use this pipeline.

      We thank the reviewer for this valuable feedback, which will be addressed in the revision. In general, the pipeline is applicable to any tissue, but it is particularly useful for large and dense 3D samples—such as organoids, embryos, explants, spheroids, or tumors—that are typically composed of multiple cell layers and have a thickness greater than 50 µm.

      The processing and analysis pipeline are compatible with any type of 3D imaging data (e.g. confocal, 2 photon, light-sheet, live or fixed).

      - Spectral unmixing to remove signal cross-talk of multiple fluorescent targets is typically more relevant in two-photon imaging due to the broader excitation spectra of fluorophores compared to single-photon imaging. In confocal or light-sheet microscopy, alternating excitation wavelengths often circumvents the need for unmixing. Spectral decomposition performs even better with true spectral detectors; however, these are usually not non-descanned detectors, which are more appropriate for deep tissue imaging. Our approach demonstrates that simultaneous cross-talk-free four-color two-photon imaging can be achieved in dense 3D specimen with four non-descanned detectors and co-excitation by just two laser lines. Depending on the dispersion in optically dense samples, depth-dependent apparent emission spectra need to be considered.

      - Nuclei segmentation using our trained StarDist3D model is applicable to any system under two conditions: (1) the nuclei exhibit a star-convex shape, as required by the StarDist architecture, and (2) the image resolution is sufficient in XYZ to allow resampling. The exact sampling required is object- and system-dependent, but the goal is to achieve nearly isotropic objects with diameters of approximately 15 pixels while maintaining image quality. In practice, images containing objects that are natively close to or larger than 15 pixels in diameter should segment well after resampling. Conversely, images with objects that are significantly smaller along one or more dimensions will require careful inspection of the segmentation results.

      - Normalization is broadly applicable to multicolor data when at least one channel is expected to be ubiquitously expressed within its domain. Wavelength-dependent correction requires experimental calibration using either an ubiquitous signal at each wavelength. Importantly, this calibration only needs to be performed once for a given set of experimental conditions (e.g., fluorophores, tissue type, mounting medium).

      - Multi-scale analysis of gene expression and morphometrics is applicable to any 3D multicolor image. This includes both the 3D visualization tools (Napari plugins) and the various analytical plots (e.g., correlation plots, radial analysis). Multi-scale analysis can be performed even with imperfect segmentation, as long as segmentation errors tend to cancel out when averaged locally at the relevant spatial scale. However, systematic errors—such as segmentation uncertainty along the Z-axis due to strong anisotropy—may accumulate and introduce bias in downstream analyses. Caution is advised when analyzing hollow structures (e.g., curved epithelial monolayers with large cavities), as the pipeline was developed primarily for 3D bulk tissues, and appropriate masking of cavities would be needed.

      Reviewer #2 (Public review):

      Summary:

      This study presents an integrated experimental and computational pipeline for high-resolution, quantitative imaging and analysis of gastruloids. The experimental module employs dual-view two-photon spectral imaging combined with optimized clearing and mounting techniques to image whole-mount immunostained gastruloids. This approach enables the acquisition of comprehensive 3D images that capture both tissue-scale and single-cell level information.

      The computational module encompasses both pre-processing of acquired images and downstream analysis, providing quantitative insights into the structural and molecular characteristics of gastruloids. The pre-processing pipeline, tailored for dual-view two-photon microscopy, includes spectral unmixing of fluorescence signals using depth-dependent spectral profiles, as well as image fusion via rigid 3D transformation based on content-based block-matching algorithms. Nuclei segmentation was performed using a custom-trained StarDist3D model, validated against 2D manual annotations, and achieving an F1 score of 85+/-3% at a 50% intersection-over-union (IoU) threshold. Another custom-trained StarDist3D model enabled accurate detection of proliferating cells and the generation of 3D spatial maps of nuclear density and proliferation probability. Moreover, the pipeline facilitates detailed morphometric analysis of cell density and nuclear deformation, revealing pronounced spatial heterogeneities during early gastruloid morphogenesis.

      All computational tools developed in this study are released as open-source, Python-based software.

      Strengths:

      The authors applied two-photon microscopy to whole-mount deep imaging of gastruloids, achieving in toto visualization at single-cell resolution. By combining spectral imaging with an unmixing algorithm, they successfully separated four fluorescent signals, enabling spatial analysis of gene expression patterns.

      The entire computational workflow, from image pre-processing to segmentation with a custom-trained StarDist3D model and subsequent quantitative analysis, is made available as open-source software. In addition, user-friendly interfaces are provided through the open-source, community-driven Napari platform, facilitating interactive exploration and analysis.

      We thank the reviewer for this positive feedback.

      Weaknesses:

      The computational module appears promising. However, the analysis pipeline has not been validated on datasets beyond those generated by the authors, making it difficult to assess its general applicability.

      We agree that applying our analysis pipeline to published datasets—particularly those acquired with different imaging systems—would be valuable. However, only a few high-resolution datasets of large organoid samples are publicly available, and most of these either lack multiple fluorescence channels or represent 3D hollow structures. Our computational pipeline consists of several independent modules: spectral filtering, dual-view registration, local contrast enhancement, 3D nuclei segmentation, image normalization based on a ubiquitous marker, and multiscale analysis of gene expression and morphometrics.

      Spectral filtering has already been applied in other systems (e.g. [7] and [8]), but is here extended to account for imaging depth-dependent apparent emission spectra of the different fluorophores. In our pipeline, we provide code to run spectral filtering on multichannel images, integrated in Python. In order to apply the spectral filtering algorithm utilized here, spectral patterns of each fluorophore need to be calibrated as a function of imaging depth, which depend on the specific emission windows and detector settings of the microscope.

      Image normalization using a wavelength-dependent correction also requires calibration on a given imaging setup to measure the difference in signal decay among the different fluorophores species. To our knowledge, the calibration procedures for spectral-filtering and our image-normalization approach have not been performed previously in 3D samples, which is why validation on published datasets is not readily possible. Nevertheless, they are described in detail in the Methods section, and the code used—from the calibration measurements to the corrected images—is available open-source at the Zenodo link in the manuscript.

      Dual-view registration, local contrast enhancement, and multiscale analysis of gene expression and morphometrics are not limited to organoid data or our specific imaging modalities. If we identify suitable datasets to validate these modules, we will include them in the revised manuscript.

      To evaluate our 3D nuclei segmentation model, we plan to test it on diverse systems, including gastruloids stained with the nuclear marker Draq5 from Moos et al. [1]; breast cancer spheroids; primary ductal adenocarcinoma organoids; human colon organoids and HCT116 monolayers from Ong et al. [2]; and zebrafish tissues imaged by confocal microscopy from Li et al [3]. These datasets were acquired using either light-sheet or confocal microscopy, with varying imaging parameters (e.g., objective lens, pixel size, staining method).

      Preliminary results are promising (see Author response image 1). We will provide quantitative comparisons of our model’s performance on these datasets, using annotations or reference predictions provided by the original authors where available.

      Author response image 1.

      Qualitative comparison of our custom Stardist3D segmentation strategy on diverse published 3D nuclei datasets. We show one slice from the XY plane for simplicity. (a) Gastruloid stained with the nuclear marker DRAQ5 imaged with an open-top dual-view and dual-illumination LSM [1]. (b) Breast cancer spheroid [2]. (c) Primary pancreatic ductal adenocarcinoma organoids imaged with confocal microscopy[2]. (d) Human colon organoid imaged with LSM laser scanning confocal microscope [2]. (e) Monolayer HCT116 cells imaged with LSM laser scanning confocal microscope [2]. (f) Fixed zebrafish embryo stained for nuclei and imaged with a Zeiss LSM 880 confocal microscopy [3].

      Besides, the nuclei segmentation component lacks benchmarking against existing methods.

      We agree with the reviewer that a benchmark against existing segmentation methods would be very useful. We tried different pre-trained models:

      - CellPose, which we tested in a previous paper ([4]) and which showed poor performances compared to our trained StarDist3D model.

      - DeepStar3D ([2]) is only available in the software 3DCellScope. We could not benchmark the model on our data, because the free and accessible version of the software is limited to small datasets. An image of a single whole-mount gastruloid with one channel, having dimensions (347,467,477) was too large to be processed, see screenshot below. The segmentation model could not be extracted from the source code and tested externally because the trained DeepStar3D weights are encrypted.

      Author response image 2.

      Screenshot of the 3DCellScore software. We could not perform 3D nuclei segmentation of a whole-mount gastruloids because the image size was too large to be processed.

      - AnyStar ([5]), which is a model trained from the StarDist3D architecture, was not performing well on our data because of the heterogeneous stainings. Basic pre-processing such as median and gaussian filtering did not improve the results and led to wrong segmentation of touching nuclei. AnyStar was demonstrated to segment well colon organoids in Ong et al, 2025 ([2]), but the nuclei were more homogeneously stained. Our Hoechst staining displays bright chromatin spots that are incorrectly labeled as individual nuclei.

      - Cellos ([6]), another model trained from StarDist3D, was also not performing well. The objects used for training and to validate the results are sparse and not touching, so the predicted segmentation has a lot of false negatives even when lowering the probability threshold to detect more objects. Additionally, the network was trained with an anisotropy of (9,1,1), based on images with low z resolution, so it performed poorly on almost isotropic images. Adapting our images to the network’s anisotropy results in an imprecise segmentation that can not be used to measure 3D nuclei deformations.

      We tried both Cellos and AnyStar predictions on a gastruloid image from Fig. S2 of our main manuscript. Author response image 3 displays the results qualitatively compared to our trained model Stardist-tapenade. For the revision of the paper, we will perform a comprehensive benchmark of these state-of-the-art routines, including quantitative assessment of the performance.

      Author response image 3.

      Qualitative comparison of two published segmentation models versus our model. We show one slice from the XY plane for simplicity. Segmentations are displayed with their contours only. (Top left) Gastruloid stained with Hoechst, image extracted from Fig S2 of our manuscript. (Top right) Same image overlayed with the prediction from the Cellos model, showing many false negatives. (Bottom left) Same image overlayed with the prediction from our Stardist-tapenade model. (Bottom right) Same image overlayed with the prediction from the AnyStar model, false positives are indicated with a red arrow.

      Appraisal:

      The authors set out to establish a quantitative imaging and analysis pipeline for gastruloids using dual-view two-photon microscopy, spectral unmixing, and a custom computational framework for 3D segmentation and gene expression analysis. This aim is largely achieved. The integration of experimental and computational modules enables high-resolution in toto imaging and robust quantitative analysis at the single-cell level. The data presented support the authors' conclusions regarding the ability to capture spatial patterns of gene expression and cellular morphology across developmental stages.

      Impact and utility:

      This work presents a compelling and broadly applicable methodological advance. The approach is particularly impactful for the developmental biology community, as it allows researchers to extract quantitative information from high-resolution images to better understand morphogenetic processes. The data are publicly available on Zenodo, and the software is released on GitHub, making them highly valuable resources for the community.

      We thank the reviewer for these positive feedbacks.

      Reviewer #3 (Public review):

      Summary

      The paper presents an imaging and analysis pipeline for whole-mount gastruloid imaging with two-photon microscopy. The presented pipeline includes spectral unmixing, registration, segmentation, and a wavelength-dependent intensity normalization step, followed by quantitative analysis of spatial gene expression patterns and nuclear morphometry on a tissue level. The utility of the approach is demonstrated by several experimental findings, such as establishing spatial correlations between local nuclear deformation and tissue density changes, as well as the radial distribution pattern of mesoderm markers. The pipeline is distributed as a Python package, notebooks, and multiple napari plugins.

      Strengths

      The paper is well-written with detailed methodological descriptions, which I think would make it a valuable reference for researchers performing similar volumetric tissue imaging experiments (gastruloids/organoids). The pipeline itself addresses many practical challenges, including resolution loss within tissue, registration of large volumes, nuclear segmentation, and intensity normalization. Especially the intensity decay measurements and wavelength-dependent intensity normalization approach using nuclear (Hoechst) signal as reference are very interesting and should be applicable to other imaging contexts. The morphometric analysis is equally well done, with the correlation between nuclear shape deformation and tissue density changes being an interesting finding. The paper is quite thorough in its technical description of the methods (which are a lot), and their experimental validation is appropriate. Finally, the provided code and napari plugins seem to be well done (I installed a selected list of the plugins and they ran without issues) and should be very helpful for the community.

      We thank the reviewer for his positive feedback and appreciation of our work.

      Weaknesses

      I don't see any major weaknesses, and I would only have two issues that I think should be addressed in a revision:

      (1) The demonstration notebooks lack accompanying sample datasets, preventing users from running them immediately and limiting the pipeline's accessibility. I would suggest to include (selective) demo data set that can be used to run the notebooks (e.g. for spectral unmixing) and or provide easily accessible demo input sample data for the napari plugins (I saw that there is some sample data for the processing plugin, so this maybe could already be used for the notebooks?).

      We thank the reviewer for this relevant suggestion. The 7 notebooks were updated to automatically download sample tests. The different parts of the pipeline can now be run immediately: https://github.com/GuignardLab/tapenade/tree/chekcs_on_notebooks/src/tapenade/notebooks

      (2) The results for the morphometric analysis (Figure 4) seem to be only shown in lateral (xy) views without the corresponding axial (z) views. I would suggest adding this to the figure and showing the density/strain/angle distributions for those axial views as well.

      We agree with the reviewer that a morphometric analysis based on the axial views would be informative and plan to perform this analysis for the revision.

      (1) Moos, F., Suppinger, S., de Medeiros, G., Oost, K.C., Boni, A., Rémy, C., Weevers, S.L., Tsiairis, C., Strnad, P. and Liberali, P., 2024. Open-top multisample dual-view light-sheet microscope for live imaging of large multicellular systems. Nature Methods, 21(5), pp.798-803.

      (2) Ong, H.T., Karatas, E., Poquillon, T., Grenci, G., Furlan, A., Dilasser, F., Mohamad Raffi, S.B., Blanc, D., Drimaracci, E., Mikec, D. and Galisot, G., 2025. Digitalized organoids: integrated pipeline for high-speed 3D analysis of organoid structures using multilevel segmentation and cellular topology. Nature Methods, 22(6), pp.1343-1354.

      (3) Li, L., Wu, L., Chen, A., Delp, E.J. and Umulis, D.M., 2023. 3D nuclei segmentation for multi-cellular quantification of zebrafish embryos using NISNet3D. Electronic Imaging, 35, pp.1-9.

      (4) Vanaret, J., Dupuis, V., Lenne, P. F., Richard, F., Tlili, S., & Roudot, P. (2023). A detector-independent quality score for cell segmentation without ground truth in 3D live fluorescence microscopy. IEEE Journal of Selected Topics in Quantum Electronics, 29(4: Biophotonics), 1-12.

      (5) Dey, N., Abulnaga, M., Billot, B., Turk, E. A., Grant, E., Dalca, A. V., & Golland, P. (2024). AnyStar: Domain randomized universal star-convex 3D instance segmentation. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (pp. 7593-7603).

      (6) Mukashyaka, P., Kumar, P., Mellert, D. J., Nicholas, S., Noorbakhsh, J., Brugiolo, M., ... & Chuang, J. H. (2023). High-throughput deconvolution of 3D organoid dynamics at cellular resolution for cancer pharmacology with Cellos. Nature Communications, 14(1), 8406.

      (7) Rakhymzhan, A., Leben, R., Zimmermann, H., Günther, R., Mex, P., Reismann, D., ... & Niesner, R. A. (2017). Synergistic strategy for multicolor two-photon microscopy: application to the analysis of germinal center reactions in vivo. Scientific reports, 7(1), 7101.

      (8) Dunsing, V., Petrich, A., & Chiantia, S. (2021). Multicolor fluorescence fluctuation spectroscopy in living cells via spectral detection. Elife, 10, e69687.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews: 

      Reviewer #1 (Public review): 

      Summary: 

      This work integrates two timepoints from the Adolescent Brain Cognitive Development (ABCD) Study to understand how neuroimaging, genetic, and environmental data contribute to the predictive power of mental health variables in predicting cognition in a large early adolescent sample. Their multimodal and multivariate prediction framework involves a novel opportunistic stacking model to handle complex types of information to predict variables that are important in understanding mental health-cognitive performance associations. 

      Strengths: 

      The authors are commended for incorporating and directly comparing the contribution of multiple imaging modalities (task fMRI, resting state fMRI, diffusion MRI, structural MRI), neurodevelopmental markers, environmental factors, and polygenic risk scores in a novel multivariate framework (via opportunistic stacking), as well as interpreting mental health-cognition associations with latent factors derived from partial least squares. The authors also use a large well-characterized and diverse cohort of adolescents from the ABCD Study. The paper is also strengthened by commonality analyses to understand the shared and unique contribution of different categories of factors (e.g., neuroimaging vs mental health vs polygenic scores vs sociodemographic and adverse developmental events) in explaining variance in cognitive performance 

      Weaknesses: 

      The paper is framed with an over-reliance on the RDoC framework in the introduction, despite deviations from the RDoC framework in the methods. The field is also learning more about RDoC's limitations when mapping cognitive performance to biology. The authors also focus on a single general factor of cognition as the core outcome of interest as opposed to different domains of cognition. The authors could consider predicting mental health rather than cognition. Using mental health as a predictor could be limited by the included 9-11 year age range at baseline (where many mental health concerns are likely to be low or not well captured), as well as the nature of how the data was collected, i.e., either by self-report or from parent/caregiver report. 

      Thank you so much for your encouragement.

      We appreciate your comments on the strengths of our manuscript.

      Regarding the weaknesses, the reliance on the RDoC framework is by design. Even with its limitations, following RDoC allows us to investigate mental health holistically. In our case, RDoC enabled us to focus on a) a functional domain (i.e., cognitive ability), b) the biological units of analysis of this functional domain (i.e., neuroimaging and polygenic scores), c) potential contribution of environments, and d) the continuous individual deviation in this domain (as opposed to distinct categories). We are unaware of any framework with all these four features.

      Focusing on modelling biological units of analysis of a functional domain, as opposed to mental health per se, has some empirical support from the literature. For instance, in Marek and colleagues’ (2022) study, as mentioned by a previous reviewer, fMRI is shown to have a more robust prediction for cognitive ability than mental health. Accordingly, our reasons for predicting cognitive ability instead of mental health in this study are motivated theoretically (i.e., through RDoC) and empirically (i.e., through fMRI findings). We have clarified this reason in the introduction of the manuscript.

      We are aware of the debates surrounding the actual structure of functional domains where the originally proposed RDoC’s specific constructs might not fit the data as well as the data-driven approach (Beam et al., 2021; Quah et al., 2025). However, we consider this debate as an attempt to improve the characterisation of functional domains of RDoC, not an effort to invalidate its holistic, neurobiological and basicfunctioning approach. Our use of a latent-variable modelling approach through factor analyses moves towards a data-driven direction. We made the changes to the second-to-last paragraph in the introduction to make this point clear:

      “In this study, inspired by RDoC, we a) focused on cognitive abilities as a functional domain, b) created predictive models to capture the continuous individual variation (as opposed to distinct categories) in cognitive abilities, c) computed two neurobiological units of analysis of cognitive abilities: multimodal neuroimaging and PGS, and d) investigated the potential contributions of environmental factors. To operationalise cognitive abilities, we estimated a latent variable representing behavioural performance across various cognitive tasks, commonly referred to as general cognitive ability or the gfactor (Deary, 2012). The g-factor was computed from various cognitive tasks pertinent to RDoC constructs, including attention, working memory, declarative memory, language, and cognitive control. However, using the g-factor to operationalise cognitive abilities caused this study to diverge from the original conceptualisation of RDoC, which emphasises studying separate constructs within cognitive abilities (Morris et al., 2022; Morris & Cuthbert, 2012). Recent studies suggest an improvement to the structure of functional domains by including a general factor, such as the g-factor, in the model, rather than treating each construct separately (Beam et al., 2021; Quah et al., 2025). The g-factor in children is also longitudinally stable and can forecast future health outcomes (Calvin et al., 2017; Deary et al., 2013). Notably, our previous research found that neuroimaging predicts the g-factor more accurately than predicting performance from separate individual cognitive tasks (Pat et al., 2023). Accordingly, we decided to conduct predictive models on the g-factor while keeping the RDoC’s holistic, neurobiological, and basic-functioning characteristics.”

      Reviewer #2 (Public review):

      Summary: 

      This paper by Wang et al. uses rich brain, behaviour, and genetics data from the ABCD cohort to ask how well cognitive abilities can be predicted from mental-health-related measures, and how brain and genetics influence that prediction. They obtain an out-ofsample correlation of 0.4, with neuroimaging (in particular task fMRI) proving the key mediator. Polygenic scores contributed less. 

      Strengths: 

      This paper is characterized by the intelligent use of a superb sample (ABCD) alongside strong statistical learning methods and a clear set of questions. The outcome - the moderate level of prediction between the brain, cognition, genetics, and mental health - is interesting. Particularly important is the dissection of which features best mediate that prediction and how developmental and lifestyle factors play a role. 

      Thank you so much for the encouragement. 

      Weaknesses: 

      There are relatively few weaknesses to this paper. It has already undergone review at a different journal, and the authors clearly took the original set of comments into account in revising their paper. Overall, while the ABCD sample is superb for the questions asked, it would have been highly informative to extend the analyses to datasets containing more participants with neurological/psychiatric diagnoses (e.g. HBN, POND) or extend it into adolescent/early adult onset psychopathology cohorts. But it is fair enough that the authors want to leave that for future work. 

      Thank you very much for providing this valuable comment and for your flexibility.

      For the current manuscript, we have drawn inspiration from the RDoC framework, which emphasises the variation from normal to abnormal in normative samples (Morris et al., 2022). The ABCD samples align well with this framework.

      We hope to extend this framework to include participants with neurological and psychiatric diagnoses in the future. We have begun applying neurobiological units of analysis for cognitive abilities, assessed through multimodal neuroimaging and polygenic scores (PGS), to other datasets containing more participants with neurological and psychiatric diagnoses. However, this is beyond the scope of the current manuscript. We have listed this as one of the limitations in the discussion section:

      “Similarly, our ABCD samples were young and community-based, likely limiting the severity of their psychopathological issues (Kessler et al., 2007). Future work needs to test if the results found here are generalisable to adults and participants with stronger severity.”

      In terms of more practical concerns, much of the paper relies on comparing r or R2 measures between different tests. These are always presented as point estimates without uncertainty. There would be some value, I think, in incorporating uncertainty from repeated sampling to better understand the improvements/differences between the reported correlations. 

      This is a good suggestion. We have now included bootstrapped 95% confidence intervals in all of our scatter plots, showing the uncertainty of predictive performance.

      The focus on mental health in a largely normative sample leads to the predictions being largely based on the normal range. It would be interesting to subsample the data and ask how well the extremes are predicted. 

      We appreciate this comment. Similar to our response to Reviewer 2’s Weakness #1, our approach has drawn inspiration from the RDoC framework, which emphasises the variation from normal to abnormal in normative samples (Morris et al., 2022). Subsampling the data would make us deviate from our original motivation. 

      Moreover, we used 17 mental healh variables in our predictive models: 8 CBCL subscales, 4 BIS/BAS subscales and 5 UPSS subscales. It is difficult to subsample them. Perhaps a better approach is to test the applicability of our neurobiological units of analysis for cognitive abilities (multimodal neuroimaging and PGS) in other datasets that include more extreme samples. We are working on this line of studies at the moment, and hope to show that in our future work. 

      Reviewer 2’s Weakness #4

      A minor query - why are only cortical features shown in Figure 3? 

      We presented both cortical and subcortical features in Figure 3. The cortical features are shown on the surface space, while the subcortical features are displayed on the coronal plane. Below is an example of these cortical and subcortical features from the ENBack contrast. The subcortical features are presented in the far-right coronal image.

      We separated the presentation of cortical and subcortical features because the ABCD uses the CIFTI format (https://www.humanconnectome.org/software/workbenchcommand/-cifti-help). CIFTI-format images combine cortical surface (in vertices) with subcortical volume (in voxels). For task fMRI, the ABCD parcellated cortical vertices using Freesurfer’s Destrieux atlas and subcortical voxels using Freesurfer’s automatically segmented brain volume (ASEG).

      Due to the size of the images in Figure 3, it may have been difficult for Reviewer 2 to see the subcortical features clearly. We have now added zoomed-in versions of this figure as Supplementary Figures 4–13.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the autors):

      (1) In the abstract, could the authors mention which imaging modalities contribute most to the prediction of cognitive abilities (e.g., working memory-related task fMRI)? 

      Thank you for the suggestion. Following this advice, we now mention which imaging modalities led to the highest predictive performance. Please see the abstract below.

      “Cognitive abilities are often linked to mental health across various disorders, a pattern observed even in childhood. However, the extent to which this relationship is represented by different neurobiological units of analysis, such as multimodal neuroimaging and polygenic scores (PGS), remains unclear. 

      Using large-scale data from the Adolescent Brain Cognitive Development (ABCD) Study, we first quantified the relationship between cognitive abilities and mental health by applying multivariate models to predict cognitive abilities from mental health in children aged 9-10, finding an out-of-sample r\=.36 . We then applied similar multivariate models to predict cognitive abilities from multimodal neuroimaging, polygenic scores (PGS) and environmental factors. Multimodal neuroimaging was based on 45 types of brain MRI (e.g., task fMRI contrasts, resting-state fMRI, structural MRI, and diffusion tensor imaging). Among these MRI types, the fMRI contrast, 2-Back vs. 0-Back, from the ENBack task provided the highest predictive performance (r\=.4). Combining information across all 45 types of brain MRI led to the predictive performance of r\=.54. The PGS, based on previous genome-wide association studies on cognitive abilities, achieved a predictive performance of r\=.25. Environmental factors, including socio-demographics (e.g., parent’s income and education), lifestyles (e.g., extracurricular activities, sleep) and developmental adverse events (e.g., parental use of alcohol/tobacco, pregnancy complications), led to a predictive performance of r\=.49. 

      In a series of separate commonality analyses, we found that the relationship between cognitive abilities and mental health was primarily represented by multimodal neuroimaging (66%) and, to a lesser extent, by PGS (21%). Additionally, environmental factors accounted for 63% of the variance in the relationship between cognitive abilities and mental health. The multimodal neuroimaging and PGS then explained 58% and 21% of the variance due to environmental factors, respectively. Notably, these patterns remained stable over two years. 

      Our findings underscore the significance of neurobiological units of analysis for cognitive abilities, as measured by multimodal neuroimaging and PGS, in understanding both a) the relationship between cognitive abilities and mental health and b) the variance in this relationship shared with environmental factors.”

      (2) Could the authors clarify what they mean by "completing the transdiagnostic aetiology of mental health" in the introduction? (Second paragraph). 

      Thank you. 

      We intended to convey that understanding the transdiagnostic aetiology of mental health would be enhanced by knowing how neurobiological units of cognitive abilities, from the brain to genes, capture variations due to environmental factors. We realise this sentence might be confusing. Removing it does not alter the intended meaning of the paragraph, as we clarified this point later. The paragraph now reads:

      “According to the National Institute of Mental Health’s Research Domain Criteria (RDoC) framework (Insel et al., 2010), cognitive abilities should be investigated not only behaviourally but also neurobiologically, from the brain to genes. It remains unclear to what extent the relationship between cognitive abilities and mental health is represented in part by different neurobiological units of analysis -- such as neural and genetic levels measured by multimodal neuroimaging and polygenic scores (PGS). To fully comprehend the role of neurobiology in the relationship between cognitive abilities and mental health, we must also consider how these neurobiological units capture variations due to environmental factors, such as sociodemographics, lifestyles, and childhood developmental adverse events (Morris et al., 2022). Our study investigated the extent to which a) environmental factors explain the relationship between cognitive abilities and mental health, and b) cognitive abilities at the neural and genetic levels capture these associations due to environmental factors. Specifically, we conducted these investigations in a large normative group of children from the ABCD study (Casey et al., 2018). We chose to examine children because, while their emotional and behavioural problems might not meet full diagnostic criteria (Kessler et al., 2007), issues at a young age often forecast adult psychopathology (Reef et al., 2010; Roza et al., 2003). Moreover, the associations among different emotional and behavioural problems in children reflect transdiagnostic dimensions of psychopathology (Michelini et al., 2019; Pat et al., 2022), making children an appropriate population to study the transdiagnostic aetiology of mental health, especially within a framework that emphasises normative variation from normal to abnormal, such as the RDoC (Morris et al., 2022).“

      (3) It is unclear to me what the authors mean by this statement in the introduction: "Note that using the word 'proxy measure' does not necessarily mean that the predictive model for a particular measure has a high predictive performance - some proxy measures have better predictive performance than others". 

      We added this sentence to address a previous reviewer’s comment: “The authors use the phrasing throughout 'proxy measures of cognitive abilities' when they discuss PRS, neuroimaging, sociodemographics/lifestyle, and developmental factors. Indeed, the authors are able to explain a large proportion of variance with different combinations of these measures, but I think it may be a leap to call all of these proxy measures of cognition. I would suggest keeping the language more objective and stating these measures are associated with cognition.” 

      Because of this comment, we assumed that the reviewers wanted us to avoid the misinterpretation that a proxy measure implies high predictive performance. This term is used in machine learning literature (for instance, Dadi et al., 2021). We added the aforementioned sentence to ensure readers that using the term 'proxy measure' does not necessarily mean that the predictive model for a particular measure has high predictive performance. However, it seems that our intention led to an even more confusing message. Therefore, we decided to delete that sentence but keep an earlier sentence that explains the meaning of a proxy measure (see below).

      “With opportunistic stacking, we created a ‘proxy’ measure of cognitive abilities (i.e., predicted value from the model) at the neural unit of analysis using multimodal neuroimaging.”

      (4) Overall, despite comments from reviewers at another journal, I think the authors still refer to RDoC more than needed in the intro given the restructuring of the manuscript. For instance, at the end of page 4 and top of page 5, it becomes a bit confusing when the authors mention how they deviated from the RDoC framework, but their choice of cognitive domains is still motivated by RDoC. I think the chosen cognitive constructs are consistent with what is in ABCD and what other studies have incorporated into the g factor and do not require the authors to further justify their choice through RDoC. Also, there is emerging work showing that RDoC is limited in its ability to parse apart meaningful neuroimaging-based patterns; see for instance, Quah et al., Nature 2025 (https://doi.org/10.1038/s41467-025-55831-z). 

      Thank you very much for your comment. We have addressed it in our Response to Reviewer 1’s summary, strengths, and weaknesses above. We have rewritten the paragraph to clarify the relevance of our work to the RDoC framework and to recent studies aiming to improve RDoC constructs (including that from Quah and colleagues).

      (5) I am still on the fence about the use of 'proxy measures of cognitive abilities' given that it is defined as the predictive performance of mental health measures in predicting cognition - what about just calling these mental health predictors? Also, it would be easier to follow this train of thought throughout the manuscript. But I leave it to the authors if they decide to keep their current language of 'proxy measure of cognition'. 

      Thank you so much for your flexibility. As we explained previously, this ‘proxy measures’ term is used in machine learning literature (for instance, Dadi et al., 2021). We thought about other terms, such as “score”, which is used in genetics, i.e., polygenic scores (Choi et al., 2020). and has recently been used in neuroimaging, i.e., neuroscore (Rodrigue et al., 2024). However, using a ‘score’ is a bit awkward for mental health and socio-demographics, lifestyle and developmental adverse events. Accordingly, we decided to keep the term ‘proxy measures’.

      (6) It is unclear which cognitive abilities are being predicted in Figure 1, given the various domains that authors describe in their intro. Is it the g-factor from CFA? This should be clarified in all figure captions. 

      Yes, cognitive abilities are operationalised using a second-order latent variable, the g-factor from a CFA. We now added the following sentence to Figure 1, 2, 4 to make this point clearer. Thank you for the suggestion:

      “Cognitive abilities are based on the second-order latent variable, the g-factor, based on a confirmatory factor analysis of six cognitive tasks.”

      (7) I think it may also be worthwhile to showcase the explanatory power cognitive abilities have in predicting mental health or at least comment on this in the discussion. Certainly, there may be a bidirectional relationship here. The prediction direction from cognition to mental health may be an altogether different objective than what the paper currently presents, but many researchers working in psychiatry may take the stance (with support from the literature) that cognitive performance may serve as premorbid markers for later mental health concerns, particularly given the age range that the authors are working with in ABCD. 

      Thank you for this comment. 

      It is important to note that we do not make a directional claim in these cross-sectional analyses. The term "prediction" is used in a machine learning sense, implying only that we made an out-of-sample prediction (Yarkoni & Westfall, 2017). Specifically, we built predictive models on some samples (i.e., training participants) and applied our models to test participants who were not part of the model-building process. Accordingly, our predictive models cannot determine whether mental health “causes” cognitive abilities or vice versa, regardless of whether we treat mental health or cognitive abilities as feature/explanatory/independent variables or as target/response/outcome variables in the models. To demonstrate directionality, we would need to conduct a longitudinal analysis with many more repeated samples and use appropriate techniques, such as a cross-lagged panel model. It is beyond the scope of this manuscript and will need future releases of the ABCD data.

      We decided to use cognitive abilities as a target variable here, rather than a feature variable, mainly for theoretical reasons. This work was inspired by the RDoC framework, which emphasises functional domains. Cognitive abilities is the functional domain in the current study. We created predictive models to predict cognitive abilities based on a) mental health, b) multimodal neuroimaging, c) polygenic scores, and d) environmental factors. We could not treat cognitive abilities as a functional domain if we used them as a feature variable. For instance, if we predicted mental health (instead of cognitive abilities) from multimodal neuroimaging and polygenic scores, we would no longer capture the neurobiological units of analysis for cognitive abilities.

      We now made it clearer in the discussion that our use of predictive models cannot provide the directional of the effects

      “Our predictive modelling revealed a medium-sized predictive relationship between cognitive abilities and mental health. This finding aligns with recent meta-analyses of case-control studies that link cognitive abilities and mental disorders across various psychiatric conditions (Abramovitch et al., 2021; East-Richard et al., 2020). Unlike previous studies, we estimated the predictive, out-of-sample relationship between cognitive abilities and mental disorders in a large normative sample of children. Although our predictive models, like other cross-sectional models, cannot determine the directionality of the effects, the strength of the relationship between cognitive abilities and mental health estimated here should be more robust than when calculated using the same sample as the model itself, known as in-sample prediction/association (Marek et al., 2022; Yarkoni & Westfall, 2017). Examining the PLS loadings of our predictive models revealed that the relationship was driven by various aspects of mental health, including thought and externalising symptoms, as well as motivation. This suggests that there are multiple pathways—encompassing a broad range of emotional and behavioural problems and temperaments—through which cognitive abilities and mental health are linked.”

      (8) There is a lot of information packed into Figure 3 in the brain maps; I understand the authors wanted to fit this onto one page, and perhaps a higher resolution figure would resolve this, but the brain maps are very hard to read and/or compare, particularly the coronal sections. 

      Thank you for this suggestion. We agree with Reviewer 1 that we need to have a better visualisation of the feature-importance brain maps. To ensure that readers can clearly see the feature importance, we added a Zoom-in version of the feature-importance brain maps as Supplementary Figures 4 – 13.

      (9) It would be helpful for authors to cluster features in the resting state functional connectivity correlation matrices, and perhaps use shorter names/acronyms for the labels. 

      Thank you for this suggestion. 

      We have now added a zoomed-in version of the feature importance for rs-fmri as Supplementary Figure 7 (for baseline) and 12 (for follow-up).

      (10) Figures 4a) and 4b): please elaborate on "developmental adverse" in the title. I am assuming this is referring to childhood adverse events, or "developmental adversities". 

      Thank you so much for pointing this out. We meant ‘developmental adverse events’. We have made changes to this figure in the current manuscript.

      (11) For the "follow-up" analyses, I would recommend the authors present this using only the features that are indeed available at follow-up, even if the list of features is lower, otherwise it becomes a bit confusing with the mix of baseline and follow-up features. Or perhaps the authors could make this more clear in the figures by perhaps having a different color for baseline vs follow-up features along the y-axis labels. 

      Thank you for this advice. We have now added an indicator in the plot to show whether the features were collected in the baseline or follow-up. We also added colours to indicate which type of environmental factors they were. It is now clear that the majority of the features that were collected at baseline, but were used for the followup predictive model, were developmental adverse events.

      (12) Minor: Makowski et al 2023 reference can be updated to Makowski et al 2024, published in Cerebral Cortex. 

      Thank you for pointing this out. We have updated the citation accordingly. 

      References

      Abramovitch, A., Short, T., & Schweiger, A. (2021). The C Factor: Cognitive dysfunction as a transdiagnostic dimension in psychopathology. Clinical Psychology Review, 86, 102007. https://doi.org/10.1016/j.cpr.2021.102007

      Beam, E., Potts, C., Poldrack, R. A., & Etkin, A. (2021). A data-driven framework for mapping domains of human neurobiology. Nature Neuroscience, 24(12), 1733–1744. https://doi.org/10.1038/s41593-021-00948-9

      Calvin, C. M., Batty, G. D., Der, G., Brett, C. E., Taylor, A., Pattie, A., Čukić, I., & Deary, I. J. (2017). Childhood intelligence in relation to major causes of death in 68 year follow-up: Prospective population study. BMJ, j2708. https://doi.org/10.1136/bmj.j2708

      Casey, B. J., Cannonier, T., Conley, M. I., Cohen, A. O., Barch, D. M., Heitzeg, M. M., Soules, M. E., Teslovich, T., Dellarco, D. V., Garavan, H., Orr, C. A., Wager, T. D., Banich, M. T., Speer, N. K., Sutherland, M. T., Riedel, M. C., Dick, A. S., Bjork, J. M., Thomas, K. M., … ABCD Imaging Acquisition Workgroup. (2018). The Adolescent Brain Cognitive Development (ABCD) study: Imaging acquisition across 21 sites. Developmental Cognitive Neuroscience, 32, 43–54. https://doi.org/10.1016/j.dcn.2018.03.001

      Choi, S. W., Mak, T. S.-H., & O’Reilly, P. F. (2020). Tutorial: A guide to performing polygenic risk score analyses. Nature Protocols, 15(9), Article 9. https://doi.org/10.1038/s41596-020-0353-1

      Dadi, K., Varoquaux, G., Houenou, J., Bzdok, D., Thirion, B., & Engemann, D. (2021). Population modeling with machine learning can enhance measures of mental health. GigaScience, 10(10), giab071. https://doi.org/10.1093/gigascience/giab071

      Deary, I. J. (2012). Intelligence. Annual Review of Psychology, 63(1), 453–482. https://doi.org/10.1146/annurev-psych-120710-100353

      Deary, I. J., Pattie, A., & Starr, J. M. (2013). The Stability of Intelligence From Age 11 to Age 90 Years: The Lothian Birth Cohort of 1921. Psychological Science, 24(12), 2361–2368. https://doi.org/10.1177/0956797613486487

      East-Richard, C., R. -Mercier, A., Nadeau, D., & Cellard, C. (2020). Transdiagnostic neurocognitive deficits in psychiatry: A review of meta-analyses. Canadian Psychology / Psychologie Canadienne, 61(3), 190–214. https://doi.org/10.1037/cap0000196

      Insel, T., Cuthbert, B., Garvey, M., Heinssen, R., Pine, D. S., Quinn, K., Sanislow, C., & Wang, P. (2010). Research Domain Criteria (RDoC): Toward a New Classification Framework for Research on Mental Disorders. American Journal of Psychiatry, 167(7), 748–751. https://doi.org/10.1176/appi.ajp.2010.09091379

      Kessler, R. C., Amminger, G. P., Aguilar-Gaxiola, S., Alonso, J., Lee, S., & Üstün, T. B. (2007). Age of onset of mental disorders: A review of recent literature. Current Opinion in Psychiatry, 20(4). https://journals.lww.com/co-psychiatry/fulltext/2007/07000/age_of_onset_of_mental_disorders_a_review_of .10.aspx

      Marek, S., Tervo-Clemmens, B., Calabro, F. J., Montez, D. F., Kay, B. P., Hatoum, A. S., Donohue, M. R., Foran, W., Miller, R. L., Hendrickson, T. J., Malone, S. M., Kandala, S., Feczko, E., Miranda-Dominguez, O., Graham, A. M., Earl, E. A., Perrone, A. J., Cordova, M., Doyle, O., … Dosenbach, N. U. F. (2022). eproducible brain-wide association studies require thousands of individuals. Nature, 603(7902), 654–660. https://doi.org/10.1038/s41586-022-04492-9

      Michelini, G., Barch, D. M., Tian, Y., Watson, D., Klein, D. N., & Kotov, R. (2019). Delineating and validating higher-order dimensions of psychopathology in the Adolescent Brain Cognitive Development (ABCD) study. Translational Psychiatry, 9(1), 261. https://doi.org/10.1038/s41398-019-0593-4

      Morris, S. E., & Cuthbert, B. N. (2012). Research Domain Criteria: Cognitive systems, neural circuits, and dimensions of behavior. Dialogues in Clinical Neuroscience, 14(1), 29–37.

      Morris, S. E., Sanislow, C. A., Pacheco, J., Vaidyanathan, U., Gordon, J. A., & Cuthbert, B. N. (2022). Revisiting the seven pillars of RDoC. BMC Medicine, 20(1), 220. https://doi.org/10.1186/s12916-022-02414-0

      Pat, N., Riglin, L., Anney, R., Wang, Y., Barch, D. M., Thapar, A., & Stringaris, A. (2022). Motivation and Cognitive Abilities as Mediators Between Polygenic Scores and Psychopathology in Children. Journal of the American Academy of Child and Adolescent Psychiatry, 61(6), 782-795.e3. https://doi.org/10.1016/j.jaac.2021.08.019

      Pat, N., Wang, Y., Bartonicek, A., Candia, J., & Stringaris, A. (2023). Explainable machine learning approach to predict and explain the relationship between task-based fMRI and individual differences in cognition. Cerebral Cortex, 33(6), 2682–2703. https://doi.org/10.1093/cercor/bhac235

      Quah, S. K. L., Jo, B., Geniesse, C., Uddin, L. Q., Mumford, J. A., Barch, D. M., Fair, D. A., Gotlib, I. H., Poldrack, R. A., & Saggar, M. (2025). A data-driven latent variable approach to validating the research domain criteria framework. Nature Communications, 16(1), 830. https://doi.org/10.1038/s41467-025-55831-z

      Reef, J., Diamantopoulou, S., van Meurs, I., Verhulst, F., & van der Ende, J. (2010). Predicting adult emotional and behavioral problems from externalizing problem trajectories in a 24-year longitudinal study. European Child & Adolescent Psychiatry, 19(7), 577–585. https://doi.org/10.1007/s00787-010-0088-6

      Rodrigue, A. L., Hayes, R. A., Waite, E., Corcoran, M., Glahn, D. C., & Jalbrzikowski, M. (2024). Multimodal Neuroimaging Summary Scores as Neurobiological Markers of Psychosis. Schizophrenia Bulletin, 50(4), 792–803. https://doi.org/10.1093/schbul/sbad149

      Roza, S. J., Hofstra, M. B., Van Der Ende, J., & Verhulst, F. C. (2003). Stable Prediction of Mood and Anxiety Disorders Based on Behavioral and Emotional Problems in Childhood: A 14-Year Follow-Up During Childhood, Adolescence, and Young Adulthood. American Journal of Psychiatry, 160(12), 2116–2121. https://doi.org/10.1176/appi.ajp.160.12.2116

      Yarkoni, T., & Westfall, J. (2017). Choosing Prediction Over Explanation in Psychology: Lessons From Machine Learning. Perspectives on Psychological Science, 12(6), 1100–1122. https://doi.org/10.1177/1745691617693393

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      Perlee et al. sought to generate a zebrafish line where CRISPR-based gene editing is exclusively limited to the melanocyte lineage, allowing assessment of cell-type restricted gene knockouts. To achieve this, they knocked in Cas9 to the endogenous mitfa locus, as mitfa is a master regulator of melanocyte development. The authors use multiple candidate genes - albino, sox10, tuba1a, ptena/ptenb, tp53 - to demonstrate their system induces lineagerestricted gene editing. This method allows researchers to bypass embryonic lethal and non-cell autonomous phenotypes emerging from whole body knockout (sox10, tuba1a), drive directed phenotypes, such as depigmentation (albino), and induce lineage-specific tumors, such as melanomas (ptena/ptenb, tp53, when accompanied with expression of BRAFV600E). While the genetic approaches are solid, the argued increase in efficiency of this model compared to current tools was untested, and therefore unable to be assessed. Furthermore, the mechanistic explanations proposed to underlie their phenotypes are mostly unfounded, as discussed further in the Weaknesses section. Despite these concerns, there is still a clear use for this genetic methodology and its implementation will be of value to many in vivo researchers.

      Strengths:

      The strongest component of this manuscript is the genetic control offered by the mitfa:Cas9 system and the ability to make stable, lineage-specific knockouts in zebrafish. This is exemplified by the studies of tuba1a, where the authors nicely show non-cell autonomous mechanisms have obfuscated the role of this gene in melanocyte development. In addition, the mitfa:Cas9 system is elegantly straightforward and can be easily implemented in many labs. Mostly, the figures are clean, controls are appropriate, and phenotypes are reproducible. The invented method is a welcomed addition to the arsenal of genetic tools used in zebrafish.

      Weaknesses:

      The major weaknesses of the manuscript include the overly bold descriptions of the value of the model and the superficial mechanistic explanations for each biological vignette.

      The authors argue that a major advantage of this system is its high efficiency. However, no direct comparison is made with other tools that achieve the same genetic control, such as MAZERATI. This is a missed opportunity to provide researchers the ability to evaluate these two similar genetic approaches. In addition, Fig.1 shows that not all melanocytes express Cas9. This is a major caveat that goes unaddressed. It is of paramount importance to understand the percentage of mitfa+ cells that express Cas9. The histology shown is unclear and too zoomed out of a scale to make any insightful conclusions, especially in Fig.S1. It would also be beneficial to see data regarding Cas9 expression in adult melanocytes, which are distinct from embryonic melanocytes in zebrafish. Moreover, this system still requires the injection of a plasmid encoding gRNAs of interest, which will yield mosaicism. A prime example of this discrepancy is in Fig.6, where sox10 is clearly still present in "sox10 KO" tumors.

      We agree with these points. While our method has the advantage of endogenous knockin (thus keeping all regulatory elements), you are correct that we did not make a direct comparison with existing technologies like MAZERATI, and therefore we cannot make comparative claims about efficiency. Based on this, we have revised the manuscript to remove these points, reduce the strength/boldness of the claims, and make it more clear what our system achieves in comparison to existing systems. In reference to the other specific points you raise above about mosaicism and extent of Cas9 expression:

      - We have added a paragraph to address the advantages and disadvantages of mitfaCas9 compared to expression of Cas9 with lineage-specific promoters including MAZERATI in the discussion.  

      - Figure 1C has been revised to more clearly show the overlap of mitfa and Cas9 in melanocytes. 

      - We then quantified the percentage of mitfa+ cells expressing Cas9 from the in situ hybridizations (Supplemental Figure S1D). We did attempt to look at Cas9 protein expression in both embryonic and adult melanocytes by immunofluorescence. Unfortunately, the Cas9 antibodies commercially available did not work on the zebrafish embryos or adult tailfins, so we are limited in proper quantification to the in situs in the embryos.

      The authors argue that their model allows rapid manipulation of melanocyte gene expression. Enthusiasm for the speed of this model is diminished by minimal phenotypes in the F0, as exemplified in Fig.2. Although the authors say >90% of fish have loss of pigmentation, this is misleading as the phenotype is a very weak, partial loss. Only in the F1 generation do robust phenotypes emerge, which takes >6 months to generate. How this is more efficient than other tools that currently exist is unclear and should be discussed in more detail.

      This needed clarification, and we have now modified the Discussion to reflect this more accurately. What we were trying to show is that both F0 and F1 fish can be useful in screening for the effect of any given gene. In the F0, while you are correct that the phenotype is indeed weak/partial, it is also quantifiable and therefore can be used as a rapid screen for potential effects of knockout, so it can help with speed. The major advantage of the F1 generation is that we can generate fully penetrant phenotypes for recessive genes since the fish just needs to have 1 copy of the Cas9/sgRNA instead of 2. This means we do not have to go to F2 or F3 generations, which really does save time. But we agree this could be achieved using MAZERATI, and so we have added these considerations to the manuscript, as we feel these are important.

      In Figure 3, the authors find that melanocyte-specific knockout of sox10 leads to only a 25% reduction in melanocytes in the F1 generation. This is in contradiction to prior literature cited describing sox10 as indispensable for melanocyte development. In addition, the authors argue that sox10 is required for melanocyte regeneration. This claim is not accurate, as >50% of melanocytes killed upon neocuproine treatment can regenerate. This data would indicate that sox10 is required for only a subset of melanocytes to develop (Fig.3C) and for only a subset to regenerate (Fig.3G). This is an interesting finding that is not discussed or interrogated further.

      We too were initially very puzzled by this result. We do not completely understand it, but we have two thoughts about it. First could be timing. sox10 usually starts to be expressed around the 1-somite stage, and so in the original sox10/colourless mutant (which truly has no melanocytes), sox10 will be lost during those early stages. In contrast, mitf comes on later (around 18hpf) so this might indicate that there is a subset of melanocytes that are dependent upon this early expression of sox10. This may indicate that there could be different functions of sox10 early in melanocyte development versus later timepoints after melanocytes have already been specified. This might also help explain our findings during regeneration.  Second could be genetic compensation. Since in the other parts of the paper we seem to see a somewhat reciprocal relationship between sox10 and sox9, it is conceivable that loss of sox10 in the melanocytes could be compensated for by sox9 (or even other genes) in our CRISPR approach (as opposed to the ENU allele in colourless). Since we really do not fully understand this, we have added a section to the Discussion about this issue, mentioning these possibilities but leaving open other yet to be defined mechanisms.

      Tumor induction by this model is weak, as indicated by the tumor curves in Figs.5,6. This might be because these fish are mitfa heterozygous. Whereas the avoidance of mitfa overexpression driven by other models including MAZERATI is a benefit of this system, the effect of mitfa heterozygosity on tumor incidence was untested. This is an essential question unaddressed in the manuscript.

      We agree that in the BRAF;p53 group especially tumor incidence is very low, although PTEN loss does accelerate it. One possibility is exactly as you stated, and that mitfa heterozygosity is the etiology. The other possibility is that in the MAZERATI approach (https://pubmed.ncbi.nlm.nih.gov/30385465/) the authors used the casper background as opposed to the wild-type T5D as we did in our study. In unpublished observations, we have found that casper (with miniCoopR rescue) is markedly more sensitive to melanoma induction compared to WT fish in this setting. In fact, in looking at our BRAF;p53 curves compared to the original Patton paper curves (https://pubmed.ncbi.nlm.nih.gov/15694309/) which were also done in a WT background with no miniCoopR, they are fairly similar. This might indicate that casper + miniCoopR particularly sensitizes the fish to melanoma. However, because we do not fully know the reasons for this, we have now included both of these possible reasons in the Discussion.

      In Fig.6, the authors recapitulate previous findings with their model, showing sox10 KO inhibits tumor onset. The tumors that do develop are argued to be highly invasive, have mesenchymal morphology, and undergo phenotypic switching from sox10 to sox9 expression. The data presented do not sufficiently support these claims. The histology is not readily suggestive of invasive, mesenchymal melanomas. Sox10 is still present in many cells and sox9 expression is only found in a small subset (<20%). Whether sox10-null cells are the ones expressing sox9 is untested. If sox9-mediated phenotypic switching is the major driver of these tumors, the authors would need to knockout sox9 and sox10 simultaneously and test whether these "rare" types of tumors still emerge. Additional histological and genetic evaluation is required to make the conclusions presented in Fig.6. It feels like a missed opportunity that the authors did not attempt to study genes of unknown contribution to melanoma with their system.

      We did not mean to overstate the admittedly early observations from these fish. Invasiveness in the fish models can be difficult to precisely quantify, and therefore is somewhat qualitative. While we did not mean to imply that every cell that loses sox10 will become sox9 positive (which is clearly not the case), the human single-cell RNA-seq data does suggest these are somewhat mutually exclusive populations (https://pubmed.ncbi.nlm.nih.gov/32753671/). This phenomenon has also long been observed even prior to single-cell approaches (https://pubmed.ncbi.nlm.nih.gov/25629959/). So while we agree our data is not definitive in this regard, it is consistent with the literature and was presented mainly to provide areas for future exploration with the model. 

      Overall, this manuscript introduces a solid method to the arsenal of zebrafish genetic tools but falls short of justifying itself as a more efficient and robust approach than what currently exists. The mechanisms provided to explain observed phenotypes are tenuous. Nonetheless, the mitfa:Cas9 approach will certainly be of value to many in vivo biologists and lays the foundation to generate similar methods using other tissue-specific regulators and other Cas proteins.

      We hope that by toning down the language around what we have observed, and providing as honest an assessment as possible as to what might be occurring, that the manuscript will be helpful for future studies aiming to knock out genes in the melanocyte lineage.

      Reviewer #2 (Public review):

      Summary:

      This manuscript describes a genetic tool utilizing mutant mitfa-Cas9 expressing zebrafish to knockout genes to analyze their function in melanocytes in a range of assays from developmental biology to tumorigenesis. Overall, the data are convincing and the authors cover potential caveats from their model that might impact its utility for future work.

      Strengths:

      The authors do an excellent job of characterizing several gene deletions that show the specificity and applicability of the genetic mitfa-Cas9 zebrafish to studying melanocytes.

      Weaknesses:

      Variability across animals not fully analyzed.

      To more clearly show variability across animals, we calculated the percentage of mitfa+ cells that express Cas9 across n=7 mitfaCas9 embryos. We also expanded Supplemental Figure 2 to show loss of pigmentation across n=7 individual adult MG-albino F2 fish instead of one representative image.

      Reviewer #3 (Public review):

      Summary:

      Perlee et al. present a method for generating cell-type restricted knockouts in zebrafish, focusing on melanocytes. For this method, the authors knock-in a Cas9 encoding sequence into the mitfa locus. This mitfaCas9 line has restricted Cas9 expression, allowing the authors to generate melanocyte-specific knockouts rapidly by follow-up injection of sgRNA expressing transposon vectors.

      The paper presents some interesting vignettes to illustrate the utility of their approach. These include 1) a derivation of albino mutant fish as a demonstration of the method's efficiency, 2) an interrogation and novel description of tuba1a as a potential non-autonomous contributor to melanocyte dispersion, and 3) the generation of sox10 deficient melanoma tumors that show "escape" of sox10 loss through upregulation of sox9. The latter two examples highlight the usefulness of cell-type targeted knockouts (Body-wide sox10 and tuba1a loss elicit developmental defects). Additionally, the tumor models involve highly multiplexed sgRNAs for tumor initiation which is nicely facilitated by the stable Cas9.

      Strengths:

      The approach is clever and could prove very useful for studying melanocytes and other cell types. As the authors hint at in their discussion, this approach would become even more powerful with the generation of other Cas9-restricted lineages so a single sgRNA construct can be screened across many lineages rapidly (or many sgRNA and fish lines screened combinatorially).

      The biological findings used to demonstrate the power of the approach are interesting in their own right. If it proves true, tuba1a's non-autonomous effects on melanosome dispersion are striking, and this example demonstrates very nicely how one could use Perlee et al.'s approach to search for other non-autonomous mechanisms systematically. Similarly, the observation of the sox9 escape mechanism with sox10 loss is a beautiful demonstration of the relevance of SOX10/SOX9's reciprocal regulation in vivo. This system would be a very nice model for further interrogating mechanisms/interventions surrounding Sox10 in melanoma.

      Finally, the figure presentation is very nice. This work involves complex genetic approaches including multiple fish generations and multiplexed construct injections. The vector diagrams and breeding schemes in the paper make everything very clear/"grok-able," and the paper was enjoyable to read.

      Weaknesses:

      The mitfa-driven GFP on their sgRNA-expressing cassette is elegant, but it makes one wonder why the endogenous knock-in is necessary. It would strengthen the motivation of the work if the authors could detail the potential advantages and disadvantages of their system compared to expressing Cas9 with a lineage-specific promoter from a transposon in their introduction or discussion.

      We agree this needed a better and more clear explanation. There are many excellent examples of promoter driven Cas9 approaches. Within melanocytes, Ablain and others have developed the MAZERATI system (https://pubmed.ncbi.nlm.nih.gov/30385465/) which is very powerful, especially for melanoma development. In our minds, the major advantage of endogenous knockin is that we retain all of the natural regulatory elements (many of which are not known) and so small promoter fragments always run the risk of missing certain types of regulation. While these regulatory elements may not matter under homeostatic conditions, they may become very important under perturbation, stress or disease states. This is why it is common, for example, in the mouse field, to knock in things like Cre into endogenous loci. We have now added a clarification of this to the manuscript.

      Related to the above - is mitfa haplosufficient? If the mitfaCas9/+ fish have any notable phenotypes, it would be worth noting for others interested in using this approach to study melanoma and pigmentation.

      In normal melanocytes, mitfa is haplosufficient. There are no visible differences between mitfaCas9/+ and wild-type fish at any stages of development (Figure S1C). Although we did not directly compare tumor growth in mitfa-/+ and mitfa+/+ fish in this study, it is possible that the disruption of mitfa in mitfaCas9/+ fish affects melanoma development. Most zebrafish melanoma models involve the overexpression of mitfa with MiniCoopR vectors and it would be interesting in future studies to determine how mitfa heterozygosity affects melanoma initiation or progression. 

      A core weakness (and also potential strength) of the system is that introduced edits will always be non-clonal (Fig 2H/I). The activity of individual sgRNAs should always be validated in the absence of any noticeable phenotype to interpret a negative result. Additionally, caution should be taken when interpreting results from rare events involving positive outgrowth (like tumorogenesis) to account for the fact many cells in the population might not have biallelic null alleles (i.e., 100% of the gene product removed).

      Along those lines: in my opinion, the tuba1a results are the most provocative finding in the paper, but they lack key validation. With respect to cutting activity, the Alt-R and transgenic sgRNA expression approaches are not directly comparable. Since there is no phenotype in the melanocyte specific tuba1a knockouts, the authors must confirm high knockout efficiency with this set of reagents before making the claim there is a non-autonomous phenotype. This can be achieved with GFP+ sorting and NGS like they performed with their albino melanocytes.

      The whole-body tuba1a knockout phenotype is expected to be pleiotropic, and this expectation might mask off-target effects. Controls for knockout specificity should be included. For instance, confidence in the claims would greatly increase if the dispersed melanosome phenotype could be recovered with guide-resistant tuba1a re-expression and if melanocyte-restricted tuba1a reexpression failed to rescue. As a less definitive but adequate alternative, the authors could also test if another guide or a morpholino against tuba1a phenocopies the described Alt-R edited fish.

      Thank you for your thoughtful suggestions, which led us to an important discovery. While validating the original tuba1a guide RNA, we found that tuba1a sg1 also targets tuba1c, a gene that shares 99.78% homology with tuba1a in zebrafish. To determine which gene was responsible for the melanocyte phenotype, we designed multiple new guide RNAs specifically targeting either tuba1a or tuba1c and used Alt-R to globally knock them out in zebrafish embryos. However, none of these guides successfully replicated the phenotype (Sanger sequencing validation for the most efficient tuba1a and tuba1c guides is provided below).

      Ultimately, we identified a new guide RNA (5’-GGTCTACAAAGACAGCCCTA-3’) that successfully phenocopied the original tuba1a sg1 melanocyte phenotype. Tuba1c—but not tuba1a—was predicted to have a mismatch at the 3’ end of the guide sequence, which is typically expected to inhibit target cleavage. Surprisingly, despite this mismatch, we observed robust cleavage in both tuba1a and tuba1c. Since the melanocyte phenotype was only reproducible when both tuba1a and tuba1c were targeted, this suggests potential compensatory interactions between these highly similar genes. We have updated the text and figures to reflect this finding and have included validation of this second guide RNA (tuba1a/c sg2) in Supplemental Figure 3.

      As you suggested, we also conducted GFP+ sorting and NGS to confirm knockout of both tuba1a and tuba1c in melanocytes of mitfaCas9 fish (Figure S3G). The knockout percentages were comparable to those observed in our previous experiment with MG_-albino_ fish. This also confirms that this method can be used to sort and sequence GFP+ cells even when pigmentation is retained, which was not the case for albino fish. 

      I have similar questions about the sox10 escapers, but these suggestions are less critical for supporting the authors claims (especially given the nice staining). Are the sox10 tumors relatively clonal with respect to sox10 mutations? And are the sox10 tumor mutations mostly biallelic frameshifts or potential missense mutations/single mutations that might not completely remove activity? I am particularly curious as SOX10 doesn't seem to be completely absent (and is still very high in some nuclei) in the immunohistochemistry.

      We attempted to address this question by performing DNA sequencing on the FFPE blocks that we had retained from the original study. While our sequencing facility said this should be possible, we could not consistently generate high enough quality DNA to make a definitive statement either way. While we are very curious to know what the nature of the mutations are in these “escapers”, the student who performed these studies has now graduated, and it would take us several additional months to a year to fully address it. Given this, we would prefer to leave this open question to a future paper, but have addressed this limitation in the Discussion.

      Recommendations for the authors:

      Reviewing Editor:

      Overall, the reviewers felt and eLife concurs that your manuscript is insightful and appropriate for publication. Reviewers were impressed by your generating a zebrafish line where CRISPRbased gene editing is exclusively limited to the melanocyte lineage, allowing assessment of celltype restricted gene knockouts. Your use of multiple candidate genes to demonstrate that your system induces lineage-restricted gene editing is compelling and will be of interest to the broad readership of eLife. This method will allow researchers to bypass embryonic lethal and non-cell autonomous phenotypes emerging from whole body knockout, drive directed phenotypes, such as depigmentation, and induce lineage-specific tumors, such as melanomas. This said, the argued increase in efficiency of this model compared to current tools was untested, and therefore it remains difficult for a reader to assess the extent to which your new model represents a major advance over prior ones. Of additional concern are the mechanistic explanations proposed to underlie the phenotypes, as these are largely unfounded. Thus, in preparing your final publication version of the paper, eLife strongly encourages you to fully address the reviewers' thoughtful comments. In particular, the boldness of the claims made in the manuscript should be reduced. Terms like "highly efficient" and "rapid" are unsupported due to the lack of comparison with other well-established methods, like MAZERATI.

      As discussed above in each of the reviewer points above, we agree with both of these points. We have reduced the boldness of the claims, with a better discussion of the different approaches. We also address the potential mechanisms of our observations, and where and why we still lack an understanding of what gives rise to those phenotypes. 

      There are also some minor discrepancies that should be edited in the manuscript: Fig.2A plasmid description is written oppositely in text; Fig.3 labels G-H are swapped in the legend description; Fig.5A MTdT is unexplained. This is a non-exhaustive list, and the authors are encouraged to carefully read through their manuscript to revise other minor mistakes and formatting errors.

      Figure 2A was revised to show the correct orientation of mitfa:GFP and the guide RNA cassette as described in the text. Figure 3 legend was fixed. We have gone through the manuscript again to make sure we have not made any other errors, to the best of our knowledge.

      The biggest concern is the expression of cas9 and the weak histological support shown in Fig.1 and Fig.S1. It would be a benefit to all readers and potential future users to know how robust cas9 expression is in the melanocyte lineage. It would be helpful if there is a way to analyze the percentage of cells that are mutated in each animal to understand the variability that can exist across animals with the method.

      We have revised Figure 1C to show additional melanocytes and added a new quantification of Cas9 RNA expression in melanocytes (S1D). 

      The analysis of the scRNA sequencing could also be described more fully.

      More details have been added to the scRNA sequencing analysis including the functions that were used. 

      The final major concern is whether this model is genuinely more valuable than MAZERATI. A more elaborate discussion would benefit potential future users to guide their decisions regarding which tool best suits their experimental goals.

      As noted above, we agree with this statement. The reviewers are correct in that we did not directly compare our system to MAZERATI, and therefore cannot make any claims about efficiency in a comparative regard. Therefore, in our revised Discussion, we talk about the relative strengths and weaknesses of each approach, and emphasize that our approach mainly has the advantage of retaining endogenous regulatory elements for mitfa, but that each user should decide which is the best approach for their problem.

      There are also some minor concerns that should be addressed.

      Are the mitfaCas9 fish used as homozygotes before the first cross? If so, might be nice to include their nacre-like phenotype in diagrams like Fig 2A.

      For these studies, heterozygous mitfaCas9 fish were used for all breedings and progeny were sorted for BFP+ eyes. This enabled the comparison to sibling controls without Cas9 expression. 

      BFP+ eye screening for mitfaCas9 is elegant and included nicely in the diagrams. Are germline sgRNA integrants identified in F1 with melanocyte GFP? Or present at a high enough efficiency that this is not relevant? This would be good to include in the diagrams.

      Germline sgRNA integrants are identified with melanocyte GFP in embryos. Figure 2A has been edited to show GFP expression. 

      Most cells are GFP positive in S3C (the F0 "mosaic"). It might be nice to show a single GFP stripe like in the other panels for direct comparison of edited/non-edited in the same fish.

      This figure (now S3E) has been edited to show a clear comparison between GFP+ and GFP- cells in the same fish. 

      177 - CRISPR-Seq is basically amplicon sequencing. This would measure efficiency but not "specificity" as described. Off-target activity would have to be measured at other loci etc. Not necessary to do, but I don't think measured.

      In this case, “specificity” refers to cell type specificity, not genomic specificity. We are measuring cell type specificity by comparing on-target cutting in GFP+ cells (melanocytes) versus GFP- cells (non-mitfa expressing cells). We did not look at off-target activity of Cas9 in this study and have edited the text to make this clearer. 

      219 -"several gaps were visible"

      Fixed

      286 - TUBA1A should be italicized

      Fixed

      399 - SOX9's most enriched dependency in DepMap is cutaneous melanoma and its top coessential gene is SOX10. I'm not sure the SOX9/SOX10 interaction couldn't be parsed from DepMap alone.

      This is true, and the DepMap was actually somewhat of an inspiration for our own studies. We have modified the line to acknowledge this and explain the main advantage of our system is in vivo confirmation of what the DepMap had alluded to.

      433 - "fewer animals since all F1 animals (even those for recessive alleles) are informative."

      The fact that this is approach is faster and more efficient per animal is important to highlight (and very believable), but is this technically true given not all F1 fish will have Cas9 or a germline sgRNA integration?

      In considering this statement, we agree with you and decided to remove it from the text.

      We hope the comments in both the public and private reviews will help improve the manuscript.

      Reviewer #1 (Recommendations for the authors):

      Overall, the boldness of the claims made in the manuscript should be reduced. Terms like "highly efficient" and "rapid" are unsupported due to the lack of comparison with other wellestablished methods, like MAZERATI.

      As discussed above, we agree with this and have now modified the manuscript to better reflect what our system achieves in comparison to the well developed systems such as MAZERATI. Because we have not done a direct comparison, we are not able to make any claims about comparative efficiency, and instead focus on the potential benefits of a knockin approach, which is the maintenance of endogenous regulatory elements.

      There are some minor discrepancies that should be edited in the manuscript: Fig.2A plasmid description is written oppositely in text; Fig.3 labels G-H are swapped in the legend description; Fig.5A MTdT is unexplained. This is a non-exhaustive list, and the authors are encouraged to carefully read through their manuscript to revise other minor mistakes and formatting errors.

      Figure 2A was revised to show the correct orientation of mitfa:GFP and the guide RNA cassette as described in the text. Figure 3 legend was fixed. We have gone through the manuscript again to make sure we have not made any other errors, to the best of our knowledge.

      The biggest concern is the expression of cas9 and the weak histological support shown in Fig.1 and Fig.S1. It would be a benefit to all readers and potential future users to know how robust cas9 expression is in the melanocyte lineage.

      We have revised Figure 1C to show additional melanocytes and added a new quantification of Cas9 RNA expression in melanocytes (S1D). 

      The second major concern is whether this model is genuinely more valuable than MAZERATI. A more elaborate discussion would benefit potential future users to guide their decision regarding which tool best suits their experimental goals.

      As noted above, we agree with this statement. The reviewers are correct in that we did not directly compare our system to MAZERATI, and therefore cannot make any claims about efficiency in a comparative regard. Therefore, in our revised Discussion, we talk about the relative strengths and weaknesses of each approach, and emphasize that our approach mainly has the advantage of retaining endogenous regulatory elements for mitfa, but that each user should decide which is the best approach for their problem.

      We hope the comments in both the public and private reviews will help improve the manuscript.

      Reviewer #2 (Recommendations for the authors):

      While that authors show the indel charts for the Crispr mutations generated in the supplement. However, I wonder if there is a way to analyze the percentage of cells that are mutated in each animal to understand the variability that can exist across animals with the method.

      We have revised Figure 1C to show additional melanocytes and added a new quantification of Cas9 RNA expression in melanocytes (S1D). 

      The analysis of the scRNA sequencing could be described more fully.

      More details have been added to the scRNA sequencing analysis including the functions that were used. 

      Reviewer #3 (Recommendations for the authors):

      This was an excellent read, and I'm very interested in seeing it in its final form. Congratulations! My larger critiques are outlined in the public reviews. A few smaller points:

      Are the mitfaCas9 fish used as homozygotes before the first cross? If so, might be nice to include their nacre-like phenotype in diagrams like Fig 2A.

      For these studies, heterozygous mitfaCas9 fish were used for all breedings and progeny were sorted for BFP+ eyes. This enabled the comparison to sibling controls without Cas9 expression. 

      BFP+ eye screening for mitfaCas9 is elegant and included nicely in the diagrams. Are germline sgRNA integrants identified in F1 with melanocyte GFP? Or present at a high enough efficiency that this is not relevant? This would be good to include in the diagrams.

      Germline sgRNA integrants are identified with melanocyte GFP in embryos. Figure 2A has been edited to show GFP expression. 

      Most cells are GFP positive in S3C (the F0 "mosaic"). It might be nice to show a single GFP stripe like in the other panels for direct comparison of edited/non-edited in the same fish.

      This figure (now S3E) has been edited to show a clear comparison between GFP+ and GFP- cells in the same fish. 

      177 - My understanding is that CRISPR-Seq is basically amplicon sequencing. This would measure efficiency but not "specificity" as described. Off-target activity would have to be measured at other loci etc. Not necessary to do in my opinion, but I don't think measured.

      In this case, “specificity” refers to cell type specificity, not genomic specificity. We are measuring cell type specificity by comparing on-target cutting in GFP+ cells (melanocytes) versus GFP- cells (non-mitfa expressing cells). We did not look at off-target activity of Cas9 in this study and have edited the text to make this clearer. 

      219 -"several gaps were visible"

      Fixed

      286 - TUBA1A should be italicized

      Fixed

      399 - I think I understand the logic of the DepMap argument, and the importance of studying tumor initiation in vivo stands for itself. But here is maybe not the best example (or might need clarification)? - SOX9's most enriched dependency in DepMap is cutaneous melanoma and its top co-essential gene is SOX10. I'm not sure the SOX9/SOX10 interaction couldn't be parsed from DepMap alone.

      This is true, and the DepMap was actually somewhat of an inspiration for our own studies. We have modified the line to acknowledge this and explain the main advantage of our system is in vivo confirmation of what the DepMap had alluded to.

      433 - "fewer animals since all F1 animals (even those for recessive alleles) are informative."

      The fact that this is approach is faster and more efficient per animal is important to highlight (and very believable), but is this technically true given not all F1 fish will have Cas9 or a germline sgRNA integration?

      In considering this statement, we agree with you and decided to remove it from the text.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      The authors present a new protocol to assess social dominance in pairs and triads of C57BL/6j mice, based on a competition to access a hidden food pellet. Using this new protocol, the authors have been able to identify stable ranking among male and female pairs, while reporting more fluctuant hierarchies among triads of males. Ranking readouts identified with this new apparatus were compared to the outcomes obtained with the same animals competing in the tube and in the warm spot tests, which have been both commonly used during the last decade to identify social ranks in rodents under laboratory conditions.

      Strengths:

      FPCT allows for easy and fast identification of a winner and a loser in the context of food competition. The apparatus and the protocol are relatively easy and quick to implement in the lab and free from any complex post-processing/analysis, which qualifies it for wide distribution, particularly within laboratories that do not have the resources to implement more sophisticated protocols. Hierarchical readouts identified through the FPCT correlate with social ranks identified with the tube and the warm spot tests, which have been widely adopted during the last decade and allow for study comparison.

      Weaknesses:

      While the FPCT is validated by the tube and the warm spot test, this paper would have gained strength by providing a more ethologically based validation. Tube and warm spot tests have been shown to provide conflicting results and might not been a sufficient measurement for social ranking (see Varholik et al, Scientific reports, 2019; Battivelli et al, Biological psychiatry, 2024). Instead, a general consensus pushing toward more ethological approaches for neuroscience studies is emerging.

      We appreciate all the reviewers for recognizing the strength of the FPCT setup and the data. We also appreciate the reviewers for pointing out weakness and giving us valuable suggestions that help us to improve the quality of our manuscript through revision.

      In this manuscript, we found the ranking results of the FPCT were largely consistent with the tube and the warm spot tests. Such a finding was unexpected by us as we considered that different competitive targets of different paradigms should provide the mice with distinct appeals and enable them to exert their specific advantages. However, the consistency between the FPCT and tube test was observed in the pairs of female mice, pairs of male mice and triads of male mice. The consistency between the FPCT, tube test and warm spot test was observed in pairs of male mice and triads of male mice. Thus, we concluded that there is a social rank-order stability of mice. 

      We acknowledge that it’d better if this conclusion could be validated by more ethological approaches like urine-marking analysis and water competition test. Whereas, we did not rule out inconsistency of ranking results between two or more paradigms. Actually, there were inconsistent cases in our experiments. The inconsistency of ranking results between paradigms, even between FPCT and tube test, could be amplified if the tests were operated with other details of experimental protocols and conditions. This is in that too many factors and aspects can affect the readouts, such as formation of colony, tasks, test protocols, habituation and training. Using tube test itself, both stable 1,2 and unstable 3 ranking results have been reported.

      Other papers already successfully identified social ranks dyadic food competition, using relatively simple scoring protocol (see for example Merlot et al., 2006), within a more naturalistic set-up, allowing the 2 opponents to directly interact while competing for the food. A potential issue with the FPCT, is that the opponents being isolated from each other, the normal inhibition expected to appear in subordinates in the presence of a dominant to access food, could be diminished, and usually avoiding subordinates could be more motivated to push for the access to the food pellet.

      The hierarchical structure of mice colony could be established on the basis of physical aspects—such as muscular strength, vigorousness of fighting—and psychological aspects— such as boldness, focused motivation, active self-awareness of status. In the contexts of currently available food contest paradigms where the mice compete with bodily interaction, the physical and psychological aspects are intermingled in the interpretation of the mice’s winning/losing. In the FPCT, the opponents are isolated from each other so that the importance of direct bodily interaction in a competition is minimized, facilitating the exposure of psychological factors contributing to the establishment and/or expression of social status of the mice. In this study, the overall stable ranking results across the FPCT, tube test and warm spot test indicate that the status sense of animals is part of a comprehensive identify of self-recognition of individuals in an established mice social colony.

      There are issues with use of the English language throughout the text. Some sentences are difficult to understand and should be clarified and/or synthesized.

      We thank the reviewer for pointing out language issues. We have carefully corrected the grammar errors.

      Open question:

      Is food restriction mandatory? Palatable food pellet is not sufficient to trigger competition? Food restriction has numerous behavioral and physiological consequences that would be better to prevent to be able to clearly interpret behavioral outcomes in FPCT (see for example Tucci et al., 2006).

      We thank the reviewer for raising this question. In the preliminary experiments, we noticed that food restriction was mandatory and palatable food pellet was not sufficient to trigger competition. In order to limit the potential influence of food restriction on competitive behavior, the mice underwent only a 24-hour food deprivation period at the beginning of training, followed by mild restriction of food supply to meet basic energy requirement.

      Conclusive remarks:

      Although this protocol attempts to provide a novel approach to evaluate social ranks in mice, it is not clear how it really brings a significant advance in neuroscience research. The FPCT dynamic is very similar to the one observed in the tube test, where mice compete to navigate forward in a narrow space, constraining the opponent to go backward. The main difference between the FPCT and the tube test is the presence of food between the opponents. In the tube test, a food reward was initially used to increase motivation to cross the tube and push the opponent upon the testing day. This component has been progressively abandoned, precisely because it was not necessary for the mice to compete in the tube.

      This paper would really bring a significant contribution to the field by providing a neuronal imaging or manipulation correlate to the behavioral outcome obtained by the application of the FPCT.

      Thank the reviewer for this comment on the significance of the FPCT paradigm. In this manuscript, we think it is interesting to report that the ranking results were consistent across the FPCT, tube test and warm spot test. This finding indicates that the status sense of animals might be a part of a comprehensive identify of self-recognition of individuals in an established social colony. 

      Moreover, we are conducting researches on biological consequences and mechanisms of social competition. Hopefully, the results of the on-going project will be published in the near future.

      Reviewer #2 (Public review):

      Summary:

      In this study, the authors have devised a novel assay to measure relative social rank in mice that is aimed at incorporating multiple aspects of social competition while minimizing direct contact between animals. Forming a hierarchy often involves complex social dynamics related to competitive drives for different fundamental resources including access to food, water, territory, and sexual mates. This makes the study of social dominance and its neural underpinnings hard, warranting the development of new tools and methods that can help understand both social functions as well as dysfunction.

      Strengths:

      This study showcases an assay called the Food Pellet Competition Test where cagemate mice compete for food, without direct contact, by pushing a block in a tube from opposite directions. The authors have attempted to quantify motivation to obtain the food independent of other factors such as age, weight, sex, etc. by running the assay under two conditions: one where the food is accessible and one where it isn't. This assay results in an impressive outcome consistency across days for females and males paired housed and for male groups of three. Further, the determined social ranks correlate strongly with two common assays: the tube test and the warm spot test.

      Weaknesses:

      This new assay has limited ethological validity since mice do not compete for food without touching each other with a block in the middle. In addition, the assay may only be valid for a single trial per day making its utility for recording neural recordings and manipulations limited to a single sample per mouse. Although the authors attempt to measure motivation as a factor driving who wins the social competition, the data is limited. This novel assay requires training across days with some mice reaching criteria before others. From the data reported, it is unclear what effects training can have on the outcome of social competition. Beyond the data shown, the language used throughout the manuscript and the rationale for the design of this novel assay is difficult to understand.

      We appreciate the reviewers for the valuable comments on the strength and weakness of our manuscript. 

      The design mentality of the FPCT was to (1) provide researchers with a choice of new food competition paradigm and (2) expose psychological factors influencing the establishment and/or expression social status in mice by avoiding direct physical competition between contenders (see revised Abstract and the last paragraph in the Introduction).

      As a result, the consistent ranking across the FPCT, tube test and warm spot test might indicate that the status sense of animals is part of a comprehensive identify of self-recognition of individuals in an established social colony. 

      We suggest to perform the FPCT test one trial per day per mouse as the mice might lose interest in the food pellet if it is tested frequently in a day, but it is practical to perform the FPCT assay for several days. 

      Regarding the training, we suggest 4-5 days for training as we did. In this revision, we add training data which show the progressing latency of food-getting of mice (Figure 1). At the last day of training, the mice would go directly to push the block and eat the food after they entered the arena.

      We thank the reviewer for pointing out language issues. We have carefully corrected the errors.

      Reviewer #3 (Public review):

      Summary:

      The laboratory mouse is an ideal animal to study the neural and psychological underpinnings of social dominance behavior because of its economic cost and the animals' readiness to display dominant and subordinate behaviors in simple and testable environments. Here, a new and novel method for measuring dominance and the individual social status of mice is presented using a food competition assay. Historically, food competition assays have been avoided because they occur in an open arena or the home cage, and it can be difficult to assess who gets priority access to the resource and to avoid aggressive interactions such as bite wounding. Now, the authors have designed a narrow rectangular arena separated in half by a sliding floor-to-ceiling obstacle, where the mice placed at opposite sides of the obstacle compete by pushing the obstacle to gain priority access to a food pellet resting on the arena floor under the obstacle. One can also place the food pellet within the obstacle to restrict priority access to the food and measure the time or effort spent pushing the obstacle back and forth. As hypothesized, the outcomes in the food competition test were significantly consistent with those of the more common tube test (space competition) and warm spot competition test. This suggests that these animals have a stereotypic dominance organization that exists across multiple resource domains (i.e., food, space, and temperature). Only male and female C57 mice in same-sex pairs or triads were tested.

      Strengths:

      The design of the apparatus and the inclusion of females are significant strengths within the study.

      Weaknesses:

      There are at least two major weaknesses of the study: neglecting the value of test inconsistency and not providing the mice time to recognize who they are competing with.

      Several studies have demonstrated that although inbred mice in laboratory housing share similar genetics and environment, they can form diverse types of hierarchical organizations (e.g., loose, stable, despotic, linear, etc.) and there are multiple resource domains in the home cage that mice compete over (e.g., space, food, water, temperature, etc.). The advantage of using multiple dominance assays is to understand the nuances of hierarchical organizations better. For example, some groups may have clear dominant and subordinate individuals when competing for food, but the individuals may "change or switch" social status when competing for space. Indeed, social relationships are dynamic, not static. Here, the authors have provided another test to measure another dimension of dominance: food competition. Rather than highlight this advantage, the authors highlight that the test is in agreement with the standard tube test and warm spot test and that C57 mice have stereotypic dominance across multiple domains. While some may find this great, it will leave many to continue using the tube test only (which measures the dimension of space competition) and avoid measuring food competition. If the reader looks at Figures 6E, F, and G they will see examples of inconsistency across the food competition test, tube test, and warm spot test in triads of mice. These groups are quite interesting and demonstrate the diversity of social dynamics in groups of inbred mice in highly standardized environmental conditions. Scientists interested in dominance should study groups that are consistent and inconsistent across multiple dimensions of dominance (e.g., space, food, mates, etc.).

      Unlike the tube test and warm spot test, the food competition test presented here provides no opportunity for the animals to identify their opponent. That is, they cannot sniff their opponent's fur or anogenital region, which would allow them an opportunity to identify them individually. Thus, as the authors state, the test only measures psychological motivation to get a food reward. Notably, the outcome in the direct and indirect testing of food competition is in agreement, leaving many to wonder whether they are measuring the social relationship or the effort an individual puts forth in attaining a food reward regardless of the social opponent. Specifically, in the direct test, an individual can retrieve the food reward by pushing the obstacle out of the way first. In the indirect test, the animals cannot retrieve the reward and can only push the obstacle back and forth, which contains the reward inside. In Figure 4E, you can see that winners spent more time pushing the block in the indirect test. Thus, whether the test measures a social relationship or just the likelihood of gaining priority access to food is unclear. To rectify this issue, the authors could provide an opportunity for the animals to interact before lowering the obstacle and raising(?) a food reward. They may also create a very long one-sided apparatus to measure the amount of effort an individual mouse puts forth in the indirect test with only one individual - or any situation with just one mouse where the moving obstacle is not pushed back, and the animal can just keep pushing until they stop. This would require another experiment. It also may not tell us much more since it remains unclear whether inbred mice can individually identify one another

      (see https://doi.org/10.1098/rspb.2000.1057 for more details).

      A minor issue is that the write-up of the history of food competition assays and female dominance research is inaccurate. Food competition assays have a long history since at least the 1950s and many people study female dominance now.

      Food competition: https://doi.org/10.1080/00223980.1950.9712776, https://psycnet.apa.org/fullte xt/1953-03267-

      001.pdf, https://doi.org/10.1016/j.bbi.2003.11.007, https://doi.org/10.1038/s41586-02204507-5

      Female dominance: history  https://doi.org/10.1016/j.cub.2023.03.020,  https://doi.org/10.1016/S0 031-9384(01)00494-2,  https://doi.org/10.1037/0735-7036.99.4.411

      We thank the reviewers very much for so many helpful comments and suggestions.

      In this manuscript, we want to address the overall and averagely consistency of ranking results between FPCT, tube test and warm spot test) as an unexpected finding. We agree that the inconsistency of social ranking occurred between trials and between paradigms should not be ignored. In the revision, we added description and discussion of inconsistent part of the different test paradigms (paragraph 2 in the section 3 of the Result, last 2 sentences of paragraph 4 in the Discussion)

      Although the two opponents were separated each other, they were able to see and sniff each other because the block is transparency, there are holes in the lower portion of the block, and there is the gap between the block and chamber (Supplementary figures 1 and 2). In the female but not male groups, the presence of a cagemate opponent during the test 1 could significantly disturb the female mice and increase the its latency to get the food, comparing with last day of training when there was no opponent (Figure 3A). This indicates that one mouse, at least female mouse, could identify the existence of the opponent in the opposite side of the chamber. To further see whether social relation was influential to readouts of the FPCT, we performed additional experiments using two groups of non-cagemate mice to perform the competition. We did not detect obviously different ranks between the two groups (Figure 1H-1J), suggesting that establishment of social colony is necessary for FPCT to distinguish social ranks of mice.

      Thank the reviewer for reminding us to recognize the history of food competition assays. We have added the citations and discussions of related literatures, both for male (paragraph 2 in the Introduction; paragraph 3 in the Discussion) and female (paragraph 1 of section 3 in the Results; paragraph 4 in the Discussion) mice. 

      Reviewer #1 (Recommendations for the authors):

      There are issues with use of the English language throughout the text. Some sentences are difficult to understand and should be clarified and/or synthesized.

      We appreciate the reviewer for constructive comments and helpful corrections.

      “Despite that 6 in 9 groups of mice display some extent of flipped ranking (Figures 6B-6G) and only 3 in 9 groups displayed continuously unaltered ranking (Figure 6H) during a total of 9 trials consisting of 3 trials of FPCT, 3 trials of tube test and 1 trial of WST, an obvious stable linear intragroup hierarchy was observed throughout all the trials and tasks"

      The above sentence has been re-written as: The ranking result showed that 6 in 9 groups of mice displayed some extent of flipped ranking (Figures 4B-4G), and only 3 in 9 groups displayed continuously unaltered ranking (Figure 4H). Averagely, in the totally 27 trials consisting of 12 trials of FPCT, 12 trials of tube test and 3 trials of WST, an obvious stable linear intragroup hierarchy was observed across all the trials and tasks (paragraph 1 of section 4 in the Results).

      "it is hard to attribute winning a competition in a shared space to stronger motivation rather than muscular superiority".

      The above sentence has been deleted and re-written in paragraph 1 of section 4 in the Results and paragraph 3 in the Discussion.

      "Unexpectedly, in most of the trials the mice preserved the winner or loser identity acquired in FPCT into tube test and WST (Figures 5L-5O)".

      Why this is unexpected? Instead, it looks like this result is expected (tube test has been successfully applied to identify ranks in females, see Leclair et al, eLife, 2021).

      We thank the reviewer for raising this point. FPCT is different from tube test and warm spot test at least in two aspects: competition for food vs space; presence vs absence of direct bodily interaction during competition. Some mice might be active in food competition, but not in space competition, while others might be on the contrary. Some mice might be good at physical contest, while others might be good at play tricks. Therefore, these factors made us expect task-specific outcomes of ranking results.

      Vocabulary issues:

      "Stereotypic", to talk about rank stability in a different context does not look appropriate. In behavioral neuroscience, stereotypy is more excepted to intend abnormal repetitive behaviors. The stability that the authors seem to indicate with the word "stereotype" refers rather to the concept of "consistency" or "stability".

      We thank the reviewer for this detailed explanation. We have chosen to use "stability" to describe the data.

      "Society", to talk about groups or colonies of animals sounds a bit odd. Society evokes more abstract concepts more likely to fit with human organization. I suggest the use of "group" or "colony".

      "Hide" to qualify the block preventing access to the food pellet. It is said that the block is transparent. We suggest the use of "inaccessible" instead of hidden.

      We strongly encourage the authors to further edit the entire script to improve language.

      Thank the reviewer for kind correction. We have corrected the above vocabulary misuse. 

      Technical issues / typos:

      Figure 1. The picture does not seem optimal to visualize the apparatus.

      Missing unit legend in Figure 4E.

      Supplementary videos 2 and 4 are missing.

      We have added a frontal view of the apparatus in the figure (Supplementary Figure 1), added a unit to the Figure 2F (previous Figure 4E), and we will make sure to upload the missing videos.

      Reviewer #2 (Recommendations for the authors):

      While the assay shows promise as a tool for studying social dominance, the study suffers from some limitations such as lack of ethological relevance. In addition, there is a lack of rationale and methodological clarity in the manuscript that can impact the ability of other scientists to be able to perform this novel assay.

      (1) Related to lack of scientific rigor:

      a. In the first paragraph of the introduction, the authors mention that "disability in social recognition and unsatisfied social status are associated with brain diseases such as autism, depression and schizophrenia". Both papers that they cited refer to mouse models, not humans (which is the species that is attributed these diagnoses clinically). In addition, neither citation discusses schizophrenia. While social dysfunctions can indeed be related to these diseases, to my knowledge this is not caused by a change in "social status" and there is no human data with patient populations and social status. Therefore, this sentence is inaccurate and there is no research that demonstrates that.

      We thank the reviewer for raising this point. To express the opinion and cite literatures more accurately, we improved the sentence in the 1st paragraph of Introduction as follows: “Impaired awareness of social competition has been documented in individuals with autism spectrum disorder (ASD)4,5, and reduced social interaction has been characterized in corresponding animal models6. Similarly, maladaptive responses to social status loss has been associated with patient depressive disorders7,8 and animal models of depression1,9”. The reviewer is right that no patient disease is causally related with social status, and only depression has been proposedly associated with change of social status7,8.

      b. In the second paragraph of the introduction, the authors mention a scarcity of research papers with designs for food competition-based social hierarchy assays for mice. At least two such papers have been published in the past few years (DOIs https://doi.org/10.1038/s41586-

      021-04000-5 and https://doi.org/10.1038/s41586-022-04507-5). The authors should acknowledge the existence of these and other assays and discuss how their work would be related. In the same paragraph, they also mention that existing assays suffer from "hierarchy instability" and "complex calculations" without showing any citations or details for these claims.

      We thank the reviewer for raising this point. We acknowledged that there are some available food competitions to measure social hierarchy for mice. But relative to space competition, food competition tests have not been used so commonly and widely. No food competition paradigm has been accepted as generally as some space competition paradigms like tube test and warm spot test. To improve the language and scientific expression, we revised the sentences as follows: “Relative to space competition, food competition tests for mice have been designated and applied less commonly in animal studies despite its long history 28-30. Several issues could be thought to be the underlying limitations for the application of food competition paradigms. First, there are methodological issues in some of these approaches, such as long video recording duration and difficulty in analyzing animal’s behaviors during competitive physical interaction in videos, hindering their application by laboratories that cannot afford sophisticated equipment and analysis”. Corresponding citations have been updated (see paragraph 3 in the Introduction).

      c. The authors say that their study is the first to demonstrate that female mice follow social ranks. This is not the first study to do so and the authors should acknowledge existing publications that have done the same (eg DOI https://doi.org/10.7554/eLife.71401).

      We have followed the reviewer’s suggestion to increase citations regarding social ranking of female mice tested by competition paradigms, especially food competition paradigms (see paragraph 1 of section 3 in the Results; paragraph 4 in the Discussion).

      (2) Related to problems with interpretation of data:

      a. The authors showed the assay works for females and males in pairwise housing, but two mice don't make a hierarchy, as hierarchies require a minimum of three individuals. Therefore, whether the assay works for females caged in three is an important question that is unaddressed in this study and is a caveat. extended the competition assay to male mice that are housed in cages of three. It would be important to show whether the assay generalizes well for female mice with this three-animal housing as well as discuss the effect of using even bigger groups of mice on the results of the assay.

      We thank the reviewer for raising questions related to the interpretation of data and giving us the insightful the suggestions. We agree that it is interesting and important to probe if FPCT works for a group of three female mice. Although social rankings of pairs of male and female mice were not significantly different (new Figure 2D-2F and 3F-3H), that of triads of male and female mice could be different. We have tested trads of male mice and found that the mice displayed an overall linear hierarchical ranking. We would like to use FPCT to investigate the rankings of trads of female mice and even bigger group of mice in the future. In the present manuscript we’d like to address the feasible application of the FPCT in smaller groups. In the Discussion, we add contents commenting group size effect on social competition tests (see paragraph 4 in the Discussion).

      b. The authors claim that "test 2" of their assay helps assert the motivation of mice for social competition as in Figure 4E. This could simply be a readout of how strong the mice are (muscle mass). To claim that this is indeed related to motivation during the FPCT assay, the authors should show the correlation of this readout with the latency to push the block during the social competition task.

      We appreciate the reviewer for raising this question. The dimensions establishing the social structures include physical and psychological factors. In the FPCT paradigm, the two contenders are separated so that physical factors are minimized in this context and psychological factors should play more important role in competition in comparison with previous reported food competition paradigms. Therefore, in the revised manuscript we consider to attribute the ranking results mainly to psychological factors, rather than only motivation which is just one of the numerous psychological factors (paragraph 3 of Discussion). Moreover, in the Discussion we point out that we could not exclude physical factors still participate in the determination of competitive outcomes since some of mice pairs pushed the block simultaneously (paragraph 3 of Discussion).

      c.The authors mention that they are interested to understand which factors lead to the outcome of the competition such as age, sex, physical strength, training level, and intensity of psychological motivation. However, in all their runs of the assay, they always matched these variables between the competitors. They should clarify that they were instead controlling for these variables. Another thing to note here is that while they controlled the body mass of the animals, that isn't the same as physical strength, as a lighter mouse can have more muscle mass than a heavier mouse. They should either specify this limitation or quantify the additional metric of "muscle mass" which is a much better proxy for physical strength. Thus, the claim that the outcome of the competition is solely affected by motivation is not convincing since they didn't rule out the others such as quantifying the rate of learning during training and strength.

      We thank the reviewer for addressing this question. As our response to the question in (c), we acknowledge that it is not accurate to ascribe the outcomes of FPCT to psychological motivation. In the revised manuscript, the dimensions of contributing factors to the outcomes of FPCT have been simplified to physical and psychological factors. We consider that the psychological factor could be the main driver of mice participating in FPCT (see paragraph 3 of Discussion).

      d. In the discussion, the authors mention that their task only requires a single day of food deprivation (the day before the first trial) while other assays suffer from a continued food deprivation protocol. However, the authors also use 10g per cage as the amount of food instead of giving them ad libitum access. Limited food is a food deprivation method. Thus, this is an inaccurate claim.

      We thank the reviewer for raising this point. We have clarified the requirement of food restriction for FPCT in the revision. The mice were deprived of food for 24 hours while water consumption remained normally to enhance the appeal of the food pellet to the mice. Then, after 24 hours of food deprivation, each cage of mice was given 10 g of food every morning to meet their daily food requirements until the end of the test (see FPCT procedure section in Methods and materials).

      e.In the second section of the results, the authors run their assay with female mice that are housed in cages of two. This section suffers from the same limitations as the first and can be improved by showing the training data, correlations of competition outcome with "motivation" and ruling out the other factors that could contribute to the outcome. Further, the authors saying that their FPCT assay is enough to show that female mice follow a social hierarchy by itself is a weak claim. They should instead include their cross-validation with the others to strengthen it.

      We appreciate the reviewer for raising this question. We have taken the reviewer’s suggestion to show the training data (Figures 1E, 2A and 3A). As the factors contributing to the outcomes of FPCT are diverse, we’d like not to control and determine the exact factor in the current manuscript. We agree with the reviewer that cross-validation with different paradigms is suggested for the studies to rank social hierarchy as the ranking results could be variable with tasks, procedures and operations.

      f.  In the last paragraph of the introduction, the authors mention how their assay involves "peaceful competition" since the mice are not in direct contact and hence cannot exhibit aggression. The authors do not address the limitation that a lack of physical contact actually makes the assay less ethological. Further, since the mice are housed in groups of two and three, it is not guaranteed that the mice will not be aggressive during their time in the home cage, which could affect their behavior during the competition assay. Whether the assay causes more aggression in the cage due to the lack of physical contact during the competition is not addressed in this study.

      We thank the reviewer for raising this point. Diverse factors affect the outcomes of a food competition test, some of which belong to psychological factors and others belong to physical factors. We agree that a lack of physical contact makes the assay less naturally ethological. However, when the social statuses have been established during habituation housing a group of mice for enough time, the win/lose outcomes in the FPCT could be a readout of the expression of social statuses since the mice cannot exhibit aggression in the test. We have revised the Introduction and Discussion (paragraph 3 of Discussion). Thank you.

      (3) Related to lack of methodological rigor and rationale clarity:

      a. In the first section of the results, the authors run their assay with male mice that are housed in cages of two. While the data that they display is promising, we do not see how mice change behavior across days of training and how that relates to the outcome of the competition. It would be valuable to also show the training data for the mice, answering questions related to competency and any inter-animal variabilities prior to rank assessment. Plotting the training data across all days would be helpful for the other parts of the results as well. This is especially important because the methods mention that mice are trained until they get to the criterium, so this means that different individuals get different amounts of training.

      We appreciate the reviewer for addressing the importance of showing training data. We have taken the reviewer’s suggestion and shown the training data (Figures 1E, 2A and 3A).

      b.  It is unclear why the assay was run only once per mouse pair per day since most protocols for the tube test involve multiple repetitions each day while alternating the side from which the mice enter. The authors should address whether a single trial per day is enough to show consistent results and that it wouldn't vary with more.

      We suggest to run the FPCT once or twice per mouse per day under conditions of mild food restriction, training and test procedures in this manuscript. Frequent tests might make the mice’s interest in the food pellet gradually diminished because the food supply was not fully deprived. According to our data, the outcomes of FPCT in 4 consecutive days were overall stable.

      c.  In the results the authors say that they "raised 3 male mice" which may be incorrect because they report in the methods buying the mice buy mice and they housed all their mice for only three days before running the assay which might be too little for the hierarchy to stabilize. The authors should comment on what was the range of the cohabitation across different cages and whether it had an impact on the results.

      According to our experiments, housing the mice for 3 days is enough to establish a mice social colony with relative stable status structure. Prolonged housing may produce either similar, stabler or more dynamic social colony.

      d. There are also some formatting and/or convention issues in the results. The first figure callout in the results is for Figure 4 instead of Figure 1 (which is the standard). This is because the authors do not explain how the mice are trained for the task in the results section and show limited data about the training of the task. Not showing comprehensive training data would make replication of this study very difficult.

      We appreciate the reviewer for raising this question. We have re-arranged the figures. The new arrangement of figures started with schematic drawing of FPCT procedure and training data (Figure 1).

      e. The authors don't report the exact p-values in the figures

      We reported the difference level in the figures in the revised manuscript. Thank you.

      4. The writing of the manuscript suffers from a lack of clarity in most sections of the manuscript.

      Here are several examples that are critical:

      a. In the title and abstract, it isn't clear what the authors mean by "stereotype". It could be a behavior during the competition, or that the social ranks across assays are correlated or that the rank for the new assay is consistent across days.

      b. There are several instances where the authors anthropomorphize mice using human features such as "urbanization" and "society" which are not established factors affecting mouse hierarchy. This further extends to anthropomorphizing mice in ways that are not standard such as an animal being "timid" or "bold" which would be hard to measure in mice, if not impossible.

      c. Across the social dominance literature, relative social rank is described using more general "dominant" and "subordinate" titles instead of "superior" and "inferior" that are sometimes used in the manuscript. The authors should follow the standard language so that readers understand.

      d.  In the third paragraph of the introduction, the authors say "Thus, it is more likely expected that different paradigms to weigh the social competency and status may lead to diverse readouts, given that competitive factors are included in competition paradigms." This sentence suffers from multiple syntax errors thereby reducing clarity

      e. There are several typos in the manuscript such as using "dominate" instead of "dominant", "grades" instead of "outcomes" and "forth" instead of "fourth", to give a few examples.

      We thank the reviewer for careful reading of the manuscript and very helpful comments. We have taken the above suggestions and improved the writing of the manuscript. For examples, "stereotype" was replaced by “stability”, mice "society" was expressed by "colony", the sentence “Thus, it is more.... in competition paradigms” has been deleted.

      Reviewer #3 (Recommendations for the authors):

      (1) The justification for the design of this new test paradigm is unclear. In the abstract, you state that the field needs a reliable, valid, and easily executable test. Your test provides this, as you state, but how is it better than the tube test? Does the tube test suffer from taskspecific win-or-lose outcomes? Can you provide evidence for this? The nature methods protocol for the tube test (https://doi.org/10.1038/s41596-018-0116-4) "strongly suggest using more than two dominance measures, for example, by also carrying out the warm spot test, or territory urine marking or ultrasonic courtship vocalization assays." This would suggest that results from the tube test can be task-specific, but I am not convinced that you have demonstrated that results from your food competition test are not task-specific. Indeed, by your title, one must run multiple tests.

      This same problem is apparent in the introduction. In the second paragraph, there is a discussion of the tube test, warm spot test, and food competition tests. What is the problem with these tests?

      I believe that social dominance relationships are complex and dynamic social relationships indicating who has priority access to a resource between multiple animals that live together. In these living situations, several resources can often be capitalized competed over-for example, space, food, mates, temperature, etc. Currently, we have tests to measure space via the tube test or urine marking, mates via ultrasonic vocalization, temperature via warm spot test, and food via food competition assays. The tube test, urine marking assay, and ultrasonic vocalization test have been demonstrated to be reliable, valid, and easily executable. However, the food competition assays are often difficult to execute because it is difficult to interpret the dominant behaviors and aggressive behaviors like bite wounding can occur during the test. Here, you present a new food competition assay to address these issues and show that it can be used in conjunction with other assays to measure social dominance across multiple resources easily. In doing so, you revealed that many same-sex groups of C57 mice have a stereotypic pattern of dominance behavior when competing across multiple types of resources: space, temperature, and food.

      I ask that you please rebut if you disagree with me, and adjust your abstract, introduction, and discussion accordingly.

      We thank the reviewer for all the constructive comments. We have adjusted the Abstract, Introduction and Discussion of the manuscript.

      We recognize and appreciate the valuable tube test, warm spot test and many other competition tests, including food competitions. Tube test and warm spot test are space competition tasks. Relative to space competition, food competition tests for mice have been designated and applied less commonly in animal studies. Several issues (such as methodological issue, aggressive behaviors occurring in competition, and prolonged food deprivation) could be thought to be the underlying limitations of the application of food competition paradigms (paragraph 3 in the Introduction). Therefore, we clarify that the justification for the design of FPCT was “to have a new choice of food competition paradigm for mice, and to facilitate the exposure of psychological aspects contributing to the winning/losing outcomes in competitions” (last paragraph in the Introduction).

      FPCT is different from tube test and warm spot test at least in two ways. FPCT is food completion task where the mice need no physical contact during competition, while tube test and WST are space competition tasks where the mice need direct physical contact during competition. Therefore, we expected inconsistent evaluation results of competitiveness and rankings if we compared FPCT with typically available competition paradigms—tube test and WST (last paragraph in the Introduction).

      (2)  The design of the test needs to be described before the results. You can either move the methods section before the results or add a paragraph in the introduction to better describe the test. Here, you can also reference Figures 1 through 3 so that the figures are presented in the order of which they are mentioned in the paper. (It is very confusing that the first reference to a figure is Figure 4, when it should be Figure 1).

      We appreciate the reviewer for raising this point and giving us suggestions. We have added a new section (section 1) in the Results. In the revised manuscript, the figures in the Results start with Figure 1 which shows schematic drawing of FPCT procedure, training data and some test results (Figure 1).

      (3)  The sentence describing Figure 4H. You argue that this shows that the mice are well and equally trained. It also shows that they have the same motivation or preference for the food.

      We appreciate the reviewer for this helpful comment. Data in previous Figures 4H and 5I have been presented as new Figures 2A and 3A, respectively, of revised manuscript. These retrospect analysis of training data displayed similar training level of food-getting and craving state for food (Sections 2 and 3 in the Results).

      (4)  "Social ranking of multiple cagemate mice using FPCT, tube test and WST"

      Here, you claim that "comparison of inter-task consistency revealed that the ranks evaluated by FPCT, tube test and WST did not differ from each other...Figure 6K." Okay, however, it is important to discuss the three cases when there wasn't consistency between the tests! Figure 6E-G.

      We appreciate the reviewer for raising this point. In the revised manuscript, we add description and discussion of inconsistent part of the different test paradigms (paragraph 2 in the section 3 of the Result, last 2 sentences of paragraph 4 in the Discussion)

      (5)  Replace all instances of "gender" with "sex". Animals do not have a gender.

      (6)  Adjust the strain of the mice to C57BL/6JNifdc.

      We have replaced "gender" with "sex" and “C57BL/6J” with “C57BL/6JNifdc”. Thank you for your careful correction.

      (7)  What is the justification for running the warm spot test for one day and the other tests for four days?

      From the consecutive FPCT and tube test, we already knew that the ranking results were overall stable. This stability was still observed in the day of warm spot test. A bad point for frequent warm spot test is that mice get much stress due to exposure in ice-cold environment. Therefore, we terminated the competition test after only one trial of warm spot test.

      (8)  Grammar

      The second sentence of the abstract: ...recognized as a valuable...

      Results, sentence after "...was observed (Figure 4G)." it should be "Fourth"

      We have corrected these and other grammar errors. We appreciate the reviewers for very careful review and all helpful comments.

    1. Author Response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review): 

      The authors survey the ultrastructural organization of glutamatergic synapses by cryo-ET and image processing tools using two complementary experimental approaches. The first approach employs so-called "ultra-fresh" preparations of brain homogenates from a knock-in mouse expressing a GFP-tagged version of PSD-95, allowing Peukes and colleagues to specifically target excitatory glutamatergic synapses. In the second approach, direct in-tissue (using cortical and hippocampal regions) targeting of the glutamatergic synapses employing the same mouse model is presented. In order to ascertain whether the isolation procedure causes any significant changes in the ultrastructural organization (and possibly synaptic macromolecular organization) the authors compare their findings using both of these approaches. The quantitation of the synaptic cleft height reveals an unexpected variability, while the STA analysis of the ionotropic receptors provides insights into their distribution with respect to the synaptic cleft.

      The main novelty of this study lies in the continuous claims by the authors that the sample preservation methods developed here are superior to any others previously used. This leads them as well to systematically downplay or directly ignore a substantial body of previous cryo-ET studies of synaptic structure. Without comparisons with the cryo-ET literature, it is very hard to judge the impact of this work in the field. Furthermore, the data does not show any better preservation in the so-called "ultra-fresh" preparation than in the literature, perhaps to the contrary as synapses with strangely elongated vesicles are often seen. Such synapses have been regularly discarded for further analysis in previous synaptosome studies (e.g. Martinez-Sanchez 2021). Whilst the targeting approach using a fluorescent PSD95 marker is novel and seems sufficiently precise, the authors use a somewhat outdated approach (cryo-sectioning) to generate in-tissue tomograms of poor quality. To what extent such tomograms can be interpreted in molecular terms is highly questionable. The authors also don't discuss the physiological influence of 20% dextran used for high-pressure freezing of these "very native" specimens.

      Lastly, a large part of the paper is devoted to image analysis of the PSD which is not convincing (including a somewhat forced comparison with the fixed and heavy-metal staining room temperature approach). Despite being a technically challenging study, the results fall short of expectations. 

      Our manuscript contains a discussion of both conventional EM and cryoET of synapses. We apologise if we have omitted referencing or discussing any earlier cryoET work. This was certainly not our intention, and we include a more complete discussion of published cryoET work on synapses in our revised manuscript.

      The reviewer is concerned that the synaptic vesicles in some synapse tomograms are “stretched” and that this may reflect poor preservation.  We would like to point out that such non-spherical synaptic vesicles have also been previously reported in cryoET of primary neurons grown on EM grids (Tao et al., J. Neuro, 2018). Indeed, there is no reason per se to suppose synaptic vesicles are always spherical and there are many diverse families of proteins expressed at the synapse that shape membrane curvature (BAR domain proteins, synaptotagmin, epsins, endophilins and others). We will add further discussion of this issue in the revised manuscript.

      The reviewer regards ‘cryo-sectioning’ as outdated and cryoET data from these preparations as “poor quality”. We respectfully disagree. Preparing brain tissues for cryoET is generally considered to be challenging. The first successful demonstration of preparing such samples was before the advent of the cryoEM resolution revolution (with electron counting detectors) by Zuber et al (Proc. Natl. Acad. Sci.,2005) preparing cryo-sections/CEMOVIS of in vitro brain cultures. We followed this technique to prepare tissue cryo-sections for cryoET in our manuscript. Recently, cryoFIB-SEM liftout has been developed as an alternative method to prepare tissue samples for cryoET (Mahamid et al., J. Struct. Biol., 2015) and only more recently this method became available to more laboratories. Both techniques introduce damage as has been described (Han et al., J. Microsc., 2008; Lucas et al., Proc. Natl. Acad. Sci., 2023). Importantly no like-for-like, quantitative comparison of these two methodologies has yet been performed. We have recently demonstrated that the molecular structure of amyloid fibrils within human brain is preserved down to the protein fold level in samples prepared by cryo-sectioning (Gilbert et al., Nature, 2024). We will add further detail on the process by which we excluded poor quality tomograms from our analysis, which we described in detail in our methods section.

      The reviewer asks what the physiological effect is of adding 20% w/v ~40,000 Da dextran? This is a reasonable concern since this could in principle exert osmotic pressure on the tissue sample. While we did not investigate this ourselves, earlier studies have (Zuber et al, 2005) showing cell membranes were not damaged by and did not have any detectable effect on cell structure in the presence of this concentration of dextran.

      The reviewer is not convinced by our analysis of the apparent molecular density of macromolecules in the postsynaptic compartment that in conventional EM is called the postsynaptic density. However, the reviewer provides no reasoning for this assessment nor alternative approaches that could be attempted. We would like to add that we have tested multiple different approaches to objectively measure molecular crowding in cryoET data, that give comparable results. We believe that our conclusion – that we do not observe an increased molecular density conserved at the postsynaptic membrane, and that the PSD that we and others observed by conventional EM does not correspond to a region of increased molecular density - is well supported by our data.  We and the other reviewers consider this an important and novel observation.

      Reviewer #2 (Public review)

      Summary: 

      The authors set out to visualize the molecular architecture of the adult forebrain glutamatergic synapses in a near-native state. To this end, they use a rapid workflow to extract and plunge-freeze mouse synapses for cryo-electron tomography. In addition, the authors use knockin mice expression PSD95-GFP in order to perform correlated light and electron microscopy to clearly identify pre- and synaptic membranes. By thorough quantification of tomograms from plunge- and high-pressure frozen samples, the authors show that the previously reported 'post-synaptic density' does not occur at high frequency and therefore not a defining feature of a glutamatergic synapse.

      Subsequently, the authors are able to reproduce the frequency of post-synaptic density when preparing conventional electron microscopy samples, thus indicating that density prevalence is an artifact of sample preparation. The authors go on to describe the arrangement of cytoskeletal components, membraneous compartments, and ionotropic receptor clusters across synapses.

      Demonstrating that the frequency of the post-synaptic density in prior work is likely an artifact and not a defining feature of glutamatergic synapses is significant. The descriptions of distributions and morphologies of proteins and membranes in this work may serve as a basis for the future of investigation for readers interested in these features.

      Strengths: 

      The authors perform a rigorous quantification of the molecular density profiles across synapses to determine the frequency of the post-synaptic density. They prepare samples using two cryogenic electron microscopy sample preparation methods, as well as one set of samples using conventional electron microscopy methods. The authors can reproduce previous reports of the frequency of the post-synaptic density by conventional sample preparation, but not by either of the cryogenic methods, thus strongly supporting their claim. 

      We thank the reviewer for their generous assessment of our manuscript.

      Reviewer #3 (Public review): 

      Summary: 

      The authors use cryo-electron tomography to thoroughly investigate the complexity of purified, excitatory synapses. They make several major interesting discoveries: polyhedral vesicles that have not been observed before in neurons; analysis of the intermembrane distance, and a link to potentiation, essentially updating distances reported from plastic-embedded specimen; and find that the postsynaptic density does not appear as a dense accumulation of proteins in all vitrified samples (less than half), a feature which served as a hallmark feature to identify excitatory plastic-embedded synapses. 

      Strengths: 

      (1)The presented work is thorough: the authors compare purified, endogenously labeled synapses to wild-type synapses to exclude artifacts that could arise through the homogenation step, and, in addition, analyse plastic embedded, stained synapses prepared using the same quick workflow, to ensure their findings have not been caused by way of purification of the synapses. Interestingly, the 'thick lines of PSD' are evident in most of their stained synapses.

      (2)I commend the authors on the exceptional technical achievement of preparing frozen specimens from a mouse within two minutes.

      (3)The approaches highlighted here can be used in other fields studying cell-cell junctions.

      (4)The tomograms will be deposited upon publication which will enable neurobiologists and researchers from other fields to carry on data evaluation in their field of expertise since tomography is still a specialized skill and they collected and reconstructed over 100 excellent tomograms of synapses, which generates a wealth of information to be also used in future studies.

      (5) The authors have identified ionotropic receptor positions and that they are linked to actin filaments, and appear to be associated with membrane and other cytosolic scaffolds, which is highly exciting.

      (6) The authors achieved their aims to study neuronal excitatory synapses in great detail, were thorough in their experiments, and made multiple fascinating discoveries. They challenge dogmas that have been in place for decades and highlight the benefit of implementing and developing new methods to carefully understand the underlying molecular machines of synapses.

      Weaknesses: 

      The authors show informative segmentations in their figures but none have been overlayed with any of the tomograms in the submitted videos. It would be helpful for data evaluation to a broad audience to be able to view these together as videos to study these tomograms and extract more information. Deposition of segmentations associated with the tomgrams would be tremendously helpful to Neurobiologists, cryo-ET method developers, and others to push the boundaries.

      Impact on community: 

      The findings presented by Peukes et al. pertaining to synapse biology change dogmas about the fundamental understanding of synaptic ultrastructure. The work presented by the authors, particularly the associated change of intermembrane distance with potentiation and the distinct appearance of the PSD as an irregular amorphous 'cloud' will provide food for thought and an incentive for more analysis and additional studies, as will the discovery of large membranous and cytosolic protein complexes linked to ionotropic receptors within and outside of the synaptic cleft, which are ripe for investigation. The findings and tomograms available will carry far in the synapse fields and the approach and methods will move other fields outside of neurobiology forward. The method and impactful results of preparing cryogenic, unlabelled, unstained, near-native synapses may enable the study of how synapses function at high resolution in the future.

      We thank the reviewer for their supportive assessment of our manuscript.  We thank the reviewer for suggesting overlaying segmentations with videos of the raw tomographic volumes. We will include this in our revised manuscript.

      Reviewer #1 (Recommendations for the authors): 

      Major comments: 

      (1) The previous literature on synaptic cryo-ET studies is systematically ignored. The results presented here (and their novelty) must be compared directly with this body of work, rather than with classical EM.

      Our submitted manuscript included a 3-paragraph discussion of earlier synaptic cryoET studies, albeit we apologize that a seminal citation was missing, which we have corrected in our revised manuscript. We have now also included an additional brief discussion related to several more recent cryoET studies (see citations below) that were published after our pre-print was first deposited in 2021.

      (1) Held, R.G., Liang, J., and Brunger, A.T. (2024). Nanoscale architecture of synaptic vesicles and scaffolding complexes revealed by cryo-electron tomography. Proc. Natl. Acad. Sci. 121, e2403136121. https://doi.org/10.1073/pnas.2403136121.

      (2) Held, R.G., Liang, J., Esquivies, L., Khan, Y.A., Wang, C., Azubel, M., and Brunger, A.T. (2024). In-Situ Structure and Topography of AMPA Receptor Scaffolding Complexes Visualized by CryoET. bioRxiv, 2024.10.19.619226. https://doi.org/10.1101/2024.10.19.619226.

      (3)Matsui, A., Spangler, C., Elferich, J., Shiozaki, M., Jean, N., Zhao, X., Qin, M., Zhong, H., Yu, Z., and Gouaux, E. (2024). Cryo-electron tomographic investigation of native hippocampal glutamatergic synapses. eLife 13, RP98458. https://doi.org/10.7554/elife.98458.

      (4)Glynn, C., Smith, J.L.R., Case, M., Csöndör, R., Katsini, A., Sanita, M.E., Glen, T.S., Pennington, A., and Grange, M. (2024). Charting the molecular landscape of neuronal organisation within the hippocampus using cryo electron tomography. bioRxiv, 2024.10.14.617844. https://doi.org/10.1101/2024.10.14.617844.

      We discuss the above papers in our revised manuscript with the following:

      “Since submission of our manuscript, several reports of synapse cryoET from within cultured primary neurons (Held et al., 2024a, 2024b)  and mouse brain(Glynn et al., 2024; Matsui et al., 2024) were prepared by cryoFIB-milling. These new datasets are largely consistent with the data reported here. CryoFIB-SEM has the advantage of overcoming the local knife damage caused by cryo-sectioning but introduces amorphization across the whole sample that diminishes the information content (Al-Amoudi et al., 2005; Lovatt et al., 2022; Lucas and Grigorieff, 2023). We have recently shown cryoET data is capable of revealing subnanometer resolution in-tissue protein structure from vitreous cryo-sections (Gilbert et al., 2024) and near-atomic structures within cryo-sections has recently been demonstrated (Elferich et al., 2025).”

      Although there is variation between individual synapses, PSDs are clearly visible in several previous cryo-ET studies (even if it's not as striking as in heavy-metal stained samples). In fact, although the contrast of the images is generally poor, PSDs are also visible in several examples shown in Figure 1 - Supplement 3. Not being able to detect them seems more of a problem of the workflow used here than of missing features. The authors should also discuss why heavy-metal stains would accumulate on a non-existing structure (PSD) in conventional EM.

      We agree that apparent higher molecular density can be observed in example tomographic data of earlier cryoET studies. We also report individual examples of similar synapses in our dataset. A key strength of our approach is that we have assessed the molecular architecture of large numbers of adult brain synapses acquired by an unbiased approach (solely guided by PSD95 cryoCLEM), which indicate that a higher molecular density proximal to the postsynaptic membrane is not a conserved feature of glutamatergic synapses in the adult brain. There is no rationale for our cryoCLEM approach being a ‘problem of the workflow’.

      The reviewer misunderstands the weaknesses of conventional/room temperature EM workflows (including resin-embedding and freeze substitution). It is unavoidable that most proteins are damaged by denaturation and/or washed away by washing samples in organic solvents (methanol/acetone that directly denature most proteins) during tissue preparation for conventional EM. It is therefore conceivable that in such preparations a relative increase in contrast proximal to the postsynaptic membrane (‘PSD’) would appear if cytoplasmic proteins were washed away during these harsh organic solved washing steps, leaving only those denatured proteins that are tethered to the postsynaptic membrane. It is not that the PSD is absent in cryoEM, rather that this difference in molecular crowding is not evident when tissues are imaged directly by cryoEM and have not undergone the harsh sample preparation required for conventional/room temperature EM.

      (2) Whether the synapses examined here are in a more physiological state than those analyzed in other papers remains absolutely unclear. For example, the quality of the tomographic slice shown in Figure 1C is poor, with the majority of synaptic vesicles looking suspiciously elongated. 

      We addressed this in our public reviews.

      (3) How were actin filaments segmented and quantified (e.g. for Fig 1E)? Apart from actin, can the authors show some examples of other macromolecular complexes (e.g. ribosomes) that they are able to identify in synapses (based on the info in supplementary tables)? Also, the mapping of glutamatergic receptors is not convincing, as the molecules were picked manually. To analyze their distribution, they should be mapped as comprehensively as possible by e.g. template matching.

      Actin filaments identified by ~7 nm diameter with ~70° branch points were manually segmented in IMOD. The number of filaments was counted per postsynaptic compartment. We have amended the methods section to include this description.

      “In the PoSM, F-actin formed a network with ~70° branch points (Figure 1–figure supplement 1C) likely formed by Arp2/3, as expected(Pizarro-Cerdá 2017,Fäßler 2020) . Putative filament copy number in the PoSM was estimated by manual segmentation in IMOD.” Manual picking was validated by the quality of the subtomogram average, which although only reached modest resolution (25 Å) is consistent with the identification of ionotropic glutamate receptors.

      (4) In the section "Synaptic organelles" the authors should provide some general information on the average number and size of synaptic vesicles (for the in-tissue tomograms).

      We have provided this information in the methods section:

      “The average diameter of synaptic vesicles was 40.2 nm and the minimum and maximum dimensions ranged from 20 to 57.8 nm, measured from the outside of the vesicle that included ellipsoidal synaptic vesicles similar to those previously reported (Tao et al., 2018).” A detailed survey of the presynaptic compartment, including the number of presynaptic vesicles was not the focus of our manuscript. We have deposited all tomograms from our dataset for any further data mining.

      Can the "flat tubular membranes compartments" be attributed to ER? The angular vesicles certainly have a typical ER appearance, as such morphology has been seen in several cryo-ET studies of neuronal and non-neuronal cells.

      In neuronal cells we regard it as unsafe to describe an intracellular organelle as being endoplasmic reticulum on the basis of morphology alone (eg. Smooth ER described widely in conventional EM) because of the apparent diversity of distinct organelles. As described in our methods section, we could have confidence that a membrane compartment is ER when we observe ribosomes tethered to the membrane. In instances where flat/tubular membranes did not have associated ribosomes, we take the cautious view that there is not sufficient evidence to define these as ER.

      Importantly, polyhedral vesicles were distinct from the flat/tubular membranes that resembled ER and are at present organelles of unknown identity. It will be important in future experiments to determine what are the protein constituents of these distinct organelle types to understand both their functions and how these distinct membrane architectures are assembled.

      Therefore, the sentences in lines 198-199 are simply wrong. Additionally, features of even higher membrane curvature are common in the ER (e.g. Collado et al., Dev Cell 2019). 

      We thank the reviewer for bringing our attention to this excellent paper (Collado et al.). We agree that the sentence describing the curvature being higher than all other membranes except mitochondrial cristae is wrong. We have removed this sentence in the revised manuscript.

      (5)The quality of the tomographic data for the in-tissue sample is low, likely due to cryo-sectioning-induced artifacts, as extensively documented in the literature. Additionally, the authors used 20% dextran as cryo-protectant for high-pressure freezing, which contrasts with statements like those in lines 342-344. Given that several publications describing the in-tissue targeting of synapses (e.g. from Eric Gouaux's lab) are available, the quality of the tomographic data presented in this work is underwhelming and limits the conclusions that can be drawn, not providing a solid basis for future studies of in-tissue synapse targeting. However, the complete workflow (excluding the sectioning part) can be adapted for a cryo-FIB approach. The authors should discuss the limitations of their approach. 

      Our manuscript preprint was deposited in the Biorxiv several years before Matsui/Gouaux’s recent ELife paper that reported a novel work-flow for in-tissue cryoET. It is difficult to directly compare data from our and Matsui/Gouaux’s approach because the latter reported a dataset of only 3 tomograms. Note also that Matsui/Gouaux followed our approach of using 20% dextran 40,000 as a cryo-preservative. The use of 20% dextran 40,000 as a cryo-protectant was first established by Zuber et al., 2005 (PMID: 16354833) and shown avoid hyper-osmotic pressure and cell membrane rupture. However, Matsui/Gouaux additionally included 5% sucrose in their cryoprotectant. We did not include sucrose as cryo-preservative because this exerts osmotic pressure and was not necessary to achieve vitreous tissues in our workflow.

      Before high-pressure freezing, Matsui/Gouaux also incubated tissue slices in a HEPES-buffered artificial cerebrospinal fluid (that included 2 mM CaCl2 but did not include glucose as an energy source) for 1 h at room temperature to label AMPA receptors with Fab fragment-Au conjugates. Under these conditions, neurons can elicit both physiological and excitotoxic action potentials (even though AMPARs were themselves antagonised with ZK-200775). The absence of glucose is a concern, and it is unclear to what extent tissue viability is affected by this incubation step. In contrast, we chose to use an NMDG-based artificial cerebrospinal fluid for slice preparation and high-pressure freezing that is a well-established method for preserving neuronal viability (Ting et al., 2018).

      We addressed the supposed limitations of cryo-sectioning versus cryoFIB-SEM in our public response. In particular, we have recently shown that cryo-sectioning produced a  subnanometer resolution in-tissue structure of a protein, that has so far only been achieved for ribosome within cryoFIB-SEM sample preparations. A discussion of cryo-sectioning versus cryoFIB-SEM must be informed by new data that directly compares these methods, which is not the subject of our eLife paper. We also cite a recent preprint directly comparing cryoFIB-milled lamellae with cryo-sections and showing that near atomic resolution structures can also be obtained from the latter sample preparations (Elferich et al., 2025).

      (6) The authors show (in Supplementary) putative tethers connecting SV and the plasma membrane. Is it possible to improve the image quality (e.g. some sort of filtering or denoising) so that the tethers appear more obvious? Can the authors observe connectors linking synaptic vesicles? 

      We have tested multiple iterative reconstruction and denoising approaches, including SIRT and noise2noise filtering in Isonet. We observed instances of macromolecular complexes linking one synaptic vesicle with another. However, there was no question we sought to answer by performing a quantitative analysis of these linkers.

      (7) Figure 4F is missing. 

      Thank you for spotting this omission. We have corrected this in the revised manuscript.

      (8) Most quantifications lack statistical analyses. These need to be included, and only statistically significant findings should be discussed. Terms like "significantly" (e.g. Line 144) should only be used in these cases.

      We used the term ‘significantly’ in the results section (line 143 and line 166 in revised text, we cite figure 1H and 2F showing analyses in which we have in fact performed statistical tests (t-tests with Bonferroni correction) comparing the voxel intensities in regions of the cytoplasm that are proximal versus distal to the postsynaptic membrane. We have amended the main text to include the details of the statistical test that we performed. Also, we neglected to include a description of the statistical test in line 241, which cites Figure 3G. We have corrected this in the revised text.

      Minor comments: 

      (1) Can the authors comment on why only 1-2 grids are prepared per mouse brain (in M&M -section)?

      We prepared only two grids in order to have prepared samples within 2 minutes, to limit deterioration of the sample.

      (2) Figure 1 Supplement 2 and its legend are confusing (averaging of non-aligned versus aligned post-synaptic membrane). Can the authors describe more clearly their molecular density profile analysis?

      We apologise that this figure legend was insufficient. We have included a detailed description of our molecular density profile analysis in the methods section entitled ‘Molecular density profile analysis’. In the revised manuscript we have now also included a citation to this methods section in Figure – figure 1 supplement 2 legend.

      (3) Please clarify with higher precision the areas were recorded in relation to the fluorescent spots (e.g. Figures 3A-C).

      We have included a white rectangular annotation in the cryoCLEM inset panels of Figures 3A-C to indicate the field of view of each corresponding tomographic slice. This shows that PSD95-GFP puncta localise to the postsynaptic compartments in each tomogram.

      (4) Figure 4 Supplement 2D is not clear: the connection between receptors and actin should be shown in a segmentation.

      We agree with the reviewer. A ‘connection’ is not clear, which is expected because the cytoplasmic domain of ionotropic glutamate receptor subunits is composed of a non-globular/intrinsically disordered sequence. We have amended our description of the proximity of actin cytoskeleton to ionotropic glutamate receptor clusters in the main text replacing “associated with” to “adjacent to”.

      (5) Line 341: the reference is referred to by a number (56) at the end of the sentence, rather than by name.

      Good spot. We have corrected this in the revised manuscript.

      (6) Line 968: tomograms is misspelled. 

      Good spot. We have corrected this error (line 1018 in our revised manuscript).

      Reviewer #2 (Recommendations for the authors): 

      (1) On page 11: "The position of (i)onotropic receptor...". 

      Good spot. We have corrected this.

      (2) On page 13: "Slightly higher relative molecular density..." this line ends with a citation to reference '56', but the works cited are not numbered.

      Good spot. We have corrected this in the revised manuscript.

      (3) On page 46: "as described in (69)..." the works cited are not numbered. 

      Good spot. We have corrected this in the revised manuscript.

      Reviewer #3 (Recommendations for the authors): <br /> (1) The title does not do the work justice. The authors make many exciting discoveries, e.g. PSD appearance, new polyhedral vesicles, ionotropic receptor positions, and intermembrane distance changes even within the synaptic cleft, but title their manuscript "The molecular infrastructure of glutamatergic synapses in the mammalian forebrain". It is also a bit misleading, since one would have expected more molecular detail and molecular maps as part of the work, so the authors may think about updating the title to reflect their exciting work. 

      We thank the reviewer for recognising the exciting discoveries in our manuscript. Summarising all these in a title is challenging. We intend ‘molecular infrastructure’ to mean a structure composed of many molecules including proteins (by analogy ‘transport infrastructure’ is composed of many roads, ports and train lines).

      (2) It would be in the spirit of eLife and open science if the authors could submit their segmentations alongside the tomographic data to either EMPIAR or pdb-dev (if they accept it) or the new CZII cryoET data portal for neurobiologists, method developers, and others to use. 

      We agree with the reviewer. We have deposited in subtomogram averaged map of AMPA receptor in EMDB, and all tilt series and 4x binned tomographic reconstructions described in our manuscript (figure 1- table1 and figure 2 -table 2), together with segmentations in EMPIAR.  

      (3) Methods: the authors establish an exciting new workflow to get from living mice to frozen specimens within 2 minutes and perform many unique analyses that would be useful to different fields. Their methods section overall is well described and contains criteria and details that should allow others to apply experiments to their scientific problems. However, it would be very helpful to expand on the methods in the 'annotation and analysis [...]' and "Subtomogram averaging" sections, to at least in short describe the steps without having to embark on a reference journey for each method and generally provide more detail. For the annotation section, the software used for annotation is not listed. Table 1 only contains the list of the counts of organelles etc. identified in each tomogram, no processing details. 

      We have revised the methods section ‘annotation and analysis’ including software used (IMOD). We have also included a slightly more detailed description of subtomogram averaging. We did not include ‘processing details’ because there are none - identification of constituents in each tomogram was carried out manually, as described in the methods section.

      (4) Some of the tomograms submitted as videos may have slipped through as an early version since they appear to be originating from not perfectly aligned tiltseries; vesicles and membranes can be observed 'rubberbanding'. The authors should go through and check their videos. 

      We thank the referee for suggesting we double check our tomogram videos. All movies are representative tomographic reconstructions from ultra-fresh synapse preparations (Figure 1 – videos 1-7) and synapses in tissue cryo-sections (Figure 2 – videos 1-2). We have double checked that the videos correspond to tomograms that were aligned as good as possible. In general, tissue cryo-section tomograms reconstructed less well than ultra-fresh synapse tomograms, which limits the information content of these data, as expected. Consequently, the reconstructions shown in these videos were all reconstructed as best we could (testing multiple approaches in IMOD, and more recent software packages, eg. AreTomo). While we think it is important to share all tomograms, regardless of quality, we were careful to exclude tomograms for analysis that did not contain sufficient information for analysis (as described in the methods section).

      Minor suggestions: 

      (1) Page 13, line 341, reference 56, but references are not numbered. Please update.

      Good spot. We have corrected this in the revised manuscript.

      (2) Page 33, line 746, the figure legend is not referencing the correct figure panels G-K should be I-K;

      We have amended the Figure 3 legend to “(G-K) Snapshots and quantification of membrane remodeling within glutamatergic synapses”.

      (3) Page 33, line 750; reads 'same as E', but should be 'same as G'. 

      Good spot. We have corrected this in the revised manuscript.

      (4) Page 35, Figure 4: Please use more labels: Figure 4B: it would be helpful to use different colors for each view and match to the tomogram - then non-experts could easily relate the projections and real data; Figure 4C: please label domains; Figure 4F: the figure panel got lost. 

      This is an interesting idea. While our subtomgram average of 2522 subvolumes provided decent evidence that these are ionotropic receptors, we are reluctant to label specific putative domains of individual subvolumes in the raw tomographic slice because the resolution of the raw tomogram (particularly in the Z-direction) is worse and may not be sufficient to resolve definitely each domain layer. We hope the reviewer appreciates our cautious approach.

      (5) Page 42, line 933: incomplete sentence. 

      Good spot. We have corrected this in the revised manuscript.

      (6) Page 46, line 1038; Reference 69 is in brackets, but references are not numbered. Please update.

      Good spot. We have corrected this in the revised manuscript.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Note : The original preprint version of our manuscript has been reviewed by 3 subject experts for Review Commons. All the three reviewers’ comments on the original version of our manuscript have been fully addressed. Their input was extremely valuable in helping us clarify and refine the presentation of our results and conclusions. Their feedback contributed to making the study both more thoroughly developed and more accessible to a broad readership, while preserving its mechanistic depth. We believe that this revised version more effectively highlights the conceptual advances brought by our findings.

      Reviewer #1

      Evidence, reproducibility and clarity

      The manuscript "Key roles of the zona pellucida and perivitelline space in promoting gamete fusion and fast block to polyspermy inferred from the choreography of spermatozoa in mice oocytes" by Dr. Gourier and colleagues explores the poorly understood process of gamete fusion and the subsequent block to polyspermy by live-cell imaging of mouse oocytes with intact zona pellucida in vitro. The new component in this study is the presence of the ZP, which in prior studies of live-cell imaging had been removed before. This allowed the authos to examine contributions of the ZP to the block in polyspermy in relation to the timing of sperm penetrating the ZP and sperm fusing with the oocyte. By carefully analysing the timing of the cascade of events, the authors find that the first sperm that reaches the membrane of the mouse oocyte is not necessarily the one that fertilizes the oocytes, revealing that other mechanisms post-ZP-penetration influence the success of individual sperm. While the rate of ZP penetration remains constant in unfertilized oocytes, it decreases upon fertilization for subsequent sperm, providing direct evidence for the known 'slow block to polyspermy' provided by changes to the ZP adhesion/ability to be penetrated. Careful statistical analyses allow the authors to revisit the role of the ZP in preventing polyspermy: They show that the ZP block resulting from the cortical reaction is too slow (in the range of an hour) to contribute to the immediate prevention of polyspermy in mice. The presented analyses reveal that the ZP does contribute to the block to polyspermy in two other ways, namely by effectively limiting the number of sperm that reach the oocyte surface in a fertilization-independent manner, and by retaining components like JUNO and CD9, that are shed from the oocyte plasma membrane after fertilization, in the perivitelline space, which may help neutralize surplus spermatozoa that are already present in the PVS. Lastly, the authors report that the ZP may also contribute to channeling the flagellar oscillations of spermatozoa in the PVS to promote their fusion competence.

      Major comments:

      • Are the key conclusions convincing?

      The authors provide a careful analysis of the dynamics of events, though the analyses are correlative, and can only be suggestive of causation. While this is a limitation of the study, it provides important analysis for future research. Moreover, by analysing also control oocytes without fertilization and the timing of events, the authors have in some instances clear 'negative controls' for comparison.

      Some claims would benefit from rewording or rephrasing to put the findings better in the context of what is already known and what is novel:

      • the phrasing 'challenging prior dogma' might be too strong since it had been observed before that it is not necessarily the first sperm that gets through the ZP that fertilizes the egg (though I am afraid that I do not have any citations or references for this). However, given that in the field people generally think it is not necessarily and always the first sperm, the authors may want to consider weakening this claim.

      Only real-time imaging of in vitro fertilization of zona pellucida-intact oocytes, as performed in our study, is capable of determining which spermatozoon crossing the zona pellucida fuses with the oocyte. However, such studies are rare, and most do not specifically address this question. As Reviewers 1 & 3, we have not found any citation or reference telling or showing that it is not necessarily the first spermatozoon to penetrate the zona pellucida that fertilizes the egg. In contrast, at least one reference (Sato et al., 1979) explicitly reports the opposite. If, as suggested by Reviewer 1 and 3, it has indeed been observed before that the first sperm to pass the ZP is not always the one that fertilizes, and if this idea is generally accepted in the field, then it is all the more important that a study demonstrates and publishes this point. This is precisely what our study makes possible. However, in case we may have overlooked a previous reference making the same observation as ours, we have removed the phrasing ‘challenging prior dogma’. That being said, the key issue is not so much that it is not necessarily the first spermatozoon penetrating the perivitelline space that fertilizes, but rather why spermatozoa that successfully reach the PVS of an unfertilized oocyte may fail to achieve fertilization. This is one of the central questions our study sought to address.

      • I do think the cortical granule release could still contribute to the block to polyspermy though - as the authors here nicely show - at a later time-point only, and thus not the major and not the immediate block as previously thought. The wording in the abstract should therefore be adjusted (since it could still contribute...)

      We are concerned that we may disagree on this point. The penetration block resulting from cortical granule release progressively reduces the permeability of the zona pellucida to spermatozoa, relative to its baseline permeability prior to sperm–oocyte fusion. Any decrease in this baseline permeability occurring before the fusion block becomes fully effective can contribute to the prevention of polyspermy by limiting the number of sperm that can access the oolemma at a time when fusion is still possible. In contrast, once the fusion block is fully established, limiting the number of spermatozoa traversing the ZP becomes irrelevant regarding the block to polyspermy, as the fusion block alone is sufficient to prevent additional fertilizations, rendering the penetration block obsolete. The only scenario that could challenge this obsolescence is if the fusion block were transient. In that case, as Reviewer 1 suggests, the penetration block could indeed play a role at a later time-point. However, taken together, our study and that of Nozawa et al. (2018) support the conclusion that this is not the case in mice:

      • Our in vitro study using kinetic tracking shows that the time constant for completion of the fusion block is typically 6.2 ± 1.3 minutes. During this time window, we observe that the permeability of the zona pellucida to spermatozoa does not yet decrease significantly from the baseline level it exhibited prior to sperm–oocyte fusion (see Figures 5B and S1B in the revised manuscript, and Figures 5A and 5B in the initial version). Consequently, before the fusion block is fully established, the penetration block can contribute only marginally—if at all—to the prevention of polyspermy. In contrast, the naturally low baseline permeability of the ZP—independent of any fertilization-triggered penetration block—as well as the relatively long timing of fusion ( minutes on average) after sperm penetration in the perivitelline space, are factors that contribute to the preservation of monospermic while the fusion block is still being established.
      • Our in vitro study using kinetic tracking shows that once the fusion block is completed following the first fusion event, no additional spermatozoa are able to fuse with the oocyte until the end of the experiment, 4 hours post-insemination (see blue points and fitting curve in Figure 5C). Meanwhile, one or more additional spermatozoa—most of them motile and therefore viable—are present in the perivitelline space in 50% of the oocytes analyzed (purple point in Figure 5C). This demonstrates that, once established, the fusion block remains effective for at least the entire duration of the experiment, supporting the idea of a fully functional and long-lasting fusion block.
      • Nozawa et al. (2018) found that female mice lacking ovastacin—the protease released during the cortical reaction that renders the zona pellucida impenetrable—are normally fertile. They additionally reported that the oocytes recovered from these females after mating are monospermic despite the systematic presence of additional spermatozoa in the perivitelline space. These findings further support the conclusion that in mice the fusion block is both permanent and sufficient to prevent polyspermy. For all these reasons, we believe that even at a later time-point, the penetration block does not contribute to the prevention of polyspermy in mice.

      To clarify the fact that the penetration block does not necessarily contribute to prevent polyspermy, which indeed challenges the commonly accepted view, we have substantially revised the discussion. Furthermore, Figure 9 from the initial version of the manuscript has been replaced by Figure 8 in the revised version. This new figure provides a more didactic illustration of the inefficacy of the penetration block in preventing polyspermy in mice, by showing the respective impact of the fusion block, the penetration block, as well as fusion timing and the natural baseline permeability of the zona pellucida, on the occurrence of polyspermy.

      As for the abstract, it has also been thoroughly revised. The content related to this section is now expressed in a way that emphasizes the factors that actively contribute to the prevention of polyspermy in mice, rather than those with no or marginal contribution (such as the penetration block in this case).

      • release of OPM components - in the abstract it's unclear what the authors mean by this - in the results part it becomes clear. Please already make it clear in the abstract that it is the fertility factors JUNO/CD9 that could bind to sperm heads upon their release and thus 'neutralize' them? I would also recommend not referring to it as 'outer' plasma membrane (there is no 'inner plasma membrane'). Moreover, in the abstract please clarify that this release is happening only after fusion of the first sperm and not all the time. In the abstract it sounds as if this was a completely new idea, but there is good prior evidence that this is in fact happening (as also then cited in the results part) - maybe frame it more as the retention inside the PVS as new finding.

      We thank reviewer 1 for pointing out the lack of precision in the abstract regarding the “components” released from the oolemma, and the fact that our phrasing may have given the impression that the post-fertilization release of CD9 and JUNO is a novel observation. The new observation is that CD9 and JUNO, which are known to be massively released from the oolemma after fertilization, bind to spermatozoa in the perivitelline space. However, we cannot rule out the possibility that other oocyte-derived molecules not investigated here may undergo a similar process. This is why we employed the broader term “components”, which encompasses both CD9 and JUNO as well as potential additional molecules. That said, we acknowledge the lack of precision introduced by this terminology. To address this, we have revised the corresponding sentence in the abstract to better reflect our new findings relative to previous ones, and to eliminate the ambiguity introduced by the word “component”.

      The revised sentence of the abstract reads as follows:

      “Our observation that non-fertilizing spermatozoa in the perivitelline space are coated with CD9 and JUNO oocyte’s proteins, which are known to be massively released from the oolemma after gamete fusion, supports the hypothesis that the fusion block involves an effective perivitelline space-block contribution consisting in the neutralization of supernumerary spermatozoa in the perivitelline space by these and potentially other oocyte-derived factors.”

      Moreover, we cannot state in the abstract that the release of CD9 and JUNO occurs only after the fusion of the first spermatozoon and not before, since some CD9 and JUNO are already detectable in the perivitelline space (PVS) prior to fusion. What our study shows is that, before fertilization, CD9 and JUNO are predominantly localized at the oocyte membrane. In contrast, after fusion (four hours post-insemination), oocyte CD9 is distributed between the membrane and the PVS, and the only JUNO signal detectable in the oocyte is found in the PVS. This is what we describe in the Results section on page 15.

      Regarding the acronym “OPM” in the initial version of the manuscript, although it was defined in the introduction as referring to the oocyte plasma membrane and not the outer plasma membrane (which, indeed, would not be meaningful), we acknowledge that it may have caused confusion to people in the field due to its resemblance to the commonly used meaningful acronym “OAM” for outer acrosomal membrane. To avoid any ambiguity, we have replaced the acronym “OPM” throughout the revised manuscript with the term “oolemma”, which unambiguously refers to the plasma membrane of the oocyte.

      It is unclear to me what the relevance of dividing the post-fusion/post-engulfment into different phases as done in Fig 2 (phase 1, and phase 2) - also for the conclusions of this paper this seems rather irrelevant and overly complicated, since the authors never get back to it and don't need it (it's not related to the polyspermy block analyses). I would remove it from the main figures and not divide into those phases since it is distracting from the main focus.

      Sperm engulfment and PB2 extrusion are two processes that follow sperm–oocyte fusion. As such, they are clear indicators that fusion has occurred and that meiosis has resumed. Their progression over time is readily identifiable in bright-field imaging: sperm engulfment is characterized by the gradual disappearance of the spermatozoon head from the oolemma, whereas PB2 extrusion is observed as the progressive emergence of a rounded protrusion from the oocyte membrane (Figure 2 in the initial manuscript and Figure S2 A&B in the revised version). The kinetics of these events, measured from the arrest of “push-up–like” movement of the sperm head against the oolemma —assumed to coincide with sperm-oocyte fusion, as further justified in a later response to Reviewer 1—provide reliable temporal landmarks for estimating the timing of fusion when the fusion event itself is not directly observed in real time (Figure S2 C&D).

      The four landmarks used in this estimation are:

      (i) the disappearance of the sperm head from the oolemma due to internalization (28 ± 2 minutes post-arrest, mean ± SD);

      (ii) the onset of PB2 protrusion from the oolemma (28 ± 2 minutes post-arrest);

      (iii) the moment when the contact angle between the PB2 protrusion and the oolemma shifts from greater than to less than 90° (49 ± 6 minutes post-arrest);

      (iv) the completion of PB2 extrusion (73 ± 10 minutes post-arrest).

      The approach used to determine the fusion time window of a fertilizing spermatozoon from these landmarks is detailed in the “Determination of the Fertilization Time Windows” section of the Materials and Methods. Compared to the initial version of the manuscript, we have added a paragraph explaining the rationale for using the arrest of the push-up–like movement as a reliable indicator for sperm–oocyte fusion and have clarified the description of the approach used to determine fertilization timing.

      The timed characterization of sperm engulfment and PB2 extrusion kinetics is highly relevant to the analysis of the penetration and fusion blocks, however we agree that its place is more appropriate in the Supplementary Information than in the main text. In accordance with the reviewer’s recommendation, this section has therefore been moved to the Supplementary Information SI2.

      For the statistical analysis, I am not sure whether the assumption "assumption that the probability distribution of penetration or fertilization is uniform within a given time window" is in fact true since the probability of fertilizing decreases after the first fertilization event.... Maybe I misunderstood this, but this needs to be explained (or clarified) better, or the limitation of this assumption needs to be highlighted.

      During in vitro fertilization experiments with kinetic tracking, each oocyte is observed sequentially in turn. As a result, sperm penetration into the perivitelline space or fusion with the oolemma may occur either during an observation round or in the interval between two rounds. In the former case, penetration or fusion is directly observed in real time, allowing for high temporal precision in determining the moment of the event. In contrast, when penetration or fusion occurs between two observation rounds, the precise timing cannot be directly determined. We can only ascertain that the event took place within the time window we have determined. Because, within a given penetration or fusion time window, we do not know the exact moment at which the event occurred, there is no reason to favor one time over another. This justifies the assumption that all time points within the window are equally probable. This explanation has been added in the section Statistical treatment of penetration and fertilization chronograms to study the kinetics of fertilization, penetration block and fusion block of the main text and in the section Statistical treatment of penetrations and fertilizations chronograms to study penetration and fusion blocks of the material and methods.

      -Suggestion for additional experiments:

      If I understood correctly, the onset of fusion in Fig 2C is defined by stopping of sperm beating? If it is by the sudden stop of the beating flagellum, this should be confirmed in this situation (with the ZP intact) that it correctly defines the time-point of fusion since this has not been measured in this set-up before as far as I understand. In order to measure this accurately, the authors will need to measure this accurate to be able to acquire those numbers (of time from fusion to end of engulfment), e.g. by pre-loading the oocyte with Hoechst to transfer Hoechst to the fusing sperm upon membrane fusion.

      The nuclear dye Hoechst is widely used as a marker of gamete fusion, as it transfers from the ooplasm—when preloaded with the dye—into the sperm nucleus upon membrane fusion, thereby signaling the happening of the fusion event. This technique is applicable in the context of in vitro fertilization using ZP-free oocytes. However, it is not suitable when cumulus–oocyte complexes are inseminated, as is the case in both in vitro experimental conditions of the present study (standard IVF and IVF with kinetic tracking). Indeed, when cumulus–oocyte complexes are incubated with Hoechst to preload the oocytes, the numerous surrounding cumulus cells also take up the dye. Consequently, upon insemination, spermatozoa acquire fluorescence while traversing and dispersing the cumulus mass—before reaching the ZP—thus rendering Hoechst labeling ineffective as a specific marker of membrane fusion. This remains true even under optimized conditions involving brief Hoechst incubation of cumulus–oocyte complexes ( Nonetheless, we have strong evidence supporting the use of the arrest of sperm movement as a surrogate marker for the moment of fusion. In our previous study (Ravaux et al., 2016; ref. 4 in the revised manuscript), we investigated the temporal relationship between the abrupt cessation of sperm head movement on the oolemma—resulting from strong flagellar beating arrest—and the fusion event, using ZP-free oocytes preloaded with Hoechst. That study revealed a temporal delay of less than one minute between the cessation of sperm oscillations and the actual membrane fusion, thereby supporting the conclusion that in ZP-free oocytes, the arrest of vigorous sperm movement at the oolemma is a reliable indicator of the moment at which fusion occurs. In the same study, the kinetics of sperm head internalization into the ooplasm were also characterized, typically concluding within 20–30 minutes after movement cessation. These findings are fully consistent with our current observations in ZP-intact oocytes, where sperm head engulfment was completed approximately 24 ± 3 minutes after the arrest of sperm oscillations. Taken together, these results strongly support the conclusion that, in both ZP-free and ZP-intact oocytes, the arrest of sperm movement is a reliable indicator of the fusion event. This assumption formed the basis for our determination of fertilization time points in the present study.

      These justifications were not fully detailed in the original version of the manuscript. We have addressed this in the revised version by explicitly presenting this rationale in the Materials and Methods section under Determination of the Fertilization Time Windows.

      Fig 8: 2 comments

      • To better show JUNO/CD9 pre-fusion attachment to the oocyte surface and post-fusion loss from the oocyte surface (but persistence in the PVS), an image after removal of the ZP (both for pre-fertilization and post-fertilization) would be helpful - the combination of those images with the ones you have (ZP intact) would make your point more visible.

      We have followed this recommendation. Figure 8 of the initial manuscript has been replaced by Figure 6 in the revised manuscript, which illustrates the four situations encountered in this study: fertilized and unfertilized oocytes, each with and without unfused spermatozoa in their PVS. To better show JUNO/CD9 pre-fusion presence to the oocyte plasma membrane, as well as their post-fusion partial (for CD9) and near-complete (for JUNO) loss from the oocyte membrane (but persistence in the PVS), paired images of the same oocyte before and after of ZP removal are now provided, both for unfertilized (Figure 6A) and fertilized oocytes (Figure 6C).

      • You show that the heads of spermatozoa post fusion are covered in CD9 and JUNO, yet I was missing an image of sperm in the PVS pre-fertilization (which should then not yet be covered).

      As staining and confocal imaging of the oocytes were performed 4 hours after insemination, images of sperm in the PVS of an oocyte “pre-fertilization” cannot be strictly obtained. However, we can have images of spermatozoa present in the PVS of oocytes that remained unfertilized. This situation, now illustrated in Figure 6B of the revised manuscript, shows that these spermatozoa are also covered in JUNO and CD9, which they may have progressively acquired over time from the baseline presence of these proteins in the PVS of unfertilized oocytes. This also may provide a mechanistic explanation for their inability to fuse with the oolemma, and, consequently, for the failure of fertilization in these oocytes.

      Minor comments:

      • The videos were remarkable to look at, and great to view in full. However, for the sake of time, the authors might want to consider cropping them for the individual phases to have a shorter video (with clear crop indicators) with the most important different stages visible in a for example 1 min video (e.g. video.

      We have followed this recommendation. The videos have been cropped and annotated in order to highlight the key events that support the points made in the result section from page 9 to 11 in the revised manuscript.

      • In general, given that the ZP, PVS and oocyte membrane are important components, a general scheme at the very beginning outlining the relative positioning of each before and during fertilization (and then possibly also including the second polar body release) would be extremely helpful for the reader to orient themselves.

      A general scheme addressing Reviewer 1 request, summarizing the key components and concepts discussed in the article and intended to help guide the reader, has been added to the introduction of the revised manuscript as Figure 1.

      • first header results "Multi-penetration and polyspermy under in vivo conditions and standard and kinetics in vitro fertilization conditions" is hard to understand - simplify/make clearer (comparison of in vivo and in vitro conditions? Establishing the in vitro condition as assay?)

      The title of the first Results section has been revised in accordance with Reviewer 1 suggestion. It now reads: Comparative study of penetration and fertilization rates under in vivo and two distinct in vitro fertilization conditions.

      • Large parts of the statistical analysis (the more technical parts) could be moved to the methods part since it disrupts the flow of the text.

      In the revised version of our manuscript, we have restructured this part of the analysis to ensure that more technical or secondary elements do not disrupt the flow of the main text. Accordingly, the equations have been reduced to only what is strictly necessary to understand our approach, their notation has been greatly simplified, and the statistical analysis of unfertilized oocytes whose zona pellucida was traversed by one or more spermatozoa has been moved to the Supplementary Information (SI1).

      • To me, one of the main conclusions was given in the text of the results part, namely that "This suggests that first fertilization contributes effectively to the fertilization-block, but less so to the penetration block". I would suggest that the authors use this conclusion to strengthen their rationale and storyline in the abstract.

      We agree with Reviewer 1 suggestion. Accordingly, we have not only thoroughly revised our abstract, but also the introduction and discussion, in order to better highlight the rationale of our study, its storyline, and the new findings which not only challenge certain established views but also open new research directions in the mechanisms of gamete fusion and polyspermy prevention.

      • Wording: To characterize the kinetics with which penetration of spermatozoa in the PVS falls down after a first fertilization," falls down should be replaced with decreases (page 10 and page 12)

      Falls down has been removed from the new version and replaced with decreases


      Significance

      Overall, this manuscript provides very interesting and carefully obtained data which provides important new insights particularly for reproductive biology. I applaud the authors on first establishing the in vivo conditions (how often do multiple sperm even penetrate the ZP in vivo) since studies have usually just started with in vitro condition where sperm at much higher concentration is added to isolated oocyte complexes. Thank you for providing an in vivo benchmark for the frequency of multiple sperm being in the PVS. While this frequency is rather low (somewhat expectedly, with 16% showing 2-3 sperm in the PVS), this condition clearly exists, providing a clear rationale for the investigation of mechanisms that can prevent additional sperm from entering.

      My own expertise is experimentally - thus I don't have sufficient expertise to evaluate the statistical methods employed here.

      __ __


      Reviewer #2

      Evidence, reproducibility and clarity

      Overall, this is a very interesting and relevant work for the field of fertilization. In general, the experimental strategies are adequate and well carried out. I have some questions and suggestions that should be considered before the work is published.

      1) Why are the cumulus cells not mentioned when the AR is triggered before or while the sperms cross it? It seems the paper assumes from previous work that all sperm that reach ZP and the OPM have carried out the acrosome reaction. This, though probably correct, is still a matter of controversy and should be discussed. It is in a way strange that the authors do not make some controls using sperm from mice expressing GFP in the acrosome, as they have used in their previous work.

      We do not mention the cumulus cells or whether the acrosome reaction is triggered before, during, or after their traversal (i.e., upon sperm binding to the ZP), as this question, while scientifically relevant, pertains to a distinct line of investigation that lies beyond the scope of the present study. Even with the use of spermatozoa expressing GFP in the acrosome, addressing this question would require a complete redesign of our kinetic tracking protocol, which was specifically conceived to monitor in bright field the dynamic behavior of spermatozoa from the moment they begin to penetrate the perivitelline space of an oocyte. Accordingly, we imaged oocytes that were isolated 15 minutes after insemination of the cumulus–oocyte complexes, by which time most (if not all) cumulus cells had detached from the oocytes, as explained in the fourth paragraph of the material and methods of both the initial and revised versions of the manuscript. The spermatozoa we had access to were therefore already bound to the zona pellucida at the time of removal from the insemination medium, and had thus necessarily passed through the cumulus layer. It is unclear for us why Reviewer 2 believes that we “assume from previous work that all sperm that reach ZP has carried out the acrosome reaction”. We could not find any statement in our manuscript suggesting, let alone asserting, such an assumption, which we know to be incorrect. Based on both published work from Hirohashi’s group in 2011 (Jin et al., 2011, DOI: 10.1073/pnas.1018202108) and our own unpublished observation (both involving cumulus-oocyte masses inseminated with spermatozoa expressing GFP in the acrosome), it is established that only a subset of spermatozoa reaching the ZP after crossing the cumulus layer has undergone acrosome reaction. Moreover, from the same sources—as well as from a recent publication by Buffone’s group (Jabloñsky et al., 2023 DOI: 10.7554/eLife.93792 ) which is the one to which reviewer 2 refers in her/his 3rd comment, it is also well established that spermatozoa have all undergone acrosome reaction when they enter the PVS. To the best of our knowledge, this latter point has long been widely accepted and is not questioned. Therefore, stating this in the first paragraph of the Discussion in the revised manuscript, while referencing the two aforementioned published studies, should be appropriate. What remains a matter of ongoing debate, however, is the timing and the physiological trigger(s) of the acrosome reaction in fertilizing spermatozoa. The 2011 study by Hirohashi’s group challenged the previously accepted view that ZP binding induces the acrosome reaction, showing instead that most spermatozoa capable of crossing the ZP and fertilizing the oocyte had already undergone the acrosome reaction prior to ZP binding. However, as this issue lies beyond the scope of our study, we do not consider it appropriate to include a discussion of it in the manuscript.

      2) In the penetration block equations, it is not clear to me why (𝑡𝑃𝐹1) refers to both PIPF1 and 𝜎𝜎𝑃I𝑃𝐹1. Is it as function off?

      That is correct: (tPF1) means function of the time post-first fertilization. Both the post-first fertilization penetration index (i.e. PIPF1) and its incertainty (i.e. 𝜎𝑃I𝑃𝐹1 ) vary as a function of this time. However, as mentioned in a previous response to Reviewer 1, this section has been rewritten to improve clarity and readability. The equations have been limited to those strictly necessary for understanding our approach, and their notation has been significantly simplified.

      3) Why do the authors think that the flagella stops. The submission date was 2024-10-01 07:27:26 and there has been a paper in biorxiv for a while that merits mention and discussion in this work (bioRxiv [Preprint]. 2024 Jul 2:2023.06.22.546073. doi: 10.1101/2023.06.22.546073.PMID: 37904966).

      Our experimental approach allows us to determine when the spermatozoon stops moving, but not why it stops. We thank Reviewer 3 for pointing out this very relevant paper from Buffone’s group (doi: 10.7554/eLife.93792) which shows the existence of two distinct populations of live, acrosome-reacted spermatozoa. These correspond to two successive stages, which occur either immediately upon acrosome reaction in a subset of spermatozoa, or after a variable delay in others, during which the sperm transitions from a motile to an immotile state. The transition from the first to the second stage was shown to follow a defined sequence: an increase in the sperm calcium concentration, followed by midpiece contraction associated with a local reorganization of the helical actin cortex, and ultimately the arrest of sperm motility. For fertilizing spermatozoa in the PVS, this transition was shown to occur upon fusion. However, it was also reported in some non-fertilizing spermatozoa that this transition took place within the PVS. These findings are consistent with the requirement for sperm motility in order to achieve fusion with the oolemma. Moreover, the fact that some spermatozoa may prematurely transition to the immotile state within the PVS can therefore be added to the list of possible reasons why a spermatozoon that penetrates the PVS of an oocyte might fail to fuse.

      This discussion has been added to the first paragraph of the Discussion section of our revised manuscript.

      4) Please correct at the beginning of Materials and Methos: Sperm was obtained from WT male mice, it should say were.

      Thank you, the correction has been done.

      5) This is also the case in the fourth paragraph of this section: oocyte were not was.

      The sentence in question has been modified as followed: “In the in vitro fertilization experiments with kinetic tracking, a subset of oocytes—together with their associated ZP-bound spermatozoa—was isolated 15 minutes post-insemination and transferred individually into microdrops of fertilization medium to enable identification.”


      Significance

      Understanding mammalian gamete fusion and polyspermy inhibition has not been fully achieved. The authors examined real time brightfield and confocal images of inseminated ZP-intact mouse oocytes and used statistical analyses to accurately determine the dynamics of the events that lead to fusion and involve polyspermy prevention under conditions as physiological as possible. Their kinetic observations in mice gamete interactions challenge present paradigms, as they document that the first sperm is not necessarily the one that fertilizes, suggesting the existence of other post-penetration fertilization factors. The authors find that the zona pellucida (ZP) block triggered by the cortical reaction is too slow to prevent polyspermy in this species. In contrast, their findings indicate that ZP directly contributes to the polyspermy block operating as a naturally effective entry barrier inhibiting the exit from the perivitelline space (PVS) of components released from the oocyte plasma membrane (OPM), neutralizing unwanted sperm fusion, aside from any block caused by fertilization. Furthermore, the authors unveil a new important ZP role regulating flagellar beat in fertilization by promoting sperm fusion in the PVS.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      SUMMARY: This study by Dubois et al. utilizes live-cell imaging studies of mouse oocytes undergoing fertilization. A strength of this study is their use of three different conditions for analyses of events of fertilization: (1) eggs undergoing fertilization retrieved from females at 15 hr after mating (n = 211 oocytes); (2) cumulus-oocyte complexes inseminated in vitro (n = 220 oocytes), and (3) zona pellucida (ZP)-intact eggs inseminated in vitro, transferred from insemination culture once sperm were observed bound to the ZP for subsequent live-cell imaging (93 oocytes). This dataset and these analyses are valuable for the field of fertilization biology. Limitations of this manuscript are challenges arise with some conclusions, and the presentation of the manuscript. There are some factual errors, and also some places where clearer explanations should to be provided, in the text and potentially augmented with illustrations to provide more clarity on the models that the authors interpret from their data.

      MAJOR COMMENTS:

      The authors are congratulated on their impressive collection of data from live-cell imaging. However, the writing in several sections is challenging to understand or seems to be of questionable accuracy. The lack of accuracy is suspected to be more an effect of overly ambitious attempts with writing style, rather than to mislead readers. Nevertheless, these aspects of the writing should be corrected. There also are multiple places where the manuscript contradicts itself. These contradictions should be corrected. Finally, there are factual points from previous studies that need correction.

      Second, certain claims and the conclusions as presented are not always clearly supported by the data. This may be connected to the issues with writing style, word and phrasing choices, etc. The conclusions could be expressed more clearly, and thus may not require additional experiments or analyses to support them. The authors might also consider illustrations as ways to highlight the points they wish to make. (Figure 7 is a strong example of how they use illustrations to complement the text).

      In response to Reviewer 3's concern about the writing style, which made several sections difficult to understand, we have thoroughly revised the entire manuscript to improve clarity, and precision. To further enhance comprehension, we have added illustrations in the revised version of the manuscript:

      • Figure 1A presents the gamete components; Figure 1B depicts the main steps of fertilization considered in the present study; and Figure 1C illustrates the penetration and fusion blocks, along with the respective contributing mechanisms: the ZP-block for the penetration block, and the membrane-block and PVS-block for the fusion block

      • Figure 2A provides a description of the three experimental protocols used in this study: Condition 1, in vivo fertilization after mating; Condition 2, standard in vitro fertilization following insemination of cumulus-oocyte complexes; and Condition 3, in vitro fertilization with kinetic tracking of oocytes isolated from the insemination medium 15 min after insemination of the cumulus-oocyte complexes.

      • Figure 4 (formerly Figure 7 in the initial version) now highlights all fusing and non-fusing situations documented in videos 1-6 and associated paragraphs of the Results section.

      • In the Discussion, Figure 9 from the original version has been replaced by Figure 8, which now provides a more pedagogical illustration of the inefficacy of the penetration block in preventing polyspermy in mice. This figure illustrates the respective contributions of the fusion block, the penetration block, fusion timing, and the intrinsic permeability of the zona pellucida to the occurrence of polyspermy.

      We hope that this revised version of the article will guide the reader smoothly throughout, without causing confusion.

      Regarding the various points that Reviewer 3 perceives as contradictions or factual errors, or the claims and the conclusions which, as presented, should not always supported by the data, we will provide our perspective on each of them as they are raised in the review.

      SPECIFIC COMMENTS:

      (1) The authors should use greater care in describing the blocks to polyspermy, particularly because they appear to be wishing to reframe views about prevention of polyspermic fertilization. The title mentions of "the fast block to polyspermy;" this problematic for a couple of different reasons. There is no strong evidence for block to polyspermy in mammals that occurs quickly, particularly not in the same time scale as the first-characterized fast block to polyspermy. To many biologists, the term "fast block to polyspermy" refers to the block that has been described in species like sea urchins and frogs, meaning a rapid depolarization of the egg plasma membrane. However, such depolarization events of the egg membrane have not been detected in multiple mammalian species. Moreover, the change in the egg membrane after fertilization does not occur in as fast a time scale as the membrane block in sea urchins and frogs (i.e., is not "fast" per se), and instead occurs in a comparable time frame as the conversation of the ZP associated with the cleavage of ZP2. Thus, it is misleading to use the terms "fast block" and "slow block" when talking about mammalian fertilization. This also is an instance of where the authors contradict themselves in the manuscript, stating, "the membrane block and the ZP block are established in approximatively the same time frame" (third paragraph of Introduction). This statement is indeed accurate, unlike the reference to a fast block to polyspermy in mammals.

      We fully agree with Reviewer 3 on the importance of clearly defining the two blocks examined in the present study—the penetration block and the fusion block (as referred to in the revised version) —and of situating them in relation to the three blocks described in the literature: the ZP-block, membrane-block, and PVS-block. We acknowledge that this distinction was not sufficiently clear in the original version of the manuscript. In the revised version, these two blocks and their relationship to the ZP-, membrane-, and PVS-blocks are now clearly introduced in the second paragraph of the Introduction section and illustrated in the first figure of the manuscript (Fig. 1C). They are then discussed in detail in two dedicated paragraphs of the Discussion, entitled Relation between the penetration block and the ZP-block and Relation between the fusion block and the membrane- and PVS-blocks.

      The penetration block refers to the time-dependent decrease in the number of spermatozoa penetrating the perivitelline space (PVS) following fertilization, whereas the fusion block refers to the time-dependent decrease in sperm-oolemma fusion events after fertilization. It is precisely to the characterization of these two blocks that our in vitro fertilization experiments with kinetic tracking allow us to access.

      In this study, as in the literature, fusion-triggered modifications of the ZP that hinder sperm traversal of the ZP are referred to as the ZP-block (also known as ZP hardening). The ZP-block thus contributes to the post-fertilization reduction in sperm penetration into the PVS and thereby underlies the penetration block. Similarly, fusion-triggered alterations of the PVS and the oolemma that reduce the likelihood of spermatozoa that have reached the PVS successfully to fuse with the oolemma are referred to as the PVS-block and membrane-block, respectively. These two blocks act together to reduce the probability of sperm-oolemma fusion after fertilization, and thus contribute to the fusion block.

      The time constant of the penetration block was found to be 48.3 ± 9.7 minutes, which is consistent with the typical timeframe of ZP-block completion—approximately one hour post-fertilization in mice—as reported in the literature. By contrast, the time constant of the fusion block was determined to be 6.2 ± 1.3 minutes, which is markedly faster than the time typically reported in the literature for the completion of the fusion-block (more than one hour in mice). This strongly suggests that the kinetics of the fusion block are not primarily governed by its membrane-block component, but rather by its PVS-block component—about which little to nothing was previously known.

      Contrary to what Reviewer 3 appears to have understood from our initial formulation, there is therefore no contradiction or error in stating that "the membrane block and the ZP block are established within approximately the same timeframe", while the fusion block, which proceeds much more rapidly, is likely to rely predominantly on the PVS-block. We have thoroughly revised the manuscript to clarify this key message of the study.

      However, we understand Reviewer 3’s objection to referring to the fusion block (or the PVS-block) as a fast block, given that this term is conventionally reserved for the immediate fertilization-triggered membrane depolarization occurring in sea urchins and frogs. Although the kinetics we report for the fusion block are considerably faster than those of the penetration block, they occur on the scale of minutes, and not seconds. In line with the reviewer's recommendation, we have therefore modified both the title and the relevant passages in the text to remove all references to the term fast block in the revised version.

      (2) The authors aim to make the case that events occurring in the perivitelline space (PVS) prevent polyspermic fertilization, but the data that they present is not strong enough to make this conclusion. Additional experiments would optional for this study, but data from such additional experiments are needed to support the authors' claims regarding these functions in fertilization. Without additional data, the authors need to be much more conservative in interpretations of their data. The authors have indeed observed phenomena (the presence of CD9 and JUNO in the PVS) that could be consistent with a molecular basis of a means to prevent fertilization by a second sperm. However, the authors would need additional data from additional experimental studies, such as interfering with the release of CD9 and JUNO and showing that this experimental manipulation leads to increased polyspermy, or creating an experimental situation that mimics the presence of CD9 and JUNO (in essence, what the authors call "sperm inhibiting medium" on page 20) and showing that this prevents fertilization.

      A major section of the Results section here (starting with "The consequence is that ... ") is speculation. Rather than be in the Results section, this should be in the Discussion. The language should be also softened regarding the roles of these proteins in the perivitelline space in other portions of the manuscript, such as the abstract and the introduction.

      Finally, the authors should do more to discuss their results with the results of Miyado et al. (2008), which interestingly, posited that CD9 is released from the oocytes and that this facilitates fertilization by rendering sperm more fusion-competent. There admittedly are two reports that present data that suggest lack of detection of CD9-containing exosomes from eggs (as proposed by Miyado et al.), but nevertheless, the authors should put their results in context with previous findings.

      We generally agree with all the remarks and suggestions made here. In the revised version of the manuscript, we have retained in the Results section (pp. 14–15) only the factual data concerning the localization of CD9 and JUNO in unfertilized and fertilized oocytes, as well as in the spermatozoa present in the PVS of these oocytes. We have taken care not to include any interpretive elements in this section, which are now presented exclusively in a dedicated paragraph of the Discussion, entitled “Possible molecular bases of the membrane-block and ZP-block contributing to the fusion block” (p. 21). There, we develop our hypothesis and discuss it in light of both the findings from the present study and previous work by other groups. In doing so, we also address the data reported by Miyado et al. (2008, https://doi.org/10.1073/pnas.0710608105), as well as subsequent studies by two other groups—Gupta et al. (2009, https://doi.org/10.1002/mrd.21040) and Barraud-Lange et al. (2012, https://doi.org/10.1530/REP-12-0040)—that have challenged Miyado’s findings.

      We are fully aware that our interpretation of the coverage of unfused sperm heads in the perivitelline space (PVS) by CD9 and JUNO, released from the oolemma—as a potential mechanism of sperm neutralization contributing to the PVS block—remains, at this stage, a plausible hypothesis or working model that, as such, warrants further experimental investigation. It is precisely in this spirit that we present it—first in the abstract (p.1), then in the Discussion section (p. 21), and subsequently in the perspective part of the Conclusion section (p. 22).

      (3) Many of the authors' conclusions focus on their prior analyses of sperm interaction - beautifully illustrated in Figure 7. However, the authors need to be cautious in their interpretations of these data and generalizing them to mammalian fertilization as a whole, because mouse and other rodent sperm have sperm head morphology that is quite different from most other mammalian species.

      In a similar vein, the authors should be cautious in their interpretations regarding the extension of these results to mammalian species other than mouse, given data on numbers of perivitelline sperm (ranging from 100s in some species to virtually none in other species), suggesting that different species rely on different egg-based blocks to polyspermy to varying extents. While these observations of embryos from natural matings are subject to numerous nuances, they nevertheless suggest that conclusions from mouse might not be able to be extended to all mammalian species.

      It is not clear to us whether Reviewer 3’s comment implies that we have, at some point in the manuscript, generalized conclusions obtained in mice to other mammalian species—which we have not—or whether it is simply a general, common-sense remark with which we fully agree: that findings established in one species cannot, by default, be assumed to apply to another.

      We would like to emphasize that throughout the manuscript, we have taken care to restrict our interpretations and conclusions to the mouse model, and we have avoided any unwarranted extrapolation to other species.

      To definitively close this matter—if there is indeed a matter—we have added the following clarifying statements in the revised version of the manuscript:

      In the introduction, second paragraph (pp. 2–3):"The variability across mammalian species in both the rate of fertilized oocytes with additional spermatozoa in their PVS (from 0 to more than 80%) after natural mating and the number of spermatozoa present in the PVS of these oocytes (from 0 to more than a hundred) suggests that the time for completion of the penetration block and thus its efficiency to prevent polyspermy can vary significantly between species."

      At the end of the preamble to the Results section (p. 4):"This experimental study was conducted in mice, which are the most widely used model for studying fertilization and polyspermy blocks in mammals. While there are many interspecies similarities, the findings presented here should not be directly extrapolated to humans or other mammalian species without species-specific validation."

      In the Conclusion, the first sentence is (p.22) : “This study sheds new light on the complex mechanisms that enable fertilization and ensure monospermy in mouse model.”

      Within the Conclusion section, among the perspectives of this work (p. 22):"In parallel, comparative studies in other mammalian species will be needed to assess the generality of the PVS-block and its contribution relative to the membrane-block and ZP-blocks, as well as the generality of the mechanical role played by flagellar beating and ZP mechanical constraint in membrane fusion."

      (4) Results, page 4 - It is very valuable that the authors clearly define what they mean by a penetrating spermatozoon and a fertilizing spermatozoon. However, they sometimes appear not to adhere to these definitions in other parts of the manuscript. An example of this is on page 10; the description of penetration of spermatozoon seems to be referring to membrane fusion with the oocyte plasma membrane, which the authors have alternatively called "fertilizing" or fertilization - although this is not entirely clear. The authors should go through all parts of the manuscript very carefully and ensure consistent use of their intended terminology.

      Overall, while these definitions on page 4 are valuable, it is still recommended that the authors explicitly state when they are addressing penetration of the ZP and fertilization via fusion of the sperm with the oocyte plasma membrane. This help significantly in comprehension by readers. An example is the section header in the middle of page 9 - this could be "Spermatozoa can penetrate the ZP after the fertilization, but have very low chances to fertilize."

      We chose to define our use of the term penetration at the beginning of the Results section because, as readers of fertilization studies, we have encountered on multiple occasions ambiguity as to whether this term was referring to sperm entry into the perivitelline space following zona pellucida traversal, or to the fusion of the sperm with the oolemma. To avoid such ambiguity, we were particularly careful throughout the writing of our original manuscript to use the term penetration exclusively to describe sperm entry into the PVS. The terms fertilizing and fusion were reserved specifically for membrane fusion between the gametes. However, as occasional lapses are always possible, we followed Reviewer 3’s recommendation and carefully re-examined the entire manuscript to ensure consistent use of our intended terminology. We did not identify any inconsistencies, including on page 10, which was cited as an example by Reviewer 3. We therefore confirm that, in accordance with our predefined terminology, all uses of the term penetration, on that page and anywhere else in our original manuscript, refer exclusively to sperm entry into the PVS and do not pertain to fusion with the oolemma.

      That said, it is important that all readers— including those who may only consult selected parts of the article—are able to understand it clearly. Therefore, despite the potential risk of slightly overloading the text, Reviewer 3’s suggestion to systematically associate the term penetration with ZP seems to us a sound one. However, we have opted instead to associate penetration with PVS, as our study focuses on the timing of sperm penetration into the perivitelline space, rather than on the traversal of the zona pellucida itself. Accordingly, except in a few rare instances where ambiguity seemed impossible, we have systematically used the phrasing “penetration into the PVS” throughout the revised version of the manuscript.

      Another variation of this is in the middle of page 9, where the authors use the terms "fertilization block" and "penetration block." These are not conventional terms, and venture into being jargon, which could leave some readers confused. The authors could clearly define what they mean, particularly with respect to "penetration block,"

      This point has already been addressed in our response to Comment 1 from Reviewer 3. We invite Reviewer 3 to refer to that response.

      This extends to other portions of the manuscript as well, such as Figure 2C, with the label on the y-axis being "Time after fertilization." It seems that what the authors actually observed here was the cessation of sperm tail motility. (It is not evident they they did an assessment of sperm-oocyte fusion here.)

      Regarding Figure 2C (original version), it has been merged with Figure 2B (original version) to form a single figure (Figure S2D), now included in Supplementary Information SI2. This new figure retains all the information originally presented in Figure 2C and indicates the time axis origin as the time when oscillatory movements of the sperm cease.

      That said, for the reasons detailed in our response to Reviewer 1 and in the Materials and Methods, we explain why it is legitimate to use the cessation of sperm head oscillations on the oolemma as a marker for the timing of the fusion event. We invite the reviewers to refer to that response for a full explanation of our rationale.

      (5) Several points that the authors try to make with several pieces of data do not come across clearly in the text, including Figure 2 on page 6, Figure 4 on page 9, and the various states utilized for the statistical treatment, "post-first penetration, post-first fertilization, no fertilization, penetration block and polyspermy block" on page 10. Either re-writing and clearer definitions'explanations are needed, and/or schematic illustrations could be considered to augment re-written text. Illustrations could be a valuable way present the intended concepts to readers more clearly and accurately. For example, Figure 4 and the associated text on page 9 get particularly confusing - although this sounds like a quite impressive dataset with observations of 138 sperm. Illustrations could be helpful, in the spirit of "a picture is worth 1000 words," to show what seem to be three different situations of sequences of events with the sperm they observed. Finally, the text in the Results about the 138 sperm is quite difficult to follow. It also might help comprehension to augment the percentages with the actual numbers of sperm - e.g., is 48.6% referring 67 of the total 138 sperm analyzed? Does the 85.1% refer to 57 of these 67 sperm?

      Figure 2 in the original version of our manuscript concerns sperm engulfment and PB2 extrusion. As already mentioned in our response to Reviewer 1, the characterization of sperm engulfment and PB2 extrusion kinetics is highly relevant to the analysis of the penetration and fusion blocks. However, we agree that its presence in the main text may distract the reader from the main focus of the study. Therefore, this figure and the associated text have been moved to the Supplementary Information in the revised manuscript (SI 2, pages 26–27).

      Regarding Figure 4 (original version), in response to Reviewer 3’s concern about the difficulty in grasping the message conveyed in its three graphs and associated text we have completely rethought the way these data are presented. Since the three graphs of Figure 4 were directly derived from the experimental timing data of sperm entry in the PVS and fusion with the oolemma in fertilized oocytes (originally shown in Figure 3A), we have combined them into a single figure in the revised manuscript: Figure 3 (page 8). This new Figure 3 now comprises three components:

      • Figure 3A remains unchanged from the original version and shows the timing of sperm penetration and fusion in fertilized oocytes. Each sperm category (fused or non-fused , penetrated in the PVS before fusion or after fusion) is represented using a color code clearly explained in the main text (last paragraph of page 7).
      • Figure 3B focuses specifically on the first spermatozoon to penetrate the PVS of each oocyte. It reports how many of these first-penetrating spermatozoa succeeded in fusing versus how many failed to do so, highlighting that being the first to arrive is not sufficient for fusion—other factors are involved. This is explained simply in the first paragraph of page 9.
      • Figure 3C considers all spermatozoa that entered the PVS of fertilized oocytes, classifying them into three categories: those that penetrated the PVS before fertilization, those that did so after fertilization, and those for which the timing could not be precisely determined. Such classification makes it apparent that the number of spermatozoa penetrating before and after fertilization is of the same order of magnitude, indicating that fertilization is not very effective at preventing further sperm entry into the PVS for the duration of our observations (~4 hours). To facilitate the identification of these three categories, the same color code used in Figure 3A is applied. In addition, within each category, the number of spermatozoa that successfully fused are indicated in black. This allows the reader to quickly assess the fertilization probability for each category—high for sperm entering before fertilization, very low or null for those entering after fertilization. This analysis shows that fertilization is far more effective at blocking sperm fusion than at blocking sperm penetration. This is clearly explained in the second paragraph of page 9. Regarding__ statistical analysis__, as already mentioned in our responses to Reviewers 1 and 2, this section has been rewritten to improve clarity and readability. The notation has also been significantly simplified. To improve the overall fluidity of the text related to the statistical analysis, Figure 3B (original version), which presented the timing of penetration into the perivitelline space of oocytes that remained unfertilized, along with its associated statistical analysis previously in Figure 5B), have been revised and transferred together in a single Figure S1 of the Supplementary Information (SI1, pages 26; now Figures S1A and S1B).

      (6) Introduction, page 2 - it is inaccurate to state that only diploid zygotes can develop into a "new being." Triploid zygotes typically fail early in develop, but can survive and, for example, contribute to molar pregnancies. Additionally, it would be beneficial to be more scientifically precise term than saying "development into a new being." This is recommended not only for scientific accuracy, but also due to current debates, including in lay public circles, about what defines "life" or human life.

      In response to Reviewer 3’s comment, we no longer state in the revised version of the manuscript that only diploid zygotes can develop into a new being. We have modified our wording as follows, on page 2, second paragraph: “In mammals, oocytes fertilized by more than one spermatozoon cannot develop into viable offspring.”

      (7) Introduction, page 2 - The mammalian sperm must pass through three layers, not just two as stated in the first paragraph of the Introduction. The authors should include the cumulus layer in this list of events of fertilization.

      The sentence from the introduction from the original manuscript mentioned by Reviewer 3 was: “To fertilize, a spermatozoon must successively pass two oocyte’s barriers.” This statement is accurate in the sense that the cumulus cell layer is not part of the oocyte itself, unlike the two oocyte’s barriers: the zona pellucida and the oolemma. Moreover, the traversal of the cumulus layer is not within the scope of our study, unlike the traversal of the zona pellucida and fusion with the oolemma. However, it is also correct that in our study the spermatozoa have passed through the cumulus layer before reaching the oocyte. Therefore, in response to Reviewer 3’s comment, we have revised the sentence to clarify this point as follows:

      “Once a spermatozoon has passed through the cumulus cell layer surrounding the oocyte, it still must overcome two oocyte’s barriers to complete fertilization.”

      (8) Introduction, page 2 - While there is evidence that zinc is released from mouse egg upon fertilization, the evidence is not convincing or conclusive that zinc is released from cortical granules or via cortical granule exocytosis.

      To better highlight the rationale, storyline, and scope of our study, the introduction has been thoroughly streamlined. In this context, the section discussing the cortical reaction and zinc release seemed more appropriate in the Discussion, specifically within the paragraph titled “Relationship between the penetration block and the ZP-block.”

      To address the uncertainty raised by Reviewer 3 regarding the origin of the zinc spark release, we have rephrased this part as follows:

      “The fertilization-triggered processes responsible for the changes in ZP properties are generally attributed to the cortical reaction—a calcium-induced exocytosis of secretory granules (cortical granules) present in the cortex of unfertilized mammalian oocytes—and to zinc sparks. As a result, proteases, glycosidases, lectins, and zinc are released into the perivitelline space (PVS), where they act on the components of the zona pellucida. This leads to a series of modifications collectively referred to as ZP hardening or the ZP-block”.

      (9) The authors inaccurately state, "only if monospermic multi-penetrated oocytes are able to develop normally, which to our knowledge has never been proven in mice" (page 4) - This was demonstrated with the Astl knockout, assuming that the authors use of "multi-penetrated oocytes" here refers to the definition of penetration that they use, namely penetrating the ZP. This also is one of the instances where the authors contradict themselves, as they note the results with this knockout on page 18.

      Thank you for bringing this point to our attention. Nozawa et al. (2018) found that female mice lacking ovastacin (Astl)—the protease released during the cortical reaction that plays a key role in rendering the zona pellucida impenetrable—are normally fertile. They also reported that oocytes recovered from these females after mating were monospermic, despite the consistent presence of additional spermatozoa in the perivitelline space. We can indeed consider that taken together these findings demonstrate that the presence of multiple spermatozoa in the PVS does not impair normal development, as long as the oocyte remains monospermic. In our study, we re-demonstrated this in a different way (by reimplantation of monospermic oocytes with additional spermatozoa in their PVS) in a more physiological context of WT oocytes, but we agree that we cannot state: “which to our knowledge has never been proven in mice.” This part of the sentence has therefore been removed. In the revised version of the manuscript, the sentence is now formulated in the first paragraph of page 5 as follows: “However, the contribution of the fusion block to prevent polyspermy has physiological significance only if monospermic oocytes with additional spermatozoa in their PVS can develop into viable pups.”

      Minor comments:

      There are numerous places where this reader marked places of confusion in the text. A sample of some of these:

      We will indicate hereinafter how we have modified the text in the specific examples provided by Reviewer 3. Beyond these, however, we would like to emphasize that we have thoroughly revised the entire manuscript to improve clarity and precision.

      Page 4 - "continuously relayed by other if they detach" - don't know what this means

      Replaced now p 5 by “can be replaced by others if they detach”

      Page 6 - "hernia" - do the authors mean "protrusion" on the oocyte surface?

      The paragraph from the Results section in question has now been moved to the Supplementary Information, on pages 26 and 27. The term hernia has been systematically replaced with protrusion, including in the Materials and Methods section on page 24.

      Page 10 - "penetration of spermatozoa in the PVS falls down" - don't know what this means

      Falls down has been removed from the new version and replaced with decreases

      Page 12 - "spermatozoa linked to the oocyte ZP" - not clear what "linked" means here

      Replaced now page 16 by “spermatozoa bound to the oocyte ZP”

      Page 14 - "by dint of oscillations" - don't know what this means

      Replaced now page 10 by “the persistent flagellum movements”

      Specifics for Materials and Methods:

      Exact timing of females receiving hCG and then being put with males for mating - assume this was immediate but this is an important detail regarding the timing for the creation of embryos in vivo.

      That is correct: females were placed with males for mating immediately after receiving hCG. This clarification has been added in the revised version of the manuscript.

      Please provide the volumes in which inseminations occurred, and how many eggs were placed in this volume with the 10^6 sperm/ml.

      The number of eggs may vary from one cumulus–oocyte complex to another. It is therefore not possible to specify exactly how many eggs were inseminated. However, we now indicate on page 23 the number of cumulus–oocyte complexes inseminated (4 per experiment), the volume in which insemination was performed (200 mL), and the sperm concentration used 106 sperm/mL.

      **Referees cross-commenting**

      I concur with Reviewer 1's comment, that the 'challenging prior dogma' about the first sperm not always being the one to fertilize the egg is too strong. As Reviewer 1 notes, "it had been observed before that it is not necessarily the first sperm that gets through the ZP that fertilizes the egg." I even thought about adding this comment to my review, although held off (I was hoping to find references, but that was taking too long).

      Please refer to our response to Reviewer 1 regarding this point.

    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewing Editor Comments:

      Focus and Scope:

      The paper attempts to address too many topics simultaneously, resulting in a lack of focus and insufficient depth in the treatment of individual components.

      We have moved this selective clinical review section that was previously Part I in the paper now to Part II, given the importance of leading off with the meta-analysis and resource before doing a selective review, which are now Part I. In the lead in to Part II, we now indicate that the review is not intended to be comprehensive, because there are other recent comprehensive reviews, which we cite. This part of the paper merely aims to generate hypotheses on the directionality of effects ripe for testing on how TUS could be used to excite or suppress function, illustrated with specific clinical examples. The importance of this section, even though not comprehensive, is that it should provide the reader with examples on how the directionality of TUS could be used specifically in a range of clinical applications. The reader will find that the same hypotheses do not apply to different clinical disorder. Therefore, patient specific hypotheses need to be motivated and then subsequently tested with empirical application of TUS, which Part II provides.

      Part II. Selective TUS clinical applications review and TUS directionality hypotheses starts at line 458. Part I, the meta-analysis and resource section starts at line 199, after the Introduction on TUS and the importance on understanding how the directionality of TUS effects could be better understood.

      Strengthening the Meta-Analysis:

      The meta-analysis is the strongest aspect of the paper and should be expanded to include the relevant statistics. However, it currently omits several key concepts, studies, and discussion points, particularly related to replication and the dominance of results from specific groups. These omissions should be addressed even with a focus on meta-analysis.

      We thank the reviewer for their enthusiasm about the meta-analysis, which we have now promoted to Part I in the revised paper. We have substantially updated the latest database (inTUS_DATABASE_1-2025.csv) and ensured that the R markdown script can re-generate all of the results and statistical values. We have inserted additional statistical values in the main manuscript, as requested. The inTUS Resource is located here (https://osf.io/arqp8/ under Cafferatti_et_al_inTUS_Resource), and we have aimed to make it as user friendly to use and contribute to as possible. For instance, the reader can find them all in the HTML link summarizing the R markdown output with all statistical values here: https://rpubs.com/BenSlaterNeuro/1268823, a part of the inTUS resource.

      Since the last submission, there has been a tremendous increase in the number of TUS studies in healthy participants. We have curated and included all of the relevant studies we could find in the 1-2025 database, as the next large expansion of the database (now including 52 experiments in healthy participants). We then reran and report the results of the statistical tests via the R markdown script (starting at line 336). Finally, the online database (inTUS_DATABASE_1-2025.csv) has additional columns, suggested by the reviewers, including one to identify the same groups that conducted the TUS study, based on a social network analysis. The manuscript figures (Table 1 and Table 2) did not have the space to expand the data tables, but these additional columns are available in the database online. Finally, we have ensured that the resource is as easy to use as possible (line 862 has the Introduction to the inTUS Resource – which is also the online READ ME file), and we have been in contact with the iTRUSST consortium leads who are interested in discussing hosting the resource and helping it to become self-sustaining.

      Conceptual Development:

      The more conceptual part of the paper is underdeveloped. It lacks sufficient supporting data, a well-articulated argument, and a clear derivation or development of a concrete model.

      To ensure that the conceptual sections are well developed, we have revised the introduction, including the background on TUS and bases for the interest in the directionality of effects. We have also revised the TUS mechanisms background as suggested by the reviewers. For Part I, the meta-analysis basis and hypotheses we have ensured the rationale is clearer. The hypotheses are based on several lines of research in the animal model and human literature as cited (starting with line 211). For Part II, the selective clinical review, we have revised this section as well to have each section on lowintensity TUS and end in a hypothesis on the directionality of TUS effects. Starting at line 199 we have clarified the scope of the review and ensured that all the relevant experiments in healthy participants (n = 52 experiments) have now been included in the next key update of the resource and meta-analysis in this key paper update.

      Database Curation:

      The authors should provide more detailed information about how the database will be curated and made accessible. They may consider collaborating with ITRUSST.

      We have expanded the information on the Resource documents (starting at line 862) to make the resource as user friendly as possible. At the beginning of the resource development stage we had contacted but not heard from the ITRUSST consortium. Encouraged by this comment we again reached out and are now in contact with the ITRUSST consortium leads who are interested in discussing sustaining the resource. It would be wonderful to have the resource linked to other ITTRUST tools, since it was inspired by the organization. Practically what this means is that the resource rather than being hosted on Open Science Framework, would potentially be hosted on the ITRUSST web site (https://itrusst.com/). These discussions are in progress, but the next key update to the database (1-2025) is already available and reported in this key update to our original paper.

      Reviewer #1: (Public Review)

      Summary:

      This paper is a relevant overview of the currently published literature on lowintensity focussed ultrasound stimulation (TUS) in humans, with a meta-analysis of this literature that explores which stimulation parameters might predict the directionality of the physiological stimulation effects.

      The pool of papers to draw from is small, which is not surprising given the nascent technology. It seems nevertheless relevant to summarize the current field in the way done here, not least to mitigate and prevent some of the mistakes that other non-invasive brain stimulation techniques have suffered from, most notably the theory- and data-free permutation of the parameter space.

      The meta-analysis concludes that there are, at best, weak trends toward specific parameters predicting the direction of the stimulation effects. The data have been incorporated into an open database, that will ideally continue to be populated by the community and thereby become a helpful resource as the field moves forward.

      Strengths:

      The current state of human TUS is concisely and well summarized. The methods of the meta-analysis are appropriate. The database is a valuable resource.

      Weaknesses:

      These are not so much weaknesses but rather comments and suggestions that the authors may want to consider.

      We thank the reviewer for their support of the resource and meta-analysis. We have implemented the suggestions next as follows.

      I may have missed this, but how will the database be curated going forward? The resource will only be as useful as the quality of data entry, which, given the complexity of TUS can easily be done incorrectly.

      We have added a paragraph on how authors could use the Qualtrics form to submit their data and the curation process involved (from line 891). Currently, this process cannot be automated because we continue to find that reported papers do not report the TUS parameters that ITRUSST has encouraged the community to report (Martin et al., 2024). We can dedicate for a TUS expert to ensure that every 6 or 12 months the data base is curated and expanded. The current version is the latest 1-2025 update to the data base. Longer term we are in discussion with ITRUSST on whether the resource could become self sustaining when TUS papers regularly reporting all the relevant parameters such that the database expansion becomes trivial, and then the Resource R markdown script and other tools can be used to re-evaluate the statistical tests and the user can conduct secondary hypothesis testing on the data.

      It would be helpful to report the full statistics and effect sizes for all analyses. At times, only p-values are given. The meta-analysis only provides weak evidence (judged by the p-values) for two parameters having a predictive effect on the direction of neuromodulation. This reviewer thinks a stronger statement is warranted that there is currently no good evidence for duty cycle or sonication direction predicting outcome (though I caveat this given the full stats aren't reported). The concern here is that some readers may gallop away with the impression that the evidence is compelling because the p-value is on the correct side of 0.05.

      We have ensured that the R script can generate the full statistics from the tests and the effect sizes for all the analyses, and now also report more of the key statistical values in the revised paper (starting at line 336). As suggested, we have also ensured that the interpretation is sufficiently nuanced given the small sample sizes and the p-values below 0.1 but above 0.05 are interpreted as a statistical trend.

      This reviewer thinks the issue of (independent) replication should be more forcefully discussed and highlighted. The overall motivation for the present paper is clearly and thoughtfully articulated, but perhaps the authors agree that the role that replication has to play in a nascent field such as TUS is worth considering.

      We completely agree and have added additional columns to the online database to identify unique groups, using a social network analysis, and independent replications. These expanded tables did not fit in the manuscript versions of Tables 1 and 2 but are fully available in the Resource data tables ready for further analysis by interested resource users.

      A related point is that many of the results come from the same groups (the so-called theta-TUS protocol being a clear example). The analysis could factor this in, but it may be helpful to either signpost independent replications, which studies come from the same groups, or both.

      In the expanded database tables (inTUS_DATABASE_1-2025.csv: https://osf.io/arqp8/ under Cafferatti_et_al_inTUS_Resource) we have added a column to identify independent replication.

      The recent study by Bao et al 2024 J Phys might be worth including, not least because it fails to replicate the results on theta TUS that had been limited to the same group so far (by reporting, in essence, the opposite result).

      Thank you. We have added this study and over a dozen recent TUS studies in healthy participants to the database and redone the analyses.

      The summary of TUS effects is useful and concise. Two aspects may warrant highlighting, if anything to safeguard against overly simplistic heuristics for the application of TUS from less experienced users. First, could the effects of sonication (enhancing vs suppressing) depend on the targeted structure? Across the cortex, this may be similar, but for subcortical structures such as the basal ganglia, thalamus, etc, the idiosyncratic anatomy, connectivity, and composition of neurons may well lead to different net outcomes. Do the models mentioned in this paper account for that or allow for exploring this? And is it worth highlighting that simple heuristics that assume the effects of a given TUS protocol are uniform across the entire brain risk oversimplification or could be plain wrong? Second, and related, there seems to be the implicit assumption (not necessarily made by the authors) that the effects of a given protocol in a healthy population transfer like for like to a patient population (if TUS protocol X is enhancing in healthy subjects, I can use it for enhancement in patient group Y). This reviewer does not know to which degree this is valid or not, but it seems simplistic or risky. Many neurological and psychiatric disorders alter neurotransmission, and/or lead to morphological and structural changes that would seem capable of influencing the impact of TUS. If the authors agree, this issue might be worth highlighting.

      We agree that given the divergence in circuits and cellular constituents between cortical and subcortical areas, it is important to distinguish studies that have focused on cortical or subcortical brain areas. The online data tables identify the target region. The analyses can be used to focus on the cortical or subcortical sites for analysis, although for the current version of the database there are too few subcortical sites with which to conduct analyses on subcortical sites. On the second point, that pathology may have affected the results, we completely agree and have clarified that the current database only includes healthy participant experiments for this reason. We are considering future updates to the resource may include clinical patient results (Line 247).

      Reviewer #1 (Recommendations for the authors):

      Minor edits (I wouldn't call them "corrections").

      We sincerely appreciate the constructive comments and have aimed to address them all as suggested.

      Perhaps the most relevant edit pertains to the statistics.

      We now report the more complete statistical results (line 336) and the R markdown script can re-generate all the statistical values for the tests.

      The issue of replication also seems relevant and ought to be raised. This reviewer does not want to prescribe what to do or impose the view the authors ought to adopt.

      In the online version of the data tables for the latest dataset, we have added a column in the data table as suggested that identifies independent groups and replications.

      The other points are left to the authors' discretion.

      We have aimed to address all of the reviewer’s points. Thank you for the constructive input which has helped to improve the expanded database and resource.

      Reviewer #2: (Public Review)

      Summary:

      This paper describes a number of aspects of transcranial ultrasound stimulation (TUS) including a generic review of what TUS might be used for; a meta-analysis of human studies to identify ultrasound parameters that affect directionality; a comparison between one postulated mechanistic model and results in humans; and a description of a database for collecting information on studies.

      Strengths:

      The main strength was a meta-analysis of human studies to identify which ultrasonic parameters might result in enhancement or suppression of modulation effects. The meta-analysis suggests that none of the US parameters correlate significantly with effects. This is a useful result for researchers in the field in trying to determine how the parameter space should be further investigated to identify whether it is possible to indeed enhance or suppress brain activity with ultrasound.

      The database is a good idea in principle but would be best done in collaboration with ITRUSST, an international consortium, and perhaps should be its own paper.

      Weaknesses:

      The paper tries to cover too many topics and some of the technical descriptions are a bit loose. The review section does not add to the current literature. The comparison with a mechanistic model is limited to comparing data with a single model at a time when there is no general agreement in the field as to how ultrasound might produce a neuromodulation effect. The comparison is therefore of limited value.

      We appreciate the reviewer’s assessment and interest in the meta-analysis and database to guide the development of TUS for more systematic control of the directionality of neuromodulation. With this next key expansion of the database (inTUS_DATABASE_1-2025.csv) we have added over a dozen new studies that have been published since our original submission (n = 52 experiments). We have also moved the ‘review’ part of the paper below the meta-analysis and resource description. We have clarified that the clinical review section (now Part II in the revised manuscript) is not intended as a comprehensive review but as a selective review showing how hypotheses on the directionality of TUS effects need to be carefully developed for specific patient groups that require different effects to be induced at specific brain areas. Finally, we have gotten in contact with the ITRUSST consortium leads, as suggested, and are in discussion on whether the inTUS resource could be hosted by ITRUSST. Since these discussions are ongoing practically what this might mean is moving the resource from the Open Science Framework to ITRUSST webpages, which would be a trivial update of the link to the resource in OSF.

      We also sincerely appreciate the time and care the reviewer has given to provide us with the below guidance, all of which we have aimed to take on board in the revised paper.

      Reviewer #2 (Recommendations for the authors):

      Line 24/25 - I suggest avoiding using the term "deep brain stimulation" in reference to TUS as the term is normally used to describe electrically implanted electrodes.

      We have removed the term “deep” brain stimulation in reference to TUS to avoid confusion with electrical DBS for patient treatment [Line 24].

      Line 25 - I don't think "computational modelling" has changed how TUS can be done. There is still much to be understood about mechanisms. I think the modelling aspects of the paper should be toned down. Indeed the NICE data that is presented later appears to have a weak, if any, correlation to the outcomes.

      We have revised the manuscript text throughout to ensure that the computational modeling contributions are not overstated, as noted, given the lack of strong correlation to the NICE model outcomes by the meta-analysis including in the latest results with the more extensive database (n = 52).

      Line 32 - "exponentially increasing" is a well-defined technical term and the increase in studies should be quantified to ensure it is indeed exponential. I agree that TUS studies in humans are increasing but a quick tally of the data by year in the meta-analysis reported here doesn't suggest that it follows an "exponential" growth.

      We have changed “exponential” to “to increase”. [Line 32]

      Line 50 - I would suggest using the term sub-MHz rather than 100-1,000 kHz as it is challenging to deliver ultrasound at 1 MHz through the skull. The highest frequency in the meta-analysis is 850 kHz; but the majority are in the 200-500 kHz range.

      We have made this correction to sub-MHz. [Line 54]

      Line 58/59 - Is the FDA publication on diagnostic imaging relevant for saying that 50 W/cm2 is a lowintensity TUS? I think it's perhaps reasonable to say that intensities below diagnostic thresholds are "low intensities" but that is not clear in the text. I would refer to ITRUSST on what is appropriate for defining what is low, medium, or high.

      We have cut the reference to the FDA here since it is, as noted, not as relevant as pointing to the ITRUSST definition.

      Line 65/66 - I agree that ultrasound for neuromodulation is gaining traction and there is an increase in activity, but it also has a long history with the work of the Fry brothers published in the 1950s; and extensive work of Gavrilov in humans starting in the 1970s.

      We have added citations to the Fry brothers and Gavrilov to the text in this section. [Line 69/70]

      Line 75 - I think the intermembrane cavitation mechanism is unlikely to be due to "microbubbles" in a lipid membrane. The predicted displacements are on the order of nanometres, so they are unlikely to generate microbubbles. The work on comparing with NICE is limited. Note there are a number of experimental papers that have reported an absence of intra-membrane cavitation, including the Yoo et al 2022 which is referenced later in the paragraph. Also, there are other models, such as Liao et al 2021 (https://www.nature.com/articles/s41598020-78553-2).

      As suggested, we have removed this phrase on microbubble formation as a likely mechanism. We have also added the Liao paper to this paragraph as it is relevant.

      Line 83 - "At the lower intensities..." it is not clear whether this means all TUS intensities or the lower end of intensities used in TUS.

      We now use the following wording here: “low intensities”. [Line 86]  

      Line 85/86 - "more continuous stimulation" the modulation paradigms haven't been described yet and so pulse vs continuous hasn't been made clear to the reader. Also "more continuous" is very loose terminology. Something is either continuous or it isn't.

      We agree and have removed “more” to be clear that the stimulation is continuous. [Line 88]

      Line 87/88 - "TUS does not .. cavitation ..when ..ISPTA...<14 W/cm2". You can't use ISPTA to determine cavitation. It is the peak negative pressure which is the key driver for cavitation and the MI which is the generally accepted (although grudgingly by some) metric for assessing cavitation risk. You can link the negative pressure to ISPPA but not really to ISPTA. In histotripsy for example the ISPTA is low due to the low duty cycles to avoid heating but the cavitation is a huge effect. Technical terminology is loose.

      We have corrected this to “TUS does not appear to cause significant heating or cavitation of brain tissue when the intensity remains low, based on Mechanical and Thermal Index values and recommendations of use”. [Line 90/91]

      Line 89 - What is meant by "low intensity TUS"? I think all TUS used in the literature counts as low intensity - in that it is below the level allowed for diagnostic imaging.

      We have ensured that the text is focused on TUS being low-intensity and only in the introduction do we distinguish low intensity TUS from moderate and high intensity TUS, such as used for thermal ablation [Lines 62-66].

      Line 88/89 - Most temperature rises in brain tissue in TUS are well below 1 C - will this really change membrane capacitance significantly? If so it would have been good to consider a model for it.

      We have revised this statement as “thermal effects could at least minimally alter cell membrane capacitance…”. [Line 93]

      Line 111 - The text refers to "recent studies" but then the next two references are from 1990 and 2005 which I would argue don't count as "recent".

      We have corrected this wording to “previous studies”. [Line 114]

      Lines 122/129 - This paragraph on TMS pulsing should be linked to the TUS paragraph on pulsing (lines 109/116). The intervening paragraph on anaesthesia is relevant but breaks the flow.

      We have merged the paragraph on anesthesia to the prior one on TUS so that the TMS paragraph is linked more closely to it [starting on line 112].

      Line 130/131 - It is not clear to me that current studies are being guided by computational models. I think there is still no generally accepted theory for mechanisms. If the authors want to do a mechanisms paper then they should compare a few.

      We have revised this as suggested to not overstate the contribution of the limited computational modeling studies throughout the manuscript.

      Line 132 on - There are a number of studies that suggest that NICE is likely not the mechanism by which TUS produces neuromodulation.

      We have revised this sentence as follows: “Although it remains questionable whether intramembrane cavitation is a key mechanism for TUS, the NICE model simulations explored a broad set of TUS parameters, including TUS intensity and the continuity of stimulation (duty cycle) on modelled neuronal responses.” [Lines 139/142]

      Lines 137-140 - Terms are defined after their use. Things like ISPPTA, PRF, TI, and MI have been discussed already and so the terms should have been defined earlier. The authors should think carefully about how the material is presented to make it more logical for the reader.

      We have ensured that the definitions precede the use of abbreviations and have added abbreviations to the tables.

      Part I Line 180-437 - The review of potential applications for TUS reads like an introductory chapter of a thesis. It is entirely proper for a thesis to have a chapter like this, but it is not really relevant for a peer-reviewed research article. There are also numerous applications, e.g. mapping areas associated with decisions, or treating patients with addiction, which are not included, so it is not exhaustive. I would suggest this part be removed.

      We have moved the ‘review’ part of the paper to Part II, given the metaanalysis and resource should be more prominent as Part I. In the review now Part II of the paper we also now make it clear that there are recent comprehensive reviews of the clinical literature ( line 465/467). Namely, the purpose of our selective review is to demonstrate how directionality of TUS effects need to be specific for the clinical application intended, given the great variability in clinical effects that might be desired, brain areas targeted and pathology being treated. We have also aimed to ensure that each section summary is scholarly and academically written to a high level. All the co-authors contributed to these sections so we have also edited to have some consistency across sections, with sections ending with directionality of TUS hypotheses that could be developed for empirical testing.

      Line 453 - It is stated that "ISPTA, which mathematically integrates ISSPA by the sonication DC" It sounds rather grand to mathematically integrate but you can't integrate with respect to DC, you can integrate with respect to time. If you integrate intensity with respect to time over pulse and over the sonication time then one finds that ISPTA = DC x ISPPA, multiplication is also an important mathematical function and should be given its due. Lastly, I think there is a typo and ISSPA should read ISPPA

      We have corrected the typo and the statement to “mathematically multiplies ISPPA by the continuity of sonication”. [Line 221/222]

      Line 454 - I don't think ISPTA is a good measure of "dose." In radiation physics dose is well defined in terms of absorbed energy. The equivalent has yet to be defined for TUS so I would avoid using dose. The ISPTA does relate to TI - although it depends not just on the spatial peak but also on the spatial distribution and the frequency-dependent absorption coefficient of the tissue. I would just avoid the use of "dose" until the field has a better idea of what is going on.

      We have cut this phrase on dose as suggested.

      Page 16 Box 1 - TI is defined as diagnostic ultrasound imaging it is based on. Also, I think TI is dimensionless; it is referenced to a 1-degree temperature rise and so it can be interpreted in terms of celsius or kelvin; but to be technically accurate it is dimensionless.

      We have made TI dimensionless in Box 1

      Page 17 Box 2 - Here you have no units for TI - which is correct but inconsistent with Box 1. But the legend suggests a 2 K temperature rise where as your Box allows for 6 K. The value of 6 is consistent with FDA but my understanding of the BMUS guidelines is the TI must be less than or equal to 0.7 for unlimited time or less than 3 if the duration is less than 1 minute. I accept that the table is labelled FDA limits, but the bold table caption is "Recommendations for TUS parameters" I think you should give the ITRUSST values rather than FDA.

      We have revised this Box legend to better distinguish the FDA and ITRUSST recommendation where they differ (e.g., the importance of ISPTA and the TI values). See revised legend for Box 2.

      Page 18 Box 3 - Not sure what this is trying to show? Also, what is "higher intensity" and "lower intensity"?

      Why not just give a range of values in each box?

      We agree that the higher and lower intensities likely to lead to enhancement or suppression are poorly defined and have noted this in the legend: “Note that the threshold for ISPPA qualifying as ‘higher’ or ‘lower’ intensity is currently poorly understood, or may non-linearly interact with other factors” [Line 751/754, Box 3].

      Line 444 - The hypotheses should be stated more clearly. Maybe I am just dense, but it is not obvious to me from box 3.

      We provide the basis for the hypotheses in the manuscript text on the paragraph [Lines 106-179].

      Line 481/482 - The intensity of a diagnostic ultrasound system is very well characterised. It just might be that the authors didn't report it. It is not clear what is meant by the "continuity." I guess it's to do with pulsing - which is also well defined but perhaps also not reported.

      We agree and have revised this as follows “For the meta-analysis, we only included studies that either reported a basic set of TUS stimulation parameters or those sufficient for estimating the required parameters or those sufficient for estimating the required parameters necessary for the meta-analysis” [Lines 256/258]

      Figure 2 - What is the purpose of this figure? Did you carry out simulations for all the studies? It doesn't seem to be relevant to the data here.

      This figure illustrates the TUS targeting approach and simulations, in this case conducted in k-plan. These were conducted to evaluate approximations to ISPPA in brain values from the studies that did not report these values [Lines 264/268]).  

      Figure 4 - The data in these figures is nice (and therefore doesn't need to have a NICE curve) To me it clearly shows that the data in the literature does not obviously segment into enhancement vs suppression with DC. I suspect it is the same with PRF. I think it would have been better if C and D had PRF on the horizontal axis for on-line and off-line so that effect could be seen more clearly.

      We have kept the NICE curve only for a reference that some readers familiar with the NICE model might want to see overlaid in the figure, but have ensured that the text throughout makes clear that the NICE model predictions are not as statistically robust as initially anecdotally thought. PRF results are not significant but we do show a panel with the PRF measures on one axis (Fig. 4D). Figure 5 also shows box plot results with PRF as well as the other key TUS parameters. Moreover, in the inTUS resource we have provided an app for users to explore the data (https://benslaterneuro.shinyapps.io/Caffaratti_inTUS_Resource/).

      Figure 5 - The text on the axes is too small to read. Was the DC significant for both on-line and offline? What about ISPPA for off-line. At least by eye, it looks as different as DC. Figure 5C doesn't add anything.

      We have boosted the font for Figure 5 and have cut panel 5C since it was not adding much. We have also checked whether DC parameter was significant separately for on-line and off-line effects, but the sample sizes were too small for significance, and the statistical test was not significantly different for Online and Offline effects even in the 12025 database. Therefore they might look stronger for Offline effects in some of the plots in Figure 5, but are currently statistically indistinguishable [Lines 347/348].

      Table 1 - There is a typo in the 3rd column. FF should have units of kHz, not KHz. In addition, SD should have units of s as that is the SI symbol for seconds. I would swap columns 9 and 10 so that ISPPA in water and ISPPA in the brain are next to each other.

      We have corrected the typo in the 3rd column and ensured that units are kHz. SD in the tables has units of ‘s’ for seconds and have put ISPPA in water and in brain next to each other in the data tables.

      Line 767 - "M.K. was supported..." There are TWO MKs in the author list.

      We have changed this to M.Ka. for Marcus Kaiser.

    1. Author response:

      The following is the authors’ response to the original reviews

      We thank the reviewers and editors for their careful consideration of our work and pointing out areas where the current version lacked clarity or necessary experiments. Based on the reviews we have made the following significant changes to the revised version:

      (1) Revised the text to focus on the distinct pathogen responses to indole in isolation versus fecal material.

      We believe the key takeaway from this work is that the native context of a given effector, in this case indole, can elicit markedly different bacterial responses compared to the pure compound in isolation. This is because natural environments contain multiple, often conflicting, stimuli that complicate predictions of overall chemotactic behavior. For example, while indole has been proposed to mediate chemorepulsion and contribute to colonization resistance against enteric pathogens, our findings challenge this model. We provide evidence that feces, the intestinal source of indole, actually induces attraction, and that indole taxis may in fact benefit the pathogen through prioritizing niches with low microbial competition. Put another way, the biological reservoir of indole, fecal material, generates an attraction response but indole regulated the degree of attraction.

      Most current understanding of chemotaxis is based on responses to individual, purified effectors. Our study highlights the need to investigate chemotactic responses in the presence of native mixtures, which better reflect the complexity of natural environments and may reveal new functional insights relevant for disease.

      Reviewer comments indicated that these core points above were not clearly conveyed in the previous version, and that the manuscript's logical flow needed improvement. In this revised version, we have substantially rewritten the text and removed extraneous content to sharpen the focus on these central findings. We have also aligned our discussion more closely with the experimental data. While we appreciated the reviewers’ thoughtful suggestions, we chose not to expand on topics that fall outside the scope of our current experiments.

      (2) Provide new chemotaxis data with mixtures of fecal effectors (Fig. 5).

      Related to the above, the reviewers and editors brought up concerns that our discovery of pathogen fecal attraction was underexplored. Although we showed Tsr to be important for mediating fecal attraction, even the tsr mutant showed attraction to a lesser degree, and the reviewers noted that we did not identify what other fecal attractants could be involved.

      Fecal material is a complex biological material (as noted by Reviewer 3) and contains effectors already characterized as chemoattractants and chemorepellents. It would be ideal to be able to perform some experiment where individual effectors are removed from fecal material and then quantify chemotaxis. We considered methods to do this but ultimately found this approach unfeasible. Instead, we employed a reductionist approach and developed a synthetic approximate of fecal material containing a mixture of known chemoeffectors at fecal-relevant concentrations (Fig. 5). We used this defined system as a way to test the specific roles of the Tsr effectors L-Ser (attractant) and indole (repellent) in relation to glucose, galactose, and ribose (sensed through the chemoreceptor Trg), and L-Asp (sensed through the chemoreceptor Tar). We chose these effectors as they have reasonable structure-function relationships established in prior work, and had information available about their concentrations in fecal material. We present these data as a new Figure 5, and also provide videos clearly showing the responses to each treatment (Movies 7-10).

      This defined system provided several new insights that help understand and model indole taxis amidst other fecal effectors. First, the complete effector mixture, like fecal treatment, elicits attraction. Second, L-Ser is able to negate indole chemorepulsion in cotreatments of the two effectors, and also other chemoattractants in the absence of L-Ser also negate this repulsion, albeit to a lesser degree, helping to explain why the tsr mutant still shows attraction to fecal material. Lastly, we also show that the degree of attraction in this system is controlled by indole, with mixtures containing greater indole showing less attraction. We feel this is an important addition to the study because it provides a new view on how indole-taxis functions in pathogen colonization; rather than causing the pathogen to swim away (like pure indole does) indole helps the pathogen rank and prioritize its attraction to fecal effector mixtures, biasing navigation toward lower indolecontaining niches.

      We also acknowledge that this defined system does not capture all possible interactions. Indeed, there are even a few chemoreceptors in Salmonella for which the sensing functions remain poorly understood. Nonetheless, we believe the data offer mechanistic context for understanding fecal attraction and suggest that factors beyond Tsr, L-Ser, and indole also contribute to the observed behaviors, aligning with other data we present.

      (3) Provide new data that show that E. coli MG1655, and disease-causing clinical isolate strains of the Enterobacteriaceae Tsr-possessing species E. coli, Citrobacter koseri, and Enterobacter cloacae exhibit fecal attraction (Fig. 4).

      An important new finding from this study is our direct test of whether indole-rich fecal material elicits repulsion. Contrary to expectations, given that for E. coli indole is a wellcharacterized strong chemorepellent, we show that fecal material instead elicits attraction in non-typhoidal Salmonella.

      Reviewers raised the question of whether our observations regarding indole taxis and attraction to indole-rich feces in Salmonella are similar or relevant to E. coli. While a full dissection of indole taxis in E. coli is beyond the scope of this study and has been the focus of extensive prior research, we sought to address this point by examining whether other enteric pathogens respond similarly to the native indole reservoir, fecal material. To this end, we present new data demonstrating that, like S. Typhimurium, E. coli and other representative enteric pathogens and pathobionts possessing Tsr are also attracted to indole-rich feces (Fig. 4, Movies 4–6, Fig. S4).

      Notably, these new results represent some of the first characterizations of chemotactic behavior in the clinical isolates we examined, including E. coli NTC 9001 (a urinary tract infection isolate), Citrobacter koseri, and Enterobacter cloacae, adding another element of novelty to this work.

      (4) Repeated all of the explant Salmonella Typhimurium infection studies and added a new experimental control competition between WT and an invasion-deficient mutant (invA).

      Although our new colonic explant system was noted as a novelty and strength of this work, it was also seen as a weakness in that some of the results were surprising and difficult to link to chemotactic behavior. Reviewer 3 also brought up the need to be clear about our usage of the term ‘invasion’ in reference to S. Typhimurium entering nonphagocytic host cells, and requested we test an invasion-inhibited mutant (which we do in new experiments, now Fig. S1). We also note that some of the interpretations of these data were made challenging by result variability.

      To help address these issues we performed additional replicates for all of our explant experiments (contained within Figure 1, Fig. S1-S2, and Data S1), to provide greater power for our analyses. These new data provide a clearer view of this system that revise our interpretations from the prior version of this study. While treatment with indole alone does suppress the WT advantage over chemotactic mutants for both total colonization and cellular invasion, essentially all other treatments have a similar result with a timedependent increase in both colonization and invasion, dependent on chemotaxis and Tsr. A remaining unique feature of fecal treatment is an increase in the cellular invaded population of the cells at 3 h post-infection. As requested by Reviewer 3, we provide new experimental data showing that in competitions between WT and an invasion-deficient mutant (invA), with fecal material pretreatment, we see the WT has an advantage only for the gentamicin-treated qualifications, providing some support that our model selects for the invaded sub-population. Although we note that the invA still can invade through alternative mechanisms (as discussed in earlier work such as here: https://doi.org/10.1111/1574-6968.12614), so the relative amount of presumed cellular invasion is less than WT, and not zero, in our experiments (Fig. S1).

      One point of confusion in the previous version of the text was the assay design for the explant experiments, which is important to understand in order to interpret the results. During the explant infection bacteria are not immersed in the effector treatment solution, rather the tissue is soaked in the effector solution beforehand and then exposed to a 300 µl buffer solution containing the bacteria. This means that the bacteria experience only the residue of that treatment at concentrations far lower. We have added clarity about this through revising Fig. 1 to include a conceptual diagram of the assay (Fig. 1C), and added a new supplementary Fig. S5 that summarizes the explant data in this same conceptual model. We provide detail on the method in the text in lines 115-137. In describing the results, and synthesizing them in the discussion, we now state:

      Line 112: “This establishes a chemical gradient which we can use to quantify the degree to which different effector treatments are permissive of pathogen association with, and cellular invasion of, the intestinal mucosa (Fig. 1C).”

      And, a new section in the discussion devoted to describing the explant infections:

      Line: 366: “Our explant experiments can be thought of as testing whether a layer of effector solution is permissive to pathogen entry to the intestinal mucosa, and whether chemotaxis provides an advantage in transiting this chemical gradient to associate with, and invade, the tissue (Fig. 1C, Fig. S5).”

      As mentioned above, we have honed the text to focus on the disparity between the effects of indole alone versus treatments with indole-rich feces to help clarify how these data advance our understanding of the indole taxis in directing pathogenesis. While our explant studies still confirm the role of factors other than L-Ser, indole, and Tsr in directing Salmonella infection and cellular invasion, we now include further analyses of other fecal effectors (described above) that provide some insights into how fecal effectors have some redundancy in their impact.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The study shows, perhaps surprisingly, that human fecal homogenates enhance the invasiveness of Salmonella typhimurium into cells of a swine colonic explant. This effect is only seen with chemotactic cells that express the chemoreceptor Tsr. However, two molecules sensed by Tsr that are present at significant concentrations in the fecal homogenates, the repellent indole and the attractant serine, do not, either by themselves or together at the concentrations in which they are present in the fecal homogenates, show this same effect. The authors then go on to study the conflicting repellent response to indole and attractant response to serine in a number of different in vitro assays.

      Strengths:

      The demonstration that homogenates of human feces enhance the invasiveness of chemotactic Salmonella Typhimurium in a colonic explant is unexpected and interesting. The authors then go on to document the conflicting responses to the repellent indole and the attractant serine, both sensed by the Tsr chemoreceptor, as a function of their relative concentration and the spatial distribution of gradients.

      Thank you for your summary and acknowledgement of the strengths of this work. We hope the revised text and additional data we provide further improve your view of the study.

      Weaknesses:

      The authors do not identify what is the critical compound or combination of compounds in the fecal homogenate that gives the reported response of increased invasiveness. They show it is not indole alone, serine alone, or both in combination that have this effect, although both are sensed by Tsr and both are present in the fecal homogenates. Some of the responses to conflicting stimuli by indole and serine in the in vitro experiments yield interesting results, but they do little to explain the initial interesting observation that fecal homogenates enhance invasiveness.

      Thank you for noting these weaknesses. We have provided new data using a defined mixture of fecal effectors to further investigate the roles of L-Ser, indole, and other effectors present in feces that we did not initially study. We have refined our discussion of these results to hopefully improve the clarity of our conclusions. We show now both in explant studies (Fig. 1I) and chemotaxis responses to a defined fecal effector system (Fig. 5) that L-Ser is able to abolish both the suppression of indole-mediated WT advantage and also indole chemorepulsion, respectively. We also show the latter can be accomplished by other fecal chemoattractants (Fig. 5). This is in line with our earlier finding that Tsr, the sensor of indole and L-Ser, is an important mediator of fecal attraction but not the sole mediator.

      As this reviewer points out, there are indeed other factors mediating invasion that we do not elucidate here, but we do note these possibilities in the text (lines: 125-127):

      “This benefit may arise from a combination of factors, including sensing of host-emitted effectors, redox or energy taxis, and/or swimming behaviors that enhance infection [5,30,31,35].”

      Reviewer #2 (Public review):

      Summary:

      The manuscript presents experiments using an ex vivo colonic tissue assay, clearly showing that fecal material promotes Salmonella cell invasion into the tissue. It also shows that serine and indole can modulate the invasion, although their effects are much smaller. In addition, the authors characterized the direct chemotactic responses of these cells to serine and indole using a capillary assay, demonstrating repellent and attractant responses elicited by indole and serine, respectively, and that serine can dominate when both are present. These behaviors are generally consistent with those observed in E. coli, as well as with the observed effects on cell invasion.

      Strengths:

      The most compelling finding reported here is the strong influence of fecal material on cell invasion. Also, the local and time-resolved capillary assay provides a new perspective on the cell's responses.

      Thank you for acknowledging these aspects of the study.

      Weaknesses:

      The weakness is that indole and serine chemotaxis does not seem to control the fecal-mediated cell invasion and thus the underlying cause of this effect remains unclear.

      In addition, the fact that serine alone, which clearly acts as a strong attractant, did not affect cell invasion (compared to buffer) is somewhat puzzling. Additionally, wild-type cells showed nearly a tenfold advantage even without any ligand (in buffer), suggesting that factors other than chemotaxis might control cell invasion in this assay, particularly in the serine and indole conditions. These observations should probably be discussed.

      Addressed above.

      Final comment. As shown in reference 12, Tar mediates attractant responses to indole, which appear to be absent here (Figure 3J). Is it clear why? Could it be related to receptor expression?

      Thank you for noting this. We now mention this in the discussion. In the course of this work, we encountered a number of apparent inconsistencies, or differences, between what we were observing with S. Typhimurium and what had been reported previously in studies of Tsr function in E. coli. We indeed noted that some studies had investigated a role of Tar for indole taxis (in E. coli), hence why we determined whether, and confirmed, that Tsr is required for indole taxis for S. Typhimurium (Fig. 6).

      We do not know the reason for this apparent difference between the two bacteria, but we have previously shown with our same strain of S. Typhimurium IR715, under the same growth assay, and preparation protocol, that L-Asp is a strong chemoattractant for both WT and the tsr mutant (see Glenn et al. 2024, eLife, Fig. 5G: https://iiif.elifesciences.org/lax:93178%2Felife-93178-fig5-v1.tif/full/1500,/0/default.jpg).

      This supports that this strain of Salmonella indeed has a functional Tar present and is expressed at a level sufficient for sensing L-Asp. So, if Tar generally mediates indole sensing we do not know why we would not see that in Salmonella. Hence, we do not see any role for Tar in indole chemorepulsion in our strain of study, which is different than reported for E. coli, but we cannot confirm the reason.

      Reviewer #3 (Public review):

      Summary:

      In this manuscript, Franco and colleagues describe careful analyses of Salmonella chemotactic behavior in the presence of conflicting environmental stimuli. By doing so, the authors describe that this human pathogen integrates signals from a chemoattractant and a chemorepellent into an intermediate "chemohalation" phenotype.

      Strengths:

      The study was clearly well-designed and well-executed. The methods used are appropriate and powerful. The manuscript is very well written and the analyses are sound. This is an interesting area of research and this work is a positive contribution to the field.

      Thank you for your comments.

      Weaknesses:

      Although the authors do a great job in discussing their data and the observed bacterial behavior through the lens of chemoattraction and chemorepulsion to serine and indole specifically, the manuscript lacks, to some extent, a deeper discussion on how other effectors may play a role in this phenomenon. Specifically, many other compounds in the mammalian gut are known to exhibit bioactivity against Salmonella. This includes compounds with antibacterial activity, chemoattractants, chemorepellers, and chemical cues that control the expression of invasion genes. Therefore, authors should be careful when making conclusions regarding the effect of these 2 compounds on invasive behavior.

      Thank you for this comment, and we agree with your point. We hope we have revised the text and provided new data to address your concern. We have also chosen for clarity to keep our text close to our experimental data and so have refrained from speculating about some topics, even though you are absolutely correct about the immense complexity of these systems.

      It is important that the word invasion is used in the manuscript only in its strictest sense, the ability displayed by Salmonella to enter non-phagocytic host cells. With that in mind, authors should discuss how other signals that feed into the control of Salmonella invasion can be at play here.

      Thank you for your recommendation. We have revised the text to hopefully be clearer on our meaning of invasion in regard to Salmonella entering non-phagocytic host cells, essentially changing our usage to ‘cellular invasion’ throughout.

      It is also a commonly-used phrase in reference to enteric infections and the colonization resistance conferred by the microbiome to refer to ‘invading pathogens’ (i.e. invasion in the sense of a new microbe colonizing the intestines), For instance, this recent review on Salmonella makes use of the term invading pathogen (https://www.nature.com/articles/s41579-021-00561-4). We acknowledge the confusion by this dual use of the term. We have mostly removed our statements using invasion in this context. We hope our language is clearer in this revised version.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      It was difficult to understand the true intent or importance of the study described in this manuscript. The first figure in the paper showed that a Salmonella Typhimurium strain lacking either CheY, and thus incapable of any chemotaxis, or the Tsr chemoreceptor, and thus incapable of sensing serine or indole, was modestly inferior to the wild-type version of that strain in invading the cells of a swine colonic explant. It then showed that, in the presence of a human fecal homogenate, the wild-type strain had a much greater advantage in invading the colonic cells. Thus, the presence of the fecal homogenate significantly increased invasiveness in a way that depends on chemotaxis and the Tsr chemoreceptor.

      As human feces were determined to contain 882 micromolar indole and 338 micromolar serine, the effects of those concentrations of either indole or serine alone or in combination were tested. The somewhat surprising finding was that neither indole nor serine alone nor in combination changed the result from the experiment done with just buffer in the colonic explant.

      The clear conclusion of this initial study is that both chemotaxis in general and chemotaxis mediated by Tsr improve the invasiveness of S. Typhimurium. They provide a much bigger advantage in the presence of human feces. However, two molecules present in the feces that are sensed by Tsr, serine, and indole, seem to have no effect on invasiveness either alone or in combination.

      At this point, the parsimonious interpretation is that there is something else in human feces that is responsible for the increased invasiveness, and the authors acknowledge this possibility. However, they do not take what appears to be the obvious approach: to look for additional factors in human feces that might be responsible, either by themselves or in combination with indole and/or serine, for the increased invasiveness. Instead, they carry out a detailed examination of the counteracting effects of indole as a repellent and of serine as an attractant as a function of their relative concentrations and their spatial distributions.

      Thank you for your comments. In our revised version, we have undertaken some additional studies of other fecal effectors that help better understand the relationship between L-Ser and indole, but also the roles of other chemoattractants (glucose, galactose, ribose, L-Asp) in mediating fecal attraction (Fig. 5). We agree with the reviewer and conclude that fecal attraction and the cell invasion phenotype mediated by fecal treatment are influenced by factors other than only Tsr, indole, and L-Ser. Our new data do show that L-Ser is sufficient to block both the invasion suppression effects of indole (negating the WT advantage) and also indole chemorepulsion, therefore making our detailed examination of the counteracting effects more relevant for understanding this system.

      What they find is what other studies have shown, primarily with S. Typhimurium's relative, the gamma-proteobacterium Escherichia coli.

      At high indole and low serine concentrations, the repulsion by indole wins out. At low indole and high serine concentrations, attraction by serine wins out. What is perhaps novel is what happens at an intermediate ratio of concentrations. Repulsion by indole dominates at short distances from the source, so there is a zone of clearing. At longer distances, attraction by serine dominates, so there is an accumulation of cells in a "halo" around the zone of clearing. Thus, assuming that serine and indole diffuse equally, the repulsive effect of indole dominates until its concentration falls below some critical level at which the concentration of serine is still high enough to exert an attractive effect.

      They go on to show, using ITC, that serine binds to the periplasmic ligand-binding domain (LBD) of Tsr, something that has been studied extensively with very similar E. coli Tsr.

      They also show that indole does not bind to the Tsr LBD, which also is known for E. coli Tsr.

      This would be newsworthy only if the results were different for S. Typhimurium than for E. coli. As it is, it is merely confirmatory of something that was already known about Tsr of enteric bacteria.

      An idea that the authors introduce, if I understand it correctly, is that a repellent response to something in feces, perhaps indole, drives S. Typhimurium chemotactically competent cells out of the colonic lumen and promotes invasion of the bacteria into the cells of the colonic lining. If the feces contain both an attractant and a repellent, bacteria might be attracted by the feces to the lining of the intestine and then enter the colonic cells to escape a repellent, perhaps indole. That is an interesting proposition.

      In summary, I think that the initial experimental approach is fine. I do not understand the failure to follow up on the effect of the fecal homogenates in promoting invasion by chemotactic bacteria possessing Tsr. It seems there must be something else in the homogenates that is sensed by Tsr. Other amino acids and related compounds are also sensed by Tsr. Perhaps it is energy or oxygen taxis, which is partially mediated by Tsr, as the authors acknowledge.

      Much of the work reported here is quasi-repetitive with work done with E. coli Tsr. Minimally, previous work on E. coli Tsr should be explained more thoroughly rather than dealt with only as a citation.

      Thank you for your comments.

      We would like to confirm our agreement that E. coli and S. enterica indeed possess similarities. They are Gammaproteobacteria and inhabit/infect the gut. But also we note they diverged evolutionarily during the Jurassic period (ca. 140 million years ago, see: PMC94677). In the context of colonizing humans, the former is a pathobiont, indoleproducer, and a native member of the microbiome, whereas the latter is a frank pathogen and does not produce indole. Hence, there are many reasons to believe one is not an approximate of the other, especially when it comes to causing disease.

      We agree that much of what is known about indole taxis has come from excellent studies in well-behaved laboratory strains of E. coli, a powerful model. We believe that expanding this work to include clinically relevant pathogens is important for understanding its role in human disease. In this study, we contribute to that broader understanding by providing new mechanistic insights into Tsr-mediated indole taxis in S. Typhimurium, along with data demonstrating fecal attraction in other enteric pathogens and pathobionts. These findings help define a more general role for Tsr in enteric colonization and disease. While some of our results indeed confirm and extend prior findings, we respectfully believe that such confirmation in relevant pathogenic strains adds value to the field.

      Regarding our ITC studies, to our knowledge no other study has investigated, using ITC whether indole does or does not bind the LBD (which we show it does not), nor investigated whether it interferes with L-Ser sensing (which we show it does not). Hence, these are not duplicate findings, although we do acknowledge this leaves the mechanism of indolesensing undiscovered. If we are incorrect in this regard, please provide us a citation and we will be happy to include it and revise our comments.

      We now clarify in the text on lines 378-381: “While these leave the molecular mechanism of indole-sensing unresolved, it does eliminate two possibilities that have not, to our knowledge, been tested previously. Overall, our data add support to the hypothesis that a non-canonical sensing mechanism is employed by Tsr to respond to indole [8,18,69].”

      Lastly, as noted by the reviewer, and which we mention in the text, essentially all prior studies on indole taxis were conducted in E. coli, and this is not what is new and novel about the work we present, which is focused on S. Typhimurium and testing the prediction that fecal indole protects against pathogen invasion. We have added in a few additional points of comparisons between our results and prior studies. While we appreciate that much understanding has come from E. coli as a model for indole taxis, we feel discussing prior work in extensive detail would be more suitable for a review and would occlude our new findings about Salmonella, and other enterics.

      In an earlier version of the manuscript, we included more background on E. coli indole taxis. However, we found that the historical literature in this area was somewhat inconsistent, with different assays using varying time points and indole concentrations, often leading to results that were difficult to reconcile. Providing sufficient context to explain these discrepancies required considerable space and, ultimately, detracted from the focus of our current study. Hence, we have only brought in comparisons with E. coli where most relevant to the present work. Also, we provide new data that E. coli also exhibits fecal attraction, and so there is reason to believe the mechanisms we study here are also relevant to that system.

      Some minor points

      (1) Hyphens are not needed with constructs like "naturally occurring" or "commonly used".

      Thank you. Revisions made throughout.

      (2) The word "frank" as in "frank pathogen" seems odd. It seems "potent" would be better.

      Thank you for this comment. Per your recommendation, we have removed this term.

      The term ‘frank pathogen’ is standard usage in the field of bacterial pathogenesis in reference to a microbe that always causes disease in its host (in this case humans) and causes disease in otherwise healthy hosts (example: https://www.sciencedirect.com/science/article/pii/S1369527420300345). We actually used this specific term to distinguish an aspect of novelty of our study because E. coli can, sometimes, be a pathogen (i.e. a pathobiont) and of course E. coli indole taxis has been previously studied. Ours is the first study of indole taxis in a frank pathogen.

      (3) It is unnecessary to coin a new word, chemohalation, to describe a phenomenon that is a simple consequence of repulsion by higher concentrations of a repellent and attraction by lower concentrations of attractant to generate a halo pattern of cell distribution.

      Thank you for your opinion on this. We have softened our statements on this point, and in the newly revised version of the text less space is devoted to this idea. We now state in line 304-307:

      “There exists no consensus descriptor for taxis of this nature, and so we suggest expanding the lexicon with the term “chemohalation,” in reference to the halo formed by the cell population, and which is congruent with the commonly-used terms chemoattraction and chemorepulsion.”

      We appreciate the reviewer’s perspective and agree that the behavior we describe can be viewed as the result of competing attractant and repellent cues. However, we find that the traditional framework of “chemoattraction” and “chemorepulsion” is often insufficient to describe the spatial positioning behaviors we observe in our system. In our experience presenting and discussing this work, especially with audiences outside the chemotaxis field, it has been challenging to convey these dynamics clearly using only those two terms.

      For this reason, we introduced the term chemohalation to describe this more nuanced behavior, which appears to reflect a balance of signals rather than a simple unidirectional response. More bacteria enter the field of view, but they are clearly positioned differently than regular ‘chemoattraction.’ We also note that Reviewers 2 and 3 did not raise concerns about the term, and after careful consideration, we have opted to retain it in the revised manuscript.

      Reviewer #2 (Recommendations for the authors):

      Lines 143-156 seem somewhat overcomplicated and may be confusing. For example: in line 143: "However, when colonic tissue was treated with purified indole at the same concentration, the competitive advantage of WT over the chemotactic mutants was abolished compared to fecaltreated tissue...". But indole was tested alone, so it did not abolish the response; rather the absence of fecal material did.

      We appreciate your point. We have made revisions throughout to help improve the clarity of how we discuss the explant infection data and provide new visuals to help explain the experiment and data (Fig. 1C, Fig. S5).

      Reviewer #3 (Recommendations for the authors):

      (1) Line 46 - Are references 9-11 really about topography?

      Thank you. You are correct. Revised and eliminated this statement.

      (2) Lines 87-89 - It seems to me that a bit more information on this would be helpful to the reader.

      In our revision of the text, to make it more centered on our primary findings of the differences between indole taxis when indole is the sole effector versus amidst other effectors, we have removed this section.

      (3) Line 112 - When mentioning the infection of the cecum and colon, authors should specify that this is in mice.

      Thank you for this comment. In our revised version we provide references both for animal model infections and work in human patients (ex: https://www.sciencedirect.com/science/article/abs/pii/S0140673676921000)

      We have revised our statement to be (Line 99-100: “Salmonella Typhimurium preferentially invades tissue of the distal ileum but also infects the cecum and colon in humans and animal models [42–46].”

      (4) Lines 122-123 - Authors state that "This experimental setup simulates a biological gradient in which the effector concentration is initially highest near the tissue and diffuses outward into the buffer solution.". Was this experimentally demonstrated? If not, authors should tone this down.

      We have removed this comment and instead present a conceptual diagram illustrating this idea (Fig. 1C). Also, addressed by above.

      (5) When looking at the results in Figure 1, I wonder what the results of this experiment would be if the authors tested an invasion mutant of Salmonella. In a strain that is able to perform chemotaxis (attraction and repulsion) but unable to actively invade, would there be a phenotype here? Is it possible that the fecal material affects cellular uptake of Salmonella, independently of active invasion? I don't think the authors necessarily need to perform this experiment, but I think it could be informative and this possibility should at least be discussed.

      Thank you for your comments and suggestions. We have included new data of an explant co-infection experiment with WT and an invasion-deficient mutant invA (Fig. S1). Under these conditions, WT exhibits an advantage in the gentamicin-treated homogenate, but not the untreated homogenate, suggestive of an advantage in cellular invasion.

      However, we did not repeat all experiments with this genetic background. We felt that would be outside the scope of this work, and would probably require dual chemotaxis/invA deletions to assess the impact of each, which also could be difficult to interpret. The hypothesis mentioned by the Reviewer is possible, but we were not able to devise a way to test this idea, as it seems we would need to deactivate all other mechanisms of Salmonella invasion.

      (6) Lines 137-140 - Because this is a competition experiment and results are plotted as CI, the reader can't readily assess the impact of human feces on invasion by WT Salmonella.

      Thank you for pointing this out. We want to mention that the data are plotted as CI in the main text, but the supplemental contains the disaggregated CFU data (Fig. S1-2) and the numerical values (Data S1).

      Please include the magnitude of induction in this sentence, compared to the buffer control.

      The text of this section has been changed to account for new data.

      Additionally, although unlikely, the presence of the chemotaxis mutants in the same infection may be a confounding factor. In order to irrefutably ascertain that feces induces invasion, I suggest authors perform this experiment with the wildtype strain (and mutant) alone in different conditions.

      Thank you for this suggestion, although after careful consideration we have decided not to repeat these explant studies with monoinfections. Coinfections are a common tool in Salmonella pathogenesis studies, including prior chemotaxis studies which our work builds upon (ex: https://pmc.ncbi.nlm.nih.gov/articles/PMC3630101/). The explant experiments, even controlling as many aspects as we did, still show lots of variability and one way to mitigate this is through competition experiments so that each strain experiences the same environment.

      We agree that a cost of this approach is that one strain may affect the other, or may alter the environment in a way that impacts the other. Thus, the resulting data must also be understood through this lens. We have revised the text to stay closer to the competitive advantage phenotype.

      (7) Line 150 - Authors state that bacterial loads are similar. However, authors should perform and report statistical analyses of these comparisons, at least in the supplementary data.

      We have removed this statement as requested. We do note, however, that the mean CFU values across treatments at identical time points appear qualitatively similar, which is an observation that does not require statistical testing.

      (8) Lines 154-154 - This seems incorrect, as the effect observed with the mixture of indole and serine is very similar to the addition of serine alone. Therefore, there was no "neutralization" of their individual effects.

      We have revised this statement.

      (9) Line 159-161 - I strongly suggest authors reword this sentence. I don't think this is the best way to describe these results. The stronger phenotype observed was with the fecal material. Therefore, it is the indole (alone) condition that does not "elicit a response". Focusing on indole too much here ignores everything else that is present in feces and also the fact that there was a drastic phenotype when feces were used.

      Thank you for your opinion on this. We believe this is one of the ways in which our earlier draft was unclear. It was actually a primary motivation of this work to test whether there were differences in pathogen infection, mediated by chemotaxis, in the presence of indole as a singular effector or in its near-native context in fecal material, and our revised text centers our study around this question. We believe this distinction is important for the reasons mentioned earlier.

      Relative to buffer treatment, indole changes the behavior of the system, eliminating the WT advantage, and this is the effect we refer to. We have made many revisions to the text of these sections and hope it better conveys this idea. We expect we may still have differences regarding the interpretation of these results, but regardless, thank you for your suggestions and we have tried to implement them to improve the clarity of the text.

      (10) Line 162 - Again, I disagree with this. Indole does not have an effect to be cancelled out by serine.

      Addressed above, and this text has been changed. Also, we provide new chemotaxis data that at fecal-relevant concentrations of indole and L-Ser, indole chemorepulsion is overridden (Fig. 5).

      (11) Lines 166-168 - Again, this is a skewed analysis. Indole and serine could not possibly provide an "additive effect" since they do not provide an effect alone. There is nothing to be added.

      This text has been deleted.

      (12) Lines 168-170 - Most of the citations provided to this sentence are inadequate. Our group has previously shown that the mammalian gut harbors thousands of small molecules (Antunes LC et al. Antimicrob Agents Chemother 2011). You obviously do not have to cite our work, but there is significant literature out there about the complexity of the gut metabolome.

      Thank you for this comment. We have revised this particular text, but do make mention of potential other effectors driving these effects, which was also requested by the other reviewers.

      Your work and others indeed support there being thousands of molecules in the gut, but our work centers on chemotaxis, and bacteria have a small number of chemoreceptors and only sense a very tiny fraction of these molecules as effectors. Since the impacts of infection of the explants depends on chemotaxis, we keep our comments restricted to those, but agree that there are likely many interactions involved, such as those impacting gene expression.

      Please note our more detailed description of the explant infection assay (and shown in Fig. 1C) that may change your view on the significance of non-chemotaxis effects. The bacteria only experience the effectors at low concentration, not the high concentration that is used to soak and prepare the tissue prior to infection.

      (13) Figure 2 - The letter 'B' from panel B is missing.

      Thank you very much for bringing this oversite to our attention. We have fixed this.

      (14) Legend of Figure 3 - Panel J is missing a proper description. Figure legends need improvement in general, to increase clarity.

      Thank you for noting this. This is now Fig. 6E. We have provided an additional description of what this panel shows. We have edited the legend text to read: “E. Shows a quantification of the relative number of cells in the field of view over time following treatment with 5 mM indole for a competition experiment with WT and tsr (representative image shown in F).”

      We also have made other edits to figure legends to improve their clarity and add additional experimental details and context. By breaking up larger figures into smaller figures, we also hope to have improved the clarity of our data presentation.

      (15) Lines 264-265 - Maybe I am missing something, but I do not see the ITC data for serine alone.

      We have clarified in the text that this was measured in our previous study https://elifesciences.org/articles/93178). The present study is a ‘Research Advance’ article format, and so builds on our prior observation.

      We have revised the text to read: “To address these possibilities, we performed ITC of 50 μM Tsr LBD with L-Ser in the presence of 500 μM indole and observed a robust exothermic binding curve and KD of 5 µM, identical to the binding of L-Ser alone, which we reported previously (Fig. 6H) [36].”

      (16) Lines 296-297 - What is the effect of these combinations of treatments on bacterial cells? I commend the authors for performing the careful growth assays, but I wonder if bacterial lysis could be a factor here. I am not doubting the effect of chemotaxis, but I am wondering if toxic effects could be a confounding factor. For instance, could it be that the "avoidance" close to the compound source and subsequent formation of a halo suggest bacterial death and lysis? I suggest the authors perform a very simple experiment, where bacteria are exposed to the compounds at various concentrations and combinations, and cells are observed over time to ensure that no bacterial lysis occurs.

      Thank you for mentioning this possibility. If we understand correctly, the Reviewer is asking if the chemohalation effect we report could be from the bacteria lysing near the source. Our data actually argue against this possibility through a few lines of evidence.

      First, if this were the case in experiments with the cheY mutant, we would also see an effect near the source. But actually, in experiments with either the cheY mutant or the tsr mutant, neither of which can sense indole, the bacteria just ignore the stimulus and show an even distribution (see current Fig. 6F).

      Second, our calculations suggest that in the chemotaxis assay (CIRA), the bacteria only experience rather low local concentration of indole, mostly I the nM concentration range, because as soon as the effector treatment is injected into the greater volume, it is immediately diluted. This means the local concentration is far below what we see inhibits growth of the cells in the long run and may not be toxic (Fig. 7, Fig. S3).

      Lastly, in the representative video presented we can observe individual cells approach and exit the treatment (Movie 11). Due to the above we have not performed additional experiments to test for lysis.

      (17) Lines 310-311 - Isn't this the opposite of the model you propose in Figure 5? The higher the concentration of indole in the lumen the more likely Salmonella is to swim away from it and towards the epithelium, favoring invasion, no?

      We appreciate the opportunity to clarify this point and apologize for any confusion caused. In response, we have revised the text to place less emphasis on chemohalation, and the specific statement and model in question have now been removed. Instead, we provide a summary of our explant data in light of the other analyses in the study (Fig. S5).

      What we meant here was in relation to the microscopic level, not whether or not a host/intestine is colonized. To put it another way, we think our data supports that the pathogen colonizes and infects the host regardless of indole presence, but it uses indole as a means to prioritize which tissues are optimal for colonization at the microscopic level. The prediction made by others was that bacteria swim away from indole source and therefor this could prevent or inhibit pathogen colonization of the intestines, which our data does not support.

      (18) Lines 325-326 - Maybe, but feces also contain several compounds with antibacterial activity, as well as other compounds that could elicit chemorepulsion. This should be stated and discussed.

      We have removed this statement since we did not explicitly test the growth of the bacteria with fecal treatments. We have refrained from speculating further in the text since we do not have direct knowledge of how that relationship with differing effectors could play out.

      We agree with the reviewer that the growth assays are reductionist and give insight only into the two effectors studied. We provide evidence from several different types of enterics that they all exhibit fecal attraction, and it seems unlikely the bacteria would be attracted to something deleterious, but we have not confirmed.

      (19) Lines 371-374 - How preserved (or not) is the mucus layer in this model? The presence of an inhibitory molecule in the lumen does not necessarily mean that it will protect against invasion. It is possible that by sensing indole in the lumen Salmonella preferentially swims towards the epithelium, thus resulting in enhanced evasion.

      The text in question has been removed. However, we acknowledge the reviewer’s point, and that these explant tissues do not fully model an in vivo intestinal environment. Other than a gentle washing with PBS to remove debris prior to the experiment the tissue is not otherwise manipulated, and feasibly the mucus layer is similar to its in vivo state.

      In mentioning this hypothesis about indole, which our data do not support, we were echoing a prediction from the field, proposed in the studies we cite. We agree with the reviewer that there were other potential outcomes of indole impacting chemotaxis and invasion, and indeed our data supports that.

      (20) Lines 394-395 - The authors need to remember that the ability to invade the intestinal epithelium is not only a product of chemoattraction and repulsion forces. Several compounds in the gut are used by Salmonella as cues to alter invasion gene expression. See PMID: 25073640, 28754707, 31847278, and many others.

      Thank for you for this point, and we now include these citations. We have revised the text in question, stating:

      “In addition to the factors we have investigated, it is already well-established in the literature that the vast metabolome in the gut contains a complex repertoire of chemicals that modulate Salmonella cellular invasion, virulence, growth, and pathogenicity [79–81].”

      Our intent is not to diminish the role of other intestinal chemicals but rather to put our new findings into the context of bacterial pathogenesis. We do provide evidence that specific chemoeffectors present in fecal material alter where bacteria localize through chemotaxis, which is one method of control over colonization.

      (21) Line 408 - I think it could be hard to observe this using your experimental approach.

      Because you need to observe individual cells, the number of cells you observe is relatively small. If, in a bet-hedging strategy, the proportion of cells that were chemoattracted to indole was relatively low you likely would not be able to distinguish it from an occasional distribution close to the repellent source. You may or may not want to discuss this.

      Thank you for this observation. It is indeed challenging to both observe large scale population behaviors and also the behaviors of individual cells in the same experiment. Our ability to make this distinction is similar to the approach used in the study we cite, so that is our comparison.

      But, if there was a subpopulation that was attracted we would predict a ‘bull’s-eye’ population structure, with some cells attracted and other avoiding the source, which we do not see - we see the halo. So, we find no evidence of the bet-hedging response seen in a different study using E. coli and using different time scales than we have.

      (22) Lines 410-411 - What could the other attractants be? Would it be possible/desirable to speculate on this?

      We have changed the text here, but we present new data that examines some of these other attractants (Fig. 5).

      (23) Line 431 - What exactly do you mean by "running phenotype"? Please, provide a brief explanation.

      We have removed this text, but a running phenotype means the swimming bacteria rarely make direction changes (i.e. tumbles), which has been associated with promoting contact with the epithelium, described in the references we cite. Hence, this type of swimming behavior could contribute to the effects we observe in the explant studies, potentially explaining some of the Tsr-mediated advantage that was not dependent on L-Ser/indole.

      (24) Line 441 - Other work has shown that feces contain inhibitors of invasion gene expression. The authors should integrate this knowledge into their model. In fact, indole has been shown to repress host cell invasion by Salmonella, so it is important that authors understand and discuss the fact that the impact of indole is multifaceted and not only a reflection of its action as a chemorepellent. PMID: 29342189, 22632036.

      We agree with the reviewer about this point, and mention this in the text (lines 55-57): “Indole is amphipathic and can transit bacterial membranes to regulate biofilm formation and motility, suppress virulence programs, and exert bacteriostatic and bactericidal effects at high concentrations [16–18,20–22].”

      We have added in the references suggested.

      What we test here is the specific hypothesis made by others in the field about indole chemorepulsion serving to dissuade pathogens from colonizing.

      For instance, the statement from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0190613

      “Since indole is also a chemorepellent for EHEC [23], it is intriguing to speculate that in addition to attenuating Salmonella virulence, indole also attenuates the recruitment and directed migration of Salmonella to its infection niche in the GI tract.”

      And from: https://doi.org/10.1073/pnas.1916974117

      “We propose that indole spatially segregates cells based on their state of adaptation to repel invaders while recruiting beneficial resident bacteria to growing microbial communities within the GI tract.”

      And

      “Thus, foreign ingested bacteria, including invading pathogens such as E. coli O157:H7 and S. enterica, are likely to be prevented by indole from gaining a foothold in the mucosa.”

      As shown by others, indole certainly does have many roles in controlling pathogenesis, and there are other chemicals we do not investigate that control invasion and bacterial growth, but we keep our statements here restricted to chemotaxis since that is what are experiments and data show.

      (25) Line 472 - "until fully motile". How long did this take, how variable was it, and how was it determined?

      Thank you for asking for this clarification. We have added that the time was between 1-2 h, and confirmed visually. Our methods are similar to those described in earlier chemotaxis studies (ex: 10.1128/jb.182.15.4337-4342.2000).

      (26) Line 487 - I worry that the fact fecal samples were obtained commercially means that compound stability/degradation may be a factor to consider here. How long had the sample been in storage? Is this information available?

      Thank you for this question. We agree that the fecal sample we used serves as a model system and we cannot rule out that handling by the supplier could potentially alter its contents in some way that would impact bacterial chemosensing. However, we note that the measurements of L-Ser and indole we obtained are in the appropriate range for what other studies have shown.

      The fecal sample used for all work in the study were from a single healthy human donor, obtained from Lee Biosolutions (https://www.leebio.com/product/395/fecal-stool-samplehuman-donor-991-18). The supplier did not state the explicit date of collection, nor indicated any specific handline or storage methods that would obviously degrade its native metabolites, but we cannot rule that out. In our hands, the fecal sample was collected and kept frozen at -20 C. For research purposes, portions were extracted and thawed as needed, maintaining the frozen state of the original sample to limit degradation from freeze-thaws.

    1. This manuscript examines preprint review services and their role in the scholarly communications ecosystem.  It seems quite thorough to me. In Table 1 they list many peer-review services that I was unaware of e.g. SciRate and Sinai Immunology Review Project.

      To help elicit critical & confirmatory responses for this peer review report I am trialling Elsevier’s suggested “structured peer review” core questions, and treating this manuscript as a research article.

      Introduction

      1. Is the background and literature section up to date and appropriate for the topic?

        Yes.

      2. Are the primary (and secondary) objectives clearly stated at the end of the introduction?

        No. Instead the authors have chosen to put the two research questions on page 6 in the methods section. I wonder if they ought to be moved into the introduction – the research questions are not methods in themselves. Might it be better to state the research questions first and then detail the methods one uses to address those questions afterwards? [as Elsevier’s structured template seems implicitly to prefer.

      Methods

      1. Are the study methods (including theory/applicability/modelling) reported in sufficient detail to allow for their replicability or reproducibility?

        I note with approval that the version number of the software they used (ATLAS.ti) was given.

        I note with approval that the underlying data is publicly archived under CC BY at figshare.

        The Atlas.ti report data spreadsheet could do with some small improvement – the column headers are little cryptic e.g. “Nº  ST “ and “ST” which I eventually deduced was Number of Schools of Thought and Schools of Thought (?)   

        Is there a rawer form of the data that could be deposited with which to evidence the work done? The Atlas.ti report spreadsheet seemed like it was downstream output data from Atlas.ti. What was the rawer input data entered into Atlas.ti? Can this be archived somewhere in case researchers want to reanalyse it using other tools and methods.

        I note with disapproval that Atlas.ti is proprietary software which may hinder the reproducibility of this work. Nonetheless I acknowledge that Atlas.ti usage is somewhat ‘accepted’ in social sciences despite this issue.

        I think the qualitative text analysis is a little vague and/or under-described: “Using ATLAS.ti Windows (version 23.0.8.0), we carried out a qualitative analysis of text from the relevant sites, assigning codes covering what they do and why they have chosen to do it that way.” That’s not enough detail. Perhaps an example or two could be given? Was inter-rater reliability performed when ‘assigning codes’ ? How do we know the ‘codes’ were assigned accurately?

      2. Are statistical analyses, controls, sampling mechanism, and statistical reporting (e.g., P-values, CIs, effect sizes) appropriate and well described?

        This is a descriptive study (and that’s fine) so there aren’t really any statistics on show here other than simple ‘counts’ (of Schools of Thought) in this manuscript. There are probably some statistical processes going on within the proprietary qualitative analysis of text done in ATLAS.ti but it is under described and so hard for me to evaluate. 

      Results

      1. Is the results presentation, including the number of tables and figures, appropriate to best present the study findings?

        Yes. However, I think a canonical URL to each service should be given.  A URL is very useful for disambiguation, to confirm e.g. that the authors mean this Hypothesis (www.hypothes.is) and NOT this Hypothesis (www.hyp.io). I know exactly which Hypothesis is the one the authors are referring to but we cannot assume all readers are experts 😊

        Optional suggestion: I wonder if the authors couldn’t present the table data in a slightly more visual and/or compact way? It’s not very visually appealing in its current state. Purely as an optional suggestion, to make the table more compact one could recode the answers given in one or more of the columns 2, 3 and 4 in the table e.g. "all disciplines = ⬤ , biomedical and life sciences = ▲, social sciences =  ‡  , engineering and technology = † ". I note this would give more space in the table to print the URLs for each service that both reviewers have requested.

        ———————————————————————————————

        | Service name | Developed by | Scientific disciplines | Types of outputs |

        | Episciences | Other | ⬤ | blah blah blah. |

        | Faculty Opinions | Individual researcher | ▲ | blah blah blah. |

        | Red Team Market | Individual researcher | ‡ | blah blah blah. |

        ———————————————————————————————

        The "Types of outputs" column might even lend themselves to mini-colour-pictograms (?) which could be more concise and more visually appealing? A table just of text, might be scientifically 'correct' but it is incredibly dull for readers, in my opinion.

      2. Are additional sub-analyses or statistical measures needed (e.g., reporting of CIs, effect sizes, sensitivity analyses)?

        No / Not applicable. 

      Discussion

      1. Is the interpretation of results and study conclusions supported by the data and the study design?

        Yes.

      2. Have the authors clearly emphasized the limitations of their study/theory/methods/argument?

        No. Perhaps a discussion of the linguistic/comprehension bias of the authors might be appropriate for this manuscript. What if there are ‘local’ or regional Chinese, Japanese, Indonesian or Arabic language preprint review services out there? Would this authorship team really be able to find them?

      Additional points:

      • Perhaps the points made in this manuscript about financial sustainability (p24) are a little too pessimistic. I get it, there is merit to this argument, but there is also some significant investment going on there if you know where to look. Perhaps it might be worth citing some recent investments e.g. Gates -> PREreview (2024) https://content.prereview.org/prereview-welcomes-funding/  and Arcadia’s $4 million USD to COAR for the Notify Project which supports a range of preprint review communities including Peer Community In, Episciences, PREreview and Harvard Library.  (source: https://coar-repositories.org/news-updates/coar-welcomes-significant-funding-for-the-notify-project/

      • Although I note they are mentioned, I think more needs to be written about the similarity and overlap between ‘overlay journals’ and preprint review services. Are these arguably not just two different terms for kinda the same thing? If you have Peer Community In which has it’s overlay component in the form of the Peer Community Journal, why not mention other overlay journals like Discrete Analysis and The Open Journal of Astrophysics.   I think Peer Community In (& it’s PCJ) is the go-to example of the thin-ness of the line the separates (or doesn’t!) overlay journals and preprint review services. Some more exposition on this would be useful.

    2. Thank you very much for the opportunity to review the preprint titled “Preprint review services: Disrupting the scholarly communication landscape?” (https://doi.org/10.31235/osf.io/8c6xm) The authors review services that facilitate peer review of preprints, primarily in the STEM (science, technology, engineering, and math) disciplines. They examine how these services operate and their role within the scholarly publishing ecosystem. Additionally, the authors discuss the potential benefits of these preprint peer review services, placing them in the context of tensions in the broader peer review reform movement. The discussions are organized according to four “schools of thought” in peer review reform, as outlined by Waltman et al. (2023), which provides a useful framework for analyzing the services. In terms of methodology, I believe the authors were thorough in their search for preprint review services, especially given that a systematic search might be impractical.

      As I see it, the adoption of preprints and reforming peer review are key components of the move towards improving scholarly communication and open research. This article is a useful step along that journey, taking stock of current progress, with a discussion that illuminates possible paths forward. It is also well-structured and easy for me to follow. I believe it is a valuable contribution to the metaresearch literature.

      On a high level, I believe the authors have made a reasonable case that preprint review services might make peer review more transparent and rewarding for all involved. Looking forward, I would like to see metaresearch which gathers further evidence that these benefits are truly being realised.

      In this review, I will present some general points which merit further discussion or clarification to aid an uninitiated reader. Additionally, I raise one issue regarding how the authors framed the article and categorised preprint review services and the disciplines they serve. In my view, this problem does not fundamentally undermine the robust search, analyses, and discussion in this paper, but it risks putting off some researchers and constrains how broadly one should derive conclusions.

      General comments

      Some metaresearchers may be aware of preprints, but not all readers will be familiar with them. I suggest briefly defining what they are, how they work, and which types of research have benefited from preprints, similar to how “preprint review service” is clearly defined in the introduction.

      Regarding Waltman et al.’s (2023) “Equity & Inclusion” school of thought, does it specifically aim for “balanced” representation by different groups as stated in this article? There is an important difference between “balanced” versus “equitable” representation, and I would like to see it addressed in this text.

      Another analysis I would like to see is whether any of the 23 services reviewed present any evidence that their approach has improved research quality. For instance, the discussion on peer review efficiency and incentives states that there is currently “no hard evidence” that journals want to utilise reviews by Rapid Reviews: COVID-19, and that “not all journals are receptive” to partnerships. Are journals skeptical of whether preprint review services could improve research quality? Or might another dynamic be at work?

      The authors cite Nguyen et al. (2015) and Okuzaki et al. (2019), stating that peer review is often “overloaded”. I would like to see a clearer explanation by what “overloaded” means in this context so that a reader does not have to read the two cited papers.

      To the best of my understanding, one of the major sticking points in peer review reform is whether to anonymise reviewers and/or authors. Consequently, I appreciate the comprehensive discussion about this issue by the authors.

      However, I am only partially convinced by the statement that double anonymity is “essentially incompatible” with preprint review. For example, there may be, as yet not fully explored, ways to publish anonymous preprints with (a) a notice that it has been submitted to, or is undergoing, peer review; and (b) that the authors will be revealed once peer review has been performed (e.g. at least one review has been published). This would avoid the issue of publishing only after review is concluded as is the case for Hypothesis and Peer Community In.

      Additionally, the authors describe 13 services which aim to “balance transparency and protect reviewers’ interests”. This is a laudable goal, but I am concerned that framing this as a “balance” implies a binary choice, and that to have more of one, we must lose an equal amount of the other. Thinking only in terms of “balance” prevents creative, win-win solutions. Could a case be made for non-anonymity to be complemented by a reputation system for authors and reviewers? For example, major misconduct (e.g. retribution against a critical review) would be recorded in that system and dissuade bad actors. Something similar can already be seen in the reviewer evaluation system of CrowdPeer, which could plausibly be extended or modified to highlight misconduct.

      I also note that misconduct and abusive behaviour already occur even in fully or partially anonymised peer review, and they are not limited to the review or preprints. While I am not aware of existing literature on this topic, academics’ fears seem reasonable. For example, there is at least anecdotal testimonies that a reviewer would deliberately reject a paper to retard the progress of a rival research group, while taking the ideas of that paper and beating their competitors to winning a grant. Or, a junior researcher might refrain from giving a negative review out of fear that the senior researcher whose work they are reviewing might retaliate. These fears, real or not, seem to play a part in the debates about if and how peer review should (or should not) be anonymised. I would like to see an exploration of whether de-anonimisation will improve or worsen this behaviour and in what contexts. And if such studies exist, it would be good to discuss them in this paper.

      I found it interesting that almost all preprint review services claim to be complementary to, and not compete with, traditional journal-based peer review. The methodology described in this article cannot definitely explain what is going on, but I suspect there may be a connection between this aversion to compete with traditional journals, and (a) the skepticism of journals towards partnering with preprint review services and (b) the dearth of publisher-run options. I hypothesise that there is a power dynamic at play, where traditional publishers have a vested interest in maintaining the power they hold over scholarly communication, and that preprint review services stress their complementarity (instead of competitiveness) as a survival mechanism. This may be an avenue for further metaresearch.

      To understand preprints from which fields of research are actually present on the services categorised under “all disciplines,” I used the Random Integer Set Generator by the Random.org true random number service (https://www.random.org/integer-sets/) to select five services for closer examination: Hypothesis, Peeriodicals, PubPeer, Qeios, and Researchers One. Of those, I observed that Hypothesis is an open source web annotation service that allows commenting on and discussion of any web page on the Internet regardless of whether it is research or preprints. Hypothesis has a sub-project named TRiP (Transparent Review in Preprints), which is their preprint review service in collaboration with Cold Spring Harbor Laboratory. It is unclear to me why the authors listed Hypothesis as the service name in Table 1 (and elsewhere) instead of TRiP (or other similar sub-projects). In addition, Hypothesis seems to be framed as a generic web annotation service that is used by some as a preprint review tool. This seems fundamentally different from others who are explicitly set up as preprint review services. This difference seems noteworthy to me.

      To aid readers, I also suggest including hyperlinks to the 23 services reviewed in this paper. My comments on disciplinary representation in these services are elaborated further below.

      One minor point of curiosity is that several services use an “automated tool” to select reviewers. It would be helpful to describe in this paper exactly what those tools are and how they work, or report situations where services do not explain it.

      Lastly, what did the authors mean by “software heritage” in section 6? Are they referring to the organisation named Software Heritage (https://www.softwareheritage.org/) or something else? It is not clear to me how preprint reviews would be deposited in this context.

      Respecting disciplinary and epistemic diversity

      In the abstract and elsewhere in the article, the authors acknowledge that preprints are gaining momentum “in some fields” as a way to share “scientific” findings. After reading this article, I agree that preprint review services may disrupt publishing for research communities where preprints are in the process of being adopted or already normalised. However, I am less convinced that such disruption is occurring, or could occur, for scholarly publishing more generally.

      I am particularly concerned about the casual conflation of “research” and “scientific research” in this article. Right from the start, it mentions how preprints allow sharing “new scientific findings” in the abstract, stating they “make scientific work available rapidly.” It also notes that preprints enable “scientific work to be accessed in a timely way not only by scientists, but also…” This framing implies that all “scholarly communication,” as mentioned in the title, is synonymous with “scientific communication.” Such language excludes researchers who do not typically identify their work as “scientific” research. Another example of this conflation appears in the caption for Figure 1, which outlines potential benefits of preprint review services. Here, “users” are defined as “scientists, policymakers, journalists, and citizens in general.” But what about researchers and scholars who do not see themselves as “scientists”?

      Similarly, the authors describe the 23 preprint review services using six categories, one of which is “scientific discipline”. One of those disciplines is called “humanities” in the text, and Table 1 lists it as a discipline for Science Open Reviewed. Do the authors consider “humanities” to be a “scientific” discipline? If so, I think that needs to be justified with very strong evidence.

      Additionally, Waltman et al.’s four schools of thought for peer review reform works well with the 23 services analysed. However, at least three out of the four are explicitly described as improving “scientific” research.

      Related to the above are how the five “scientific disciplines” are described as the “usual organisation” of the scholarly communication landscape. On what basis should they be considered “usual”? In this formulation, research in literature, history, music, philosophy, and many other subjects would all be lumped together into the “humanities”, which sit at the same hierarchical level as “biomedical and life sciences”, arguably a much more specific discipline. My point is not to argue for a specific organisation of research disciplines, but to highlight a key epistemic assumption underlying the whole paper that comes across as very STEM-centric (science, technology, engineering, and math).

      How might this part of the methodology affect the categories presented in Table 1? “Biomedical and life sciences” appear to be overrepresented compared to other “disciplines”. I’d like to see a discussion that examines this pattern, and considers why preprint review services (or maybe even preprints more generally) appear to cover mostly the biomedical or physical sciences.

      In addition, there are 12 services described as serving “all disciplines”. I believe this paper can be improved by at least a qualitative assessment of the diversity of disciplines actually represented on those services. Because it is reported that many of these service stress improving the “reproducibility” of research, I suspect most of them serve disciplines which rely on experimental science.

      I randomly selected five services for closer examination, as mentioned above. Of those, only Qeios has demonstrated an attempt to at least split “arts and humanities” into subfields. The others either don’t have such categories altogether, or have a clear focus on a few disciplines (e.g. life sciences for Hypothesis/TRiP). In all cases I studied, there is a heavy focus on STEM subjects, especially biology or medical research. However, they are all categorised by the authors as serving “all disciplines”.

      If preprint review services originate from, or mostly serve, a narrow range of STEM disciplines (especially experiment-based ones), it would be worth examining why that is the case, and whether preprints and reviews of them could (or could not) serve other disciplines and epistemologies.

      It is postulated that preprint review services might “disrupt the scholarly communication landscape in a more radical way”. Considering the problematic language I observed, what about fields of research where peer-reviewed journal publications are not the primary form of communication? Would preprint review services disrupt their scholarly communications?

      To be clear, my concern is not just the conflation of language in a linguistic sense but rather inequitable epistemic power. I worry that this conflation would (a) exclude, minoritise, and alienate researchers of diverse disciplines from engaging with metaresearch; and (b) blind us from a clear pattern in these 23 services, that is their strong focus on the life sciences and medical research and a discussion of why that might be the case. Critically, what message are we sending to, for example, a researcher of 18th century French poetry with the language and framing of this paper? I believe the way “disciplines” are currently presented here poses a real risk of devaluing and minoritising certain subject areas and ways of knowing. In its current form, I believe that while this paper is a very valuable contribution, one should not derive from it any conclusions which apply to scholarly publishing as a whole.

      The authors have demonstrated inclusive language elsewhere. For example, they have consciously avoided “peer” when discussing preprint review services, clearly contrasting them to “journal-based peer review”. Therefore, I respectfully suggest that similar sensitivity be adopted to avoid treating “scientific research” and “research” as the same thing. A discussion, or reference to existing works, on the disciplinary skew of preprints (and reviews of them) would also add to the intellectual rigour of this already excellent piece.

      Overall, I believe this paper is a valuable reflection on the state of preprints and services which review them. Addressing the points I raised, especially the use of more inclusive language with regards to disciplinary diversity, would further elevate its usefulness in the metaresearch discourse. Thank you again for the chance to review.

      Signed:

      Dr Pen-Yuan Hsing (ORCID ID: 0000-0002-5394-879X)

      University of Bristol, United Kingdom

      Data availability

      I have checked the associated dataset, but still suggest including hyperlinks to the 23 services analysed in the main text of this paper.

    1. In "Researchers Are Willing to Trade Their Results for Journal Prestige: Results from a Discrete Choice Experiment", the authors investigate researchers’ publication preferences using a discrete choice experiment in a cross-sectional survey of international health and medical researchers. The study investigates publishing decisions in relation to negotiation of trade-offs amongst various factors like journal impact factor, review helpfulness, formatting requirements, and usefulness for promotion in their decisions on where to publish. The research is timely; as the authors point out, reform of research assessment is currently a very active topic. The design and methods of the study are suitable and robust. The use of focus groups and interviews in developing the attributes for study shows care in the design. The survey instrument itself is generally very well-designed, with important tests of survey fatigue, understanding (dominant choice task) and respondent choice consistency (repeat choice task) included. Respondent performance was good or excellent across all these checks. Analysis methods (pMMNL and latent class analysis) are well-suited to the task. Pre-registration and sharing of data and code show commitment to transparency. Limitations are generally well-described.

      In the below, I give suggestions for clarification/improvement. Except for some clarifications on limitations and one narrower point (reporting of qualitative data analysis methods), my suggestions are only that – the preprint could otherwise stand, as is, as a very robust and interesting piece of scientific work.

      1. Respondents come from a broad range of countries (63), with 47 of those countries represented by fewer than 10 respondents. Institutional cultures of evaluation can differ greatly across nations. And we can expect variability in exposure to the messages of DORA (seen, for example, in level of permeation of DORA as measured by signatories in each country, https://sfdora.org/signers/)..%3B!!NVzLfOphnbDXSw!HdeyeHHei6yWQHFjhN3deSSfp82ur9i9JNOLEVOYZN0BvyslUO2S8DlvjBbautmafJEvlUsxQZbT0JLQX7lO8EcOYtZsJkA%24&data=05%7C02%7Ca.l.brasil.varandas.pinto%40cwts.leidenuniv.nl%7C9f47a111adec49d04bb608dd0614ae94%7Cca2a7f76dbd74ec091086b3d524fb7c8%7C0%7C0%7C638673408085242099%7CUnknown%7CTWFpbGZsb3d8eyJFbXB0eU1hcGkiOnRydWUsIlYiOiIwLjAuMDAwMCIsIlAiOiJXaW4zMiIsIkFOIjoiTWFpbCIsIldUIjoyfQ%3D%3D%7C0%7C%7C%7C&sdata=by5mhPfSM0MFFG9LE2iiYjdtSs5IhvpuukqVv%2FLak2s%3D&reserved=0 "https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Furldefense.com%2Fv3%2F__https%3A%2F%2Fsfdora.org%2Fsigners%2F).%3B!!NVzLfOphnbDXSw!HdeyeHHei6yWQHFjhN3deSSfp82ur9i9JNOLEVOYZN0BvyslUO2S8DlvjBbautmafJEvlUsxQZbT0JLQX7lO8EcOYtZsJkA%24&data=05%7C02%7Ca.l.brasil.varandas.pinto%40cwts.leidenuniv.nl%7C9f47a111adec49d04bb608dd0614ae94%7Cca2a7f76dbd74ec091086b3d524fb7c8%7C0%7C0%7C638673408085242099%7CUnknown%7CTWFpbGZsb3d8eyJFbXB0eU1hcGkiOnRydWUsIlYiOiIwLjAuMDAwMCIsIlAiOiJXaW4zMiIsIkFOIjoiTWFpbCIsIldUIjoyfQ%3D%3D%7C0%7C%7C%7C&sdata=by5mhPfSM0MFFG9LE2iiYjdtSs5IhvpuukqVv%2FLak2s%3D&reserved=0") In addition, some contexts may mandate or incentivise publication in some venues using measures including IF, but also requiring journals to be in certain databases like WoS or Scopus, or having preferred journal lists). I would suggest the authors should include in the Sampling section a rationale for taking this international approach, including any potentially confounding factors it may introduce, and then adding the latter also in the limitations.

      2. Reporting of qualitative results: In the introduction and methods, the role of the focus groups and interviews seems to have been just to inform the design of the experiment. But then, results from that qualitative work then appear as direct quotes within the discussion to contextualise or explain results. In this sense though, the qualitative results are being used as new data. Given this, I feel that the methods section should include description of the methods and tools used for qualitative data analysis (currently it does not). But in addition, to my understanding (and this may be a question of disciplinary norms – I’m not a health/medicine researcher), generally new data should not be introduced in the discussion section of a research paper. Rather the discussion is meant to interpret, analyse, and provide context for the results that have already been presented. I personally hence feel that the paper would benefit from the qualitative results being reported separately within the results section.

      3. Impact factors – Discussion section: While there is interesting new information on the relative trade-offs amongst other factors, the most emphasised finding, that impact factors still play a prominent role in publication venue decisions, is hardly surprising. More could perhaps be done to compare how the levels of importance reported here differ with previous results from other disciplines or over time (I know a like-for-like comparison is difficult but other studies have investigated these themes, e.g., https://doi.org/10.1177/01655515209585). In addition, beyond the question of whether impact factors are important, a more interesting question in my view is why they still persist. What are they used for and why are they still such important “driver[s] of researchers’ behaviour”? This was not the authors’ question, and they do provide some contextualisation by quoting their participants, but still I think they could do more to contextualise what is known from the literature on that to draw out the implications here. The attribute label in the methods for IF is “ranking”, but ranking according of what and for what? Not just average per-article citations in a journal over a given time frame. Rather, impact factors are used as a proxy indicators of less-tangible desirable qualities – certainly prestige (as the title of this article suggests), but also quality, trust (as reported by one quoted focus group member “I would never select a journal without an impact factor as I always publish in journals that I know and can trust that are not predatory”, p.6), journal visibility, importance to the field, or improved chances of downstream citations or uptake in news media/policy/industry etc. Picking apart the interactions of these various factors in researchers’ choices to make use of IFs (which is not in all cases bogus or unjustified) could add valuable context. I’d especially recommend engaging at least briefly with more work from Science and Technology Studies - especially Müller and de Rijcke’s excellent Thinking with Indicators study (doi: 10.1093/reseval/rvx023), but also those authors other work, as well as work from Ulrike Felt, Alex Rushforth (esp https://doi.org/10.1007/s11024-015-9274-5), Björn Hammerfelt and others.

      4. Disciplinary coverage: (1) A lot of the STS work I talk about above emphasises epistemic diversity and the ways cultures of indicator use differ across disciplinary traditions. For this reason, I think it should be pointed out in the limitations that this is research in Health/Med only, with questions on generalisability to other fields. (2) Also, although the abstract and body of the article do make clear the disciplinary focus, the title does not. Hence, I believe the title should be slightly amended (e.g., “Health and Medical Researchers Are Willing to Trade …”)

    1. Author response:

      The following is the authors’ response to the previous reviews

      Recommendations for the authors:

      Reviewing Editor Comments:

      The resubmitted version of the manuscript adequately addressed several initial comments made by reviewing editors, including a more detailed analysis of the results (such as those of bilayer thickness). This version was seen by 2 reviewers. Both reviewers recognize this work as being an important contribution to the field of BK and voltage-dependent ion channels in general. The long trajectories and the rigorous/novel analyses have revealed important insights into the mechanisms of voltage-sensing and electromechanical coupling in the context of a truncated variant of the BK channel. Many of these observations are consistent with structural and functional measurements of the channel, available thus far. The authors also identify a novel partially expanded state of the channel pore that is accessed after gating-charge displacement, which informs the sequence of structural events accompanying voltage-dependent opening of BK.

      However, there are key concerns regarding the use of the truncated channel in the simulations. While many gating features of BK are preserved in the truncated variant, studies have suggested that opening of the channel pore to voltage-sensing domain rearrangement is impaired upon gating-ring deletion. So the inferences made here might only represent a partial view of the mechanism of electromechanical coupling.

      It is also not entirely clear whether the partially expanded pore represents a functionally open, sub-conductance, or another closed state. Although the authors provide evidence that the inner pore is hydrated in this partially open state, in the absence of additional structural/functional restraints, a confident assignment of a functional state to this structure state is difficult. Functional measurements of the truncated channel seem to suggest that not only is their single channel conductance lower than full-length channels, but they also appear to have a voltage-independent step that causes the gates to open. It is unclear whether it is this voltage-independent step that remains to be captured in these MD trajectories. A clean cut resolution of this conundrum might not be feasible at this time, but it could help present the various possibilities to the readers.

      We appreciate the positive comments and agree that there will likely be important differences between the mechanistic details of voltage activation between the Core-MT and full-length constructs of BK channels. We also agree that the dilated pore observed in the simulation may not be the fully open state of Core-MT.

      Nonetheless, the notion that the simulation may not have captured the full pore opening transition or the contribution of the CTD should not render the current work “incomplete”, because a complete understanding of BK activation would be an unrealistic goal beyond the scope of this work. We respectfully emphasize that the main insights of the current simulations are the mechanisms of voltage sensing (e.g., the nature of VSD movements, contributions of various charged residues, how small charge movements allow voltage sensing, etc.) as well as the role of the S4-S5-S6 interface in VSD-pore coupling. As noted by the Editor and reviewers, these insights represent important steps towards establishing a more complete understanding of BK activation.

      Below are the specific comments of the two experts who have assessed the work and made specific suggestions to improve the manuscript.

      Reviewer #1 (Recommendations for the authors):

      (1) Although the successful simulation of V-dependent K+ conduction through the BK channel pore and analysis of associated state dependent VSD/pore interactions and coupling analysis is significant, there are two related questions that are relevant to the conclusions and of interest to the BK channel community which I think should be addressed or discussed.

      One key feature of BK channels is their extraordinarily large conductance compared to other K+ selective channels. Do the simulations of K+ conductance provide any insight into this difference? Is the predicted conductance of BK larger than that of other K+ channels studied by similar methods? Is there any difference in the conductance mechanism (e.g., the hard and soft knock-on effects mentioned for BK)?

      The molecular basis of the large conductance of BK channels is indeed an interesting and fundamental question. Unfortunately, this is beyond the scope of this work and the current simulation does not appear to provide any insight into the basis of large conductance. It is interesting to note, though, the conductance is apparently related to the level of pore dilation and the pore hydration level, as increasing hydration level from ~30 to ~40 waters in the pore increases the simulated conductance from ~1.5 to 6 pS (page 8). This is consistent with previous atomistic simulations (Gu and de Groot, Nature Communications 2023; ref. 33) showing that the pore hydration level is strongly correlated with observed conductance. As noted in the manuscript, the conductance mechanism through the filter appears highly similar to previous simulations of other K+ channels (Page 8). Given the limit conductance events observed in the current simulations, we will refrain from discussing possible basis of the large conductance in BK channels except commenting on the role of pore hydration (page 8; also see below in response to #5).

      The pore in the MD simulations does not open as wide as the Ca-bound open structure, which (as the authors note) may mean that full opening requires longer than 10 us. I think that is highly likely given that the two 750 mV simulations yielded different degrees of opening and that in BK channels opening is generally much slower than charge movement. Therefore, a question is - do any of the conclusions illustrated in Figures 6, S5, S6 differ if the Ca-bound structure is used as the open state? For example, I expect the interactions between S5 and S6 might at least change to some extent as S6 moves to its final position. In this case, would conclusions about which residues interact, and get stronger or weaker, be the same as in Figures S6 b,c? Providing a comparison may help indicate to what extent the conclusions are dependent on achieving a fully open conformation.

      We appreciate the reviewer’s suggestion and have further analyzed the information flow and coupling pathways using the simulation trajectory initiated from the Ca<sup>2+</sup>-bound cryo-EM structure (sim 7, Table S1). The new results are shown in two new SI Figures S7 and S8, and new discussion has been added to pages 14-15. Comparing Figures 5 and S7, we find that dynamic community, coupling pathways, and information flow are highly similar between simulation of the open and closed states, even though there are significant differences in S5 contacts in the simulated open state vs Ca<sup>2+</sup>-bound open state (Figure S8). Interestingly, there are significant differences in S4-S5 packing in the simulated and Ca<sup>2+</sup>-bound open states (Figure S8 top panel), which likely reflect important difference in VSD/pore interactions during voltage vs Ca<sup>2+</sup> activation.

      (2) P4 Significance -"first, successful direct simulation of voltage-activation"

      This statement may need rewording. As noted above Carrasquel-Ursulaez et al.,2022 (reference 39) simulated voltage sensor activation under comparable conditions to the current manuscript (3.9 us simulation at +400 mV), and made some similar conclusions regarding R210, R213 movement, and electric field focusing within the VSD. However, they did not report what happens to the pore or simulate K+ movement. So do the authors here mean something like "first, successful direct simulation of voltage-dependent channel opening"?

      We agree with the reviewer and have revised the statement to “ … the first successful direct simulation of voltage-dependent activation of the big potassium (BK) channel, ..”

      (3) P5 "We compare the membrane thickness at 300 and 750 mV and the results reveal no significant difference in the membrane thickness (Figure S2)"

      The figure also shows membrane thickness at 0 mV and indicates it is 1.4 Angstroms less than that at 300 or 750 mV. Whether or not this difference is significant should be stated, as the question being addressed is whether the structure is perturbed owing to the use of non-physiological voltages (which would include both 300 and 750 mV).

      We have revised the Figure S2 caption to clarify that one-way ANOVA suggest the difference is not significant.

      (4) P7 "It should be noted that the full-length BK channel in the Ca2+ bound state has an even larger intracellular opening (Figure 2f, green trace), suggesting that additional dilation of the pore may

      occur at longer timescales."

      As noted above, I agree it is likely that additional pore dilation may occur at longer timescales. However, for completeness, I suppose an alternative hypothesis should be noted, e.g. "...suggesting that additional dilation of the pore may occur at longer timescales, or in response to Ca-binding to the full length channel."

      This is a great suggestion. Revised as suggested.

      (5) Since the authors raise the possibility that they are simulating a subconductance state, some more discussion on this point would be helpful, especially in relation to the hydrophobic gate concept. Although the Magleby group concluded that the cytoplasmic mouth of the (fully open) pore has little impact on single channel conductance, that doesn't rule out that it becomes limiting in a partially open conformation. The simulation in Figure 3A shows an initial hydration of the pore with ~15 waters with little conductance events, suggesting that hydration per se may not suffice to define a fully open state. Indeed, the authors indicate that the simulated open state (w/ ~30-40 waters) has 1/4th the simulated conductance of the open structure (w/ ~60 waters). So is it the degree of hydration that limits conductance? Or is there a threshold of hydration that permits conductance and then other factors that limit conductance until the pore widens further? Addressing these issues might also be relevant to understanding the extraordinarily large conductance of fully open BK compared to other K channels.

      We agree with the reviewer’s proposal that pore hydration seems to be a major factor that can affect conductance. This is also well in-line with the previous computational study by Gu and de Groot (2023). We have now added a brief discussion on page 8, stating “Besides the limitation of the current fixed charge force fields in quantitively predicting channel conductance, we note that the molecular basis for the large conductance of BK channels is actually poorly understood (78). It is noteworthy that the pore hydration level appears to be an important factor in determining the apparent conductance in the simulation, which has also been proposed in a previous atomistic simulation study of the Aplysia BK channel (33).”

      Minor points

      (1) P5 "the fully relaxed pore profile (red trace in Figure S1d, top row) shows substantial differences compared to that of the Ca2+-free Cryo-EM structure of the full-length channel."

      For clarity, I suggest indicating which is the Ca-free profile - "... Ca2+-free Cryo-EM structure of the full-length channel (black trace)."

      We greatly appreciate the thoughtful suggestion. Revised as suggested.

      (2) P8 "Consistent with previous simulations (78-80), the conductance follows a multi-ion mechanism, where there are at least two K+ ions inside the filter"

      For clarity, I suggest indicating these are not previous simulations of BK channels (e.g., "previous simulations of other K+ channels ...").

      Author response: Revised as suggested. Thank you.

      (3) Figure 2, S1 - grey traces representing individual subunits are very difficult to see (especially if printed). I wonder if they should be made slightly darker. Similar traces in Figure 3 are easier to see.

      The traces in Figure S1 are actually the same thickness in Figure 3 and they appear lighter due to the size of the figure. Figure 2 panels a-c have been updated to improve the resolution.

      (4) Figure 2 - suggest labeling S6 as "S6 313-324" (similar to S4 notation) to indicate it is not the entire segment.

      Figure 2 panel d) has been updated as suggested.

      (5) Figure 2 legend - "Voltage activation of Core-MT BK channels. a-d)..."

      It would be easier to find details corresponding to individual panels if they were referenced individually. For example:

      "a-d) results from a 10-μs simulation under 750 mV (sim2b in Table S1). Each data point represents the average of four subunits for a given snapshot (thin grey lines), and the colored thick lines plot the running average. a) z-displacement of key side chain charged groups from initial positions. The locations of charged groups were taken as those of guanidinium CZ atoms (for Arg) and sidechain carboxyl carbons (for Asp/Glu) b) z-displacement of centers-of-mass of VSD helices from initial positions, c) backbone RMSD of the pore-lining S6 (F307-L325) to the open state, and d) tilt angles of all TM helices. Only residues 313-324 of S6 were included inthe tilt angle calculation, and the values in the open and closed Cryo-EM structures are marked using purple dashed lines. "

      We appreciate the thoughtful suggestion and have revised the caption as suggested.

      (6) Figure S1 - column labels a,b,c, and d should be referenced in the legend.

      The references to column labels have been added to Figure S1 caption.

      (7) References need to be double-checked for duplicates and formatting.

      a) I noticed several duplicate references, but did not do a complete search: Budelli et al 2013 (#68, 100), Horrigan Aldrich 2002 (#22,97), Sun Horrigan 2022 (#40, 86), Jensen et al 2012 (#56,81).

      b) Reference #38 is incorrectly cited with the first name spelled out and the last name abbreviated.

      We appreciate the careful proofreading of the reviewer. The duplicated references were introduced by mistake due to the use of multiple reference libraries. We have gone through the manuscript and removed a total of 5 duplicated references.

      Response to additional reviewer comments

      My only new comment is that the numbering of residues in Fig. S8 does not match the standard convention for hSlo and needs to be doublechecked. For the residues I checked, the numbers appear to be shifted 3 compared hSlo (e.g. Y315, P317, E318, G324 should be Y318, P320, E321, G327).

      We greatly appreciate the reviewer for catching the errors in residue labels. Figure S8 has now been updated to include correct residue labels. Thanks!

      Reviewer #2 (Recommendations for the authors):

      This manuscript has been through a previous level of review. The authors have provided their responses to the previous reviewers, which appear to be satisfactory, and I have no additional comments, beyond the caveats concerning interpretations based on the truncated channel, which are noted above.

      We greatly appreciate the constructive comments and insightful advice. Please see above response to the Reviewing Editor’s comments for response and changes regarding the caveats concerning interpretations of the current simulations.

    1. Background Characterising genetic and epigenetic diversity is crucial for assessing the adaptive potential of populations and species. Slow-reproducing and already threatened species, including endangered sea turtles, are particularly at risk. Those species with temperature-dependent sex determination (TSD) have heightened climate vulnerability, with sea turtle populations facing feminisation and extinction under future climate change. High- quality genomic and epigenomic resources will therefore support conservation efforts for these flagship species with such plastic traits.Findings We generated a chromosome-level genome assembly for the loggerhead sea turtle (Caretta caretta) from the globally important Cabo Verde rookery. Using Oxford Nanopore Technology (ONT) and Illumina reads followed by homology-guided scaffolding, we achieved a contiguous (N50: 129.7 Mbp) and complete (BUSCO: 97.1%) assembly, with 98.9% of the genome scaffolded into 28 chromosomes and 29,883 annotated genes. We then extracted the ONT-derived methylome and validated it via whole genome bisulfite sequencing of ten loggerheads from the same population. Applying our novel resources, we reconstructed population size fluctuations and matched them with major climatic events and niche availability. We identified microchromosomes as key regions for monitoring genetic diversity and epigenetic flexibility. Isolating 191 TSD-linked genes, we further built the largest network of functional associations and methylation patterns for sea turtles to date.Conclusions We present a high-quality loggerhead sea turtle genome and methylome from the globally significant East Atlantic population. By leveraging ONT sequencing to create genomic and epigenomic resources simultaneously, we showcase this dual strategy for driving conservation insights into endangered sea turtles.

      This work has been peer reviewed in GigaScience (https://doi.org/10.1093/gigascience/giaf054), which carries out open, named peer-review. These reviews are published under a CC-BY 4.0 license and were as follows:

      Reviewer: Victor Quesada

      This work offers a in improved version of the reference genome for the loggerhead sea turtle. The authors have also analyzed the methylation patterns of blood obtained from different individuals and with two methods. The resulting data set includes gene annotations, methylation levels and the specific analysis of methylation levels of genes involved in temperature-dependent sex determination (TSD). While the improvements offered by this work seem modest, I think that the data sets may provide important resources for future works.-In my opinion, the use of a previous version of the same genome in the assembly process should be noted in the abstract. It would be enough to write "... followed by homolgy-guided scaffolding to GSC_CCare_1.0...".-If possible, the authors should clarify the taxonomic relationship between the reference individual in this work and the reference individual for the previous version of the genome (ref. 26). Is it the same NCBI taxid?-There is a mention to "lateral terminal repeats" at the "Genome annotation" section (page 7). I think it is a typo and it should read "long terminal repeats".-In the same section, at page 9, reference 73 refers to StringTie, not gffread. In addition, it is not clear how "in-frame stop codons were removed". A simple way to unambiguously explain this would be to provide the options that were used, as with other programs.-I would revise the use of "coverage" versus "depth". For instance, the expression "...a coverage of 9.2(...)X" would be more precise as "...a sequencing depth of 9.2(...)X". Coverage should be a fraction or a percentage. However, this is only a piece of advice, as there is no strong consensus at the moment.-The interpretation of methylation patterns is always difficult. In my opinion, the manuscript should discuss several limitations about the results:First, using blood as the starting tissue is convenient but not ideal, as many methylation patterns are tissue-specific. The authors may want to add a reference to preliminary evidence that some methylation changes in blood cells are related to TSD (Bock et al., Mol Ecol. 2022; 31:5487-5505).Second, the work examines broad patterns of methylation (all promoters, all coding sequences,...). While this may be interesting for descriptive purposes, it may also drown significant signals. The manuscript should mention this limitation.*Figure 2B shows methylation per gene. If the aim is to compare both kinds of sequencing, there should be at least one comparison of methylation per CpG, which might even be cathegorial or downsampled.-The origin of the duplication of EP300 seems outside the scope of the manuscript. Nevertheless, given that the question is posed, the authors may want to perform a simple phylogenetic analysis of the sequences. Even the basic analysis of the annotated copies plus an outgroup is likely to give a robust answer to this question.-For the benefit of non-specialists, the manuscript might include a brief mention of how microchromosomes allow a larger number of combinations of variants without chromosome recombination.-Some expressions may be edited for clarity and precission. Examples are "which should be verified whether they are true" (page 17) and "microchromosomes have greater methylation potential and realised levels...".

    1. Background Variant Call Format (VCF) is the standard file format for interchanging genetic variation data and associated quality control metrics. The usual row-wise encoding of the VCF data model (either as text or packed binary) emphasises efficient retrieval of all data for a given variant, but accessing data on a field or sample basis is inefficient. Biobank scale datasets currently available consist of hundreds of thousands of whole genomes and hundreds of terabytes of compressed VCF. Row-wise data storage is fundamentally unsuitable and a more scalable approach is needed.Results Zarr is a format for storing multi-dimensional data that is widely used across the sciences, and is ideally suited to massively parallel processing. We present the VCF Zarr specification, an encoding of the VCF data model using Zarr, along with fundamental software infrastructure for efficient and reliable conversion at scale. We show how this format is far more efficient than standard VCF based approaches, and competitive with specialised methods for storing genotype data in terms of compression ratios and single-threaded calculation performance. We present case studies on subsets of three large human datasets (Genomics England: n=78,195; Our Future Health: n=651,050; All of Us: n=245,394) along with whole genome datasets for Norway Spruce (n=1,063) and SARS-CoV-2 (n=4,484,157). We demonstrate the potential for VCF Zarr to enable a new generation of high-performance and cost-effective applications via illustrative examples using cloud computing and GPUs.Conclusions Large row-encoded VCF files are a major bottleneck for current research, and storing and processing these files incurs a substantial cost. The VCF Zarr specification, building on widely-used, open-source technologies has the potential to greatly reduce these costs, and may enable a diverse ecosystem of next-generation tools for analysing genetic variation data directly from cloud-based object stores, while maintaining compatibility with existing file-oriented workflows.

      This work has been peer reviewed in GigaScience (see https://doi.org/10.1093/gigascience/giaf049), which carries out open, named peer-review. These reviews are published under a CC-BY 4.0 license and were as follows:

      Reviewer: Nezar Abdennur

      The authors present VCF Zarr, a specification that translates the variant call format (VCF) data model into an array-based representation for the Zarr storage format. They also present the vcf2zarr utility to convert large VCFs to Zarr. They provide data compression and analysis benchmarks comparing VCF Zarr to existing variant storage technologies using simulated genotype data. They also present a case study on real world Genomics England aggV2 data.The authors' benchmarks overall show that VCF Zarr has superior compression and computational analysis performance at scale relative to data stored as roworiented VCF and that VCF Zarr is competitive with specialized storage solutions that require similarly specialized tools and access libraries for querying. An attractive feature is that VCF Zarr allows for variant annotation workflows that do not require full dataset copy and conversion. Another key point is that Zarr is a high-level spec and data model for the chunked storage of n-d arrays, rather than a bytelevel encoding designed specifically around the genomic variant data type. I personally have used Zarr productively for several applications unrelated to statistical genetics. While Zarr VCF mildly underperforms some of the specialized formats (Savvy in compute, Genozip in compression) in a few instances, I believe the accessibility, interoperability, and reusability gains of Zarr make the small tradeoff well worthwhile.Because Zarr has seen heavy adoption in other scientific communities like the geospatial and Earth sciences, and is well integrated in the scientific Python stack, I think it holds potential for greater reusability across the ecosystem. As such, I think the VCF Zarr spec is a highly valuable if not overdue contribution to an entrenched field that has recently been confronted by a scalability wall.Overall, the paper is clear, comprehensive, and well written. Some high-level comments: The benefits for large scientific datasets to be analysis-ready cloud-optimized (ARCO) have been well articulated by Abernathey et al., 2021. However, I do think that the "local"/HPC single-file use case is still important and won't disappear any time soon, and for some file system use cases, expansive and deep hierarchies can be performance limiting (this was hinted at in one of the benchmarks). In this scenario would a large Zarr VCF perform reasonably well (or even better on some file systems) via a single local zip store? The description of the intermediate columnar format (ICF) used by vcf2zarr is missing some detail. At first I got the impression it might be based on something like Parquet, but running the provided code showed that it consists of a similar file-based chunk layout to Zarr. This should be clarified in the manuscript. The authors discuss the possibility of storing an index mapping genomic coordinates to chunk indexes. Have Zarr-based formats in other fields like geospatial introduced their own indexing approaches to take inspiration from? Since VCF Zarr is still a draft proposal, it could be useful to indicate where community discussions are happening and how potential new contributors can get involved, if possible. This doesn't need to be in the paper per se, but perhaps documented in the spec repo.Minor comments: In the background: "For the representation to be FAIR, it must also be accessible," -- A is for "accessible", so "also" doesn't make sense. "There is currently no efficient, FAIR representation...". Just a nit and feel free to ignore, but the solution you present is technically "current".* In Figure 2, the zarr line is occluded by the sav line and hard to see.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      Chen et al. identified the role of endocardial id2b expression in cardiac contraction and valve formation through pharmaceutical, genetic, electrophysiology, calcium imaging, and echocardiography analyses. CRISPR/Cas9 generated id2b mutants demonstrated defective AV valve formation, excitation-contraction coupling, reduced endocardial cell proliferation in AV valve, retrograde blood flow, and lethal effects.

      Strengths:

      Their methods, data and analyses broadly support their claims.

      Weaknesses:

      The molecular mechanism is somewhat preliminary.

      We thank the reviewer for the positive assessment of our work. A detailed point-by-point response has been incorporated in the response to “Recommendations for the authors” section.

      Reviewer #2 (Public review):

      Summary:

      Biomechanical forces, such as blood flow, are crucial for organ formation, including heart development. This study by Shuo Chen et al. aims to understand how cardiac cells respond to these forces. They used zebrafish as a model organism due to its unique strengths, such as the ability to survive without heartbeats, and conducted transcriptomic analysis on hearts with impaired contractility. They thereby identified id2b as a gene regulated by blood flow and is crucial for proper heart development, in particular, for the regulation of myocardial contractility and valve formation. Using both in situ hybridization and transgenic fish they showed that id2b is specifically expressed in the endocardium, and its expression is affected by both pharmacological and genetic perturbations of contraction. They further generated a null mutant of id2b to show that loss of id2b results in heart malformation and early lethality in zebrafish. Atrioventricular (AV) and excitation-contraction coupling were also impaired in id2b mutants. Mechanistically, they demonstrate that Id2b interacts with the transcription factor Tcf3b to restrict its activity. When id2b is deleted, the repressor activity of Tcf3b is enhanced, leading to suppression of the expression of nrg1 (neuregulin 1), a key factor for heart development. Importantly, injecting tcf3b morpholino into id2b-/- embryos partially restores the reduced heart rate. Moreover, treatment of zebrafish embryos with the Erbb2 inhibitor AG1478 results in decreased heart rate, in line with a model in which Id2b modulates heart development via the Nrg1/Erbb2 axis. The research identifies id2b as a biomechanical signaling-sensitive gene in endocardial cells that mediates communication between the endocardium and myocardium, which is essential for heart morphogenesis and function.

      Strengths:

      The study provides novel insights into the molecular mechanisms by which biomechanical forces influence heart development and highlights the importance of id2b in this process.

      Weaknesses:

      The claims are in general well supported by experimental evidence, but the following aspects may benefit from further investigation:

      (1) In Figure 1C, the heatmap demonstrates the up-regulated and down-regulated genes upon tricane-induced cardiac arrest. Aside from the down-regulation of id2b expression, it was also evident that id2a expression was up-regulated. As a predicted paralog of id2b, it would be interesting to see whether the up-regulation of id2a in response to tricane treatment was a compensatory response to the down-regulation of id2b expression.

      We thank the reviewer for the comment. As suggested, we performed qRT-PCR analysis to assess id2a expression in tricaine-treated heart. Our results demonstrate a significant upregulation of id2a following the inhibition of cardiac contraction, suggesting a potential compensatory response to the decreased id2b. These new results have been incorporated into the revised manuscript (Figure 1D).

      (2) The study mentioned that id2b is tightly regulated by the flow-sensitive primary cilia-klf2 signaling axis; however aside from showing the reduced expression of id2b in klf2a and klf2b mutants, there was no further evidence to solidify the functional link between id2b and klf2. It would therefore be ideal, in the present study, to demonstrate how Klf2, which is a transcriptional regulator, transduces biomechanical stimuli to Id2b.

      We have examined the expression levels of id2b in both klf2a and klf2b mutants. The whole mount in situ results clearly demonstrate a decrease in id2b signal in both mutants (Figure 3E). As noted by the reviewer, klf2 is a transcriptional regulator, suggesting that the regulation of id2b may occur at the transcriptional level. However, dissecting the molecular mechanisms underlying the crosstalk between klf2 and id2b is beyond the scope of the present study.

      (3) The authors showed the physical interaction between ectopically expressed FLAG-Id2b and HA-Tcf3b in HEK293T cells. Although the constructs being expressed are of zebrafish origin, it would be nice to show in vivo that the two proteins interact.

      We thank the reviewer for this insightful comment. As suggested, we synthesized Flag-id2b and HA-tcf3b mRNA and co-injected them into 1-cell stage zebrafish embryos. We collected 100-300 embryos at 12, 24, and 48 hpf and performed western blot analysis using the same anti-HA and anti-Flag antibodies validated in HEK293 cell experiments. Despite multiple independent attempts, we were unable to detect clear bands of the tagged proteins in zebrafish embryos. We speculate that this could be due to mRNA instability, translational efficiency, or the low abundance of Id2b and Tcf3b proteins. We have acknowledged these technical limitations in the revised manuscript and clarified that the HEK293 cell data support a potential interaction between Id2b and Tcf3b, while confirming their endogenous interaction will require further investigations (Lines 295-296).

      Reviewer #3 (Public review):

      Summary:

      How mechanical forces transmitted by blood flow contribute to normal cardiac development remains incompletely understood. Using the unique advantages of the zebrafish model system, Chen et al make the fundamental discovery that endocardial expression of id2b is induced by blood flow and required for normal atrioventricular canal (AVC) valve development and myocardial contractility by regulating calcium dynamics. Mechanistically, the authors suggest that Id2b binds to Tcf3b in endocardial cells, which relieves Tcf3b-mediated transcriptional repression of Neuregulin 1 (NRG1). Nrg1 then induces expression of the L-type calcium channel component LRRC1. This study significantly advances our understanding of flow-mediated valve formation and myocardial function.

      Strengths:

      Strengths of the study are the significance of the question being addressed, use of the zebrafish model, and data quality (mostly very nice imaging). The text is also well-written and easy to understand.

      Weaknesses:

      Weaknesses include a lack of rigor for key experimental approaches, which led to skepticism surrounding the main findings. Specific issues were the use of morpholinos instead of genetic mutants for the bmp ligands, cilia gene ift88, and tcf3b, lack of an explicit model surrounding BMP versus blood flow induced endocardial id2b expression, use of bar graphs without dots, the artificial nature of assessing the physical interaction of Tcf3b and Id2b in transfected HEK293 cells, and artificial nature of examining the function of the tcf3b binding sites upstream of nrg1.

      We thank the reviewer for the positive assessment and the constructive suggestions. We have performed additional experiments and data analysis to address these issues. A detailed point-by-point response has been incorporated in the response to “Recommendations for the authors” section.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      Questions/Concerns:

      (1) In the introduction, it would be beneficial to include background information on the id2b gene, what is currently known about its function in heart development/regeneration and in other animal models than just the zebrafish.

      We thank the reviewer for the constructive suggestion. In the revised manuscript, we have added a paragraph in the Introduction to provide background on id2b and its role in heart development. Specifically, we discuss its function as a member of the ID (inhibitor of DNA binding) family of helix-loop-helix (HLH) transcriptional regulators and highlight its involvement in cardiogenesis in both zebrafish and mouse models. These additions help place our findings in a broader developmental and evolutionary context (Lines 91-100).

      (2) Of the 6 differentially expressed genes identified in Figure 1C, why did the authors choose to focus on id2b and not the other 5 downregulated genes?

      We thank the reviewer for the comments. As suggested, we have added a sentence in the revised manuscript to clarify the rationale for selecting id2b as the focus of the present study (Lines 117-121).

      (3) As the authors showed representative in situ images for id2b expression with blebbistatin treatment in Figure 1E, and tnn2a MO in Figure 1F, it would also be beneficial to show relative mRNA expression levels for id2b in conditions of blebbistatin treatment and tnn2a MO knockdown. In Fig. 1C: id2b is downregulated with tricaine, but id2a is upregulated with tricaine. Do these genes perform similar or different functions, results of gene duplication events?

      We thank the reviewer for the thoughtful suggestion. Our in situ hybridization results demonstrate reduced id2b expression following tricaine, blebbistatin, and tnn2 morpholino treatment. To further validate these observations and enhance cellular resolution, we generated an id2b:eGFP knockin line. Analysis of this reporter line confirmed a significant reduction in id2b expression in the endocardium upon inhibition of cardiac contraction and blood flow (Figure 3A-D), supporting our in situ results. The divergent expression patterns of id2a and id2b in response to tricaine treatment likely reflect functional specification following gene duplication in zebrafish. While our current study focuses on characterizing the role of id2b in zebrafish heart development, the specific function of id2a remains to be determined. 

      (4) In Fig. 2b, could the authors compare the id2b fluorescence with RNAscope ISH at 24, 48, and 72 hpf? RNAscope ISH allows for the visualization of single RNA molecules in individual cells. The authors should at least compare these in the heart to demonstrate that id2b accurately reflects the endogenous id2b expression. In Fig. 2E: Suggest showing the individual fluorescent images for id2b:eGFP and kdrl:mCherry in the same colors as top panel images instead of in black and white. In Fig. 2F: The GFP fluorescence from id2b:eGFP signals looks overexposed.

      We thank the reviewer for the valuable comment. In response, we attempted RNAscope in situ hybridization on embryos carrying the id2b:eGFP reporter to directly compare fluorescent reporter expression with endogenous id2b transcripts. However, we encountered a significant reduction in id2b:eGFP fluorescence following the RNAscope procedure, and even subsequent immunostaining with anti-GFP antibodies yielded only weak signals. Despite this technical limitation, the RNAscope results independently confirmed id2b expression in endocardial cells (Figure 2E), supporting the specificity and cell-type localization observed with the reporter line. As suggested by the reviewer, we have updated Figure 2G to display id2b:eGFP and kdrl:mCherry images in the same color scheme as the top panel to improve consistency and clarity. Additionally, we have replaced the images in Figure 2F to avoid overexposure and better represent the spatial distribution of id2b:eGFP in adult heart.

      (5) In Fig. 3A: are all the images in panel A taken with the same magnification? In Fig. 3e, could the authors show the localization of klf2 and id2b and confirm their expression in the same endocardial cells? In Fig. 3, the authors conclude that klf2-mediated biomechanical signaling is essential for activating id2b expression. This statement is somewhat overstated because they only demonstrated that knockout of klf2 reduced id2b expression.

      We thank the reviewer for these constructive comments. All images presented in Figure 3A were captured using the same magnification, as now clarified in the revised figure legend. We appreciate the reviewer’s question regarding the localization of klf2 and id2b. While we were unable to directly visualize both markers in the same embryos due to the current unavailability of klf2 reporter lines, prior studies using klf2a:H2B-eGFP transgenic zebrafish have demonstrated that klf2a is broadly expressed in endocardial cells, with enhanced expression in the atrioventricular canal region (Heckel et al., Curr Bio 2015, PMID: 25959969; Gálvez-Santisteban et al., Elife 2019, PMID: 31237233). Our id2b:eGFP reporter analysis revealed a similarly broad endocardial expression pattern. These independent observations support the likelihood that klf2a and id2b are co-expressed in the same endocardial cell population.   

      We also appreciate the reviewer’s comments regarding the connection between biomechanical signaling and id2b expression. Previous studies have already established that biomechanical cues directly regulate klf2 expression in zebrafish endocardial cells (Vermot et al., Plos Biol 2009, PMID: 19924233; Heckel et al., Curr Bio 2015, PMID: 25959969). In the present study, we observed a significant reduction in id2b expression in both klf2a and klf2b mutants, suggesting that id2b acts downstream of klf2. These observations together establish the role of biomechanical cues-klf2-id2b signaling axis in endocardial cells. Nevertheless, we agree with the reviewer that further investigation is required to elucidate the precise mechanism by which klf2 regulates id2b expression.

      (6) In Fig. 4: What's the mRNA expression for id2b in WT and id2b mutant fish hearts?

      We performed qRT-PCR analysis on purified zebrafish hearts and observed a significant reduction in id2b mRNA levels in id2b mutants compared to wild-type controls. These new results have been incorporated into the revised manuscript (Figure 4A).

      (7) In Fig. 5E, the heart rate shows no difference between id2b+/+ and id2b-/- fish according to echocardiography analysis. However, Fig. 5B indicates a difference in heart rate. Could the authors explain this discrepancy?

      We thank the reviewer for this insightful observation. In our study, we observed a reduction in heart rate in id2b mutants during embryonic stages (120 hpf), as shown in Figure 5B. However, this difference was not evident in adult fish based on echocardiography analysis (Figure 5E). While the exact reason for these changes during development remains unclear, it is possible that the reduction in cardiac output observed in id2b mutants during early development triggers compensatory mechanisms over time, ultimately restoring heart rate in adulthood. Given that heart rate is primarily regulated by pacemaker activity, further investigation will be required to determine whether such compensatory adaptations occur and to elucidate the underlying mechanisms.

      (8) In Fig. 6A: it's a little hard to read the gene names in the left most image in the panel. In Fig. 6B, the authors conducted qRT-PCR analysis of 72 hpf embryonic hearts and validated decreased nrg1 levels in id2b-/- compared to control. Since nrg1 is not specifically expressed in endocardial cells in the developing heart, the authors should isolate endocardial cells and compare nrg1 expression in id2b-/- to control. This would ensure that the loss of id2b affects nrg1 expression derived from endocardial cells rather than other cell types. In Supp Figure S6: Suggest adding an image of the UMAP projection to show tcf3b expression in endocardial cells from sequencing analysis.

      We thank the reviewer for these helpful suggestions. In response, we have increased the font size of gene names in the leftmost panel of Figure 6A to improve readability. Regarding nrg1 expression, we acknowledge the importance of assessing its cell-type specificity. Unfortunately, due to the lack of reliable transgenic or knock-in tools for nrg1, its precise expression pattern in embryonic hearts remains unclear. We attempted to isolate endocardial cells from embryonic hearts using FACS, but the limited number of cells obtained at this stage precluded reliable qRT-PCR analysis. Nonetheless, our data show that id2b is specifically expressed in endocardial cells, and publicly available single-cell RNA-seq datasets also support that nrg1 is predominantly expressed in endocardial, but not myocardial or epicardial cells during embryonic heart development (Figure 6-figure supplement 1). These findings suggest that id2b may regulate nrg1 expression in a cell-autonomous manner within the endocardium. As suggested, we have also added a UMAP image to Figure 7-figure supplement 1 to show tcf3b expression in endocardial cells, further supporting the cell identity in single-cell dataset.

      (9) In Fig. 6, Nrg1 knockout shows no gross morphological defects and normal trabeculation in larvae. Could the authors explain why they propose that endocardial id2b promotes nrg1 synthesis, thereby enhancing cardiomyocyte contractile function? Did Nrg1 knockdown with Mo lead to compromised calcium signaling and cardiac contractile function? Nrg2a has been reported to be expressed in endocardial cells in larvae, and its loss leads to heart function defects. Perhaps Nrg2a plays a more important role than Nrg1.

      We thank the reviewer for raising this important point. Although we did not directly test nrg1 knockout in our study, previous reports have shown that genetic deletion of nrg1 in zebrafish does not impair cardiac trabeculation during embryonic stages (Rasouli et al., Nat Commun 2017, PMID: 28485381; Brown et al., J Cell Mol Med 2018, PMID: 29265764). However, reduced trabecular area and signs of arrhythmia were observed in juvenile and adult fish (Brown et al., J Cell Mol Med 2018, PMID: 29265764), suggesting a potential role for nrg1 in maintaining cardiac structure and function later in development. Whether calcium signaling and cardiac contractility are affected at these stages remains to be determined. Given that morpholino-induced knockdown is limited to early embryonic stages, it is not suitable for assessing nrg1 function in juvenile or adult hearts.

      As noted by the reviewer, nrg2a is expressed in endocardial cells, and its deletion has been associated with cardiac defects (Rasouli et al., Nat Commun 2017, PMID: 28485381). To assess its potential involvement in our model, we performed qRT-PCR analysis and observed increased nrg2a expression in id2b mutant hearts (Author response image 1). This upregulation may reflect a compensatory response to the loss of id2b. Therefore, nrg2a is unlikely to play an essential role in mediating the depressed cardiac function in this context.

      Author response image 1.

      Expression levels of nrg2a. qRT-PCR analysis of nrg2a mRNA in id2b<sup>+/+</sup> and id2b<sup>-/-</sup> adult hearts. Data were normalized to the expression of actb1. N=5 biological replicates, with each sample containing two adult hearts.

      (10) In Fig. 7A of the IP experiment, it is recommended that the authors establish a negative control using control IgG corresponding to the primary antibody source. This control helps to differentiate non-specific background signal from specific antibody signal.

      As suggested, we have included an IgG control corresponding to the primary antibody species in the immunoprecipitation (IP) experiment to distinguish specific from non-specific binding. The updated data are presented in Figure 7A of the revised manuscript.

      (11) In Pg. 5, line 115: there is no reference included for previous literature on blebbistatin.

      We have added the corresponding reference (Line 126, Reference #5).

      In Pg. 5, lines 118-119; pg. 6 line 144: It would be beneficial to include a short sentence describing why choosing a tnnt2a morpholino knockdown to help provide mechanistic context to readers.

      We thank the reviewer for the constructive suggestion. In cardiomyocytes, tnnt2a encodes a sarcomeric protein essential for cardiac contraction, and its knockdown is a well-established method for abolishing heartbeat and blood flow in zebrafish embryos, thereby allowing investigation of flow-dependent gene regulation. In the revised manuscript, we have added a sentence and corresponding reference to clarify the rationale for using tnnt2a morpholino in our study (Lines 128-129, Reference #35).

      In Pg. 6, line 140: Results title of "Cardiac contraction promotes endocardial id2b expression through primary cilia but not BMP" is misleading and contradicts the results presented in this section and corresponding figure. For example, the bmp Mo knockdown experiments led to decreased id2b fluorescence and the last statement of this results section contradicts the title that BMP does not promote endocardial id2b in lines 179-180: "Collectively, these results suggest that BMP signaling and blood flow modulate id2b expression in a developmental-stage-dependent manner." It would be helpful to clarify whether BMP signaling is involved in id2b expression or not.

      We apologize for any confusion caused by the section title. Our results demonstrate that id2b expression is regulated by both BMP signaling and biomechanical forces in a developmental-stage-specific manner. Specifically, morpholino-mediated knockdown of bmp2b, bmp4, and bmp7a at the 1-cell stage significantly reduced id2b:eGFP fluorescence at 24 hpf (Figure 3-figure supplement 1A, B), suggesting that id2b is responsive to BMP signaling during early embryonic development. However, treatment with the BMP inhibitor Dorsomorphin during later stages (24-48 or 36-60 hpf) did not significantly alter id2b:eGFP fluorescence intensity in individual endocardial cells, although a modest reduction in total endocardial cell number was noted (Figure 3-figure supplement 1C, D). These results suggest that BMP signaling is required for id2b expression during early development but becomes dispensable at later stages, when biomechanical cues may play a more prominent role. To address this concern and better reflect the data, we have revised the Results section title to: "BMP signaling and cardiac contraction regulate id2b expression". This revised title more accurately reflects the dual regulation of id2b expression (Line 153).

      In line 205: Any speculation on why the hemodynamics was preserved between id2b mutant and WT siblings at 96 hpf?

      As suggested, we have included a sentence to address this observation. “Surprisingly, the pattern of hemodynamics was largely preserved in id2b<sup>-/-</sup> embryos compared to id2b<sup>+/+</sup> siblings at 96 hpf (Figure 4-figure supplement 1E, Video 1, 2), suggesting that the reduced number of endocardial cells in the AVC region was not sufficient to induce functional defects.” (Lines 223-225)

      In line 246: Fig. 6k and 6j are referenced, but should be figure 5k and 5j.

      We have corrected this in the revised manuscript.

      Reviewer #2 (Recommendations for the authors):

      he manuscript was overall well explained, aside from a few minor points that would help facilitate reader comprehension:

      (1) The last paragraph of the introduction could be a brief summary of the study.

      We thank the reviewer for this constructive suggestion. As recommended, we have included a paragraph in the Introduction section summarizing our key findings to provide clearer context for the study (Lines 96-100).

      (2) Lines 127-128: 'revealed a substantial recapitulation of the... of endogenous id2b expression' may need to be rephrased.

      We thank the reviewer for the valuable suggestion. In the revised manuscript, we have changed the sentence to: “Comparison of id2b:eGFP fluorescence with in situ hybridization at 24, 48, and 72 hpf revealed that the reporter signal closely recapitulates the endogenous id2b expression pattern.” (Lines 137-139)

      (3) Line 182: '... in a developmental-stage-dependent manner' sounds a bit ambiguous, may need to slightly elaborate/ clarify what this means.

      We thank the reviewer for the helpful comment. To improve clarity, we have revised the statement to: “Collectively, these results suggest that id2b expression is regulated by both BMP and biomechanical signaling, with the relative contribution of each pathway varying across developmental stages.” (Lines 195-197)

      Reviewer #3 (Recommendations for the authors):

      (1) The conclusion that BMP signaling prior to 24 hpf is necessary for id2b expression is not fully supported by the data. How do the authors envision pre-linear heart tube BMP signaling impacting endocardial id2b expression during later chamber stages? Id2b reporter fluorescence can be clearly visualized in the linear heart tube in panel B from Figure 1. Does id2b expression initiate prior to contraction? Can the model be refined by showing when id2b endocardial reporter fluorescence is first observed, and whether this early/pre-contractile expression is dependent on BMP signaling?

      We thank the reviewer for the important comment. As suggested, we performed morpholino-mediated knockdown of bmp2b, bmp4, and bmp7a at the 1-cell stage. Live imaging at 24 hpf showed significantly reduced id2b:eGFP fluorescence compared to controls (Figure 3-figure supplement 1A, B), suggesting that id2b is responsive to BMP signaling during early embryonic development. However, treatment with the BMP inhibitor Dorsomorphin during 24-48 or 36-60 hpf did not significantly impact id2b:eGFP fluorescence intensity in individual endocardial cells, although a reduction in endocardial cell number was observed (Figure 3-figure supplement 1C, D). These results suggest that BMP signaling is essential for id2b expression during early embryonic development, while it becomes dispensable at later stages, when biomechanical cues exert a more significant role.

      (2) Overexpressing tagged versions of TCF3b and Id2b in HEK293 cells is a very artificial way to make the major claim that these two proteins interact in endogenous endocardial cells. Can this be done in zebrafish embryonic or adult hearts?

      We thank the reviewer for this insightful comment. As suggested, we synthesized Flag-id2b and HA-tcf3b mRNA and co-injected them into 1-cell stage zebrafish embryos. We collected 100-300 embryos at 12, 24, and 48 hpf and performed western blot analysis using the same anti-HA and anti-Flag antibodies validated in HEK293 cell experiments. Despite multiple independent attempts, we were unable to detect clear bands of the tagged proteins in zebrafish embryos. We speculate that this could be due to mRNA instability, translational efficiency, or the low abundance of Id2b and Tcf3b proteins. We have acknowledged these technical limitations in the revised manuscript and clarified that the HEK293 cell data support a potential interaction between Id2b and Tcf3b, while confirming their endogenous interaction will require further investigations (Lines 295-296).

      (3) The data presented are consistent with the claim that the tcf3b binding sites are functional upstream of nrg1 to repress its transcription. To fully support this idea, those two sites should be disrupted with gRNAs if possible.

      We thank the reviewer for the valuable suggestion. In response, we attempted to disrupt the tcf3b binding sites using sgRNAs. However, we encountered technical difficulties in identifying sgRNAs that specifically and efficiently target these binding sites without affecting adjacent regions. Despite these challenges, our luciferase reporter assay, using tcf3b mRNA overexpression and morpholino knockdown, clearly demonstrated that tcf3b binds to and regulates nrg1 promoter region. Nevertheless, we acknowledge that future study using genome editing will be necessary to validate the direct binding of tcf3b to nrg1 promoter.

      Minor Points:

      (1) Must remove all of the "data not shown" statements and add the primary data to the Supplemental Figures.

      As suggested, we have removed all of the “data not shown” statements and added the original data to the revised manuscript (Figure 4E, middle panels, and Figure 4-figure supplement 1F)

      (2) Must present the order of the panels in the figure as they are presented in the text. One example is Figure 6 where 6E is discussed in the text before 6C and 6D.

      We thank the reviewer for bring up this important point. In the revised manuscript, we have carefully revised the manuscript to ensure that the order of figure panels matches the sequence in which they are discussed in the text. Specifically, we have reorganized the presentation of Figure 6 panels to align with the text flow, discussing panels 6C and 6D before panel 6E. The updated figure and corresponding text have been corrected accordingly in the revised manuscript.

      (3) Change the italicized gene names (e.g. tcf3b) to non-italicized names with the first letter capitalized (e.g. Tcf3b) when referencing the protein.

      As suggested, we have revised the manuscript to use non-italicized names with the first letter capitalized when referring to proteins.

      (4) All bar graphs should be replaced with dot bar graphs.

      We have replaced all bar graphs with dot bar graphs throughout the manuscript.

      (5) The new id2b mutant allele should be validated as a true null using quantitative RT-PCR to show that the message becomes destabilized through non-sense mediated decay or by immunostaining/western blot analysis if there is a zebrafish Id2b-specific antibody available.

      We thank the reviewer for this important suggestion. We have performed qRT-PCR analysis and detected a significant reduction in id2b mRNA levels in id2b<sup>-/-</sup> compared to id2b<sup>+/+</sup> controls. These new results are presented in Figure 4A of the revised manuscript.

      (6) Was tricaine used to anesthetize embryos for capturing heart rate and percent fractional area change? This analysis should be performed with no or very limited tricaine as it affects heart rate and systolic function. These parameters were captured at 120 hpf, but the authors should also look earlier at 72 hpf at a time when valves are not present by calcium transients are necessary to support heart function.

      We thank the reviewer for this important comment. When performing live imaging to assess cardiac contractile function, we used low-dose tricaine (0.16 mg/mL) to anesthetize the zebrafish embryos. We have included this important information in the Methods section (Line 503). As suggested, we have also included the heart function results at 72 hpf, which are now presented in Figure 5-figure supplement 2A-C of the revised manuscript.

      (7) The alpha-actinin staining in Figure 5-supplement 2D is very pixelated and unconvincing. This should be repeated and imaged at a higher resolution.

      As suggested, we have re-performed the α-actinin staining and acquired higher-resolution images. The updated results are now presented in Figure 5-figure supplement 2G of the revised manuscript.

      (8) The authors claim that reductions in id2b mutant heart contractility are due to perturbed calcium transients instead of sarcomere integrity. Why do the authors think that regulation of calcium dynamics was not observed in the DEG enriched GO-terms? Was significant downregulation of cacna1 identified in the bulk RNAseq?

      We thank the reviewer for raising this important point. In our bulk RNAseq dataset comparing id2b mutant and control hearts, GO term enrichment was primarily associated with pathways related to cardiac muscle contraction and heart contraction (Figure 5-figure supplement 1B). We speculate that the transcriptional changes related to calcium dynamics may be relatively subtle and thus were not captured as significantly enriched GO terms. In addition, our qRT-PCR analysis revealed a significant reduction in cacna1c expression in id2b mutant hearts compared to controls, suggesting that id2b deletion impairs calcium channel expression. However, this change was not detected by RNA-seq, likely due to limitations in sensitivity.

      (9) In line 277, the authors say, "To determine whether this interaction occurs in zebrafish, Flag-id2b and HA-tcf3b were co-expressed in HEK293 cells...". This should be re-phrased to, "To determine if zebrafish Id2b and Tcf3b interact in vitro, Flag-id2b and HA-tcf3b were co-expressed in HEK293 cells for co-immunoprecipitation analysis." The sentence in line 275 should be changed to, "....heterodimer with Tcf3b to limit its function as a potent transcriptional repressor."

      We thank the reviewer for these constructive comments and have revised the text accordingly (Lines 291-294).

      (10) Small text corrections or ideas:

      Line 63: emphasized

      We have corrected this in the revised manuscript.

      Line 71: studied signaling pathways

      We have corrected this in the revised manuscript.

      Line 106: the top 6 DEGS (I think that the authors mean top 6 GO-terms) and is Id2b in one of the enriched GO categories?

      id2b is one of the top DEGs. This point has been clarified in the revised manuscript (Lines 116-117).

      Line 125: a knockin id2b:eGFP reporter line

      We have corrected this in the revised manuscript (Line 136).

      Line 138: This paragraph could use a conclusion sentence.

      We have added a conclusion sentence in the revised manuscript (Lines 150-151).

      Line 190: id2b-/- zebrafish experienced early lethality

      We have revised the statement as suggested (Line 206).

      Line 193: The prominent enlargement of the atrium with a smaller ventricle has characterized as cardiomyopathy in zebrafish (Weeks et al. Cardiovasc Res, 2024, PMID: 38900908), which has also been associated with disruptions in calcium transients (Kamel et al J Cardiovasc Dev Dis, 2021, PMID: 33924051 and Kamel et al, Nat Commun 2021, PMID: 34887420). This information should be included in the text along with these references.

      We thank the reviewer for this helpful suggestion. We have incorporated these important references into the revised manuscript and included the relevant information to acknowledge the established link between atrial enlargement, cardiomyopathy, and disrupted calcium transients in zebrafish models (Reference #41, 42, and 45; Lines 210 and 260).

    1. Author response:

      Reviewer #1 (Public review):

      The usefulness of the proposed new metric of "variant consistency" and how it can guide users in selecting demultiplexing methods seems a little unclear. It correlates with the level of ambient RNA/DNA contamination, which makes it look like a metric on data quality. However, it does depend on the exact demultiplexing method, yet it's not clear how it directly connects to the "accuracy" of each demultiplexing method, which is the most important property that users of these methods care about. Since the simulated data has ground truth of donor identities available, I would suggest using the simulated data to show whether "variant consistency" directly indicates the accuracy of each method, especially the accuracy within those "C2" reads.

      I also think the tool and analyses presented in this paper need some further clarification and documentation on the details, such as how the cell-type gene and peak probabilities are determined in the simulation, and how doublets from different cell types are handled in the simulation and analysis. A few analyses and figures also need a more detailed description of the exact methods used. 

      We thank the reviewer for their suggestions. We plan on revising the manuscript to reflect their suggestions, which will include clarification of the variant consistency metric and its relationship with demultiplexing accuracy based on the simulations and additional detail regarding ambisim’s generation of multiplexed snRNA/snATAC.

      Reviewer #2 (Public review):

      (1) Throughout the manuscript, the figure legends are difficult to understand, and this makes it difficult to interpret the graphs.

      (2) Since this is both a new tool and a benchmark, it would be worthwhile in the Discussion to comment on which demultiplexing tools one may want to choose for their dataset, especially given the warning against ensemble methods. From this extensive benchmarking, one may want to choose a tool based on the number of donors one has pooled, the modalities present, and perhaps even the ambient RNA (if it has been estimated previously).

      (3) What are the minimal computational requirements for running ambisim? What is the time cost? 

      We thank the reviewer for their suggestions. We plan on updating the manuscript to better clarify figure legends. We will also outline a set of concrete recommendations in our discussion section based on different multiplexed experimental designs. Finally, we will also include extra computational benchmarks for ambisim.

    1. Author response:

      The following is the authors’ response to the original reviews

      We thank the three reviewers for their insightful feedback. We look forward to addressing the raised concerns in a revised version of the manuscript. There were a few common themes among the reviews that we will briefly touch upon now, and we will provide more details in the revised manuscript. 

      First, the reviewers asked for the reasoning behind the task ratios we implemented for the different attentional width conditions. The different ratios were selected to be as similar as possible given the size and spacing of our stimuli (aside from the narrowest cue width of one bin, the ratios for the others were 0.66, .6 and .66). As Figure 1b shows, while the ratios were similar, task difficulty is not constant across cue widths: spreading attention makes the task more difficult generally. But, while the modeled width of the spatial distribution of attention changes monotonically with cue width, task difficulty does not. Furthermore, prior work has indicated that there is a relationship between task difficulty and the overall magnitude of the BOLD response, however we don’t suspect that this will influence the width of the modulation. How task difficulty influences the BOLD response is an important topic, and we hope that future work will investigate this relationship more directly.   

      Second, reviewers raised interest in the distribution of spatial attention in higher visual areas. In our study we focus only on early visual regions (V1-V3). This was primarily driven by pragmatic considerations, in that we only have retinotopic estimates for our participants in these early visual areas. Our modeling approach is dependent on having access to the population receptive field estimates for all voxels, and while the main experiment was scanned using whole brain coverage, retinotopy was measured in a separate session using a field of view only covering the occipital cortex.  

      Lastly, we appreciate the opportunity to clarify the purpose of the temporal interval analysis. The reviewer is correct in assuming we set out to test how much data is needed to recover the cortical modulation and how dynamic a signal the method can capture. This analysis does show that more data provides more reliable estimates, though the model was still able to recover the location and width of the attentional cue at shorter timescales of as few as two TRs. This has implications for future studies that may involve more dynamic tracking of the attentional field.

      Public Reviews

      Reviewer #1 (Public review): 

      The authors conducted an fMRI study to investigate the neural effects of sustaining attention to areas of different sizes. Participants were instructed to attend to alphanumeric characters arranged in a circular array. The size of attention field was manipulated in four levels, ranging from small (18 deg) to large (162 deg). They used a model-based method to visualize attentional modulation in early visual cortex V1 to V3, and found spatially congruent modulations of the BOLD response, i.e., as the attended area increased in size, the neural modulation also increased in size in the visual cortex. They suggest that this result is a neural manifestation of the zoomlens model of attention and that the model-based method can effectively reconstruct the neural modulation in the cortical space. 

      The study is well-designed with sophisticated and comprehensive data analysis. The results are robust and show strong support for a well-known model of spatial attention, the zoom-lens model. Overall, I find the results interesting and useful for the field of visual attention research. I have questions about some aspects of the results and analysis as well as the bigger picture. 

      (1) It appears that the modulation in V1 is weaker than V2 and V3 (Fig 2). In particular, the width modulation in V1 is not statistically significant (Fig 5). This result seems a bit unexpected. Given the known RF properties of neurons in these areas, in particular, smaller RF in V1, one might expect more spatially sensitive modulation in V1 than V2/V3. Some explanations and discussions would be helpful. Relatedly, one would also naturally wonder if this method can be applied to other extrastriate visual areas such as V4 and what the results look like. 

      We agree with the reviewer. It’s very interesting how the spatial resolution within different visual regions contributes to the overall modulation of the attentional field, and how this in turn would influence perception. Our data showed that fits in V1 appeared to be less precise than in V2 and V3. This can be seen in the goodness of fit of the model as well as the gain and absolute angular error estimates. The goodness of fit and gain were lowest in V1 and the absolute angular error was largest in V1 (see Figure 5). We speculate that the finer spatial granularity of V1 RFs was countered by a lower amplitude and SNR of attention-related modulation in V1, resulting in overall lower sensitivity to variation in attentional field width. Prior findings concur that the magnitude of covert spatial attention increases when moving from striate to extrastriate cortex (Bressler & Silver (2010); Buracas & Boynton (2007)). Notably, in our perception condition, V1 showed more spatially sensitive modulation (see Figure 7), consistent with the known RF properties of V1 neurons.

      Regarding the second point: unfortunately, our dataset did not allow us to explore higherorder cortical regions with the model-based approach. While the main experiment was scanned using a sequence with whole brain coverage, the pRF estimates came from a separate scanning session which only had limited occipital coverage. Our modeling approach is dependent on the polar angle estimates from this pRF session. We now explicitly state this limitation in the methods (lines 87-89):

      “In this session, the field of view was restricted to the occipital cortex to maximize SNR, thereby limiting the brain regions for which we had pRF estimates to V1, V2, and V3.”

      (2) I'm a bit confused about the angular error result. Fig 4 shows that the mean angular error is close to zero, but Fig 5 reports these values to be about 30-40 deg. Why the big discrepancy? Is it due to the latter reporting absolute errors? It seems reporting the overall bias is more useful than absolute value. 

      The reviewer’s inference here is exactly right: Figure 4 shows signed error, whereas Figure 5 shows absolute error. We show the signed error for the example participant because, (1) by presenting the full distribution of model estimates for one participant, readers have access to a more direct representation of the data, and (2) at the individual level it is possible to examine potential directional biases in the location estimates (which do not appear to be present). As we don’t suspect a consistent directional bias across the group, we believe the absolute error in location estimates is more informative in depicting the precision in location estimates using the model-based approach. In the revised manuscript, we modified Figure 5 to make the example participant’s data visually distinct for easy comparison. We have clarified this reasoning in the text (results lines 59-64):

      “The angular error distribution across blocks, separated by width condition, is shown in Figure 4 for one example participant to display block-to-block variation. The model reliably captured the location of the attentional field with low angular error and with no systematic directional bias. This result was observed across participants. We next examined the absolute angular error to assess the overall accuracy of our estimates.”

      (3) A significant effect is reported for amplitude in V3 (line 78), but the graph in Fig 5 shows hardly any difference. Please confirm the finding and also explain the directionality of the effect if there is indeed one. 

      We realize that the y-axis scale of Figure 5 was making it difficult to see that gain decreases with cue width in area V3. Instead of keeping the y-axis limits the same across visual regions, we now adapt the y-axis scale of each subplot to the range of data values:  

      We now also add the direction of the effect in the text (results lines 83-86):

      “We observed no significant relationship between gain and cue width in V1 and V2 (V1 t(7)=.54, p=.605; V2 t(7)=-2.19, p=.065), though we did find a significant effect in V3 illustrating that gain decreases with cue width (t(7)=-3.12, p=.017).”

      (4) The purpose of the temporal interval analysis is rather unclear. I assume it has to do with how much data is needed to recover the cortical modulation and hence how dynamic a signal the method can capture. While the results make sense (i.e., more data is better), there is no obvious conclusion and/or interpretation of its meaning. 

      We apologize for not making our reasoning clear. We now emphasize our reasoning in the revised manuscript (results lines 110-112). Our objective was to quantify how much data was needed to recover the dynamic signal. As expected, we found that including more data reduces noise (averaging helps), but importantly, we found that we still obtained meaningful model fits even with limited data. We believe this has important implications for future paradigms that explore more dynamic deployment of spatial attention, where one would not want to average over multiple repetitions of a condition.

      The first paragraph of the Temporal Interval Analysis section in the results now reads: 

      “In the previous analyses, we leveraged the fact that the attentional cue remained constant for 5-trial blocks (spatial profiles were computed by averaging BOLD measurements across a block of 10 TRs). We next examined the degree to which we were able to recover the attentional field on a moment-by-moment (TR-by-TR) basis. To do this, we systematically adjusted the number of TRs that contributed to the averaged spatial response profile. To maintain a constant number of observations across the temporal interval conditions, we randomly sampled a subset of TRs from each block. This allowed us to determine the amount of data needed to recover the attentional field, with a goal of examining the usability of our modeling approach in future paradigms involving more dynamic deployment of spatial attention.”

      (5) I think it would be useful for the authors to make a more explicit connection to previous studies in this literature. In particular, two studies seem particularly relevant. First, how do the present results relate to those in Muller et al (2003, reference 37), which also found a zoom-lens type of neural effects. Second, how does the present method compare with spatial encoding model in Sprague & Serences (2013, reference 56), which also reconstructs the neural modulation of spatial attention. More discussions of these studies will help put the current study in the larger context.

      We now make a more explicit connection to prior work in the discussion section (lines 34-54). 

      “We introduced a novel modeling approach that recovered the location and the size of the attentional field. Our data show that the estimated spatial spread of attentional modulation (as indicated by the recovered FWHM) consistently broadened with the cue width, replicating prior work (Müller et al., 2003; Herrmann et al., 2010). Our results go beyond prior work by linking the spatial profiles to pRF estimates, allowing us to quantify the spread of both attentional and perceptual modulation in degrees of polar angle. Interestingly, the FWHM estimates for the attentional and perceptual spatial profiles were highly similar. Additionally, for area V3 we replicate that the population response magnitude decreased with cue width (Müller et al., 2003; Feldmann-Wüstefeld and Awh, 2020). One innovation of our method is that it directly reconstructs attention-driven modulations of responses in visual cortex, setting it apart from other methods, such as inverted encoding models (e.g. Sprague & Serences, 2013). Finally, we demonstrated that our method has potential to be used in more dynamic settings, in which changes in the attentional field need to be tracked on a shorter timescale.”

      (6) Fig 4b, referenced on line 123, does not exist. 

      We have corrected the text to reference the appropriate figure (Figure 5, results line 136).

      Reviewer #2 (Public review):

      Summary: 

      The study in question utilizes functional magnetic resonance imaging (fMRI) to dynamically estimate the locus and extent of covert spatial attention from visuocortical activity. The authors aim to address an important gap in our understanding of how the size of the attentional field is represented within the visual cortex. They present a novel paradigm that allows for the estimation of the spatial tuning of the attentional field and demonstrate the ability to reliably recover both the location and width of the attentional field based on BOLD responses. 

      Strengths: 

      (1) Innovative Paradigm: The development of a new approach to estimate the spatial tuning of the attentional field is a significant strength of this study. It provides a fresh perspective on how spatial attention modulates visual perception. 

      (2) Refined fMRI Analysis: The use of fMRI to track the spatial tuning of the attentional field across different visual regions is methodologically rigorous and provides valuable insights into the neural mechanisms underlying attentional modulation. 

      (3) Clear Presentation: The manuscript is well-organized, and the results are presented clearly, which aids in the reader's comprehension of the complex data and analyses involved. 

      We thank the reviewer for summarizing the strengths in our work. 

      Weaknesses: 

      (1) Lack of Neutral Cue Condition: The study does not include a neutral cue condition where the cue width spans 360°, which could serve as a valuable baseline for assessing the BOLD response enhancements and diminishments in both attended and non-attended areas. 

      We do not think that the lack of a neutral cue condition substantially limits our ability to address the core questions of interest in the present work. We set out to estimate the locus and the spread of covert spatial attention. By definition, a neutral cue does not have a focus of attention as the whole annulus becomes task relevant. We agree with the reviewer that how spatial attention influences the magnitude of the BOLD response is still not well defined; i.e., does attending a location multiplicatively enhance responses at an attended location or does it instead act to suppress responses outside the focus of attention? A neutral cue condition would be necessary to be able to explore these types of questions. However, our findings don’t rest on any assumptions about this. Instead, we quantify the attentional modulation with a model-based approach and show that we can reliably recover its locus, and reveal a broadening in the attentional modulation with wider cues. 

      We realize that throughout the original manuscript we often used the term ‘attentional enhancement,’ which might inadvertently specify an increase with respect to a neutral condition. To be more agnostic to the directionality of the effect, we have changed this to ‘attentional modulation’ and ‘attentional gain’ throughout the manuscript. Additionally, we have added results and visualizations for the baseline parameter to all results figures (Figures 4-7) to help readers further interpret our findings.  

      (2) Clarity on Task Difficulty Ratios: The explicit reasoning for the chosen letter-to-number ratios for various cue widths is not detailed. Ensuring clarity on these ratios is crucial, as it affects the task difficulty and the comparability of behavioral performance across different cue widths. It is essential that observed differences in behavior and BOLD signals are attributable solely to changes in cue width and not confounded by variations in task difficulty.  

      The ratios were selected to be as similar as possible given the size and spacing of our stimuli (aside from the narrowest cue width of one bin, the proportions for the others were 0.67, 0.60, and 0.67). We have updated the methods section to state this explicitly (methods lines 36-38): 

      “The ratios were selected to be as similar as possible given the size and spacing of our stimuli (aside from the one-bin cue, the proportions for the other cues were 0.67, 0.60, 0.67).”

      As Figure 1b shows, task accuracy showed small and non-monotonic changes across the three larger cue widths, dissociable from the monotonic pattern seen for the modelestimated width of the attentional field. Furthermore, as prior work has indicated that there is a relationship between task difficulty and the overall magnitude of the BOLD response (e.g., Ress, Backus & Heeger, 2000), we would primarily expect effects of task difficulty on the gain or baseline rather than the width. How exactly task difficulty influences the BOLD response and whether this would, in fact, interact with the width of the attentional field is an important topic, and we hope that future work will investigate this relationship more directly.  

      We have clarified these points within the text, and now explicitly motivate future work looking at these important interactions (discussion lines 57-67):

      “The observed effects of attentional field width were unlikely to be directly attributable to variation in task difficulty. Participants' task in our study was to discriminate whether more numbers or more letters were presented within a cued region of an iso-eccentric annulus of white noise. For our different cue widths, the ratios of numbers and letters were selected to be as similar as possible given the size and spacing of our stimuli. Changes in accuracy across the three larger cue widths were small and non-monotonic, implying task difficulty was dissociable from width per se. This dissociation bolsters the interpretability of our model fits; nevertheless, future work should further investigate how task difficulty interacts with the spread of the attentional field and the amplitude of attention-related BOLD effects (cf. Ress, Backus & Heeger, 2000).”

      Reviewer #3 (Public review):

      Summary: 

      In this report, the authors tested how manipulating the contiguous set of stimuli on the screen that should be used to guide behavior - that is, the scope of visual spatial attention - impacts the magnitude and profile of well-established attentional enhancements in visual retinotopic cortex. During fMRI scanning, participants attended to a cued section of the screen for blocks of trials and performed a letter vs digit discrimination task at each attended location (and judged whether the majority of characters were letters/digits). Importantly, the visual stimulus was identical across attention conditions, so any observed response modulations are due to topdown task demands rather than visual input. The authors employ population receptive field (pRF) models, which are used to sort voxel activation with respect to the location and scope of spatial attention and fit a Gaussian-like function to the profile of attentional enhancement from each region and condition. The authors find that attending to a broader region of space expands the profile of attentional enhancement across the cortex (with a larger effect in higher visual areas), but does not strongly impact the magnitude of this enhancement, such that each attended stimulus is enhanced to a similar degree. Interestingly, these modulations, overall, mimic changes in response properties caused by changes to the stimulus itself (increase in contrast matching the attended location in the primary experiment). The finding that attentional enhancement primarily broadens, but does not substantially weaken in most regions, is an important addition to our understanding of the impact of distributed attention on neural responses, and will provide meaningful constraints to neural models of attentional enhancement. 

      Strengths: 

      (1) Well-designed manipulations (changing location and scope of spatial attention), and careful retinotopic/pRF mapping, allow for a robust assay of the spatial profile of attentional enhancement, which has not been carefully measured in previous studies.

      (2) Results are overall clear, especially concerning width of the spatial region of attentional enhancement, and lack of clear and consistent evidence for reduction in the amplitude of enhancement profile.

      (3) Model-fitting to characterize spatial scope of enhancement improves interpretability of findings.

      We thank the reviewer for highlighting the strengths of our study. 

      Weaknesses: 

      (1) Task difficulty seems to vary as a function of spatial scope of attention, with varying ratios of letters/digits across spatial scope conditions, which may complicate interpretations of neural modulation results  

      The reviewer is correct in observing that task accuracy varied across cue widths. Though we selected the task ratios to be as similar as possible given the size and spacing of our stimuli (aside from the narrowest cue width of one bin, the proportions for the others were 0.67, 0.60, and 0.67), behavioral accuracy across the three larger cue widths was not identical. Prior research has shown that there is a relationship between task difficulty and the overall magnitude of the BOLD response (e.g., Ress, Backus & Heeger, 2000). Thus, we would primarily expect effects of task difficulty on gain rather than width. How task difficulty influences the BOLD response and whether this would, in fact, interact with the width of the attentional field is an important topic, and we hope that future work will investigate this relationship more directly.  

      To clarify these points and highlight the potential for future work looking at these important interactions, we added the following text to the discussion section (discussion lines 57-67):

      “The observed effects of attentional field width were unlikely to be directly attributable to variation in task difficulty. Participants' task in our study was to discriminate whether more numbers or more letters were presented within a cued region of an iso-eccentric annulus of white noise. For our different cue widths, the ratios of numbers and letters were selected to be as similar as possible given the size and spacing of our stimuli. Changes in accuracy across the three larger cue widths were small and non-monotonic, implying task difficulty was dissociable from width per se. This dissociation bolsters the interpretability of our model fits; nevertheless, future work should further investigate how task difficulty interacts with the spread of the attentional field and the amplitude of attention-related BOLD effects (cf. Ress, Backus and Heeger, 2000).”

      (2) Some aspects of analysis/data sorting are unclear (e.g., how are voxels selected for analyses?) 

      We apologize for not describing our voxel selection in sufficient detail. Some of the questions raised in the private comments are closely related to this point, we therefore aim to clarify all concerns below:

      - Voxel selection: To select voxels that contribute to the 1D spatial profiles, we relied on the independent pRF dataset. We first defined some general requirements that needed to be met. Specifically, 1) the goodness of fit (R<sup>2</sup>) of the pRF fits needed to be greater than 10%; 2) the estimated eccentricity had to fall within [0.7 9.1] degree eccentricity (to exclude voxels in the fovea and voxels with estimated eccentricities larger than the pRF mapping stimulus); 3) the estimated size must be greater than 0.01 degree visual angle. 

      Next, we included only voxels whose pRF overlapped with the white noise annulus. Estimated eccentricity was used to select all voxels whose eccentricity estimate fell within the annulus bounds. However, here it is also important to take the size of the pRF into account. Some voxels’ estimated eccentricity might fall just outside the annulus, but will still have substantial overlap due to the size of their pRF. Therefore, we further included all voxels whose estimated pRF size resulted in overlap with the annulus. 

      This implies that some voxels with greater eccentricities and larger pRF sizes contribute to the 1D profile, which will influence the spatial specificity of the 1D profiles. However, we want to emphasize that in our view, the exact FWHM value is not so much of interest, as this will always be dependent on the voxel selection and many other data processing steps. Instead, we focus on the relative differences of the FWHM driven by the parametric attentional cue width manipulation. 

      - Data sorting and binning. The reviewer raises an important point about how the FWHM value should be interpreted considering the data processing steps. To generate the 1D spatial profile, we binned voxels based on their estimated polar angle preference into 6degree bins and applied a moving average of 18 degrees to smooth the 1D profiles. Both of these processing steps will influence the spatial specificity of the profile. The binning step facilitates recentering based on cue center and combining across trials.

      To explore the extent to which the moving average substantially impacted our results, we reran our analyses without that smoothing step. The vast majority of the results held. In V1, we found a significant effect of cue width on FWHM where the result was not significant previously (t(7)=2.52, p\=.040). Additionally, when looking at the minimum number of TRs needed to see a significant effect of cue width on FWHM, without the smoothing step in V1 it took 10 TRs (not significant at 10 TRs previously), in V2 it took 5 TRs (10 previously), and in V3 it took 3 TRs (2 previously). The other notable difference is that FWHM was generally a bit larger when the moving average smoothing was performed. We have visualized the group results for the FWHM estimates below to help with comparison. 

      Author response image 1.

      No moving average smoothing:

      Voxel selection methods have been clarified in methods section lines 132-139:

      “Within each ROI, pRF modeling results were used to constrain voxel selection used in the main experiment. We excluded voxels with a preferred eccentricity outside the bounds of the pRF stimulus (<0.7° and >9.1°), with a pRF size smaller than 0.01°, or with poor spatial selectivity as indicated by the pRF model fit (R2 < 10%). Following our 2D visualizations (see below), we further constrained voxel selection by only including voxels whose pRF overlapped with the white noise annulus. We included all voxels with an estimated eccentricity within the annulus bounds, as well as voxels with an estimated pRF size that would overlap the annulus.”

      Data binning methods have been clarified in methods section lines 154-159: 

      “Voxels with pRFs overlapping the white noise annulus were grouped into 60 bins according to their pRF polar angle estimate (6° polar angle bin width). We computed a median BOLD response within each bin. This facilitated the recentering of each profile to align all cue centers for subsequent combining across trials. To improve the signal-to-noise ratio, the resulting profile was smoothed with a moving average filter (width 18° polar angle; see Figure 2b).”

      (3) While the focus of this report is on modulations of visual cortex responses due to attention, the lack of inclusion of results from other retinotopic areas (e.g. V3AB, hV4, IPS regions like IPS0/1) is a weakness 

      We agree with the reviewer that using this approach in other retinotopic areas would be of significant interest. In this case, population receptive field mapping occurred in a separate session with a field of view only covering the occipital cortex (in contrast to the experimental session, which had whole-brain coverage). Because our modeling approach relies on these pRF estimates, we were unable to explore higher visual areas. However, we hope future work will follow up on this.

      We have added the following text to the methods section describing the pRF mapping session (lines 87-89):

      “In this session, the field of view was restricted to the occipital cortex to maximize SNR, thereby limiting the brain regions for which we had pRF estimates to V1, V2, and V3.”

      (4) Additional analyses comparing model fits across amounts of data analyzed suggest the model fitting procedure is biased, with some parameters (e.g., FWHM, error, gain) scaling with noise. 

      In this analysis, we sought to test how much data was needed to recover the attentional field, in view of the need for additional fMRI-based tools for use in tasks that involve more rapid dynamic adaptation of attention. Though we did find that more data reduced noise (and accordingly decreased absolute error and amplitude while increasing FWHM and R<sup>2</sup>), absolute angular error remained low across different temporal intervals (well below the chance level of 90°). With regard to FWHM, we believe that the more important finding is that the model-estimated FWHM was modulated by cue width at shorter timescales of as few as two TRs while maintaining relatively low angular error. We refrain from drawing conclusions here on the basis of the exact FWHM values, both because we don’t have a ground truth for the attentional field and because various processing pipeline steps can impact the values as well. Rather, we are looking at relative value and overall patterns in the estimates. The observed patterns imply that the model recovers meaningful modulation of the attentional field even at shorter time scales.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      Additional data reporting and discussion of results are needed as outlined in the public review. 

      Reviewer #2 (Recommendations for the authors):

      (1) The current experimental design effectively captured the impact of varying cue widths on the BOLD response in the visual cortex. However, the inclusion of a neutral cue condition, where the cue width spans 360{degree sign} and all peripheral stimuli are attended, could serve as a valuable baseline. This would enable a quantitative assessment of how much the BOLD response is enhanced in specific spatial regions due to focused cues and, conversely, how much it is diminished in non-attended areas, along with the spatial extent of these effects. 

      Please refer to our response in the public review. 

      (2) While the study provides valuable insights into BOLD signal changes in visual areas corresponding to the focus of attention, it does not extend its analysis to the impact on regions outside the focus of attention. It would be beneficial to explore whether there is a corresponding decrease in BOLD signal in non-attended regions, and if identified, to describe the spatial extent and position of this effect relative to the attended area. Such an analysis could yield deeper insights into how attention influences activity across the visual cortex. 

      We agree with the reviewer that it is very interesting to examine the spread of attention across the whole visual field. Our experiment was designed to focus on width modulations at a fixed eccentricity, but future work should explore how the attentional field changes with eccentricity and interacts with spatial variations across the visual field. This is highlighted in our discussion section (lines 76-81): 

      “Future work can help provide a better understanding of the contribution of spatial attention by considering how the attentional field interacts with these well described spatial variations across the visual field. Measuring the full spatial distribution of the attentional field (across both eccentricity and polar angle) will shed light on how spatial attention guides perception by interacting with the non-uniformity of spatial representations.”

      The addition of figure panels for the estimated baseline parameter in Figures 4-7 provides further information about BOLD effects in unattended regions of the annulus.  

      (3) The rationale behind the selection of task difficulty ratios for different cue widths, specifically the letter-to-number ratios of 1:0, 1:2, 2:3, and 3:6 (or vice versa) for cue widths of 18{degree sign}, 54{degree sign}, 90{degree sign}, and 162{degree sign} respectively, was not explicitly discussed. It would be beneficial to clarify the basis for these ratios, as they may influence the perceived difficulty of the task and thus the comparability of behavioral performance across different cue widths. Ensuring that the task difficulty is consistent across conditions is crucial for attributing differences in behavior and BOLD signals solely to changes in cue width and not confounded by variations in task difficulty. 

      Please refer to our response in the public review. We now clarify why we selected these ratios, and acknowledge more explicitly that behavioral performance differed across width conditions. See also our reply to private comment 1 from Reviewer 3 for some additional analyses examining task related influences.

      Reviewer #3 (Recommendations for the authors):

      (1) Task difficulty: the task seems exceptionally challenging. Stimuli are presented at a relativelyeccentric position for a very brief duration, and a large number of comparisons must be made across a broad region of space. This is reflected in the behavioral performance, which decreases rapidly as the scope of attention increases (Fig. 1). Because trials are blocked, does this change in task difficulty across conditions impact the degree to which neural responses are modulated? How should we consider differences in task difficulty in interpreting the conclusions (especially with respect to the amplitude parameter)? Also, note that the difficulty scales both with number of stimuli - as more need to be compared - but also with the ratio, which differs nonmonotonically across task conditions. One way to dissociate these might be RT: for 54/162, which both employ the same ratio of letter/digits and have similar accuracy, is RT longer for 162, which requires attending more stimuli? 

      In addition to our comments in response to the public review, we emphasize that the reviewer makes an important point that there are differences in task difficulty, though the ratios are as close as they can be given the size and spacing of our stimuli. Behavioral performance varied non-monotonically with cue width, bolstering our confidence that our monotonically increasing model-estimated width is likely not entirely driven by task difficulty. There nevertheless remain open questions related to how task difficulty does impact BOLD attentional modulation, which we hope future work will more directly investigate.

      The reviewer's comments identify two ways our data might preliminarily speak to questions about BOLD attentional modulation and task difficulty. First: how might the amplitude parameter reflect task difficulty? This is an apt question as we agree with the reviewer that it would be a likely candidate in which to observe effects of task difficulty. We do find a small effect of cue width on our amplitude estimates (amplitude decreases with width) in V3. Using the same analysis technique to look at the relationship between task difficulty and amplitude, we find no clear relationship in any of the visual areas (all p >= 0.165, testing whether the slopes differed from zero at the group level using a one-sample t-test). We believe future work using other experimental manipulations should look more systematically at the relationship between task difficulty and amplitude of the attentional BOLD enhancement.

      Second: Does the same ratio at different widths elicit different behavioral responses (namely accuracy and RT)? We followed the reviewer’s suggestion to compare performance between cue widths of three and nine (identical ratios, different widths; see Author response image 2 and Figure 5). We found that, using a paired t-test, behavioral accuracy differed between the two cue widths (mean accuracy of 0.73 versus 0.69, p = 0.008), with better performance for cue width three. RT did not differ significantly between the two conditions (paired t-test, p = 0.729). This could be due to the fact that participants were not incentivized to respond as quickly as possible, they merely needed to respond before the end of the response window (1.25 s) following the stimulus presentation (0.5 s). The comparisons for accuracy and RT (calculated from time of stimulus appearance) are plotted below:

      Author response image 2.

      In summary, with matched stimulus ratios, the wider cue was associated with worse (though not slower) performance. This could be due to the fact that more elements are involved and/or that tasks become more difficult when attending to a broader swath of space. Given these results, we believe that future studies targeting difficulty effects should use direct and independent manipulations of task difficulty and attentional width. 

      (2) Eye movements: while the authors do a good job addressing the average eccentricity of fixation, I'm not sure this fully addresses concerns with eye movements, especially for the character-discrimination task which surely benefits from foveation (and requires a great deal of control to minimize saccades!). Can the authors additionally provide data on, e.g., # of fixations within the attended stimulus annulus, or fixation heatmap, or # of saccades, or some other indicator of likelihood of fixating the letter stimuli for each condition? 

      We agree with the reviewer that this task is surely much easier if one foveated the stimuli, and it did indeed require control to minimize saccades to the annulus. (We appreciate the effort and motivation of our participants!) We are happy to provide additional data to address these reasonable concerns about eye movements. Below, we have visualized the number of fixations to the annulus, separated by participant and width. Though there is variability across participants, there are at most 16 instances of fixations to the annulus for a given participant, combined across all width conditions. The median number of fixations to the annulus per width is zero (shown in red). Considering the amount of time participants engaged in the task (between 8 and 12 runs of the task, each run with 100 trials), this indicates participants were generally successful at maintaining central fixation while the stimuli were presented.

      Author response image 3.

      We added the results of this analysis to the methods section (lines 205-208):

      “Additionally, we examined the number of fixations to the white noise annulus itself. No participant had more than 16 fixations (out of 800-1200 trials) to the annulus during the task, further suggesting that participants successfully maintained fixation.”

      (3) pRF sorting and smoothing: Throughout, the authors are analyzing data binned based on pRF properties with respect to the attended location ("voxels with pRFs overlapping with the white noise annulus", line 243-244) First, what does this mean? Does the pRF center need to be within the annulus? Or is there a threshold based on the pRF size? If so, how is this implemented? Additionally, considering the methods text in lines 242-247, the authors mention that they bin across 6 deg-wide bins and smooth with a moving average (18 deg), which I think will lead to further expansion of the profile of attentional enhancement (see also below) 

      We provide a detailed response in the public review. Furthermore, we have clarified the voxel selection procedure in the Methods (lines 132–139 & 154–159).

      (4) FWHM values: The authors interpret the larger FWHMs estimated from their model-fitting than the actual size of the attended region as a meaningful result. However, depending on details of the sorting procedure above, this may just be due to the data processing itself. One way to identify how much expansion of FWHM occurs due to analysis is by simulating data given estimates of pRF properties for a 'known' shape of modulation (e.g., square wave exactly spanning the attended aperture) and compare the resulting FWHM to that observed for attention and perception conditions (e.g., Fig. 7c). 

      We provide a detailed response in the public review. The essence of our response is to refrain from interpreting the precise recovered FWHM values, which will be influenced by multiple processing steps, and instead to focus on relative differences as a function of the attentional cue width. Accordingly, we did not add simulations to the revised manuscript, although we agree with the reviewer that such simulations could shed light on the underlying spatial resolution, and how binning and smoothing influences the estimated FWHM. We have clarified our interpretation of FWHM results in the manuscript as follows:

      Results lines 137-141:

      “One possibility is that the BOLD-derived FWHM might tend to overestimate the retinotopic extent of the modulation, perhaps driven by binning and smoothing processing steps to create the 1D spatial profiles. If this were the case, we would expect to obtain similar FWHM estimates when modeling the perceptual modulations as well.”

      Results lines 169-175:

      “Mirroring the results from the attentional manipulation, FWHM estimates systematically exceeded the nominal size of the perceptually modulated region of the visual field. Comparing the estimated FWHMs of the perceptual and attentional spatial profiles (Figure 7c) revealed that the estimated widths were highly comparable (Pearson correlation r=0.664 across width conditions and visual regions). Importantly, the relative differences in FWHM show meaningful effects of both cue and contrast width in a similar manner for both attentional and perceptual forms of modulation.”

      Discussion lines 16-22:

      “We also found that the estimated spatial spread of the attentional modulation (as indicated by the recovered FWHM) was consistently wider than the cued region itself. We therefore compared the spread of the attention field with the spatial profile of a perceptually induced width manipulation. The results were comparable in both the attentional and perceptual versions of the task, suggesting that cueing attention to a region results in a similar 1D spatial profile to when the stimulus contrast is simply increased in that region.”

      (5) Baseline parameter: looking at the 'raw' response profiles shown in Fig. 2b, it looks, at first, like the wider attentional window shows substantially lower enhancement. However, this seems to be mitigated by the shift of the curve downwards. Can the authors analyze the baseline parameter in a similar manner as their amplitude analyses throughout? This is especially interesting in contrast to the perception results (Fig. 7), for which the baseline does not seem to scale in a similar way. 

      We agree with the reviewer that the baseline parameter is worth examining, and have therefore added panels displaying the baseline parameter into all results figures (Figures 4-7). There was no significant association between cue width and baseline offset in any of the three visual regions.

      (6) Outlier: Fig. 5, V2, Amplitude result seems to have a substantial outlier - is there any notable difference in e.g. retinotopy in this participant? 

      One participant indeed has a notably larger median amplitude estimate in V2. Below, we plot the spatial coverage from the pRF data for this participant (022), as well as all other participants.

      Author response image 4.

      Each subplot represents a participant's 2D histogram of included voxels for the 1D spatial profiles; the colors indicate the proportion of voxels that fell within a specific x,y coordinate bin. Note that this visualization only shows x and y estimates and does not take into account size of the pRF. While there is variation across participants in the visual field coverage, the overall similarity of the maps indicates that retinotopy is unlikely to be the explanation. 

      To further explore whether this participant might be an outlier, we additionally looked at behavioral performance, angular error and FWHM parameters as well as the goodness of fit of the model. On all these criteria this participant did not appear to be an outlier. We therefore see no reason to exclude this participant from the analyses.  

      (7) Fig. 4 vs Fig. 5: I understand that Fig. 4 shows results from a single participant, showing variability across blocks, while Fig. 5 shows aggregate results across participants. However, the Angular Error figure shows complementary results - Fig. 4 shows the variability of best-fit angular error, while Fig. 5 shows the average deviation (approximately the width of the error distribution). This makes sense I think, but perhaps the abs(error) for the single participant shown in Fig. 4 should be included in the caption so we can easily compare between figures. 

      That's right: the Figure 4 results show the signed error, whereas the Figure 5 results show the absolute error. We agree that reporting the absolute error values for the example participant would facilitate comparison. Rather than add the values to the text, we have made the example participant’s data visually distinct within Figure 5 for easy comparison.  

      (8) Bias in model fits: the analysis shown in Fig. 6 compares the estimated parameters across amounts of data used to compute attentional modulation profiles for fitting those parameters. If the model-fitting procedure were unbiased, my sense is we would likely see no impact of the number of TRs on the parameters (R^2 should improve, abs(error) should improve, but FWHM, amplitude, baseline, etc should be approximately stable, if noisier). However, instead, it looks like more/less data leads to biased estimates, such that FWHM is biased to be smaller with more noise, and amplitude is biased to be larger. This suggests (to me) that the fit is landing on a spiky function that captures a noise wiggle in the profile. I don't think this is a problem for the primary results across the whole block of 10 TRs, which is the main point of the paper. Indeed, I'm not sure what this figure is really adding, since the single-TR result isn't pursued further (see below). 

      Please refer to our response in the public review, comment 4. 

      (9) 'Dynamics': The paper, starting in the title, claims to get at the 'dynamics' of attention fields. At least to me, that word implies something that changes over time (rather than across trials). Maybe I'm misinterpreting the intent of the authors, but at present, I'm not sure the use of the word is justified. That said, if the authors could analyze the temporal evolution of the attention field through each block of trials at 1- or 2-TR resolution, I think that could be a neat addition to the paper and would support the claim that the study assays dynamic attention fields. 

      We thank the reviewer for giving us a chance to speak more directly to the dynamic aspect of our approach. Here, we specifically use the word “dynamic” to refer to trial-to-trial dynamics.  Importantly, our temporal interval analysis suggests that we can recover information about the attentional field at a relatively fine-grained temporal resolution (a few seconds, or 2 TRs). Following this methodological proof-of-concept to dynamically track the attentional field, we are excited about future work that can more directly investigate the manner in which the attentional field evolves through time, especially in comparison to other methods that first require training on large amounts of data.

      (10) Correction for multiple comparisons across ROIs: it seems that it may be necessary to correct statistical tests for multiple comparisons across each ROI (e.g., Fig. 5 regression tests). If this isn't necessary, the authors should include some justification. I'm not sure this changes any conclusions, but is worth considering. 

      We appreciate the opportunity to explain our reasoning regarding multiple comparisons. We thought it appropriate not to correct as we are not comparing across regions and are not treating tests of V1, V2, and V3 as multiple opportunities to support a common hypothesis. Rather, the presence or absence of an effect in each visual region is a separate question. We would typically perform correction for multiple comparisons to control the familywise error rate when conducting a family of tests addressing a common hypothesis. We have added this to the Methods section (lines 192-195): 

      “No multiple comparison correction was applied, as the different tests for each region are treated as separate questions. However, using a threshold of 0.017 for p-values would correct for comparisons across the three brain regions.”

      However, we are happy to provide corrected results. If we use Bonferroni correction across ROIs (i.e. multiply p-values by three), there are some small changes from significant to only trending towards significance, but these changes don’t affect any core results. The changes that go from significant to trending are:

      Associated with Figure 5 – In V3, the relationship of cue width to amplitude goes from a p-value of 0.017 to 0.051.

      Associated with Figure 6 –

      V1: the effect of cue width on FWHM goes from p = 0.043 to 0.128.

      V2: the effect of TR on both FWHM and R2 goes from p = ~0.02 to ~0.06. 

      V3: the effect of cue width on amplitude goes from p = 0.024 to 0.073.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews: 

      Reviewer #1 (Public review):

      Summary: 

      Authors benchmarked 5 IBD detection methods (hmmIBD, isoRelate, hap-IBD, phasedIBD, and Refined IBD) in Plasmodium falciparum using simulated and empirical data. Plasmodium falciparum has a mutation rate similar to humans but a much higher recombination rate and lower SNP density. Thus, the authors evaluated how recombination rate and marker density affect IBD segment detection. Next, they performed parameter optimization for Plasmodium falciparum and benchmarked the robustness of downstream analyses (selection detection and Ne inference) using IBD detected by each of the methods. They also tracked the computational efficiency of these methods. The authors work is valuable for the tested species and the analyses presented appear to support their claim that users should be cautious calling IBD when SNP density is low and recombination rate is high. 

      Strengths: 

      The study design was solid. The authors set up their reasoning for using P. falciparum very well. The high recombination rate and similar mutation rate to humans is indeed an interesting case. Further, they chose methods that were developed explicitly for each species. This was a strength of the work, as well as incorporating both simulated and empirical data to support their goal that IBD detection should be benchmarked in P. falciparum

      Weaknesses: 

      The scope of the optimization and application of results from the work are narrow, in that everything is finetuned for Plasmodium. Some of the results were not entirely unexpected for users of any of the tested software that was developed for humans. For example, it is known that Refined IBD is not going to do well with the combination of short IBD segments and low SNP density. Lastly, it appears the authors only did one largescale simulation (there are no reported SDs). 

      We thank the reviewer for highlighting the strengths and weaknesses of the study. 

      First, we would like to highlight that: (1) while we use Plasmodium as a model to investigate the impact of high recombination and low marker density on IBD detection and downstream analyses, our IBD benchmarking framework and strategies are widely applicable to IBD methods development for many sexually recombining species including both Plasmodium and non-Plasmodium species. (2) Although some results are not completely unexpected, such as the impact of low marker density on IBD detection, IBD-based methods have been increasingly used in malaria genomic surveillance research without comprehensive benchmarking for malaria parasites despite the high recombination rate. Due to the lack of benchmarking, researchers use a variety of different IBD callers for malaria research including those that are only benchmarked in human genomes, such as refined-ibd. Our work not only confirmed that low marker density (related to high recombination rate) can affect the accuracy of IBD detection, but also demonstrated the importance of proper parameter optimization and tool prioritization for specific downstream analyses in malaria research. We believe our work significantly contributes to the robustness of IBD segment detection and the enhancement of IBDbased malaria genomic surveillance.

      Second, we agree that there is a lack of clarity regarding simulation replicates and the uncertainty of reported estimates. We have made the following improvements, including (1) running n = 3 full sets of simulations for each analysis purpose, which is in addition to the large sample sizes and chromosomal-level replications already presented in our initial submission, and (2) updating data and figures to reflect the uncertainty at relevant levels (segment level, genome-pair level or simulation set level).   

      Reviewer #2 (Public review):

      Summary: 

      Guo et al. benchmarked and optimized methods for detecting Identity-By-Descent (IBD) segments in Plasmodium falciparum (Pf) genomes, which are characterized by high recombination rates and low marker density. Their goal was to address the limitations of existing IBD detection tools, which were primarily developed for human genomes and do not perform well in the genomic context of highly recombinant genomes. They first analysed various existing IBD callers, such as hmmIBD, isoRelate, hap-IBD, phased-IBD, refinedIBD. They focused on the impact of recombination on the accuracy, which was calculated based on two metrics, the false negative rate and the false positive rate. The results suggest that high recombination rates significantly reduce marker density, leading to higher false negative rates for short IBD segments. This effect compromises the reliability of IBD-based downstream analyses, such as effective population size (Ne) estimation. They showed that the best tool for IBD detection in Pf is hmmIBD, because it has relatively low FN/FP error rates and is less biased for relatedness estimates. However, this method is less computationally efficient. Their suggestion is to optimize human-oriented IBD methods and use hmmIBD only for the estimation of Ne. 

      Strengths: 

      Although I am not an expert on Plasmodium falciparum genetics, I believe the authors have developed a valuable benchmarking framework tailored to the unique genomic characteristics of this species. Their framework enables a thorough evaluation of various IBD detection tools for non-human data, such as high recombination rates and low marker density, addressing a key gap in the field. This study provides a

      comparison of multiple IBD detection methods, including probabilistic approaches (hmmIBD, isoRelate) and IBS-based methods (hap-IBD, Refined IBD, phased IBD). This comprehensive analysis offers researchers valuable guidance on the strengths and limitations of each tool, allowing them to make informed choices based on specific use cases. I think this is important beyond the study of Pf. The authors highlight how optimized IBD detection can help identify signals of positive selection, infer effective population size (Ne), and uncover population structure. They demonstrate the critical importance of tailoring analytical tools to suit the unique characteristics of a species. Moreover, the authors provide practical recommendations, such as employing hmmIBD for quality-sensitive analyses and fine-tuning parameters for tools originally designed for non-P. falciparum datasets before applying them to malaria research. 

      Overall, this study represents a meaningful contribution to both computational biology and malaria genomics, with its findings and recommendations likely to have an impact on the field. 

      Weaknesses: 

      One weakness of the study is the lack of emphasis on the broader importance of studying Plasmodium falciparum as a critical malaria-causing organism. Malaria remains a significant global health challenge, causing hundreds of thousands of deaths annually. The authors could have introduced better the topic, even though I understand this is a methodological paper. While the study provides a thorough technical evaluation of IBD detection methods and their application to Pf, it does not adequately connect these findings to the broader implications for malaria research and control efforts. Additionally, the discussion on malaria and its global impact could have framed the study in a more accessible and compelling way, making the importance of these technical advances clearer to a broader audience, including researchers and policymakers in the fight against malaria. 

      We thank the reviewer for highlighting the need to better contextualize the work and emphasize its relevance to malaria control and elimination efforts. We have edited the introduction and discussion sections to highlight the importance of studying Plasmodium as malaria-causing organisms and why IBD-based analysis is important to malaria researchers and policymakers. We believe the changes will better emphasize the public health relevance of the work and improve clarity for a general audience.  

      We would like to clarify that we are not recommending that researchers “optimize human-oriented IBD methods and use hmmIBD only for the estimation of Ne.” We recommended hmmIBD for Ne analysis; however, hmmIBD can be utilized for other applications, including population structure and selection detection. Thus, we generally recommend using hmmIBD for Plasmodium when phased genotypes are available. To avoid potential misunderstandings, we have revised relevant sentences in the abstract, introduction, and discussion. One reason to consider human-oriented IBD detection methods in Plasmodium research is that hmmIBD currently has limitations in handling large genomic datasets. Our ongoing research focuses on improving hmmIBD to reduce its computational runtime, making it scalable for large Plasmodium wholegenome sequence datasets.

      Recommendations for the authors

      Reviewer #1:

      (1) Additional experiments 

      (i) More simulation replicates would be valuable here. The way that results are presented, it appears as though there are no replicates. Apologies if I am incorrect, but when looking through the authors code the --num_reps defaults to one simulation and there are no SDs reported for any figure. Perhaps the authors are bypass replicates by taking a random sample of lineages? Some clarification here would be great. 

      We agree with the reviewer’s constructive suggestions. We have increased the number of simulation sets to (n = 3) in addition to the existing replicates at the chromosomal level. We did not use a larger n for full sets of simulation replicates for two reasons: (1) full replication is quite computationally intensive (n=3 simulation sets already require a week to run on our computer cluster with hundreds of CPU cores). (2), the results from different simulation sets are highly consistent with each other, likely due to our large sample size (n= 1000 haploid genomes for each parameter combination).  The consistency across simulation sets can be exemplified by the following figures (Author response image 1 and 2) based on simulation sets different from Figures and Supplementary Figures included in the manuscript. 

      Author response image 1.

      Additional simulation sets repeating experiments shown in Fig 2.

      Author response image 2.

      Post-optimization Ne estimates based on three independent simulation sets (Fig 5 shows data simulation set 1).

      In our updated figures, we address the uncertainty of measurements as follows:

      (1) For IBD accuracy based on overlapping IBD segments, we present the mean ± standard deviation (SD) at the segment level (IBD segment false positives and false negatives for each length bin) or genome-pair level (IBD error rates at the genome-wide level). Figures in the revised manuscript show results from one of the three simulation set replicates. The SD of IBD segment accuracy is included in all relevant figures. In the S2 Data file, we chose not to show SDs to avoid text overcrowding in the heatmaps; however, a detailed version, including SD plotting on the heatmap and across three simulation set replicates, is available on our GitHub repository at https://github.com/bguo068/bmibdcaller_simulations/tree/main/simulations/ext_data

      (2) For IBD-based genetic relatedness, the uncertainty is depicted in scatterplots.

      (3) For IBD-based selection signal scans, we provide the mean ± SD of the number of true selection signals and false selection signals. The SD is calculated at the simulation set level (n=3). 

      (4) For IBD network community detection, the mean ± SD of the adjusted Rand index is reported at the simulation set level (n=3). A representative simulation set is randomly chosen for visualization purposes.

      (5) For IBD-based Ne estimates, each simulation set provides confidence intervals via bootstrapping. We found Ne estimates across n=3 simulation sets to be highly consistent and decided to display Ne from one of the simulation sets.

      (6) For the measurement of computational efficiency and memory usage, the mean ± SD was calculated across chromosomes from the same simulation sets.

      We have included a paragraph titled "Replications and Uncertainty of Measures" in the methods section to clarify simulation replications. Additionally, a table of simulation replicates is provided in the new S1 Data file under the sheet named “02_simulation_replicates.”

      (ii) I might also recommend a table or illustrative figure with all the simulation parameters for the readers rather than them having to go to and through a previous paper to get a sense of the tested parameters. 

      We have now generated tables containing full lists of simulation/IBD calling parameters. We have organized the tables into two sections: simulation parameters and IBD calling parameters. For the simulations, we are using three demographic models: the single-population (SP) model, the multiple-population (MP) model, and the human population demography in the UK (UK) model, each with different sets of parameters. Parameters and their values are listed separately for each demographic model (SP, MP and UK). For the IBD calling, we have five different IBD callers, each with different parameters. We have provided lists of the parameters and their values separately for each caller. In total, there are 15 different combinations of 3 demographic models in simulation and five callers in IBD detection (Author response image 3). We provide a table for each of the 15 combinations. We also provide a single large table by concatenating all 15 tables. In the combined table, demographic model-specific or IBD caller-specific parameters are displayed in their own columns, with NA values (empty cells) appearing in rows where these parameters are not applied (see S2 Data file).

      Author response image 3.

      Schematic of combined parameters from simulations and IBD detection (also included in the S2 Data file)

      (2) Recommendations for improving the writing and presentation 

      Overall, the writing was great, especially the introduction. 

      Three thoughts: 

      (i) It would be great if the authors included a few sentences with guidance on the approach one would take if their organism was not human or P. falciparum

      We have updated our discussion with the following statement: “Beyond Plasmodium parasites, there are many other high-recombining organisms such as Apicomplexan species like Theileria, insects like Apis mellifera (honeybee), and fungi like Saccharomyces cerevisiae (Baker's yeast). For these species, our optimized parameters may not be directly applicable, but the benchmarking framework established in this study can be utilized to prioritize and optimize IBD detection methods in a context-specific manner.”

      (ii) I think there was a lot of confusion about the simulations as they were presented between the co-reviewer and I. Clarification on whether there were replicates and how sampling of lineages occurred would be helpful for a reader. 

      We have added a paragraph with heading “Replications and uncertainty of measures” under the method section to clarify simulation replicates.  Please also refer to our response above for more details (Reviewer #1 (1) Additional experiments).

      (iii) Maybe we missed it, but could the authors add a sentence or two about why isoRelate performed so poorly (e.g. lines 206-207) considering it was developed for Plasmodium? This result seems important. 

      IsoRelate assumes non-phased genotypes as input; therefore, even if phased genotypes are provided, the HMM model used in isoRelate (distinct from the hmmIBD model) may not utilize them. Below, we present examples of IBD segments between true sets and inferred sets from both isoRelate and hmmIBD, where many small IBD segments identified by tskibd (ground truth) and hmmIBD (inferred) are not detected by isoRelate (inferred), although isoRelate still captures very long IBD segments. These patterns are also illustrated in Fig. 3 and S3 Fig. We acknowledge that isoRelate may outperform other methods in the context of unphased genotypes. However, we chose not to benchmark IBD calling methods using unphased genotypes in simulations, as the results may be significantly influenced by the quality of genotype phasing for all other IBD detection methods. The characterization of deconvolution methods is beyond the scope of this paper. We have added a paragraph in the discussion to reflect the above explanation.

      Author response image 4.

      Example IBD segments inferred by isoRelate and hmmIBD compared to true IBD segments calculated by tskibd.

      (3) Minor corrections to the text and figures 

      Lines 105-110 feel like introduction because the authors are defining IBD and goals of work 

      We have shortened these sentences and retained only relevant information for transition purposes. 

      Line 121-122 The definition of false positive is incorrect, it appears to be the exact text from false negative 

      We apologize for the typo and have corrected the definition, so that  it is consistent with that in the methods section. 

      Lines 177-180 feels more like discussion than results 

      We have removed this sentence for brevity. 

      Figure 1: 

      Remove plot titles from the figure 

      Write out number in a 

      The legend in b overlaps the data so moving that inset to the right would be helpful 

      We have removed the titles from Figure 1. In Figure 1a, we have changed the format of  the y-axis tick labels from scientific notation to integers.  In Figure 1b, we have adjusted the size and location of the legend so that it does not overlap with the data points.

      Figure 2-3 & S4-5: 

      It was hard to tell the difference between [3-4) and [10-18) because the colors and shapes are similar. It might be worth using a different color or shape for one of them? 

      We have changed the color for the [10-18) group so that the two groups are easier to distinguish.

      Figure 3 & S3-5: 

      Biggest suggestion is that when an axis is logged it should not only be mentioned in the caption but also should be shown in the figure as well. 

      We have updated all relevant figures so that the log scale is noted in the figure captions (legends) as well as in the figures (in the x and/or y axis labels).

      Supplementary Figure S2 

      (i) It would be nice to either combine it with the main text Figure 1 (I don't believe it would be overwhelming) or add in the other two methods for comparison 

      We have now plotted data for all five IBD callers in S1 Fig for better comparison. 

      (ii) the legend overlaps the data so relocating it to the top or bottom would be helpful 

      We have moved the legend to the bottom of the figure to avoid overlap with the data.

      Reviewer #2:

      I don't have any major comments on the paper. It is well-written, although perhaps a bit long and repetitive in some sections. Make sure not to repeat the same concepts too many times. 

      We have consolidated and removed several paragraphs to reduce repetition of the same concepts.

      I am not a methodological developer, but it seems you have addressed several challenges regarding IBD detection in P. falciparum. You have also acknowledged the study's caveats, which I agree with. 

      Thank you for the positive comments.

      Minor comments: 

      -In my opinion, the paper would benefit from including the workflow figure in the main text rather than keeping it in the supplementary materials. This would make it more accessible and useful for readers. 

      We have moved the original S1 Fig to be Fig 1 in the main text.

      -Some of the figures (e.g. Fig. 2, 4) should be larger for better clarity and interpretation. 

      We have updated Fig 2 and Fig 4 (now labeled as Figure 3 and 5) to make them larger for improved clarity and interpretation.

      -While the focus on P. falciparum is understandable, it would have been valuable to include examples of other species and discuss the broader implications of the findings for a broader field. 

      We have updated the third-to-last paragraph to discuss implications for other species, such as Apicomplexan species like Theileria, insects like Apis mellifera (honeybee), and fungi like Saccharomyces cerevisiae (Baker's Yeast). We acknowledge that optimal parameters and tool choices may vary among species due to differences in demographic history and evolutionary parameters. However, we emphasize that the methods outlined are adaptable for prioritizing and optimizing IBD detection methods in a context-specific manner across different species.

      -Figure 6 is somewhat confusing and could use clearer labeling or additional explanation to improve comprehension. 

      We have updated the labels and titles in the figure to improve clarity. We also edited the figure caption for better clarity.

      -Although hmmIBD outperformed other tools in accuracy, its computational inefficiency due to single-threaded execution poses a significant challenge for scaling to large datasets. The trade-off between accuracy and computational cost could be discussed in more detail. 

      We have added a paragraph in the discussion section to highlight the trade-off between accuracy and computation cost. We noted that we are developing an adapted tool to enhance the hmmIBD model and significantly reduce the runtime via parallelizing the IBD inference process.

    1. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #2:

      Minor reviews:

      The caveats are (1) the particular point will perhaps only be interesting to a small slice of the eQTL research community; (2) the authors provide no statistical controls/error estimate or independent validation of the variance partitioning analysis in Figure 3, and (3) the authors don't seem to use the single-cell growth/fitness estimates for anything else, as Figure 4 uses loci mapped to growth from a previously published, standard culture-by-culture approach. It would be appropriate for the manuscript to mention these caveats.

      We have added two small mention of these caveats – mainly that the study may not generalize, and that the study does not attempt to try the variance partitioning on other traits or other system where the values of the partitions are better established.

      I also think it is not appropriate for the manuscript to avoid a comparison between the current work and Boocock et al., which reports single-cell eQTL mapping in the same yeast system. I recommend a citation and statement of the similarities and differences between the papers.

      We have added this reference and a clear statement of similarities between the two studies. It was not our intention to avoid this; we had simply not seen that study in the initial submission.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Review:

      Reviewer #1 (Public review): 

      Summary: 

      Odor- and taste-sensing are mediated by two different systems, the olfactory and gustatory systems, and have different behavioral roles. In this study, Wei et al. challenge this dichotomy by showing that odors can activate gustatory receptor neurons (GRNs) in Drosophila to promote feeding responses, including the proboscis extension response (PER) that was previously thought to be driven only by taste. While previous studies suggested that odors can promote PER to appetitive tastants, Wei et al. go further to show that odors alone cause PER, this effect is mediated through sweet-sensing GRNs, and sugar receptors are required. The study also shows that odor detection by bitter-sensing GRNs suppresses PER. The authors' conclusions are supported by behavioral assays, calcium imaging, electrophysiological recordings, and genetic manipulations. The observation that both attractive and aversive odors promote PER leaves an open question as to why this effect is adaptive. Overall, the study sheds new light on chemosensation and multimodal integration by showing that odor and taste detection converge at the level of sensory neurons, a finding that is interesting and surprising while also being supported by another recent study (Dweck & Carlson, Sci Advances 2023).

      Strengths: 

      (1) The main finding that odors alone can promote PER by activating sweet-sensing GRNs is interesting and novel.

      (2) The study uses video tracking of the proboscis to quantify PER rather than manual scoring, which is typically used in the field. The tracking method is less subjective and provides a higherresolution readout of the behavior.

      (3) The study uses calcium imaging and electrophysiology to show that odors activate GRNs. These represent complementary techniques that measure activity at different parts of the GRN (axons versus dendrites, respectively) and strengthen the evidence for this conclusion. 

      (4) Genetic manipulations show that odor-evoked PER is primarily driven by sugar GRNs and sugar receptors rather than olfactory neurons. This is a major finding that distinguishes this work from previous studies of odor effects on PER and feeding (e.g., Reisenman & Scott, 2019; Shiraiwa, 2008) that assumed or demonstrated that odors were acting through olfactory neurons.

      We appreciate the reviewer’s positive assessment of the novelty and significance of our work.

      Weaknesses/Limitations: 

      (1) The authors may want to discuss why PER to odors alone has not been previously reported, especially as they argue that this is a broad effect evoked by many different odors. Previous studies testing the effect of odors on PER only observed odor enhancement of PER to sugar (Oh et al., 2021; Reisenman & Scott, 2019; Shiraiwa, 2008) and some of these studies explicitly show no effect of odor alone or odor with low sugar concentration; regardless, the authors likely would have noticed if PER to odor alone had occurred. Readers of this paper may also be aware of unpublished studies failing to observe an effect of PER on odor alone (including studies performed by this reviewer and unrelated work by other colleagues in the field), which of course the authors are not expected to directly address but may further motivate the authors to provide possible explanations.

      We appreciate the reviewer’s comment. We believe that the difference in genotype is likely the largest reason behind this point. This is because the strength varied widely across genotypes and was quite weak in some strains including commonly used w[1118] empty Gal4 and w[1118] empty spit Gal4 as shown in Figure1- figure supplement 3 (Figure S3 in original submission). However, given that we observed odor-evoked PER in various genotypes (many in main Figures and three in Figure1- figure supplement 3 including Drosophila simulans), the data illustrate that it is a general phenomenon in Drosophila. Indeed, although Oh et al. (2021) did not emphasize it in the text, their Fig. 1E showed that yeast odor evoked PER at a probability of 20%, which is much higher than the rate of spontaneous PER in many genotypes. Therefore, this literature may represent another support for the presence of odor-evoked PER. We have expanded our text in the Discussion to describe these issues.

      Another possibility is our use of DeepLabcut to quantitatively track the kinematics of proboscis movement, which may have facilitated the detection of PER.

      (2) Many of the odor effects on behavior or neuronal responses were only observed at very high concentrations. Most effects seemed to require concentrations of at least 10-2 (0.01 v/v), which is at the high end of the concentration range used in olfactory studies (e.g., Hallem et al., 2004), and most experiments in the paper used a far higher concentration of 0.5 v/v. It is unclear whether these are concentrations that would be naturally encountered by flies.

      We acknowledge that the concentrations used are on the higher side, suggesting that GRNs may need to be stimulated with relatively concentrated odors to induce PER. Although it is difficult to determine the naturalistic range of odor concentration, it is at least widely reported that olfactory neurons including olfactory receptor neurons and projection neurons do not saturate, and exhibit odor identity-dependent responses at the concentration of 10<sup>-2</sup> where odor-evoked PER can be observed. Furthermore, we have shown in Figure 6 that low concentration (10<sup>-4</sup>) of banana odor, ethyl butyrate, and 4-methycyclohexanol all significantly increased the rate of odor-taste multisensory PER even in olfactory organs-removed flies, suggesting that low concentration odors can influence feeding behavior via GRNs in a natural context where odors and tastants coexist at food sites. Finally, we note that odors were further diluted by a factor of 0.375 by mixing the odor stream with the main air stream before being applied to the flies as described in Methods.

      (3) The calcium imaging data showing that sugar GRNs respond to a broad set of odors contrasts with results from Dweck & Carlson (Sci Adv, 2023) who recorded sugar neurons with electrophysiology and observed responses to organic acids, but not other odors. This discrepancy is not discussed.  

      As the reviewer points out, Dweck and Carlson (Sci Adv, 2023) reported using single sensillum electrophysiology (base recording) that sugar GRNs only respond to organic acids whereas we found using calcium imaging from a group of axons and single sensillum electrophysiology (tip recording) that these GRNs respond to a wide variety of odors. Given that we observed odor responses using two methods, the discrepancy is likely due to the differences in genotype examined. We now have discussed this point in the text.

      (4) Related to point #1, it would be useful to see a quantification of the percent of flies or trials showing PER for the key experiments in the paper, as this is the standard metric used in most studies and would help readers compare PER in this study to other studies. This is especially important for cases where the authors are claiming that odor-evoked PER is modulated in the same way as previously shown for sugar (e.g., the effect of starvation in Figure S4).

      For starved flies, we would like to remind the reviewer that the percentage of trials showing PER is reported in Fig. 1E, which shows a similar trend as the integrated PER duration. For fed flies, we have analyzed the percentage of PER and added the result to Figure 2-figure supplement 1C (Figure S4 in original submission).

      (5) Given the novelty of the finding that odors activate sugar GRNs, it would be useful to show more examples of GCaMP traces (or overlaid traces for all flies/trials) in Figure 3. Only one example trace is shown, and the boxplots do not give us a sense of the reliability or time course of the response. A related issue is that the GRNs appear to be persistently activated long after the odor is removed, which does not occur with tastes. Why should that occur? Does the time course of GRN activation align with the time course of PER, and do different odors show differences in the latency of GRN activation that correspond with differences in the latency of PER (Figure S1A)?

      Following the reviewer’s suggestion, we now report GCaMP responses for all the trials in all the flies (both Gr5a>GCaMP and Gr66a>GCaMP flies), where the time course and trial-to-trial/animal-toanimal variability of calcium responses can be observed (Figure 3-figure supplement 2).

      Regarding the second point, we recorded responses to both sucrose and odors in some flies and found that calcium responses of GRNs are long-lasting not only to odors but also to sucrose, as shown in Author response image 1. This may be due in part to the properties of GCaMP6s and slower decay of intracellular calcium concentration as compared to spikes.

      Author response image 1.

      Example calcium responses to sucrose and odor (MCH) in the same fly (normalized by the respective peak responses to better illustrate the time course of responses). Sucrose (blue) and odor (orange) concentrations are 100 mM, and 10<sup>-1</sup> respectively. Odor stimulation begins at 5 s and lasts for 2 s. Sucrose was also applied at the same timing for the same duration although there was a limitation in controlling the precise timing and duration of tastant application. Because of this limitation, we did not quantify the off time constant of two responses.

      To address whether the time course of GRN activation aligns with the time course of PER, and whether different odors evoke different latencies of GRN activation that correspond to latencies of PER, we plotted the time course of GRN responses and PER, and further compared the response latencies across odors and across two types of responses in Gr5a>GCaMP6s flies. As shown in Author response image 2, no significant differences were found in response latency between the six odors for PER and odor responses. Furthermore, Pearson correlation between GRN response latencies and PER latencies was not significant (r = 0.09, p = 0.872).

      Author response image 2.

      (A) PER duration in each second in Gr5a-Gal4>UAS-GCaMP6s flies. The black lines indicate the mean and the shaded areas indicate standard error of the mean. n = 25 flies. (B) Time course of calcium responses (ΔF/F) to nine odors in Gr5a GRNs. n = 5 flies. (C) Latency to the first odor-evoked PER in Gr5a-Gal4>UAS-GCaMP6s flies. Green bar indicates the odor application period. p = 0.67, one-way ANOVA. Box plots indicate the median (orange line), mean (black dot), quartiles (box), and 5-95% range (bar). Dots are outliers. (D) Latency of calcium responses (10% of rise to peak time) in Gr5a GRNs. Green bar indicates the odor application period. p = 0.32, one-way ANOVA. Box plots indicate the median (orange line), mean (black dot), quartiles (box), and 5-95% range (bar). Dots are outliers.

      (6) Several controls are missing, and in some cases, experimental and control groups are not directly compared. In general, Gal4/UAS experiments should include comparisons to both the Gal4/+ and UAS/+ controls, at least in cases where control responses vary substantially, which appears to be the case for this study. These controls are often missing, e.g. the Gal4/+ controls are not shown in Figure 2C-G and the UAS/+ controls are not shown in Figure 2J-L (also, the legend for the latter panels should be revised to clarify what the "control" flies are). For the experiments in Figure S5, the data are not directly compared to any control group. For several other experiments, the control and experimental groups are plotted in separate graphs (e.g., Figure 2C-G), and they would be easier to visually compare if they were together. In addition, for each experiment, the authors should denote which comparisons are statistically significant rather than just reporting an overall p-value in the legend (e.g., Figure 2H-L).

      We thank the reviewer for the input. We have conducted additional experiments for four Gal4/+controls in Figure 2 and added detailed information about control flies in the figure legend (Figure 2C-F).

      For the RNAi flies shown in Figure 2 and Figure 2-figure supplement 3, we used the recommended controls suggested by the VDRC. These control flies were crossed with tubulin-Gal4 lines to include both Gal4 and UAS control backgrounds.

      Regarding Figure S5 in original submission (current Figure 2-figure supplement 2), we now present the results of statistical tests which revealed that PER to certain odors is statistically significantly stronger than that to the solvent control (mineral oil) for both wing-removed and wing-leg-removed flies.

      For Figure 2C-F, we now plot the results for experimental and control groups side by side in each figure.

      Regarding the results of statistical tests, we have provided more information in the legend and also prepared a summary table (supplemental table). 

      (7) Additional controls would be useful in supporting the conclusions. For the Kir experiments, how do we know that Kir is effective, especially in cases where odor-evoked PER was not impaired (e.g., Orco/Kir)? The authors could perform controls testing odor aversion, for example. For the Gr5a mutant, few details are provided on the nature of the control line used and whether it is in the same genetic background as the mutant. Regardless, it would be important to verify that the Gr5a mutant retains a normal sense of smell and shows normal levels of PER to stimuli other than sugar, ruling out more general deficits. Finally, as the method of using DeepLabCut tracking to quantify PER was newly developed, it is important to show the accuracy and specificity of detecting PER events compared to manual scoring.  

      A previous study (Sato, 2023, Front Mol Neurosci) showed that the avoidance to 100 μM 2methylthiazoline was abolished, and the avoidance to 1 mM 2MT was partially impaired in Orco>Kir2.1 flies. However, because Orco-Gal4 does not label all the ORNs and we have more concrete results on flies in which all the olfactory organs are removed as well as specific GRNs and Gr are manipulated, we decided to remove the data for Orco>kir2.1 flies and have updated the text and Figure 2 accordingly.

      For the Gr5a mutant and its control, we have added detailed information about the genotype in the figure legend and in the Methods. We have used the exact same lines as reported in Dahanukar et al. (2007) by obtaining the lines from Dr. Dahanukar. Dahanukar et al. has already carefully examined that Gr5a mutant loses responses only to certain types of sugars (e.g. it even retains normal responses to some other sugars), demonstrating that Gr5a mutants do not exhibit general deficits.

      As for the PER scoring method, we manually scored PER duration and compared the results with those obtained using DeepLabCut in wild type flies for the representative data. The two results were similar (no statistical difference). We have reported the result in Figure1-figure supplement 1C.

      (8) The authors' explanation of why both attractive and aversive odors promote PER (lines 249-259) did not seem convincing. The explanation discusses the different roles of smell and taste but does not address the core question of why it would be adaptive for an aversive odor, which flies naturally avoid, to promote feeding behavior.  

      We have extended our explanation in the Discussion by adding the following possibility: “Enhancing PER to aversive odors might also be adaptive as animals often need to carry out the final check by tasting a trace amount of potentially dangerous substances to confirm that those should not be further consumed.”

      Reviewer #2 (Public review): 

      Summary: 

      A gustatory receptor and neuron enhances an olfactory behavioral response, proboscis extension. This manuscript clearly establishes a novel mechanism by which a gustatory receptor and neuron evokes an olfactory-driven behavioral response. The study expands recent observations by Dweck and Carlson (2023) that suggest new and remarkable properties among GRNs in Drosophila. Here, the authors articulate a clear instance of a novel neural and behavioral mechanism for gustatory receptors in an olfactory response.

      Strengths: 

      The systematic and logical use of genetic manipulation, imaging and physiology, and behavioral analysis makes a clear case that gustatory neurons are bona fide olfactory neurons with respect to proboscis extension behavior.

      Weaknesses: 

      No weaknesses were identified by this reviewer.  

      We appreciate the reviewer’s recognition of the novelty and significance of our work.

      Reviewer #3 (Public review): 

      Summary: 

      Using flies, Kazama et al. combined behavioral analysis, electrophysiological recordings, and calcium imaging experiments to elucidate how odors activate gustatory receptor neurons (GRNs) and elicit a proboscis extension response, which is interpreted as a feeding response. 

      The authors used DeepLabCut v2.0 to estimate the extension of the proboscis, which represents an unbiased and more precise method for describing this behavior compared to manual scoring.

      They demonstrated that the probability of eliciting a proboscis extension increases with higher odor concentrations. The most robust response occurs at a 0.5 v/v concentration, which, despite being diluted in the air stream, remains a relatively high concentration. Although the probability of response is not particularly high it is higher than control stimuli. Notably, flies respond with a proboscis extension to both odors that are considered positive and those regarded as negative.

      The authors used various transgenic lines to show that the response is mediated by GRNs.

      Specifically, inhibiting Gr5a reduces the response, while inhibiting Gr66a increases it in fed flies. Additionally, they find that odors induce a strong positive response in both types of GRNs, which is abolished when the labella of the proboscis are covered. This response was also confirmed through electrophysiological tip recordings.

      Finally, the authors demonstrated that the response increases when two stimuli of different modalities, such as sucrose and odors, are presented together, suggesting clear multimodal integration.

      Strengths: 

      The integration of various techniques, that collectively support the robustness of the results.

      The assessment of electrophysiological recordings in intact animals, preserving natural physiological conditions.

      We appreciate the reviewer’s recognition of the novelty and significance of our work.

      Weaknesses: 

      The behavioral response is observed in only a small proportion of animals.  

      We acknowledge that the probability of odor-evoked PER is lower compared to sucrose-evoked PER, which is close to 100 % depending on the concentration. To further quantify which proportion of animals exhibit odor-evoked PER, we now report this number besides the probability of PER for each odor shown in Fig. 1E. We found that, in wild type Dickinson flies, 73% and 68 % of flies exhibited PER to at least one odor presented at the concentration of 0.5 and 0.1.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors): 

      Minor comments/suggestions: 

      - Define "MO" in Figure 1D.  

      We have defined it as mineral oil in the figure legend.

      - Clarify how peak response was calculated for GCaMP traces (is it just the single highest frame per trial?).

      We extended the description in the Methods as follows: “The peak stimulus response was quantified by averaging ΔF/F across five frames at the peak, followed by averaging across three trials for each stimulus. Odor stimulation began at frame 11, and the frames used for peak quantification were 12 to 16.” We made sure that information about the image acquisition frame rate was provided earlier in the text.

      - Clarify how the labellum was covered in Figure 3 and show that this does not affect the fly's ability to do PER (e.g., test PER to sugar stimulation on tarsus) - otherwise one might think that gluing the labella could affect PER.

      In Figure 3, only calcium responses were recorded, and PER was not recorded simultaneously from the same flies. To ensure stable recording from GRN axons in the SEZ, we kept the fly’s proboscis in an extended position as gently as possible using a strip of parafilm. In some of the imaging experiments, we covered the labellum with UV curable glue, whose purpose was not to fix the labellum in an extended position but to prevent the odors from interacting with GRNs on the labellum. We have added a text in the Methods to explain how we covered the labellum.

      - Clarify how the coefficients for the linear equation were chosen in Figure 3G.  

      We used linear regression (implemented in Python using scikit-learn) to model the relationship between neural activity and behavior, aiming to predict the PER duration based on the calcium responses of two GRN types, Gr5a and Gr66a. The coefficients were estimated using the LinearRegression function. We added this description to the Methods. 

      - Typo in "L-type", Figure 4A.  

      We appreciate the reviewer for pointing out this error and have corrected it.

      - Clarify over what time period ephys recordings were averaged to obtain average responses.

      We have modified the description in the Methods as follows: “The average firing rate was quantified by using the spikes generated between 200 and 700 ms after the stimulus contact following the convention to avoid the contamination of motion artifact (Dahanukar and Benton, 2023; Delventhal et al., 2014; Hiroi et al., 2002).

      - The data and statistics indicate that MCH does not enhance feeding in Figure 6G, so the text in lines 207-208 is not accurate.

      We have modified the text as follows: “A similar result was observed with ethyl butyrate, and a slight, although not significant, increase was also observed with 4-methylcyclohexanol (Figure 6G).”

      - P-value for Figure S9 correlation is not reported.  

      We appreciate the reviewer for pointing this out. The p-value is 0.00044, and we have added it to the figure legend (current Figure 5-figure supplement 1).

      Reviewer #2 (Recommendations for the authors): 

      Honestly, I have no recommendations for improvement. The manuscript is extremely well-written and logical. The experiments are persuasive. A lapidary piece of work.

      We appreciate the reviewer for the positive assessment of our work.

      Reviewer #3 (Recommendations for the authors): 

      - I suggest explaining the rationale for selecting a 4-second interval, beginning 1 second after the onset of stimulation.

      Integrated PER duration was defined as the sum of PER duration over 4 s starting 1 s after the odor onset. This definition was set based on the following data.

      (1) We used a photoionization detector (PID) to measure the actual time that the odor reaches the position of a tethered fly, which was approximately 1.1 seconds after the odor valve was opened. Therefore, we began analyzing PER responses 1 second after the odor onset (valve opening) to align with the actual timing of stimulation.

      (2) As shown in Fig.1D and 1F, the majority of PER occurred within 4 s after the odor arrival.

      We have now added the above rationale in the Methods.

      - I could not find the statistical analysis for Figures 1E and 1G. If these figures are descriptive, I suggest the authors revise the sentences: 'Unexpectedly, we found that the odors alone evoked repetitive PER without an application of a tastant (Figures 1D-1G, and Movie S1). Different odors evoked PER with different probability (Figure 1E), latency (Figure S1A), and duration (Figures 1F, 1G, and S2)'.

      We have added the results of statistical analysis to the figure legend.

      - In Figure 2, the authors performed a Scheirer-Ray-Hare test, which, to my knowledge, is a nonparametric test for comparing responses across more than two groups with two factors. If this is the case, please provide the p-values for both factors and their interaction

      We now show the p-values for both factors, odor and group as well as their interaction in the supplementary table. 

      - In line 83, I suggest the authors avoid claiming that 'these data show the olfactory system modulates but is not required for odor-evoked PER,' as they are inhibiting most, but not all olfactory receptor neurons. In this regard, is it possible to measure the olfactory response to odors in these flies?  

      We thank the reviewer for the comment. Because Orco-Gal4 does not label all the ORNs and because we have more concrete results on flies in which all the olfactory organs are removed as well as specific GRNs and Gr are manipulated, we decided to remove the data for Orco>kir2.1 flies and have updated the text and Figure 2 accordingly.

      - In Figure 2, I wonder if there are differences in the contribution of various receptors in detecting different odors. A more detailed statistical analysis might help address this question.

      Although it might be possible to infer the contribution of different gustatory receptors by constructing a quantitative model to predict PER, it is a bit tricky because the activity of individual GRNs and not Grs are manipulated in Figure 2 except for Gr5a. The idea could be tested in the future by more systematically manipulating many Grs that are encoded in the fly genome.

      - For Figures 2J-L, please clarify which group serves as the control.  

      We have added this information to the legend. 

      - In Figure 3, I recommend including an air control in panels D and F to better appreciate the magnitude of the response under these conditions.

      The responses to all three controls, air, mineral oil and water, were almost zero. As the other reviewer suggested to present trial-to-trial variability as well, we now show responses to all the controls in all the trials in all the animals tested in Figure 3-figure supplement 2.

      - I had difficulty understanding Figure 3G. Could the authors provide a more detailed explanation of the model?

      We used linear regression (implemented in Python using scikit-learn) to model the relationship between neural activity and behavior, aiming to predict the PER duration based on the calcium responses of two GRN types, Gr5a and Gr66a. The weights for GRNs were estimated using the LinearRegression function. The weight for Gr5a and Gr66a was positive and negative, respectively, indicating that Gr5a contributes to enhance whereas Gr66a contributes to reduce PER.

      To evaluate the model performance, we calculated the coefficient of determination (R<sup>2</sup>), which was 0.81, meaning the model explained 81% of the variance in the PER data.

      The scatter plot in Fig. 3G shows a tight relationship between the predicted PER duration (y-axis) plotted against the actual PER duration (x-axis), demonstrating a strong predictive power of the model.

      We added the details to the Methods.

      - In Figure S4a, the reported p-value is 0.88, which seems to be a typo, as the text indicates that PER is enhanced in a starved state.

      Thank you for pointing this out. We have modified the figure legend to describe that PER was enhanced in a starved state only for the experiments conducted with odors at 10<sup>-1</sup> concentration (current Figure 2-figure supplement 1).

    1. Author response:

      The following is the authors’ response to the previous reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The authors attempted to dissect the function of a long non-coding RNA, lnc-FANCI-2, in cervical cancer. They profiled lnc-FANCI-2 in different cell lines and tissues, generated knockout cell lines, and characterized the gene using multiple assays.

      Strengths:

      A large body of experimental data has been presented and can serve as a useful resource for the scientific community, including transcriptomics and proteomics datasets. The reported results also span different parts of the regulatory network and open up multiple avenues for future research.

      Thanks for your positive comments on the strengths.

      Weaknesses:

      The write-up is somewhat unfocused and lacks deep mechanistic insights in some places.

      As the lnc-FANCI-2 as a novel lncRNA had never been explored for any functional study, our report found that it regulates RAS signaling. Thus, this report focuses on lnc-FANCI-2 and RAS signaling pathway but also includes some important screening data, which are important for our readers to understand how we could reach the RAS signaling.

      Reviewer #2 (Public review):

      The study by Liu et al provides a functional analysis of lnc-FANCI-2 in cervical carcinogenesis, building on their previous discovery of FANCI-2 being upregulated in cervical cancer by HPV E7.

      The authors conducted a comprehensive investigation by knocking out (KO) FANCI-2 in CaSki cells and assessing viral gene expression, cellular morphology, altered protein expression and secretion, altered RNA expression through RNA sequencing (verification of which by RT-PCR is well appreciated), protein binding, etc. Verification experiments by RT-PCR, Western blot, etc are notable strengths of the study.

      The KO and KD were related to increased Ras signaling and EMT and reduced IFN-y/a responses.

      Thanks for your positive comments. It did take us a few years to reach this scientific point for understanding of lnc-FANCI-2 function.

      Although the large amount of data is well acknowledged, it is a limitation that most data come from CaSki cells, in which FANCI-2 localization is different from SiHa cells and cancer tissues (Figure 1). The cytoplasmic versus nuclear localization is somewhat puzzling.

      Regarding lnc-FANCI-2 localization, it could be both cytoplasmic and nuclear in cervical cancer tissues, HPV16 or HPV18 infected keratinocytes, and HPV16+ cervical cancer cell line CaSki cells which contain multiple integrated HPV16 DNA copies. But surprisingly, it is most detectable in the nucleus in HPV16+ SiHa cells which contain only one copy of integrated HPV16 DNA (Yu, L., et al. mBio 15: e00729-24, 2024). No matter what, knockdown of lnc-FANCI-2 expression from SiHa cells induces RAS signaling leading to an increase in the expression of p-AKT and p-Erk1/2 (suppl. Fig. S6B).

      Reviewer #3 (Public review):

      Summary:

      A long noncoding RNA, lnc-FANCI-2, was reported to be regulated by HPV E7 oncoprotein and a cell transcription factor, YY1 by this group. The current study focuses on the function of lnc-FANCI-2 in HPV-16 positive cervical cancer is to intrinsically regulate RAS signaling, thereby facilitating our further understanding of additional cellular alterations during HPV oncogenesis. The authors used advanced technical approaches such as KO, transcriptome and (IRPCRP) and LC- MS/MS analyses in the current study and concluded that KO Inc-FANCI-2 significantly increases RAS signaling, especially phosphorylation of Akt and Erk1/2.

      Strengths:

      (1) HPV E6E7 are required for full immortalization and maintenance of the malignant phenotype of cervical cancer, but they are NOT sufficient for full transformation and tumorigenesis. This study helps further understanding of other cellular alterations in HPV oncogenesis.

      (2) lnc-FANCI-2 is upregulated in cervical lesion progression from CIN1, CIN2-3 to cervical cancer, cancer cell lines, and HPV transduced cell lines.

      (3) Viral E7 of high-risk HPVs and host transcription factor YY1 are two major factors promoting lnc-FANCI-2 expression.

      (4) Proteomic profiling of cytosolic and secreted proteins showed inhibition of MCAM, PODXL2, and ECM1 and increased levels of ADAM8 and TIMP2 in KO cells.

      (5) RNA-seq analyses revealed that KO cells exhibited significantly increased RAS signaling but decreased IFN pathways.

      (6) Increased phosphorylated Akt and Erk1/2, IGFBP3, MCAM, VIM, and CCND2 (cyclin D2) and decreased RAC3 were observed in KO cells.

      Thanks for your positive comments. It has taken us almost nine years to reach this point to gradually understand lnc-FANCI-2 functions, which are more complex than our initial thoughts.  

      Weaknesses:

      (1) The authors observed the increased Inc-FANCI-2 in HPV 16 and 18 transduced cells, and other cervical cancer tissues as well, HPV-18 positive HeLa cells exhibited different expressions of Inc-FANCI-2.

      Both HPV16 and HPV18 infections induce lnc-FANCI-2 expression in keratinocytes (Liu H., et al. PNAS, 2021). However, HPV18+ cervical cancer cell lines HeLa and C4II cells (Figure S1A and S1B) do not express lnc-FANCI-2 as we see in HPV-negative cell lines such as HCT116, HEK293, HaCaT, and BCBL1 cells. Although we don’t know why, our preliminary data show that the lnc-FANCI-2 promoter functions well and is sensitive to YY1 binding in lnc-FANCI-2 expressing CaSki and C33A cells in our dual luciferase assays but is much less sensitive to YY1 binding in HeLa and HCT116 cells, indicating some unknown cellular factors negatively regulating lnc-FANCI-2 promoter activity.

      Author response image 1.

      A firefly luciferase (FLuc) reporter containing either the wild-type (−600 wt) or YY1-binding-site-mutated lnc-FANCI-2 promoter was evaluated in CaSki, HeLa, C33A, and HCT116 cells for its promoter activity, with Renilla luciferase (RLuc) activity driven by a TK promoter serving as an internal control. The two YY1-binding motifs (A and B) with a X for mutation are illustrated in the right diagram.

      (2) Previous studies and data in the current showed a steadily increased Inc-FANCI-2 during cancer progression, however, the authors did not observe significant changes in cell behaviors (both morphology and proliferation) in KO Inc-FANCI-2.

      Thanks. We do see decreases in cell proliferation, colony formation, and cell migration, accompanied by increased cell senescence, from the lnc-FANCI-2 KO cells to the parent WT cells.  These data are now added to the revised Fig. 1 and the revised supplemental Fig. S3.

      (3) The authors observed the significant changes of RAS signaling (downstream) in KO cells, but they provided limited interpretations of how these results contributed to full transformation or tumorigenesis in HPV-positive cancer.

      As we stated in the title of this function of lnc-FANCI-2, the lnc-FANCI-2 intrinsically restricts RAS signaling and phosphorylation of Akt and Erk in HPV16-infected cervical cancer. Presumably, high RAS-AKT-ERK signaling inhibits tumor cell survival due to senescence induction as we show in our new Figure 1 and supplemental Fig. S3. A similar report was found in a lung cancer study (Patricia Nieto, et al. Nature 548: 239-243, 2017).

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      Major comments:

      (1) A major issue is that parts of the manuscript read like a collection of experimental results. However, some of the results do not contribute directly to the central story. Besides confusing the reader, the large amount of apparently disparate results can raise more questions. For example:

      a) Why is lnc-FANCI-2 highly expressed in HPV16-infected cervical cancer cell lines (but not in HPV18-infected cells)?

      b) How do p53 and RB repress the expression of lnc-FANCI-2?

      c) What regulates the sub-cellular localization of lnc-FANCI-2?

      d) How does lnc-FANCI-2 negatively regulate RAS signalling?

      e) How does MAP4K4 bind to lnc-FANCI-2?

      f) Do lnc-FANCI-2 and MAP4K4 require each other to regulate RAS signalling?

      g) How does RAS signalling regulate the transcription of MCAM and IGFBP3?

      h) How does MCAM feedback on RAS? Do the different MCAM isoforms impact on RAS signalling differently?

      i) How does IGFBP3 feedback on ERK but not AKT?

      j) How do the other mentioned proteins like ADAM8 fit into the regulatory network?

      k) Each question will require a lot more work to address. I think it would be good if the authors could think through carefully what the key message(s) in the current manuscript should be and then present a more focused write-up.

      Thanks for the critical comments. Because this study is the first time to explore lnc-FANCI-2 functions, we would like to be collective. We believe these data are important to guide any future studies. We really appreciate our reviewer listing many questions related to HPV infection, cell biology, RAS signaling, cancer biology from questions a to k. To address each question in a satisfactory way will be a separate study, but fortunately, our report has pointed out such a direction with some preliminary data for future studies. Here below are our responses to each question from a to k:

      a) Both HPV16 and HPV18 infection induce lnc-FANCI-2 expression in keratinocytes (Liu H., et al. PNAS, 2021). However, HPV18+ cervical cancer cell lines HeLa and C4II cells (Figure S1A and S1B) do not express lnc-FANCI-2 as we see in HPV-negative cell lines such as HCT116, HEK293, HaCaT, and BCBL1 cells. Although we don’t know why, our preliminary data show that lnc-FANCI-2 promoter functions well and is sensitive to YY1 binding in lnc-FANCI-2 expressing CaSki and C33A cells but is much less sensitive to YY1 in HeLa and HCT116 cells, indicating some unknown cellular factors negatively regulating lnc-FANCI-2 promoter activity.

      b) We don’t know whether p53 and pRB could repress the expression of lnc-FANCI-2 although C33A cells bearing a mutant p53 and mutant pRB express high amount of lnc-FANCI-2. However, KD of E2F1 had no effect on lnc-FANCI-2 promoter activity in CaSki cells (Liu, H., et al. PNAS, 2021).

      c) RNA cellular localization can be affected by many factors, including splicing, export, and polyadenylation. As lnc-FANCI-2 is a long non-coding RNA, its regulation of cellular location could be more complicated than mRNAs and thus could be a future research direction.  

      d) The conclusion that lnc-FANCI-2 negatively regulates RAS signaling is based on both lnc-FANCI-2 KO and KD studies.  Please see the proposed hypothetic model in Figure 8E.

      e) The MAP4K4 binding to lnc-FANCI-2 was demonstrated by our IRPCRP-Mass spectrometry (Fig. 8A and 8C), although the exact binding site on lnc-FANCI-2 was not explored. As you probably know, many enzymes today turn out an RNA-binding enzyme (Castello A., et al. Trends Endocrinol. Metab. 26: 746-757, 2015; Hentze MW., et al. Nat. Rev. Mol. Cell Biol. 19: 327-341, 2018)    

      f) Yes, they are slightly relied on each other in regulating RAS signaling. We found that KD of MAP4K4 in parent CaSki cells (Figure 8D) led to more effect on RAS signaling (MCAM, IGFBP3, p-Akt) than that in lnc-FANCI-2 KO ΔPr-A9 cells. In contrast, the latter displayed more p-Erk1/2 than that induced by KD of lnc-FANCI-2 in the parental CaSki cells (Figure S7C).

      g) We believe RAS signaling regulates most likely the transcription of MCAM and IGFBP3 through phosphorylated transcription factors (Figure 8E diagram).

      h) As a signal molecule with at least 13 ligands/coreceptors (Joshkon A., et al. Biomedicines 8: 633, 2020), the increased MCAM appears to sustain RAS signaling (Fig. 7J and Fig. 8E). We are assuming the full-length cytoplasmic MCAM plays a predominant role in RAS signaling due to its abundance than the cleaved nuclear MCAM missing both transmembrane and cytoplasmic regions. Plus, RAS signaling mainly occurs in the cytosol.  

      i) Exact mechanism remains unknown. Lnc-FANCI-2 KO cells exhibit high expression levels of IGFBP3 RNA and protein and p-Erk1/2, but not so much for p-Akt, possibly due to IGFBP3 regulation of MAPK for Erk phosphorylation, but not much so on PI3K for Akt phosphorylation.

      j) The dysregulation of RAS signaling and ADAM protein activity is implicated in various cancers. ADAM proteins can modulate RAS signaling by cleaving and releasing ligands that activate or inactivate RAS-related pathways (Schafer B., et al. JBC 279: 47929-38, 2004; Ohtsu H., et al. Am J Physiol Cell Physiol 291: C1-C10, 2006; Dang M, et al. JBC 286: 17704-17713, 2011; Kleino I, et al. PLoS One 10: e0121301, 2015). Some ADAM proteins are Involved in the migration and invasion of cancer cells, and its loss can promote the degradation of KRAS (Huang Y-K., et al. Nat Cancer 5: 400-419, 2024). In this revision, we have a brief discussion on ADAMs and RAS signaling.

      k) We agree with our reviewer that each question will require a lot more work to address. As this study is to explore the lnc-FANCI-2 function for the first time, however, we prefer to include all of these data that have been selectively included in this write-up. We hope reviewer 1 will be satisfied with our response to each question from a to j. 

      (2) Figures S1A & S1C - Replicates are needed.

      Yes, we have repeated all of the experiments. The quantification shown in Figure S1A and S1C was performed in triplicate, and error bars have been added to the updated figure.

      3) Figure S1D - There seems to be some lnc-FANCI-2 RNA in the nucleus of CaSki cells as well. Please quantify the relative amount of lnc-FANCI-2 in the nucleus vs cytoplasm.

      Yes, a small fraction of lnc-FANCI-2 is in the nucleus of CaSki cells as we reported (Liu H., PNAS, 2021, Movies S1 and S2). We did quantify by fractionation and RT-qPCR the relative amount of lnc-FANCI-2 in the nucleus vs cytoplasm in Figure S1C. 

      (4) Figure S2B - (a) For ΔPr-A9 cells, it looks like there is an increase in E6 and a decrease in E7, instead of "little change" as the authors claimed. (b) I suggest checking the protein levels for all the control and KO clones.

      Thanks for the questions. We had some variation in E6 and E7 detection and the submitted one was one representative.  We grew again the lnc-FANCI-2 KO clones A9 and B3 and reexamined the expression of HPV16 E6/E7 proteins and their downstream targets, p53 and E2F1. As shown in new Figure S3A expt II, we saw again some variations in the detections (~20-30%) and these variations do not reflect a noticeable change for their downstream targets. Thus, we do not consider these changes significantly enough to draw a conclusion in our study, but rather most likely from sampling in the assays.

      (5) In the Proteome Profiler Human sReceptor Array analysis, multiple proteins were highlighted as having at least 30% change. But it is unclear how they relate to RAS signaling.

      Thanks for this comment.  Cellular soluble receptors are essential for RAS signaling, EMT pathway and IFN responses. For example, the dysregulation of RAS signaling and ADAM protein activity is implicated in various cancers. ADAM proteins can modulate RAS signaling by cleaving and releasing ligands that activate or inactivate RAS-related pathways (Schafer B., et al. JBC 279: 47929-38, 2004; Ohtsu H., et al. Am J Physiol Cell Physiol 291: C1-C10, 2006; Dang M, et al. JBC 286: 17704-17713, 2011; Kleino I, et al. PLoS One 10: e0121301, 2015). Some ADAM proteins are Involved in the migration and invasion of cancer cells, and its loss can promote the degradation of KRAS (Huang Y-K., et al. Nat Cancer 5: 400-419, 2024). In this revision, we have a brief discussion on ADAMs and RAS signaling.

      (6) Does knockdown of MAP4K4 lead to an increase in MCAM and IGFBP3?

      Yes, the MAP4K4 KD from parental WT CaSki cells does lead an increase in MCAM (~70%) and IGFBP3 (~30%) which is like the knockdown of lnc-FANCI-2 shown in the revised Figure 8D.

      Minor comments:

      (7) In the opinion of this reviewer the title is somewhat unwieldy.

      Thanks. We have shortened the title as “The lnc-FANCI-2 intrinsically restricts RAS signaling in HPV16-infected cervical cancer”

      (8) The abstract can be more focused and doesn't have to mention so many gene names. In fact, the significance paragraph works better as an abstract. For the significance, the authors can provide another write-up on the implications of their research instead.

      Thanks. We have revised the abstract and added the implications of this research.

      (9) The last sentence of the introduction feels a little abrupt. It would be good to elaborate a little more on the key findings.

      Thanks for this critical comment. We have revised as in the following: In this report, we demonstrate that lnc-FANCI-2 in HPV16-infected cells controls RAS signaling by interaction with MAP4K4 and other RNA-binding proteins. Ablation of lnc-FANCI-2 in the cells promotes RAS signaling and phosphorylation of Akt and Erk. High levels of lnc-FANCI-2 and low level of MCAM expression in cervical cancer patients correlate with improved survival, indicating that lnc-FANCI-2 plays a critical role in regulating RAS signaling to affect cervical cancer progression and patient outcomes.

      (10) Typo on line 191: Should be ADAM8 and not ADMA8.

      Corrected.

      Reviewer #2 (Recommendations for the authors):

      The paper contains a vast amount of data and would greatly benefit from an expanded version of the schematic of Figure 8E summarizing the main results. Including additional details on FANCI-2 regulation by HPV (primarily from previous studies) and its implications for HPV16-driven carcinogenesis would provide a more comprehensive overview.

      Thanks for the suggestion. We have modified our Figure 8E to include HR-HPV E7 and YY1 in regulation of lnc-FANCI-2 transcription.

      Further specific comments:

      (1) The introduction may be shortened to increase readability (e.g. lines 77-90; 94-105).

      We have shortened the introduction by deletion of the lines 94-105 from our initial submission.

      (2) Lines 55-57 the number of cervical cancer diagnoses and mortality need to be updated to the latest literature. The reference is from 2012.

      Thanks. We have revised and updated accordingly with a new citation (Bray F., et al: Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 74, 229-263 (2024))

      (3) Line 61: Progression rate of CIN3 is incorrect (31% in 30 years according to reference 5).

      Thanks. Corrected.

      (4) Lines 108-112 are difficult to understand and should be rewritten.

      Thanks. Revised accordingly.

      (5) Line 116 Is this correct or should 'but' be 'and'?

      Thanks. Corrected accordingly.

      (6) Figure 1A top: The difference between cervical cancer and normal areas is hard to see in the top figure. The region labeled as "normal" does not resemble typical differentiating epithelium or normal glandular epithelium, though this is difficult to assess accurately from the image provided. I suggest adding HE staining and also the histotypes.

      We have added an H&E staining panel in the corresponding region to Figure 1A, which clearly shows the normal and cancer regions. Both cervical cancer tissues were cervical squamous cell carcinoma.

      (7) HFK-HPV16 & 18 cells (Figure 1B) are not described in the Materials & Methods.

      Thanks. We revised our Materials and Methods by citing our two previous publications.

      (8) Figure 2E (RNA scope on FANCI-2 KO) only shows 2 to 3 cells, which makes it somewhat difficult to assess downregulated expression in the KO. I suggest replacing these with pictures showing more cells (i.e. >10) to strengthen the results.

      We have replaced the image in Figure 2E to include more cells.

      (9) The spindle-like morphology in deltaPr-A9 cells shown in FigS2A is not very distinct. Including images at higher magnification could help clarify this feature.

      Good comment. We have enlarged the images for better view and revised the context.

      (10) Both protein and RNA expression analysis have been performed on WT CaSki cells and FANCI-2 KO cells. If I am correct there is little overlap between the significantly changed gene products. What does this mean? Have you looked into the comparison?

      The DEGs identified from RNA-seq indicated a genome wide transcriptome change, while the protein array we used only covered 105 soluble protein receptors. However, we did find 9/15 (60%) membrane proteins in cell lysates (PODXL2, ECM1, NECTIN2, MCAM, ADAM9, CDH5, ADAM10, ITGA5, NOTCH1, SCARF2, ADAM8, TIMP2, LGALS3BP, CDH13, and ITGB6) exhibited consistent changes in expression (underlined) by both RNA-seq and protein array assays. We have revised the text with this information (page 11). Other six proteins (40%) had inconsistent expression correlation in two assays could be due to post-translational mechanisms, such as protein stability, modifications and secretion, etc.  

      (11) Figure S7, which represents TCGA data and survival is quite complex. It would be more effective to display a similar figure for FANCI-2, as was done for MCAM in Figure 7I, to simplify the comparison and enhance clarity.

      Thanks. However, the suggested figure for lnc-FANCI-2 was published in PNAS paper already (Liu H., et al. PNAS, 2021).  The Figure S8 in this revision is the result from our in-house GradientScanSurv pipeline, a new way to correlate the expression and survival more accurately.

      What do the Figures look like if you analyse only HPV16+ patients versus HPV18+ patients, considering that FANCI-2 upregulation in cell lines is related to HPV16 and not 18? Is there an effect of histotype? Or tumor stage?

      HPV18 infected keratinocytes express high level of lnc-FANCI-2. Two HPV18<sup>+</sup> HeLa and C4II cell lines and HPV-negative cell lines, such as HCT116 cells, which do not express lnc-FANCI-2 could be due to the presence of some unknow repressive factors. We found that lnc-FANCI-2 promoter functions well in responding to YY1 binding in CaSki and C33A cells expressing lnc-FANCI-2 but does not so in HeLa and HCT116 cells in our dual luciferase assays. 

      (12) It remains puzzling that FANCI-2 upregulation was previously shown to already occur in CIN lesions and increase further in cervical cancer, while the current data indicate that FANCI-2 suppresses AKT activation. If I am correct Akt activation has been linked to cervical carcinogenesis. Similarly, line 434 states that increased MCAM might promote cervical tumorigenesis, implying that low FANCI-2 would stimulate tumorigenesis. If I understand correctly, the increase in FANCI-2 observed in CIN lesions would reflect a "brake" on the carcinogenic pathway and its sustained increase in cancer might indicate that growth is still (partly) controlled. As mentioned earlier, a Figure illustrating the relation between FANCI-2, HPV, and the carcinogenic process would be beneficial for clarity.

      Yes. Increased MCAM, but low level of lnc-FANCI-2, correlates with poor cervical cancer survival. We have revised Figure 8E to illustrate this relation better.  

      (13) May part of the potentially conflicting findings be explained by CaSki cells being of metastatic origin? Related to this, does the expression of FANCI-2 or MALM depend on the tumor stage?

      Thanks for this important suggestion. Unfortunately, we found that the expression of lnc-FANCI-2 and MCAM is not associated with cervical cancer stage based on the TCGA data (http://gepia.cancer-pku.cn/index.html). See the data below:

      Author response image 2.

      Despite some lingering uncertainty, the extensive experiments conducted using KO and KD cells do provide compelling evidence that lnc-FANCI-2 function is linked to RAS signaling and EMT.

      Thanks for your positive review and instructive comments.

      Reviewer #3 (Recommendations for the authors):

      (1) The authors observed the increased Inc-FANCI-2 in HPV 16 and 18 transduced cells, and other cervical cancer tissues as well, HPV-18 positive HeLa cells exhibited different expressions of Inc-FANCI-2. I suggest authors provide more discussions on this difference, for example, HPV genotypes. HPV genome status in host cells? Cell types?

      Thanks. We found the keratinocyte infections with HPV16, HPV18, and other HR-HPVs could induce lnc-FANCI-2 expression (Liu H., et al. PNAS, 2021). In this report, we found HPV18<sup>+</sup> HeLa and C4II cells and other HPV-negative cell lines do not. Our preliminary data on lnc-FANCI-2 promoter activity assays showed the presence of a negative regulatory factor (s) in non-lnc-FANCI-2 expressing cells. See the data in Author response image 1.

      We have revised our discussion by inclusion these sets of the luciferase data as data not shown.

      (2) I suggest the authors discuss more details on how the changes of RAS signaling in KO cells help our further understanding of the molecular mechanisms for HPV-associated full-cell transformation and malignancy in addition to the well-known functions of HPV E6 and E7.

      Thanks. We have modified the Figure 8E as suggested by reviewer 2 and revised the discussion further.

    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1 (Public review):

      Summary:

      Detecting unexpected epistatic interactions among multiple mutations requires a robust null expectation - or neutral function - that predicts the combined effects of multiple mutations on phenotype, based on the effects of individual mutations. This study assessed the validity of the product neutrality function, where the fitness of double mutants is represented as the multiplicative combination of the fitness of single mutants, in the absence of epistatic interactions. The authors utilized a comprehensive dataset on fitness, specifically measuring yeast colony size, to analyze epistatic interactions.

      The study confirmed that the product function outperformed other neutral functions in predicting the fitness of double mutants, showing no bias between negative and positive epistatic interactions. Additionally, in the theoretical portion of the study, the authors applied a wellestablished theoretical model of bacterial cell growth to simulate the growth rates of both single and double mutants under various parameters. The simulations further demonstrated that the product function was superior to other functions in predicting the fitness of hypothetical double mutants. Based on these findings, the authors concluded that the product function is a robust tool for analyzing epistatic interactions in growth fitness and effectively reflects how growth rates depend on the combination of multiple biochemical pathways.

      Strengths:

      By leveraging a previously published extensive dataset of yeast colony sizes for single- and double-knockout mutants, this study validated the relevance of the product function, commonly used in genetics to analyze epistatic interactions. The finding that the product function provides a more reliable prediction of double-mutant fitness compared to other neutral functions offers significant value for researchers studying epistatic interactions, particularly those using the same dataset.

      Notably, this dataset has previously been employed in studies investigating epistatic interactions using the product neutrality function. The current study's findings affirm the validity of the product function, potentially enhancing confidence in the conclusions drawn from those earlier studies. Consequently, both researchers utilizing this dataset and readers of previous research will benefit from the confirmation provided by this study's results.

      Weaknesses:

      This study exhibits several significant logical flaws, primarily arising from the following issues: a failure to differentiate between distinct phenotypes, instead treating them as identical; an oversight of the substantial differences in the mechanisms regulating cell growth between prokaryotes and eukaryotes; and the adoption of an overly specific and unrealistic set of assumptions in the mutation model. Additionally, the study fails to clearly address its stated objective-investigating the mechanistic origin of the multiplicative model. Although it discusses conditions under which deviations occur, it falls short of achieving its primary goal. Moreover, the paper includes misleading descriptions and unsubstantiated reasoning, presented without proper citations, as if they were widely accepted facts. Readers should consider these issues when evaluating this paper. Further details are discussed below.

      (1) Misrepresentation of the dataset and phenotypes

      The authors analyze a dataset on the fitness of yeast mutants, describing it as representative of the Malthusian parameter of an exponential growth model. However, they provide no evidence to support this claim. They assert that the growth of colony size in the dataset adheres to exponential growth kinetics; in contrast, it is known to exhibit linear growth over time, as indicated in [Supplementary Note 1 of https://doi.org/10.1038/nmeth.1534]. Consequently, fitness derived from colony size should be recognized as a different metric and phenotype from the Malthusian parameter. Equating these distinct phenotypes and fitness measures constitutes a fundamental error, which significantly compromises the theoretical discussions based on the Malthusian parameter in the study.

      The reviewer is correct in pointing out that colony-size measurements are distinct from exponential growth kinetics. We acknowledge that our original text implied that the dataset directly measured the exponential growth rate (Malthusian parameter), when in fact it was measuring yeast colony expansion rates on solid media. Colony growth under these conditions often follows a biphasic pattern in that there is typically an initial microscopic phase where cells can grow exponentially, but as the colony expands further then the growth dynamics become more linear (Meunier and Choder 1999). We have revised our text to state clearly what the experiment measured.

      However, while colony size does not exhibit exponential growth kinetics, several studies have argued that the rate of colony expansion is related to the exponential growth rate of cells growing in non-limiting nutrient conditions in liquid culture. This is because colony growth is dominated by cells at the colony boundaries that have access to nutrients and are in exponential growth. Cells in the colony interior lack nutrients and therefore contribute little to colony growth. This has been shown both in theoretical and experimental studies, finding that the linear growth rate of the colony is directly linked to the single-cell exponential growth rate (Pirt 1967; Gray and Kirwan 1974; Korolev et al. 2012; Gandhi et al. 2016; Meunier and Choder 1999). In particular, the above studies suggest that the linear colony growth rate is directly proportional to the square root of the exponential growth rate. Therefore, one would expect that the validity of the product model for one fitness measure implies its validity for the other measure. In addition, colony size was found to be highly correlated with the exponential growth rate of cells in non-limiting nutrients in liquid culture (Baryshnikova et al. 2010; Zackrisson et al. 2016; Miller et al. 2022). For these reasons, we treated the colony size and exponential growth rate as interchangeable in our original manuscript. 

      To address the important point raised by the reviewer, we now explain more clearly in the text what the analyzed data on colony size show and why we believe it is reflective of the exponential growth rate. Finally, we note that our results supporting the product neutrality function are consistent with the work of (Mani et al. 2008), which used smaller datasets based on liquid culture growth rates (Jasnos and Korona 2007; Onge et al. 2007).

      The text in Section 2.3 now reads:

      “Having verified empirically that the Product neutrality function is supported by the latest data for cell proliferation, we now turn our attention to its origins. Addressing this question requires some mechanistic model of biosynthesis. However, most mechanistic models of growth apply directly to single cells in rich nutrient conditions, which may not directly apply to the SGA measurements of colony expansion rates. In particular, colony growth has been shown to follow a biphasic pattern (Meunier et al. 1999). A first exponential phase is followed by a slower linear phase as the colony expands. Previous modeling and empirical work indicates that this second linear expansion rate reflects the underlying exponential growth of cells in the periphery of the colony (Pirt 1967; Gray et al. 1974; Gandhi et al. 2016; Baryshnikova, Costanzo, S. Dixon, et al. 2010; Zackrisson et al. 2016; Miller et al. 2022). More precisely, mathematical models show the linear colony-size expansion rate is directly proportional to the square root of the exponential growth rate under non-limiting conditions. Intuitively, this relationship arises because colony growth is dominated by the expansion of the population of cells in an annulus at the colony border that are exposed to rich nutrient conditions. These cells expand at a rate similar to the exponential rate of cells growing in a rich nutrient liquid culture. In contrast, the cells in the interior of the colony experience poor nutrient conditions, grow very slowly, and do not contribute to colony growth.

      This intimate relationship between both proliferation rates allows us to explore the origin of the Product neutrality function in mechanistic models of cell growth. Indeed, if colony-based fitnesses follow a Product model, then

      where the superscript c indicates colony-based values for the fitness W and the growth rate λ. Taking into account the relationship between single-cell exponential growth rates and colony growth rates, we can write

      where the superscript l denotes liquid cultures. Combining these expressions, we obtain

      In other words, from the perspective of the Product neutrality function, fitnesses based on colony expansion rates are equivalent to fitnesses based on single-cell exponential growth rates. The prevalence of the Product neutrality model—both in the SGA data and in previous studies on datasets from liquid cultures (Jasnos et al. 2007; Onge et al. 2007; Mani et al. 2008)—encourages the exploration of its origin in mechanistic models of cell growth.”

      (2) Misapplication of prokaryotic growth models

      The study attempts to explain the mechanistic origin of the multiplicative model observed in yeast colony fitness using a bacterial cell growth model, particularly the Scott-Hwa model. However, the application of this bacterial model to yeast systems lacks valid justification. The Scott-Hwa model is heavily dependent on specific molecular mechanisms such as ppGppmediated regulation, which plays a crucial role in adjusting ribosome expression and activity during translation. This mechanism is pivotal for ensuring the growth-dependency of the ribosome fraction in the proteome, as described in [https://doi.org/10.1073/pnas.2201585119]. Unlike bacteria, yeast cells do not possess this regulatory mechanism, rendering the direct application of bacterial growth models to yeast inappropriate and potentially misleading. This fundamental difference in regulatory mechanisms undermines the relevance and accuracy of using bacterial models to infer yeast colony growth dynamics.

      If the authors intend to apply a growth model with macroscopic variables to yeast double-mutant experimental data, they should avoid simply repurposing a bacterial growth model. Instead, they should develop and rigorously validate a yeast-specific growth model before incorporating it into their study.

      There is nothing that is prokaryote specific in the Scott-Hwa model. It does not include the specific ppGpp mechanism to regulate ribosome fraction that does not exist in eukaryotes.  The general features of the model, like how the ribosome fraction is proportional to the growth rate have indeed been validated in yeast (Metzl-Raz et al. 2017; Elsemman et al. 2022; Xia et al. 2022). Performing a detailed physiological analysis of budding yeast across varying growth conditions in order to build a more extensive model is beyond the scope of this work. Finally, we note that the Weiße model, which we also analyzed, is also generic and has replicated empirical measurements both from bacteria and yeast (Weiße et al. 2015).

      To clarify this point in the text, we have added the following to Section 2.3: 

      “Experimental measurements in other organisms suggest that the observations leading to this model, including that the cellular ribosome fraction increases with growth rate, are in fact generic and also seen in the yeast S. cerevisiae (Metzl-Raz et al. 2017; Elsemman et al. 2022; Xia et al. 2022).”

      (3) Overly specific assumptions in the theoretical model

      he theoretical model in question assumes that two mutations affect only independent parameters of specific biochemical processes, an overly restrictive premise that undermines its ability to broadly explain the occurrence of the multiplicative model in mutations. Additionally, experimental evidence highlights significant limitations to this approach. For example, in most viable yeast deletion mutants with reduced growth rates, the expression of ribosomal proteins remains largely unchanged, in direct contradiction to the predictions of the Scott-Hwa model, as indicated in [https://doi.org/10.7554/eLife.28034]. This discrepancy emphasizes that the ScottHwa model and its derivatives do not reliably explain the growth rates of mutants based on current experimental data, suggesting that these models may need to be reevaluated or alternative theories developed to more accurately reflect the complex dynamics of mutant growth.

      In the data from the Barkai lab referenced by the reviewer (reproduced below), we see that the ribosomal transcript fraction is in fact proportional to growth rate in response to gene deletions in contradiction to the reviewer’s interpretation. However, it is notable that the ribosomal transcript fraction is a bit higher for a given growth rate if that growth rate is generated by a mutation rather than generated by a suboptimal nutrient condition. We know that the very simple Scott-Hwa model is not a perfect representation of the cell. Nevertheless, it does recapitulate important aspects of growth physiology and therefore we thought it is useful to analyze its response to mutations and compare those responses to the different neutrality functions.  We never claimed the Scott-Hwa model was a perfect model and fully agree with the referee’s statement above that “... these models may need to be reevaluated, or alternative theories developed to more accurately reflect the complex dynamics of mutant growth.” Indeed, we say as much in our discussion where we wrote: 

      “While we focused on coarse-grained models for their simplicity and mechanistic interpretability, they might be too simple to effectively model large double-mutant datasets and the resulting double-mutant fitness distributions. We therefore expect the combination of high throughput genetic data with the analysis of larger-scale models, for instance based on Flux Balance Analysis, Metabolic Control Analysis, or whole-cell modeling, to lead to important complementary insights regarding the regulation of cell growth and proliferation.”

      To further clarify this point, we discuss and cite the Barkai lab data for gene deletions see Figure 2 from Metzl-Raz et al. 2017.

      (4) Lack of clarity on the mechanistic origin of the multiplicative model

      The study falls short of providing a definitive explanation for its primary objective: elucidating the "mechanistic origin" of the multiplicative model. Notably, even in the simplest case involving the Scott-Hwa model, the underlying mechanistic basis remains unexplained, leaving the central research question unresolved. Furthermore, the study does not clearly specify what types of data or models would be required to advance the understanding of the mechanistic origin of the multiplicative model. This omission limits the study's contribution to uncovering the biological principles underlying the observed fitness patterns.”

      We appreciate the reviewer’s interest in a more complete mechanistic explanation for the product model of fitness. The primary goal of this study was to explore the validity of the Product model from the perspective of coarse-grained models of cell growth, and to extract mechanistic insights where possible. We view our work as a first step toward a deeper understanding of how double-mutant fitnesses combine, rather than a final, all-encompassing theory. As the referee notes, we are limited by the current state of the field, which has an incomplete understanding of cell growth. 

      Nonetheless, our analysis does propose concrete, mechanistically informed explanations. For example, we highlight how growth-optimizing feedback—such as cells’ ability to reallocate ribosomes or adjust proteome composition—naturally leads to multiplicative rather than additive or minimal fitness effects. We also link the empirical deviations from pure multiplicative behavior to differences in how specific pathways re-balance under perturbation, and we suggest that a product-like rule emerges when multiple interconnected processes each partially limit cell growth.

      In the discussion, we clarify what additional data and models we think will be required to advance this question. Namely, we propose extending our approach through larger-scale, more detailed modeling frameworks – that may include explicit modeling of ppGpp or TOR activities in bacteria or eukaryotic cells, respectively. We also emphasize the importance of refining the measurement of cell growth rates to uncover subtle deviations from the product rule that could yield greater mechanistic insight. By integrating high-throughput genetic data with nextgeneration computational models, it should be possible to hone in on the specific biological principles (e.g., metabolic bottlenecks, resource reallocation) that underlie the multiplicative neutrality function.

      Reviewer #2 (Public review):

      The paper deals with the important question of gene epistasis, focusing on asking what is the correct null model for which we should declare no epistasis.

      In the first part, they use the Synthetic Genetic Array dataset to claim that the effects of a double mutation on growth rate are well predicted by the product of the individual effects (much more than e.g. the additive model). The second (main) part shows this is also the prediction of two simple, coarse-grained models for cell growth.

      I find the topic interesting, the paper well-written, and the approach innovative.

      One concern I have with the first part is that they claim that:

      "In these experiments, the colony area on the plate, a proxy for colony size, followed exponential growth kinetics. The fitness of a mutant strain was determined as the rate of exponential growth normalized to the rate in wild type cells."

      There are many works on "range expansions" showing that colonies expand at a constant velocity, the speed of which scales as the square root of the growth rate (these are called "Fisher waves", predicted in the 1940', and there are many experimental works on them, e.g. https://www.pnas.org/doi/epdf/10.1073/pnas.0710150104) If that's the case, the area of the colony should be proportional to growth_rate X time^2 , rather than exp(growth_rate*time), so the fitness they might be using here could be the log(growth_rate) rather than growth_rate itself? That could potentially have a big effect on the results.

      We thank the reviewer for their thoughtful remarks. As they rightly pointed out, a large body of literature supports that colonies expand at constant velocity both from a theoretical and experimental standpoint. 

      As discussed in the answer to the first question of Reviewer 1, this body of work also suggests that the linear expansion rate of the colony front is directly related to the single-cell exponential growth rate of the cells at the periphery. Hence, although the macroscopic colony growth may not be exponential in time, measuring colony size (or radial expansion) across different genotypes still provides a consistent and meaningful proxy for comparing their underlying growth capabilities. 

      In particular, these studies suggest (consistently with Fisher-wave theory) that the linear growth rate of the colony 𝐾 is proportional to the square root of the exponential growth rate 𝜆. Under the assumption that the product model is valid for a given double mutant and for the exponential growth rate, we would have that

      The associated wave-front velocities would then be predicted to be

      In other words, if the product model is valid for fitness measures based on exponential growth rates, it should also be valid for fitness measures based on linear colony growth rates. 

      We now include this discussion in the revised version of Section 2.3.

      Additional comments/questions:

      (1) What is the motivation for the model where the effect of two genes is the minimum of the two?

      The motivation for the minimal model is the notion that there might be a particular process that is rate-limiting for growth due to a mutation. In this case, a mutation in process X makes it really slow and process Y proceeds in parallel and has plenty of time to finish its job before cell division takes place. In this case, even a mutation to process Y might not slow down growth because there is an excess amount of time for it to be completed. Thus, the double mutant might then be anticipated to have the growth rate associated with the single mutation to process X. We now add a similar description when we introduce the different neutrality functions in Section 2.1.

      (2) How seriously should we take the Scott-Hwa model? Should we view it as a toy model to explain the phenomenon or more than that? If the latter, then since the number of categories in the GO analysis is much more than two (47?) in many cases the analysis of the experimental data would take pairs of genes that both affect one process in the Scott-Hwa model - and then the product prediction should presumably fail? The same comment applies to the other coarse-grained model.

      From our perspective, models like the Scott-Hwa model constitute the simplest representation of growth based on data that is not trivial. Moreover, the Scott-Hwa model is able to incorporate interactions between two different biological processes. We believe models, like the Scott-Hwa and Weiße models, should be viewed as more than mere toy models because they have been backed up by some empirical data, such as that showing the ribosome fraction increases with growth rate. However, the Scott-Hwa model is inherently limited by its low dimensionality and relative simplicity. We do not claim that such models can provide a full picture of the cell. As argued in the main text, we have chosen to focus on such models because of their tractability and in the hope of extracting general principles. We nonetheless agree with the reviewer that they do not have the capacity to represent interactions between genes in the same biological process. We now note this limitation in the text. 

      (3) There are many works in the literature discussing additive fitness contributions, including Kaufmann's famous NK model as well as spin-glass-type models (e.g. Guo and Amir, Science Advances 2019, Reddy and Desai, eLife 2021, Boffi et al., eLife 2023) These should be addressed in this context.

      We thank the reviewer for pointing out this part of the literature. We do believe these works constitute a relevant body of work tackling the emergence of epistasis patterns from a theoretical grounding, and now reference and discuss them in the text. 

      (4) The experimental data is for deletions, but it would be interesting to know the theoretical model's prediction for the expected effects of beneficial mutations and how they interact since that's relevant (as mentioned in the paper) for evolutionary experiments. Perhaps in this case the question of additive vs. multiplicative matters less since the fitness effects are much smaller.

      This is an interesting question. Since mutations increasing the growth rate generated by gene deletions or other systematic perturbations are rare, we did not focus on them. Of course, as the reviewer notes, in the case of evolution experiments, these fitness enhancing mutations are selected for. To address the reviewer's question, we can first consider the Scott-Hwa model. In this case, the analytical solution remains valid in the case of fitness enhancing mutations so that the fitness of the double mutant will be the product neutrality function multiplied by an additional interaction term (see Figure 3). The mathematical derivation predicts that the double mutant fitness can potentially grow indefinitely. Indeed, the denominator can be equal to zero in some cases. In simulations, we see that the observation for deleterious mutations does not seem to hold for beneficial mutations (new supplementary Figure S5 shown below). Indeed, no model seems to replicate double mutant fitnesses much better than any other. This suggests that the growth-optimizing feedback we discuss in section 2.3 may have compound effects that ultimately make double-mutant fitnesses much larger than any model predicts.

      We recognize this may be an important point, and discuss it in detail in the revised section 2.3 as well as in the discussion.

      Baryshnikova, Anastasia, Michael Costanzo, Scott Dixon, Franco J. Vizeacoumar, Chad L. Myers, Brenda Andrews, and Charles Boone. 2010. “Synthetic Genetic Array (SGA) Analysis in Saccharomyces Cerevisiae and Schizosaccharomyces Pombe.” Methods in Enzymology 470 (March):145–79.

      Elsemman, Ibrahim E., Angelica Rodriguez Prado, Pranas Grigaitis, Manuel Garcia Albornoz, ictoria Harman, Stephen W. Holman, Johan van Heerden, et al. 2022. “Whole-Cell Modeling in Yeast Predicts Compartment-Specific Proteome Constraints That Drive Metabolic Strategies.” Nature Communications 13 (1): 801.

      Gandhi, Saurabh R., Eugene Anatoly Yurtsev, Kirill S. Korolev, and Jeff Gore. 2016. “Range Expansions Transition from Pulled to Pushed Waves as Growth Becomes More Cooperative in an Experimental Microbial Population.” Proceedings of the National Academy of Sciences of the United States of America 113 (25): 6922–27.

      Gray, B. F., and N. A. Kirwan. 1974. “Growth Rates of Yeast Colonies on Solid Media.” Biophysical Chemistry 1 (3): 204–13.

      Jasnos, Lukasz, and Ryszard Korona. 2007. “Epistatic Buffering of Fitness Loss in Yeast Double Deletion Strains.” Nature Genetics 39 (4): 550–54.

      Korolev, Kirill S., Melanie J. I. Müller, Nilay Karahan, Andrew W. Murray, Oskar Hallatschek, and David R. Nelson. 2012. “Selective Sweeps in Growing Microbial Colonies.” Physical Biology 9 (2): 026008.

      Mani, Ramamurthy, Robert P. St Onge, John L. Hartman 4th, Guri Giaever, and Frederick P. Roth. 2008. “Defining Genetic Interaction.” Proceedings of the National Academy of Sciences of the United States of America 105 (9): 3461–66.

      Metzl-Raz, Eyal, Moshe Kafri, Gilad Yaakov, Ilya Soifer, Yonat Gurvich, and Naama Barkai. 2017. “Principles of Cellular Resource Allocation Revealed by Condition-Dependent Proteome Profiling.” eLife 6 (August). https://doi.org/10.7554/elife.28034.

      Meunier, J. R., and M. Choder. 1999. “Saccharomyces Cerevisiae Colony Growth and Ageing: Biphasic Growth Accompanied by Changes in Gene Expression.” Yeast (Chichester, England) 15 (12): 1159–69.

      Miller, James H., Vincent J. Fasanello, Ping Liu, Emery R. Longan, Carlos A. Botero, and Justin C. Fay. 2022. “Using Colony Size to Measure Fitness in Saccharomyces Cerevisiae.” PloS e 17 (10): e0271709.

      Onge, Robert P. St, Ramamurthy Mani, Julia Oh, Michael Proctor, Eula Fung, Ronald W. Davis, Corey Nislow, Frederick P. Roth, and Guri Giaever. 2007. “Systematic Pathway Analysis Using High-Resolution Fitness Profiling of Combinatorial Gene Deletions.” Nature Genetics 39 (2): 199–206.

      Pirt, S. J. 1967. “A Kinetic Study of the Mode of Growth of Surface Colonies of Bacteria and Fungi.” Journal of General Microbiology 47 (2): 181–97.

      Weiße, Andrea Y., Diego A. Oyarzún, Vincent Danos, and Peter S. Swain. 2015. “Mechanistic Links between Cellular Trade-Offs, Gene Expression, and Growth.” Proceedings of the National Academy of Sciences of the United States of America 112 (9): E1038–47.

      Xia, Jianye, Benjamin J. Sánchez, Yu Chen, Kate Campbell, Sergo Kasvandik, and Jens Nielsen. 2022. “Proteome Allocations Change Linearly with the Specific Growth Rate of Saccharomyces Cerevisiae under Glucose Limitation.” Nature Communications 13 (1): 2819.

      Zackrisson, Martin, Johan Hallin, Lars-Göran Ottosson, Peter Dahl, Esteban Fernandez-Parada, Erik Ländström, Luciano Fernandez-Ricaud, et al. 2016. “Scan-O-Matic: High-Resolution Microbial Phenomics at a Massive Scale.” G3 (Bethesda, Md.) 6 (9): 3003–14.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1 (Evidence, Reproducibility, and Clarity)

      Reviewer comment: This is a very well conceived study of responses to plasma membrane stresses in yeast that signal through the conserved TORC2 complex. Physical stress through small molecular intercalators in the plasma membrane is shown to be independent of their biochemistry and then studies for its effect on plasma membrane morphology and the distribution of free ergosterol (the yeast equivalent of cholesterol), with free being the pool of cholesterol that is available to probes and/or sterol transfer proteins. Experiments nicely demonstrate a negative feedback loop consisting of: stress -> increased free sterol and TORC2 inhibition -> activation of LAM proteins (as demonstrated by Relents and co-workers previously) -> removal of free sterol -> return to unstressed state of PM and TORC2.

      Author response: We thank the reviewer for their positive and encouraging feedback. We are pleased to submit our revised manuscript and have addressed all points raised below.

      Comment: Fig 2A: Is detection of PIP/PIP2/PS linear for target, or possibly just showing availability that is increased due to local positive curvature?

      Response: This is an excellent and fundamental question. While FLARE signal likely reflects lipid availability, its detection is indeed influenced by factors such as membrane curvature and lipid composition, due to varying insertion depths of the lipid-binding domains. For example, studies using NMR suggest that the PLCδ PH domain partially inserts into membranes, potentially conferring curvature sensitivity (Flesch et al., 2005; Uekama et al., 2009). Similarly, curvature influences lactadherin binding, though it's unclear if this extends to its isolated C2 domain (Otzen et al., 2012; Shao et al., 2008; Shi et al., 2004). We could not find direct evidence for curvature sensitivity of P4C(SidC), but assume some influence exists.

      To avoid overinterpreting these limitations, we now describe our data based solely on the FLAREs used, rather than inferring enrichment of specific lipid species. We refer to these PM structures as "PI(4,5)P₂-containing", consistent with prior literature (Riggi et al., 2018) and have revised our manuscript accordingly.

      Comment: Can any marker be identified for the D4H spots at 2 minutes? In particular, are they early endosomes (shown by brief pre-incubation with FM4-64)?

      Response: We appreciate the reviewer's suggestion and have now added new data (Fig. S2E-H). We tested colocalization of D4H spots with FM4-64 (early endosomes), GFP-VPS21 (early endosome marker), and LipidSpot{trade mark, serif} 488 (lipid droplets), but found no overlap. This later observation was not unexpected given that D4H does not recognize Sterol esters. D4H foci also did not overlap with ER (dsRED-HDEL), though they were frequently adjacent to it. While their exact identity remains unknown, we agree this is an intriguing direction for future investigation.

      Comment: Is there any functional (& direct) link between Arp inhibition (as in the Pombe study of LAMs by the lab of Sophie Martin) and PM disturbance by amphipathic molecules?

      Response: We have explored this connection and now present new data (see final paragraph of Results). Briefly, we show that CK-666 induces internalization of PM sterols in a Lam2/4-dependent manner, and that TORC2 activity is more strongly reduced in lam2Δ lam4Δ cells compared to WT. These findings support the idea that, like PalmC, Arp2/3 inhibition triggers a PM stress that is counteracted by sterol internalization.

      Minor Comment: Fig 2A: Labels not clear. Say for each part what FP is used for pip2.

      Response: As noted above, we revised image labels to clarify which FLAREs were used, and refer to data accordingly throughout.

      Minor Comment: Move fig s2d to main ms. The 1 min and 2 min data are integral to the story.

      Response: We agree and have incorporated the 1-min and 2-min data into the main figures. Vehicle-treated controls were moved to Fig. S2.

      Minor Comment: The role of Lam2 and Lam4 in retrograde sterol transport has in vivo only been linked to one of their two StART domains not both, as mentioned in the text.

      Response: Thank you for pointing this out. We have corrected the text to:

      "[...]Lam2 and Lam4[...] contain two START domains, of which at least one has been demonstrated to facilitate sterol transport between membranes (Gatta et al., 2015; Jentsch et al., 2018; Tong et al., 2018)."

      Minor Comment: Throughout, images of tagged D4H should be labelled as such, not as "Ergosterol".

      Response: We have updated all relevant figure labels and text to refer to "D4H" rather than "Ergosterol", in line with this recommendation.

      Reviewer #1 (Significance):

      These results in budding yeast are likely to be directly applicable to a wide range of eukaryotic cells, if not all of them. I expect this paper to be a significant guide of research in this area. The paper specifically points out that the current experiments do not distinguish the precise causation among the two outcomes of stress: increased free sterol and TORC2 inhibition. Of these two outcomes which causes which is not yet known. If data were added that shed light on this causation that would make this work much more signifiant, but I can understand 100% that this extra step lies beyond - for a later study for which the current one forms the bedrock.

      Response:

      We thank the reviewer for their generous assessment. We agree that understanding the causality between increased free sterol and TORC2 inhibition is a critical next step.

      Based on our current data, we believe the increase in free ergosterol precedes TORC2 inhibition. For example, TORC2 inhibition alone (e.g., via pharmacological means) does not initially increase free sterol, while it does enhance Lam2/4 activity, promoting sterol internalization (Fig. 3A). Baseline TORC2 activity also inversely correlates with free PM sterol levels in lam2Δ lam4Δ versus LAM2T518A LAM4S401A cells (Figs. 2D, S2C).

      Additionally, during sterol depletion, we observe an initial increase in TORC2 activity before growth inhibition occurs, after which activity declines-likely due to compromised PM integrity (Fig. S2M). We now also show that adaptation to several other stresses (e.g., osmotic shock, heat shock, CK-666) partially depends on sterol internalization, which correlates with TORC2 activation (Fig. 4, S4B).

      While these findings strengthen the model that PM stress perturbs sterol availability and secondarily impacts TORC2, we cannot yet definitively demonstrate causality. As suggested by Reviewer 3, we tested cholesterol-producing yeast (Souza et al., 2011), but found their response to PalmC indistinguishable from WT, making it difficult to draw mechanistic conclusions (Rebuttal Fig. 2).

      Taken together, we favour a model where sterols affect PM properties sensed by TORC2, probably lipid-packing, rather than acting as direct effectors. We hope our revised manuscript more clearly conveys this model and serves as a strong foundation for future mechanistic studies.

      Reviewer #2 (Evidence, Reproducibility, and Clarity)

      Reviewer comment: This manuscript describes multiple effects of positively-charged membrane-intercalating amphipaths (palmitoylcarnitine, PalmC, in particular) on TORC2 in yeast plasma membranes. It is a "next step" in the Loewith laboratory's characterization of the effect of this agent on this system. The study confirms the findings of Riggi et al.(2018) that PalmC inhibits TORC2 and drives the formation of membrane invaginations that contain phosphatidylinositol-bis-phosphate (PIP2) and other anionic phospholipids. It also demonstrates that PalmC intercalates into the membrane, acts directly (rather than through secondary metabolism) and is representative of a class of cationic amphipaths. The interesting finding here is that PalmC causes a rapid initial increase in the plasma membrane ergosterol accessible to the DH4 sterol probe followed by a decrease caused by its transfer to the cytoplasm through its transporter, LAM2/4. TORC2 is implicated in these processes. Loewith et al. have pioneered in this area and this study clearly shows their expertise. Several of the findings reported here are novel. However, I am concerned that PalmC may not be revealing the physiology of the system but rather adding tangential complexity. (This concern applies to the precursor studies using PalmC to probe the TORC2 system.) In particular, I am not confident that the data justify the authors' conclusions "...that TORC2 acts in a feedback loop to control active sterol levels at the PM and [the results] introduce sterols as possible TORC2 signalling modulators."

      Author response:

      We thank Reviewer #2 for the constructive and critical evaluation of our work. We appreciate the acknowledgment of the novelty and technical strength of several of our findings, and we understand the concern that PalmC could be eliciting non-physiological effects. Our study was designed precisely to use PalmC and similar membrane-active amphipaths as tools to strongly perturb the plasma membrane (PM) in a controlled and tractable way. We now state this intention explicitly in both the Introduction and Discussion sections. To address concerns about the specificity and physiological relevance of PalmC, we have expanded our dataset to include additional PM stressors (hyperosmotic shock, Arp2/3 inhibition, and heat shock), all of which reproduce key features observed with PalmC-namely, TORC2 inhibition, PM invaginations, and retrograde sterol transport (Fig. 4, S4).

      We hope this more comprehensive dataset, along with revised discussion and clarified claims, addresses the reviewer's concerns regarding physiological interpretation and artifact.

      Major issues 1 and 2: 1. The invaginations induced by PalmC may not be physiologic but simply the result of the well-known "bilayer couple" bending of the bilayer due to the accumulation of cationic amphipaths in the inner leaflet of the plasma membrane bilayer which is rich in anionic phospholipids. Such unphysiological effects make the observed correlation of invagination with TORC2 inhibition etc. hard to interpret.

      Electrostatic/hydrophobic association of PIP2 with PalmC could sequester the anionic phospholipid(s). Such associations could also drive the accumulation of PIP2 in the invaginations. This could explain PalmC inhibition of TORC2 through a simple physical rather than biological process. So, it is difficult to draw any physiological conclusion about PIP2 from these experiments.

      Response to major issues 1 and 2:

      We agree that amphipath-induced bilayer stress, including via the bilayer-couple mechanism, may contribute to PM curvature changes. However, the reviewer's assumption that PalmC inserts preferentially into the inner leaflet appears inconsistent with both literature and our observations. PalmC is zwitterionic, not cationic, and is unlikely to electrostatically sequester anionic lipids such as PIP2. For clarification, we included a short summary of our proposed mechanism of PalmC in the context of the current literature in our Discussion:

      "[...] study it was also demonstrated that addition of phospholipids to the outer PM leaflet causes an excess of free sterol at the inner PM leaflet, and its subsequent retrograde transport to lipid droplets (Doktorova et al., 2025). Although we cannot exclude that it is the substrate of a flippase or scramblase, PalmC is not a metabolite found in yeast, nor, given its charged headgroup, is it likely to spontaneously flip to the inner leaflet (Goñi, Requero and Alonso, 1996). Thus, we propose that PalmC accumulates in the outer leaflet, disrupts the lipid balance with the inner leaflet which is, similarly to the mammalian cell model (Doktorova et al., 2025), rectified by sterol mobilization, flipping and internalization (Fig. 5B)."

      While we agree that PM invaginations per se are not the central focus of this study, they are indeed a reproducible and biologically intriguing phenomenon. We emphasize that similar invaginations occur not only during PalmC treatment but also in response to other physiological stresses, such as hyperosmotic shock and Arp2/3 inhibition (Fig. 4), and have been reported independently by others (Phan et al., 2025). Furthermore, related structures have been documented in yeast mutants with altered PIP2 metabolism or TORC2 hyperactivity (Rodríguez-Escudero et al., 2018; Sakata et al., 2022; Stefan et al., 2002), and even in mammalian neurons with SJ1 phosphatase mutations (Stefan et al., 2002). These observations support our interpretation that the observed invaginations represent an exaggerated manifestation of a physiologically relevant stress-adaptive process. In our previous study we indeed proposed that PI(4,5)P2 enrichment in PM invaginations was important for PalmC-induced TORC2 inactivation, using the heat sensitive PI(4,5)P2 kinase allele mss4ts - a rather blunt tool (Riggi et al., 2018). We have now come to the conclusion that different mechanisms other than, or in addition to, PIP2 changes drive TORC2 inhibition in our system. In this study, we use the 2xPH(PLC) FLARE exclusively as a generic PM marker, not as a readout of PIP2 biology. Rather, we propose that sterol redistribution and/or the biophysical impact that this has on the PM are central drivers, with TORC2 acting as a signaling node that senses and adjusts PM composition accordingly.

      We now clarify these arguments in the revised Discussion and have reframed our use of PalmC as a probe to explore the capacity of the PM to adapt to acute stress via dynamic lipid rearrangements.

      Major issue 3:

      As the authors point out, a large number of intercalated amphipaths displace sterols from their association with bilayer phospholipids. This unphysiologic mechanism can explain how PalmC causes the transient increase in the availability of plasma membrane ergosterol to the D4H probe and its subsequent removal from the plasma membrane via LAM2/4. TORC2 regulation may not be involved. In fact, the authors say that "TORC2 inhibition, and thereby Lam2/4 activation, cannot be the only trigger for PalmC induced sterol removal." Furthermore, the subsequent recovery of plasma membrane ergosterol could simply reflect homeostatic responses independent of the components studied here.

      Response:

      We agree that increased free sterols in the inner leaflet likely initiate retrograde transport. Our results suggest that TORC2 inhibition facilitates this process by disinhibiting Lam2/4, allowing more efficient clearance of ergosterol from the PM (Fig. 3A, S2C). However, the process is not exclusively dependent on TORC2, and we state this explicitly.

      We do not observe recovery of PM ergosterol on the timescales measured, while TORC2 activity recovers, suggesting that restoration likely occurs later via biosynthetic or anterograde trafficking pathways, which are outside the scope of this study. These points are clarified in the revised Discussion.

      Major issue 3a:

      The data suggest that LAM2/4 mediates the return of cytoplasmic ergosterol to the plasma membrane. To my knowledge, this is a nice finding that not been reported previously and is worth confirming more directly.

      Response:

      We thank the reviewer for this observation but would like to clarify a misunderstanding: our data do not suggest that Lam2/4 mediates anterograde sterol transport. Our results and prior work (Gatta et al., 2015; Roelants et al., 2018) show that Lam2/4 mediate retrograde transport from the PM to the ER, and TORC2 inhibits this process. We now clarify this point in the revised manuscript, stating:

      "In vivo, Lam2/4 seem to predominantly transport sterols from the PM to the ER, following the concentration gradient (Gatta et al., 2015; Jentsch et al., 2018; Tong et al., 2018)."

      Major issue 4:

      I agree with the authors that "It is unclear if the excess of free sterols itself is part of the inhibitory signal to TORC2..." Instead, the inhibition of TORC2 by PalmC may simply result from its artifactual aggregation of the anionic phospholipids (especially, PIP2) needed for TORC2 activity. This would not be biologically meaningful. If the authors wish to show that accessible ergosterol inhibits TORC2 activity or vice versa, they should use more direct methods. For example, neutral amphipaths that do not cause the aforementioned PalmC perturbations should still increase plasma membrane ergosterol and send it through LAM2/4 to the ER.

      Response:

      We now provide evidence that three orthologous treatments (hyperosmotic shock, heat shock and Arp2/3 inhibition) similarly cause sterol mobilization and, in the absence of sterol clearance from the PM, prolonged TORC2 inhibition. These results do not support the reviewer's contention that the inhibition of TORC2 by PalmC is simply resulting from its artifactual aggregation of the anionic phospholipids. Furthermore, PalmC is zwitterionic, and its interaction with anionic lipids should be somewhat limited.

      In our experimental setup, neutral amphipaths did not trigger TORC2 inhibition or D4H redistribution While this differs from prior in vitro work (Lange et al., 2009), we attribute this in part to a discrepancy to experimental setup differences, including flow chamber artifacts that we discuss in the methods section.

      Importantly, only amphipaths with a charged headgroup, including zwitterionic (PalmC) and positively charged analogs, produced robust effects. A negatively charged derivative also seemed to have a minor effect on TORC2 activity and PM sterol internalization (Palmitoylglycine (Fig. 1D, Rebuttal Fig. 1). This suggests that in vivo, charge-based membrane perturbation is required to alter PM sterol distribution and TORC2 activity.

      Major issue 5.:

      The mechanistic relationship between TORC2 activity and ergosterol suggested in the title, abstract, and discussion is not secure. I agree with the concluding section of the manuscript called "Limitations of the study". It highlights the need for a better approach to the interplay between TORC2 and ergosterol.

      Response:

      This may have been true of the previous submission, but we now demonstrate that provoking PM stress in four orthogonal ways triggers mobilization of sterols, which left uncleared, prevents normal (re)activation of TORC2 activity. We thus conclude that free sterols, directly or more likely indirectly, inhibit TORC2. The role that TORC2 plays in sterol retrotranslocation has been demonstrated previously (Roelants et al., 2018). We believe our expanded data and clarified framework make a compelling case for a stress-adaptive role of sterol retrograde transport that is supervised and modulated-but not fully driven-by TORC2 activity.

      Thus, we feel in the present version of this manuscript that the title is now justified.

      Minor issue: Based on earlier work using the reporter fliptR, the authors claim that PalmC reduces membrane tension. They should consider that this intercalated dye senses many variables including membrane tension but also lipid packing. I suspect that, by intercalating into and thereby altering the bilayer, PalmC is affecting the latter rather than the former.

      Response:

      We thank the reviewer for this important point regarding the multifactorial sensitivity of intercalating dyes such as Flipper-TR®, including to membrane tension and lipid packing.

      We respectfully note, however, that our current study does not include any new data generated using Flipper-TR®. We referred to earlier work (Riggi et al., 2018) for context, where Flipper-TR® was used as a membrane tension reporter.

      We fully agree that the response of such "smart" membrane probes integrates multiple biophysical parameters-including tension, packing, and hydration-which are themselves interrelated as consequences of membrane composition (Colom et al., 2018; Ragaller et al., 2024; Torra et al., 2024). Indeed, this interconnectedness is central to our interpretation of PalmC's pleiotropic effects on the plasma membrane (PM). In our previous study, we observed that PalmC treatment not only reduced apparent PM tension (as measured by Flipper-TR®) but also increased membrane order ((Riggi et al., 2018); see laurdan GP, Fig. 6C), and here we show that it promotes the redistribution of free sterol away from the PM.

      Furthermore, PalmC's effect on membrane tension was supported by orthogonal in vitro data: its addition to giant unilamellar vesicles (GUVs) led to a measurable increase in membrane surface area and decreased tension, as shown by pipette aspiration ((Riggi et al., 2018), Fig. 3F). This provides complementary evidence that the membrane tension reduction is not merely an artifact of Flipper-TR® reporting.

      That said, we agree with the reviewer that in the case of TORC2 inhibition or hyperactivation, the observed changes in PM tension are based solely on Flipper-TR® data, without additional orthogonal validation. To address this concern, we have revised the relevant text in the manuscript to more cautiously reflect this complexity. The revised sentence now reads:

      "Consistent with this role, data generated with the lipid packing reporter dye Flipper-TR® suggest that acute chemical inhibition of TORC2 increases PM tension, while Ypk1 hyperactivation decreases it."

      This revised phrasing acknowledges both the utility and the limitations of Flipper-TR® as a probe of membrane biophysics.

      Reviewer #2 Significance:

      This is an interesting topic. However, use of the exogenous probe, palmitoylcarnitine, could be causing multiple changes that complicate the interpretation of the data.

      Reviewers #1 and #3 were much more impressed by this study than I was. I am not a yeast expert and so I may have missed or confused something. I would therefore welcome their expert feedback regarding my comments (#2). Ted Steck

      Response:

      Thank you for your constructive feedback.

      We believe that the manuscript is now much improved, and we hope to have convinced you that the mechanisms that we've elucidated using PalmC represent a general adaptation response to physiological PM stressors.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      Reviewer comment: The authors describe the effects of surfactant-like molecules on the plasma membrane (PM) and its associated TORC2 complex. Addition of the surfactants with a positively-charged headgroup and a hydro-carbon tail of at least 16 caused the rapid clustering of PI-4,5P2 together with PI-4P and phosphatidylserine in large membrane invaginations. The authors convincingly demonstrate that this effect of the surfactants on the PM is likely caused by a direct disturbance of the PM organization and/or lipid composition. Interestingly, upon PalmC treatment, free ergosterol of the PM was found to first concentrate in the clusters, but within The kinetics of the changes in free ergosterol levels and the changes in TORC2 activity do not match. Ergosterol is rapidly depleted after PalmC treatment (The Lam2/4 data support the idea that ergosterol transport plays a role in the TORC2 recovery, but what role this is, is not clear to me. I think the data fit better with a model in which PalmC causes low tension of the PM which in turn disrupts normal lipid organization and thus causes TORC2 to shut down, maybe not by changes in free ergosterol but by changes, for instance, in lipid raft formation (which is in part effected by ergosterol levels). The transport of ergosterol is only one mechanism that is involved in restoring PM tension and TORC2 activity. However, sensing free ergosterol alone is most likely not the mechanism explaining how TORC2 senses PM tension.

      Therefore, I recommend that the model is revised (or supported by more data), reflecting the fact that free ergosterol levels do not directly correlate with the TORC2 activity, but instead might be only one of the PM parameters that regulate TORC2.

      Author response:

      We thank the reviewer for their thoughtful assessment and constructive suggestions. As described in more detail above, we have included in our revised version of this manuscript a variety of new data, including the sterol-internalization dependent adaptation of the PM and regulation of TORC2 during additional stresses. We think that these data vastly improve on our previous manuscript version. We have addressed each point risen by the reviewer below and revised the manuscript accordingly, including a rewritten discussion and updated model to better reflect the limitations of our current understanding of how TORC2 senses changes in the plasma membrane (PM). It is true that the appearance of PM invaginations tracks well with TORC2 inhibition, but it is not clear to us if they are upstream of this inhibition or merely another symptom of the preceding PM perturbation (PalmC-induced free sterol increase can be observed after 10s (Fig. S2A), but PM invaginations become visible only after ~1 min - meanwhile we can observe near complete TORC2 inhibition after 30s). In this study, we are mostly interested in the role of PM sterol redistribution in stress response. Indeed we think that the role of free sterol clearance during stresses is to adapt the PM to these stresses - thus restoring PM parameters which in turn reactivates TORC2. This can be seen for hyperosmotic stress and the newly introduced PM stressors, Arp2/3 inhibition and heat shock response (Fig. 4). We have therefore softened our model and updated discussion and final figure (Fig. 5) to reflect that TORC2 likely responds to broader changes in PM organization or tension, with sterol redistribution representing one of several contributing factors rather than the sole signal.

      Comment: - If TORC2 is indeed inhibited by free ergosterol, the addition of ergosterol to the growth medium should be able to trigger similar effects as PalmC. If this detection of free ergosterol is very specific (e.g. if TORC2 has a binding pocket for ergosterol) we would expect that addition of other sterols such a cholesterol or ergosterol precursors should not inhibit TORC2.

      Response:

      We appreciate this suggestion and agree that testing whether exogenous ergosterol can mimic PalmC effects would help assess specificity. However, yeast do not readily take up sterols under aerobic conditions, which renders artificial sterol enrichment at the yeast PM rather difficult. We have now included additional data characterizing our Lam2/4 mutants (see below), and pharmacological sterol synthesis inhibition, showing that a depletion of free sterols from the PM correlates with lower TORC2 activity (Fig. 2D, S2C). Additionally, as suggested, we tried to probe if ergosterol directly interacts with TORC2 through a specific binding pocket, by treating a yeast strain expressing cholesterol rather than ergosterol (Souza et al., 2011) with PalmC. However, the response of TORC2 activity in these cells was very similar to that of WT cells (Rebuttal Fig. 2). In conclusion, we agree that at present we do not know mechanistically how sterols affect TORC2 activity, although it does indeed seem more likely to be through an indirect mechanism linked to changes in PM parameters. The nature of such a mechanism will be subject to further studies. We hope that the introduced changes to the manuscript adequately reflect these considerations.

      Rebuttal Fig. 2: WT yeast cells which produce ergosterol as main sterol, and mutant cells which produce cholesterol instead were treated with 5 µM PalmC, and TORC2 activity was assessed by relative phosphorylation of Ypk1 on WB. One representative experiment out of two replicates.

      Comment: - The experiment in Figure 1C is not controlled for differences in membrane intercalation of the different compounds. For instance, does C16 choline and C16 glycine accumulate at the same rate in the PM (measure similar to experiment in Figure 1B). Maybe the positive charge at the headgroup of the surfactants increases the local concentration at the PM and therefore can explain the difference in effect on the PM.

      Response:

      We agree with the reviewer that the effects of the various PalmC derivatives are not directly controlled for differences in membrane intercalation. Our structure-activity screen was intended to demonstrate the general biophysical mode of action of PalmC-like compounds and to define minimal structural requirements for activity.

      We now note in the manuscript that differential membrane insertion could contribute to the observed variation in efficacy, particularly in relation to tail length. While we considered this additional suggested experiment, it was ultimately judged to be outside the scope of this study due to its complexity and limited impact on the central conclusions.

      A clarifying sentence has been added to the relevant results section to explicitly acknowledge this limitation:

      "We did not control for differences in PM intercalation efficiency."

      We also include a discussion here to further clarify our interpretation. Prior in vitro studies have shown that while intercalation is necessary, it is not sufficient for PM perturbation. For example, palmitoyl-CoA intercalates into membranes but does not induce the same biophysical effects as PalmC (Goñi et al., 1996; Ho et al., 2002). Thus, we believe that intercalation is only part of the story, and that the intrinsic propensity of different headgroups to perturb the PM plays a key role in the disruption of PM lipid organization.

      Comment: - Are the intracellular ergosterol structures associated (or in close proximity) with lipid droplets (ergosterol being modified and delivered into a lipid droplet)?

      Response:

      We thank the reviewer for raising this point. We now include additional data (Fig. S2H) showing that intracellular D4H-positive structures do not reside near or colocalize with lipid droplets. The latter is not entirely unexpected as D4H does not recognize esterified sterols. However, we do observe an increase in overall LD volume following PalmC treatment, consistent with the idea that internalized PM sterols may be stored in LDs as sterol esters over time - although we did not test if this increase in LD volume is Lam2/4 dependent. This increase is mentioned in the revised results text. An increase in cellular LDs has also been recently reported during hyperosmotic shock (Phan et al., 2025).

      For more attempts to identify a marker for intracellular D4H foci, see reply to reviewer 1.

      Comment:

      • How does the AA and DD mutations in Lam2/4 change the localization of the ergosterol sensor (before and after PalmC treatment).

      Response:

      We thank the reviewer for this question, as in the course of generating these data we realized that our "inhibited" DD mutant was in fact not phosphomimetic but displayed the same D4H distribution as the "hyperactive" AA mutant, i.e. a marked inwards shift of D4H signal away from the PM to internal structures due to increased PM-ER retrograde transport of sterols (Fig. S2C). This led us to critically re-evaluate and ultimately repeat our TORC2 activity WB experiments for PalmC treatment in LAM2/4 mutants. In this new set of experiments, the faster TORC2 recovery after PalmC treatment in the LAM2T518A LAM4S401A mutant did unfortunately not repeat robustly. It is possible that such differences can be observed under specific conditions. Nevertheless, the improved overall quality of the Western blot data allowed us to make the observation that baseline activity was already slightly different in these strains. The Lam2/4 centered part of the results section has subsequently been updated in the manuscript:

      "Using a phosphospecific antibody, we did not observe an increase in baseline TORC2 activity in lam2Δ lam4Δ cells, which had been previously reported by electrophoretic mobility shift (Murley et al., 2017). Instead, baseline TORC2 activity was consistently slightly decreased in these cells (Fig. 2D). Ypk1, activated directly by TORC2, inhibits Lam2 and Lam4 through phosphorylation on Thr518 and Ser401, respectively (Roelants et al., 2018; Topolska et al., 2020). We substituted these residues with alanine, generating a strain in which Lam2/4 were no longer inhibited by phosphorylation (Roelants et al., 2018). In these cells, yeGFP-D4H showed that free sterols were constitutively shifted away from the PM to intracellular structures (Fig. S2C, bottom panel). Intriguingly, in opposition to lam2Δ lam4Δ cells, basal TORC2 activity was increased in LAM2T518A LAM4S401A cells (Fig. 2D). This suggests that a decrease in free PM sterols stimulates TORC2 activity [...]"

      "In LAM2T518A LAM4S401A cells, TORC2 activity recovers with similar kinetics as the WT (Fig. 2D, bottom blot), suggesting that Lam2/4 release from TORC2 dependent inhibition during PalmC treatment is a fast and efficient process in WT cells, not further expedited by these constitutively active Lams."

      As suggested, we also observed D4H localization in LAM2T518A LAM4S401A after PalmC treatment, and implemented these data to further demonstrate that PalmC causes an increase in the fraction of free ergosterol at the PM, which is subsequently removed:

      "PalmC addition to LAM2T518A LAM4S401A cells likewise resulted first in a transient increase and then a further decrease in PM yeGFP-D4H signal (Fig. 3C, S3D)."

      Comment: - Does Lam2/4 localize to ER-PM contact sites near the large PM invaginations, which could allow for efficient transport of the free ergosterol that accumulates in these structures.

      Response:

      We were curious about this too, and have now added the requested data in our supplementary material and added a sentence in our results:

      "Indeed, in cells expressing GFP-Lam2 we observed that PalmC induced PM invaginations often formed at sites with preexisting GFP-Lam2 foci (Fig. S2K, cyan arrow), although GFP-Lam2 foci did not always colocalize with invaginations (Fig. S2K, yellow arrow) and vice versa. "

      Additionally, in the effort to characterize intracellular D4H foci during PalmC as requested by reviewer 1, we also looked at the localization of these foci relative to ER, and found that

      "During early timepoints, intracellular foci are usually in close vicinity to ER (Fig. S2E)"

      Reviewer #3 (Significance (Required)): The manuscript describes the effects of small molecule surfactants on the PM organization and on TORC2 activity. This is an important set of observation that helps understanding the response of cells to environmental stressors that affect the PM. This field of study is very challenging because of the limited tools available to directly observe lipids and their movements. I consider the data and most of its interpretations of high importance, but I am not convinced of the larger model that tries to link the ergosterol data with TORC2 activity. With adjustments of the model or additional experimental support, this manuscript will be of general interest for cell biologists, especially for researchers studying membrane stress response pathways.

      Response:

      We thank the reviewer for highlighting the importance of studying PM stress responses and acknowledging the technical challenges involved. We hope the applied changes and additional data succeed in softening our claims about TORC2 regulation while convincing the reviewer that free sterol levels at the PM are one of several contributing factors that correlate with changes in TORC2 activity.

      Colom, A., Derivery, E., Soleimanpour, S., Tomba, C., Dal Molin, M., Sakai, N., González-Gaitán, M., Matile, S., Roux, A., 2018. A Fluorescent Membrane Tension Probe. Nat. Chem. 10, 1118-1125. https://doi.org/10.1038/s41557-018-0127-3

      Flesch, F.M., Yu, J.W., Lemmon, M.A., Burger, K.N.J., 2005. Membrane activity of the phospholipase C-δ1 pleckstrin homology (PH) domain. Biochem. J. 389, 435-441. https://doi.org/10.1042/BJ20041721

      Gatta, A.T., Wong, L.H., Sere, Y.Y., Calderón-Noreña, D.M., Cockcroft, S., Menon, A.K., Levine, T.P., 2015. A new family of StART domain proteins at membrane contact sites has a role in ER-PM sterol transport. eLife 4. https://doi.org/10.7554/eLife.07253

      Goñi, F.M., Requero, M.A., Alonso, A., 1996. Palmitoylcarnitine, a surface-active metabolite. FEBS Lett. 390, 1-5. https://doi.org/10.1016/0014-5793(96)00603-5

      Ho, J.K., Duclos, R.I., Hamilton, J.A., 2002. Interactions of acyl carnitines with model membranes: a (13)C-NMR study. J. Lipid Res. 43, 1429-1439. https://doi.org/10.1194/jlr.m200137-jlr200

      Jentsch, J.-A., Kiburu, I., Pandey, K., Timme, M., Ramlall, T., Levkau, B., Wu, J., Eliezer, D., Boudker, O., Menon, A.K., 2018. Structural basis of sterol binding and transport by a yeast StARkin domain. J. Biol. Chem. 293, 5522-5531. https://doi.org/10.1074/jbc.RA118.001881

      Murley, A., Yamada, J., Niles, B.J., Toulmay, A., Prinz, W.A., Powers, T., Nunnari, J., 2017. Sterol transporters at membrane contact sites regulate TORC1 and TORC2 signaling. J. Cell Biol. 216, 2679-2689. https://doi.org/10.1083/jcb.201610032

      Otzen, D.E., Blans, K., Wang, H., Gilbert, G.E., Rasmussen, J.T., 2012. Lactadherin binds to phosphatidylserine-containing vesicles in a two-step mechanism sensitive to vesicle size and composition. Biochim. Biophys. Acta BBA - Biomembr., Protein Folding in Membranes 1818, 1019-1027. https://doi.org/10.1016/j.bbamem.2011.08.032

      Phan, J., Silva, M., Kohlmeyer, R., Ruethemann, R., Gay, L., Jorgensen, E., Babst, M., 2025. Recovery of plasma membrane tension after a hyperosmotic shock. Mol. Biol. Cell 36, ar45. https://doi.org/10.1091/mbc.E24-10-0436

      Ragaller, F., Sjule, E., Urem, Y.B., Schlegel, J., El, R., Urbancic, D., Urbancic, I., Blom, H., Sezgin, E., 2024. Quantifying Fluorescence Lifetime Responsiveness of Environment-Sensitive Probes for Membrane Fluidity Measurements. J. Phys. Chem. B 128, 2154-2167. https://doi.org/10.1021/acs.jpcb.3c07006

      Riggi, M., Niewola-Staszkowska, K., Chiaruttini, N., Colom, A., Kusmider, B., Mercier, V., Soleimanpour, S., Stahl, M., Matile, S., Roux, A., Loewith, R., 2018. Decrease in plasma membrane tension triggers PtdIns(4,5)P2 phase separation to inactivate TORC2. Nat. Cell Biol. 20, 1043-1051. https://doi.org/10.1038/s41556-018-0150-z

      Rodríguez-Escudero, I., Fernández-Acero, T., Cid, V.J., Molina, M., 2018. Heterologous mammalian Akt disrupts plasma membrane homeostasis by taking over TORC2 signaling in Saccharomyces cerevisiae. Sci. Rep. 8, 7732. https://doi.org/10.1038/s41598-018-25717-w

      Roelants, F.M., Chauhan, N., Muir, A., Davis, J.C., Menon, A.K., Levine, T.P., Thorner, J., 2018. TOR complex 2-regulated protein kinase Ypk1 controls sterol distribution by inhibiting StARkin domain-containing proteins located at plasma membrane-endoplasmic reticulum contact sites. Mol. Biol. Cell 29, 2128-2136. https://doi.org/10.1091/mbc.E18-04-0229

      Sakata, K.-T., Hashii, K., Yoshizawa, K., Tahara, Y.O., Yae, K., Tsuda, R., Tanaka, N., Maeda, T., Miyata, M., Tabuchi, M., 2022. Coordinated regulation of TORC2 signaling by MCC/eisosome-associated proteins, Pil1 and tetraspan membrane proteins during the stress response. Mol. Microbiol. 117, 1227-1244. https://doi.org/10.1111/mmi.14903

      Shao, C., Novakovic, V.A., Head, J.F., Seaton, B.A., Gilbert, G.E., 2008. Crystal Structure of Lactadherin C2 Domain at 1.7Å Resolution with Mutational and Computational Analyses of Its Membrane-binding Motif*. J. Biol. Chem. 283, 7230-7241. https://doi.org/10.1074/jbc.M705195200

      Shi, J., Heegaard, C.W., Rasmussen, J.T., Gilbert, G.E., 2004. Lactadherin binds selectively to membranes containing phosphatidyl-L-serine and increased curvature. Biochim. Biophys. Acta 1667, 82-90. https://doi.org/10.1016/j.bbamem.2004.09.006

      Souza, C.M., Schwabe, T.M.E., Pichler, H., Ploier, B., Leitner, E., Guan, X.L., Wenk, M.R., Riezman, I., Riezman, H., 2011. A stable yeast strain efficiently producing cholesterol instead of ergosterol is functional for tryptophan uptake, but not weak organic acid resistance. Metab. Eng. 13, 555-569. https://doi.org/10.1016/j.ymben.2011.06.006

      Stefan, C.J., Audhya, A., Emr, S.D., 2002. The yeast synaptojanin-like proteins control the cellular distribution of phosphatidylinositol (4,5)-bisphosphate. Mol. Biol. Cell 13, 542-557. https://doi.org/10.1091/mbc.01-10-0476

      Tong, J., Manik, M.K., Im, Y.J., 2018. Structural basis of sterol recognition and nonvesicular transport by lipid transfer proteins anchored at membrane contact sites. Proc. Natl. Acad. Sci. 115, E856-E865. https://doi.org/10.1073/pnas.1719709115

      Topolska, M., Roelants, F.M., Si, E.P., Thorner, J., 2020. TORC2-Dependent Ypk1-Mediated Phosphorylation of Lam2/Ltc4 Disrupts Its Association with the β-Propeller Protein Laf1 at Endoplasmic Reticulum-Plasma Membrane Contact Sites in the Yeast Saccharomyces cerevisiae. Biomolecules 10, 1598. https://doi.org/10.3390/biom10121598

      Torra, J., Campelo, F., Garcia-Parajo, M.F., 2024. Tensing Flipper: Photosensitized Manipulation of Membrane Tension, Lipid Phase Separation, and Raft Protein Sorting in Biological Membranes. J. Am. Chem. Soc. 146, 24114-24124. https://doi.org/10.1021/jacs.4c08580

      Uekama, N., Aoki, T., Maruoka, T., Kurisu, S., Hatakeyama, A., Yamaguchi, S., Okada, M., Yagisawa, H., Nishimura, K., Tuzi, S., 2009. Influence of membrane curvature on the structure of the membrane-associated pleckstrin homology domain of phospholipase C-δ1. Biochim. Biophys. Acta BBA - Biomembr. 1788, 2575-2583. https://doi.org/10.1016/j.bbamem.2009.10.009

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      We thank all the reviewers for their helpful and constructive comments and for their time.


      Reviewer #1 (Evidence, reproducibility and clarity (Required)):*

      Summary: Dady et al have developed fluorescent reporters to enable live imaging of cell behaviour and morphology in human pluripotent stem cell lines (PSCs). These reporters target 3 main features, the plasma membrane, nucleus and cytoskeleton. Reporter PSCs have been generated using a piggyBac transposon-mediated stable integration strategy, using a hyperactive piggyBac transposase (HyPBase). The same constructs were also used for mosaic labelling of cells within 2D cultures using lipofectamine transfection.

      The reporters used are tagged with either eGFP or mKate2 (far red) and tag the plasma membrane (pm) via the addition of a 20 amino-acid sequence from rat GAP-43 to the N-terminus of the fluorescent protein, the nucleus via Histone 2B with a laser-mediated photo-conversion option (H2B-mEos3.2), and the cytoskeleton via F-Tractin. In total, the authors produced lines with the following:

      • pm-mKate2 (far red) • pm-eGFP (green) • H2B-mEos3.2 (green to red) • F-tractin-mKate2 (far red) • H2B-mEos3.2 and pm-mKate2 (green to red, plus far red)

      The cell lines used to generate these were the human embryonic stem cell line H9 and human induced pluripotent cell line ChiPS4. The constructs were also used to label cells in a mosaic fashion, using lipofectamine transfection of the original cell lines once they had formed neural rosettes.

      Using these cells, Dady et al then performed live imaging in vitro of human spinal cord rosettes and assessed cell behaviour. In particular they analysed mitotic cleavage planes and apical positioning of neural progenitor cells (NPCs), and assessed actin dynamics within these cells. They showed a slowing of the cell cycle length after the initial expansion phase, an increase in the rate of asymmetric division of these NPCs, and abscission of the apical membrane during these divisions. The F-tractin reporter showed enrichment at the basal nuclear membrane during these cell divisions, suggested to help prevent basal chromosome displacement during mitosis.

      Major comments: The data presented are convincing and could be strengthened by the following additions and clarifications:*

      1. How long do the fluorescent reports take to be visible when transfected via lipofectamine? How efficiently are they expressed? And what concentrations were tested to enable the mosaic expression presented? * We followed the manufacturer’s instructions for Lipofectamine 3000 transfection, using the protocol recommended for set up for a 6 wells plate. We detected fluorescence the following morning ~16h. We did not assess earlier time points or optimise efficiency as we observed the mosaic pattern of expression we set out to achieve, with small groups of labelled cells and single cells as shown in Figure 3 and movies 2 and 3. This information and the detailed protocol provided below are now included in the Methods section “Labelling individual cells in human spinal cord rosettes by lipofection”.

      Manufacturer’s instructions for Lipofectamine 3000 transfection (6 well plate):

      • 1 tube containing 125 ul of Opti-MEM and 7.5 ul of Lipofectamine 3000
      • 1 tube containing 250 ul of Opti-MEM with 5 ug of DNA (total mix DNAs of 2 ug/ul) and P3000 Reagent
      • Add diluted DNA to diluted Lipofectamine 3000 (Ratio 1:1) and incubate for 10 to 15 min at Room Temperature.
      • 20 ul of DNA-Lipid complex was added to neural rosettes growing in 8 well IBIDI dishes (20 ul/well).
      • The ratio of DNA (PiggyBac plasmid) and HypBase transposase was kept at 5:1 (for a final concentration of 2ug/ul).
      • Cells in IBIDI dishes were left to develop in a sterile incubator overnight and mosaic fluorescence was observed the following morning (~16h post-lipofection).

      • Will these cell lines and constructs be made publicly available after publication?*

      The cell lines can be made available: for those reporters made in the H9 WiCell line an MTA will first have to be signed between the requesting PI and WiCell and permission for us to share the line(s) confirmed by WiCell; similarly, for reporters in ChiPS4 line an MTA will first need to be signed between the requesting PI and Cellartis/TakaraBio Europe. We will need to make a charge to cover costs. Constructs will be deposited with Addgene.

      • Were the H9 and ChiPS4 lines characterised after the reporters were added to show they still proliferate/differentiate as they did prior to the reporter integration*?

      In the Results we make clear that all lines created are polyclonal, with exception of a pm-eGFP ChiPS4 line, which is a monoclonal line (lines 145-150). We do not have direct data measuring cell proliferation but collected cell passaging data for all the reporter lines. This showed that they grow to similar densities at each passage compared to the parental line (this metadata is now provided as Supplementary data 1 and is cited in the Methods, line 348).

      As a proof of principle for this approach, we created one monoclonal line from a polyclonal line ChIPS4-pm-eGFP. The latter was made by selecting an individual clone and this was then expanded and characterised for expression of pluripotency markers (immunocytochemistry data Figure S4), and the ability to differentiate into 3 germ layers (qPCR Supplementary data 1). This information is already cited in the Methods (Lines 358-362).

      • Can the novel actin dynamics described be quantified? How many cells imaged show these novel dynamics?* Some of this quantification data was already reported in the paper (in figure 4 legend and in the Methods); we have now updated this and provide the detailed metadata in an Excel spread sheet, Supplementary data 4 (cited in the Methods, line 489)

      Minor comments: 1. Some images in the figures and supplemental movies are low in resolution, for example the DAPI in Fig 4B, making it hard to distinguish individual cells. Please increase this.

      We consider the DAPI labelling in Figure 4b to be clear, however, we wonder whether the reviewer was expecting to also see this combined with the other markers. We have therefore now provided these merged additional images in a revised Figure 4.

      • Please show a merge of Phalloidin and F-Tractin in Fig4, this will help the colocalization to be fully appreciated.*

      This has now been provided in revised Figure 4B.

      • Some additional annotation on the supplemental movies would be useful to indicate to the **reader exactly what cell to follow. *

      We have added indicative arrows to the movies, and note that more detailed labelling of the series of still images from these movies are provided in the main figures (Figures 3D and 4E & F).

      *Reviewer #1 (Significance (Required)):

      Human neurogenesis is currently poorly understood compared to many model systems used, yet key differences have already been identified between the human and the mouse, prompting the need for further investigation of human neural development. A major reason that human neurogenesis has been difficult to study is a lack of tools to enable cell morphology and behaviours to be analysed in real time.

      The reporters and reporter PSC lines generated by Dady et al will allow many of these cell characteristics to be observed using live imaging. For example, the morphology of neural progenitors during and after cell divisions, how the apical and basal processes and membranes are divided, and how the actin cytoskeleton helps to regulate these processes.

      *Importantly, PSC lines can be very heterogeneous, making generating reporter lines costly and time intensive. The use of these reporters with lipofectamine transfection, for a mosaic labelling, allows the visualisation of the plasma membrane, nucleus and cytoskeleton in any human PSC/NPC line, or even in human tissue cultures, without the need to generate each specific reporter line, making it a valuable tool for many labs in the field.

      We strongly agree with this final point; this is a major reason for our study.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):*

      The manuscript describes the generation of novel lines of human pluripotent stem cells bearing fluorescent reporters, engineered through piggyBac transposon-mediated integration. The cells are differentiated into neuronal organoids, allowing to capture cellular behaviors associated to cell division. A replating protocol allows the observation of aging neurons by reducing the thickness of the tissue thereby facilitating live imaging. The authors also leverage the transposon technology to create mosaically-labelled organoids which allows visualizing aspects of neuronal delamination, notably cytoskeleton dynamics. They discover an undescribed pattern of F-actin enrichment at the basal nuclear membrane prior to nuclear envelope breakdown.

      L104-109: "Moreover, the transposon system obviates drawbacks of directly engineering endogenous proteins...". Despite the risk of endogenous protein dysfunction, directly tagging allows the full regulation of gene expression (including the promoter, the enhancers and other regulatory regions rather than a strong constitutive promoter such as CAG). In addition, the number of copies integrated and the genomic regions are variable with PB, which does not reflect the endogenous expression. This could be rephrased by nuancing the advantages and drawbacks of each approach. The PiggyBac method is easier and faster, but it results in overexpression of a tagged protein that will be expressed since the hESC state and might not reflect the expression dynamics of the endogenous protein.* We agree and have now revised this in the Introduction L109-118.

      *L124-126: "To monitor cell shape and dynamics we used a plasma membrane (pm) localized protein tagged with eGFP or mKate2 (pm-eGFP or pm-mKate2)." Could the authors provide more details and a reference on the palmitoylated rat peptide use to force membrane expression? *

      This information, including the peptide sequence, is provided in the Methods (L330-331), we have now added a reference addressing its role in membrane localisation PMID: 2918027.

      L132-133: " Finally, to observe actin cytoskeletal dynamics we selected F-tractin, for its minimal impact on cytoskeletal homeostasis".

      A recent JCB paper (https://doi.org/10.1083/jcb.202409192) suggests that "F-tractin alters actin organization and impairs cell migration when expressed at high levels". Whether the overexpression of F-tractin in hESC using a CAG promoter reflects the physiological F-actin dynamics and/or if the high levels could lead to an alteration of cell behavior should be addressed or at least discussed. The paper we cite in this sentence (Belin et al 2014) evaluates F-tractin expression against other approaches to labelling and monitoring the actin cytoskeleton and concludes that in comparison F-tractin has minimal impact.

      We do appreciate that expression above the endogenous level has the potential to alter cell behaviour and have revised the paper to more explicitly acknowledge this: in the Introduction (L109-112), and in the Discussion/conclusion (L289-293) where we now note the recent advances reported in Shatskiy et al. 2025 PMID: 39928047.

      “A further potential limitation of this approach is that over-expression driven by the CAG promoter might not reflect physiological protein dynamics and/or alter cell behaviour; for example, high levels of F-Tractin can impair cell migration and induce actin bundling, interestingly, this can now be minimised by removing the N-terminal region (Shatskiy et al 2025)”.

      L146-147: "...to generate polyclonal cell lines selected for expression of easily detectable (medium level) fluorescence for live imaging studies". What are the criteria used to define medium level? Number of copies integrated into the genome? Or levels by FACS during clone selection?

      To clarify, all the lines presented here are polyclonal, except for one clonal line, pm-eGFP in ChiPS4. The numbers of copies integrated may vary from cell to cell in polyclonal lines. In this study, we selected cells for all lines with a FACS gate and this data is presented in Figure S1 (see line 147).

      L260-263: "Efficient stable integration and moderate expression levels were achieved by optimising, i) the quantity and ratio of piggyBac plasmids and transposase and ii) subsequent FACS to exclude high expressing cells, as well as iii) transfection methods, including temporally defined lipofection in hiPSC-derived tissues." The ration 5:1 is classically used for PB Transposase delivery, however there is still high variability in the number of copies integration. Lipofection in derived tissues has been shown to be challenging. Could the authors should provide quantitative data regarding the efficiency of their approaches, notably the level of mosaicism one could expect?

      We provide quantitative data for the efficiency of transfection using nucleoporation assays (FACS data presented in Supplementary figure S1), which shows more than 80-90% efficiency for eGFP in 82.82% of cells, mKate2 in 92.74% of cells, and H2B-mEos3 22.75% of cells, while 13.79% of cells co-expressed pm-Kate and H2B-mEos3.2. No comparative data regarding the efficiency of the tissue Lipofection assay was collected: our goal was to label single/small numbers of cells in order to monitor individual cell behaviours, and this “inefficient labelling” was readily achieved following the manufacturer’s instructions (please see response to Review 1 point 1), further details are now provided in the Methods.

      L191-194: "We further wished to monitor sub-cellular behaviour within the developing neuroepithelium. To achieve this, we devised a strategy to target a mosaic of cells in established neural rosettes using lipofection. PiggyBac constructs and HyPBase transposase were transfected into D8/D9 human spinal cord neural progenitors using lipofectamine (Felgner, et al., 1987)(Fig. 3A)." The mosaicism is not an all or nothing in this method but also leads to variations in expression levels among the positive cells. The protocol for lipofection could be better detailed to allow easy reproduction by other teams, and its expected efficiency should be discussed. It would be interesting to explore the relationship between individual cells phenotype and expression levels. Please see response to Reviewer 1 point 1 above for more detailed lipofection protocol which generated mosaic expression, this is now also included in the Methods. We agree that investigating the relationship between individual cell phenotypes and expression levels would be interesting, but we think this is beyond the scope of this paper.

      Additional comments: -Did the authors perform karyotyping of the hPSCs prior to use in the differentiation protocol?

      As these are polyclonal lines, we did not undertake karyotyping. This could be done for the one monoclonal line described here (pm-eGFP ChiPS4 line): we lack funds for commercial options, but we are exploring other possibilities.

      -Were pluripotency assays performed after reporter lines generation?

      These were carried out for the clonal pm-eGFP ChiPS4 line (lines 145-150). The latter was made by selecting an individual clone and this was then expanded and characterised for expression of pluripotency markers by IF (Figure S4), and the ability to differentiate into 3 germ layers by qPCR (Supplementary data 2). This information is provided in the Methods (Lines 358-362).

      *-Did the authors measure the cell proliferation rate in H2B-overexpressing cells and controls? Since H2B plays an important role in cytokinesis, it could interfere in cell division when H2B is overexpressed (see doi: 10.3390/cells8111391). *

      We did not directly measure cell division when H2B is over-expressed. However, we assessed cell -passaging time of all the transfected cell lines. This showed that they grow to similar densities at each passage compared to the parental line (this is now provided as Supplementary data 1 and is cited in the Methods, line 348). We also found no difference between apical visiting time of progenitors in spinal cord rosettes expressing pm-eGFP or H2B-mEoS3.2, further supporting the conclusion that levels of H2B-mEoS3.2 expression achieved in this line did not interfere with cell division (metadata provided in Supplementary data 3).

      The authors should provide data concerning the efficiency of expression of the distinct markers after electroporation. This is provided in Supplementary Figure S1 (FACS data) and detailed above for this reviewer.

      *At Fig 1C, the schematic representation describes clone selection, however in the methods it is stated (L348-349): "Sorted cells expressing medium levels of fluorescence were expanded and frozen then representative lots of each polyclonal cell line...". There is some confusion regarding which experiments were performed using polyclonal medium-level mixed populations or monoclonal populations. *

      We apologise for any confusion and have revised the Figure 1C schematic to indicate that cells can be selected to either make polyclonal lines or clonal lines.

      *Reviewer #2 (Significance (Required)):

      The study provides novel tools, as well as elements regarding neuroepithelium biology. It is well conducted and written, and the quality of images is excellent. It reads more as a resource paper in its current version, since the observation regarding neural cell division and delamination are interesting but not deeply explored, so this review will focus on those technical aspects rather than the novelty of the biological findings.

      This study would be of interests for researchers in stem cells and organoids, developmental biology, and neurosciences.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      In the manuscript, "Engineering fluorescent reporters in human pluripotent cells and strategies for live imaging human neurogenesis" the authors Dady et al. describe the adaptation of a recent advancement in transposase technology (HyPBase) as a method to integrate live reporters in human pluripotent stem cells. They show that these florescent reporters paired with new imaging strategies can be used to confirm the existence cellular behaviour described in other species such as the interkinetic nuclear migration (IKNM) of dividing progenitors in neural tube development. Finally, they demonstrate that this live imaging system is also able to discover novel biology by identifying previously undescribed actin polymerization at the basal nuclear surface of cortical progenitors undergoing cell division. Overall, the study presents two examples in which this adapted tool will aid in live-imaging studies of cellular biology.

      Major Concerns: 1. This work needs more controls to properly demonstrate claims that their engineering strategy provides an advancement to current Piggyback methods. Their HyPBase strategy needs to be compared and quantified in terms of efficiency with other methods to support their claims (increased detection and reduced phototoxicity).*

      We do not make specific claims for our experiments with respect to the superiority of HyPBase strategy. Our comments on this approach referred to by the reviewer here are in the Introduction (L 94-103), are supported by the literature (e.g. more stable gene expression than native piggyBac or the Tc1/mariner transposase Sleeping Beauty (Doherty, et al., 2012, Yusa, et al., 2011) and serve to explain our selection of HyPBase for our experiments. We make a case for using HyPBase as opposed to another transposase and although it would be interesting to compare efficiencies, this comment does not specify what “other methods” might be informative.

      2.Throughout the manuscript more quantification is needed of the results. How many rosettes were examined? Were all the reported cells within one rosette? Were there differences between rosettes? This should be done for both the spinal and cortical differentiations.

      The reviewer appears to have missed this information – we placed detailed quantifications in the figure legends (numbers of independent experiments and rosettes) and in the Methods in a specific section on Quantification of cell behaviour (L465-486), rather than in the main text. These has since been further updated and we now also provide additional metadata in the form of Excel spreadsheets for quantifications and analyses made for both spinal cord and cortical rosettes (Supplementary data 3 and 4 respectively).

      Minor Comments: 1. Line 246 needs quantification shown in figures of the statements made. Specifically, how many cells were measured to get this number?

      This information was provided in the figure 4 legend and we have since added numbers to these data; we were able to monitor 169 divisions in 21 rosettes; 154/166 divisions had vertical cleavage planes (symmetric) and 12/166 had horizontal cleavage planes (asymmetric).

      These detailed observations were made in two independent experiments, along with observations of basal nuclear membrane F-Tractin localisation. This is noted in figure 4 legend, Methods and detailed metadata is provided in Supplementary data 4.

      2.How many cells in the cortical rosettes had the enriched actin at the basal nuclear surface?

      We confidently observed basal nuclear membrane F-Tractin enrichment in 141/146 divisions, for the remaining 20 cases (166-146), we could not tell whether F-Tractin is enriched or not at the basal nuclear membrane either because of low expression levels or because the basal nuclear membrane was out of focus at NEB. In 5 cases, we did not see the basal nuclear enrichment despite sufficient F-Tractin expression levels and the nucleus being in focus. We have updated the Fig4 legend excluding the non-analysable cases and see detailed metadata is provided in Supplementary data 4.

      *Reviewer #3 (Significance (Required)):

      General Assessment: This manuscript makes a very minor advancement in the field of stem cell engineering and developmental biology, but one that is worthy of publication with a few edits.

      Advance: While PiggyBac reporters are widely used in stem cell engineering, Dady et al. demonstrate a new workflow using HyPBase which would be beneficial to the field. However, to increase this benefit, much more description and quantification of the methods would be needed. The biological advances of this manuscript are also very minor, but interesting as most of them confirm that human neural rosettes mimic many of the observed cell behaviours seen in animal models. Along these lines is the actin dynamics observation in cortical rosettes is interesting, but a preliminary observation and in need of follow up experiments.

      Audience: Regardless, this technique would be of interest to the wider field of stem cell engineering.

      My Expertise: Human Stem Cell Engineering, Neural Tube Development*

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The authors have assembled a cohort of 10 SiNET, 1 SiAdeno, and 1 lung MiNEN samples to explore the biology of neuroendocrine neoplasms. They employ single-cell RNA sequencing to profile 5 samples (siAdeno, SiNETs 1-3, MiNEN) and single-nuclei RNA sequencing to profile seven frozen samples (SiNET 4-10).

      They identify two subtypes of siNETs, characterized by either epithelial or neuronal NE cells, through a series of DE analyses. They also report findings of higher proliferation in non-malignant cell types across both subtypes. Additionally, they identify a potential progenitor cell population in a single-lung MiNEN sample.

      Strengths:

      Overall, this study adds interesting insights into this set of rare cancers that could be very informative for the cancer research community. The team probes an understudied cancer type and provides thoughtful investigations and observations that may have translational relevance.

      Weaknesses:

      The study could be improved by clarifying some of the technical approaches and aspects as currently presented, toward enhancing the support of the conclusions:

      (1) Methods: As currently presented, it is possible that the separation of samples by program may be impacted by tissue source (fresh vs. frozen) and/or the associated sequencing modality (single cell vs. single nuclei). For instance, two (SiNET1 and SiNET2) of the three fresh tissues are categorized into the same subtype, while the third (SiNET9) has very few neuroendocrine cells. Additionally, samples from patient 1 (SiNET1 and SiNET6) are separated into different subtypes based on fresh and frozen tissue. The current text alludes to investigations (i.e.: "Technical effects (e.g., fresh vs. frozen samples) could also impact the capture of distinct cell types, although we did not observe a clear pattern of such bias."), but the study would be strengthened with more detail.

      We thank the reviewer for the thoughtful and constructive review. Due to the difficulty in obtaining enough SiNET samples, we used two platforms to generate data - single cell analysis of fresh samples, and single nuclei analysis of frozen samples. We opted to combine both sample types in our analysis while being fully aware of the potential for batch effects. We therefore agree that this is a limitation of our work, and that differences between samples should be interpreted with caution.

      Nevertheless, we argue that the two SiNET subtypes that we have identified are very unlikely to be due to such batch effect. First, the epithelial SiNET subtype was not only detected in two fresh samples but also in one frozen sample (albeit with relatively few cells, as the reviewer correctly noted). Second, and more importantly, the epithelial SiNET subtype was also identified in analysis of an external and much larger cohort of bulk RNA-seq SiNET samples that does not share the issue of two platforms (as seen in Fig. 2f). Moreover, the proportion of samples assigned to the two subtypes is similar between our data and the external data. We therefore argue that the identification of two SiNET subtypes cannot be explained by the use of two data platforms. However, we agree that the results should be further investigated and validated by future studies.

      The reviewer also commented that two samples from the same patient which were profiled by different platforms (SiNET1 and SiNET6) were separated into different subtypes. We would like to clarify that this is not the case, since SiNET6 was not included in the subtype analysis due to too few detected Neuroendocrine cells, and was not assigned to any subtype, as noted in the text and as can be seen by its exclusion from Figure 2 where subtypes are defined. We apologize that our manuscript may have given the wrong impression about SiNET6 classification (it was labeled in Fig. 4a in a misleading manner). In the revised manuscript, we corrected the labeling in Fig. 4a and clarified that SiNET6 is not assigned to any subtype. We also further acknowledge the limitation of the two platforms and the arguments in favor of the existence of two SiNET subtypes.     

      (Additional specific recommendations for the authors are provided below)

      (2) Results:

      Heterogeneity in the SiNET tumor microenvironment: It is unclear if the current analysis of intratumor heterogeneity distinguishes the subtypes. It may be informative if patterns of tumor microenvironment (TME) heterogeneity were identified between samples of the same subtype. The team could also evaluate this in an extension cohort of published SiNET tumors (i.e. revisiting additional analyses using the SiNET bulk RNAseq from Alvarez et al 2018, a subset of single-cell data from Hoffman et al 2023, or additional bulk RNAseq validation cohorts for this cancer type if they exist [if they do not, then this could be mentioned as a need in Discussion])

      We agree that analysis of an independent cohort will assist in defining the association between TME and the SiNET subtype. However, the sample size required for that is significantly larger than the data available. In the revised manuscript we note that as a direction for future studies.

      (3) Proliferation of NE and immune cells in SiNETs: The observed proliferation of NE and immune cells in SiNETs may also be influenced by technical factors (including those noted above). For instance, prior studies have shown that scRNA-seq tends to capture a higher proportion of immune cells compared to snRNA-seq, which should be considered in the interpretation of these results. Could the team clarify this element?

      We agree that different platforms could affect the observed proportions of immune cells, and more generally the proportions of specific cell types. However, the low proliferation of Neuroendocrine cells and the higher proliferation of immune cells (especially B cells, but also T cells and macrophages) is consistently observed in both platforms, as shown in Fig. 4a, and therefore appears to be reliable despite the limitations of our work. We clarify this consistency in the revised manuscript. 

      (4) Putative progenitors in mixed tumors: As written, the identification of putative progenitors in a single lung MiNEN sample feels somewhat disconnected from the rest of the study. These findings are interesting - are similar progenitor cell populations identified in SiNET samples? Recognizing that ideally additional validation is needed to confidently label and characterize these cells beyond gene expression data in this rare tumor, this limitation could be addressed in a revised Discussion.

      We do not find evidence for similar progenitors in the SiNET samples, but they also do not contain two co-existing lineages of cancer cells within the same tumor, so this is harder to define. We agree about the need for additional validation for this specific finding and have noted that in the revised Discussion.

      Reviewer #2 (Public review):

      Summary:

      The research identifies two main SiNET subtypes (epithelial-like and neuronal-like) and reveals heterogeneity in non-neuroendocrine cells within the tumor microenvironment. The study validates findings using external datasets and explores unexpected proliferation patterns. While it contributes to understanding SiNET oncogenic processes, the limited sample size and depth of analysis present challenges to the robustness of the conclusions.

      Strengths:

      The studies effectively identified two subtypes of SiNET based on epithelial and neuronal markers. Key findings include the low proliferation rates of neuroendocrine (NE) cells and the role of the tumor microenvironment (TME), such as the impact of Macrophage Migration Inhibitory Factor (MIF).

      Weaknesses:

      However, the analysis faces challenges such as a small sample size, lack of clear biological interpretation in some analyses, and concerns about batch effects and statistical significance.

      Reviewer #3 (Public review):

      Summary:

      In this study, the authors set out to profile small intestine neuroendocrine tumors (siNETs) using single-cell/nucleus RNA sequencing, an established method to characterize the diversity of cell types and states in a tumor. Leveraging this dataset, they identified distinct malignant subtypes (epithelial-like versus neuronal-like) and characterized the proliferative index of malignant neuroendocrine cells versus non-malignant microenvironment cells. They found that malignant neuroendocrine cells were far less proliferative than some of their non-malignant counterparts (e.g., B cells, plasma cells, epithelial cells) and there was a strong subtype association such that epithelial-like siNETs were linked to high B/plasma cell proliferation, potentially mediated by MIF signaling, whereas neuronal-like siNETs were correlated with low B/plasma cell proliferation. The authors also examined a single case of a mixed lung tumor (neuroendocrine and squamous) and found evidence of intermediate/mixed and stem-like progenitor states that suggest the two differentiated tumor types may arise from the same progenitor.

      Strengths:

      The strengths of the paper include the unique dataset, which is the largest to date for siNETs, and the potentially clinically relevant hypotheses generated by their analysis of the data.

      Weaknesses:

      The weaknesses of the paper include the relatively small number of independent patients (n = 8 for siNETs), lack of direct comparison to other published single-cell NET datasets, mixing of two distinct methods (single-cell and single-nucleus RNA-seq), lack of direct cell-cell interaction analyses and spatially-resolved data, and lack of in vitro or in vivo functional validation of their findings.

      The analytical methods applied in this study appear to be appropriate, but the methods used are fairly standard to the field of single-cell omics without significant methodological innovation. As the authors bring forth in the Discussion, the results of the study do raise several compelling questions related to the possibility of distinct biology underlying the epithelial-like and neuronal-like subtypes, the origin of mixed tumors, drivers of proliferation, and microenvironmental heterogeneity. However, this study was not able to further explore these questions through spatially-resolved data or functional experiments.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      (1) Methods:

      a) Could the team clarify the discrepancy in subtype assignment between two samples from the same patient? i.e. are these samples from the same tumor? If so, what does the team think is the explanation for the difference in subtype assignment?

      As noted above in response to the public review of reviewer #1, SiNET6 was in fact not assigned to any subtype (due to insufficient NE cells) and hence there was no discrepancy. We apologize for the misleading labeling of SiNET6 in the previous version and have corrected this In the revised version of Figure 4.

      b) What is the rationale for scoring tumor-derived programs on samples with no tumor cells? For instance, SiNET3 does not contain NE cells, and SiNET9 has a very low fraction of NE cells. Please clarify how the scoring was performed on these samples, as the program assignments may be driven by other cell types in samples with little to no NE cells.

      Scoring for tumor-derived programs was done only for the NE cells. Accordingly, SiNET3 was not scored or assigned to any of the programs. SINET9 was included in this analysis - although it had a relatively small fraction of NE cells, the absolute number of profiled cells was particularly high in this sample and therefore the number of NE cells was 130, higher than our cutoff of 100 cells.

      c) Given the heterogeneity of cell types within each sample, would there be a way to provide a refined sense of confidence for certain cell type annotations? This would be helpful given the heterogeneity in marker gene expression and the absence of gold-standard markers for fibroblasts and endothelial cells in this cancer type. Additionally, there seems to be an unusually large proportion of NK and T cells - was there selection for this (given that these tumors are largely not immune infiltrated)?

      Author Response: Except for the Neuroendocrine cells, there are six TME cell types that we consistently find in multiple SiNET samples: macrophages, T cells, B/plasma cells, fibroblasts, endothelial and epithelial cells. Each of these cell types are identified as discrete clusters in analysis of the respective tumors (as shown in Fig. 1a,b and Fig. S1), and these are exactly the six most common non-malignant cell types that we and others found in single cell analysis across various other tumor types (e.g. see Gavish et al. 2023, ref. #15). The signatures used to annotate these cell types are shown in Table S2, and they primarily consist of classical markers that are traditionally used to define those cell types. We therefore believe that the annotation of these typical tumor-associated cell types is robust and does not include major uncertainties. In addition to these five common cell types, there are three cell types that we find only in 1-2 of the samples – epithelial cells, plasma cells and NK cells. Again, we believe that their annotation is robust, and these cell types are primarily not used for further analysis.

      There was no selection for any specific cell types in this study. Nevertheless, single cell (or single nuclei) analysis may lead to biases towards specific cell types, that we cannot evaluate directly from the data. NK cells were detected only in one tumor. T cells were detected in eight of the ten samples; but in four of those samples the frequency of T cells was lower than 5% and only in one sample the frequency was above 20%. Therefore, while we cannot exclude a technical bias towards high frequency of T/NK cells, we do not consider these frequencies as high enough to suggest this specific type of bias. In the revised manuscript, we clarify that the commonly observed cell types in SiNETs are the same as those commonly observed in other tumors and we acknowledge the possibility of a technical bias in cell type capture.  

      d) Evaluating the expression of one gene at a time may not effectively demonstrate subtype-specific patterns, particularly when comparing NE cells from one tumor to non-NE cells from another, which may not be an appropriate approach for identifying differentially expressed genes. DE analysis coupled with concordance analysis, for example, could strengthen the results.

      We apologize, but we do not fully understand this comment. We note that the initial normalization by non-NE cells was done in order to decrease batch effects when combining the data of the two platforms. We also note that the two subtypes were identified by two distinct approaches, as shown in Fig. 2c and in Fig. 2f.

      (2) Results:

      See the above public review.

      (3) Minor Comments:

      a) Results: Single cell and single nuclei RNA-seq profiling of SiNETs

      The results say ten primary tumor samples from eight patients. Later in the paragraph it says, "After initial quality controls, we retained 29,198 cells from the ten patients." Please clarify to either ten samples or eight patients.

      Indeed these are ten samples rather than ten patients. We corrected that in the revised version and thank the reviewer for noticing our error.

      b) Methods:

      - Please specify which computational tools were used to perform quality control, signature scoring, etc.

      The approaches for quality control, scoring etc. are described in the methods. We implemented these approaches with R code and did not use other computational tools.

      - Minor point but be consistent with naming convention (ie, siAdeno vs SiAdeno) throughout the paper. For example, under "Sample Normalization, Filtering and annotations" change "siAdeno" to "SiAdeno."

      Thank you for noting this, we corrected that.

      - Add processing and analysis of MiNEN sample to the methods section. It is not mentioned in the methods at all.

      As noted in the revised manuscript, the MiNEN sample was analyzed in the same way as the SiNET fresh samples.

      c) Supplementary Figures:

      Figure S1: Change (A-H) to (A-I) to account for all panels in the figure.

      Figure S4: Add (C) after "the siAdeno sample" in the legend.

      Thank you for noting this, we corrected that.

      (4) Font size is quite small in the main figures.

      We enlarged the font in selected figure panels.

      Reviewer #2 (Recommendations for the authors):

      (1) The small number of samples used in some analyses affects the robustness of the findings. Increasing the sample size or including more validation data could improve the statistical reliability and make the results more convincing. The authors should consider expanding the cohort size or integrating additional external datasets to increase statistical power.

      We agree with the reviewer that adding more samples would improve the reliability of the results. However, the external data that we found was not comparable enough to enable integration with our data, and we are unable to profile additional SiNET samples in our lab. We hope that future studies would support our results and extend them further.

      (2) The biological significance of differentially expressed genes needs more depth, limiting the insights into SiNET biology. The authors should perform a comprehensive pathway enrichment analysis and integrate findings with existing literature. Tools like Gene Set Enrichment Analysis (GSEA) or Overrepresentation Analysis (ORA) could provide a more holistic view of altered biological processes.

      We thank the reviewer for this suggestion. We did examine the functional enrichment of differentially expressed genes and did not find additional enrichments that we felt were important to highlight beyond what we described. We report the genes in supplementary tables, enabling other researchers to examine these lists further. 

      (3) The unexpected finding of higher proliferation in non-malignant cells requires further investigation and plausible biological explanation. The authors should perform additional analyses to explore potential mechanisms, such as investigating cell cycle regulators or performing in vitro validation experiments. The authors should consider single-cell trajectory analysis to explore these highly proliferative non-malignant cells' potential differentiation or activation states.

      We agree that our results are descriptive and that we do not fully explain the mechanism for the high level of non-malignant cell proliferation. We did attempt to perform follow up computational analysis. These analyses raised the hypothesis that high levels of MIF are causing the proliferation of immune cells. Additional analyses that we performed were not sufficient to conclusively identify a mechanism, and we felt that they were not informative enough to be included in the manuscript. Further in vitro (or in vivo) studies are beyond the scope of the current work.

      (3) More details are required on methods used for p-value adjustment, and criteria for statistical significance should be clearly defined. Additionally, integrating scRNA-seq and snRNA-seq data needs a more thorough explanation, including batch effect mitigation and more explicit cell clustering representation. The authors should clearly describe p-value adjustments (e.g., FDR) and batch correction methods (e.g., Harmony, FastMNN integration) and include additional figures showing corrected UMAP plots or heatmaps post-batch correction to enhance the confidence in results.

      We now clarify in the Methods our use of FDR for p-value adjustments. As for batch correction, we have avoided the use of integration methods as we believe that they tend to distort the data and decrease tumor-specific signals. Instead, we primarily analyzed one tumor at a time and never directly compared cell profiles across distinct tumors but only compared the differences between subpopulations; specifically, we normalized the expression of NE cells by subtracting the expression of reference non-NE cells from the same tumor as a method to decrease batch effects. We now clarify this point in the Methods section.

      (4) The lack of analysis of interactions between different cell types limits understanding of tumor microenvironment dynamics. The authors should employ cell-cell interaction analysis tools (e.g., CellPhoneDB, NicheNet) to explore potential communication networks within the tumor microenvironment. This could provide valuable insights into how different cell types influence tumor progression and maintenance.

      We thank the reviewer for this suggestion. We have tried to use such methods but found the results difficult to interpret since these approaches generated very long lists of potential cell-cell interactions that are largely not unique to the SiNET context and their relevance remains unclear without follow up experiments, which are beyond the scope of this work. We therefore focused only on ligand/receptors that came up robustly through specific analyses such as the differences between SiNET subtypes. In particular, MIF is highly expressed in the epithelial subtype, and remarkably, MIF upregulation is shared across multiple cell types. Thus, the cell-cell interactions that are suggested by the SiNET data as somewhat unique to this context are those involving MIF and its receptor (CD74 on immune cell types), while other interactions detected by the proposed methods primarily reflect the generic ligand/receptors expressed by corresponding TME cell types.   

      Reviewer #3 (Recommendations for the authors):

      (1) For a relatively small dataset, the mixing of single-cell versus single-nucleus RNA-seq should be discussed more. It would be nice to have 1-2 tumors that are analyzed by both methods to compare and increase our understanding of how these different approaches may affect the results. This could be accomplished by splitting a fresh tumor into two parts, processing it fresh for single-cell RNA-seq, and freezing the other part for single-nucleus RNA-seq.

      We agree with the reviewer that the different techniques may bias our results and we refer to this limitation in the Results and Discussion sections. However, it is important to note that we do not directly integrate the primary data across these modalities, but rather analyze each tumor separately and only combine the results across tumors. For example, we first compare the NE cells from each tumor to control non-NE cells from the same tumor and then only compare the sets of NE-specific genes across tumors. Moreover, the subtypes that we detect cannot be explained by these modalities, as the first subtype contains samples from both methods and these subtypes are further demonstrated in external bulk data. Similarly, the results regarding low proliferation of NE cells and high proliferation of B/plasma cells are observed across both modalities. We therefore argue that while the combination of methods is a limitation of this work it does not account for the main results.  

      (2) The authors state that they defined the siNET transcriptomic signature by comparing their siNET single-cell/nucleus data to other NETs profiled by bulk RNA-seq. Some of the genes in the signature, such as CHGA, are widely used as markers for NETs (and not specific for siNET). The authors should address this in more detail.

      To define the SiNET transcriptomic signature we first analyzed each tumor separately and compared the expression of Neuroendocrine (NE) cells to that of non-NE cells to detect NE-specific genes. Next, we compared the lists of NE-specific genes across the 8 SiNET patients and found a subset of 26 genes which were shared across most of the analyzed SiNET samples (Fig. 2a). Thus, the signature was defined only from analysis of SiNETs and not based on comparison to other types of NETs and hence it is expected that the signature could contain both SiNET-specific genes and more generic NET genes such as CHGA.

      Only after defining this signature, we went on to compare it between SiNETs and other types of NETs (pancreatic and rectal) based on external bulk RNA-seq data. In this comparison, we observed that the signature was clearly higher in SiNETs than in the other NETs (Fig. 2b). This result supports the accuracy of the signature and further suggests that it contains a fraction of SiNET-specific genes and not only generic NET genes such as CHGA. Thus, we would expect this signature to perform well also for distinguishing between SiNET and types of NETs, but it does contain a subset of genes that would be high in the other NETs. Finally, we note that even though CHGA is a generic NET marker, the bulk RNA-seq data would suggest that, at least at the mRNA level, this gene is still higher expressed in SiNETs than in other NETs. To avoid confusion regarding the definition and specificity of the SiNET transcriptomic signature we have extended the description of this section in the revised manuscript.

      (3) The authors only compare their data to bulk transcriptomic data on NETs. While in some instances this makes sense given the bulk dataset has >80 tumors, they should at least cite and do some comparison to other published single-cell RNA-seq datasets of NETs (e.g., PMID: 37756410, 34671197). The former study listed has 3 siNETs, 4 pNETs, and 1 gNET. Do the epithelial-like and neuronal-like signatures show up in this dataset too?

      We examined these studies but concluded that their data was inadequate to identify the two SiNET subtypes. The latter study was of pNETs, while the former study had 3 SiNET samples but only from 2 patients, and furthermore it was enriching for immune cells with only very low amounts of NE cells. Therefore, we now cite this work in the discussion but cannot use it to extend the results from our work.

      (4) How did the authors statistically handle patients with more than one tumor sample (true for n = 2)? These tumor samples would not be truly independent.

      In both cases where we had two distinct samples of the same patient, only one sample had sufficient NE cells to be included in NE-related analysis and therefore the other samples (SiNET3 and SiNET6) were excluded from all analysis of NE differential expression and subtypes. These samples were only included in the initial analysis (Fig. 1) and in TME-related analysis (Fig. 3-4) in which there was no statistical analysis of differences between patients and hence no problem with the inclusion of 2 samples for the same patient. We clarified this issue in the revised version.

      (5) The association between siNET subtype and B/plasma cell proliferation is very interesting, as is the hypothesis regarding MIF signaling. It would be illuminating for the authors to perform cell-cell interaction analyses with methods such as CellChat in this context rather than just relying on DE. Spatial mapping would be helpful too and while this may be outside the scope of this study, it should at least be expounded upon in the Discussion section.

      Indeed, spatial transcriptomic analysis would add interesting insight to our data and to SiNET biology. Unfortunately, this is not within the scope of the current project but we note this interesting possibility in the Discussion. Regarding additional methods for cell-cell interactions, we have performed such analysis but found it not informative as it highlighted a large number of interactions that are not unique SiNETs and are difficult to interpret, and therefore we do not include this in the revised version. 

      (6) The authors note that in the mixed lung tumor, the NE component was more proliferative than that observed with siNETs. How does the proliferation compare to pNETs, gNETs, in other published studies? How about assessing the clonality of the SCC and LNET malignant cells with various genomic or combined genomic/transcriptomic methods?

      The percentage of proliferating NE cells in the mixed lung tumor was higher than 60%. This is extremely high, approximately four-fold higher than the average that we found in a pan-cancer analysis and higher than the average of any of the >20 cancer types that we analyzed (Gavish et al. 2023, ref. #15). This remarkably high proliferation serves as a control for the low proliferation that we found in SiNET NE cells.

      (7) In the Discussion on page 13, the authors write "Second, proliferation of NE cells may be inhibited by prior treatments with somatostatin analogues." How many patients were treated in this manner? This information should be made more explicit in the manuscript.

      Details on pretreatment with somatostatin analogues are provided in Table S1. All patients were pre-pretreated with somatostatin analogues, with the possible exception of one patient (P8, SiNET10) for which we could not confidently obtain this information.

      (8) On page 5, "bone-fide" is misspelled.

      (9) On page 8, "exact identify" is misspelled.

      We thank the reviewer and have corrected the typos.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this manuscript, the authors provide a study among healthy individuals, general medical patients and patients receiving haematopoietic cell transplants (HCT) to study the gut microbiome through shotgun metagenomic sequencing of stool samples. The first two groups were sampled once, while the patients receiving HCT were sampled longitudinally. A range of metadata (including current and previous (up to 1 year before sampling) antibiotic use) was recorded for all sampled individuals. The authors then performed shotgun metagenomic sequencing (using the Illumina platform) and performed bioinformatic analyses on these data to determine the composition and diversity of the gut microbiota and the antibiotic resistance genes therein. The authors conclude, on the basis of these analyses, that some antibiotics had a large impact on gut microbiota diversity, and could select opportunistic pathogens and/or antibiotic resistance genes in the gut microbiota.

      Strengths:

      The major strength of this study is the considerable achievement of performing this observational study in a large cohort of individuals. Studies into the impact of antibiotic therapy on the gut microbiota are difficult to organise, perform and interpret, and this work follows state-of-the-art methodologies to achieve its goals. The authors have achieved their objectives and the conclusion they draw on the impact of different antibiotics and their impact on the gut microbiota and its antibiotic resistance genes (the 'resistome', in short), are supported by the data presented in this work.

      Weaknesses:

      The weaknesses are the lack of information on the different resistance genes that have been identified and which could have been supplied as Supplementary Data.

      We have now supplied a list of individual resistance genes as supplementary data.

      In addition, no attempt is made to assess whether the identified resistance genes are associated with mobile genetic elements and/or (opportunistic) pathogens in the gut. While this is challenging with short-read data, alternative approaches like long-read metagenomics, Hi-C and/or culture-based profiling of bacterial communities could have been employed to further strengthen this work.

      We agree this is a limitation, and we now refer to this in the discussion. Unfortunately we did not have funding to perform additional profiling of the samples that would have provided more information about the genetic context of the AMR genes identified.

      Unfortunately, the authors have not attempted to perform corrections for multiple testing because many antibiotic exposures were correlated.

      The reviewer is correct that we did not perform formal correction for multiple testing. This was because correlation between antimicrobial exposures meant we could not determine what correction would be appropriate and not overly conservative. We now describe this more clearly in the statistical analysis section.

      Impact:

      The work may impact policies on the use of antibiotics, as those drugs that have major impacts on the diversity of the gut microbiota and select for antibiotic resistance genes in the gut are better avoided. However, the primary rationale for antibiotic therapy will remain the clinical effectiveness of antimicrobial drugs, and the impact on the gut microbiota and resistome will be secondary to these considerations.

      We agree that the primary consideration guiding antimicrobial therapy will usually be clinical effectiveness. However antimicrobial stewardship to minimise microbiome disruption and AMR selection is an increasingly important consideration, particularly as choices can often be made between different antibiotics that are likely to be equally clinically effective.

      Reviewer #2 (Public Review):

      Summary:

      In this manuscript by Peto et al., the authors describe the impact of different antimicrobials on gut microbiota in a prospective observational study of 225 participants (healthy volunteers, inpatients and outpatients). Both cross-sectional data (all participants) and longitudinal data (a subset of 79 haematopoietic cell transplant patients) were used. Using metagenomic sequencing, they estimated the impact of antibiotic exposure on gut microbiota composition and resistance genes. In their models, the authors aim to correct for potential confounders (e.g. demographics, non-antimicrobial exposures and physiological abnormalities), and for differences in the recency and total duration of antibiotic exposure. I consider these comprehensive models an important strength of this observational study. Yet, the underlying assumptions of such models may have impacted the study findings (detailed below). Other strengths include the presence of both cross-sectional and longitudinal exposure data and the presence of both healthy volunteers and patients. Together, these observational findings expand on previous studies (both observational and RCTs) describing the impact of antimicrobials on gut microbiota.

      Weaknesses:

      (1) The main weaknesses result from the observational design. This hampers causal interpretation and corrects for potential confounding necessary. The authors have used comprehensive models to correct for potential confounders and for differences between participants in duration of antibiotic exposure and time between exposure and sample collection. I wonder if some of the choices made by the authors did affect these findings. For example, the authors did not include travel in the final model, but travel (most importantly, south Asia) may result in the acquisition of AMR genes [Worby et al., Lancet Microbe 2023; PMID 37716364). Moreover, non-antimicrobial drugs (such as proton pump inhibitors) were not included but these have a well-known impact on gut microbiota and might be linked with exposure to antimicrobial drugs. Residual confounding may underlie some of the unexplained discrepancies between the cross-sectional and longitudinal data (e.g. for vancomycin).

      We agree that the observational design means there is the potential for confounding, which, as the reviewer notes, we attempt to account for as far as possible in the multivariable models presented. We cannot exclude the possibility of residual confounding, and we highlight this as a limitation in the  discussion. We have expanded on this limitation, and mention it as a possible explanation for inconsistencies between longitudinal and cross sectional models. Conducting randomised trials to assess the impacts of multiple antimicrobials in sick, hospitalised patients would be exceptionally difficult, and so it is hard to avoid reliance on observational data in these settings.

      We did record participants’ foreign travel and diet, but these exposures were not included in our models as they were not independently associated with an impact on the microbiome and their inclusion did not materially affect other estimates. However, because most participants were recruited from a healthcare setting, few had recent foreign travel and so this study was not well powered to assess the effects of travel on AMR carriage. We have added this as a limitation.

      In addition, the authors found a disruption half-life of 6 days to be the best fit based on Shannon diversity. If I'm understanding correctly, this results in a near-zero modelled exposure of a 14-day-course after 70 days (purple line; Supplementary Figure 2). However, it has been described that microbiota composition and resistome (not Shannon diversity!) remain altered for longer periods of time after (certain) antibiotic exposures (e.g. Anthony et al., Cell Reports 2022; PMID 35417701). The authors did not assess whether extending the disruption half-life would alter their conclusions.

      The reviewer is correct that the best fit disruption half-life of 6 days means the model assumes near-zero exposure by 70 days. We appreciate that antimicrobials can cause longer-term disruption than is represented in our model, and we refer to this in the discussion (we had cited two papers supporting this, and we are grateful for the additional reference above, which we have added). We agree that it is useful to clarify that the longer term effects may be seen in individual components of the microbiome or AMR genes, but not in overall measures of diversity, so have added this to the discussion.

      (2) Another consequence of the observational design of this study is the relatively small number of participants available for some comparisons (e.g. oral clindamycin was only used by 6 participants). Care should be taken when drawing any conclusions from such small numbers.

      We agree. Although our participants received a large number of different antimicrobial exposures, these were dependent on routine clinical practice at our centre and we lack data on many potentially important exposures. We had mentioned this in relation to antimicrobials not used at our centre, and have now clarified in the discussion that this also limits reliability of estimates for antimicrobials that were rarely used in study participants.

      (3) The authors assessed log-transformed relative abundances of specific bacteria after subsampling to 3.5 million reads. While I agree that some kind of data transformation is probably preferable, these methods do not address the compositional data of microbiome data and using a pseudocount (10-6) is necessary for absent (i.e. undetected) taxa [Gloor et al., Front Microbiol 2017; PMID 29187837]. Given the centrality of these relative abundances to their conclusions, a sensitivity analysis using compositionally-aware methods (such as a centred log-ratio (clr) transformation) would have added robustness to their findings.

      We agree that using a pseudocount is necessary for undetected taxa, which we have done assuming undetected taxa had an abundance of 10<sup>-6</sup> (based on the lower limit of detection at the depth we sequenced). We refer to this as truncation in the methods section, but for clarity we have now also described this as a pseudocount.  Because our analysis focusses on major taxa that are almost ubiquitous in the human gut microbiome, a pseudocount was only used for 3 samples that had no detectable Enterobacteriaciae.

      We are aware that compositionally-aware methods are often used with microbiome data, and for some analyses these are necessary to avoid introducing spurious correlations. However the flaws in non-compositional analyses outlined in Gloor et al do not affect the analyses in this paper:

      (1) The problems related to differing sequence depths or inadequate normalisation do not apply to our dataset, as we took a random subset of 3.5 million reads from all samples (Gloor et al correctly point out that this method has the drawback of losing some information, but it avoids problems related to variable sequencing depth)

      (2) The remainder Gloor et al critiques multivariate analyses that assess correlations between multiple microbiome measurements made on the same sample, starting with a dissimilarity matrix. With compositional data these can lead to spurious correlations, as measurements on an individual sample are not independent of other measurements made on the same sample. In contrast, our analyses do not use a dissimilarity matrix, but evaluate the association of multiple non-microbiome covariates (e.g. antibiotic exposures, age) with single microbiome measures. We use a separate model for each of 11 specified microbiome components, and display these results side-by side. This does not lead to the same problem of spurious correlation as analyses of dissimilarity matrices. However, it does mean that estimates of effects on each taxa outcome have to be interpreted in the context of estimates on the other taxa. Specifically, in our models, the associations of antimicrobial exposure with different taxa/AMR genes are not necessarily independent of each other (e.g. if an antimicrobial eradicated only one taxon then it would be associated with an increase in others). This is not a spurious correlation, and makes intuitive sense when using relative abundance as outcome. However, we agree this should be made more explicit.

      For these reasons, at this stage we would prefer not to increase the complexity of the manuscript by adding a sensitivity analysis.

      (4) An overall description of gut microbiota composition and resistome of the included participants is missing. This makes it difficult to compare the current study population to other studies. In addition, for correct interpretation of the findings, it would have been helpful if the reasons for hospital visits of the general medical patients were provided.

      We have added a summary of microbiome and resistome composition in the results section and new supplementary table 2), and we also now include microbiome and resistome profiles of all samples in the supplementary data. We also provide some more detail about the types of general medical patients included. We are not able to provide a breakdown of the initial reason for admission as this was not collected.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) Provide a supplementary table with information on the abundance of individual genes in the samples.

      This supplementary data is now included.

      (2) Engage with an expert in statistics to discuss how statistical analyses can be improved.

      A experienced biostatistician has been involved in this study since its conception, and was involved in planning the analysis and in the responses to these comments.

      (3) Typos and other minor corrections:

      Methods: it is my understanding that litre should be abbreviated with a lowercase l.

      Different journals have different house styles: we are happy to follow Editorial guidance.

      p. 9: abuindance should be corrected to abundance.

      Corrected

      p. 9: relative species should be relevant species?  

      Yes, corrected. Thank you.

      p. 9 - 10: can the apparent lack of effect of beta-lactams on beta-lactamase gene abundance be explained by the focus on a small number of beta-lactamase resistance genes that are found in Enterobacteriaceae and which are not particularly prevalent, while other classes of resistance genes (e.g. Bacteroidal beta-lactamases) were excluded?

      It is possible that including other beta-lactamases would have led to different results, but as a small number of beta-lactamases in Enterobacteriaceae are of major clinical importance we decided to focus on these (already justified in the Methods). A full list of AMR genes identified is now provided in the supplementary data.

      p. 10: beta-lactamse should be beta-lactamase

      Corrected

      Figure 3A: could the data shown for tetracycline resistance genes be skewed by tetQ, which is probably one of the most abundant resistance genes in the human gut and acts through ribosome protection?

      TetQ was included, but only accounted for 23% of reads assigned to tetracycline resistance genes so is unlikely to have skewed the overall result. We limited the analysis to a few major categories of AMR genes and, other than VanA, have avoided presenting results for single genes to limit the degree of multiple testing. We now include the resistome profile for each sample in the supplementary data so that readers can explore the data if desired.

      Reviewer #2 (Recommendations For The Authors):

      (1) Given the importance of obligate anaerobic gut microbiota for human health, it might be interesting to divide antibiotics into categories based on their anti-anaerobic activity and assess whether these antibiotics differ in their effects on gut microbiota.

      The large majority of antibiotics used in clinical practice have activity against aerobic bacteria and anaerobic bacteria, so it is not possible to easily categorise them this way. There are two main exceptions (metronidazole and aminoglycosides) but there was insufficient use of these drugs to clearly detect or rule out a difference between them, even when categorising antimicrobials by class, so we prefer not to frame the results in these terms. Also see our comments on this categorisation below.

      (2) For estimating the abundance of anaerobic bacteria, three major groups were assessed: Bacteroidetes, Actinobacteria and Clostridia. To me, this seems a bit aspecific. For example, the phylum Bacteroidetes contains some aerobic bacteria (e.g. Flavobacteriia). Would it be possible to provide a more accurate estimation of anaerobic bacteria?

      We think that an emphasis on a binary aerobic/anaerobic classification is less biologically meaningful that the more granular genetic classification we use, and its use largely reflects the previous reliance on culture-based methods for bacterial identification. Although some important opportunistic human pathogens are aerobic, it is not clear that the benefit or harm of most gut commensals relates to their oxygen tolerance, and all luminal bacteria exist in an anaerobic environment. As such we prefer not to perform an additional analysis using this category. We are also not sure that this could be done reliably, as many of the taxa are characterised poorly, or not at all.

      We appreciate that Bacteroidetes, Actinobacteria and Clostridia are diverse taxa that include many different species, so may seem non-specific, but these were chosen because:

      i) they are non-overlapping with Enterobacteriaceae and Enterococcus, the major opportunistic pathogens of clinical relevance, so could be used in parallel, and

      ii) they make up the large majority of the gut microbiome in most people and most species are of low pathogenicity, so it is plausible that their disruption might drive colonisation with more pathogenic organisms (or those carrying important AMR genes).

      We have more clearly stated this rationale.

      (3) A statement on the availability of data and code for analysis is missing. I would highly recommend public sharing of raw sequence data and R code for analysis. If possible, it would be very valuable if processed microbiome data and patient metadata could be shared.

      We agree, and these have been submitted as supplementary data. We have added the following statement “The data and code used to produce this manuscript are available in the supplementary material, including processed microbiome data, and pseudonymised patient metadata. The sequence data for this study have been deposited in the European Nucleotide Archive (ENA) at EMBL-EBI under accession number PRJEB86785.”

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The study by Cao et al. provides a compelling investigation into the role of mutational input in the rapid evolution of pesticide resistance, focusing on the two-spotted spider mite's response to the recent introduction of the acaricide cyetpyrafen. This well-documented introduction of the pesticide - and thus a clearly defined history of selection - offers a powerful framework for studying the temporal dynamics of rapid adaptation. The authors combine resistance phenotyping across multiple populations, extensive resequencing to track the frequency of resistance alleles, and genomic analyses of selection in both contemporary and historical samples. These approaches are further complemented by laboratory-based experimental evolution, which serves as a baseline for understanding the genetic architecture of resistance across mite populations in China. Their analyses identify two key resistance-associated genes, sdhB and sdhD, within which they detect 15 mutations in wild-collected samples. Protein modeling reveals that these mutations cluster around the pesticide's binding site, suggesting a direct functional role in resistance. The authors further examine signatures of selective sweeps and their distribution across populations to infer the mechanisms - such as de novo mutation or gene flow-driving the spread of resistance, a crucial consideration for predicting evolutionary responses to extreme selection pressure. Overall, this is a well-rounded, thoughtfully designed, and well-written manuscript. It shows significant novelty, as it is relatively rare to integrate broad-scale evolutionary inference from natural populations with experimentally informed bioassays, however, some aspects of the methods and discussion have an opportunity to be clarified and strengthened.

      Strengths:

      One of the most compelling aspects of this study is its integration of genomic time-series data in natural populations with controlled experimental evolution. By coupling genome sequencing of resistant field populations with laboratory selection experiments, the authors tease apart the individual effects of resistance alleles along with regions of the genome where selection is expected to occur, and compare that to the observed frequency in the wild populations over space and time. Their temporal data clearly demonstrates the pace at which evolution can occur in response to extreme selection. This type of approach is a powerful roadmap for the rest of the field of rapid adaptation.

      The study effectively links specific genetic changes to resistance phenotypes. The identification of sdhB and sdhD mutations as major drivers of cyetpyrafen resistance is well-supported by allele frequency shifts in both field and experimental populations. The scope of their sampling clearly facilitated the remarkable number of observed mutations within these target genes, and the authors provide a careful discussion of the likelihood of these mutations from de novo or standing variation. Furthermore, the discovered cross-resistance that these mutations confer to other mitochondrial complex II inhibitors highlights the potential for broader resistance management and evolution.

      Weaknesses:

      (1) Experimental Evolution:

      - Additional information about the lab experimental evolution would be useful in the main text. Specifically, the dose of cyetpyrafen used should be clarified, especially with respect to the LD50 values. How does it compare to recommended field doses? This is expected to influence the architecture of resistance evolution. What was the sample size? This will help readers contextualize how the experimental design could influence the role of standing variation.

      The experimental design involved sampling approximately 6,000 individuals from the wild population ZJSX1, which were subsequently divided into two parallel cohorts under controlled laboratory conditions. The selection group (LabR) was subjected to continuous selection pressure using cyetpyrafen, while the control group (LabS) was maintained under identical laboratory conditions without exposure to acyetpyrafen. A dynamic selection regime was implemented wherein the acaricide dosage was systematically adjusted every two generations to maintain a consistent selection intensity, achieving a mortality rate of 60% ± 10% in the LabR population. This adaptive dosage strategy ensured sustained evolutionary pressure while preventing population collapse. The LC<sub>50</sub> values were tested at F1, F32, F54, F60, F62, and F66 generations using standardized bioassay protocols to quantify resistance development trajectories and optimize dosage for subsequent selection cycles. We provided the additional information in subsection 4.1 of the materials and methods section.

      - The finding that lab-evolved strains show cross-resistance is interesting, but potentially complicates the story. It would help to know more about the other mitochondrial complex II inhibitors used across China and their impact on adaptive dynamics at these loci, particularly regarding pre-existing resistance alleles. For example, a comparison of usage data from 2013, 2017, and 2019 could help explain whether cyetpyrafen was the main driver of resistance or if previous pesticides played a role. What happened in 2020 that caused such rapid evolution 3 years after launch?

      Although the introduction of the other two SDHI acaricides complicates the story, we would like to provide a complete background on the usage of acaricides with this mode of action in China. Although cyflumetofen was released in 2013 before cyetpyrafen, and cyenopyrafen was released in 2019 after cyetpyrafen, their market share is minor (about 3.2%) compared to cyetpyrafen (about 96.8%, personal communication). Since cross-resistance is reported among SDHIs, we could not exclude the contribution of cyflumetofen to the initial accumulation of resistance alleles, but the effect should be minor, both because of their minimal market share and because of the independent evolution of resistance in the field as found in our study. Although the contribution of cyflumetofen and cyenopyrafen cannot be entirely excluded, the rapid evolution of resistance seems likely to be mainly explained by the intensive application of cyetpyrafen. To clarify this issue, we added relevant information in the first paragraph of the discussion section.

      (2) Evolutionary history of resistance alleles:

      - It would be beneficial to examine the population structure of the sampled populations, especially regarding the role of migration. Though resistance evolution appears to have had minimal impact on genome-wide diversity (as shown in Supplementary Figure 2), could admixture be influencing the results? An explicit multivariate regression framework could help to understand factors influencing diversity across populations, as right now much is left to the readers' visual acuity.

      The genetic structure of the populations was examined by Treemix analysis. We detected only one migration event from JXNC to SHPD (no resistance data available for these two populations), suggesting a limited role for migration to resistance evolution. The multiple regression analysis revealed that overall genetic diversity and Tajima’s D across the genome were not significantly associated with resistance levels, genetic structure or geographic coordinates (P > 0.05), which all support a limited role of migration in resistance development.

      - It is unclear why lab populations were included in the migration/treemix analysis. We might suggest redoing the analysis without including the laboratory populations to reveal biologically plausible patterns of resistance evolution.

      Thank you for the constructive suggestion. The Treemix analysis was redone by removing laboratory populations and is now reported.

      - Can the authors explore isolation by distance (IBD) in the frequency of resistance alleles?

      Thank you for the constructive suggestion. No significant isolation-by-distance pattern was detected for resistance allele frequencies across all surveyed years (2020: P=0.73; 2021: P=0.52; 2023: P=0.16; Mantel test). We added these results to the text.

      - Given the claim regarding the novelty of the number of pesticide resistance mutations, it is important to acknowledge the evolution of resistance to all pesticides (antibiotics, herbicides, etc.). ALS-inhibiting herbicides have driven remarkable repeatability across species based on numerous SNPs within the target gene.

      We appreciate this comment, which highlights the need to place our findings within the broader evolutionary context of pesticide resistance. We have investigated references relevant to the evolution of resistance to diverse pesticides. As far as we can tell, the 15 target mutations in eight amino acid residues are among the highest number of pesticide resistance mutations detected, especially within the context of animal studies. We have added relevant text to the second paragraph of the discussion.

      - Figure 5 A-B. Why not run a multivariate regression with status at each resistance mutation encoded as a separate predictor? It is interesting that focusing on the predominant mutation gives the strongest r2, but it is somewhat unintuitive and masks some interesting variation among populations.

      We conducted a multiple regression analysis to explore the influence of multiple mutations on resistance levels of field populations. However of 15 putative resistant mutations, only five were detected in more than three populations where bioassay data are available, i.e. I260T, I260V, D116G, R119C, R119L. The frequency of three of these mutations, I260T (P = 0.00128), I260V (P = 0.00423) and D116G (P = 0.00058), are significantly correlated with the resistance level of field populations. This has been added.

      (3) Haplotype Reconstruction (Line 271-):

      - We are a bit sceptical of the methods taken to reconstruct these haplotypes. It seems as though the authors did so with Sanger sequencing (this should be mentioned in the text), focusing only on homozygous SNPs. How many such SNPs were used to reconstruct haplotypes, along what length of sequence? For how many individuals were haplotypes reconstructed? Nonetheless, I appreciated that the authors looked into the extent to which the reconstructed haplotypes could be driven by recombination. Can the authors elaborate on the calculations in line 296? Is that the census population size estimate or effective?

      Because haplotypes could not be determined when more than two loci were heterozygous, we detected haplotypes from sequencing data with at most one heterozygous locus. In total 844 individuals and 696 individuals were used to detect haplotypes of sdhB and sdhD. We detected 11 haplotypes (with 8 SNPs) and 24 haplotypes (with 11 SNPs) along 216 bp of the sdhB and 155 bp of the sdhD genes, respectively. Please see the fifth paragraph of subsection 2.4. We used ρ = 4 × Ne × d (genetic distance) (Li and Stephens, 2003) to calculate the number of effective individuals for one recombination event.

      (4) Single Mutations and Their Effect (line 312-):

      - It's not entirely clear how the breeding scheme resulted in near-isogenic lines. Could the authors provide a clearer explanation of the process and its biological implications?

      To investigate the effect of single mutations or their combination on resistance levels, we isolated the females and males with the same homozygous/ hemizygous genotypes for creating homozygous lines. Females from these lines were not near-isogenic, but homozygous for the critical mutations. We revised the description in the methods section to clearly define these lines.

      - If they are indeed isogenic, it's interesting that individual resistance mutations have effects on resistance that vary considerably among lines. Could the authors run a multivariate analysis including all potential resistance SNPs to account for interactions between them? Given the variable effects of the D116G substitution (ranging from 4-25%), could polygenic or epistatic factors be influencing the evolution of resistance?

      We couldn’t conduct multivariate analysis because most lines have only one resistant SNP. The four lines homozygous for 116G were from the same population. The variable mortality may reflect other unknown mechanisms but these are beyond the scope of this study.

      - Why are there some populations that segregate for resistance mutations but have no survival to pesticides (i.e., the green points in Figure 5)? Some discussion of this heterogeneity seems required in the absence of validation of the effects of these particular mutations. Could it be dominance playing a role, or do the authors have some other explanation?

      We didn’t investigate the degree of dominance of each mutation. The mutation I260V shows incompletely dominant inheritance (Sun, et al. 2022). To investigate survival rate of different populations, the two-spotted spider mite T. urticae was exposed to 1000 mg/L of cyetpyrafen, higher than the recommended field dose of 100 mg/L. Such a high concentration may lead to death of an individual heterozygous for certain mutations, such as I260V.

      - The authors mention that all resistance mutations co-localized to the Q-site. Is this where the pesticide binds? This seems like an important point to follow their argument for these being resistance-related.

      Yes. We revised Fig. 3c to show the Q-site.

      (5) Statistical Considerations for Allele Frequency Changes (Figure 3):

      - It might be helpful to use a logistic regression model to assess the rate of allele frequency changes and determine the strength of selection acting on these alleles (e.g., Kreiner et al. 2022; Patel et al. 2024). This approach could refine the interpretation of selection dynamics over time.

      Thank you for this suggestion. A logistic regression model was used to track allele frequencies trajectories. The selection coefficient of each allele and their joint effects were estimated.

      Reviewer #2 (Public review):

      Summary:

      This paper investigates the evolution of pesticide resistance in the two-spotted spider mite following the introduction of an SDHI acaricide, cyatpyrafen, in China. The authors make use of cyatpyrafen-naive populations collected before that pesticide was first used, as well as more recent populations (both sensitive and resistant) to conduct comparative population genomics. They report 15 different mutations in the insecticide target site from resistant populations, many reported here for the first time, and look at the mutation and selection processes underlying the evolution of resistance, through GWAS, haplotype mapping, and testing for loss of diversity indicating selective sweeps. None of the target site mutations found in resistant populations was found in pre-exposure populations, suggesting that the mutations may have arisen de novo rather than being present as standing variation, unless initially present at very low frequencies; a de novo origin is also supported by evidence of selective sweeps in some resistant populations. Furthermore, there is no significant evidence of migration of resistant genotypes between the sampled field populations, indicating multiple origins of common mutations. Overall, this indicates a very high mutation rate and a wide range of mutational pathways to resistance for this target site in this pest species. The series of population genomic analyses carried out here, in addition to the evolutionary processes that appear to underlie resistance development in this case, could have implications for the study of resistance evolution more widely.

      Strengths:

      This paper combines phenotypic characterisation with extensive comparative population genomics, made possible by the availability of multiple population samples (each with hundreds of individuals) collected before as well as after the introduction of the pesticide cyatpyrafen, as well as lab-evolved lines. This results in findings of mutation and selection processes that can be related back to the pesticide resistance trait of concern. Large numbers of mites were tested phenotypically to show the levels of resistance present, and the authors also made near-isogenic lines to confirm the phenotypic effects of key mutations. The population genomic analyses consider a range of alternative hypotheses, including mutations arising by de novo mutation or selection from standing genetic variation, and mutations in different populations arising independently or arriving by migration. The claim that mutations most likley arose by multiple repeated de novo mutations is therefore supported by multiple lines of evidence: the direct evidence of none of the mutations being found in over 2000 individuals from naive populations, and the indirect evidence from population genomics showing evidence of selective sweeps but not of significant migration between the sampled populations.

      Weaknesses:

      As acknowledged within the discussion, whilst evidence supports a de novo origin of the resistance-associated mutations, this cannot be proven definitively as mutations may have been present at a very low frequency and therefore not found within the tested pesticide-naive population samples.

      We agree that we could not definitively exclude the presence of a very low incidence of favoured mutations before the introduction of this novel acaricide.

      Near-isofemale lines were made to confirm the resistance levels associated with five of the 15 mutations, but otherwise, the genotype-phenotype associations are correlative, as confirmation by functional genetics was beyond the scope of this study.

      We hope that future functional studies will validate the effects of these mutations on resistance in both the two-spotted spider mite T. urticae and other spider mite species. This could be done by creating near-isogenic female lines or using CRISPR-Cas9 technology, as gene knockouts have recently been established for T. urticae.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      (1) Could the authors elaborate on the environmental context (e.g., climate, geography) of the sampled populations to give more nuance to the analysis of genetic differentiation and resistance evolution?

      We have explored the influence of geographic isolation on the frequency of resistance alleles by Mantel tests (isolation by distance). We didn’t investigate the influence of climate, because most of the samples were from greenhouses, where the climate to which the pest is exposed is unclear.

      (2) Line 161: is this supposed to be one R and one S?

      Yes, we added this information (LabR and LabS).

      (3) Line 207: variation is not saturated at the first two sites because the different combinations are not seen. This is a bit misleading.

      What we wanted to indicate was that the two codon positions are saturated, rather than their combinations. We revised this sentence by adding “of each codon position”.

      (4) Line 376: continuous selection did not "result in a new mutation arising". Rather, the mutation arose and was subsequently selected on.

      We revised the expression of this de novo mutation and selection process.

      (5) Line 402: can the authors explore what Ne would be necessary to drive the number of mutational origins they observe, as in (Karasov et al. 2010)?

      It is challenged to estimate Ne, especially when mutation rate data from the two-spotted spider mite T. urticae is unavailable. We observed 2.7 resistant mutations per population in samples collected in 2024, seven years after the release of cyetpyrafen. The estimated mutation rate (Θ) is  0.0193, given 20 generations per year for T. urticae. An effective population size (Ne) of 2.29*10<sup>6</sup> would be necessary to reach the number of de novo mutations observed in this study, given Θ  =  3Neμ (haplodiploid sex determination of T. urticae) and a mutation rate of μ  =  2.8*10<sup>-9</sup> per base pair per generation as estimated for Drosophila melanogaster (Keightley et al., 2014). The high reproductive capacity of T. urticae (> 100 eggs per female) and short generation time makes it easier to reach such a population size in the field as we now note.

      (6) Line 482: how did the authors precisely kill 60% of samples with their selection? What was the applied rate? In general, listing the rates of insecticide used in dose response would be useful to decipher if LD50s are projected outside of the doses used (seems like they are). In this case, authors should limit their estimates to those > the highest rate used in the dose response.

      It is difficult to control mortality precisely. We applied cyetpyrafen every two generations but did not determine the LC<sub>50</sub> every two generations. When mortality was lower than 60%, another round of spraying was applied by increasing the dosage of the pesticide. The LC<sub>50</sub> values were tested at F<sub>1</sub>, F<sub>32</sub>, F<sub>54</sub>, F<sub>60</sub>, F<sub>62</sub>, and F<sub>66</sub> generations to establish the trajectories around resistance.

      (7) The light pink genomic region in Figure 2 was distracting. Why is it included if there is no discussion of genomic regions outside the sdh genes? Generally, there was a lot going on in this figure, and some guiding categories (i.e., lab selected vs wild population) on the figure itself could help orient the reader.

      We included chromosome 2 colored in light pink/ red to show the selection signal across a wider genomic region. In the figure legend, we added a description of the lab selected, field resistant and field susceptible populations. Very little common selection signal was detected among resistant populations on chromosome 2, indicating this region was less likely to be involved in resistance evolution of T. urticae to cyetpyrafen. We also described the result briefly in the figure legend.

      Reviewer #2 (Recommendations for the authors):

      (1) The most significant aspect of this study is the use of multiple pest population samples taken before as well as after the introduction of a class of pesticides, allowing a thorough comparative population genomics study in a species where a range of resistance mutations have appeared within a few years. I would prefer to see a title conveying this significance, rather than the current study, which focuses on the total number of mutations and claimed notoriety of the (at that point unnamed) study species. Similarly, I would prefer an abstract that relies less on superlative claims and includes more details: the scientific name of the study species; the number of years in which resistance evolved; the number of historical specimens; how the resistance levels for single mutations were shown.

      (1) The title was changed by adding “the two-spotted spider mite Tetranychus urticae” and removing the “unprecedented number” to emphasize that “recurrent mutations drive rapid evolution”, i.e., “Recurrent Mutations Drive the Rapid Evolution of Pesticide Resistance in the Two-spotted Spider Mite Tetranychus urticae.”

      (2) The scientific name of the study species was added.

      (3) The number of years in which resistance evolved was added.

      (4) The number of historical specimens was added (2666).

      (5) Because we used homozygous lines but not iso-genic lines or gene-edited lines, our bioassay data could not provide direct evidence on the level of resistance conferred by each mutation. We revised our description of the results and removed this content from the abstract.

      Line 29: if you want to claim the number is unprecedented, please specify the context: unprecedented for a pesticide target in an arthropod pest? (more resistance mutations may have been found in bacteria/fungi...).

      We revised the sentence by adding “in an arthropod pest”.

      Line 30: rather than a claim of notoriety, it may be better to specify what damage this pest causes.

      Revised by describing it as an arthropod pest.

      Line 34: please clarify, was this all in different haplotypes, or were some mutations found in combination?

      Done: We identified 15 target mutations, including six mutations on five amino acid residues of subunit sdhB, and nine mutations on three amino acid residues of subunit sdhD, with as many as five substitutions on one residue.

      (2) The introduction begins by framing the context as resistance evolution in invertebrate pests. However, the evolutionary processes examined in the study are applicable to resistance in other systems, and potentially to other cases of rapid contemporary evolution. The authors could show wider significance for their work beyond the subfield of invertebrate pests by including more of this wider context in their introduction and discussion: even if this means they can no longer claim novelty based on the number of mutations alone, the study is a strong example of the use of population genomics combined with functional and phenotypic characterisation to investigate the evolutionary processes underlying the emergence of resistance, so could have wider importance than within its current framing.

      The background was revised as mentioned above to take this into account.

      For example, in lines 48-50, please clarify what is meant by pesticides here (insects/arthropods? weeds and pathogens too?) In lines 69-73, the opposite is sometimes seen in fungal pathogens, with large numbers of mutations generated in lab-evolved strains.

      We extended pesticides to those targeting arthropods, weeds and pathogens. We still emphasize the situation mainly with respect to arthropod pests.

      (3) Lines 91-93: how many modes of action? How recently were SDHI acaricides introduced?

      Added: at least 11 groups of acaricides based on their modes of action. SDHI was launched in 2007.

      (4) Line 98-102: Use in China is a useful background for the study populations, but the global context should be included too.

      Yes, four SDHI acaricides developed around the globe were introduced.

      (5) Line 113: They show diverse mutations, but all within the mechanism of target-site point mutations.

      We agree to your suggestion. This sentence has been removed as it repeats information stated above it.

      (6) Line 115-116: Yes, agreed; I think this is the main strength of the current study and should be emphasised sooner.

      Thanks.

      (7) Line 158: Selective sweep signals were clear in half of the resistant populations but not in the others. The suggestion that the others had undergine soft sweeps, with multiple mutations increasing in frequency simultaneously but no one reaching fixation, seems reasonable; but the authors could compare the populations that did show a sweep with those that did not (for example, was there greater diversity or evenness of genotypes in those that did not?).

      Five resistant populations with selection signals identified by PBE analysis (Figure 2b) showed corresponding decreases in π and Tajima’s D near the two SDH genes but not across the genome (Figure S1).

      (8) Line 313: please clarify "in combination with other mutations" within a mixed population or combined in one individual/haplotype? Also, the phrase "characterised the function" may be a little misleading, as this is a correlative analysis, not functional confirmation.

      None of the combinations of different resistant mutations was observed in a single haplotype. Here, we examine resistance levels associated with a single mutation or two mutations on sdhB and sdhD in one individual, i.e. sdhB_I260V and sdhD_R119C. We revised the sentences to avoid any implication of functional confirmation.

      (9) Line 358: again, please clarify the context: among arthropod pests?

      Done.

      (10) Line 360-363: please give some background on when and where these related compounds were introduced.

      Added.

      (11) Line 410: yes fitness costs may be a factor, but you could also give an example of a cost expressed in the absence of any pesticides, as well as the given example of negative cross-resistance.

      We added the example of the H258Y mutation which causes both fitness costs and negative cross-resistance.

      (12) Lines 419-438: this is one aspect where the situation for insecticides is in contrast with some other resistance areas.

      Yes, we restricted these statements to arthropod pests.

      (13) Line 466: some more detail could be given here: for example, SNP-specific monitoring would be less effective, but amplicon sequencing would be more suitable.

      Yes, revised.

      (14) Lines 472-475: Please list the numbers of field/lab, pre/post exposure, and sensitive/resistant populations within the main text.

      Done. The number of sensitive/resistant populations was reported in the result section.

      (15) Line 483: randomly selected individuals?

      Yes, added randomly selected individuals.

      (16) Line 556: Sanger sequencing to characterise populations? Or a number of individuals from each population?

      Revised.

      (17) References: there are some duplicate entries, please check this.

      Checked.

      (18) Figure 1e: consider a log(10) scale to better show large fold changes and avoid multiple axis breaks.

      Thanks for your suggestions. However we didn’t scale the LC<sub>50</sub> value, because we wanted to show the specific impact of 1,000 mg/L. The breaks in the Y axis around 30 mg/L -1,000 mg/L reveal that the LC50s of the resistant populations were all greater than 1000 mg/L, while those of the susceptible populations were all below 30 mg/L. This justified the use 1000 mg/L as a discriminating dose to investigate resistance status and level in subsequent work.

    1. Author response:

      The following is the authors’ response to the previous reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      In this manuscript, Azlan et al. identified a novel maternal factor called Sakura that is required for proper oogenesis in Drosophila. They showed that Sakura is specifically expressed in the female germline cells. Consistent with its expression pattern, Sakura functioned autonomously in germline cells to ensure proper oogenesis. In sakura KO flies, germline cells were lost during early oogenesis and often became tumorous before degenerating by apoptosis. In these tumorous germ cells, piRNA production was defective and many transposons were derepressed. Interestingly, Smad signaling, a critical signaling pathway for the GSC maintenance, was abolished in sakura KO germline stem cells, resulting in ectopic expression of Bam in whole germline cells in the tumorous germline. A recent study reported that Bam acts together with the deubiquitinase Otu to stabilize Cyc A. In the absence of sakura, Cyc A was upregulated in tumorous germline cells in the germarium. Furthermore, the authors showed that Sakura co-immunoprecipitated Otu in ovarian extracts. A series of in vitro assays suggested that the Otu (1-339 aa) and Sakura (1-49 aa) are sufficient for their direct interaction. Finally, the authors demonstrated that the loss of otu phenocopies the loss of sakura, supporting their idea that Sakura plays a role in germ cell maintenance and differentiation through interaction with Otu during oogenesis.

      Strengths:

      To my knowledge, this is the first characterization of the role of CG14545 genes. Each experiment seems to be well-designed and adequately controlled

      Weaknesses:

      However, the conclusions from each experiment are somewhat separate, and the functional relationships between Sakura's functions are not well established. In other words, although the loss of Sakura in the germline causes pleiotropic effects, the cause-and-effect relationships between the individual defects remain unclear.

      Comments on latest version:

      The authors have attempted to address my initial concerns with additional experiments and refutations. Unfortunately, my concerns, especially my specific comments 1-3, remain unaddressed. The present manuscript is descriptive and fails to describe the molecular mechanism by which Sakura exerts its function in the germline. Nevertheless, this reviewer acknowledges that the observed defects in sakura mutant ovaries and the possible physiological significance of the Sakura-Out interaction are worth sharing with the research community, as they may lay the groundwork for future research in functional analysis.

      We thank the reviewer for valuable comments. We would like to investigate the molecular mechanism by which Sakura exerts its function in the germline in near future studies. 

      Reviewer #2 (Public review):

      In this study, the authors identified CG14545 (named it sakura), as a key gene essential for Drosophila oogenesis. Genetic analyses revealed that Sakura is vital for both oogenesis progression and ultimate female fertility, playing a central role in the renewal and differentiation of germ stem cells (GSC).

      The absence of Sakura disrupts the Dpp/BMP signaling pathway, resulting in abnormal bam gene expression, which impairs GSC differentiation and leads to GSC loss. Additionally, Sakura is critical for maintaining normal levels of piRNAs. Also, the authors convincingly demonstrate that Sakura physically interacts with Otu, identifying the specific domains necessary for this interaction, suggesting a cooperative role in germline regulation. Importantly, the loss of otu produces similar defects to those observed in sakura mutants, highlighting their functional collaboration.

      The authors provide compelling evidence that Sakura is a critical regulator of germ cell fate, maintenance, and differentiation in Drosophila. This regulatory role is mediated through modulation of pMad and Bam expression. However, the phenotypes observed in the germarium appear to stem from reduced pMad levels, which subsequently trigger premature and ectopic expression of Bam. This aberrant Bam expression could lead to increased CycA levels and altered transcriptional regulation, impacting piRNA expression. In this revised manuscript, the authors further investigated whether Sakura affects the function of Orb, a binding partner they identified, in deubiquitinase activity when Orb interacts with Bam.

      We appreciate the authors' efforts to address all our comments. While these revisions have greatly improved the clarity of certain sections, some of the concerns remain unclear, while details mentioned in the responses about these studies should be incorporated in the manuscript. Specifically, the manuscript still lacks the demonstration that Sakura co-localizes with Orb/Bam despite having the means for staining and visualization. This would bring insight into the selective binding of Orb with Bam vs. Sakura perhaps at different stages of oogenesis. Such analyses would allow for more specific conclusions, further alluding to the underlying mechanism, rather than the general observations currently presented.

      This elaborate study will be embraced by both germline-focused scientists and the developmental biology community.

      We thank the reviewer for valuable comments. We believe that the author meant Otu, not Orb, for the binding partner of Sakura that we identified. We would like to investigate the colocalization of Sakura with other proteins including Otu and the molecular mechanism by which Sakura exerts its function in the germline in near future studies. 

      Reviewer #3 (Public review):

      In this very thorough study, the authors characterize the function of a novel Drosophila gene, which they name Sakura. They start with the observation that sakura expression is predicted to be highly enriched in the ovary and they generate an anti-sakura antibody, a line with a GFP-tagged sakura transgene, and a sakura null allele to investigate sakura localization and function directly. They confirm the prediction that it is primarily expressed in the ovary and, specifically, that it is expressed in germ cells, and find that about 2/3 of the mutants lack germ cells completely and the remaining have tumorous ovaries. Further investigation reveals that Sakura is required for piRNA-mediated repression of transposons in germ cells. They also find evidence that sakura is important for germ cell specification during development and germline stem cell maintenance during adulthood. However, despite the role of sakura in maintaining germline stem cells, they find that sakura mutant germ cells also fail to differentiate properly such that mutant germline stem cell clones have an increased number of "GSC-like" cells. They attribute this phenotype to a failure in the repression of Bam by dpp signaling. Lastly, they demonstrate that sakura physically interacts with otu and that sakura and otu mutants have similar germ cell phenotypes. Overall, this study helps to advance the field by providing a characterization of a novel gene that is required for oogenesis. The data are generally high-quality and the new lines and reagents they generated will be useful for the field.

      Comments on latest version:

      With these revisions, the authors have addressed my main concerns.

      We thank the reviewer for valuable comments.

      Recommendations for the authors:

      Reviewer #2 (Recommendations for the authors):

      The manuscript is much improved based on the changes made upon recommendations from the reviewers.

      Though most of our comments have been addressed, we have a few more we wish to recommend. For previous points we made, we replied with further clarification for the authors.

      Figure 1

      (1) B should be the supplemental figure.

      We moved the former Fig 1B to Supplemental Figure 1.

      • Previous Fig1B (sakura mRNA expression level) is now Fig S2, not S1. Please make this data as Fig S1.

      We moved Fig S1 to main Fig7A and renumbered Fig S2-S16 to Fig S1-S15.

      (2) C - How were the different egg chamber stages selected in the WB? Naming them 'oocytes' is deceiving. Recommend labeling them as 'egg chambers', since an oocyte is claimed to be just the one-cell of that cyst.

      We changed the labeling to egg chambers.

      • The labels on lanes for Stages 12-13 and Stage 14, still only say "chambers", not "egg chambers". Also there is no Stage 1-3 egg chamber. More accurately, the label should be "Germarium - Stage 11 egg chambers".

      We updated the lables on lanes as suggested by the reviewer.

      (3) Is the antibody not detecting Sakura in IF? There is no mention of this anywhere in the manuscript.

      While our Sakura antibody detects Sakura in IF, it seems to detect some other proteins as well. Since we have Sakura-EGFP fly strain (which fully rescues sakuranull phenotypes) to examine Sakura expression and localization without such non-specific signal issues, we relied on Sakura-EGFP rather than anti-Sakura antibodies for IF.

      • Please put this info into the Methods section.

      We added this info into the Methods section.

      (4) Expand on the reliance of the sakura-EGFP fly line. Does this overexpression cause any phenotypes?

      sakura-EGFP does not cause any phenotypes in the background of sakura[+/+] and sakura[+/-].

      • Please add this detail into the manuscript.

      We added this info into the Methods section.

      Figure 5

      (1) D - It might make more sense if this graph showed % instead of the numbers.

      We did not understand the reviewer's point. We think using numbers, not %, makes more sense.

      • Having a different 'n' number for each experiment does not allow one to compare anything except numbers of the egg chambers. This must be normalized.

      We still don’t agree with the reviewer. In Fig 5D, we are showing the numbers of stage 14 oocytes per fly (= per a pair of ovaries). ‘n’ is the number of flies (= number of a pair of ovaries) examined. We now clarified this in the figure legend. Different ‘n’ number does not prevent us from comparing the numbers of stage 14 oocytes per fly. Therefore, we would like to show as it is now.

      (2) Line 213 - explain why RNAi 2 was chosen when RNAi 1 looks stronger.

      Fly stock of RNAi line 2 is much healthier than RNAi line 1 (without being driven Gal4) for some reasons. We had a concern that the RNAi line 1 might contain an unwanted genetic background. We chose to use the RNAi 2 line to avoid such an issue.

      • Please add this information to the manuscript.

      We added this info into the Methods section.

      Figure 7/8 - can go to Supplemental.

      We moved Fig 8 to supplemental. However, we think Fig 7 data is important and therefore we would like to present them as a main figure.

      • Current Fig S1 should go to Fig 7, to better understand the relationship between pMad and Bam expression.

      We moved Fig S1 to main Fig7A and renumbered Fig S2-S16 to Fig S1-S15.

      Figure 9C - Why the switch to S2 cells? Not able to use the Otu antibody in the IP of ovaries?

      We can use the Otu antibody in the IP of ovaries. However, in anti-Sakura Western after anti Otu IP, antibody light chain bands of the Otu antibodies overlap with the Sakura band. Therefore, we switched to S2 cells to avoid this issue by using an epitope tag.

      • Please add this info to the Methods section.

      We added this info into the Methods section.

      Figure 10- Some images would be nice here to show that the truncations no longer colocalize.

      We did not understand the reviewer's points. In our study, even for the full-length proteins. We have not shown any colocalization of Sakura and Otu in S2 cells or in ovaries, except that they both are enriched in developing oocytes in egg chambers.

      • Based on your binding studies, we would expect them to colocalize in the egg chamber, and since there are antibodies and a GFP-line available, it would be important to demonstrate that via visualization.

      As we wrote in the response and now in the manuscript, our antibodies are not best for immunostaining. We will try to optimize the experimental conditions in the future studies.

    1. Author response:

      The following is the authors’ response to the original reviews

      eLife Assessment 

      The authors utilize a valuable computational approach to exploring the mechanisms of memorydependent klinotaxis, with a hypothesis that is both plausible and testable. Although they provide a solid hypothesis of circuit function based on an established model, the model's lack of integration of newer experimental findings, its reliance on predefined synaptic states, and oversimplified sensory dynamics, make the investigation incomplete for both memory and internal-state modulation of taxis.  

      We would like to express our gratitude to the editor for the assessment of our work. However, we respectfully disagree with the assessment that our investigation is incomplete, if the negative assessment is primarily due to the impact of AIY interneuron ablation on the chemotaxis index (CI) which was reported in Reference [1]. It is crucial to acknowledge that the CI determined through experimental means incorporates contributions from both klinokinesis and klinotaxis [1]. It is plausible that the impact of AIY ablation was not adequately reflected in the CI value. Consequently, the experimental observation does not necessarily diminish the role of AIY in klinotaxis. Anatomical evidence provided by the database (http://ims.dse.ibaraki.ac.jp/ccep-tool/) substantiates that ASE sensory neurons and AIZ interneurons, which have been demonstrated to play a crucial role in klinotaxis [Matsumoto et al., PNAS 121 (5) e2310735121], have the much higher number of synaptic connections with AIY interneurons. These findings provide substantial evidence supporting the validity of the presented minimal neural network responsible for salt klinotaxis.

      Public Reviews: 

      Reviewer #1 (Public review): 

      Summary: 

      This research focuses on C. elegans klinotaxis, a chemotactic behavior characterized by gradual turning, aiming to uncover the neural circuit mechanism responsible for the context-dependent reversal of salt concentration preference. The phenomenon observed is that the preferred salt concentration depends on the difference between the pre-assay cultivation conditions and the current environmental salt levels. 

      We would like to express our gratitude for the time and consideration you have dedicated to reviewing our manuscript.

      The authors propose that a synaptic-reversal plasticity mechanism at the primary sensory neuron, ASER, is critical for this memory- and context-dependent switching of preference. They build on prior findings regarding synaptic reversal between ASER and AIB, as well as the receptor composition of AIY neurons, to hypothesize that similar "plasticity" between ASER and AIY underpins salt preference behavior in klinotaxis. This plasticity differs conceptually from the classical one as it does not rely on any structural changes but rather synaptic transmission is modulated by the basal level of glutamate, and can switch from inhibitory to excitatory. 

      To test this hypothesis, the study employs a previously established neuroanatomically grounded model [4] and demonstrates that reversing the ASER-AIY synapse sign in the model agent reproduces the observed reversal in salt preference. The model is parameterized using a computational search technique (evolutionary algorithm) to optimize unknown electrophysiological parameters for chemotaxis performance. Experimental validity is ensured by incorporating constraints derived from published findings, confirming the plausibility of the proposed mechanism. 

      Finally. the circuit mechanism allowing C. elegans to switch behaviour to an exploration run when starved is also investigated. This extension highlights how internal states, such as hunger, can dynamically reshape sensory-motor programs to drive context-appropriate behaviors.  

      We would like to thank the reviewer for the appropriate summary of our work. 

      Strengths and weaknesses: 

      The authors' approach of integrating prior knowledge of receptor composition and synaptic reversal with the repurposing of a published neuroanatomical model [4] is a significant strength. This methodology not only ensures biological plausibility but also leverages a solid, reproducible modeling foundation to explore and test novel hypotheses effectively.

      The evidence produced that the original model has been successfully reproduced is convincing.

      The writing of the manuscript needs revision as it makes comprehension difficult.  

      We would like to thank the reviewer for recognizing the usefulness of our approach. In the revised version, we improved the explanation according to your suggestions.  

      One major weakness is that the model does not incorporate key findings that have emerged since the original model's publication in 2013, limiting the support for the proposed mechanism. In particular, ablation studies indicate that AIY is not critical for chemotaxis, and other interneurons may play partially overlapping roles in positive versus negative chemotaxis. These findings challenge the centrality of AIY and suggest the model oversimplifies the circuit involved in klinotaxis.

      We would like to express our gratitude for the constructive feedback we have received. We concur with some of your assertions. In fact, our model is the minimal network for salt klinotaxis, which includes solely the interneurons that are connected to each other via the highest number of synaptic connections. It is important to note that our model does not consider redundant interneurons that exhibit overlapping roles. Consequently, the model is not applicable to the study of the impact of interneuron ablation. In the reference [1], the influence of interneuron ablations on the chemotaxis index (CI) has been investigated. The experimentally determined CI value incorporates the contributions from both klinokinesis and klinotaxis. Consequently, it is plausible that the impact of AIY ablation was not significantly reflected in the CI value. The experimental observation does not necessarily diminish the role of AIY in klinotaxis. 

      Reference [1] also shows that ASER neurons exhibit complex, memory- and context-dependent responses, which are not accounted for in the model and may have a significant impact on chemotactic model behaviour. 

      As the reviewer has noted, our model does not incorporate the context-dependent response of the ASER. Instead, the impact of the salt concentration-dependent glutamate release from the ASER [S. Hiroki et al. Nat Commun 13, 2928 (2022)] as the result of the ASER responses was in detail examined in the present study.

      The hypothesis of synaptic reversal between ASER and AIY is not explicitly modeled in terms of receptor-specific dynamics or glutamate basal levels. Instead, the ASER-to-AIY connection is predefined as inhibitory or excitatory in separate models. This approach limits the model's ability to test the full range of mechanisms hypothesized to drive behavioral switching.  

      We would like to express our gratitude to the reviewer for their constructive feedback. As you correctly noted, the hypothesized synaptic reversal between ASER and AIY is not explicitly modeled in terms of the sensitivity of the receptors in the AIY and the glutamate basal levels by the ASER. On the other hand, in the present study, under considering a substantial difference in the sensitivity of the two glutamate receptors on the AIY, we sought to endeavored to elucidate the impact of salt-concentration-dependent glutamate basal levels on klinotaxis. To this end, we conducted a comprehensive examination of the full range gradual change in the ASER-to-AIY connection from inhibitory to excitatory, as illustrated in Figures S4 and S5.

      While the main results - such as response dependence on step inputs at different phases of the oscillator - are consistent with those observed in chemotaxis models with explicit neural dynamics (e.g., Reference [2]), the lack of richer neural dynamics could overlook critical effects. For example, the authors highlight the influence of gap junctions on turning sensitivity but do not sufficiently analyze the underlying mechanisms driving these effects. The role of gap junctions in the model may be oversimplified because, as in the original model [4], the oscillator dynamics are not intrinsically generated by an oscillator circuit but are instead externally imposed via $z_¥text{osc}$. This simplification should be carefully considered when interpreting the contributions of specific connections to network dynamics. Lastly, the complex and contextdependent responses of ASER [1] might interact with circuit dynamics in ways that are not captured by the current simplified implementation. These simplifications could limit the model's ability to account for the interplay between sensory encoding and motor responses in C. elegans chemotaxis. 

      We might not understand the substance of your assertions. However, we understand that the oscillator dynamics were not intrinsically generated by the oscillator neural circuit that is explicitly incorporated into our modeling. On the other hand, the present study focuses on how the sensory input and resulting interneuron dynamics regulate the oscillatory behavior of SMB motor neurons to generate klinotaxis. The neuron dynamics via gap junctions results from the equilibration of the membrane potential yi of two neurons connected by gap junctions rather than the zi. We added this explanation in the revised manuscript as follows.

      “The hyperpolarization signals in the AIZL are transmitted to the AIZR via the gap junction (Figs. S1d and S1f and Fig. 3d). This is because the neuron dynamics via gap junctions results from the equilibration of the membrane potential y<sub>i</sub> of two neurons connected by gap junctions rather than the z<sub>i</sub>.”

      In the limitation, we added the following sentence:

      “In the present study, the oscillator components of the SMB are not intrinsically generated by an oscillator circuit but are instead externally imposed via 𝑧<sub>i</sub><sup>OSC</sup>. Furthermore, the complex and context-dependent responses of ASER {Luo:2014et} were not taken into consideration. It should be acknowledged as a limitation of this study that these omitted factors may interact with circuit dynamics in ways that are not captured by the current simplified implementation.”

      Appraisal: 

      The authors show that their model can reproduce memory-dependent reversal of preference in klinotaxis, demonstrating that the ASER-to-AIY synapse plays a key role in switching chemotactic preferences. By switching the ASER-AIY connection from excitatory to inhibitory they indeed show that salt preference reverses. They also show that the curving/turn rate underlying the preference change is gradual and depends on the weight between ASER-AIY. They further support their claim by showing that curving rates also depend on cultivated (set-point).  

      We would like to thank the reviewer for assessing our work.

      Thus within the constraints of the hypothesis and the framework, the model operates as expected and aligns with some experimental findings. However, significant omissions of key experimental evidence raise questions on whether the proposed neural mechanisms are sufficient for reversal in salt-preference chemotaxis.  

      We agree with your opinion. The present hypothesis should be verified by experiments.

      Previous work [1] has shown that individually ablating the AIZ or AIY interneurons has essentially no effect on the Chemotactic Index (CI) toward the set point ([1] Figure 6). Furthermore, in [1] the authors report that different postsynaptic neurons are required for movement above or below the set point. The manuscript should address how this evidence fits with their model by attempting similar ablations. It is possible that the CI is rescued by klinokinesis but this needs to be tested on an extension of this model to provide a more compelling argument.  

      We would like to express our gratitude for the constructive feedback we have received. In the reference [1], the influence of interneuron ablations on the chemotaxis index (CI) has been investigated. It is important to acknowledge that the experimentally determined CI value encompasses the contributions of both klinokinesis and klinotaxis. It is plausible that the impact of AIY ablation was not reflected in the CI value. Consequently, these experimental observations do not necessarily diminish the role of AIY in klinotaxis. The neural circuit model employed in the present study constitutes a minimal network for salt klinotaxis, encompassing solely interneurons that are connected to each other via the highest number of synaptic connections. Anatomical evidence provided by the database (http://ims.dse.ibaraki.ac.jp/cceptool/) substantiates that ASE sensory neurons and AIZ interneurons, which have been demonstrated to play a crucial role in klinotaxis [Matsumoto et al., PNAS 121 (5) e2310735121], have the much higher number of synaptic connections with AIY interneurons. Our model does not take into account redundant interneurons with overlapping roles, thus rendering it not applicable to the study of the effects of interneuron ablation.

      The investigation of dispersal behaviour in starved individuals is rather limited to testing by imposing inhibition of the SMB neurons. Although a circuit is proposed for how hunger states modulate taxis in the absence of food, this circuit hypothesis is not explicitly modelled to test the theory or provide novel insights.  

      As the reviewer noted, the experimentally identified neural circuit that inhibits the SMB motor neurons in starved individuals is not incorporated in our model. Instead of incorporating this circuit explicitly, we examined whether our minimal network model could reproduce dispersal behavior under starvation conditions solely due to the experimentally demonstrated inhibitory effect of SMB motor neurons.

      Impact: 

      This research underscores the value of an embodied approach to understanding chemotaxis, addressing an important memory mechanism that enables adaptive behavior in the sensorimotor circuits supporting C. elegans chemotaxis. The principle of operation - the dependence of motor responses to sensory inputs on the phase of oscillation - appears to be a convergent solution to taxis. Similar mechanisms have been proposed in Drosophila larvae chemotaxis [2], zebrafish phototaxis [3], and other systems. Consequently, the proposed mechanism has broader implications for understanding how adaptive behaviors are embedded within sensorimotor systems and how experience shapes these circuits across species.

      We would like to express our gratitude for useful suggestion. We added this argument in Discussion of the revised manuscript as follows.    

      “The principle of operation, in which the dependence of motor responses to sensory inputs on the phase of motor oscillation, appears to be a convergent solution for taxis and navigation across species. In fact, analogous mechanisms have been postulated in the context of chemotaxis in Drosophila larvae chemotaxis {Wystrach:2016bt} and phototaxis in zebrafish {Wolf:2017ei}. Consequently, the synaptic reversal mechanism highlighted in this study offers the framework for understanding how the behaviors that are adaptive to the environment are embedded within sensorimotor systems and how experience shapes these neural circuits across species.”

      Although the reported reversal of synaptic connection from excitatory to inhibitory is an exciting phenomenon of broad interest, it is not entirely new, as the authors acknowledge similar reversals have been reported in ASER-to-AIB signaling for klinokinesis ( Hiroki et al., 2022). The proposed reversal of the ASER-to-AIY synaptic connection from inhibitory to excitatory is a novel contribution in the specific context of klinotaxis. While the ASER's role in gradient sensing and memory encoding has been previously identified, the current paper mechanistically models these processes, introducing a hypothesis for synaptic plasticity as the basis for bidirectional salt preference in klinotaxis.  

      The research also highlights how internal states, such as hunger, can dynamically reshape sensory-motor programs to drive context-appropriate behaviors.  

      The methodology of parameter search on a neural model of a connectome used here yielded the valuable insight that connectome information alone does not provide enough constraints to reproduce the neural circuits for behaviour. It demonstrates that additional neurophysiological constraints are required.  

      We would like to acknowledge the appropriate recognition of our work.

      Additional Context 

      Oscillators with stimulus-driven perturbations appear to be a convergent solution for taxis and navigation across species. Similar mechanisms have been studied in zebrafish phototaxis [3], Drosophila larvae chemotaxis [2], and have even been proposed to underlie search runs in ants. The modulation of taxis by context and memory is a ubiquitous requirement, with parallels across species. For example, Drosophila larvae modulate taxis based on current food availability and predicted rewards associated with odors, though the underlying mechanism remains elusive. The synaptic reversal mechanism highlighted in this study offers a compelling framework for understanding how taxis circuits integrate context-related memory retrieval more broadly.  

      We would like to express our gratitude for the insightful commentary. In the revised manuscript, we incorporated the argument that the similar oscillator mechanism with stimulus-driven perturbations has been observed for zebrafish phototaxis [3] and Drosophila larvae chemotaxis [2] into Discussion.

      As a side note, an interesting difference emerges when comparing C. elegans and Drosophila larvae chemotaxis. In Drosophila larvae, oscillatory mechanisms are hypothesized to underlie all chemotactic reorientations, ranging from large turns to smaller directional biases (weathervaning). By contrast, in C. elegans, weathervaning and pirouettes are treated as distinct strategies, often attributed to separate neural mechanisms. This raises the possibility that their motor execution could share a common oscillator-based framework. Re-examining their overlap might reveal deeper insights into the neural principles underlying these maneuvers. 

      We would like to acknowledge your thoughtfully articulated comment. As the reviewer pointed out, the anatomical database (http://ims.dse.ibaraki.ac.jp/ccep-tool/) shows that that the neural circuits underlying weathervaning and pirouettes in C. elegans are predominantly distinct but exhibit partial overlap. When we restrict our search to the neurons that are connected to each other with the highest number of synaptic connections, we identify the projections from the neural circuit of weathervaning to the circuit of pirouettes; however we observed no reversal projections. This finding suggests that the neural circuit of weathervaning, namely, our minimal neural network, is not likely to be affected by that of pirouettes, which consists of AIB interneurons and interneurons and motor neurons the downstream. 

      (1) Luo, L., Wen, Q., Ren, J., Hendricks, M., Gershow, M., Qin, Y., Greenwood, J., Soucy, E.R., Klein, M., Smith-Parker, H.K., & Calvo, A.C. (2014). Dynamic encoding of perception, memory, and movement in a C. elegans chemotaxis circuit. Neuron, 82(5), 1115-1128. 

      (2) Antoine Wystrach, Konstantinos Lagogiannis, Barbara Webb (2016) Continuous lateral oscillations as a core mechanism for taxis in Drosophila larvae eLife 5:e15504. 

      (3) Wolf, S., Dubreuil, A.M., Bertoni, T. et al. Sensorimotor computation underlying phototaxis in zebrafish. Nat Commun 8, 651 (2017). 

      (4) Izquierdo, E.J. and Beer, R.D., 2013. Connecting a connectome to behavior: an ensemble of neuroanatomical models of C. elegans klinotaxis. PLoS computational biology, 9(2), p.e1002890. 

      Reviewer #2 (Public review): 

      Summary: 

      This study explores how a simple sensorimotor circuit in the nematode C. elegans enables it to navigate salt gradients based on past experiences. Using computational simulations and previously described neural connections, the study demonstrates how a single neuron, ASER, can change its signaling behavior in response to different salt conditions, with which the worm is able to "remember" prior environments and adjust its navigation toward "preferred" salinity accordingly.  

      We would like to express our gratitude for the time and consideration the reviewer has dedicated to reviewing our manuscript.

      Strengths: 

      The key novelty and strength of this paper is the explicit demonstration of computational neurobehavioral modeling and evolutionary algorithms to elucidate the synaptic plasticity in a minimal neural circuit that is sufficient to replicate memory-based chemotaxis. In particular, with changes in ASER's glutamate release and sensitivity of downstream neurons, the ASER neuron adjusts its output to be either excitatory or inhibitory depending on ambient salt concentration, enabling the worm to navigate toward or away from salt gradients based on prior exposure to salt concentration.

      We would like to thank the reviewer for appreciating our research. 

      Weaknesses: 

      While the model successfully replicates some behaviors observed in previous experiments, many key assumptions lack direct biological validation. As to the model output readouts, the model considers only endpoint behaviors (chemotaxis index) rather than the full dynamics of navigation, which limits its predictive power. Moreover, some results presented in the paper lack interpretation, and many descriptions in the main text are overly technical and require clearer definitions.  

      We would like to thank the reviewer for the constructive feedback. As the reviewer noted, the fundamental assumptions posited in the study have yet to be substantiated by biological validation, and consequently, these assumptions must be directly assessed by biological experimentation. The model performance for salt klinotaxis has been evaluated by multiple factors, including not only a chemotaxis index but also the curving rate vs. bearing (Fig. 4a, the bearing is defined in Fig. A3) and the curving rate vs. normal gradient (Fig. 4c). These two parameters work to characterize the trajectory during salt klinotaxis. In the revised version, we meticulously revised the manuscript according to the reviewer’s suggestions. We would like to express our sincere gratitude for your insightful review of our work.

      Recommendations for the authors:  

      Reviewer #1 (Recommendations for the authors): 

      An interesting and engaging methodology combining theoretical and computational approaches. Overall I found the manuscript up to discussion a difficult read, and I would suggest revising it. I would also recommend introducing the general operating principle of the oscillator with sensory perturbations before jumping into the implementation details of signal propagation specific to C.

      elegans.  

      In order to elucidate the relation between the general operating principle of the oscillator with sensory perturbations and the results shown by the two graphs from the bottom in Fig. 3d, the following statement was added on page 12.

      “It is remarkable that this regulatory mechanism derived via the optimization of the CI has been observed in the context of chemotaxis in Drosophila larvae chemotaxis {Wystrach:2016bt} and phototaxis in zebrafish {Wolf:2017ei}. The principle of operation, in which the dependence of motor responses to sensory inputs on the phase of motor oscillation, therefore, may serve as a convergent solution for taxis and navigation across species.”

      The abstract could benefit from a clarification of terms to benefit a broader audience:  The term "salt klinotaxis" is used without prior introduction or definition. It would be beneficial to briefly explain this term, as it may not be familiar to all readers. 

      Due to the limitation of the word number in the abstract, the explanation of salt klinotaxis could not be included.

      Although ASER is introduced as a right-side head sensory neuron, AIY neurons are not similarly introduced. It may also benefit to introduce here that ASER integrates memory with current salt gradients, tuning its output to produce context-appropriate behaviour.  

      Due to the limitation of the word number in the abstract, we could add no more the explanations. 

      "it can be anticipated that the ASER-AIY synaptic transmission will undergo a reversal due to alterations in the basal glutamate Release": Where is this expectation drawn from? Is it derived from biophysical or is it a functional expectation to explain the network's output constraints?  

      As delineated before this sentence, it is derived from a comprehensive consideration of the sensitivity of excitatory/inhibitory glutamate receptors expressed on the postsynaptic AIY interneurons, in conjunction with varying the basal level of glutamate transmission from ASER.

      The statement that the model "revealed the modular neural circuit function downstream of ASE" could be more explicit. What specific insights about the downstream circuit were uncovered?

      Highlighting one or two key findings would strengthen the impact.  

      Due to the limitation of the word number in the abstract, no more details could be added here, while the sentence was revised as “revealed that the circuit downstream of ASE functions as a module that is responsible for salt klinotaxis.” This is because the salt-concentration dependent behaviors in klinitaxis can be reproduced through the modulation of the ASRE-AIY synaptic connections alone, despite the absence of alterations in the neural circuit downstream of AIY.

      I believe the authors should cite Luo et al. 2014, which also studies how chemotactic behaviours arise from neural circuit dynamics, including the dynamic encoding of salt concentration by ASER, and the crucial downstream interaction with AIY for chemotactic actions. 

      We would like to express our gratitude for useful suggestion. We cited Luo et al. 2014 in the discussion on the limitation of our work. 

      The introduction could also be improved for clarity. Specifically in the last paragraph authors should clarify how the observed synchrony of ASER excitation to the AIZ (Matsumoto et al., 2024), validates the resulting network.  

      We would like to express our gratitude for useful suggestion. We added the following explanation in the last paragraph of the introduction.

      “Specifically, the synchrony of the excitation of the ASER and AIZ {Matsumoto:2024ig} taken together with the experimentally identified inhibitory synaptic transmission between the AIY and AIZ revealed that the ASER-AIY synaptic connections should be inhibitory, which was consistent with the network obtained from the most evolved model.”

      In addition, we added the following explanation after “It was then hypothesized that the ASER-AIY inhibitory synaptic connections are altered to become excitatory due to a decrease in the baseline release of glutamate from the ASER when individuals are cultured under C<sub>cult</sub> < C<sub>test</sub>.”

      This is due to the substantial difference in the sensitivity of excitatory/inhibitory glutamate receptors expressed on the postsynaptic AIY interneurons.

      I would also strongly recommend replacing the term "evolved model", with "Optimized Model" or "Best-Performing Model" to clarify this is a computational optimization process with limitations - optimization through GAs does not guarantee finding global optima.  

      We revised "evolved model" as "optimized model" in the main and SI text.

      The text overall would benefit from editing for clarity and expression.  

      According to the revisions mentioned above, we revised “best optimized model” as “most optimized model” in the main and SI text.

      The font size on the plot axis in Figures 3 c&d should be increased for readability on the printed page. Label the left/right panel to indicate unconstrained / constrained evolution.  

      As you noted, the font size of the subscript on the vertical axis in Figs 3c and 3d was too small. We have revised the font size of the subscript in Figs. 3c and 3d and also in Fig. 5e. At your suggestion, “unconstrained” and “constrained” have been added as labels to the left and right panels in Fig. 3.

      There is no input/transmission to AIYR to step input in either model shown in Figure 3? 

      As shown in Fig. S1e and S1f, there are the transmissions to the AIYR from the ASEL and ASER. 

      Supplementary Figure 1 attempts to explain the interactions. There are inconsistent symbols used for inhibition and excitation between network schema (colours) and the z response plots (arrows vs circles), combined with different meanings for red/blue making it very confusing. 

      We could not address the inconsistency in the color of arrows and lines with an ending between Figs. S1c and S1d and Figs. S1a and S1b. On the other hand, Figs. S1e and S1f were revised so that the consistent symbols were used for inhibition, excitation, and electrical gap connections in Figs. S1c-S1f. The same revisions were made for Fig. S7c-S7f.

      Model parameters are given to 15 decimal precision, which seems excessive. Is model performance sensitive to that order? We would expect robustness around those values. The authors should identify relevant orders and truncate parameters accordingly. 

      We examined the influence of the parameter truncation on the trajectory and decided that the parameters with four decimal places were appropriate. According to this, we revised Table A4.

      Figure 3 caption typo "step changes I the salt concentration".  

      The typo was revised in Fig. 3 caption. 

      Reviewer #2 (Recommendations for the authors): 

      (1) Overall, the language of the paper is not properly organized, making the paper's logic and purpose hard to follow. In the Results Section, many observations or findings lack explicit interpretation. To address this issue, the authors should consider (1) adopting the contextcontent-conclusion scheme, (2) optimizing the logic flow by clearly identifying the context and goals prior to discussing their results and findings, (3) more explicitly interpreting their results, especially in a biological context.  

      We would like to express our gratitude for helpful suggestion. According to your suggestion listed below, we revised the main and SI texts.

      (2) In Figure 2, trajectories from the model with AIY-AIZ constraints show a faster convergence than those from the constraint-free model. However, in the corresponding texts in the Results section, the authors claimed no significant difference. It seems that the authors made this argument only based on CI (Chemotaxis Index). Therefore, in order to address such inconsistency, the authors need more explanation on why only relying on CI, which is an endpoint metric, instead of the whole navigation.  

      I would like to thank you for the helpful comment. In the present study, not only the CI but also the curving rate shown in Fig. 4 were applied to characterize the behavior in klinotaxis.

      According to your comments, we revised the related description in the main text as follows:

      “The difference between these CI values is slight, while the model optimized with the constraints exhibits a marginally accelerated attainment of the salt concentration peak, as shown by the trajectories. The slightly higher chemotaxis performance observed in the constrained model is not essentially attributed to the introduction of the AIY-AIZ synaptic constraints but rather depends on the specific individuals selected from the optimized individuals obtained from the evolutionary algorithm. In fact, even when the AIY-AIZ constraints are taken into consideration, the model retains a significant degree of freedom to reproduce salt klinotaxis due to the presence of a substantial parameter space. Consequently, the impact of the AIY-AIZ constraints on the optimization of the CI is expected to be negligible.”

      (3) In Figures 3a and b, some inter-neuron connections are relatively weak (e.g., AIYR to AIZR in Figure 3a) - thus it is unclear whether the polarity of such synapses would significantly influence the behavioral outcome or not. The authors could consider plotting the change of the connection strengths between neurons over the course of model optimization to get a sense of confidence in each inter-neuron connection. 

      In the evolutional algorithm, the parameters of individuals are subject to discontinuous variation due to the influence of selection, crossover, and mutations. Consequently, it is not straightforward to extract information regarding parameter optimization from parameter changes due to the non-systematic nature of parameter variation..

      (4) In Figure 3, the order of individual figure panels is incorrect: in the main text, Figure 3 a and b were mentioned after c and d. Also, the caption of Figure 3c "negative step changes I the" should be "in".  

      The main text underwent revision, with the description of Figures 3a and 3b being presented prior to that of Figures 3c and 3d. The typo was revised.

      (5) In Figure 4, the order of individual figure panels is messed up: in the main text, Figure 4 a was mentioned after b.  

      The main text underwent revision, with the description of Figure 4a being presented prior to that of Figure 4b.

      (6) Also in Figure 4, the authors need to provide a definition/explanation of "Bearing" and "Translational Gradient". In Figure 4d, the definition of positive and negative components is not clear.  

      Normal and Translational Salt Concentration Gradient in METHOD was referenced for the definition and explanation of the bearing and the translational gradient. We added the following explanation on the positive and negative components.

      “The positive and negative components of the curving rate are respectively sampled from the trajectory during leftward turns (as illustrated in Fig. 4b) and rightward turns, respectively.”

      (7) Figure 5: the authors need to explain why c has an error bar and how they were calculated, as this result is from a computational model. Figure 5d is experimental results - the authors need to add error bars to the data points and provide a sample size. 

      As explained in Analysis of the Salt Preference Behavior in Klinotaxis in METHOD, the ensemble average of these quantities was determined by performing 100,000 sets of the simulation with randomized initial orientation for a simulation time of T_sim=200 sec. The error bars for the experimental data were added in Figs. 5c, 6a, and S9a.

      (8) On Page 14, the authors said, "To this end, this end, we used the best evolved network with the constraints, in which we varied the synaptic connections between ASER and AIY from inhibitory to excitatory." How did the model change the ASER-AIY signaling specifically? The authors should provide more explanation or at least refer to the Methods Section.  

      The caption of Fig. S4 was referred as the explanation on the detailed method. 

      (9) Page 15: "a subset a subset exhibited a slight curve...". This observation from the model simulation is contradictory to experiments. However, their explanation of that is hard to understand.  

      I would like to thank you for the helpful comment. To improve this, we added the following explanation:

      “In the case of step increases in 𝑧OFF as illustrated in the second right panel from the bottom in Fig.3d, the turning angle φ is increased from its ideal oscillatory component to a value close to zero, causing the model worm to deviate from the ideal sinusoidal trajectory and gradually turn toward lower salt concentrations. On the other hand, in the case of step increases in 𝑧ON as illustrated in the second left panel from the bottom in Fig.3d, the turning angle φ is again increased from its ideal oscillatory component to a value close to zero, causing the model worm to deviate from the ideal sinusoidal trajectory and gradually turn toward higher salt concentrations. The behaviors that are consistent with these analyses are observed in the trajectory illustrated in Fig. S8b.”

      (10) Last result session: inhibited SMB in starved worms is due to a mechanism unrelated to their neural network model upstream to SMB. Therefore, their results recapitulating the worms' dispersal behaviors cannot strengthen the validity of their model.  

      We agree with your opinion. We think that the findings from the study of starved worms do not provide evidence to validate the neural network model upstream of SMB.   

      (11) Discussion: "in contrast, the remaining neurons...". This argument lacks evidence or references.  

      This argument is based on the results obtained from the present study. This sentence was revised as follows:

      “This regulatory process enables the reproduction of salt concentration memory-dependent reversal of preference behavior in klinotaxis, despite the remaining neurons further downstream of the ASER not undergoing alterations and simply functioning as a modular circuit to transmit the received signals to the motor systems. Consequently, the sensorimotor circuit allows a simple and efficient bidirectional regulation of salt preference behavior in klinotaxis.”

      (12) To increase the predictive power of their model, can the authors perform simulations on mutant worms, like those with altered glutamate basal level expression in ASER?  

      We would like to express our gratitude for useful suggestion. The simulations, in which the weight of the ASER-AIY synaptic connection is increased from negative (inhibitory connection) to positive (excitatory connection), as illustrated in Figure S4, provide valuable insights into the relationship between varying glutamate basal levels from ASER and behavior in klinotaxis, such as the chemotaxis index.

  3. Jun 2025
    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      Comments for the authors of Review Commons Manuscript RC-2024-02804:

      The author of the Review Commons manuscript "Antigen flexibility supports the avidity of hemagglutinin-specific antibodies at low antigen densities", present their recent work evaluating hemagglutinin interactions with cellular receptors and antibodies. This manuscript focuses specifically on the avidity of the hemagglutinin using a fluorescence-based assay to measure dissociation kinetics and steady-state binding of antibodies to virions. Their findings confirm that bivalent interactions can offset weak monovalent affinity and that HA ectodomain flexibility is an additional determinant of antibody avidity. These findings are key for our understanding of neutralizing antibodies. Below are some comments that I would like the authors to address as they revise the manuscript.

      Comments:

      1. Can the authors provide justification for the two influenza viruses that they used.

      We selected the lab-adapted IAV strains A/WSN/1933 (H1N1) and A/Hong Kong/1968 (H3N2) for this work because they are well-studied, including in the context of the antibodies used here, S139/1 and C05. While both antibodies bind to more contemporary H3N2 strains, they no not bind to HA from pandemic H1N1. Another feature of these strains is that their HAs have high enough affinity to both antibodies to enable strong signal in our imaging assays. This context for our strain selection has been added in lines 85-88.

      1. The use of filamentous particles is a strength, but authors should detail the role of filamentous vs. spherical in nature and lab settings. This will help researchers that plan to repeat these assays.

      We have revised the text (lines 336-339) to include more context on the biology of filamentous and spherical influenza viruses. In our experiments, HK68 naturally produces filaments in cell culture whereas WSN33 does not. To produce filaments artificially, we replace the M1 sequence from WSN33 with that of M1 from A/Udorn/1972, an H3N2 strain that is closely related to HK68.

      1. Did the authors add the Udorn M1 to the HK68 as well?

      Since HK68 naturally forms filaments, we did not introduce Udorn M1 into this strain. We note that the amino acid sequences of Udorn M1 and HK68 M1 differ only at position 167 (Alanine in Udorn, Threonine in HK68), and that this residue has previously been found to not correlate with virus morphology (10.1016/j.virol.2003.12.009).

      Reviewer #1 (Significance (Required)):

      This manuscript focuses specifically on the avidity of the hemagglutinin using a fluorescence-based assay to measure dissociation kinetics and steady-state binding of antibodies to virions. Thie findings confirm that bivalent interactions can offset weak monovalent affinity and that HA ectodomain flexibility is an additional determinant of antibody avidity. These findings are key for our understanding of neutralizing antibodies.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Summary

      In this study, Benegal et al. investigate the binding kinetics of HA-head-specific antibodies (S139/1 and C05) to intact influenza virus particles using a fluorescence microscopy-based technique to measure the dissociation rate (koff) of the antibodies. By applying their proposed equilibrium model for bivalent antibody binding to HA, the authors calculated the crosslinking rate (kx), which represents the rate at which a single-bound antibody crosslinks to an additional HA molecule. Their experiments revealed that antigen crosslinking significantly slows koff, reducing it by up to two orders of magnitude. The authors further utilized streptavidin-coated beads conjugated with biotinylated HA or biotinylated BSA at varying concentrations to control HA surface density. Their results demonstrated that the two tested HA-head-specific antibodies retained the ability to crosslink HAs even at ~10-fold lower HA surface densities. In a complementary experiment, they employed an HA-anchor-specific antibody to restrict HA flexibility, which led to reduced binding of S139/1 and C05 IgGs but not their Fab fragments. This finding suggests that HA flexibility, rather than density, is the primary determinant of antibody crosslinking and avidity. Overall, the authors present an innovative approach to elucidating the dissociation and crosslinking kinetics of antibodies targeting intact virions or nanoparticles. The study is well-designed, with alternative interpretations of the results carefully considered and addressed throughout. I have only a few minor comments and suggestions for clarification.

      Minor comments:

      1. In Figure 1, does the grey color of each IgG in panel C indicate the Fc domain? If so, please add the description of the colors to the figure legend. In fact, it may be better to explain all the colors used here (for HA1, HA2, Fab heavy chain, light chain, etc.).

      We have included this information in panel C and the caption for Figure 1.

      1. Under the section," Bivalent binding of S139/1 and C05 persists after ~10-fold reductions in HA surface densities", the beginning of the second paragraph writes, "For both S139/1 and C05 Fab, binding increases linearly with HA density, as expected for a monovalent interaction dictated by absolute HA availability rather than density (Fig. 3D). Interestingly, the same relationship is observed for S139/1 IgG."

      Visually, I think the same relationship also seems to hold for C05 IgG. Would it be better to perform some linear regression and report the R2 value for the fitting so that this assessment can be quantitative?

      We agree with the reviewer's point. In Figure 3 of the revised manuscript, we include the results from a linear regression analysis to make this assessment more quantitative.

      1. At the end of the same page, in the same paragraph, the authors mentioned, "In contrast to the IgG, Fab binding measured at twice the molar concentration of the IgG is nearly undetectable under these conditions, confirming the IgG binding is not occurring through monovalent interactions (Fig. S2E)." What are the conditions you are referring to? In Fig. S2E, there is only the Ab intensity for the Ab binding at 100% HA (and not the other percentages). For the Ab intensity of S139/1 Fab, what is the concentration of the Fab used in Figure 3D? Why could the intensity in this experiment for S139/1 Fab reach ~100,000, whereas that of the 8 nM in Fig. S2E can only reach ~20,000?

      To clarify this point, we have updated Figure 3 to include the antibody concentration used for each experiment. The experiments in Fig 3 are conducted approximately around the respective KD of each IgG or Fab to ensure both consistency and strong signal-to-noise. For S139/1, we use 4nM of IgG, and 25nM of Fab. In Fig S2E, we use a concentration of Fab fragments double to that of the IgG, to reach an equivalent concentration of binding sites and confirm that the IgG binding we see is indeed due to bivalent binding. In this case, we use 4nM of IgG and 8nM of Fab.

      1. Under the section, "Tilting of HA about its membrane anchor contributes to C05 and S139/1 avidity", in the second paragraph, the authors wrote, "If this is correct, we reasoned that avidity could be reduced by constraining tilting of the HA ectodomain. To test this hypothesis, we used FISW84, an antibody that binds to the HA anchor epitope and biases the ectodomain into a tilted conformation (Fig. 4B)."

      Can you use some computational models (maybe the same one you used for Figure 4A) to show that when an HA trimer is bounded by FISW84 Fabs, the tilting of HA is constrained? I think this will help substantiate the assertion above.

      This is an important point. The model that we employ in Figure 4A is suited to predicting the angles sampled by HAs when they are bound by an IgG antibody, but it does not take into consideration clashes with the viral membrane. It is these clashes that we predict based on published structures (reference 35 in the revised manuscript) will constrain HA tilting when FISW84 binds to the HA anchor. We have revised the text (Lines 247-249) to clarify these points.

      1. It would be good if you could mention the strain of HA used in the experiments in Figure 4 in the actual Figure as well (as supposed to just in the figure legend).

      We have added this information to Figure 4 in the revised manuscript.

      1. I do not see a method section for the structure-based model you used in Figure 4. In the text, you cited your previous study (ref 28) for the model, but it would be good to write about this briefly (and how you specifically apply the model in this study) in this current manuscript.

      We have updated the methods to include a subsection ("Geometric Model for Preferred Crosslinking Geometry") on how the structure-based model was set up, along with a corresponding visual in Fig S3 of the angles of freedom given.

      1. In Figure S1 panel D, what is the unit of the antibody concentration? Could you please add it to the graph legend?

      We have updated the figure (S1E in the revised manuscript) to include this information.

      Reviewer #2 (Significance (Required)):

      Previously, this group utilized the same fluorescence-based method to investigate the potency of anti-HA IgG1 antibodies in preventing viral entry versus egress, as well as the tendency of antibodies targeting different HA epitopes to crosslink two HA trimers in cis or in trans (He et al., J Virol, 2024). In this study, they extend their work by evaluating, in-depth, how the density and flexibility of hemagglutinin (HA) on the viral surface influence the binding avidity of anti-HA antibodies. Using two human IgG1 antibodies targeting the HA head, the authors demonstrate that these antibodies can crosslink two HA trimers in cis, even when the trimers are further apart than adjacent HAs. Notably, the study reveals that HA flexibility, rather than density, is the key determinant modulating antibody crosslinking. Even at a 10-fold reduced HA density compared to the original, the antibodies retained their ability to crosslink trimers.

      This study provides critical insights into the relationship between HA density, flexibility, and antibody function, adding to the broader understanding of antibody crosslinking-a topic frequently discussed in the field of influenza research. These findings could have significant implications for vaccine design, particularly for strategies involving the display of the HA ectodomain on nanoparticles, potentially guiding the development of more effective influenza vaccines. Furthermore, the broader relevance of these findings may extend to other viruses with similar structural and immunological properties.

      My expertise lies in the structural determination of antibody-antigen complexes in influenza and other pathogens. While I may not have sufficient expertise to evaluate specific technical details of the fluorescence-based methods employed, the authors have convincingly demonstrated the robustness of their experimental design and interpretation, supported by appropriate controls.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      SUMMARY In "Antigen flexibility supports the avidity of hemagglutinin-specific antibodies at low antigen densities", Benegal et al. develop a microscopy-based assay to measure dissociation of HA head-binding antibodies from intact virions. This assay allows the authors to explore the contribution of IgG bivalent avidity to antibody interaction with native virions, which is not accessible using other methods such as BLI. Using this assay, the authors further explore the effect of HA density on IgG avidity with engineered low-HA virions and then with artificial HA-coated microspheres. In addition to measuring antibody dissociation, the authors perform structural analyses to predict the conformational preferences of many HA IgGs from published structures. The authors conclude that low HA densities (down to ~10%) still support high avidity binding for the 2 IgGs tested, and thus there would be little evolutionary pressure for IAV to reduce the HA density as a strategy to evade immune recognition.

      MAJOR COMMENTS

      The data presented are generally convincing for the two antibodies tested, with some caveats listed below. I believe the microscopy technique is valuable and provides a significant contribution to the field, and I believe that the finding that avidity persists at low densities for IAV is compelling and worth communicating to other virologists. Overall, with the incorporation of the suggested major revisions, this manuscript represents a significant advancement in the field.

      A major limitation of the current study is the small number of antibodies tested. Two antibodies are quite few, particularly since this work attempts to generalize these observations with structural predictions of dozens or hundreds of HA antibodies. While I believe that the resilience of IgG binding to lower epitope densities is likely common to many HA antibodies (or antibodies in general), this work alone does not support this. To this end, the authors should acknowledge their limited sample size in the text or discussion and that the generalization to other antibodies is speculative. Alternatively, the authors could demonstrate with additional antibodies (such as F045-092 which is pointed out in Fig S3A and perhaps group 'i' antibodies according to Fig S3A).

      This is an important point, and we more explicitly acknowledge this limitation in lines 277-278.

      It seems to me lateral diffusion of HA in the viral membrane is an important discussion point that was missed in this manuscript. The authors should comment on what is known about the lateral mobility of HA on virions, and how this could impact the ability of an IgG to crosslink. The authors should comment about whether long range diffusion and/or short range "shuffling" of glycoproteins could contribute to crosslinking preferences of antibodies in addition to the tilt, which is the only movement discussed. As appropriate, the authors should then comment on how this may affect their interpretation of experiments using beads. In experiments on beads, there is certainly no lateral mobility of the HA trimers; what are the consequences of this on the analysis?

      We agree that this is an important consideration, and we have revised the manuscript (lines 296-298) to address these points. Briefly, we have previously performed fluorescence recovery after photobleaching of covalently labeled HA and NA on the surface of filamentous influenza particles (10.7554/eLife.43764; see Figure 1B of this reference for a representative example). This data indicates that long range diffusion does not seem to be occurring on the virion surface. Short range diffusion, or shuffling, has not been observed, but cannot be ruled out, and may increase conformations favorable to bivalent binding.

      Should the authors qualify the limitations in the scope of their experimental results and the system of choice (beads vs. virions) as described in my previous comments, I suggest three experiments that I believe are essential to support the authors' claims. Alternative to qualifying the limitations, two optional experiments are also listed that could support the authors' claims as they are - those require a more extensive experimental undertaking and are thus labeled [OPTIONAL].

      1) The photobleaching experiment shown in Figure S1A. I am concerned that measuring photobleaching in steady state conditions does not properly control for the experimental conditions. In steady state, bleached antibody could unbind and be replaced by fluorescent antibody that has diffused into the field of view. This should be more thoroughly controlled by irreversibly capturing antibody (such as with biotin) and imaging after excess antibody is washed away, or by some other method such as capturing and imaging virus that has been directly labeled with AF555. This should be possible using reagents and techniques already demonstrated by the authors.

      We have updated the supplemental information with a more rigorous control for photobleaching; the revised figures are shown in Fig S1A. In this experiment, fluorescent S139/1 IgG was bound to HK68 virions. The antibody was washed away, and the loss of fluorescence signal was imaged separately under two conditions: 1) Dissociation only; an image was collected at 0s and one at 60s. 2) Dissociation and photobleaching; an image was collected at a rate of 1 frame per second for 60 seconds. The difference between the endpoint intensities from both conditions is not statistically significant. This supports our conclusion that, in the absence of antibodies in solution that can exchange with those bound to virions, photobleaching does not make a detectable contribution to the loss of signal we observe in our antibody dissociation experiments.

      2) In imaging, the authors analyzed only filamentous virions because they exhibit the best signal to noise ratio, which is a reasonable technical simplification. However, this relies on the assumption that glycoprotein presentation is relatively constant between virions of different sizes. It would be helpful to perform some analysis of small virions in any movie where there is sufficient signal. This would support the assumption that rates for small virions are comparable to those of filaments in the same experiment. This should be possible by performing additional analysis on existing data, without requiring additional experiments.

      Thank you for calling our attention to a point that needs clarification. The analysis that was restricted to filaments was for the SEP-HA binding experiments (shown in Fig 3A&B). This was done in order to select only those particles that were not diffraction-limited, so that we could control for any systematic differences in size between the two populations by measuring HA signal per unit particle length. For the dissociation experiments (Fig 2), data was taken from all virions in the fields of view. For this analysis, the normalized dissociation curves were averaged in two ways to account for the potential discrepancy that the reviewer points out. In the first method, the average was taken with each virion equally weighted, while in the second method, the entire field of view was masked and normalized together. Both curves look very similar, suggesting that any potential differences between smaller virions and filaments are not enough to make a quantifiable difference in dissociation rate. A representative dissociation curve with both analyses shown side-by-side has been added in Figure S1B.

      3) In figure 3, C05 fab binding is used to assay HA content of the SEP HA virions. An additional method of confirming HA content that is more independent from the imaging assay would be beneficial, such as a Western blot to quantify HA relative to NP, NA, or M1 etc.

      We have used western blotting to quantify the amount of HA contained relative to M1 in each population. This new data is discussed in lines 163-168 of the revised manuscript and shown in Figure S2C. As noted in the revised text, western blot analysis suggests that the density of native HA is decreased to ~31% its normal level in SEP-HA virions, lower than the ~75% value determined via fluorescence microscopy. One possible reason for this disparity is the presence of virus-like particles in the SEP-HA sample that completely lack wildtype HA. These would be excluded from our imaging analysis but captured by the western blot.

      4) [OPTIONAL] In figure 4, it is depicted that FISW84 biases HA in a tilted conformation, and the authors reasonably propose the reduced flexibility discourages crosslinking by IgGs. From the modeling summarized in Figure S3A, are there any antibodies predicted to prefer crosslinking HA at the same angle FISW84 tilts the ectodomain? Would FISW84 enhance crosslinking by such an antibody?

      This is an interesting suggestion, and we have revised the manuscript (lines 247-249) to clarify our thinking on this point. Based on the structure of the FISW84 Fab (PDB ID 6HJQ), we conclude that binding of a single Fab fragment does not necessarily actively tilt the HA ectodomain in a specific direction. Rather, it restricts tilting in the direction that would cause a steric clash between the Fab and the membrane. As a result, HA can still sample a range of angles, but this range is no longer symmetrical about the ectodomain axis. By reducing the likelihood that two HA ectodomains would tilt towards each other at a favorable angle, we would expect all antibodies to be disadvantaged to some degree. A possible exception could be if three FISW84 Fab fragments manage to bind to a single HA trimer. In this case, the HA ectodomain would be forced to remain perpendicular to the membrane to accommodate them all. This would favor antibodies that prefer binding to HAs where the ectodomains are parallel to each other. In our analysis in Figure S3A, this includes primarily antibodies that bind to the HA central stalk, such as 31.b.09. However, we note that these antibodies may encounter barriers to bivalent binding that we do not consider here, including proximity to the FISW84 epitope and the high density of HA in the membrane.

      5) [OPTIONAL] In figure S3A, the authors display theoretical tilt and spacing preferences for many HA antibodies based on published structures. Interestingly, their group iii antibody is predicted to prefer greater spacing and tilt, and likewise the authors observe increased binding at lower densities (in figure 3E). It would be beneficial to the work to test group i antibodies (base binding) in the dissociation experiments. The behavior of a base binding antibody, particularly at low densities could reinforce the modeling performed for this work.

      This is an excellent suggestion which we are not currently able to pursue for technical reasons. In particular, it would be difficult to distinguish between increased binding of these antibodies at low antigen densities that is due to bivalent attachment (and thus reduced dissociation) versus increased accessibility of the epitope, which may be occluded at higher HA densities.

      The experiments are well explained and supported by methods that would enable reproducibility.

      The authors state "The statistical tests and the number of replicates used in specific cases are described in the figure legends" yet in many cases this information is absent. For the k values in fig 2D, some indication of error or confidence interval would be helpful.

      We have ensured that this information is included in each of the captions. Regarding the k values, formal error propagation is challenging due to the way the k values were derived. Specifically, these values were calculated by fitting the average of the three initial dissociation traces, rather than fitting each replicate individually and then averaging the rate constants. As a result, the usual methods for estimating confidence intervals or standard error of the mean are not directly applicable.

      MINOR COMMENTS

      o Some of the small details in fig 1A and fig S1 are lost due to small figure size - such as the sialic acid residues and lipid bilayer.

      We have resized the figure components.

      o Although described in the text, it could be helpful to incorporate into figure 2 why the BLI data is shown for S129 fab. Perhaps indicate in 2C that that curve is "too fast to accurately measure" and perhaps near the table in 2D indicate the blue data is from Lee et al. It may be fine to simply remove the BLI results from the figure and refer to them only in the discussion of the experiments. Even with the measured data, the difference between fab and IgG is striking enough to support the paper, and the BLI data may be more confusing in the figure than it adds.

      We have updated the caption for Figure 2D to clarify that binding between the S139/1 Fab and A/WSN/1933 HA is approaching the limit of detection in our assay, and that the additional rates are from Lee et al. We have also updated the table to make the presentation of the kinetic parameters more clear.

      o In figure 3A, better describe the fluorescent components in the fluorescent images in the legend.

      We have updated the caption for Figure 3A to describe the fluorescent components shown in the image. Specifically, the panel labeled 'HA' shows signal from a fluorescent FI6v3 scFv, while the panel labeled 'decoy' shows signal from the SEP-HA construct.

      o From personal experience, the flexibility of HA ectodomain can be significantly affected by how much of the membrane proximal linker region is retained or removed. Could the authors comment on how they chose the cutoff for their HA ectodomain used in the bead experiments and their rationale?

      This is an important point, and while the precise impact of the linker on HA flexibility remains uncertain, we agree that it may increase the freedom of motion of the ectodomain relative to the HA membrane anchor. We mention this caveat in the revised text (lines 188-191) and we have added an AlphaFold2 prediction of how our recombinant HA might look to Figure S2D.

      o In Figure S1B, if I understand correctly: black dashed line "IgG equivalent dissociation rate" is the experimental data, magenta "Crosslinking model fit" is the theoretically total antibody bound as described by the mathematical model. Then the gray lines "Double- /singly- bound antibodies plot the theoretical amount of antibody bound once and bound twice. If this is correct, I believe it would be clearer if the singly- and doubly- bound were plotted in separate colors, and that this is explained more clearly in the legend.

      We have revised the figure to show doubly- and singly-bound curves using different line styles.

      o Related to an earlier comment, if lateral diffusion may play a role, how might this differ between different types of antibodies?

      As mentioned in our previous response, we do not anticipate that lateral diffusion makes a significant contribution to antibody binding to the surface of virions, although it may be important on the cell surface.

      o Could the authors comment in the discussion on how their results on virions may translate to the surface of the infected cell, which is also decorated in viral glycoproteins? Early time points of infection could be an in vivo example of low-density HA. What extent may antibody binding and crosslinking affect viral proteins on the cell surface or the immune response?

      This is a very interesting point. Antibody binding to the infected cell surface has been shown to alter viral release and morphology, presumably at lower HA densities than those observed the viral surface. We have added a brief discussion of this point (lines 291-295) to the revised manuscript.

      o The github link in the methods is incorrect or not yet available.

      Thank you for noting this. We have updated the link.

      o Reference 1 has an incorrect or expired link.

      These references have been updated.

      Reviewer #3 (Significance (Required)):

      • This work represents a conceptual advance in our understanding of antibody action on viral pathogens. The authors adapt existing microscopy methodologies to measure antibody avidity in a new way that is better representative of in vivo conditions.

      • To my knowledge, this is the first instance of direct measurement of antibody off-rates from intact virus particles, instead of immobilized protein as in BLI, SPR, or interferometry.

      • This work should be of interest to virologist and biophysicists interested in the cooperative binding of antibodies and the relation of virus structural organization to antibody recognition. Immunologist may also be influenced by this work. This work may be followed up by other researchers similarly measuring the association and dissociation rates of antibodies with single virions, or otherwise comparing fab to IgG binding to gain insight into when crosslinking is or is not occurring.

      • Reviewer expertise: Single-virion imaging, protein complexes, biochemistry, influenza A.

      • I do not have sufficient expertise to evaluate the mathematical models and differential equations for modeling the k-on and k-off rates.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      Summary

      In this study, Benegal et al. investigate the binding kinetics of HA-head-specific antibodies (S139/1 and C05) to intact influenza virus particles using a fluorescence microscopy-based technique to measure the dissociation rate (koff) of the antibodies. By applying their proposed equilibrium model for bivalent antibody binding to HA, the authors calculated the crosslinking rate (kx), which represents the rate at which a single-bound antibody crosslinks to an additional HA molecule. Their experiments revealed that antigen crosslinking significantly slows koff, reducing it by up to two orders of magnitude.

      The authors further utilized streptavidin-coated beads conjugated with biotinylated HA or biotinylated BSA at varying concentrations to control HA surface density. Their results demonstrated that the two tested HA-head-specific antibodies retained the ability to crosslink HAs even at ~10-fold lower HA surface densities. In a complementary experiment, they employed an HA-anchor-specific antibody to restrict HA flexibility, which led to reduced binding of S139/1 and C05 IgGs but not their Fab fragments. This finding suggests that HA flexibility, rather than density, is the primary determinant of antibody crosslinking and avidity.

      Overall, the authors present an innovative approach to elucidating the dissociation and crosslinking kinetics of antibodies targeting intact virions or nanoparticles. The study is well-designed, with alternative interpretations of the results carefully considered and addressed throughout. I have only a few minor comments and suggestions for clarification.

      Minor comments:

      1. In Figure 1, does the grey color of each IgG in panel C indicate the Fc domain? If so, please add the description of the colors to the figure legend. In fact, it may be better to explain all the colors used here (for HA1, HA2, Fab heavy chain, light chain, etc.).
      2. Under the section," Bivalent binding of S139/1 and C05 persists after ~10-fold reductions in HA surface densities", the beginning of the second paragraph writes, "For both S139/1 and C05 Fab, binding increases linearly with HA density, as expected for a monovalent interaction dictated by absolute HA availability rather than density (Fig. 3D). Interestingly, the same relationship is observed for S139/1 IgG."

      Visually, I think the same relationship also seems to hold for C05 IgG. Would it be better to perform some linear regression and report the R2 value for the fitting so that this assessment can be quantitative? 3. At the end of the same page, in the same paragraph, the authors mentioned, "In contrast to the IgG, Fab binding measured at twice the molar concentration of the IgG is nearly undetectable under these conditions, confirming the IgG binding is not occurring through monovalent interactions (Fig. S2E)." What are the conditions you are referring to? In Fig. S2E, there is only the Ab intensity for the Ab binding at 100% HA (and not the other percentages). For the Ab intensity of S139/1 Fab, what is the concentration of the Fab used in Figure 3D? Why could the intensity in this experiment for S139/1 Fab reach ~100,000, whereas that of the 8 nM in Fig. S2E can only reach ~20,000? 4. Under the section, "Tilting of HA about its membrane anchor contributes to C05 and S139/1 avidity", in the second paragraph, the authors wrote, "If this is correct, we reasoned that avidity could be reduced by constraining tilting of the HA ectodomain. To test this hypothesis, we used FISW84, an antibody that binds to the HA anchor epitope and biases the ectodomain into a tilted conformation (Fig. 4B)."

      Can you use some computational models (maybe the same one you used for Figure 4A) to show that when an HA trimer is bounded by FISW84 Fabs, the tilting of HA is constrained? I think this will help substantiate the assertion above. 5. It would be good if you could mention the strain of HA used in the experiments in Figure 4 in the actual Figure as well (as supposed to just in the figure legend). 6. I do not see a method section for the structure-based model you used in Figure 4. In the text, you cited your previous study (ref 28) for the model, but it would be good to write about this briefly (and how you specifically apply the model in this study) in this current manuscript. 7. In Figure S1 panel D, what is the unit of the antibody concentration? Could you please add it to the graph legend?

      Significance

      Previously, this group utilized the same fluorescence-based method to investigate the potency of anti-HA IgG1 antibodies in preventing viral entry versus egress, as well as the tendency of antibodies targeting different HA epitopes to crosslink two HA trimers in cis or in trans (He et al., J Virol, 2024). In this study, they extend their work by evaluating, in-depth, how the density and flexibility of hemagglutinin (HA) on the viral surface influence the binding avidity of anti-HA antibodies. Using two human IgG1 antibodies targeting the HA head, the authors demonstrate that these antibodies can crosslink two HA trimers in cis, even when the trimers are further apart than adjacent HAs. Notably, the study reveals that HA flexibility, rather than density, is the key determinant modulating antibody crosslinking. Even at a 10-fold reduced HA density compared to the original, the antibodies retained their ability to crosslink trimers.

      This study provides critical insights into the relationship between HA density, flexibility, and antibody function, adding to the broader understanding of antibody crosslinking-a topic frequently discussed in the field of influenza research. These findings could have significant implications for vaccine design, particularly for strategies involving the display of the HA ectodomain on nanoparticles, potentially guiding the development of more effective influenza vaccines. Furthermore, the broader relevance of these findings may extend to other viruses with similar structural and immunological properties.

      My expertise lies in the structural determination of antibody-antigen complexes in influenza and other pathogens. While I may not have sufficient expertise to evaluate specific technical details of the fluorescence-based methods employed, the authors have convincingly demonstrated the robustness of their experimental design and interpretation, supported by appropriate controls.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews: 

      Reviewer #1 (Public review): 

      Summary: 

      Walton et al. set out to isolate new phages targeting the opportunistic pathogen Pseudomonas aeruginosa. Using a double ∆fliF ∆pilA mutant strain, they were able to isolate 4 new phages, CLEW-1. -3, -6, and -10, which were unable to infect the parental PAO1F Wt strain. Further experiments showed that the 4 phages were only able to infect a ∆fliF strain, indicating a role of the MS-protein in the flagellum complex. Through further mutational analysis of the flagellum apparatus, the authors were able to identify the involvement of c-di-GMP in phage infection. Depletion of c-di-GMP levels by an inducible phosphodiesterase renders the bacteria resistant to phage infection, while elevation of c-di-GMP through the Wsp system made the cells sensitive to infection by CLEW-1. Using TnSeq, the authors were able to not only reaffirm the involvement of c-di-GMP in phage infection but also able to identify the exopolysaccharide PSL as a downstream target for CLEW-1. C-di-GMP is a known regulator of PSL biosynthesis. The authors show that CLEW-1 binds directly to PSL on the cell surface and that deletion of the pslC gene resulted in complete phage resistance. The authors also provide evidence that the phage-PSL interaction happens during the biofilm mode of growth and that the addition of the CLEW-1 phage specifically resulted in a significant loss of biofilm biomass. Lastly, the authors set out to test if CLEW-1 could be used to resolve a biofilm infection using a mouse keratitis model. Unfortunately, while the authors noted a reduction in bacterial load assessed by GFP fluorescence, the keratitis did not resolve under the tested parameters. 

      Strengths: 

      The experiments carried out in this manuscript are thoughtful and rational and sufficient explanation is provided for why the authors chose each specific set of experiments. The data presented strongly supports their conclusions and they give present compelling explanations for any deviation. The authors have not only developed a new technique for screening for phages targeting P. aeruginosa, but also highlight the importance of looking for phages during the biofilm mode of growth, as opposed to the more standard techniques involving planktonic cultures. 

      Weaknesses: 

      While the paper is strong, I do feel that further discussions could have gone into the decision to focus on CLEW-1 for the majority of the paper. The paper also doesn't provide any detailed information on the genetic composition of the phages. It is unclear if the phages isolated are temperate or virulent. Many temperate phages enter the lytic cycle in response to QS signalling, and while the data as it is doesn't suggest that is the case, perhaps the paper would be strengthened by further elimination of this possibility. At the very least it might be worth mentioning in the discussion section. 

      Thank you for your review. The genomes of all Clew phages and Ocp-2 have been uploaded [Genbank accession# PQ790658.1, PQ790659.1, PQ790660.1, PQ790661.1, and PQ790662.1]. It turns out that the Clew phage are highly related, which is highlighted by the genomic comparison in the supplementary figure S1. It therefore made sense to focus our in-depth analysis on one of the phage. We have included a supplementary figure (S1A), demonstrating that the other Clew phage also require an intact psl locus for infection, to make that logic clearer. The phage are virulent (there is apparently a bit of a debate about this with regard to Bruynogheviruses, but we have not been able to isolate lysogens). This is now mentioned in the discussion.  

      Reviewer #2 (Public review): 

      This manuscript by Walton et al. suggests that they have identified a new bacteriophage that uses the exopolysaccharide Psl from Pseudomonas aeruginosa (PA) as a receptor. As Psl is an important component in biofilms, the authors suggest that this phage (and others similarly isolated) may be able to specifically target biofilm-growing bacteria. While an interesting suggestion, the manner in which this paper is written makes it difficult to draw this conclusion. Also, some of the results do not directly follow from the data as presented and some relevant controls seem to be missing. 

      Thank you for your review. We would argue that the combination of demonstrating Psl-dependent binding of Clew-1 to P. aeruginosa, as well as demonstration of direct binding of Clew-1 to affinity-purified Psl, indicates that the phage binds directly to Psl and uses it as a receptor. In looking at the recommendations, it appears that the remark about controls refers to not using the ∆pslC mutant alone (as opposed to the ∆fliF2 ∆pslC double mutant) as a control for some of the binding experiments. However, since the ∆fliF2 mutant is more permissive for phage infection, analyzing the effect of deleting pslC in the context of the ∆fliF2 mutant background is the more stringent test. 

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors): 

      First off, I would like to congratulate the authors on this study and manuscript. It is very well executed and the writing and flow of the paper are excellent. The findings are intriguing and I believe the paper will be very well received by both the phage, Pseudomonas, and biofilm communities. 

      Thank you for your kind review of our work!

      I have very little to critique about the paper but I have listed a few suggestions that I believe could strengthen the paper if corrected: 

      Comments and suggestions: 

      (1) The paper initially describes 4 isolated phages but no rationale is given for why they chose to continue with CLEW-1, as opposed to CLEW-3, -6, and -10. The paper would benefit from going into more detail with phage genomics and perhaps characterize the phage receptor binding to PSL. 

      Clew-1, -3, -6, and -10 are actually quite similar to one another. The genomes are now uploaded to Genbank [accession# PQ790658.1, PQ790659.1, PQ790660.1, and PQ790661.1]. They all require an intact Psl locus for infection, we have updated Fig. S1 to show this for the remaining Clew phage. In the end, it made sense to focus on one of these related phage and characterize it in depth.

      (2) PA14 was used in some experiments but not listed in the strain table. 

      Thank you, this has been added in the resubmission.

      (3) Would have been good to see more strains/isolates used.

      We are currently characterizing the host range of Clew-1. It appears to be pretty limited, but this will likely be included in another paper that will focus on host range, not only of Clew-1, but other biofilm-tropic phage that we have isolated since then.

      (4) Could purified PSL be added to make non-PSL strain (like PA14) susceptible? 

      We have tried adding purified Psl to a psl mutant strain, but this does not result phage sensitivity. Further characterization of the Psl receptor, is something we are currently working on, but will likely be a much bigger story than can be easily accommodated in a revised manuscript.

      (5) No data on resistance development. 

      We have not done this as yet.

      (6) Alternative biofilm models. Both in vitro and in vivo. 

      We agree that exploring the interaction of Clew-1 with biofilms in greater detail is a logical next step. The revised manuscript does have data on the viability of P. aeruginosa biofilm bacteria after Clew-1 infection using either a bead biofilm model or LIVE/DEAD staining of static biofilms. However, expanding on this further (setting up flow-cell biofilms, developing reporters to monitor phage infection, etc.) is beyond the scope of this initial report and characterization of Clew-1.

      (7) There is a mistake in at least one reference. An unknown author is listed in reference 48. DA Garsin is not part of the paper. Might be worth looking into further mistakes in the reference list as I suspect this might be an issue related to the citation software.

      Thank you. Yes, odd how that extra author got snuck in. This has been corrected.

      (8) I don't seem to be able to locate a Genbank file or accession number. If it wasn't performed how was evolutionary relatedness data generated?

      The genomes of all Clew phages and Ocp-2 have been uploaded [Genbank accession# PQ790658.1, PQ790659.1, PQ790660.1, PQ790661.1, and PQ790662.1]

      (9) No genomic information about the isolated phages. Are they temperate or virulent? This would be important information as only strictly lytic phages are currently deemed appropriate for phage therapy. 

      These phage are virulent. We have only been able to isolate resistant bacteria from plaques, but they do not harbor the phage (as detected by PCR). This matches what other researchers have found for Bruynogheviruses.

      Reviewer #2 (Recommendations for the authors): 

      Others have used different PA mutants lacking known phage receptors to pan for new phages. However, it is not totally clear how the screen here was selected for the Psl-specific phage. The authors used flagella and pili mutants and found Clew-1, -3, -6, and -10. These were all Bruynogheviruses. They also isolated a phage that uses the O antigen as a receptor. The family of this latter phage and how it is known to use this as a receptor is not described. 

      Phage Ocp-2 is a Pbunavirus. We added new supplementary figure S3, addressing the O-antigen receptor.

      The authors focused on Clew-1, but the receptor for these other Clew phages is not presented. For Clew-1 the phage could plaque on the fliF deletion mutant but not the wild-type strain. The reason for this never appears to be addressed. The authors leap to consider the involvement of c-di-GMP, but how this relates to fliF appears to be lacking. 

      We have included a supplementary figure demonstrating that all the Clew phage require Psl for infection (Fig. S1A). As noted above, we have uploaded the genomic data that underpins the comparison in our supplementary figure. The phage are all closely related. It therefore made sense to focus on one of the phage for the analysis.  

      It is particularly unclear why this phage doesn't plaque on PAO1 as this strain does make Psl. Related to this, it actually looks like something is happening to PAO1 in Figure S4 (although what units are on the x-axis is not entirely clear).

      We hypothesize that the fraction of susceptible cells in the population dictates whether the phage can make overt plaques. The supplementary figure S4 indicates that a subpopulation of the wild-type culture is susceptible and this is borne out by the fraction of wild type cells that the phage can bind to (~50%). The fliF mutation increases this frequency of susceptible cells to 80-90% (Fig. 3).

      The Tnseq screen to identify receptors is clever and identifies additional phosphodiesterase genes, the deletion of which makes PAO1 susceptible. And the screen to find resistant fliF mutants identified genes involved in Psl. However, the link between the phosphodiesterase mutants and the amount of Psl produced never appears to be established. And the statement that Psl is required for infection (line 130) is never actually tested.

      The link between c-di-GMP and Psl production is well-established in the literature. I think the requirement for Psl in infection is demonstrated multiple ways, including lack of plaque formation on psl mutant strains and lack of phage binding to strains that do not produce Psl, direct binding of the phage to affinity purified Psl.

      Figure 2C describes using a ∆fliF2 strain but how this is different (or if it is different) from ∆fliF described in the text is never explained.

      The difference in the deletions is explained in table S1, in the description for the deletion constructs used in their construction, pEXG2-∆fliF and pEXG2-∆fliF2 (∆fliF2 is smaller than ∆fliF and can be complemented completely with our complementing plasmid, pP37-fliF, which is the reason why we used the ∆fliF2 mutation going forward, rather than the ∆fliF mutation on which the phage was originally isolated).

      Similarly, there is a sentence (line 138) that "Attachment of Clew-1 is Psl-dependent" but this would appear to have no context.

      The relevant figure, Fig. 3, is cited in the next sentence and is the subject of the remaining paragraphs in this section of the manuscript.

      For Figure 3B, why wasn't the single ∆pslC mutant visualized in this analysis? Similar questions relate to the data in Figure 4.

      Analyzing the effect of the pslC deletion in the context of the ∆fliF2 mutant background, which is more permissive for phage infection, is the more stringent test.  

      The efficacy of Clew-1 in the mouse keratitis model is intriguing but it is unclear why the CFU/eye are so variable. The description of how the experiment was actually carried out is not clear. Was only one eye scratched or both? Were controls included with a scratch and no bacteria ({plus minus} phage)?

      One eye was infected. We did not conduct a no-bacteria control (just scratching the cornea is not sufficient to cause disease). The revised manuscript has an updated animal experiment in which we carried the infection forward to 72h with two phage treatments. Following this regiment, there is a significant decrease in CFU, as well as corneal opacity (disease). Variability of the data is a fairly common feature in animal experiments. There are a number of factors, such as does the mouse blink and remove some of the inoculum shortly after deposition of the bacteria or the phage after each treatment that could explain this variability.

    1. Author response:

      The following is the authors’ response to the current reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      Weaknesses:

      The revised manuscript has gained much clarity and consistency. One previous criticism, however, has in my opinion not been properly addressed. I think the problem boils down to not clearly distinguishing between orthologs and paralogs/homologs. As this problem affects a main conclusion - the prevalence of deletions over insertions in the MTBC - it should be addressed, if not through additional analyses, then at least in the discussion.

      Insertions and deletions are now distinguished in the following way: "Accessory regions were further classified as a deletion if present in over 50% of the 192 sub-lineages or an insertion/duplication if present in less than 50% of sub-lineages." The outcome of this classification is suspicious: not a single accessory region was classified as an insertion/duplication. As a check of sanity, I'd expect at least some insertions of IS6110 to show up, which has produced lineage- or sublineage-specific insertions (Roychowdhury et al. 2015, Shitikov et al. 2019). Why, for example, wouldn't IS6110 insertions in the single L8 strain show up here?

      In a fully clonal organism, any insertion/duplication will be an insertion/duplication of an existing sequence, and thus produce a paralog. If I'm correctly understanding your methods section, paralogs are systematically excluded in the pangraph analysis. Genomic blocks are summarized at the sublineage levels as follows (l.184 ): "The DNA sequences from genomic blocks present in at least one sub-lineage but completely absent in others were extracted to look for long-term evolution patterns in the pangenome." I presume this is done using blastn, as in other steps of the analysis.

      So a sublineage-specific copy of IS6110 would be excluded here, because IS6110 is present somewhere in the genome in all sublineages. However, the appropriate category of comparison, at least for the discussion of genome reduction, is orthology rather than homology: is the same, orthologous copy of IS6110, at the same position in the genome, present or absent in other sublineages? The same considerations apply to potential sublineage-specific duplicates of PE, PPE, and Esx genes. These gene families play important roles in host-pathogen interactions, so I'd argue that the neglect of paralogs is not a finicky detail, but could be of broader biological relevance.

      Within the analysis we undertook we did look at paralogous blocks in pangraph, based on copy number per genome. However, this could have been clearer in the text and we will rectify this. We also focussed on duplicated/deleted blocks that were present in two of more sub-lineages. This is noted in figure 4 legend but we will make this clearer in other sections of the manuscript.

      We agree that indeed the way paralogs are handled could still be optimised, and that gene duplicates of some genes could have biological importance. The reviewer is suggesting that a synteny analysis between genomes would be best for finding specific regions that are duplicated/deleted within a genome, and if those sections are duplicated/deleted in the same regions of the genome. Since Pangraph does not give such information readily, a larger amount of analysis would be required to confirm such genome position-specific duplications. While this is indeed important, we deem this to be out of scope for the current publication, but will note this as a limitation in the discussion. However, this does not fundamentally change the main conclusions of our analysis.


      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this paper, Behruznia and colleagues use long-read sequencing data for 335 strains of the Mycobacterium tuberculosis complex to study genome evolution in this clonal bacterial pathogen. They use both a "classical" pangenome approach that looks at the presence and absence of genes, and a more general pangenome graph approach to investigate structural variants also in non-coding regions. The two main results of the study are that (1) the MTBC has a small pangenome with few accessory genes, and that (2) pangenome evolution is driven by deletions in sublineage-specific regions of difference. Combining the gene-based approach with a pangenome graph is innovative, and the former analysis is largely sound apart from a lack of information about the data set used. The graph part, however, requires more work and currently fails to support the second main result. Problems include the omission of important information and the confusing analysis of structural variants in terms of "regions of difference", which unnecessarily introduces reference bias. Overall, I very much like the direction taken in this article, but think that it needs more work: on the one hand by simply telling the reader what exactly was done, on the other by taking advantage of the information contained in the pangenome graph.

      Strengths:

      The authors put together a large data set of long-read assemblies representing most lineages of the Mycobacterium tuberculosis context, covering a large geographic area. State-of-the-art methods are used to analyze gene presence-absence polymorphisms (Panaroo) and to construct a pangenome graph (PanGraph). Additional analysis steps are performed to address known problems with misannotated or misassembled genes in pangenome analysis.

      Weaknesses:

      The study does not quite live up to the expectations raised in the introduction. Firstly, while the importance of using a curated data set is emphasized, little information is given about the data set apart from the geographic origin of the samples (Figure 1). A BUSCO analysis is conducted to filter for assembly quality, but no results are reported. It is also not clear whether the authors assembled genomes themselves in the cases where, according to Supplementary Table 1, only the reads were published but not the assemblies. In the end, we simply have to trust that single-contig assemblies based on long-reads are reliable.

      We have now added a robust overview of the dataset to supplementary file 1. This is split into 3 sections: public genomes, which were assembled by others; sequenced genomes, which were created and assembled by us; the BUSCO information for all the genomes together. We did not assemble any public data ourselves but retrieved these from elsewhere. We have modified the text to be more specific on this (Line 114 onwards) and the supplementary file is updated to better outline the data.

      One issue with long read assemblies could be that high rates of sequencing errors result in artificial indels when coverage is low, which in turn could affect gene annotation and pangenome inference (e.g. Watson & Warr 2019, https://doi.org/10.1038/s41587-018-0004-z). Some of the older long-read data used by the authors could well be problematic (PacBio RSII), but also their own Nanopore assemblies, six of which have a mean coverage below 50 (Wick et al. 2023 recommend 200x for ONT, https://doi.org/ 10.1371/journal.pcbi.1010905). Could the results be affected by such assembly errors? Are there lineages, for example, for which there is an increased proportion of RSII data? Given the large heterogeneity in data quality on the NCBI, I think more information about the reads and the assemblies should be provided.

      We have now included an analysis where we looked to see if the sequencing platform influenced the resulting accessory genome size and the pseudogene count. The details of this are included in lines 207-219, and the results are outlined in lines 251-258. Essentially, we found no correlation between sequencing platform and genome characteristics, although less stringent cut-offs did suggest that PacBio SMRT-only assembled genomes may have larger accessory genomes. We do not believe this is enough to influence our larger inferences from this data. It should be noted that complete genomes, in general, give a better indication of pangenome size compared to draft genomes, as has been shown previously (e.g. Marin et al., 2024). Even with some small potential bias, this makes our analysis more robust than any previously published.

      In relation to the sequencing depth of our own data, all genomes had coverage above 30x, which Sanderson et al. (2024) has shown to be sufficient for highly accurate sequence recovery. We fixed an issue with the L9 isolate from the previous submission, which resulted in a better BUSCO score and overall quality of that isolate and the overall dataset.

      The part of the paper I struggled most with is the pangenome graph analysis and the interpretation of structural variants in terms of "regions of difference". To start with, the method section states that "multiple whole genomes were aligned into a graph using PanGraph" (l.159/160), without stating which genomes were for what reason. From Figure 5 I understand that you included all genomes, and that Figure 6 summarizes the information at the sublineage level. This should be stated clearly, at present the reader has to figure out what was done. It was also not clear to me why the authors focus on the sublineage level: a minority of accessory genes (107 of 506) are "specific to certain lineages or sublineages" (l. 240), so why conclude that the pangenome is "driven by sublineage-specific regions of difference", as the title states? What does "driven by" mean? Instead of cutting the phylogeny arbitrarily at the sublineage level, polymorphisms could be described more generally by their frequencies.

      We apologise for the ambiguity in the methodology. All the isolates were inputted to Pangraph to create the pangenome using this method. This is now made clearer in lines 175-177. Standard pangenome statistics (size, genome fluidity, etc.) derived from this Pangraph output are now present in the results section as well (lines 301-320).

      We then only looked at regions of difference at the sub-lineage level, meaning we grouped genomes by sub-lineage within the resulting graph and looked for blocks common between isolates of the same sub-lineage but absent from one or more other sub-lineages. We did this from both the Panaroo output and the Pangraph output and then retained only blocks found by both. The results of this are now outlined in lines 351-383.

      We focussed on these sub-lineage-specific regions to focus on long-term evolution patterns and not be influenced by single-genome short-term changes. We do not have enough genomes of closely related isolates to truly look at very recent evolution, although the small accessory genome indicates this is not substantial in terms of gene presence/absence. We also did not want potential mis-annotations in a single genome to heavily influence our findings due to the potential issues pointed out by the reviewer above. We state this more clearly in the introduction (lines 106-108), methods (lines 184-186) and results (345-347), and we indicate the limitations in the Discussion, lines 452-457 and 471-473. We also changed the title to ‘shaped’ instead of ‘driven by’.

      I fully agree that pangenome graphs are the way to go and that the non-coding part of the genome deserves as much attention as the coding part, as stated in the introduction. Here, however, the analysis of the pangenome graph consists of extracting variants from the graph and blasting them against the reference genome H37Rv in order to identify genes and "regions of difference" (RDs) that are variable. It is not clear what the authors do with structural variants that yield no blast hit against H37Rv. Are they ignored? Are they included as new "regions of difference"? How many of them are there? etc. The key advantage of pangenome graphs is that they allow a reference-free, full representation of genetic variation in a sample. Here reference bias is reintroduced in the first analysis step.

      We apologise for the confusion here as indeed the RDs terminology is very MTBC-specific. Current RDs are always relevant to H37Rv, as that is how original discovery of these regions was done and that is how RDScan works. We clarify this in the introduction (lines 67-68). If we found a large sequence polymorphism (e.g. by Pangraph) and searched for known RDs using RDScan, we then assigned a current RD name to this LSP. This uses H37Rv as a reference. If we did not find a known RD, we then classified the LSP as a new RD if it is present in H37Rv, or left the designation as an LSP if not in H37Rv, thus expanding the analysis beyond the H37Rv-centric approaches used by others previously. This is hopefully now made clearer in the methods, lines 187-194.

      Along similar lines, I find the interpretation of structural variants in terms of "regions of difference" confusing, and probably many people outside the TB field will do so. For one thing, it is not clear where these RDs and their names come from. Did the authors use an annotation of RDs in the reference genome H37Rv from previously published work (e.g. Bespiatykh et al. 2021)? This is important basic information, its lack makes it difficult to judge the validity of the results. The Bespiatykh et al. study uses a large short-read data (721 strains) set to characterize diversity in RDs and specifically focuses on the sublineage-specific variants. While the authors cite the paper, it would be relevant to compare the results of the two studies in more detail.

      We have amended the introduction to explain this terminology better (lines 67-68). Naming of the RDs here came from using RDScan to assign current names to any accessory regions we found and if such a region was not a known RD, we gave it a lineage-related name, allowing for proper RD naming later (lines 187-194). Because the Bespiatyk paper is the basis for RDScan, our work implicitly compares to this throughout, as any RDs we find which were not picked up by RDScan are thus novel compared to that paper.

      As far as I understand, "regions of difference" have been used in the tuberculosis field to describe structural variants relative to the reference genome H37Rv. Colloquially, regions present in H37Rv but absent in another strain have been called "deletions". Whether these polymorphisms have indeed originated through deletion or through insertion in H37Rv or its ancestors requires a comparison with additional strains. While the pangenome graph does contain this information, the authors do not attempt to categorize structural variants into insertions and deletions but simply seem to assume that "regions of difference" are deletions. This, as well as the neglect of paralogs in the "classical" pangenome analysis, puts a question mark behind their conclusion that deletion drives pangenome evolution in the MTBC.

      We have now amended the analysis to specifically designate a structural variant as a deletion if present in the majority of strains and absent in a minority, or an insertion/duplication if present in a minority and absent in a majority (lines 191-192). We also ran Panaroo without merging paralogs to examine duplication in this output; Pangraph implicitly includes paralogs already.

      From all these analyses we did not find any structural variants classed as insertions/duplications and did not find paralogs to be a major feature at the sub-lineage level (lines 377-383). While these features could be important on shorter timescales, we do not have enough closed genomes to confidently state this (limitation outlined in lines 452-457). Therefore, our assertion that deletions are a primary force shaping the long-term evolution in this group still holds.

      Reviewer #2 (Public Review):

      Summary:

      The authors attempted to investigate the pangenome of MTBC by using a selection of state-of-the-art bioinformatic tools to analyse 324 complete and 11 new genomes representing all known lineages and sublineages. The aim of their work was to describe the total diversity of the MTBC and to investigate the driving evolutionary force. By using long read and hybrid approaches for genome assembly, an important attempt was made to understand why the MTBC pangenome size was reported to vary in size by previous reports.

      Strengths:

      A stand-out feature of this work is the inclusion of non-coding regions as opposed to only coding regions which was a focus of previous papers and analyses which investigated the MTBC pangenome. A unique feature of this work is that it highlights sublineage-specific regions of difference (RDs) that were previously unknown. Another major strength is the utilisation of long-read whole genomes sequences, in combination with short-read sequences when available. It is known that using only short reads for genome assembly has several pitfalls. The parallel approach of utilizing both Panaroo and Pangraph for pangenomic reconstruction illuminated the limitations of both tools while highlighting genomic features identified by both. This is important for any future work and perhaps alludes to the need for more MTBC-specific tools to be developed.

      Weaknesses:

      The only major weakness was the limited number of isolates from certain lineages and the over-representation others, which was also acknowledged by the authors. However, since the case is made that the MTBC has a closed pangenome, the inclusion of additional genomes would not result in the identification of any new genes. This is a strong statement without an illustration/statistical analysis to support this.

      We have included a Heaps law and genome fluidity calculation for each pangenome estimation to demonstrate that the pangenome is closed. This is detailed in lines 225-228 with results shown in lines 274-278 and 316- 320 and Supplementary Figure 2. We agree that more closely related genomes would benefit a future version of this analysis and indicate we indicate the limitations in the Discussion, lines 452-457 and 471-473.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Abstract

      l. 24, "with distinct genomic features". I'm not sure what you are referring to here.

      We refer to the differences in accessory genome and related functional profiles but did not want to bloat the abstract with such additional details

      Introduction

      l. 40, "L1 to L9". A lineage 10 has been described recently: https://doi.org/10.3201/eid3003.231466.

      We have updated the text and the reference. Unfortunately, no closed genome for this lineage exists so we have not included it in the analyses. We note this in the results, like 232

      l.62/3, "caused by the absence of horizontal gene transfer, plasmids, and recombination". Recombination is not absent in the MTBC, only horizontal gene transfer seems to be, which is what the cited studies show. Indeed a few sentences later homologous recombination is mentioned as a cause of deletions.

      This has now been removed from the introduction

      l. 67, "within lineage diversity is thought to be mostly driven by SNPs". Again I'm not sure what is meant here with "driven by". Point mutations are probably the most common mutational events, but duplications, insertions, deletions, and gene conversion also occur and can affect large regions and possibly important genes, as shown in a recent preprint (https://doi.org/10.1101/2024.03.08.584093).

      We have changed the text to say ‘mostly composed of’. While indeed other SNVs may be contributing, the prevailing thought at lineage level is that SNPs are the primary source of diversity. The linked pre-print is looking at within transmission clusters and this has not been described at the lineage level, which could be done in a future work.

      l. 100/1. "that can account for variations in virulence, metabolism, and antibiotic resistance". I would phrase this conservatively since the functional inferences in this study are speculative.

      This has now been tempered to be less specific.

      Methods

      l. 108. That an assembly has a single contig does not mean that it is "closed". Many single contig assemblies on NCBI are reference-guided short-read assemblies, that is, fragments patched together rather than closed assemblies. The same could be true for long-read assemblies.

      We specifically chose those listed as closed on NCBI so rely on their checks to ensure this is true. We have stated this better in the paper, line 117.

      l. 111. From Supplementary Table 1 understand that for many genomes only the reads were available (no ASM number). Did you assemble these genomes? If yes, how? The assembly method is not indicated in the supplement, contrary to what is written here.

      All public genomes were downloaded in their assembled forms from the various sources. This is specified better in the text (line 118) and the supplementary table 1 now lists the accessions for all the assemblies.

      l. 113. How many assemblies passed this threshold? And is BUSCO actually useful to assess assembly quality in the MTBC? I assume the dynamic, repetitive gene families that cause problems for assembly and mapping in TB (PE, PPE, ESX) do not figure in the BUSCO list of single-copy orthologs.

      All assemblies passed the BUSCO thresholds for high-quality genomes as laid out in Supplementary Table 1. While indeed this does not include multi-copy genes such as PE/PPE we focussed on regions of difference at the sub-lineage level where two or more genomes represent that sub-lineage. This means any assembly issues in a single genome would need to be exactly the same in another of the same sub-lineage to be included in our results. Through this, we aimed to buffer out issues in individual assemblies.

      l. 147: Why is Panaroo used with -merge-paralogs? I understand that near-identical genes may not be too interesting from a functional perspective, but if the aim of the analysis is to make broad claims about processes driving genome evolution, paralogs should be considered.

      We chose to do so with merged paralogs to look for larger patterns of diversity beyond within-genome paralogs. Additionally, this was required to build the core phylogenetic tree. However, as the reviewer points out, this may bias our findings towards deletions and away from duplications as a primary evolutionary force.

      We repeated this without the merged paralogs option and indeed found a larger pangenome, as outlined in Table 1. However, at the sub-lineage level, this did not result in any new presence/absence patterns (lines 381-383). This means the paralogs tended to be in single genomes only. This still indicates that deletions are the primary force in the longer-term evolution of the complex but indeed on shorter spans this may be different.

      l. 153: remove the comment in brackets.

      This has been fixed and the proper URL placed in instead.

      l. 159: which genomes, and why those?

      This is now clarified to state all genomes were used for this analysis.

      l. 161, "gene blocks": since this analysis is introduced as capturing the non-coding part of the genome, maybe just call them "blocks"?

      All references to gene blocks are now changed to genomic blocks to be more specific.

      l. 162: what happens with blocks that yield no hits against RvD1, TbD1, and H37Rv?

      We named these with lineage-specific names (supplementary table 4) but did not assign RD names specifically.

      l. 164: where does the information about the regions of difference come from? How exactly were these regions determined?

      Awe have expanded this section to be more specific on the use of RDScan and new naming, along with how we determine if something is an RD/LSP.

      Results

      l. 185ff: This paragraph gives many details about the geographic origin of the samples, but what I'd expect here is a short description of assembly qualities, for example, the results of the BUSCO analysis, a description of your own Nanopore assemblies, or a small analysis of the number of indels/pseudogenes relative to sequencing technology or coverage (see comment in the public review).

      This section (lines 231-258) has been expanded considerably to give a better overview of the dataset and any potential biases. Supplementary table 1 has also been expanded to include more information on each strain.

      l. 187, "324 genomes published previously": 322 according to the methods section.

      The number has been fixed throughout to the proper total of public genomes (329).

      l. 201: define the soft core, shell, and cloud genes.

      This is now defined on line 262

      l. 228, "defined primarily by RD105 and RD207 deletions": this claim seems to come from the analysis of variable importance (Factoextra), which should be made clear here.

      This has been clarified on line 333.

      l. 237, "L8, serving as the ancestor of the MTBC": this is incorrect, equivalent to saying that the Chimpanzee is the ancestor of Homo sapiens.

      We have changed this to basal to align with how it is described in the original paper.

      l. 239, "The accessory genome of the MTBC". It is a bit confusing that the same term, 'accessory genome', is used here for the graph-based analysis, which is presented as a way to look at the non-coding part of the genome.

      We have clarified the terminology on line 347 and improved consistency throughout.

      l. 240/1, "specific to certain lineages and sublineages". What exactly do you mean by "specific" to? Present only in members of a certain lineage/sublineage? In all members of a certain lineage/sublineage? Maybe an additional panel in Figure 5, showing examples of lineage- and sublineage-specific variants, would help the reader grasp this key concept.

      We have clarified this on line 349 and the legend of what is now figure 4.

      l. 241/2, "82 lineage and sublineage-specific genomic regions ranging from 270 bp to 9.8 kb". Were "gene blocks" filtered for a minimum size, or why are there no variants smaller than 270 bp? A short description of all the blocks identified in the graph could be informative (their sizes, frequencies ...).

      Yes, a minimum of 250bp was set for the blocks to only look at larger polymorphisms. This is clarified on line 177 and 304.

      A second point: It is not entirely clear to me what Figure 6 is showing. Are you showing here a single representative strain per sublineage? Or have you somehow summarized the regions of difference shown in Figure 5 at the sublineage level? What is the tree on the left? This should be made clear in the legend and maybe also in the methods/results.

      In figure 4 (which was figure 6), because each RD is common to all members of the same sub-lineage, we have placed a single branch for each sub-lineage. This is has been clarified in the legend.

      l. 254, "this gene was classified as being in the core genome": why should a partially deleted gene not be in the core genome?

      You are correct, we have removed that statement.

      l. 258/259, "The Pangraph alignment approach identified partial gene deletion and non-coding regions of the DNA that were impacted by genomic deletion". I do not understand how you classify a structural variant identified in the pangenome graph as a deletion or an insertion.

      This has been clarified as relative to H37Rv, as this is standard practice for RDs and general evolutionary analyses in MTBC, as outlined above.

      l. 262/263 , "the accessory genome of the MTBC is small and is acquired vertically from a common ancestor within the lineage". If deletion is the main process involved here, "acquired" seems a bit strange.

      We agree and changed the header to better reflect the discussion on mis-annotation issues

      Figure 1: Good to know, but not directly relevant for the rest of the paper. Maybe move it to the supplement?

      This has been moved to Supplementary figure 1

      Figure 2: the y-axis is labeled 'Variable genome size', but from the text and the legend I figure it should be 'Number of accessory genes'?

      This has been changed to ‘accessory genes’ in Figure 1 (which was figure 2 in previous version).

      Figure 4: too small.

      We will endeavour to ensure this is as large as possible in the final version.

      Discussion

      l. 271, "MTBC accessory genome is ... acquired vertically". See above.

      Changed, as outlined above.

      l. 292, "appeared to be fragmented genes caused by misassemblies". Is there a way to distinguish "true" pseudogenes from misassemblies? This could be a relevant issue for low-coverage long-read assemblies (see public review).

      Not that we are currently aware of, but we do know other groups which are working on this issue.

      l. 300/1, "the whole-genome approach could capture higher genetic variations". Do you mean the graph approach? I'm not sure that comparing the two approaches here makes sense, as they serve different purposes. A pangenome graph is a summary of all genetic variation, while the purpose of Panaroo is to study gene absence/presence. So by definition, the graph should capture more genetic variation.

      This statement was specifically to state that much genetic variation in MTBC is outside the coding genes and so traditional “pangenome’ analyses are actually not looking at the full genomic variation.

      l. 302/3, "this method identified non-coding regions of the genome that were affected by genomic deletions". See the comments above regarding deletions versus insertions. I'd say this method identifies coding and non-coding regions that were affected by genomic deletions and insertions.

      We have undertaken additional analyses to be sure these are likely deletions, as outlined above.

      l. 305: what are "lineage-independent deletions"?

      We labelled these as convergent evolution, now clarified on line 443.

      l. 329: How is RD105 "caused" by the insertion of IS6110? I did not find RD105 mentioned in the Alonso et al. paper. Similarly below, l. 331, how is RD207 "linked" to IS6110?

      The RD105 connection was misattributed as IS6110 insertion is related to RD152, not RD105. This has now been removed.

      RD207 is linked to IS6110 as its deletion is due to recombination between two such elements. This is now clarified on line 486.

      l. 345, "the growth advantage gene group": not quite sure what this is.

      We have fixed this on line 499 to state they are genes which confer growth advantages.

      l. 373ff: The role of genetic drift in the evolution of the MTBC is an open question, other studies have come to different conclusions than Hershberg et al. (this has been recently reviewed: https://doi.org/10.24072/pcjournal.322).

      We have outlined this debate better in lines 527-531

      l. 375/6, "Gene loss, driven by genetic drift, is likely to be a key contributor to the observed genetic diversity within the MTBC." This sentence would need some elaboration to be intelligible. How does genetic drift drive gene loss?

      We have removed this.

      l. 395/6, "... predominantly driven by genome reduction. This observation underlines the importance of genomic deletions in the evolution of the MTBC." See comments above regarding deletions. I'm not convinced that your study really shows this, as it completely ignores paralogs and the processes counteracting reductive genome evolution: duplication and gene amplification.

      As outlined above, we have undertaken additional analyses to more strongly support this statement.

      l. 399, "the accessory genome of MTBC is a product of gene deletions, which can be classified into lineage-specific and independent deletions". Again, I'm not sure what is meant by lineage-independent deletions.

      We have better defined this in the text, line 443, to be related to convergent evolution.

      Reviewer #2 (Recommendations For The Authors):

      Suggestions for improved or additional experiments, data, or analyses.

      In lines 120-121, it is mentioned that TB-profiler v4.4.2 was used for lineage classification, but this version was released in February 2023. As I understand there have been some changes (inclusion/exclusion) of certain lineage markers. Would it not be appropriate to repeat lineage classification with a more recent version? This would of course require extensive re-analysis, so could the lineage marker database perhaps also be cited.

      We have rerun all the genomes through TB-Profiler v6.5 and updated the text to state this; the exact database used is also now stated.

      Could the authors perhaps include the sequencing summary or quality of the nanopore sequences? The L9 (Mtb8) sample had a relatively lower depth and resulted in two contigs. Yet one contig was the initial inclusion criteria. It is unclear whether these samples were excluded from some of the analyses. Mtb6 also has relatively low coverage. Was the sequencing quality adequate to accurately identify all the lineage markers, in particular those with a lower depth of coverage? Could a hybrid approach be an inexpensive way to polish these assemblies?

      We reanalysed the L9 sample and, with some better cleaning, got it to a single contig with better depth and overall score. This is outlined in the Supplementary table 1 sheets. While depth is average, it is still above the recommended 30x, which is needed for good sequence recovery (Sanderson et al., 2024). We did indeed recover all lineage markers from these assemblies.

      Recommendations for improving the writing and presentation.

      The introduction is well-written and recent MTBC pangenomic studies have been incorporated, but I am curious as to why this paper was not referred to: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6922483/ I believe this was the first attempt to study the pangenome, albeit with a different research question. Nearly all previous analyses largely focused on utilizing the pangenome to investigate transmission.

      Indeed this study did look at a pangenome of sorts, but specifically SNPs and not genes or regions. Since the latter is the main basis for pangenome work these days, we chose not to include this paper.

      Minor corrections to the text and figures.

      In line 129, it is explained that DNA was extracted to be suitable for PacBio sequencing, but ONT sequencing was used for the 11 new sequences. Is this a minor oversight or do the authors feel that DNA extracted for PacBio would be suitable for ONT sequencing? It is a fair assumption.

      We apologise, this is a long-read extraction approach and not specific to PacBio. We have amended the text to state this.

      In line 153, this should be removed: (Conor, could you please add the script to your GitHub page?).

      This has been fixed now.

    1. Reviewer #2 (Public review):

      Summary:

      The study introduces new tools for measuring intracellular Ca2+ concentration gradients around retinal rod bipolar cell (rbc) synaptic ribbons. This is done by comparing the Ca2+ profiles measured with mobile Ca2+ indicator dyes versus ribbon-tethered (immobile) Ca2+ indicator dyes. The Ca2+ imaging results provide a straightforward demonstration of Ca2+ gradients around the ribbon and validate their experimental strategy. This experimental work is complemented by a coherent, open-source, computational model that successfully describes changes in Ca2+ domains as a function of Ca2+ buffering. In addition, the authors try to demonstrate that there is heterogeneity among synaptic ribbons within an individual rbc terminal.

      Strengths:

      The study introduces a new set of tools for estimating Ca2+ concentration gradients at ribbon AZs, and the experimental results are accompanied by an open-source, computational model that nicely describes Ca2+ buffering at the rbc synaptic ribbon. In addition, the dissociated retinal preparation remains a valuable approach for studying ribbon synapses. Lastly, excellent EM.

      Comments on revisions:

      Specific minor comments:

      (1) Rewrite the final sentence of the Abstract. It is difficult to understand.

      (2) Add a definition in the Introduction (and revisit in the Discussion) that delineates between micro- and nano-domain. A practical approach would be to round up and round down. If you round up from 0.6 um, then it is microdomain which means ~ 1 um or higher. Likewise, round down from 0.3 um to nanodomain? If you are using confocal, or even STED, the resolution for Ca imaging will be in the 100 to 300 nm range. The point of your study is that your new immobile Ca2-ribbon indicator may actually be operating on a tens of nm scale: nanophysiology. The Results are clearly written in a way that acknowledges this point but maybe make such a "definition" comment in the intro/discussion in order to: 1) demonstrate the power of the new Ca2+ indicator to resolve signals at the base of the ribbon (effectively nano), and 2) (Discussion) to acknowledge that some are achieving nanoscopic resolution (50 to 100nm?) with light microscopy (as you ref'd Neef et al., 2018 Nat Comm).

      (3) Suggested reference: Grabner et al. 2022 (Sci Adv, Supp video 13, and Fig S5). Here rod Cav channels are shown to be expressed on both sides the ribbon, at its base, and they are within nanometers from other AZ proteins. This agrees with the conclusions from your imaging work.

      (4) In the Discussion, add a little more context to what is known about synaptic transmission in the outer and inner retina.. First, state that the postsynaptic receptors (for example: mGluR6-OnBCs vs KARs-Off-BCs, vs. AMPAR-HCs), and possibly the synaptic cleft (ground squirrel), are known to have a significant impact on signaling in the outer retina. In the inner retina, there are many more unknowns. For example, when I think of the pioneering Palmer JPhysio study, which you sight, I think of NMDAR vs AMPAR, and uncertainty in what type postsynaptic cell was patched (GC or AC....). Once you have informed the reader that the postsynapse is known to have a significant impact on signaling, then promote your experimental work that addresses presynaptic processes: "...the new tool and results allow us to explore release heterogeneity, ribbon by ribbon in dissociated preps, which we eventually plan to use at ribbon synapses within slices......to better understand how the presynapse shapes signaling......".

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The authors, Dalal, et. al., determined cryo-EM structures of open, closed, and desensitized states of the pentameric ligand-gated ion channel ELIC reconstituted in liposomes, and compared them to structures determined in varying nanodisc diameters. They argue that the liposomal reconstitution method is more representative of functional ELIC channels, as they were able to test and recapitulate channel kinetics through stopped-flow thallium flux liposomal assay. The authors and others have described channel interactions with membrane scaffold proteins (MSP), initially thought to be in a size-dependent manner. However, the authors reported that their cryo-EM ELIC structure interacts with the large nanodisc spNW25, contrary to their original hypotheses. This suggests that the channel's interactions with MSPs might alter its structure, possibly not accurately representing/reflecting functional states of the channel.

      Strengths:

      Cryo-EM structural determination from proteoliposomes is a promising methodology within the ion channel field due to their large surface area and lack of MSP or other membrane mimetics that could alter channel structure. Comparing liposomal ELIC to structures in various-sized nanodiscs gives rise to important discussions for other membrane protein structural studies when deciding the best method for individual circumstances.

      Weaknesses:

      The overarching goal of the study was to determine structural differences of ELIC in detergent nanodiscs and liposomes. Including comparisons of the results to the native bacterial lipid environment would provide a more encompassing discussion of how the determined liposome structures might or might not relate to the native receptor in its native environment. The authors stated they determined open, closed, and desensitized states of ELIC reconstituted in liposomes and suggest the desensitization gate is at the 9' region of the pore. However, no functional studies were performed to validate this statement.

      The goal of this study was to determine structures of ELIC in the same lipid environment in which its function is characterized. However, it is also worth noting that phosphatidylethanolamine and phosphatidylglyerol, two lipids used for the liposome formation, are necessary for ELIC function (PMID 36385237) and principal lipid components of gram-negative bacterial membranes in which ELIC is expressed.

      The desensitized structure of ELIC in liposomes shows a pore diameter at the hydrophobic L240 (9’) residue of 3.3 Å, which is anticipated to pose a large energetic barrier to the passage of ions due to the hydrophobic effect. We have included a graphical representation of pore diameters from the HOLE analysis for all liposome structures in Supplementary Figure 6B. While we have not tested the role of L240 in desensitization with functional experiments, it was shown by Gonzalez-Gutierrez and colleagues (PMID 22474383) that the L240A mutation apparently eliminates desensitization in ELIC. This finding is consistent with L240 (9’) being the desensitization gate of ELIC. We have referenced this study when discussing the desensitization gate in the Results.

      Reviewer #2 (Public review):

      Summary

      The report by Dalas and colleagues introduces a significant novelty in the field of pentameric ligand-gated ion channels (pLGICs). Within this family of receptors, numerous structures are available, but a widely recognised problem remains in assigning structures to functional states observed in biological membranes. Here, the authors obtain both structural and functional information of a pLGIC in a liposome environment. The model receptor ELIC is captured in the resting, desensitized, and open states. Structures in large nanodiscs, possibly biased by receptor-scaffold protein interactions, are also reported. Altogether, these results set the stage for the adoption of liposomes as a proxy for the biological membranes, for cryoEM studies of pLGICs and membrane proteins in general.

      Strengths

      The structural data is comprehensive, with structures in liposomes in the 3 main states (and for each, both inward-facing and outward-facing), and an agonist-bound structure in the large spNW25 nanodisc (and a retreatment of previous data obtained in a smaller disc). It adds up to a series of work from the same team that constitutes a much-needed exploration of various types of environment for the transmembrane domain of pLGICs. The structural analysis is thorough.

      The tone of the report is particularly pleasant, in the sense that the authors' claims are not inflated. For instance, a sentence such as "By performing structural and functional characterization under the same reconstitution conditions, we increase our confidence in the functional annotation of these structures." is exemplary.

      Weaknesses

      Core parts of the method are not described and/or discussed in enough detail. While I do believe that liposomes will be, in most cases, better than, say, nanodiscs, the process that leads from the protein in its membrane down to the liposome will play a big role in preserving the native structure, and should be an integral part of the report. Therefore, I strongly felt that biochemistry should be better described and discussed. The results section starts with "Optimal reconstitution of ELIC in liposomes [...] was achieved by dialysis". There is no information on why dialysis is optimal, what it was compared to, the distribution of liposome sizes using different preparation techniques, etc... Reading the title, I would have expected a couple of paragraphs and figure panels on liposome reconstitution. Similarly, potential biochemical challenges are not discussed. The methods section mentions that the sample was "dialyzed [...] over 5-7 days". In such a time window, most of the members of this protein family would aggregate, and it is therefore a protocol that can not be directly generalised. This has to be mentioned explicitly, and a discussion on why this can't be done in two days, what else the authors tested (biobeads? ... ?) would strengthen the manuscript.

      To a lesser extent, the relative lack of both technical details and of a broad discussion also pertains to the cryoEM and thallium flux results. Regarding the cryoEM part, the authors focus their analysis on reconstructions from outward-facing particles on the basis of their better resolutions, yet there was little discussion about it. Is it common for liposome-based structures? Are inward-facing reconstructions worse because of the increased background due to electrons going through two membranes? Are there often impurities inside the liposomes (we see some in the figures)? The influence of the membrane mimetics on conformation could be discussed by referring to other families of proteins where it has been explored (for instance, ABC transporters, but I'm sure there are many other examples). If there are studies in other families of channels in liposomes that were inspirational, those could be mentioned. Regarding thallium flux assays, one argument is that they give access to kinetics and set the stage for time-resolved cryoEM, but if I did not miss it, no comparison of kinetics with other techniques, such as electrophysiology, nor references to eventual pioneer time-resolved studies are provided.

      Altogether, in my view, an updated version would benefit from insisting on every aspect of the methodological development. I may well be wrong, but I see this paper more like a milestone on sample prep for cryoEM imaging than being about the details of the ELIC conformations.

      Additions have been made to the Results and Discussion sections elaborating on the following points: 1) reconstitution of ELIC in liposomes using dialysis, the advantage of this over other methods such as biobeads, and whether the dialysis protocol can be shortened for other less stable proteins; 2) the issue of separating outward- and inward-facing channels; 3) referencing the effect of nanodiscs on ABC transporters, structures of membrane proteins in liposomes, and pioneering time-resolved cryo-EM studies; and 4) comparison of the kinetics of ELIC gating kinetics with electrophysiology measurements. With regards to the first point, it should be noted that all necessary details are provided in the Methods to reproduce the experiments including the reconstitution and stopped-flow thallium flux assay. It is also important to note that the same preparation for making proteoliposomes was used for assessing function using the stopped-flow thallium flux assay and for determining the structure by cryo-EM. This is now stated in the Results.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      Major revisions:

      (1) The authors suggest that the desensitization gate is located at the 9' region within the pore. However, as stated by the authors, the 2' residues function as the desensitization gate in related channels. In a few of their HOLE analyzed structures (e.g. Figure 2B and 4B), there seems to be a constriction also at 2', but this finding is not discussed in the context of desensitization. Further functional testing of mutated 9' and/or 2' gates would bolster the argument for the location of the desensitization gate.

      As stated above, we have included HOLE plots of pore radius in Supplementary Fig. 6B and referenced the study showing that the L240A mutation (9’) in ELIC (PMID 22474383) appears to eliminate desensitization. This result along with the narrow pore diameter at 9’ in the desensitized structure suggests that 9’ is likely a desensitization gate in ELIC. In contrast, mutation of Q233 (2’) to a cysteine in a previous study produced a channel that still desensitizes (PMID 25960405). Since Q233 is a hydrophilic residue in contrast to L240, Q233 probably does not pose the same energetic barrier to ion translocation as L240 based on the structure.

      (2) In discussing functional states of ELIC and ELIC5 in different reconstitution methods, the authors reference constriction sites determined by HOLE analysis software. These constriction sites were key evidence for the authors to determine functional state, however, it is difficult to discern pore sizes based on the figures. Pore diameters and clear color designation (ie, green vs orange) with the figures would greatly aid their discussions.

      HOLE plots are displayed in Supplementary Fig. 6B and pore diameters are not provided in the text.

      (3) The authors had an intriguing finding that ELIC dimers are found in spNW25 scaffolds. Is there any functional evidence to suggest they could be functioning as dimers?

      There is no evidence that the function of ELIC or other pLGICs is altered by the formation of dimers of pentamers. Therefore, while this result is intriguing and likely facilitated by concentrating multiple ELIC pentamers within the nanodisc, it is not clear if these interactions have any functional importance. We have stated this in the Results.

      (4) Thallium flux assay to validate channel function within proteoliposomes. Proteoliposomes are known to be generally very leaky membranes, would be good to have controls without ELIC added to determine baseline changes in fluorescence.

      We have established from multiple previous studies that liposomes composed of 2:1:1 POPC:POPE:POPG (PMID 36385237 and 31724949) do not show significant thallium flux as measured by the stopped-flow assay (PMID 29058195) in the absence of ELIC activity. Furthermore, in the present study, the data in Fig. 1A of WT ELIC shows a low thallium flux rate 60 seconds after exposure to agonist when the ion channel has mostly desensitized. Therefore, this data serves also as a control indicating that the high thallium flux rates in response to agonist (at earlier delay times) are not due to leak, but rather due to ELIC channel activity.

      Minor revisions:

      (1) Abstract and introduction. 'Liganded' should be ligand

      We removed this word and changed it to “agonist-bound” for consistency throughout the manuscript.

      (2) Inconsistent formatting of FSC graphs in Supplemental Figure 4

      The difference is a consequence of the different formatting between cryoSPARC and Relion FSC graphs.

      Reviewer #2 (Recommendations for the authors):

      Minor writing remarks:

      The present report builds on previous work from the same team, and to my eye it would be a plus if this were conveyed more explicitly. I see it as a strength to explore various developments in several papers that complement each other. E.g in the introduction when citing reference 12 (Dalal 2024), later in introducing ref 15 (Petroff 2022), I wish I was reminded of the main findings and how they fit with the new results.

      We have expanded on the Results and Discussion detailing key findings from these studies that are relevant to the current study.

      Suggestions for analysis:

      Data treatment. Maybe I missed it, but I wondered if C1 vs C5 treatment of the liposome data showed any interesting differences? When I think about the biological membrane, I picture it as a very crowded place with lots of neighbouring proteins. I would not be surprised if, similarly to what they do in discs, the receptor would tend to stick to, or bump into, anything present also in liposomes (a neighboring liposome, some undefined density inside the liposome).

      We attempted to perform C1 heterogeneous refinement jobs in cryoSPARC and C1 3D classification in Relion5. For the WT datasets, these did not produce 3D reconstructions that were of sufficient quality for further refinement. For ELIC5 with agonist, the C1 reconstructions were not different than the C5 reconstructions. Furthermore, there was no evidence of dimers of pentamers from the 2D or 3D treatments, unlike what was observed in the spNW25 nanodiscs. This is likely because the density of ELIC pentamers in the liposomes was too low to capture these transient interactions. We have included this information in the Methods.

      In data treatment, we sometimes find only what we're looking for. I wondered if the authors tried to find, for instance, the open and D conformations in the resting dataset during classifications.

      This is an interesting question since some population of ELIC channels could visit a desensitized conformation in the absence of agonist and this would not be detected in our flux assay. After extensive heterogeneous refinement jobs in cryoSPARC and 3D classification jobs in Relion5, we did not detect any unexpected structures such as open/desensitized conformations in the apo dataset.

      In the analysis of the M4 motions, is there info to be gained by looking at how it interacts with the rest of the TMD? For instance, I wondered if the buried surface area between M4 and the rest was changed. Also one could imagine to look at that M4 separately in outward-facing and inward-facing conformations (because the tension due to the bilayer will not be the same in the outer layer in both orientations - intuitively, I'd expect different levels of M4 motions)

      We have expanded our analysis of the structures as recommended. We determined the buried surface area between M4 and the rest of the channel in the liganded WT and ELIC5 structures in liposomes and nanodiscs, as well as the area between the TMD interfaces for these structures. There appears to be a pattern where liposome structures show less buried surface area between M4 and the rest of the channel, and less area at the TMD interfaces. Overall, this suggests that the liposome structures of ELIC in the open-channel or desensitized conformations are more loosely packed in the TMD compared to the nanodisc structures.

      We have also further discussed the issue of separating outward- and inward-facing conformations in the Results. The problem with classifying outward- and inward-facing orientations is that top/down or tilted views of the particles cannot be easily distinguished as coming from channels in one orientation or the other, unless there are conformational differences between outward- and inward-facing channels that would allow for their separation during 3D heterogeneous refinement or 3D classification. Furthermore, since the inward-facing reconstructions are of much lower resolution than the outward-facing reconstructions, we suspect that these particles are more heterogeneous possibly containing junk, multiple conformations, or particles that are both inward- and outward-facing. On the other hand, the outward-facing structures are of good quality, and therefore we are more confident that these come from a more homogeneous set of particles that are likely outward-facing (Note that most particles are outward facing based on side views of the 2D class averages). That said, when examining the conformation of M4 in outward- and inward-facing structures, we do not see any significant differences with the caveat that the inward-facing structures are of poor quality and that inward- and outward-facing particles may not have been well-separated.

    1. Reviewer #3 (Public review):

      A bias in how people infer the amount of control they have over their environment is widely believed to be a key component of several mental illnesses including depression, anxiety, and addiction. Accordingly, this bias has been a major focus in computational models of those disorders. However, all of these models treat control as a unidimensional property, roughly, how strongly outcomes depend on action. This paper proposes---correctly, I think---that the intuitive notion of "control" captures multiple dimensions in the relationship between action and outcome. In particular, the authors identify one key dimension: the degree to which outcome depends on how much *effort* we exert, calling this dimension the "elasticity of control". They additionally argue that this dimension (rather than the more holistic notion of controllability) may be specifically impaired in certain types of psychopathology. This idea has the potential to change how we think about several major mental disorders in a substantial way and can additionally help us better understand how healthy people navigate challenging decision-making problems. More concisely, it is a very good idea.

      Unfortunately, my view is that neither the theoretical nor empirical aspects of the paper really deliver on that promise. In particular, most (perhaps all) of the interesting claims in the paper have weak empirical support.

      Starting with theory, the authors do not provide a strong formal characterization of the proposed notion of elasticity. There are existing, highly general models of controllability (e.g., Huys & Dayan, 2009; Ligneul, 2021) and the elasticity idea could naturally be embedded within one of these frameworks. The authors gesture at this in the introduction; however, this formalization is not reflected in the implemented model, which is highly task-specific. Moreover, the authors present elasticity as if it is somehow "outside of" the more general notion of controllability. However, effort and investment are just specific dimensions of action; and resources like money, strength, and skill (the "highly trained birke") are just specific dimensions of state. Accordingly, the notion of elasticity is necessarily implicitly captured by the standard model. Personally, I am compelled by the idea that effort and resource (and therefore elasticity) are particularly important dimensions, ones that people are uniquely tuned to. However, by framing elasticity as a property that is different in kind from controllability (rather than just a dimension of controllability), the authors only make it more difficult to integrate this exciting idea into generalizable models.

      Turning to experiment, the authors make two key claims: (1) people infer the elasticity of control, and (2) individual differences in how people make this inference are importantly related to psychopathology.

      Starting with claim 1, there are three subclaims here; implicitly, the authors make all three. (1A) People's behavior is sensitive to differences in elasticity, (1B) people actually represent/track something like elasticity, and (1C) people do so naturally as they go about their daily lives. The results clearly support 1A. However, 1B and 1C are not strongly supported.

      (1B) The experiment cannot support the claim that people represent or track elasticity because effort is the only dimension over which participants can engage in any meaningful decision-making. The other dimension, selecting which destination to visit, simply amounts to selecting the location where you were just told the treasure lies. Thus, any adaptive behavior will necessarily come out in a sensitivity to how outcomes depend on effort.

      Notes on rebuttal: The argument that vehicle/destination choice is not trivial because people occasionally didn't choose the instructed location is not compelling to me-if anything, the exclusion rate is unusually low for online studies. The finding that people learn more from non-random outcomes is helpful, but this could easily be cast as standard model-based learning very much like what one measures with the Daw two-step task (nothing specific to control here). Their final argument is the strongest, that to explain behavior the model must assume "a priori that increased effort could enhance control." However, more literally, the necessary assumption is that each attempt increases the probability of success-e.g. you're more likely to get a heads in two flips than one. I suppose you can call that "elasticity inference", but I would call it basic probabilistic reasoning.

      For 1C, the claim that people infer elasticity outside of the experimental task cannot be supported because the authors explicitly tell people about the two notions of control as part of the training phase: "To reinforce participants' understanding of how elasticity and controllability were manifested in each planet, [participants] were informed of the planet type they had visited after every 15 trips." (line 384).

      Notes on rebuttal: The authors try to retreat, saying "our research question was whether people can distinguish between elastic and inelastic controllability." I struggle to reconcile this with the claim in the abstract "These findings establish the elasticity of control as a distinct cognitive construct guiding adaptive behavior". That claim is the interesting one, and the one I am evaluating the evidence in light of.

      Finally, I turn to claim 2, that individual differences in how people infer elasticity are importantly related to psychopathology. There is much to say about the decision to treat psychopathology as a unidimensional construct (the authors claim otherwise, but see Fig 6C). However, I will keep it concrete and simply note that CCA (by design) obscures the relationship between any two variables. Thus, as suggestive as Figure 6B is, we cannot conclude that there is a strong relationship between Sense of Agency (SOA) and the elasticity bias---this result is consistent with any possible relationship (even a negative one). As it turns out, Figure S3 shows that there is effectively no relationship (r=0.03).

      Notes on rebuttal: The authors argue for CCA by appeal to the need to "account for the substantial variance that is typically shared among different forms of psychopathology". I agree. A simple correlation would indeed be fairly weak evidence. Strong evidence would show a significant correlation after *controlling for* other factors (e.g. a regression predicting elasticity bias from all subscales simultaneously). CCA effectively does the opposite, asking whether-with the help of all the parameters and all the surveys-one can find any correlation between the two sets of variables. The results are certainly suggestive, but they provide very little statistical evidence that the elasticity parameter is meaningfully related to any particular dimension of psychopathology.

      There is also a feature of the task that limits our ability to draw strong conclusions about individual differences about elasticity inference. In the original submission, the authors stated that the study was designed to be "especially sensitive to overestimation of elasticity". A straightforward consequence of this is that the resulting *empirical* estimate of estimation bias (i.e., the gamma_elasticity parameter) is itself biased. This immediately undermines any claim that references the directionality of the elasticity bias (e.g. in the abstract). Concretely, an undirected deficit such as slower learning of elasticity would appear as a directed overestimation bias.

      When we further consider that elasticity inference is the only meaningful learning/decision-making problem in the task (argued above), the situation becomes much worse. Many general deficits in learning or decision-making would be captured by the elasticity bias parameter. Thus, a conservative interpretation of the results is simply that psychopathology is associated with impaired learning and decision-making.

      Notes on rebuttal: I am very concerned to see that the authors removed the discussion of this limitation in response to my first review. I quote the original explanation here:

      - In interpreting the present findings, it needs to be noted that we designed our task to be especially sensitive to overestimation of elasticity. We did so by giving participants free 3 tickets at their initial visits to each planet, which meant that upon success with 3 tickets, people who overestimate elasticity were more likely to continue purchasing extra tickets unnecessarily. Following the same logic, had we first had participants experience 1 ticket trips, this could have increased the sensitivity of our task to underestimation of elasticity in elastic environments. Such underestimation could potentially relate to a distinct psychopathological profile that more heavily loads on depressive symptoms. Thus, by altering the initial exposure, future studies could disambiguate the dissociable contributions of overestimating versus underestimating elasticity to different forms of psychopathology.

      The logic of this paragraph makes perfect sense to me. If you assume low elasticity, you will infer that you could catch the train with just one ticket. However, when elasticity is in fact high, you would find that you don't catch the train, leading you to quickly infer high elasticity-eliminating the bias. In contrast, if you assume high elasticity, you will continue purchasing three tickets and will never have the opportunity to learn that you could be purchasing only one-the bias remains.

      The authors attempt to argue that this isn't happening using parameter recovery. However, they only report the *correlation* in the parameter, whereas the critical measure is the *bias*. Furthermore, in parameter recovery, the data-generating and data-fitting models are identical-this will yield the best possible recovery results. Although finding no bias in this setting would support the claims, it cannot outweigh the logical argument for the bias that they originally laid out. Finally, parameter recovery should be performed across the full range of plausible parameter values; using fitted parameters (a detail I could only determine by reading the code) yields biased results because the fitted parameters are themselves subject to the bias (if present). That is, if true low elasticity is inferred as high elasticity, then you will not have any examples of low elasticity in the fitted parameters and will not detect the inability to recover them.

      Minor comments:

      Below are things to keep in mind.

      The statistical structure of the task is inconsistent with the framing. In the framing, participants can make either one or two second boarding attempts (jumps) by purchasing extra tickets. The additional attempt(s) will thus succeed with probability p for one ticket and 2p - p^2 for two tickets; the p^2 captures the fact that you only take the second attempt if you fail on the first. A consequence of this is buying more tickets has diminishing returns. In contrast, in the task, participants always jumped twice after purchasing two tickets, and the probability of success with two tickets was exactly double that with one ticket. Thus, if participants are applying an intuitive causal model to the task, they will appear to "underestimate" the elasticity of control. I don't think this seriously jeopardizes the key results, but any follow-up work should ensure that the task's structure is consistent with the intuitive causal model.

      The model is heuristically defined and does not reflect Bayesian updating. For example, it over-estimates maximum control by not using losses with less than 3 tickets (intuitively, the inference here depends on what your beliefs about elasticity). Including forced three-ticket trials at the beginning of each round makes this less of an issue; but if you want to remove those trials, you might need to adjust the model. The need to introduce the modified model with kappa is likely another symptom of the heuristic nature of the model updating equations.

    2. Author response:

      The following is the authors’ response to the original reviews

      We thank the Reviewers for their thorough reading and thoughtful feedback. Below, we address each of the concerns raised in the public reviews, and outline our revisions that aim to further clarify and strengthen the manuscript.

      In our response, we clarify our conceptualization of elasticity as a dimension of controllability, formalizing it within an information-theoretic framework, and demonstrating that controllability and its elasticity are partially dissociable. Furthermore, we provide clarifications and additional modeling results showing that our experimental design and modeling approach are well-suited to dissociating elasticity inference from more general learning processes, and are not inherently biased to find overestimates of elasticity. Finally, we clarify the advantages and disadvantages of our canonical correlation analysis (CCA) approach for identifying latent relationships between multidimensional data sets, and provide additional analyses that strengthen the link between elasticity estimation biases and a specific psychopathology profile. 

      Public Reviews:

      Reviewer 1 (Public review): 

      This research takes a novel theoretical and methodological approach to understanding how people estimate the level of control they have over their environment, and how they adjust their actions accordingly. The task is innovative and both it and the findings are well-described (with excellent visuals). They also offer thorough validation for the particular model they develop. The research has the potential to theoretically inform the understanding of control across domains, which is a topic of great importance.

      We thank the Reviewer for their favorable appraisal and valuable suggestions, which have helped clarify and strengthen the study’s conclusion. 

      An overarching concern is that this paper is framed as addressing resource investments across domains that include time, money, and effort, and the introductory examples focus heavily on effort-based resources (e.g., exercising, studying, practicing). The experiments, though, focus entirely on the equivalent of monetary resources - participants make discrete actions based on the number of points they want to use on a given turn. While the same ideas might generalize to decisions about other kinds of resources (e.g., if participants were having to invest the effort to reach a goal), this seems like the kind of speculation that would be better reserved for the Discussion section rather than using effort investment as a means of introducing a new concept (elasticity of control) that the paper will go on to test.

      We thank the Reviewer for pointing out a lack of clarity regarding the kinds of resources tested in the present experiment. Investing additional resources in the form of extra tickets did not only require participants to pay more money. It also required them to invest additional time – since each additional ticket meant making another attempt to board the vehicle, extending the duration of the trial, and attentional effort – since every attempt required precisely timing a spacebar press as the vehicle crossed the screen. Given this involvement of money, time, and effort resources, we believe it would be imprecise to present the study as concerning monetary resources in particular. That said, we agree with the Reviewer that results might differ depending on the resource type that the experiment or the participant considers most. Thus, we now clarify the kinds of resources the experiment involved (lines 87-97): 

      “To investigate how people learn the elasticity of control, we allowed participants to invest different amounts of resources in attempting to board their preferred vehicle. Participants could purchase one (40 coins), two (60 coins), or three tickets (80 coins) or otherwise walk for free to the nearest location. Participants were informed that a single ticket allowed them to board only if the vehicle stopped at the station, while additional tickets provided extra chances to board even after the vehicle had left the platform. For each additional ticket, the chosen vehicle appeared moving from left to right across the screen, and participants could attempt to board it by pressing the spacebar when it reached the center of the screen. Thus, each additional ticket could increase the chance of boarding but also required a greater investment of resources—decreasing earnings, extending the trial duration, and demanding attentional effort to precisely time a button press when attempting to board.”

      In addition, in the revised discussion, we now highlight the open question of whether inferences concerning the elasticity of control generalize across different resource domains (lines 341-348):

      “Another interesting possibility is that individual elasticity biases vary across different resource types (e.g., money, time, effort). For instance, a given individual may assume that controllability tends to be highly elastic to money but inelastic to effort. Although the task incorporated multiple resource types (money, time, and attentional effort), the results may differ depending on the type of resources on which the participant focuses. Future studies could explore this possibility by developing tasks that separately manipulate elasticity with respect to different resource types. This would clarify whether elasticity biases are domain-specific or domaingeneral, and thus elucidate their impact on everyday decision-making.”

      Setting aside the framing of the core concepts, my understanding of the task is that it effectively captures people's estimates of the likelihood of achieving their goal (Pr(success)) conditional on a given investment of resources. The ground truth across the different environments varies such that this function is sometimes flat (low controllability), sometimes increases linearly (elastic controllability), and sometimes increases as a step function (inelastic controllability). If this is accurate, then it raises two questions.

      First, on the modeling front, I wonder if a suitable alternative to the current model would be to assume that the participants are simply considering different continuous functions like these and, within a Bayesian framework, evaluating the probabilistic evidence for each function based on each trial's outcome. This would give participants an estimate of the marginal increase in Pr(success) for each ticket, and they could then weigh the expected value of that ticket choice (Pr(success)*150 points) against the marginal increase in point cost for each ticket. This should yield similar predictions for optimal performance (e.g., opt-out for lower controllability environments, i.e., flatter functions), and the continuous nature of this form of function approximation also has the benefit of enabling tests of generalization to predict changes in behavior if there was, for instance, changes in available tickets for purchase (e.g., up to 4 or 5) or changes in ticket prices. Such a model would of course also maintain a critical role for priors based on one's experience within the task as well as over longer timescales, and could be meaningfully interpreted as such (e.g., priors related to the likelihood of success/failure and whether one's actions influence these). It could also potentially reduce the complexity of the model by replacing controllability-specific parameters with multiple candidate functions (presumably learned through past experience, and/or tuned by experience in this task environment), each of which is being updated simultaneously.

      We thank the Reviewer for suggesting this interesting alternative modeling approach. We agree that a Bayesian framework evaluating different continuous functions could offer advantages, particularly in its ability to generalize to other ticket quantities and prices. To test the Reviewer's suggestion, we implemented a Bayesian model where participants continuously estimate both controllability and its elasticity as a mixture of three archetypal functions mapping ticket quantities to success probabilities. The flat function provides no control regardless of how many tickets are purchased (corresponding to low controllability). The step function provides the same level of control as long as at least one ticket is purchased (inelastic controllability). The linear function increases control proportionally with each additional ticket (elastic controllability). The model computes the likelihood that each of the functions produced each new observation, and accordingly updates its beliefs. Using these beliefs, the model estimates the probability of success for purchasing each number of tickets, allowing participants to weigh expected control against increasing ticket costs. Despite its theoretical advantages for generalization to different ticket quantities, this continuous function approximation model performed significantly worse than our elastic controllability model (log Bayes Factor > 4100 on combined datasets). We surmise that the main advantage offered by the elastic controllability model is that it does not assume a linear increase in control as a function of resource investment – even though this linear relationship was actually true in our experiment and is required for generalizing to other ticket quantities, it likely does not match what participants were doing. We present these findings in a new section ‘Testing alternative methods’ (lines 686-701):

      “We next examined whether participant behavior would be better characterized as a continuous function approximation rather than the discrete inferences in our model. To test this, we implemented a Bayesian model where participants continuously estimate both controllability and its elasticity as a mixture of three archetypal functions mapping ticket quantities to success probabilities. The flat function provides no control regardless of how many tickets are purchased (corresponding to low controllability). The step function provides full control as long as at least one ticket is purchased (inelastic controllability). The linear function linearly increases control with the number of extra tickets (i.e., 0%, 50%, and 100% control for 1, 2, and 3 tickets, respectively; elastic controllability). The model computes the likelihood that each of the functions produced each new observation, and accordingly updates its beliefs. Using these beliefs, the model estimates the probability of success for purchasing each number of tickets, allowing participants to weigh expected control against increasing ticket costs. Despite its theoretical advantages for generalization to different ticket quantities, this continuous function approximation model performed significantly worse than the elastic controllability model (log Bayes Factor > 4100 on combined datasets), suggesting that participants did not assume that control increases linearly with resource investment.”

      We also refer to this analysis in our updated discussion (326-339): 

      “Second, future models could enable generalization to levels of resource investment not previously experienced. For example, controllability and its elasticity could be jointly estimated via function approximation that considers control as a function of invested resources. Although our implementation of this model did not fit participants’ choices well (see Methods), other modeling assumptions or experimental designs may offer a better test of this idea.”

      Second, if the reframing above is apt (regardless of the best model for implementing it), it seems like the taxonomy being offered by the authors risks a form of "jangle fallacy," in particular by positing distinct constructs (controllability and elasticity) for processes that ultimately comprise aspects of the same process (estimation of the relationship between investment and outcome likelihood). Which of these two frames is used doesn't bear on the rigor of the approach or the strength of the findings, but it does bear on how readers will digest and draw inferences from this work. It is ultimately up to the authors which of these they choose to favor, but I think the paper would benefit from some discussion of a common-process alternative, at least to prevent too strong of inferences about separate processes/modes that may not exist. I personally think the approach and findings in this paper would also be easier to digest under a common-construct approach rather than forcing new terminology but, again, I defer to the authors on this.

      We acknowledge the Reviewer's important point about avoiding a potential "jangle fallacy." We entirely agree with the Reviewer that elasticity and controllability inferences are not distinct processes. Specifically, we view resource elasticity as a dimension of controllability, hence the name of our ‘elastic controllability’ model. In response to this and other Reviewers’ comments, in the revised manuscript, we now offer a formal definition of elasticity as the reduction in uncertainty about controllability due to knowing the amount of resources available to the agent (lines 16-20; see further details in response to Reviewer 3 below).  

      With respect to how this conceptualization is expressed in the modeling, we note that the representation in our model of maximum controllability and its elasticity via different variables is analogous to how a distribution may be represented by separate mean and variance parameters. Even the model suggested by the Reviewer required a dedicated variable representing elastic controllability, namely the probability of the linear controllability function. More generally, a single-process account allows that different aspects of the said process would be differently biased (e.g., one can have an accurate estimate of the mean of a distribution but overestimate its variance). Therefore, our characterization of distinct elasticity and controllability biases (or to put it more accurately, 'elasticity of controllability bias' and 'maximum controllability bias') is consistent with a common construct account.

      To avoid misunderstandings, we have now modified the text to clarify that we view elasticity as a dimension of controllability that can only be estimated in conjunction with controllability. Here are a few examples:

      Lines 21-28: “While only controllable environments can be elastic, the inverse is not necessarily true – controllability can be high, yet inelastic to invested resources – for example, choosing between bus routes affords equal control over commute time to anyone who can afford the basic fare (Figure 1; Supplementary Note 1). That said, since all actions require some resource investment, no controllable environment is completely inelastic when considering the full spectrum of possible agents, including those with insufficient resources to act (e.g., those unable to purchase a bus fare or pay for a fixed-price meal).”

      Lines 45-47: “Experimental paradigms to date have conflated overall controllability and its elasticity, such that controllability was either low or elastic[16-20]. The elasticity of control, however, must be dissociated from overall controllability to accurately diagnose mismanagement of resources.”

      Lines 70-72: “These findings establish elasticity as a crucial dimension of controllability that guides adaptive behavior, and a computational marker of control-related psychopathology.”

      Lines 87-88: “To investigate how people learn the elasticity of control, we allowed participants to invest different amounts of resources in attempting to board their preferred vehicle.”

      Reviewer 2 (Public review):

      This research investigates how people might value different factors that contribute to controllability in a creative and thorough way. The authors use computational modeling to try to dissociate "elasticity" from "overall controllability," and find some differential associations with psychopathology. This was a convincing justification for using modeling above and beyond behavioral output and yielded interesting results. Interestingly, the authors conclude that these findings suggest that biased elasticity could distort agency beliefs via maladaptive resource allocation. Overall, this paper reveals some important findings about how people consider components of controllability.

      We appreciate the Reviewer's positive assessment of our findings and computational approach to dissociating elasticity and overall controllability.

      The primary weakness of this research is that it is not entirely clear what is meant by "elastic" and "inelastic" and how these constructs differ from existing considerations of various factors/calculations that contribute to perceptions of and decisions about controllability. I think this weakness is primarily an issue of framing, where it's not clear whether elasticity is, in fact, theoretically dissociable from controllability. Instead, it seems that the elements that make up "elasticity" are simply some of the many calculations that contribute to controllability. In other words, an "elastic" environment is inherently more controllable than an "inelastic" one, since both environments might have the same level of predictability, but in an "elastic" environment, one can also partake in additional actions to have additional control overachieving the goal (i.e., expend effort, money, time).

      We thank the Reviewer for highlighting the lack of clarity about the concept of elasticity. We first clarify that elasticity cannot be entirely dissociated from controllability because it is a dimension of controllability. If no controllability is afforded, then there cannot be elasticity or inelasticity. This is why in describing the experimental environments, we only label high-controllability, but not low-controllability, environments as ‘elastic’ or ‘inelastic’. For further details on this conceptualization of elasticity, and associated revisions of the text, see our response above to Reviewer 1. 

      Second, we now clarify that controllability can also be computed without knowing the amount of resources the agent is able and willing to invest, for instance by assuming infinite resources available or a particular distribution of resource availabilities. However, knowing the agent’s available resources often reduces uncertainty concerning controllability. This reduction in uncertainty is what we define as elasticity. Since any action requires some resources, this means that no controllable environment is entirely inelastic if we also consider agents that do not have enough resources to commit any action. However, even in this case, environments can differ in the degree to which they are elastic. For further details on this formal definition, and associated revisions of the text, see our response to Reviewer 3.

      Importantly, whether an environment is more or less elastic does not fully determine whether it is more or less controllable. In particular, environments can be more controllable yet less elastic. This is true even if we allow that investing different levels of resources (i.e., purchasing 0, 1, 2, or 3 tickets) constitute different actions, in conjunction with participants’ vehicle choices. Below, we show this using two existing definitions of controllability. 

      Definition 1, reward-based controllability[1]: If control is defined as the fraction of available reward that is controllably achievable, and we assume all participants are in principle willing and able to invest 3 tickets, controllability can be computed in the present task as:

      where P( S'= goal ∣ 𝑆, 𝐴, 𝐶 ) is the probability of reaching the treasure from present state 𝑆 when taking action A and investing C resources in executing the action. In any of the task environments, the probability of reaching the goal is maximized by purchasing 3 tickets (𝐶 = 3) and choosing the vehicle that leads to the goal (𝐴 = correct vehicle). Conversely, the probability of reaching the goal is minimized by purchasing 3 tickets (𝐶 = 3) and choosing the vehicle that does not lead to the goal (𝐴 = wrong vehicle). This calculation is thus entirely independent of elasticity, since it only considers what would be achieved by maximal resource investment, whereas elasticity consists of the reduction in controllability that would arise if the maximal available 𝐶 is reduced. Consequently, any environment where the maximum available control is higher yet varies less with resource investment would be more controllable and less elastic. 

      Note that if we also account for ticket costs in calculating reward, this will only reduce the fraction of achievable reward and thus the calculated control in elastic environments.   

      Definition 2, information-theoretic controllability[2]: Here controllability is defined as the reduction in outcome entropy due to knowing which action is taken:

      where H(S'|S) is the conditional entropy of the distribution of outcomes S' given the present state S, and H(S'|S, A, C) is the conditional entropy of the outcome given the present state, action, and resource investment. 

      To compare controllability, we consider two environments with the same maximum control:

      • Inelastic environment: If the correct vehicle is chosen, there is a 100% chance of reaching the goal state with 1, 2, or 3 tickets. Thus, out of 7 possible action-resource investment combinations, three deterministically lead to the goal state (≥1 tickets and correct vehicle choice), three never lead to it (≥1 tickets and wrong vehicle choice), and one (0 tickets) leads to it 20% of the time (since walking leads to the treasure on 20% of trials).

      • Elastic Environment: If the correct vehicle is chosen, the probability of boarding it is 0% with 1 ticket, 50% with 2 tickets, and 100% with 3 tickets. Thus, out of 7 possible actionresource investment combinations, one deterministically leads to the goal state (3 tickets and correct vehicle choice), one never leads to it (3 tickets and wrong vehicle choice), one leads to it 60% of the time (2 tickets and correct vehicle choice: 50% boarding + 50% × 20% when failing to board), one leads to it 10% of time (2 ticket and wrong vehicle choice), and three lead to it 20% of time (0-1 tickets).

      Here we assume a uniform prior over actions, which renders the information-theoretic definition of controllability equal to another definition termed ‘instrumental divergence’[3,4]. We note that changing the uniform prior assumption would change the results for the two environments, but that would not change the general conclusion that there can be environments that are more controllable yet less elastic. 

      Step 1: Calculating H(S'|S)

      For the inelastic environment:

      P(goal) = (3 × 100% + 3 × 0% + 1 × 20%)/7 = .46, P(non-goal) = .54  H(S'|S) = – [.46 × log<sub>2</sub>(.46) + .54 × log<sub>2</sub>(.54)] = 1 bit

      For the elastic environment:

      P(goal) = (1 × 100% + 1 × 0% + 1 × 60% + 1 × 10% + 3 × 20%)/7 = .33, P(non-goal) = .67 H(S'|S) = – [.33 × log<sub>2</sub>(.33) + .67 × log<sub>2</sub>(.67)] = .91 bits

      Step 2: Calculating H(S'|S, A, C)

      Inelastic environment: Six action-resource investment combinations have deterministic outcomes entailing zero entropy, whereas investing 0 tickets has a probabilistic outcome (20%). The entropy for 0 tickets is: H(S'|C = 0) = -[.2 × log<sub>2</sub> (.2) + 0.8 × log<sub>2</sub> (.8)] = .72 bits. Since this actionresource investment combination is chosen with probability 1/7, the total conditional entropy is approximately .10 bits

      Elastic environment: 2 actions have deterministic outcomes (3 tickets with correct/wrong vehicle), whereas the other 5 actions have probabilistic outcomes:

      2 tickets and correct vehicle (60% success): 

      H(S'|A = correct, C = 2) = – [.6 × log<sub>2</sub> (.6) + .4 × log<sub>2</sub> (.4)] = .97 bits 2 tickets and wrong vehicle (10% success): 

      H(S'|A = wrong, C = 2) = – [.1 × log<sub>2</sub> (.1) + .9 × log<sub>2</sub> (.9)] = .47 bits 0-1 tickets (20% success):

      H(S'|C = 0-1) = – [.2 × log<sub>2</sub> (.2) + .8 × log<sub>2</sub> (.8)] = .72 bits

      Thus the total conditional entropy of the elastic environment is: H(S'|S, A, C) = (1/7) × .97 + (1/7) × .47 + (3/7) × .72 = .52 bits

      Step 3: Calculating I(S'|A, S)  

      Inelastic environment: I(S'; A, C | S) = H(S'|S) – H(S'|S, A, C) = 1 – 0.1 = .9 bits 

      Elastic environment: I(S'; A, C | S) = H(S'|S) – H(S'|S, A, C) = .91 – .52 = .39 bits

      Thus, the inelastic environment offers higher information-theoretic controllability (.9 bits) compared to the elastic environment (.39 bits). 

      Of note, even if each combination of cost and success/failure to reach the goal is defined as a distinct outcome, then information-theoretic controllability is higher for the inelastic (2.81 bits) than for the elastic (2.30 bits) environment. These calculations are now included in the Supplementary materials (Supplementary Note 1). 

      In sum, for both definitions of controllability, we see that environments can be more elastic yet less controllable. We have also revised the manuscript to clarify this distinction (lines 21-28):

      “While only controllable environments can be elastic, the inverse is not necessarily true – controllability can be high, yet inelastic to invested resources – for example, choosing between bus routes affords equal control over commute time to anyone who can afford the basic fare (Figure 1; Supplementary Note 1). That said, since all actions require some resource investment, no controllable environment is completely inelastic when considering the full spectrum of possible agents, including those with insufficient resources to act (e.g., those unable to purchase a bus fare or pay for a fixed-price meal).”

      Reviewer 3 (Public review):

      A bias in how people infer the amount of control they have over their environment is widely believed to be a key component of several mental illnesses including depression, anxiety, and addiction. Accordingly, this bias has been a major focus in computational models of those disorders. However, all of these models treat control as a unidimensional property, roughly, how strongly outcomes depend on action. This paper proposes---correctly, I think---that the intuitive notion of "control" captures multiple dimensions in the relationship between action and outcome is multi-dimensional. In particular, the authors propose that the degree to which outcome depends on how much *effort* we exert, calling this dimension the "elasticity of control". They additionally propose that this dimension (rather than the more holistic notion of controllability) may be specifically impaired in certain types of psychopathology. This idea thus has the potential to change how we think about mental disorders in a substantial way, and could even help us better understand how healthy people navigate challenging decision-making problems.

      Unfortunately, my view is that neither the theoretical nor empirical aspects of the paper really deliver on that promise. In particular, most (perhaps all) of the interesting claims in the paper have weak empirical support.

      We appreciate the Reviewer's thoughtful engagement with our research and recognition of the potential significance of distinguishing between different dimensions of control in understanding psychopathology. We believe that all the Reviewer’s comments can be addressed with clarifications or additional analyses, as detailed below.  

      Starting with theory, the elasticity idea does not truly "extend" the standard control model in the way the authors suggest. The reason is that effort is simply one dimension of action. Thus, the proposed model ultimately grounds out in how strongly our outcomes depend on our actions (as in the standard model). Contrary to the authors' claims, the elasticity of control is still a fixed property of the environment. Consistent with this, the computational model proposed here is a learning model of this fixed environmental property. The idea is still valuable, however, because it identifies a key dimension of action (namely, effort) that is particularly relevant to the notion of perceived control. Expressing the elasticity idea in this way might support a more general theoretical formulation of the idea that could be applied in other contexts. See Huys & Dayan (2009), Zorowitz, Momennejad, & Daw (2018), and Gagne & Dayan (2022) for examples of generalizable formulations of perceived control.

      We thank the Reviewer for the suggestion that we formalize our concept of elasticity to resource investment, which we agree is a dimension of action. We first note that we have not argued against the claim that elasticity is a fixed property of the environment. We surmise the Reviewer might have misread our statement that “controllability is not a fixed property of the environment”. The latter statement is motivated by the observation that controllability is often higher for agents that can invest more resources (e.g., a richer person can buy more things). We clarify this in our revision of the manuscript in lines 8-15 (changes in bold): 

      “The degree of control we possess over our environment, however, may itself depend on the resources we are willing and able to invest. For example, the control a biker has over their commute time depends on the power they are willing and able to invest in pedaling. In this respect, a highly trained biker would typically have more control than a novice. Likewise, the control a diner in a restaurant has over their meal may depend on how much money they have to spend. In such situations, controllability is not fixed but rather elastic to available resources (i.e., in the same sense that supply and demand may be elastic to changing prices[14]).”

      To formalize elasticity, we build on Huys & Dayan’s definition of controllability1 as the fraction of reward that is controllably achievable, 𝜒 (though using information-theoretic definitions[2,3] would work as well). To the extent that this fraction depends on the amount of resources the agent is able and willing to invest (max 𝐶), this formulation can be probabilistically computed without information about the particular agent involved, specifically, by assuming a certain distribution of agents with different amounts of available resources. This would result in a probability distribution over 𝜒. Elasticity can thus be defined as the amount of information obtained about controllability due to knowing the amount of resources available to the agent: I(𝜒; max 𝐶). We have added this formal definition to the manuscript (lines 15-20): 

      “To formalize how elasticity relates to control, we build on an established definition of controllability as the fraction of reward that is controllably achievable[15], 𝜒. Uncertainty about this fraction could result from uncertainty about the amount of resources that the agent is able and willing to invest, 𝑚𝑎𝑥 𝐶. Elasticity can thus be defined as the amount of information obtained about controllability by knowing the amount of available resources: 𝐼(𝜒; 𝑚𝑎𝑥 𝐶).”

      Turning to experiment, the authors make two key claims: (1) people infer the elasticity of control, and (2) individual differences in how people make this inference are importantly related to psychopathology. Starting with claim 1, there are three sub-claims here; implicitly, the authors make all three. (1A) People's behavior is sensitive to differences in elasticity, (1B) people actually represent/track something like elasticity, and (1C) people do so naturally as they go about their daily lives. The results clearly support 1A. However, 1B and 1C are not supported. Starting with 1B, the experiment cannot support the claim that people represent or track elasticity because the effort is the only dimension over which participants can engage in any meaningful decision-making (the other dimension, selecting which destination to visit, simply amounts to selecting the location where you were just told the treasure lies). Thus, any adaptive behavior will necessarily come out in a sensitivity to how outcomes depend on effort. More concretely, any model that captures the fact that you are more likely to succeed in two attempts than one will produce the observed behavior. The null models do not make this basic assumption and thus do not provide a useful comparison.

      We appreciate the Reviewer's critical analysis of our claims regarding elasticity inference, which as detailed below, has led to an important new analysis that strengthens the study’s conclusions. However, we respectfully disagree with two of the Reviewer’s arguments. First, resource investment was not the only meaningful decision dimension in our task, since participant also needed to choose the correct vehicle to get to the right destination. That this was not trivial is evidenced by our exclusion of over 8% of participants who made incorrect vehicle choices more than 10% of the time. Included participants also occasionally erred in this choice (mean error rate = 3%, range [0-10%] now specified in lines 363-366). 

      Second, the experimental task cannot be solved well by a model that simply tracks how outcomes depend on effort because 20% of the time participants reached the treasure despite failing to board their vehicle of choice. In such cases, reward outcomes and control were decoupled. Participants could identify when this was the case by observing the starting location (since depending on the starting location, the treasure location could have been automatically reached by walking), which was revealed together with the outcome. To determine whether participants distinguished between control-related and non-control-related reward, we have now fitted a variant of our model to the data that allows learning from each of these kinds of outcomes by means of a different free parameter. The results show that participants learned considerably more from control-related outcomes. They were thus not merely tracking outcomes, but specifically inferred when outcomes can be attributed to control. We now include this new analysis in the revised manuscript (Methods lines 648-661):

      “To ascertain that participants were truly learning latent estimates of controllability rather than simpler associations, we conducted two complementary analyses.

      First, we implemented a simple Q-learning model that directly maps ticket quantities to expected values based on reward prediction errors, without representing latent controllability. This associative model performed substantially worse than even our simple controllability model (log Bayes Factor ≥ 1854 on the combined datasets). Second, we fitted a variant of the elastic controllability model that compared learning from control-related versus chance outcomes via separate parameters (instead of assuming no learning from chance outcomes). Chance outcomes were observed by participants in the 20% of trials where reward and control were decoupled, in the sense that participants reached the treasure regardless of whether they boarded their vehicle of choice. Results showed that participants learned considerably more from control-related, as compared to chance, outcomes (mean learning ratio=1.90, CI= [1.83, 1.97]). Together, these analyses show that participants were forming latent controllability estimates rather than direct action-outcome associations.”

      Controllability inference by itself, however, still does not suffice to explain the observed behavior. This is shown by our ‘controllability’ model, which learns to invest more resources to improve control, yet still fails to capture key features of participants’ behavior, as detailed in the manuscript. This means that explaining participants’ behavior requires a model that not only infers controllability—beyond merely outcome probability—but also assumes a priori that increased effort could enhance control. Building these a priori assumption into the model amounts to embedding within it an understanding of elasticity – the idea that control over the environment may be increased by greater resource investment. 

      That being said, we acknowledge the value in considering alternative computational formulations of adaptation to elasticity, as now expressed in the revised discussion (lines 326-333; reproduced below in response to the Reviewer’s comment on updating controllability beliefs when losing with less than 3 tickets).

      For 1C, the claim that people infer elasticity outside of the experimental task cannot be supported because the authors explicitly tell people about the two notions of control as part of the training phase: "To reinforce participants' understanding of how elasticity and controllability were manifested in each planet, [participants] were informed of the planet type they had visited after every 15 trips." (line 384).

      We thank the Reviewer for highlighting this point. We agree that our experimental design does not test whether people infer elasticity spontaneously. However, our research question was whether people can distinguish between elastic and inelastic controllability. The results strongly support that they can, and this does have potential implications for behavior outside of the experimental task. Specifically, to the extent that people are aware that in some contexts additional resource investment improves control, whereas in other contexts it does not, then our results indicate that they would be able to distinguish between these two kinds of contexts through trial-and-error learning. That said, we agree that investigating whether and how people spontaneously infer elasticity is an interesting direction for future work. We have now added this to the discussion of future directions (lines 287-295):

      “Additionally, real life typically doesn’t offer the streamlined recurrence of homogenized experiences that makes learning easier in experimental tasks, nor are people systematically instructed and trained about elastic and inelastic control in each environment. These complexities introduce substantial additional uncertainty into inferences of elasticity in naturalistic settings, thus allowing more room for prior biases to exert their influences. The elasticity biases observed in the present studies are therefore likely to be amplified in real-life behavior. Future research should examine how these complexities affect judgments about the elasticity of control to better understand how people allocate resources in real-life.”

      Finally, I turn to claim 2, that individual differences in how people infer elasticity are importantly related to psychopathology. There is much to say about the decision to treat psychopathology as a unidimensional construct. However, I will keep it concrete and simply note that CCA (by design) obscures the relationship between any two variables. Thus, as suggestive as Figure 6B is, we cannot conclude that there is a strong relationship between Sense of Agency and the elasticity bias---this result is consistent with any possible relationship (even a negative one). The fact that the direct relationship between these two variables is not shown or reported leads me to infer that they do not have a significant or strong relationship in the data.

      We agree that CCA is not designed to reveal the relationship between any two variables. However, the advantage of this analysis is that it pulls together information from multiple variables. Doing so does not treat psychopathology as unidimensional. Rather, it seeks a particular dimension that most strongly correlates with different aspects of task performance.

      This is especially useful for multidimensional psychopathology data because such data are often dominated by strong correlations between dimensions, whereas the research seeks to explain the distinctions between the dimensions. Similar considerations apply to the multidimensional task parameters, which although less correlated, may still jointly predict the relevant psychopathological profile better than each parameter does in isolation. Thus, the CCA enabled us to identify a general relationship between task performance and psychopathology that accounts for different symptom measures and aspects of controllability inference. 

      Using CCA can thus reveal relationships that do not readily show up in two-variable analyses. Indeed, the direct correlation between Sense of Agency (SOA) and elasticity bias was not significant – a result that, for completeness, we now report in Supplementary Figure 3 along with all other direct correlations. We note, however, that the CCA analysis was preregistered and its results were replicated. Additionally, participants scoring higher on the psychopathology profile also overinvested resources in inelastic environments but did not futilely invest in uncontrollable environments (Figure 6A), providing external validation to the conclusion that the CCA captured meaningful variance specific to elasticity inference. Most importantly, an auxiliary analysis specifically confirmed the contributions of both elasticity bias (Figure 6D, middle plot) and, although not reported in the original paper, of the Sense of Agency score (SOA; p=.03 permutation test; see updated Figure 6D, bottom plot) to the observed canonical correlation. The results thus enable us to safely conclude that differences in elasticity inferences are significantly associated with a profile of control-related psychopathology to which SOA contributed significantly. We now report this when presenting the CCA results (lines 255-257): 

      “Loadings on the side of psychopathology were dominated by an impaired sense of agency (SOA; contribution to canonical correlation: p=.03, Figure 6D, bottom plot), along with obsessive compulsive symptoms (OCD), and social anxiety (LSAS) – all symptoms that have been linked to an impaired sense of control[22-25].”

      Finally, whereas interpretation of individual CCA loadings that were not specifically tested remains speculative, we note that the pattern of loadings largely replicated across the initial and replication studies (see Figure 6B), and aligns with prior findings. For instance, the positive loadings of SOA and OCD match prior suggestions that a lower sense of control leads to greater compensatory effort7, whereas the negative loading for depression scores matches prior work showing reduced resource investment in depression[5-6].

      We have now revised the manuscript to clarify the justification for our analytical approach (lines 236-248):

      “To examine whether the individual biases in controllability and elasticity inference have psychopathological ramifications, we assayed participants on a range of self-report measures of psychopathologies previously linked to a distorted sense of control (see Methods, pg. 24). Examining the direct correlations between model parameters and psychopathology measures (reported in Supplementary Figure 3) does not account for the substantial variance that is typically shared among different forms of psychopathology. For this reason, we instead used a canonical correlation analysis (CCA) to identify particular dimensions within the parameter and psychopathology spaces that most strongly correlate with one another.”

      We also now include a cautionary note in the discussion (lines 309-315):

      “Whereas our pre-registered CCA effectively identified associations between task parameters and a psychopathological profile, this analysis method does not directly reveal relationships between individual variables. Auxiliary analyses confirmed significant contributions of both elasticity bias and sense of agency to the observed canonical correlation, but the contribution of other measures remains to be determined by future work. Such work could employ other established measures of agency, including both behavioral indices and subjective self-reports, to better understand how these constructs relate across different contexts and populations.”

      There is also a feature of the task that limits our ability to draw strong conclusions about individual differences in elasticity inference. As the authors clearly acknowledge, the task was designed "to be especially sensitive to overestimation of elasticity" (line 287). A straightforward consequence of this is that the resulting *empirical* estimate of estimation bias (i.e., the gamma_elasticity parameter) is itself biased. This immediately undermines any claim that references the directionality of the elasticity bias (e.g. in the abstract). Concretely, an undirected deficit such as slower learning of elasticity would appear as a directed overestimation bias. When we further consider that elasticity inference is the only meaningful learning/decisionmaking problem in the task (argued above), the situation becomes much worse. Many general deficits in learning or decision-making would be captured by the elasticity bias parameter. Thus, a conservative interpretation of the results is simply that psychopathology is associated with impaired learning and decision-making.

      We apologize for our imprecise statement that the task was ‘especially sensitive to overestimation of elasticity’, which justifiably led to Reviewer’s concern that slower elasticity learning can be mistaken for elasticity bias. To make sure this was not the case, we made use of the fact that our computational model explicitly separates bias direction (𝜆) from the rate of learning through two distinct parameters, which initialize the prior concentration and mean of the model’s initial beliefs concerning elasticity (see Methods pg. 23). The higher the concentration of the initial beliefs (𝜖), the slower the learning. Parameter recovery tests confirmed that our task enables acceptable recovery of both the bias λ<sub>elasticity</sub> (r=.81) and the concentration 𝜖<sub>elasticity</sub> (r=.59) parameters. And importantly, the level of confusion between the parameters was low (confusion of 0.15 for 𝜖<sub>elasticity</sub> → λ<sub>elasticity</sub> and 0.04 for λ<sub>elasticity</sub>→ 𝜖<sub>elasticity</sub> This result confirms that our task enables dissociating elasticity biases from the rate of elasticity learning. 

      Moreover, to validate that the minimal level of confusion existing between bias and the rate of learning did not drive our psychopathology results, we re-ran the CCA while separating concentration from bias parameters. The results (figure below) demonstrate that differences in learning rate (𝜖) had virtually no contribution to our CCA results, whereas the contribution of the pure bias (𝜆) was preserved. 

      We now report on this additional analysis in the text (lines 617-627):

      “To capture prior biases that planets are controllable and elastic, we introduced parameters λ<sub>controllability</sub> and λ<sub>elasticity</sub>, each computed by multiplying the direction (λ – 0.5) and strength (ϵ) of individuals’ prior belief. 𝜖<sub>controllability</sub> and 𝜖<sub>elasticity</sub> range between 0 and 1, with values above 0.5 indicating a bias towards high controllability or elasticity, and values below 0.5 indicating a bias towards low controllability or elasticity. 𝜖<sub>controllability</sub> and 𝜖<sub>elasticity</sub> are positively valued parameters capturing confidence in the bias. Parameter recovery analyses confirmed both good recoverability (see S2 Table) and low confusion between bias direction and strength (𝜖<sub>controllability</sub> → λ<sub>controllability</sub> = −. 07, λ<sub>controllability</sub> → 𝜖<sub>controllability</sub> =. 16, 𝜖<sub>elasticity</sub> → λ<sub>elasticity</sub> =. 15, λ<sub>elasticity</sub> → 𝜖<sub>elasticity</sub> =. 04), ensuring that observed biases and their relation to psychopathology do not merely reflect slower learning (Supplementary Figure 4), which can result from changes in bias strength but not direction.”

      We also more precisely articulate the impact of providing participants with three free tickets at their initial visits to each planet.

      Showing that a model parameter correlates with the data it was fit to does not provide any new information, and cannot support claims like "a prior assumption that control is likely available was reflected in a futile investment of resources in uncontrollable environments." To make that claim, one must collect independent measures of the assumption and the investment.

      We apologize if this and related statements seemed to be describing independent findings. They were meant to describe the relationship between model parameters and model-independent measures of task performance. It is inaccurate, though, to say that they provide no new information, since results could have been otherwise. For instance, whether a higher controllability bias maps onto resource misallocation in uncontrollable environments (as we observed) depends on the range of this parameter in our population sample. Had the range been more negative, a higher controllability bias could have instead manifested as optimal allocation in controllable environments. Additionally, these analyses serve two other purposes: as a validity check, confirming that our computational model effectively captured observed individual differences, and as a help for readers to understand what each parameter in our model represents in terms of observable behavior. We now better clarify the descriptive purposes of these regressions (lines 214-220, 231-235): 

      “To clarify how fitted model parameters related to observable behavior, we regressed participants’ opt-in rates and extra ticket purchases on the parameters (Figure 6A) ...”

      “... In sum, the model parameters captured meaningful individual differences in how participants allocated their resources across environments, with the controllability parameter primarily explaining variance in resource allocation in uncontrollable environments, and the elasticity parameter primarily explaining variance in resource allocation in environments where control was inelastic.”

      Did participants always make two attempts when purchasing tickets? This seems to violate the intuitive model, in which you would sometimes succeed on the first jump. If so, why was this choice made? Relatedly, it is not clear to me after a close reading how the outcome of each trial was actually determined.

      We thank the Reviewer for highlighting the need to clarify these aspects of the task in the revised manuscript. 

      When participants purchased two extra tickets, they attempted both jumps, and were never informed about whether either of them succeeded. Instead, after choosing a vehicle and attempting both jumps, participants were notified where they arrived at. This outcome was determined based on the cumulative probability of either of the two jumps succeeding. Success meant that participants arrived at where their chosen vehicle goes, whereas failure meant they walked to the nearest location (as determined by where they started from). 

      Though it is unintuitive to attempt a second jump before seeing whether the first succeed, this design choice ensured two key objectives. First, that participants would consistently need to invest not only more money but also more effort and time in planets with high elastic controllability. Second, that the task could potentially generalize to the many real-world situations where the amount of invested effort has to be determined prior to seeing any outcome, for instance, preparing for an exam or a job interview. We now explicitly state these details when describing the experimental task (lines 393-395):

      “When participants purchased multiple tickets, they made all boarding attempts in sequence without intermediate feedback, only learning whether they successfully boarded upon reaching their final destination. This served two purposes. First, to ensure that participants would consistently need to invest not only more money but also more effort and time in planets with high elastic controllability. Second, to ensure that results could potentially generalize to the many real-world situations where the amount of invested effort has to be determined prior to seeing any outcome (e.g., preparing for an exam or a job interview).”

      It should be noted that the model is heuristically defined and does not reflect Bayesian updating. In particular, it overestimates control by not using losses with less than 3 tickets (intuitively, the inference here depends on your beliefs about elasticity). I wonder if the forced three-ticket trials in the task might be historically related to this modeling choice.

      We apologize for not making this clear, but in fact losing with less than 3 tickets does reduce the model’s estimate of available control. It does so by increasing the elasticity estimates (a<sub>elastic≥1</sub>,a<sub>elastic2</sub> parameters), signifying that more tickets are needed to obtain the maximum available level of control, thereby reducing the average controllability estimate across ticket investment options. We note this now in the presentation of the computational model (caption Figure 4):

      “A failure to board does not change estimated maximum controllability, but rather suggests that 1 ticket might not suffice to obtain control (a<sub>elastic≥1</sub> + 1; 𝑙𝑖𝑔ℎ𝑡 𝑔𝑟𝑒𝑒𝑛 𝑑𝑖𝑚𝑖𝑛𝑖𝑠ℎ𝑒𝑑). As a result, the model’s estimate of average controllability across ticket options is reduced.”

      It would be interesting to further develop the model such that losing with less than 3 tickets would also impact inferences concerning the maximum available control, depending on present beliefs concerning elasticity, but the forced three-ticket purchases already expose participants to the maximum available control, and thus, the present data may not be best suited to test such a model. These trials were implemented to minimize individual differences concerning inferences of maximum available control, thereby focusing differences on elasticity inferences. We now explicitly address these considerations in the revised discussion (lines 326-333) with the following: 

      “Future research could explore alternative models for implementing elasticity inference that extend beyond our current paradigm. First, further investigation is warranted concerning how uncertainty about controllability and its elasticity interact. In the present study, we minimized individual differences in the estimation of maximum available control by providing participants with three free tickets at their initial visits to each planet. We made this design choice to isolate differences in the estimation of elasticity, as opposed to maximum controllability. To study how these two types of estimations interact, future work could benefit from modifying this aspect of our experimental design.”

      Furthermore, we have now tested a Bayesian model suggested by Reviewer 1, but we found that this model fitted participants’ choices worse (see details in the response to Reviewer 1’s comments). 

      Recommendations for the authors:

      Reviewer 1 (Recommendations for the authors):

      In the introduction, the definition of controllability and elasticity, and the scope of "resources" investigated in the current study were unclear. If I understand correctly, controllability is defined as "the degree to which actions influence the probability of obtaining a reward", and elasticity is defined as the change in controllability based on invested resources. This would define the controllability of the environment and the elasticity of controllability of the environment. However, phrases such as "elastic environment" seem to imply that elasticity can directly attach to an environment, instead of attaching to the controllability of the environment.

      We thank the Reviewer for highlighting the need to clarify our conceptualization of elasticity and controllability. We now provide formal definitions of both, with controllability defined as the fraction of controllably achievable reward[1], and elasticity as the reduction in uncertainty about controllability due to knowing the amount of resources the agent is willing and able to invest (see further details in the response to Reviewer 3’s public comments). In the revised manuscript, we now use more precise language to clarify that elasticity is a property of controllability, not of environments themselves. In addition, we now clarify that the current study manipulated monetary, attentional effort, and time costs together (see further details in the response to Reviewer 1’s public comments).   

      (2) Some of the real-world examples were confusing. For example, the authors mention that investing additional effort due to the belief that this leads to better outcomes in OCD patients is overestimated elasticity, but exercising due to the belief that this can make one taller is overestimated controllability. What's the distinction between the examples? The example of the chess expert practicing to win against a novice, because the amount of effort they invest would not change their level of control over the outcome is also unclear. If the control over the outcome depends on their skill set, wouldn't practicing influence the control over the outcome? In the case of the meeting time example, wouldn't the bus routes differ in their time investments even though they are the same price? In addition to focusing the introductory examples around monetary resources, I would also generally recommend tightening the link between those examples and the experimental task.

      We thank the Reviewer for highlighting the need to clarify the examples used to illustrate elasticity and controllability. We have now revised these examples to more clearly distinguish between the concepts and to strengthen their connection to the experimental task.

      Regarding the OCD example, the possibility that OCD patients overestimate elasticity comes from research suggesting they experience low perceived control but nevertheless engage in excessive resource investment2, reflecting a belief that only through repeated and intense effort can they achieve sufficient control over outcomes. As an example, consider an OCD patient investing unnecessary effort in repeatedly locking their door. This behavior cannot result from an overestimation of controllability because controllability truly is close to maximal. It also cannot result from an underestimation of the maximum attainable control, since in that case investing more effort is futile. Such behavior, however, can result from an overestimation of the degree to which controllability requires effort (i.e., overestimation of elasticity). 

      Similarly, with regards to the chess expert, we intended to illustrate a situation where given their current level, the chess expert is already virtually guaranteed to win, such that additional practice time does not improve their chances. Conversely, the height example illustrates overestimated controllability because the outcome (becoming taller through exercise) is in fact not amenable to control through any amount of resource investment.

      Finally, the meeting time example was meant to illustrate that if the desired outcome is reaching a meeting in time, then different bus routes that cost the same provide equal control over this outcome to anyone who can afford the basic fare. This demonstrates inelastic controllability with respect to money, as spending more on transportation doesn't increase the probability of reaching the meeting on time. The Reviewer correctly notes that time investment may differ between routes. However, investing more time does not improve the expected outcome. This illustrates that inelastic controllability does not preclude agents from investing more resources, but such investment does not increase the fraction of controllably achievable reward (i.e., the probability of reaching the meeting in time).

      In the revised manuscript, we’ve refined each of the above examples to better clarify the specific resources being considered, the outcomes they influence, and their precise relationship to both elasticity and controllability: 

      OCD (lines 40-43): Conversely, the repetitive and unusual amount of effort invested by people with obsessive-compulsive disorder in attempts to exert control[23,24] could indicate an overestimation of elasticity, that is, a belief that adequate control can only be achieved through excessive and repeated resource investment[25].  

      Chess expert (54-57): Alternatively, they may do so because they overestimate the elasticity of control – for example, a chess expert practicing unnecessarily hard to win against a novice, when their existing skill level already ensures control over the match's outcome.

      Height (lines 53-54): A given individual, for instance, may tend to overinvest resources because they overestimate controllability – for example, exercising due to a misguided belief that that this can make one taller, when in fact height cannot be controlled. 

      Meeting time (lines 26-28): Choosing between bus routes affords equal control over commute time to anyone who can afford the basic fare (Figure 1).

      Methods

      (1) In the elastic controllability model definition, controllability is defined as "the belief that boarding is possible" (with any number of tickets). The definition again is different from in the task description where controllability is defined as "the probability of the chosen vehicle stopping at the platform if purchasing a single ticket."

      We clarify that "the probability of the chosen vehicle stopping at the platform if purchasing a single ticket" is our definition for inelastic controllability, as opposed to overall/maximum controllability, as stated here (lines 101-103):

      "We defined inelastic controllability as the probability that even one ticket would lead to successfully boarding the vehicle, and elastic controllability as the degree to which two extra tickets would increase that probability."

      Overall controllability is the summation of the two. This summation is referred to in the elastic controllability model definition as the "the belief that boarding is possible". We now clarify this in the caption to figure 4:

      Elastic Controllability model: Represents beliefs about maximum controllability (black outline) and the degree to which one or two extra tickets are necessary to obtain it. These beliefs are used to calculate the expected control when purchasing 1 ticket (inelastic controllability) and the additional control afforded by 2 and 3 tickets (elastic controllability).    

      We also clarify this in the methods when describing the parameterization of the model (lines 529-531): 

      The expected value of one beta distribution (defined by a,sub>control</sub>, b,sub>control</sub>) represents the belief that boarding is possible (controllability) with any number of tickets. 

      (2) The free parameter K is confusing. What is the psychological meaning of this parameter? Is it there just to account for the fact that failure with 3 tickets made participants favor 3 tickets or is there meaning attached to including this parameter?

      This parameter captures how participants update their beliefs about resource requirements after failing to board with maximum resource investment. Our psychological interpretation is that participants who experience failure despite maximum investment (3 tickets) prioritize resolving uncertainty about whether control is fundamentally possible (before exploring whether control is elastic), which can only be determined by continuing to invest maximum resources. 

      We now clarify this in the methods (lines 555-559):

      To account for our finding that failure with 3 tickets made participants favor 3, over 1 and 2, tickets, we introduced a modified elastic controllability* model, wherein purchasing extra tickets is also favored upon receiving evidence of low controllability (loss with 3 tickets). This effect was modulated by a free parameter 𝜅 which reflects a tendency to prioritize resolving uncertainty about whether control is at all possible by investing maximum resources.

      This interpretation is supported by our analysis of 3-ticket choice trajectories (Supplementary Figure 2 presented in response to Reviewer 2). As shown in the figure, participants who win less than 50% of their 3-ticket attempts persistently purchase 3 tickets over the first 10 trials, despite frequent failures. This persistence gradually declines as participants accumulate evidence about their limited control, corresponding with an increase in opt-out rates.

      (3) Some additional details about the task design would be helpful. It seems that participants first completed 90 practice trials and were informed of the planet type every 15 trials (6 times during practice). What message is given to the participants about the planets? Did the authors analyze the last 15 trials of each condition in the regression analysis, and all 30 trials in the modeling analysis? How does the computational model (especially the prior beliefs parameters) reset when the planet changes? How do points accumulate over the session and/or are participants motivated to budget the points? Is it possible for participants to accumulate many points and then switch to a heuristic of purchasing 3 tickets on each trial?

      We apologize for not previously clarifying these details of the experimental design.

      During practice blocks, participants received explicit feedback about each planet's controllability characteristics, to help them understand when additional resources would or would not improve their boarding success. For high inelastic controllability planets, the message read: "Your ride actually would stop for you with 1 ticket! So purchasing extra tickets, since they do cost money, is a WASTE." For low controllability planets: "Doesn't seem like the vehicle stops for you nor does purchasing extra tickets help." Lastly, for high elastic controllability planets: "Hopefully by now it's clear that only by purchasing 3 tickets (LOADING AREA) are you consistently successful in catching your ride." We now include these messages in the methods section describing the task (lines 453-458).

      We indeed analyzed the last 15 trials of each condition in the regression analysis, and all 30 trials in the modeling analysis. Whereas the modeling attempted to explain participants’ learning process, the regression focused on explaining the resultant behavior, which in our pilot data (N=19), manifested fairly stably in the last 15 trials (ticket choices SD = 0.33 compared to .63 in the first 15 trials). The former is already stated in the text (lines 409-415), and we now also clarify the latter when discussing the model fitting procedure (line 695): 

      Reinforcement-learning models were fitted to all choices made by participants via an expectation maximization approach used in previous work.

      The computational model was initialized with the same prior parameters for all planets. When a participant moved to a new planet, the model's beliefs were reset to these prior values, capturing how participants would approach each new environment with their characteristic expectations about controllability and elasticity. We now clarify this in the methods (line 628): 

      For each new planet participants encountered, these parameters were used to initialize the beta distributions representing participants’ beliefs

      Points accumulated across all planets throughout the session, with participants explicitly motivated to maximize their total points as this directly determined their monetary bonus payment. To address the Reviewer's question about changes in ticket purchasing behavior, we conducted a mixed probit regression examining whether accumulated points influenced participants’ decisions to purchase extra tickets. We did not find such an effect (𝛽<sub>coins accumulated</sub> \= .01 𝑝 = .87), indicating that participants did not switch to simple heuristic strategies after accumulating enough coins. We now report this analysis in the methods (lines 421-427):

      Points accumulated across all planets throughout the session, with participants explicitly motivated to maximize their total points as this directly determined their monetary bonus payment. To ensure that accumulated gains did not lead participants to adopt a simple heuristic strategy of always purchasing 3 tickets, we conducted a mixed probit regression examining whether the number of accumulated coins influenced participants' decisions to purchase extra tickets. We did not find such an effect (𝛽<sub>coins accumulated</sub> = .01 𝑝 = .87), ruling out the potential strategy shift.

      Following the modeling section, it may be helpful to have a table of the fitted models, the parameters of each model, and the meaning/interpretation of each parameter.

      We thank the Reviewer for this suggestion. We have now added a table (Supplementary Table 3) that summarizes all fitted models, their parameters, and the meaning/interpretation of each parameter.

      (1) The conclusions from regressing the task choices (opt-in rates and ticket purchases) on the fitted parameters seem confusing given that the model parameters were fitted on the task behavior, and the relationship between these variables seems circular. For example, the authors found that preferences for purchasing 2 or 3 tickets (a2 and a3; computational parameters) were associated with purchasing more tickets (task behavior). But wouldn't this type of task behavior be what the parameters are explaining? It's not clear whether these correlation analyses are about how individuals allocate their resources or about the validity check of the parameters. Perhaps analyses on individual deviation from the optimal strategy and parameter associations with such deviation are better suited for the questions about whether individual biases lead to resource misallocation.

      We thank the Reviewer for highlighting this seeming confusion. These regressions were meant to describe the relationship between model parameters and model-independent measures of task performance. This serves three purposes. First, a validity check, confirming that our computational model effectively captured observed individual differences. Second, to help readers understand what each parameter in our model represents in terms of observable behavior. Third, to examine in greater detail how parameter values specifically mapped onto observable behavior. For instance, whether a higher controllability bias maps onto resource misallocation in uncontrollable environments (as we observed) depends on the range of this parameter in our population sample. Had the range been more negative, a higher controllability bias could have instead manifested as optimal allocation in controllable environments. We now better clarify the descriptive purposes of these regressions (lines 214-220, 231-235): 

      To clarify how fitted model parameters related to observable behavior, we regressed participants’ opt-in rates and extra ticket purchases on the parameters (Figure 6A) ... 

      ... In sum, the model parameters captured meaningful individual differences in how participants allocated their resources across environments, with the controllability parameter primarily explaining variance in resource allocation in uncontrollable environments, and the elasticity parameter primarily explaining variance in resource allocation in environments where control was inelastic.  

      Regarding the suggestion to analyze deviation from optimal strategy, this corresponds with our present approach in that opting in is always optimal in high controllability environments and always non-optimal in low controllability environments, and similarly, purchasing extra tickets is always optimal in elastic controllability environments and always non-optimal elsewhere. Thus, positive or negative coefficients can be directly translated into closer or farther from optimal, depending on the planet type, as indicated in the figure by color. We now clarify this mapping in the figure legend:

      (2) Minor: The legend of Figure 6A is difficult to read. It might be helpful to label the colors as their planet types (low controllability, high elastic controllability, high inelastic controllability).

      We thank the Reviewer for this helpful suggestion. We have revised the figure accordingly.

      Reviewer 2 (Recommendations for the authors):

      As noted above, I'm not sure I agree with (or perhaps don't fully understand) the claims the authors make about the distinctions between their "elastic" and "inelastic" experimental conditions. Let's take the travel example from Figure 1 - is this not just an example of “hierarchical” controllability calculations? In other words, in the elastic example, my choice is between going one speed or another (i.e., exerting more or less effort), and in the inelastic example, my choice is first, which route to take (also a consideration of speed, but with lower effort costs than the elastic scenario), and second, an estimate of the time cost (not within my direct control, but could be estimated). In the elastic scenarios, additional value considerations vary between options, and in others (inelastic), they don't, with control over the first choice point (which bus route to choose, or which lunch option to take), but not over the price. I wonder if the paper would be better framed (or emphasized) as exploring the influences of effort and related "costs" of control. There isn't really such a thing as controllability that does not have any costs associated with it (whether that be action costs, effort, money, or simply scenario complexity).

      We thank the Reviewer for highlighting the need to clarify our distinction between elastic and inelastic controllability as it manifests in our examples. We first clarify that elasticity concerns how controllability varies with resources, not costs. Though resource investment and costs are often tightly linked, that is not always the case, especially not when comparing between agents. For example, it may be equally difficult (i.e., costly) for a professional biker to pedal at a high speed as it is for a novice to pedal at a medium speed, simply because the biker’s muscles are better trained. This resource advantage increases the biker’s control over his commute time without incurring additional costs as compared to the novice. We now clarify this distinction in the text by revising our example to (lines 9-11): 

      “For example, the control a biker has over their commute time depends on the power they are willing and able to invest in pedaling. In this respect, a highly trained biker would typically have more control than a novice.”

      Second, whereas in our examples additional value considerations indeed vary in elastic environments, that does not have to be the case, and indeed, that is not the case in our experiment. In our experimental task, participants are given the option to purchase as many tickets as they wish regardless of whether they are in an elastic or an inelastic environment.  

      We agree that elastic environments often raise considerations regarding the cost of control (for instance, whether it is worth it to pedal harder to get to the destination in time). To consider this cost against potential payoffs, however, the agent must first determine what are the potential payoffs – that is, it must determine the degree to which controllability is elastic to invested resources. It is this antecedent inference that our experiment studies. We uniquely study this inference using environments where control may not only be low or high, but also, where high control may or may not require additional resource investments. We now clarify this point in Figure 1’s caption:

      “In all situations, agents must infer the degree to which controllability is elastic to be able to determine whether the potential gains in control outweigh the costs of investing additional resources (e.g., physical exertion, money spent, time invested).”

      For a formal definition of the elasticity of control, see our response to Reviewer 3’s public comments. 

      Relatedly, another issue I have with the distinctions between inelastic/elastic is that a high/elastic condition has inherently ‘more’ controllability than a high/inelastic condition, no matter what. For example, in the lunch option scenario, I always have more control in the elastic situation because I have two opportunities to exert choice (food option ‘and’ cost). Is there really a significant difference, then, between calling these distinctions "elastic/inelastic" vs. "higher/lower controllability?" Not that it's uninteresting to test behavioral differences between these two types of scenarios, just that it seems unnecessary to refer to these as conceptually distinct.

      As noted in the response above, control over costs may be higher in elastic environments, but it does not have to be so, as exemplified by the elastic environments in our experimental task. For a fuller explanation of why higher elasticity does not imply higher controllability, see our response to Reviewer 2’s public comments. 

      I also wonder whether it's actually the case that people purchased more tickets in the high control elastic condition simply because this is the optimal solution to achieve the desired outcome, not due to a preference for elastic control. To test this, you would need to include a condition in which people opted to spend more money/effort to have high elastic control in an instance where it was not beneficial to do so.

      We appreciate the Reviewer's question about potential preferences for elastic control. We first clarify that participants did not choose which environment type they encountered, so if control was low or inelastic, investing extra resources did not give them more control. Furthermore, our results show that the average participant did not prefer a priori to purchase more tickets. This is evidenced by participants’ successful adaptation to inelastic environments wherein they purchased significantly fewer tickets (see Figure 2B and 2C), and by participants’ parameter fits, which reveal an a priori bias to assume that controllability is inelastic (𝜆<sub>elasticity</sub> \= .16 ± .19), as well as a fixed preference against purchasing the full number of tickets (𝛼<sub>3</sub> \= −.74 ± .37). 

      We now clarify these findings by including a table of all parameter fits in the revised manuscript (see response to Reviewer 1). 

      It was interesting that the authors found that failure with 3 tickets made people more likely to continue to try 3 tickets, however, there is another possible interpretation. Could it be that this is simply evidence of a general controllability bias, where people just think that it is expected that you should be able to exert more money/effort/time to gain control, and if this initially fails, it is an unusual outcome, and they should try again? Did you look at this trajectory over time? i.e., whether repeated tries with 3 tickets immediately followed a failure with 3 tickets? Relatedly, does the perseveration parameter from the model also correlate with psychopathology?

      We thank the Reviewer for this suggestion. Our model accounts for a general controllability bias through the 𝜆<sub>controllability</sub> parameter, which represents a prior belief that planets are controllable. It also accounts, through the 𝜆<sub>elasticity</sub> parameter, for the prior belief that you should be able to exert more money/effort/time to gain control. Now, our addition of 𝜅 to the model captures the observation that failures with 3 tickets made participants more likely to purchase 3 tickets when they opted in. If this observation was due to participants not accepting that the planet is not controllable, then we would expect the increase in 3-ticket purchases when opting in to be coupled with a diminished reduction in opting in. To determine whether this was the case, we tested a variant of our model where 𝜅 not only increases the elasticity estimate but also reduces the controllability update (using 𝛽<sub>control</sub>+(1- 𝜅) instead of 𝛽<sub>control</sub>+1) after failures with 3 tickets. However, implementing this coupling diminished the model's fit to the data, as compared to allowing both effects to occur independently, indicating that the increase in 3 ticket purchases upon failing with 3 tickets did not result from participants not accepting that controllability is in fact low. Thus, we maintain our original interpretation that failure with 3 tickets increases uncertainty about whether control is possible at all, leading participants who continue to opt in to invest maximum resources to resolve this uncertainty. We now report these results in the revised text (lines 662-674). 

      The trajectory over time is consistent this interpretation (new Supplementary Figure 2 shown below). Specifically, we see that under low controllability (0-50%, orange line), over the first 10 trials participants show higher persistence with 3 tickets after failing, despite experiencing frequent failures, but also a higher opt-out probability. As these participants accumulate evidence about their limited control, we observe a gradual decrease in 3-ticket selections that corresponds directly with a further increase in opting out (right panel, orange line). This pattern qualitatively corresponds with the behavior of our computational model (empty circles). We present the results of the new analysis in lines 180-190: 

      “In fact, failure with 3 tickets even made participants favor 3, over 1 and 2, tickets. This favoring  of 3 tickets continued until participants accumulated sufficient evidence about their limited control to opt out (Supplementary Figure 2). Presumably, the initial failures with 3 tickets resulted in an increased uncertainty about whether it is at all possible to control one’s destination. Consequently, participants who nevertheless opted in invested maximum resources to resolve this uncertainty before exploring whether control is elastic.”

      Regarding correlations between the perseveration parameter and psychopathology, we have now conducted a comprehensive exploratory analysis of all two-way relationships between parameters and psychopathology scores (new Supplementary Figure 3). Whereas we observed modest negative correlations with social anxiety (LSAS, r=-0.13), cyclothymic temperament (r=0.13), and alcohol use (AUDIT, r=-0.13), none reached statistical significance after FDR correction for multiple comparisons. 

      Regarding the modeling, I also wondered whether a better alternative model than the controllability model would be a simple associative learning model, where a number of tickets are mapped to outcomes, regardless of elasticity.

      We thank the Reviewer for suggesting this alternative model. Following this suggestion, we implemented a simple associative learning model that directly maps each option to its expected value, without a latent representation of elasticity or controllability. Unlike our controllability model which learns the probability of reaching the goal state for each ticket quantity, this associative learning model simply updates option values based on reward prediction errors.

      We found that this simple Q-learning model performed worse than even the controllability model at explaining participant data (log Bayes Factor  ≥1854 on the combined datasets), further supporting our hypothesis that participants are learning latent estimates of control rather than simply associating options with outcomes. We present the results of this analysis in lines 662664:

      We implemented a simple Q-learning model that directly maps ticket quantities to expected values based on reward prediction errors, without representing latent controllability. This associative model performed substantially worse than even our simple controllability model (log Bayes Factor ≥ 1854 on the combined datasets).

      Reviewer 3 (Recommendations for the authors):

      Please make all materials available, including code (analysis and experiment) and data. Please also provide a link to the task or a video of a few trials of the main task.

      We thank the reviewer for this important suggestion. All requested materials are now available at https://github.com/lsolomyak/human_inference_of_elastic_control. This includes all experiment code, analysis code, processed data, and a video showing multiple sample trials of the main task.

      References

      (1)  Huys, Q. J. M., & Dayan, P. (2009). A Bayesian formulation of behavioral control. Cognition, 113(3), 314– 328.

      (2)  Ligneul, R. (2021). Prediction or causation? Towards a redefinition of task controllability. Trends in Cognitive Sciences, 25(6), 431–433.

      (3)  Mistry, P., & Liljeholm, M. (2016). Instrumental divergence and the value of control. Scientific Reports, 6, 36295.

      (4)  Lin, J. (1991). Divergence measures based on the Shannon entropy. IEEE Transactions on Information Theory, 37(1), 145–151

      (5)  Cohen RM, Weingartner H, Smallberg SA, Pickar D, Murphy DL. Effort and cognition in depression. Arch Gen Psychiatry. 1982 May;39(5):593-7. doi: 10.1001/archpsyc.1982.04290050061012. PMID: 7092490.

      (6)  Bi R, Dong W, Zheng Z, Li S, Zhang D. Altered motivation of effortful decision-making for self and others in subthreshold depression. Depress Anxiety. 2022 Aug;39(8-9):633-645. doi: 10.1002/da.23267. Epub 2022 Jun 3. PMID: 35657301; PMCID: PMC9543190.

      (7)  Tapal, A., Oren, E., Dar, R., & Eitam, B. (2017). The Sense of Agency Scale: A measure of consciously perceived control over one's mind, body, and the immediate environment. Frontiers in Psychology, 8, 1552

    1. Author response:

      The following is the authors’ response to the original reviews

      Summary of our revisions

      (1) We have explained the reason why the untrained RNN with readout (value-weight) learning only could not well learn the simple task: it is because we trained the models continuously across trials with random inter-trial intervals rather than separately for each episodic trial and so it was not trivial for the models to recognize that cue presentation in different trials constitutes a same single state since the activities of untrained RNN upon cue presentation should differ from trial to trial (Line 177-185).

      (2) We have shown that dimensionality was higher in the value-RNNs than in the untrained RNN (Fig. 2K,6H).

      (3) We have shown that even when distractor cue was introduced, the value-RNNs could learn the task (Fig. 10).

      (4) We have shown that extended value-RNNs incorporating excitatory and inhibitory units and conforming to the Dale's law could still learn the tasks (Fig. 9,10-right column).

      (5) In the original manuscript, the non-negatively constrained value-RNN showed loose alignment of value-weight and random feedback from the beginning but did not show further alignment over trials. We have clarified its reason and found a way, introducing a slight decay (forgetting), to make further alignment occur (Fig. 8E,F).

      (6) We have shown that the value-RNNs could learn the tasks with longer cue-reward delay (Fig. 2M,6J) or action selection (Fig. 11), and found cases where random feedback performed worse than symmetric feedback.

      (7) We compared our value-RNNs with e-prop (Bellec et al., 2020, Nat Commun). While e-prop incorporates the effects of changes in RNN weights across distant times through "eligibility trace", our value-RNNs do not. The reason why our models can still learn the tasks with cue-reward delay is considered to be because our models use TD error and TD learning itself, even TD(0) without eligibility trace, is a solution for temporal credit assignment. In fact, TD error-based e-prop was also examined, but for that, result with symmetric feedback, but not with random feedback, was shown (their Fig. 4,5) while for another setup of reward-based e-prop without TD error, result with random feedback was shown (their SuppFig. 5). We have noted these in Line 695-711 (and also partly in Line 96-99).

      (8) In the original manuscript, we emphasized only the spatial locality (random rather than symmetric feedback) of our learning rule. But we have now also emphasized the temporal locality (online learning) as it is also crucial for bio-plausibility and critically different from the original value-RNN with BPTT. We also changed the title.

      (9) We have realized that our estimation of true state values was invalid (as detailed in page 34 of this document). Effects of this error on performance comparisons were small, but we apologize for this error.

      Reviewer #1 (Public review):

      Summary:

      Can a plastic RNN serve as a basis function for learning to estimate value. In previous work this was shown to be the case, with a similar architecture to that proposed here. The learning rule in previous work was back-prop with an objective function that was the TD error function (delta) squared. Such a learning rule is non-local as the changes in weights within the RNN, and from inputs to the RNN depends on the weights from the RNN to the output, which estimates value. This is non-local, and in addition, these weights themselves change over learning. The main idea in this paper is to examine if replacing the values of these non-local changing weights, used for credit assignment, with random fixed weights can still produce similar results to those obtained with complete bp. This random feedback approach is motivated by a similar approach used for deep feed-forward neural networks.

      This work shows that this random feedback in credit assignment performs well but is not as well as the precise gradient-based approach. When more constraints due to biological plausibility are imposed performance degrades. These results are not surprising given previous results on random feedback. This work is incomplete because the delay times used were only a few time steps, and it is not clear how well random feedback would operate with longer delays. Additionally, the examples simulated with a single cue and a single reward are overly simplistic and the field should move beyond these exceptionally simple examples.

      Strengths:

      • The authors show that random feedback can approximate well a model trained with detailed credit assignment.

      • The authors simulate several experiments including some with probabilistic reward schedules and show results similar to those obtained with detailed credit assignments as well as in experiments.

      • The paper examines the impact of more biologically realistic learning rules and the results are still quite similar to the detailed back-prop model.

      Weaknesses:

      *please note that we numbered your public review comments and recommendations for the authors as Pub1 and Rec1 etc so that we can refer to them in our replies to other comments.

      Pub1. The authors also show that an untrained RNN does not perform as well as the trained RNN. However, they never explain what they mean by an untrained RNN. It should be clearly explained.

      These results are actually surprising. An untrained RNN with enough units and sufficiently large variance of recurrent weights can have a high-dimensionality and generate a complete or nearly complete basis, though not orthonormal (e.g: Rajan&Abbott 2006). It should be possible to use such a basis to learn this simple classical conditioning paradigm. It would be useful to measure the dimensionality of network dynamics, in both trained and untrained RNN's.

      We have added an explanation of untrained RNN in Line 144-147:

      “As a negative control, we also conducted simulations in which these connections were not updated from initial values, referring to as the case with "untrained (fixed) RNN". Notably, the value weights w (i.e., connection weights from the RNN to the striatal value unit) were still trained in the models with untrained RNN.”

      We have also analyzed the dimensionality of network dynamic by calculating the contribution ratios of each principal component of the trajectory of RNN activities. It was revealed that the contribution ratios of later principal components were smaller in the cases with untrained RNN than in the cases with trained value RNN. We have added these results in Fig. 2K and Line 210-220 (for our original models without non-negative constraint):

      “In order to examine the dimensionality of RNN dynamics, we conducted principal component analysis (PCA) of the time series (for 1000 trials) of RNN activities and calculated the contribution ratios of PCs in the cases of oVRNNbp, oVRNNrf, and untrained RNN with 20 RNN units. Figure 2K shows a log of contribution ratios of 20 PCs in each case. Compared with the case of untrained RNN, in oVRNNbp and oVRNNrf, initial component(s) had smaller contributions (PC1 (t-test p = 0.00018 in oVRNNbp; p = 0.0058 in oVRNNrf) and PC2 (p = 0.080 in oVRNNbp; p = 0.0026 in oVRNNrf)) while later components had larger contributions (PC3~10,15~20 p < 0.041 in oVRNNbp; PC5~20 p < 0.0017 in oVRNNrf) on average, and this is considered to underlie their superior learning performance. We noticed that late components had larger contributions in oVRNNrf than in oVRNNbp, although these two models with 20 RNN units were comparable in terms of cue~reward state values (Fig. 2J-left).”

      and Fig. 6H and Line 412-416 (for our extended models with non-negative constraint):

      “Figure 6H shows contribution ratios of PCs of the time series of RNN activities in each model with 20 RNN units. Compared with the cases with naive/shuffled untrained RNN, in oVRNNbp-rev and oVRNNrf-bio, later components had relatively high contributions (PC5~20 p < 1.4×10,sup>−6</sup> (t-test vs naive) or < 0.014 (vs shuffled) in oVRNNbp-rev; PC6~20 p < 2.0×10<sup>−7</sup> (vs naive) or PC7~20 p < 5.9×10<sup>−14</sup> (vs shuffled) in oVRNNrf-bio), explaining their superior value-learning performance.”

      Regarding the poor performance of the model with untrained RNN, we would like to add a note. It is sure that untrained RNN with sufficient dimensions should be able to well represent just <10 different states, and state values should be able to be well learned through TD learning regardless of whatever representation is used. However, a difficulty (nontriviality) lies in that because we modeled the tasks in a continuous way, rather than in an episodic way, the activity of untrained RNN upon cue presentation should generally differ from trial to trial. Therefore, it was not trivial for RNN to know that cue presentation in different trials, even after random lengths of inter-trial interval, should constitute a same single state. We have added this note in Line 177-185:

      “This inferiority of untrained RNN may sound odd because there were only four states from cue to reward while random RNN with enough units is expected to be able to represent many different states (c.f., [49]) and the effectiveness of training of only the readout weights has been shown in reservoir computing studies [50-53]. However, there was a difficulty stemming from the continuous training across trials (rather than episodic training of separate trials): the activity of untrained RNN upon cue presentation generally differed from trial to trial, and so it is non-trivial that cue presentation in different trials should be regarded as the same single state, even if it could eventually be dealt with at the readout level if the number of units increases.”

      The original value RNN study (Hennig et al., 2023, PLoS Comput Biol) also modeled tasks in a continuous way (though using backprop-through-time (BPTT) for training) and their model with untrained RNN also showed considerably larger RPE error than the value RNN even when the number of RNN units was 100 (the maximum number plotted in their Fig. 6A).

      Pub2. The impact of the article is limited by using a network with discrete time-steps, and only a small number of time steps from stimulus to reward. What is the length of each time step? If it's on the order of the membrane time constant, then a few time steps are only tens of ms. In the classical conditioning experiments typical delays are of the order to hundreds of milliseconds to seconds. Authors should test if random feedback weights work as well for larger time spans. This can be done by simply using a much larger number of time steps.

      In the revised manuscript, we examined the cases in which the cue-reward delay (originally 3 time steps) was elongated to 4, 5, or 6 time-steps. Our online value RNN models with random feedback could still achieve better performance (smaller squared value error) than the models with untrained RNN, although the performance degraded as the cue-reward delay increased. We have added these results in Fig. 2M and Line 223-228 (for our original models without non-negative constraint)

      “We further examined the cases with longer cue-reward delays. As shown in Fig. 2M, as the delay increased, the mean squared error of state values (at 3000-th trial) increased, but the relative superiority of oVRNNbp and oVRNNrf over the model with untrained RNN remained to hold, except for cases with small number of RNN units (5) and long delay (5 or 6) (p < 0.0025 in Wilcoxon rank sum test for oVRNNbp or oVRNNrf vs untrained for each number of RNN units for each delay).”

      and Fig. 6J and Line 422-429 (for our extended models with non-negative constraint):

      “Figure 6J shows the cases with longer cue-reward delays, with default or halved learning rates. As the delay increased, the mean squared error of state values (at 3000-th trial) increased, but the relative superiority of oVRNNbp-rev and oVRNNrf-bio over the models with untrained RNN remained to hold, except for a few cases with 5 RNN units (5 delay oVRNNrf-bio vs shuffled with default learning rate, 6 delay oVRNNrf-bio vs naive or shuffled with halved learning rate) (p < 0.047 in Wilcoxon rank sum test for oVRNNbp-rev or oVRNNrf-bio vs naive or shuffled untrained for each number of RNN units for each delay).”

      Also, we have added the note about our assumption and consideration on the time-step that we described in our provisional reply in Line 136-142:

      “We assumed that a single RNN unit corresponds to a small population of neurons that intrinsically share inputs and outputs, for genetic or developmental reasons, and the activity of each unit represents the (relative) firing rate of the population. Cortical population activity is suggested to be sustained not only by fast synaptic transmission and spiking but also, even predominantly, by slower synaptic neurochemical dynamics [46] such as short-term facilitation, whose time constant can be around 500 milliseconds [47]. Therefore, we assumed that single time-step of our rate-based (rather than spike-based) model corresponds to 500 milliseconds.”

      Pub3. In the section with more biologically constrained learning rules, while the output weights are restricted to only be positive (as well as the random feedback weights), the recurrent weights and weights from input to RNN are still bi-polar and can change signs during learning. Why is the constraint imposed only on the output weights? It seems reasonable that the whole setup will fail if the recurrent weights were only positive as in such a case most neurons will have very similar dynamics, and the network dimensionality would be very low. However, it is possible that only negative weights might work. It is unclear to me how to justify that bipolar weights that change sign are appropriate for the recurrent connections and inappropriate for the output connections. On the other hand, an RNN with excitatory and inhibitory neurons in which weight signs do not change could possibly work.

      We examined extended models that incorporated inhibitory and excitatory units and followed Dale's law with certain assumptions, and found that these models could still learn the tasks. We have added these results in Fig. 9 and subsection “4.1 Models with excitatory and inhibitory units” and described the details of the extended models in Line 844-862:

      Pub4. Like most papers in the field this work assumes a world composed of a single cue. In the real world there many more cues than rewards, some cues are not associated with any rewards, and some are associated with other rewards or even punishments. In the simplest case, it would be useful to show that this network could actually work if there are additional distractor cues that appear at random either before the CS, or between the CS and US. There are good reasons to believe such distractor cues will be fatal for an untrained RNN, but might work with a trained RNN, either using BPPT or random feedback. Although this assumption is a common flaw in most work in the field, we should no longer ignore these slightly more realistic scenarios.

      We examined the performance of the models in a task in which distractor cue randomly appeared. As a result, our model with random feedback, as well as the model with backprop, could still learn the state values much better than the models with untrained RNN. We have added these results in Fig. 10 and subsection “4.2 Task with distractor cue”

      Reviewer #1 (Recommendations for the authors):

      Detailed comments to authors

      Rec1. Are the untrained RNNs discussed in methods? It seems quite good in estimating value but has a strong dopamine response at time of reward. Is nothing trained in the untrained RNN or are the W values trained. Untrained RNN are not bad at estimating value, but not as good as the two other options. It would seem reasonable that an untrained RNN (if I understand what it is) will be sufficient for such simple Pavlovian conditioning paradigms. This is provided that the RNN generates a complete, or nearly complete basis. Random RNN's provided that the random weights are chosen properly can indeed generate a nearly complete basis. Once there is a nearly complete temporal basis, it seems that a powerful enough learning rule will be able to learn the very simple Pavlovian conditioning. Since there are only 3 time-steps from cue to reward, an RNN dimensionality of 3 would be sufficient. A failure to get a good approximation can also arise from the failure of the learning algorithm for the output weights (W).

      As we mentioned in our reply to your public comment Pub1 (page 3-5), we have added an explanation of "untrained RNN" (in which the value weights were still learnt) (Line 144-147). We also analyzed the dimensionality of network dynamics by calculating the contribution ratios of principal components of the trajectory of RNN activities, showing that the contribution ratios of later principal components were smaller in the cases with untrained RNN than in the cases with trained value RNN (Fig. 2K/Line 210-220, Fig.6H/Line 412-416). Moreover, also as we mentioned in our reply to your public comment Pub1, we have added a note that even learning of a small number of states was not trivially easy because we considered continuous learning across trials rather than episodic learning of separate trials and thus it was not trivial for the model to know that cue presentation in different trials after random lengths of inter-trial interval should still be regarded as a same single state (Line 177-185).

      Rec2. For all cases, it will be useful to estimate the dimensionality of the RNN. Is the dimensionality of the untrained RNN smaller than in the trained cases? If this is the case, this might depend on the choice of the initial random (I assume) recurrent connectivity matrix.

      As mentioned above, we have analyzed the dimensionality of the network dynamics, and as you said, the dimensionality of the model with untrained RNN (which was indeed the initial random matrix as you said, as we mentioned above) was on average smaller than the trained value RNN models (Fig. 2K/Line 210-220, Fig.6H/Line 412-416).

      Rec3. It is surprising that the error starts increasing for more RNN units above ~15. See discussion. This might indicate a failure to adjust the learning parameters of the network rather than a true and interesting finding.

      Thank you very much for this insightful comment. In the original manuscript, we set the learning rate to a fixed value (0.1), without normalization by the squared norm of feature vector (as we mentioned in Line 656-7 of the original manuscript) because we thought such a normalization could not be locally (biologically) implemented. However, we have realized that the lack of normalization resulted in excessively large learning rate when the number of RNN units was large and it could cause instability and error increase as you suggested. Therefore, in the revised manuscript, we have implemented a normalization of learning rate (of value weights) that does not require non-local computations, specifically, division by the number of RNN units. As a result, the error now monotonically decreased, as the number of RNN units increased, in the non-negatively constrained models (Fig. 6E-left) and also largely in the unconstrained model with random feedback, although still not in the unconstrained model with backprop or untrained RNN (Fig. 2J-left)

      Rec4. Not numbering equations is a problem. For example, the explanations of feedback alignment (lines 194-206) rely on equations in the methods section which are not numbered. This makes it hard to read these explanations. Indeed, it will also be better to include a detailed derivation of the explanation in these lines in a mathematical appendix. Key equations should be numbered.

      We have added numbers to key equations in the Methods, and references to the numbers of corresponding equations in the main text. Detailed derivations are included in the Methods.

      Rec5. What is shown in Figure 3C? - an equation will help.

      We have added an explanation using equations in the main text (Line 256-259).

      Rec6. The explanation of why alignment occurs is not satisfactory, but neither is it in previous work on feedforward networks. The least that should be done though

      Regarding why alignment occurs, what remained mysterious (to us) was that in the case of nonnegatively constrained model, while the angle between value weight vector (w) and the random feedback vector (c) was relatively close (loosely aligned) from the beginning, it appeared (as mentioned in the manuscript) that there was no further alignment over trials, despite that the same mechanism for feedback alignment that we derived for the model without non-negative constraint was expected to operate also under the non-negative constraint. We have now clarified the reason for this, and found a way, introduction of slight decay (forgetting) of value weights, by which feedback alignment came to occur in the non-negatively constraint model. We have added these in the revised manuscript (Line 463-477):

      “As mentioned above, while the angle between w and c was on average smaller than 90° from the beginning, there was no further alignment over trials. This seemed mysterious because the mechanism for feedback alignment that we derived for the models without non-negative constraint was expected to work also for the models with non-negative constraint. As a possible reason for the non-occurrence of feedback alignment, we guessed that one or a few element(s) of w grew prominently during learning, and so w became close to an edge or boundary of the non-negative quadrant and thereby angle between w and other vector became generally large (as illustrated in Fig. 8D). Figure 8Ea shows the mean±SEM of the elements of w ordered from the largest to smallest ones after 1500 trials. As conjectured above, a few elements indeed grew prominently.

      We considered that if a slight decay (forgetting) of value weights (c.f., [59-61]) was assumed, such a prominent growth of a few elements of w may be mitigated and alignment of w to c, beyond the initial loose alignment because of the non-negative constraint, may occur. These conjectures were indeed confirmed by simulations (Fig. 8Eb,c and Fig. 8F). The mean squared value error slightly increased when the value-weightdecay was assumed (Fig. 8G), however, presumably reflecting a decrease in developed values and a deterioration of learning because of the decay.”

      Rec7. I don't understand the qualitative difference between 4G and 4H. The difference seems to be smaller but there is still an apparent difference. Can this be quantified?

      We have added pointers indicating which were compared and statistical significance on Fig. 4D-H, and also Fig. 7 and Fig. 9C.

      Rec8. More biologically realistic constraints.

      Are the weights allowed to become negative? - No.

      Figure 6C - untrained RNN with non-negative x_i. Again - it was not explained what untrained RNN is. However, given my previous assumption, this is probably because the units developed in an untrained RNN is much further from representing a complete basis function. This cannot be done with only positive values. It would be useful to see network dynamics of units for untrained RNN. It might also be useful in all cases to estimate the dimensionality of the RNN. For 3 time-steps, it needs to be at least 3, and for more time steps as in Figure 4, larger.

      As we mentioned in our reply to your public comment Pub3 (page 6-8), in the revised manuscript we examined models that incorporated inhibitory and excitatory units and followed Dale's law, which could still learn the tasks (Fig. 9, Line 479-520). We have also analyzed the dimensionality of network dynamics as we mentioned in our replies to your public comment Pub1 and recommendations Rec1 and Rec2.

      Rec9. A new type of untrained RNN is introduced (Fig 6D) this is the first time an explanation of of the untrained RNN is given. Indeed, the dimensionality of the second type of untrained RNN should be similar to the bioVRNNrf. The results are still not good.

      In the model with the new type of untrained RNN whose elements were shuffled from trained bioVRNNrf, contribution ratios of later principal components of the trajectory of RNN activities (Fig. 6H gray dotted line) were indeed larger than those in the model with native untrained RNN (gray solid line) but still much smaller than those in the trained value RNN models with backprop (red line) or random feedback (blue line). It is considered that in value RNN, RNN connections were trained to realize high-dimensional trajectory, and shuffling did not generally preserve such an ability.

      Rec10. The discussion is too long and verbose. This is not a review paper.

      We have made the original discussion much more compact (from 1686 words to 940 words). We have added new discussion, in response to the review comments, but the total length remains to be shorter than before (1589 words).

      Reviewer #2 (Public review):

      Summary:

      Tsurumi et al. show that recurrent neural networks can learn state and value representations in simple reinforcement learning tasks when trained with random feedback weights. The traditional method of learning for recurrent network in such tasks (backpropagation through time) requires feedback weights which are a transposed copy of the feed-forward weights, a biologically implausible assumption. This manuscript builds on previous work regarding "random feedback alignment" and "value-RNNs", and extends them to a reinforcement learning context. The authors also demonstrate that certain nonnegative constraints can enforce a "loose alignment" of feedback weights. The author's results suggest that random feedback may be a powerful tool of learning in biological networks, even in reinforcement learning tasks.

      Strengths:

      The authors describe well the issues regarding biologically plausible learning in recurrent networks and in reinforcement learning tasks. They take care to propose networks which might be implemented in biological systems and compare their proposed learning rules to those already existing in literature. Further, they use small networks on relatively simple tasks, which allows for easier intuition into the learning dynamics.

      Weaknesses:

      The principles discovered by the authors in these smaller networks are not applied to deeper networks or more complicated tasks, so it remains unclear to what degree these methods can scale up, or can be used more generally.

      We have examined extended models that incorporated inhibitory and excitatory units and followed Dale's law with certain assumptions, and found that these models could still learn the tasks. We have added these results in Fig. 9 and subsection “4.1 Models with excitatory and inhibitory units”.

      We have also examined the performance of the models in a task in which distractor cue randomly appeared, finding that our models could still learn the state values much better than the models with untrained RNN. We have added these result in Fig. 10 and subsection “4.2 Task with distractor cue”.

      Regarding the depth, we continue to think about it but have not yet come up with concrete ideas.

      Reviewer #2 (Recommendations for the authors):

      (1) I think the work would greatly benefit from more proofreading. There are language errors/oddities throughout the paper, I will list just a few examples from the introduction:

      Thank you for pointing this out. We have made revisions throughout the paper.

      line 63: "simultaneously learnt in the downstream of RNN". Simultaneously learnt in networks downstream of the RNN? Simulatenously learn in a downstream RNN? The meaning is not clear in the original sentence.

      We have revised it to "simultaneously learnt in connections downstream of the RNN" (Line 67-68).

      starting in line 65: " A major problem, among others.... value-encoding unit" is a run-on sentence and would more readable if split into multiple sentences.

      We have extensively revised this part, which now consists of short sentences (Line 70-75).

      line 77: "in supervised learning of feed-forward network" should be either "in supervised learning of a feed-forward network" or "in supervised learning of feed-forward networks".

      We have changed "feed-forward network" to "feed-forward networks" (Line 83).

      (2) Under what conditions can you use an online learning rule which only considers the influence of the previous timestep? It's not clear to me how your networks solve the temporal credit assignment problem when the cue-reward delay in your tasks is 3-5ish time steps. How far can you stretch this delay before your networks stop learning correctly because of this one-step assumption? Further, how much does feedback alignment constrain your ability to learn long timescales, such as in Murray, J.M. (2019)?

      The reason why our models can solve the temporal credit assignment problem at least to a certain extent is considered to be because temporal-difference (TD) learning, which we adopted, itself has a power to resolve temporal credit assignment, as exemplified in that TD(0) algorithms without eligibility trance can still learn the value of distant rewards. We have added a discussion on this in Line 702-705:

      “…our models do not have "eligibility trace" (nor memorable/gated unit, different from the original value-RNN [26]), but could still solve temporal credit assignment to a certain extent because TD learning is by itself a solution for it (notably, recent work showed that combination of TD(0) and model-based RL well explained rat's choice and DA patterns [132]).”

      We have also examined the cases in which the cue-reward delay (originally 3 time steps) was elongated to 4, 5, or 6 time-steps, and our models with random feedback could still achieve better performance than the models with untrained RNN although the performance degraded as the cue-reward delay increased. We have added these results in Fig. 2M and Line 223-228 (for our original models without non-negative constraint)

      “We further examined the cases with longer cue-reward delays. As shown in Fig. 2M, as the delay increased, the mean squared error of state values (at 3000-th trial) increased, but the relative superiority of oVRNNbp and oVRNNrf over the model with untrained RNN remained to hold, except for cases with small number of RNN units (5) and long delay (5 or 6) (p < 0.0025 in Wilcoxon rank sum test for oVRNNbp or oVRNNrf vs untrained for each number of RNN units for each delay).”

      and Fig. 6J and Line 422-429 (for our extended models with non-negative constraint):

      “Figure 6J shows the cases with longer cue-reward delays, with default or halved learning rates. As the delay increased, the mean squared error of state values (at 3000-th trial) increased, but the relative superiority of oVRNNbp-rev and oVRNNrf-bio over the models with untrained RNN remained to hold, except for a few cases with 5 RNN units (5 delay oVRNNrf-bio vs shuffled with default learning rate, 6 delay oVRNNrf-bio vs naive or shuffled with halved learning rate) (p < 0.047 in Wilcoxon rank sum test for oVRNNbp-rev or oVRNNrf-bio vs naive or shuffled untrained for each number of RNN units for each delay).”

      As for the difficulty due to random feedback compared to backprop, there appeared to be little difference in the models without non-negative constraint (Fig. 2M), whereas in the models with nonnegative constraint, when the cue-reward delay was elongated to 6 time-steps, the model with random feedback performed worse than the model with backprop (Fig. 6J bottom-left panel).

      (3) Line 150: Were the RNN methods trained with continuation between trials?

      Yes, we have added

      “The oVRNN models, and the model with untrained RNN, were continuously trained across trials in each task, because we considered that it was ecologically more plausible than episodic training of separate trials.” in Line 147-150. This is considered to make learning of even the simple cue-reward association task nontrivial, as we describe in our reply to your comment 9 below.

      (4) Figure 2I, J: indicate the statistical significance of the difference between the three methods for each of these measures.

      We have added statistical information for Fig. 2J (Line 198-203):

      “As shown in the left panel of Fig. 2J, on average across simulations, oVRNNbp and oVRNNrf exhibited largely comparable performance and always outperformed the untrained RNN (p < 0.00022 in Wilcoxon rank sum test for oVRNNbp or oVRNNrf vs untrained for each number of RNN units), although oVRNNbp somewhat outperformed or underperformed oVRNNrf when the number of RNN units was small (≤10 (p < 0.049)) or large (≥25 (p < 0.045)), respectively.”

      and also Fig. 6E (for non-negative models) (Line 385-390):

      “As shown in the left panel of Fig. 6E, oVRNNbp-rev and oVRNNrf-bio exhibited largely comparable performance and always outperformed the models with untrained RNN (p < 2.5×10<sup>−12</sup> in Wilcoxon rank sum test for oVRNNbp-rev or oVRNNrf-bio vs naive or shuffled untrained for each number of RNN units), although oVRNNbp-rev somewhat outperformed or underperformed oVRNNrf-bio when the number of RNN units was small (≤10 (p < 0.00029)) or large (≥25 (p < 3.7×10<sup>−6</sup>)), respectively…”

      Fig. 2I shows distributions, whose means are plotted in Fig. 2J, and we did not add statistics to Fig. 2I itself.

      (5) Line 178: Has learning reached a steady state after 1000 trials for each of these networks? Can you show a plot of error vs. trial number?

      We have added a plot of error vs trial number for original models (Fig. 2L, Line 221-223):

      “We examined how learning proceeded across trials in the models with 20 RNN units. As shown in Fig. 2L, learning became largely converged by 1000-th trial, although slight improvement continued afterward.”

      and non-negatively constrained models (Fig. 6I, Line 417-422):

      “Figure 6I shows how learning proceeded across trials in the models with 20 RNN units. While oVRNNbp-rev and oVRNNrf-bio eventually reached a comparable level of errors, oVRNNrf-bio outperformed oVRNNbp-rev in early trials (at 200, 300, 400, or 500 trials; p < 0.049 in Wilcoxon rank sum test for each). This is presumably because the value weights did not develop well in early trials and so the backprop-type feedback, which was the same as the value weights, did not work well, while the non-negative fixed random feedback worked finely from the beginning.”

      As shown in these figures, learning became largely steady at 1000 trials, but still slightly continued, and we have added simulations with 3000 trials (Fig. 2M and Fig. 6J).

      (6) Line 191: Put these regression values in the figure caption, as well as on the plot in Figure 3B.

      We have added the regression values in Fig. 3B and its caption.

      (7) Line 199: This idea of being in the same quadrant is interesting, but I think the term "relatively close angle" is too vague. Is there another more quantatative way to describe this what you mean by this?

      We have revised this (Line 252-254) to “a vector that is in a relatively close angle with c , or more specifically, is in the same quadrant as (and thus within at maximum 90° from) c (for example, [c<sub>1</sub>  c<sub>2</sub>  c<sub>3</sub>]<sup>T</sup> and [0.5c<sub>1</sub> 1.2c<sub>2</sub> 0.8c<sub>3</sub>]T) “

      (8) Line 275: I'd like to see this measure directly in a plot, along with the statistical significance.

      We have added pointers indicating which were compared and statistical significance on Fig. 4D-H, and also Fig. 7 and Fig. 9C.

      (9) Line 280: Surely the untrained RNN should be able to solve the task if the reservoir is big enough, no? Maybe much bigger than 50 units, but still.

      We think this is not sure. A difficulty lies in that because we modeled the tasks in a continuous way rather than in an episodic way (as we mentioned in our reply to your comment 3), the activity of untrained RNN upon cue presentation should generally differ from trial to trial. Therefore, it was not trivial for RNN to know that cue presentation in different trials, even after random lengths of inter-trial interval, should constitute a same single state. We have added this note in Line 177-185:

      “This inferiority of untrained RNN may sound odd because there were only four states from cue to reward while random RNN with enough units is expected to be able to represent many different states (c.f., [49]) and the effectiveness of training of only the readout weights has been shown in reservoir computing studies [50-53]. However, there was a difficulty stemming from the continuous training across trials (rather than episodic training of separate trials): the activity of untrained RNN upon cue presentation generally differed from trial to trial, and so it is non-trivial that cue presentation in different trials should be regarded as the same single state, even if it could eventually be dealt with at the readout level if the number of units increases.”

      The original value RNN study (Hennig et al., 2023, PLoS Comput Biol) also modeled tasks in a continuous way (though using BPTT for training) and their model with untrained RNN also showed considerably larger RPE error than the value RNN even when the number of RNN units was 100 (the maximum number plotted in their Fig. 6A).

      (10) It's a bit confusing to compare Figure 4C to Figure 4D-H because there are also many features of D-H which do not match those of C (response to cue, response to late reward in task 1). It would make sense to address this in some way. Is there another way to calculate the true values of the states (e.g., maybe you only start from the time of the cue) which better approximates what the networks are doing?

      As we mentioned in our replies to your comments 3 and 9, our models with RNN were trained continuously across trials rather than separately for each episodic trial, and whether the models could still learn the state representation is a key issue. Therefore, starting learning from the time of cue would not be an appropriate way to compare the models, and instead we have made statistical comparison regarding key features, specifically, TD-RPEs at early and late rewards, as indicated in Fig. 4D-H.

      (11) Line 309: Can you explain why this non-monotic feature exists? Why do you believe it would be more biologically plausible to assume monotonic dependence? It doesn't seem so straightforward to me, I can imagine that competing LTP/LTD mechanisms may produce plasticity which would have a non-monotic dependence on post-synaptic activity.

      Thank you for this insightful comment. As you suggested, non-monotonic dependence on the postsynaptic activity (BCM rule) has been proposed for unsupervised learning (cortical self-organization) (Bienenstock et al., 1982 J Neurosci), and there were suggestions that triplet-based STDP could be reduced to a BCM-like rule and additional components (Gjorgjieva et al., 2011 PNAS; Shouval, 2011 PNAS). However, the non-monotonicity appeared in our model, derived from the backprop rule, is maximized at the middle and thus opposite from the BCM rule, which is minimized at the middle (i.e., initially decrease and thereafter increase). Therefore we consider that such an increase-then-decreasetype non-monotonicity would be less plausible than a monotonic increase, which could approximate an extreme case (with a minimum dip) of the BCM rule. We have added a note on this point in Line 355-358:

      “…the dependence on the post-synaptic activity was non-monotonic, maximized at the middle of the range of activity. It would be more biologically plausible to assume a monotonic increase (while an opposite shape of nonmonotonicity, once decrease and thereafter increase, called the BCM (Bienenstock-Cooper-Munro) rule has actually been suggested [56-58]).”

      (12) Line 363: This is the most exciting part of the paper (for me). I want to learn way more about this! Don't hide this in a few sentences. I want to know all about loose vs. feedback alignment. Show visualizations in 3D space of the idea of loose alignment (starting in the same quadrant), and compare it to how feedback alignment develops (ending in the same quadrant). Does this "loose" alignment idea give us an idea why the random feedback seems to settle at 45 degree angle? it just needs to get the signs right (same quadrant) for each element?

      In reply to this encouraging comment, we have made further analyses of the loose alignment. By the term "loose alignment", we meant that the value weight vector w and the feedback vector c are in the same (non-negative) quadrant, as you said. But what remained mysterious (to us) was while the angle between w and c was relatively close (loosely aligned) from the beginning, it appeared (as mentioned in the manuscript) that there was no further alignment over trials (and the angle actually settled at somewhat larger than 45°), despite that the same mechanism for feedback alignment that we derived for the model without non-negative constraint was expected to operate also under the nonnegative constraint. We have now clarified the reason for this, and found a way, introduction of slight decay (forgetting) of value weights, by which feedback alignment came to occur in the non-negatively constraint model. We have added this in Line 463-477:

      “As mentioned above, while the angle between w and c was on average smaller than 90° from the beginning, there was no further alignment over trials. This seemed mysterious because the mechanism for feedback alignment that we derived for the models without non-negative constraint was expected to work also for the models with non-negative constraint. As a possible reason for the non-occurrence of feedback alignment, we guessed that one or a few element(s) of w grew prominently during learning, and so w became close to an edge or boundary of the non-negative quadrant and thereby angle between w and other vector became generally large (as illustrated in Fig. 8D). Figure 8Ea shows the mean±SEM of the elements of w ordered from the largest to smallest ones after 1500 trials. As conjectured above, a few elements indeed grew prominently.

      We considered that if a slight decay (forgetting) of value weights (c.f., [59-61]) was assumed, such a prominent growth of a few elements of w may be mitigated and alignment of w to c, beyond the initial loose alignment because of the non-negative constraint, may occur. These conjectures were indeed confirmed by simulations (Fig. 8Eb,c and Fig. 8F). The mean squared value error slightly increased when the value-weightdecay was assumed (Fig. 8G), however, presumably reflecting a decrease in developed values and a deterioration of learning because of the decay.”

      As for visualization, because the model's dimension was high such as 12, we could not come up with better ways of visualization than the trial versus angle plot (Fig. 3A, 8A,F). Nevertheless, we would expect that the abovementioned additional analyses of loose alignment (with graphs) are useful to understand what are going on.

      (13) Line 426: how does this compare to some of the reward modulated hebbian rules proposed in other RNNs? See Hoerzer, G. M., Legenstein, R., & Maass, W. (2014). Put another way, you arrived at this from a top-down approach (gradient descent->BP->approximated by RF->non-negativity constraint>leads to DA dependent modulation of Hebbian plasticity). How might this compare to a bottom up approach (i.e. starting from the principle of Hebbian learning, and adding in reward modulation)

      The study of Hoerzer et al. 2014 used a stochastic perturbation, which we did not assume but can potentially be integrated. On the other hand, Hoerzer et al. trained the readout of untrained RNN, whereas we trained both RNN and its readout. We have added discussion to compare our model with Hoerzer et al. and other works that also used perturbation methods, as well as other top-down approximation method, in Line 685-711 (reference 128 is Hoerzer et al. 2014 Cereb Cortex):

      “As an alternative to backprop in hierarchical network, aside from feedback alignment [36], Associative Reward-Penalty (A<sub>R-P</sub>) algorithm has been proposed [124-126]. In A<sub>R-P</sub>, the hidden units behave stochastically, allowing the gradient to be estimated via stochastic sampling. Recent work [127] has proposed Phaseless Alignment Learning (PAL), in which high-frequency noise-induced learning of feedback projections proceeds simultaneously with learning of forward projections using the feedback in a lower frequency. Noise-induced learning of the weights on readout neurons from untrained RNN by reward-modulated Hebbian plasticity has also been demonstrated [128]. Such noise- or perturbation-based [40] mechanisms are biologically plausible because neurons and neural networks can exhibit noisy or chaotic behavior [129-131], and might improve the performance of value-RNN if implemented.

      Regarding learning of RNN, "e-prop" [35] was proposed as a locally learnable online approximation of BPTT [27], which was used in the original value RNN 26. In e-prop, neuron-specific learning signal is combined with weight-specific locally-updatable "eligibility trace". Reward-based e-prop was also shown to work [35], both in a setup not introducing TD-RPE with symmetric or random feedback (their Supplementary Figure 5) and in another setup introducing TD-RPE with symmetric feedback (their Figure 4 and 5). Compared to these, our models differ in multiple ways.

      First, we have shown that alignment to random feedback occurs in the models driven by TD-RPE. Second, our models do not have "eligibility trace" (nor memorable/gated unit, different from the original valueRNN [26]), but could still solve temporal credit assignment to a certain extent because TD learning is by itself a solution for it (notably, recent work showed that combination of TD(0) and model-based RL well explained rat's choice and DA patterns [132]). However, as mentioned before, single time-step in our models was assumed to correspond to hundreds of milliseconds, incorporating slow synaptic dynamics, whereas e-prop is an algorithm for spiking neuron models with a much finer time scale. From this aspect, our models could be seen as a coarsetime-scale approximation of e-prop. On top of these, our results point to a potential computational benefit of biological non-negative constraint, which could effectively limit the parameter space and promote learning.”

      Related to your latter point (and also replying to other reviewer's comment), we also examined the cases where the random feedback in our model was replaced with uniform feedback, which corresponds to a simple bottom-up reward-modulated triplet plasticity rule. As a result, the model with uniform feedback showed largely comparable, but somewhat worse, performance than the model with random feedback. We have added the results in Fig. 2J-right and Line 206-209 (for our original models without non-negative constraint):

      “The green line in Fig. 2J-right shows the performance of a special case where the random feedback in oVRNNrf was fixed to the direction of (1, 1, ..., 1)<sup>T</sup> (i.e., uniform feedback) with a random coefficient, which was largely comparable to, but somewhat worse than, that for the general oVRNNrf (blue line).”

      and Fig. 6E-right and Line 402-407 (for our extended models with non-negative constraint):

      “The green and light blue lines in the right panels of Figure 6E and Figure 6F show the results for special cases where the random feedback in oVRNNrf-bio was fixed to the direction of (1, 1, ..., 1) <sup>T</sup> (i.e., uniform feedback) with a random non-negative magnitude (green line) or a fixed magnitude of 0.5 (light blue line). The performance of these special cases, especially the former (with random magnitude) was somewhat worse than that of oVRNNrf-bio, but still better than that of the models with untrained RNN. and also added a biological implication of the results in Line 644-652:

      We have shown that oVRNNrf and oVRNNrf-bio could work even when the random feedback was uniform, i.e., fixed to the direction of (1, 1, ..., 1) <sup>T</sup>, although the performance was somewhat worse. This is reasonable because uniform feedback can still encode scalar TD-RPE that drives our models, in contrast to a previous study [45], which considered DA's encoding of vector error and thus regarded uniform feedback as a negative control. If oVRNNrf/oVRNNrf-bio-like mechanism indeed operates in the brain and the feedback is near uniform, alignment of the value weights w to near (1, 1, ..., 1) is expected to occur. This means that states are (learned to be) represented in such a way that simple summation of cortical neuronal activity approximates value, thereby potentially explaining why value is often correlated with regional activation (fMRI BOLD signal) of cortical regions [113].”

      Reviewer #3 (Public review):

      Summary:

      The paper studies learning rules in a simple sigmoidal recurrent neural network setting. The recurrent network has a single layer of 10 to 40 units. It is first confirmed that feedback alignment (FA) can learn a value function in this setting. Then so-called bio-plausible constraints are added: (1) when value weights (readout) is non-negative, (2) when the activity is non-negative (normal sigmoid rather than downscaled between -0.5 and 0.5), (3) when the feedback weights are non-negative, (4) when the learning rule is revised to be monotic: the weights are not downregulated. In the simple task considered all four biological features do not appear to impair totally the learning.

      Strengths:

      (1) The learning rules are implemented in a low-level fashion of the form: (pre-synaptic-activity) x (post-synaptic-activity) x feedback x RPE. Which is therefore interpretable in terms of measurable quantities in the wet-lab.

      (2) I find that non-negative FA (FA with non negative c and w) is the most valuable theoretical insight of this paper: I understand why the alignment between w and c is automatically better at initialization.

      (3) The task choice is relevant since it connects with experimental settings of reward conditioning with possible plasticity measurements.

      Weaknesses:

      (4) The task is rather easy, so it's not clear that it really captures the computational gap that exists with FA (gradient-like learning) and simpler learning rule like a delta rule: RPE x (pre-synpatic) x (postsynaptic). To control if the task is not too trivial, I suggest adding a control where the vector c is constant c_i=1.

      We have examined the cases where the feedback was uniform, i.e., in the direction of (1, 1, ..., 1) in both models without and with non-negative constraint. In both models, the models with uniform feedback performed somewhat worse than the original models with random feedback, but still better than the models with untrained RNN. We have added the results in Fig. 2J-right and Line 206-209 (for our original models without non-negative constraint):

      “The green line in Fig. 2J-right shows the performance of a special case where the random feedback in oVRNNrf was fixed to the direction of (1, 1, ..., 1) <sup>T</sup> (i.e., uniform feedback) with a random coefficient, which was largely comparable to, but somewhat worse than, that for the general oVRNNrf (blue line).”

      and Fig. 6E-right and Line 402-407 (for our extended models with non-negative constraint):

      “The green and light blue lines in the right panels of Figure 6E and Figure 6F show the results for special cases where the random feedback in oVRNNrf-bio was fixed to the direction of (1, 1, ..., 1) <sup>T</sup> (i.e., uniform feedback) with a random non-negative magnitude (green line) or a fixed magnitude of 0.5 (light blue line). The performance of these special cases, especially the former (with random magnitude) was somewhat worse than that of oVRNNrf-bio, but still better than that of the models with untrained RNN.”

      We have also added a discussion on the biological implication of the model with uniform feedback mentioned in our provisional reply in Line 644-652:

      “We have shown that oVRNNrf and oVRNNrf-bio could work even when the random feedback was uniform, i.e., fixed to the direction of (1, 1, ..., 1) <sup>T</sup>, although the performance was somewhat worse. This is reasonable because uniform feedback can still encode scalar TD-RPE that drives our models, in contrast to a previous study [45], which considered DA's encoding of vector error and thus regarded uniform feedback as a negative control. If oVRNNrf/oVRNNrf-bio-like mechanism indeed operates in the brain and the feedback is near uniform, alignment of the value weights w to near (1, 1, ..., 1) is expected to occur. This means that states are (learned to be) represented in such a way that simple summation of cortical neuronal activity approximates value, thereby potentially explaining why value is often correlated with regional activation (fMRI BOLD signal) of cortical regions [113].”

      In addition, while preparing the revised manuscript, we found a recent simulation study, which showed that uniform feedback coupled with positive forward weights was effective in supervised learning of one-dimensional output in feed-forward network (Konishi et al., 2023, Front Neurosci).

      We have briefly discussed this work in Line 653-655:

      “Notably, uniform feedback coupled with positive forward weights was shown to be effective also in supervised learning of one-dimensional output in feed-forward network [114], and we guess that loose alignment may underlie it.”

      (5) Related to point 3), the main strength of this paper is to draw potential connection with experimental data. It would be good to highlight more concretely the prediction of the theory for experimental findings. (Ideally, what should be observed with non-negative FA that is not expected with FA or a delta rule (constant global feedback) ?).

      We have added a discussion on the prediction of our models, mentioned in our provisional reply, in Line 627-638:

      “oVRNNrf predicts that the feedback vector c and the value-weight vector w become gradually aligned, while oVRNNrf-bio predicts that c and w are loosely aligned from the beginning. Element of c could be measured as the magnitude of pyramidal cell's response to DA stimulation. Element of w corresponding to a given pyramidal cell could be measured, if striatal neuron that receives input from that pyramidal cell can be identified (although technically demanding), as the magnitude of response of the striatal neuron to activation of the pyramidal cell. Then, the abovementioned predictions could be tested by (i) identify cortical, striatal, and VTA regions that are connected, (ii) identify pairs of cortical pyramidal cells and striatal neurons that are connected, (iii) measure the responses of identified pyramidal cells to DA stimulation, as well as the responses of identified striatal neurons to activation of the connected pyramidal cells, and (iv) test whether DA→pyramidal responses and pyramidal→striatal responses are associated across pyramidal cells, and whether such associations develop through learning.”

      Moreover, we have considered another (technically more doable) prediction of our model, and described it in Line 639-643:

      “Testing this prediction, however, would be technically quite demanding, as mentioned above. An alternative way of testing our model is to manipulate the cortical DA feedback and see if it will cause (re-)alignment of value weights (i.e., cortical striatal strengths). Specifically, our model predicts that if DA projection to a particular cortical locus is silenced, effect of the activity of that locus on the value-encoding striatal activity will become diminished.”

      (6a) Random feedback with RNN in RL have been studied in the past, so it is maybe worth giving some insights how the results and the analyzes compare to this previous line of work (for instance in this paper [1]). For instance, I am not very surprised that FA also works for value prediction with TD error. It is also expected from the literature that the RL + RNN + FA setting would scale to tasks that are more complex than the conditioning problem proposed here, so is there a more specific take-home message about non-negative FA? or benefits from this simpler toy task? [1] https://www.nature.com/articles/s41467-020-17236-y

      As for a specific feature of non-negative models, we did not describe (actually did not well recognize) an intriguing result that the non-negative random feedback model performed generally better than the models without non-negative constraint with either backprop or random feedback (Fig. 2J-left versus Fig. 6E-left (please mind the difference in the vertical scales)). This suggests that the non-negative constraint effectively limited the parameter space and thereby learning became efficient. We have added this result in Line 392-395:

      “Remarkably, oVRNNrf-bio generally achieved better performance than both oVRNNbp and oVRNNrf, which did not have the non-negative constraint (Wilcoxon rank sum test, vs oVRNNbp : p < 7.8×10,sup>−6</sup> for 5 or ≥25 RNN units; vs oVRNNrf: p < 0.021 for ≤10 or ≥20 RNN units).”

      Also, in the models with non-negative constraint, the model with random feedback learned more rapidly than the model with backprop although they eventually reached a comparable level of errors, at least in the case with 20 RNN units. This is presumably because the value weights did not develop well in early trials and so the backprop-based feedback, which was the same as the value weights, did not work well, while the non-negative fixed random feedback worked finely from the beginning. We have added this result in Fig. 6I and Line 417-422:

      “Figure 6I shows how learning proceeded across trials in the models with 20 RNN units. While oVRNNbp-rev and oVRNNrf-bio eventually reached a comparable level of errors, oVRNNrf-bio outperformed oVRNNbp-rev in early trials (at 200, 300, 400, or 500 trials; p < 0.049 in Wilcoxon rank sum test for each). This is presumably because the value weights did not develop well in early trials and so the backprop-type feedback, which was the same as the value weights, did not work well, while the non-negative fixed random feedback worked finely from the beginning.”

      We have also added a discussion on how our model can be positioned in relation to other models including the study you mentioned (e-prop by Bellec, ..., Maass, 2020) in subsection “Comparison to other algorithms” of the Discussion):

      Regarding the slightly better performance of the non-negative model with random feedback than that of the non-negative model with backprop when the number of RNN units was large (mentioned in our provisional reply), state values in the backprop model appeared underdeveloped than those in the random feedback model. Slightly better performance of random feedback than backprop held also in our extended model incorporating excitatory and inhibitory units (Fig. 9B).

      (6b) Related to task complexity, it is not clear to me if non-negative value and feedback weights would generally scale to harder tasks. If the task in so simple that a global RPE signal is sufficient to learn (see 4 and 5), then it could be good to extend the task to find a substantial gap between: global RPE, non-negative FA, FA, BP. For a well chosen task, I expect to see a performance gap between any pair of these four learning rules. In the context of the present paper, this would be particularly interesting to study the failure mode of non-negative FA and the cases where it does perform as well as FA.

      In the cue-reward association task with 3 time-steps delay, the non-negative model with random feedback performed largely comparably to the non-negative model with backprop, and this remained to hold in a task where distractor cue, which was not associated with reward, appeared in random timings. We have added the results in Fig. 10 and subsection “4.2 Task with distractor cue”.

      We have also examined the cases where the cue-reward delay was elongated. In the case of longer cue-reward delay (6 time-steps), in the models without non-negative constraint, the model with random feedback performed comparably to (and slightly better than when the number of RNN units was large) the model with backprop (Fig. 2M). In contrast, in the models with non-negative constraint, the model with random feedback underperformed the model with backprop (Fig. 6J, left-bottom). This indicates a difference between the effect of non-negative random feedback and the effect of positive+negative random feedback.

      We have further examined the performance of the models in terms of action selection, by extending the models to incorporate an actor-critic algorithm. In a task with inter-temporal choice (i.e., immediate small reward vs delayed large reward), the non-negative model with random feedback performed worse than the non-negative model with backprop when the number of RNN units was small. When the number of RNN increased, these models performed more comparably. These results are described in Fig. 11 and subsection “4.3 Incorporation of action selection”.

      (7) I find that the writing could be improved, it mostly feels more technical and difficult than it should. Here are some recommendations:

      7a) for instance the technical description of the task (CSC) is not fully described and requires background knowledge from other paper which is not desirable.

      7b) Also the rationale for the added difficulty with the stochastic reward and new state is not well explained.

      7c) In the technical description of the results I find that the text dives into descriptive comments of the figures but high-level take home messages would be helpful to guide the reader. I got a bit lost, although I feel that there is probably a lot of depth in these paragraphs.

      As for 7a), 'CSC (complete serial compound)' was actually not the name of the task but the name of the 'punctate' state representation, in which each state (timing from cue) is represented in a punctate manner, i.e., by a one-hot vector such as (1, 0, ..., 0), (0, 1, ..., 0), ..., and (0, 0, ..., 1). As you pointed out, using the name of 'CSC' would make the text appearing more technical than it actually is, and so we have moved the reference to the name of 'CSC' to the Methods (Line 903-907):

      “For the agents with punctate state representation, which is also referred to as the complete serial compound (CSC) representation [1, 48, 133], each timing from a cue in the tasks was represented by a 10-dimensional one-hot vector, starting from (1 0 0 ... 0)<sup>T</sup> for the cue state, with the next state (0 1 0 ... 0) <sup>T</sup> and so on.”

      and in the Results we have instead added a clearer explanation (Line 163-165):

      “First, for comparison, we examined traditional TD-RL agent with punctate state representation (without using the RNN), in which each state (time-step from a cue) was represented in a punctate manner, i.e., by a one-hot vector such as (1, 0, ..., 0), (0, 1, ..., 0), and so on.”

      As for 7b), we have added the rationale for our examination of the tasks with probabilistic structures (Line 282-294):

      “Previous work [54] examined the response of DA neurons in cue-reward association tasks in which reward timing was probabilistically determined (early in some trials but late in other trials). There were two tasks, which were largely similar but there was a key difference that reward was given in all the trials in one task whereas reward was omitted in some randomly determined trials in another task. Starkweather et al. [54] found that the DA response to later reward was smaller than the response to earlier reward in the former task, presumably reflecting the animal's belief that delayed reward will surely come, but the opposite was the case in the latter task, presumably because the animal suspected that reward was omitted in that trial. Starkweather et al.[54] then showed that such response patterns could be explained if DA encoded TD-RPE under particular state representations that incorporated the probabilistic structures of the task (called the 'belief state'). In that study, such state representations were 'handcrafted' by the authors, but the subsequent work [26] showed that the original value-RNN with backprop (BPTT) could develop similar representations and reproduce the experimentally observed DA patterns.”

      As for 7c), we have extensively revised the text of the results, adding high-level explanations while trying to reduce the lengthy low-level descriptions (e.g., Line 172-177 for Fig2E-G).

      (8) Related to the writing issue and 5), I wished that "bio-plausibility" was not the only reason to study positive feedback and value weights. Is it possible to develop a bit more specifically what and why this positivity is interesting? Is there an expected finding with non-negative FA both in the model capability? or maybe there is a simpler and crisp take-home message to communicate the experimental predictions to the community would be useful?

      There is actually an unexpected finding with non-negative model: the non-negative random feedback model performed generally better than the models without non-negative constraint with either backprop or random feedback (Fig. 2J-left versus Fig. 6E-left), presumably because the nonnegative constraint effectively limited the parameter space and thereby learning became efficient, as we mentioned in our reply to your point 6a above (we did not well recognize this at the time of original submission).

      Another potential merit of our present work is the simplicity of the model and the task. This simplicity enabled us to derive an intuitive explanation on why feedback alignment could occur. Such an intuitive explanation was lacking in previous studies while more precise mathematical explanations did exist. Related to the mechanism of feedback alignment, one thing remained mysterious to us at the time of original submission. Specifically, in the non-negatively constraint random feedback model, while the angle between the value weight (w) and the random feedback (c) was relatively close (loosely aligned) from the beginning, it appeared (as mentioned in the manuscript) that there was no further alignment over trials (and the angle actually settled at somewhat larger than 45°), despite that the same mechanism for feedback alignment that we derived for the model without non-negative constraint was expected to operate also under the non-negative constraint. We have now clarified the reason for this, and found a way, introduction of slight decay (forgetting) of value weights, by which feedback alignment came to occur in the non-negatively constraint model. We have added this in Line 463-477:

      “As mentioned above, while the angle between w and c was on average smaller than 90° from the beginning, there was no further alignment over trials. This seemed mysterious because the mechanism for feedback alignment that we derived for the models without non-negative constraint was expected to work also for the models with non-negative constraint. As a possible reason for the non-occurrence of feedback alignment, we guessed that one or a few element(s) of w grew prominently during learning, and so w became close to an edge or boundary of the non-negative quadrant and thereby angle between w and other vector became generally large (as illustrated in Fig. 8D). Figure 8Ea shows the mean±SEM of the elements of w ordered from the largest to smallest ones after 1500 trials. As conjectured above, a few elements indeed grew prominently.

      We considered that if a slight decay (forgetting) of value weights (c.f., [59-61]) was assumed, such a prominent growth of a few elements of w may be mitigated and alignment of w to c, beyond the initial loose alignment because of the non-negative constraint, may occur. These conjectures were indeed confirmed by simulations (Fig. 8Eb,c and Fig. 8F). The mean squared value error slightly increased when the value-weightdecay was assumed (Fig. 8G), however, presumably reflecting a decrease in developed values and a deterioration of learning because of the decay.”

      Correction of an error in the original manuscript

      In addition to revising the manuscript according to your comments, we have made a correction on the way of estimating the true state values. Specifically, in the original manuscript, we defined states by relative time-steps from a reward and estimated their values by calculating the sums of discounted future rewards starting from them through simulations. However, we assumed variable inter-trial intervals (ITIs) (4, 5, 6, or 7 time-steps with equal probabilities), and so until receiving cue information, agent should not know when the next reward will come. Therefore, states for the timings up to the cue timing cannot be defined by the upcoming reward, but previously we did so (e.g., state of "one timestep before cue") without taking into account the ITI variability.

      We have now corrected this issue, having defined the states of timings with respect to the previous (rather than upcoming) reward. For example, when ITI was 4 time-steps and agent existed in its last time-step, agent will in fact receive a cue at the next time-step, but agent should not know it until actually receiving the cue information and instead should assume that s/he was at the last time-step of ITI (if ITI was 4), last − 1 (if ITI was 5), last − 2 (if ITI was 6), or last − 3 (if ITI was 7) with equal probabilities (in a similar fashion to what we considered when thinking about state definition for the probabilistic tasks). We estimated the true values of states defined in this way through simulations. As a result, the corrected true value of the cue-timing has become slightly smaller than the value described in the original manuscript (reflecting the uncertainty about ITI length), and consequently small positive TD-RPE has now appeared at the cue timing.

      Because we measured the performance of the models by squared errors in state values, this correction affected the results reporting the performance. Fortunately, the effects were relatively minor and did not largely alter the results of performance comparisons. However, we sincerely apologize for this error. In the revised manuscript, we have used the corrected true values throughout the manuscript, and we have described the ways of estimating these values in Line 919-976.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      1. General Statements [optional]

      We thank the three reviewers for the time and caution taken to assess our manuscript, and for their constructive feedback that will help improve the study. We herewith provide a revision plan, expecting that the additional experiments and corrections will address the key points raised by the reviewers.

      2. Description of the planned revisions

      Insert here a point-by-point reply that explains what revisions, additional experimentations and analyses are planned to address the points raised by the referees.

      • *

      __Reviewer #1 (Evidence, reproducibility and clarity (Required)): __

      Summary: The manuscript by Delgado et al. reports the role of the actin remodeling Arp2/3 complex in the biology of Langerhans cells, which are specialized innate immune cells of the epidermis. The study is based on a conditional KO mouse model (CD11cCre;Arpc4fl/fl), in which the deletion of the Arp2/3 subunit ArpC4 is under the control of the myeloid cell specific CD11c promoter.

      In this model, the assembly of LC networks in the epidermis of ear and tail skin is preserved when examining animals immediately after birth (up to 1 week). Subsequently however LCs from ArpC4-deleted mice start displaying morphological aberrations (reduced elongation and number of branches at 4 weeks of age). Additionally, a profound decline in LC numbers is reported in the skin of both the ear and tail of young adult mice (8-10 weeks).

      To explore the cause of such decline, the authors then opt for the complementary in vitro study of bone-marrow derived DCs, given the lack of a model to study LCs in vitro. They report that ArpC4 deletion is associated with aberrantly shaped nuclei, decreased expression of the nucleoskeleton proteins Lamin A/C and B1, nuclear envelop ruptures and increased DNA damage as shown by γH2Ax staining. Importantly, they provide evidence that the defects evoked by ArpC4 deletion also occur in the LCs in situ (immunofluorescence of the skin in 4-week old mice).

      Increased DNA damage is further documented by staining differentiating DCs from ArpC4-deleted mice with the 53BP1 marker. In parallel, nuclear levels of DNA repair kinase ATR and recruitment of RPA70 (which recruits ATR to replicative forks) are reduced in the ArpC4-deleted condition. In vitro treatment of DCs with the topoisomerase II inhibitor etoposide and the Arp2/3 inhibitor CK666 induce comparable DNA damage, as well as multilobulated nuclei and DNA bridges. The authors conclude that the ArpC4-KO phenotype might stem, at least in part, from a defective ability to repair DNA damages occurring during cell division.

      The study in enriched by an RNA-seq analysis that points to an increased expression of genes linked to IFN signaling, which the authors hypothetically relate to overt activation of innate nucleic acid sensing pathways.

      The study ends by an examination of myeloid cell populations in ArpC4-KO mice beyond LCs. Skin cDC2 and cDC2 subsets display skin emigration defects (like LCs), but not numerical defects in the skin (unlike LCs). Myeloid cell subsets of the colon are also present in normal numbers. In the lungs, interstitial and alveolar macrophages are reduced, but not lung DC subsets. Collectively, these observations suggest that ArpC4 is essential for the maintenance of myeloid cell subsets that rely on cell division to colonize or to self-maintain within their tissue of residency (including LCs).

      MAJOR COMMENTS

      1. ArpC4 and Arp2/3 expression The authors argue that LCs from Arpc4KO mice should delete the Arpc4 gene in precursors that colonize the skin around birth. It would be important to show it to rule out the possibility that the lack of phenotype (initial seeding, initial proliferative burst) in young animals (first week) could be related to an incomplete deletion of ArpC4 expression. Also important would be to show what is happening to the Arp2/3 complex in LCs from Arpc4KO mice.

      __Response: __We thank this reviewer for the careful assessment of our manuscript. Regarding this specific comment, we would like to clarify that we do not expect ArpC4 to be deleted in LC precursors, as CD11c is only expressed once the cells have entered the epidermis. Instead, we expect the deletion to take place after birth around day 2-4 (Chorro et al., 2009). For this reason, we performed a deletion PCR of epidermal cells at postnatal day 7 (P7), a time at which the proliferative burst occurs. This analysis revealed CD11c-Cre-driven recombination in the ArpC4 locus (Fig. S2C). This experiment indicates that ArpC4 deletion does not alter LC proliferation and postnatal network formation.


      Revision plan: We will revise the manuscript text to more clearly explain when ArpC4 will be deleted during development when using the CD11c-Cre transgene, and better emphasize the rationale for the deletion PCR.

      In the in vitro studies with DCs, the level of ArpC4 and Arp2/3 deletion at the protein level is also not documented.


      __Response: __We have previously analyzed the expression of ArpC4 in BMDCs in a recent study, confirming its loss in CD11c-Cre;ArpC4fl/fl cells at the protein level: Rivera et al. Immunity 2022; doi: 10.1016/j.immuni.2021.11.008. PMID: 34910930 (Fig. S2D). Therefore, in the current manuscript we only refer to that paper (Results, first paragraph).

      The authors explain that surface expression of the CD11c marker, which drives Arpc4 deletion, gradually increased during differentiation of DCs: from 50% to 90% of the cells. Does that mean that loss of ArpC4 expression is only effective in a fraction of the cells examined before day 10 of differentiation (e.g. in the RNA-seq analysis)?

      __Response: __The reviewer is correct, there is heterogeneity in CD11c expression, which is inherent of these DC culture model, implying that Arpc4 gene deletion will be partial. However, despite this, we were able to detect significant differences between the transcriptomes of control and CD11c-Cre;ArpC4fl/fl DCs in early phases during differentiation, emphasizing that the phenotype of ArpC4 loss is robust.


      Revision Plan: We will include a notion on this heterogeneity in the revised manuscript text.

      Intra-nuclear versus extra-nuclear activities of Arp2/3

      The authors favor a model whereby intra-nuclear ArpC4 helps maintaining nuclear integrity during proliferation of DCs (and possibly LCs). However, multiple pools of Arp2/3 have been described and accordingly, multiple mechanisms may account for the observed phenotype: i) cytoplasmic pool to drive the protrusions sustaining the assembly of the LC network and its connectivity with keratinocytes ; ii) peri-nuclear pool to protect the nucleus ; iii) Intra-nuclear pool to facilite DNA repair mechanisms e.g. by stabilizing replicative forks (the scenario favored by the authors).


      __Response: __The referee is correct, and this is actually discussed in our manuscript (page 11, upper paragraph): we cannot exclude that several pools of branched actin are influencing the phenotype we here describe.

      Unfortunately, we have previously tested several antibodies against ArpC4, but in our hands, and despite comprehensive optimization, they did not yield specific signals that would enable us to assess changes in subcellular localization in murine cells. Upon this reviewer's comment, we will now reassess the available tools and found an antibody against ArpC2 (Millipore, Anti-p34-Arc/ARPC2, 07-227-I-100UG) that may work based on published data. We have ordered this product to test it for IF staining of ArpC2, hoping to be able to delineate the subcellular localization of ArpC2 in DCs and potentially LCs.

      Revision plan: Upon receipt, we will test the ArpC2 antibody (Millipore, #07-227-I-100UG) both in cultured DCs and in epidermal whole mounts, running various optimization protocols regarding fixation, permeabilization and blocking reagents, next to antibody dilution. That way we hope to be able to detect the subcellular localization of Arp2/3 complex components as requested by this reviewer.

      It is recommended that the authors try to gather more supportive data to sustain the intra-nuclear role. Documenting ArpC4 presence in the nucleus would help support the claim. It could be combined with treatments aiming at blocking proliferation in order to reinforce the possibility that a main function of ArpC4 is to protect proliferating cells by favoring DNA repair inside the nucleus.

      __Response: __We thank this reviewer for this very helpful comment. As outlined in the previous response, we will aim at obtaining subcellular localization data for Arp2/3 complex components, and along with that study a potential intranuclear localization. Beyond that, in comparison to commonly cultured cell types, however, we face two hurdles addressing the nuclear Arp2/3 role in full: 1) Due to poor transduction rates and epigenetic silencing, we cannot sufficiently express exogenous constructs such as ArpC4-NLS in DCs to assess the subcellular localization of Arp2/3 complex components. 2) We have performed preliminary tests to block proliferation in DCs, using the cyclin D kinase 1 inhibitor RO3306 at different concentrations and incubation times during DC differentiation. Unfortunately, most cells were found dead after treatment. Further lowering the inhibitor concentrations (below 3.5uM) will likely not block the cell cycle, rendering this approach unsuited.

      Revision plan: We will test the suitability of additional antibodies directed against Arp2/3 complex components to assess their subcellular localization, with the aim to discriminate peripheral cytoplasmic vs. perinuclear vs. intranuclear localization. In addition, we will add a comment in the discussion, further addressing this point. In the case we remain unable to pinpoint that Arp2/3 resides in the nucleus, we will further tone down our current phrasing in the discussion, also emphasizing the possibility that cytoplasmic or perinuclear pools of the complex may indirectly help maintain the integrity of the genome in LCs.

      Nuclear envelop ruptures

      The nuclear envelop ruptures are not sufficiently documented (how many cells were imaged? quantification?). The authors employ STED microscopy to examine Lamin B1 distribution. The image shown in Figure 4A does not really highlight the nuclear envelop, but rather the entire content. Whether it is representative is questionable. We would expect Lamin B1 staining intensity to be drastically reduced given the quantification shown in Figure 3D. In addition, although the authors have stressed in the previous figure that Arpc4-KO is associated with nucleus shape aberrations, the example shown in Figure 4A is that of a nucleus with a normal ovoid shape.

      It is recommended to quantify the ruptures with Lap2b antibodies (or another staining that would better delineate the envelop) in order to avoid the possible bias due to the reduced staining intensity of Lamin B1.

      __Response: __NE ruptures were quantified by imaging NLS-GFP-expressing DCs in microchannels to visualize leakage of their nuclear content (Fig. 4B,C). The STED image mentioned by the referee (Fig. 4A,D) was only shown to further illustrate examples of NE ruptures, here using Lamin B as an immunofluorescence marker for the NE. We do agree with the reviewer that it was not chosen optimally to represent the ArpC4-KO phenotype regarding nuclear shape and Lamin B1.

      Revision plan: We will provide representative examples of nuclear illustrations of the ArpC4-KO phenotype vs. control cells. In addition, we will perform STED microscopy of Lap2B immunostained DCs as suggested by the referee.

      A missing analysis is that of nuclear envelop ruptures as a function of nucleus deformations.

      __Response: __As stated in the manuscript (page 5, third paragraph), the morphology of DCs is quite heterogeneous. As mentioned above, nuclear rupture events were quantified by live-imaging of NLS-GFP expressing DCs, enabling the tracing of rupture events. Live imaging is the only robust manner to measure nuclear membrane rupture events as they are transient due to rapid membrane repair (Raab et al. Science 2016). The NLS-GFP label itself, however, is not accurate enough to also quantify nuclear deformations. The latter therefore was quantified after cell fixation, using DAPI and/or immunostaining for NE envelope markers (Figures 3 and S3).

      Revision plan: We will quantify nuclear deformations using Lap2B staining of the nuclear envelope as suggested by the referee.

      Fig 4B-C: same frequency of Arpc4-KO and WT cells displaying nuclear envelop ruptures in the 4-µm channels; however image show a rupture for the Arpc4-KO and no rupture for the WT cells (this is somehow misleading). Are ruptures similar in Arpc4-KO and WT cells in this condition?

      __Response: __We apologize for choosing an image that better reflects our quantification, our mistake.

      Revision plan: We will choose an image that better reflects our quantification.

      Fig 4D-E: is their a direct link between nuclear envelop ruptures and ƴH2A.X?

      __Response: __At present, we can only correlate the findings of increased gH2Ax and elevated events of nuclear envelope ruptures in ArpC4-KO DCs. Rescue experiments are very difficult to impossible in DCs (e.g. restoring Lamin A/C and B levels in the KOs and subsequently assessing the amount of DNA damage). While we are afraid that we cannot address a potential link between NE ruptures and DNA damage by experiments in a manner feasible within this manuscript's revision, we have discussed this interesting aspect based on observations in immortalized cell culture systems (page 10). However, we would like to note that this was indeed shown for different cell types in Nader et al. Cell 2021. This effect results from access of cytosolic nuclease Trex1 to nuclear DNA.

      Revision plan: This point will be clarified in our revised manuscript.


      Interesting (but optional) would be to understand what is happening to DNA, histones? Is their evidence for leakage in the cytoplasm?

      __Response: __We have not investigated so far. We will attempt to do so.

      Revision plan: To address this aspect, we plan to perform immunostainings for double-stranded DNA in the cytoplasm (along with an NE marker). This approach has been used in the field to mark cytoplasmic DNA.

      RNA seq analysis

      The RNA-seq analysis suffers from a lack of direct connection with the rest of the study. The extracted molecular information is not validated nor further explored. It remains very descriptive. The PCA analysis suggests a « more pronounced transcriptomic heterogeneity in differentiating Arpc4KO DCs ». However it seems difficult to make such a claim from the comparison of 3 mice per group. In addition, such heterogeneity is not seen in the more detailed analysis (Fig 5F). The authors claim that « day 10 control and Arpc4KO DCs showed no to very little differences in gene expression, in contrast to cells at days 7-9 of differentiation ». This is not obvious from the data displayed in the corresponding figure. In addition, it is not expected that cells that may take a divergent differentiation path at days 7-9 may would return to a similar transcriptional activity at day 10.

      A point that is not discussed is that before day 10 of DC differentiation, Arpc4 KO is expected to only occur in about 50% of the cell population. This is expected to impact the RNA-seq analysis.

      Not all clusters have been exploited (e.g. cluster 3 elevated, cluster 6 partly reduced). I suggest the authors reconsider their analysis and analysis of the RNA-seq analysis (or eventually invest in complementary analysis).

      __Response: __Despite a comprehensive analysis of the different transcriptomes of control and ArpC4 mutant cells during DC differentiation, we decided to focus the presentation and discussion of our RNAseq results on the most notable findings. Of these, the elevated innate immune responses in ArpC4-KO DCs (Fig. 5E,H) caught our particular attention, as this seemed highly meaningful in light of DC and LC functions.

      Revision plan: As suggested by the referee, in the revised manuscript, we will better connect the RNAseq data to the other cellular and molecular analyses shown, complementing these results by investigating the potential involvement of innate immune responses in the ArpC4-KO phenotype.

      What causes the profound numerical drop of LC in the epidermis?

      A major open question is what causes the massive drop of LCs. Although differentiating Arpc4KO DCs start accumulating DNA damage upon proliferation, they succeed in progressing through the cell cycle. There is even a slightly elevated expression of cell cycle genes at day 7 of differentiation in the DC model.

      Only a trend for increased apoptosis is observed in ear and tail skin. It would be important to provide complementary data documenting increased death (or aberrant emigration?) of LCs in the 4-8 week time window.

      __Response: __We agree with the reviewer that this is an important question. We exclude that elevated emigration causes the decline of LCs in ArpC4-KO epidermis, as ArpC4-mutant LCs are significantly reduced (and not increased) in skin-draining lymph nodes (Fig. 7E). To assess whether increased cell death contributed to LC loss, we have tried to identify LCs that are just about to die. As the reviewer noted, we could only observe a trend of apoptosis-positive LCs in mutant epidermis. We assume that this is because of a quick elimination of compromised LCs following DNA damage, with only a short time passing until LCs with impaired genome integrity will be cleared from the system, making it very difficult to detect gH2Ax-positive cells that are positive for markers of cell death.

      Revision plan: Despite the abovementioned expected limitations to detect DNA-damage-positive but viable LCs in vivo, for the manuscript revision we will collect 6-week-old mice to analyze LC numbers and apoptosis (cleaved Caspase-3), complementing our data derived from 7-day and 4-week-old mice (Figures S2A,B, S2E,F). Suited mice have been born end of May; we are ready to analyze them at 6-weeks of age, accordingly.

      Functional consequences

      Although the study reports novel aspects of LC biology, the consequence of ArpC4 deletion for skin barrier function and immunosurveillance are not investigated. It would seem very relevant to test how this model copes with radiation, chemical and/or microorganism challenges.

      __Response: __We fully agree with this reviewer that this is a very interesting point. Therefore, next to assessing the steady-state circulation of LCs and DCs, we also addressed the consequence of ArpC4 loss for LC function in chemically challenged skin: we performed skin painting experiments using the contact sensitizer fluorescein isothiocyanate (FITC), diluted in the sensitizing agent dibutyl phthalate (DBP), to detect cutaneous-derived phagocytes within draining lymph nodes. These experiments revealed that migration of Arpc4KO LCs (as well as of Arpc4KO DCs) to skin-draining lymph nodes was impaired (Fig. 7C-E), confirming an in vivo role of ArpC4 for immune cell migration to lymphatic organs following a chemical challenge. Considering the lengthy legal approval procedures for new animal experimentation procedures, additional in vivo challenges -beyond the provided FITC challenge study- would take at least 6 additional months, which would delay excessively the revision of our manuscript.

      Revision Plan: We will better explain the FITC painting experiment to highlight its importance.

      MINOR COMMENTS:

      1- Figure 1D

      Gating strategy: twice the same empty plots. The content seems to be missing... Does this need to be shown in the main figure?

      __Response: __We apologize for this problem; there might be a problem due to file conversion of PDF reader software. In our PDF versions (including the published bioRxiv preprint) we do see the data points (see below); however, we have earlier experienced incomplete FACS plots during manuscript preparation.


      Revision plan: We will take extra care and double-check the results after converting the figures into PDFs. In addition, we will provide JPG files when submitting the revised manuscript, to prevent such problems.

      2- Figure 2

      Best would be to keep same scale to compare P1 and P7 (tail skin, figure 2A)

      Response and revision plan: We will replace the examples with micrographs of comparable scale (already solved, will be provided with manuscript revision).

      Overlay of Ki67 and MHC-II does not allow to easily visualize the double-positive cells (Fig 2C)

      Response and revision plan: We will provide single-channel image next to the merged view, and improve the visualization of double-positive cells (already solved, will be provided with manuscript revision)

      Quality of Ki67 staining different for Arpc4-KO (less intense, less focused to the nuclei): a technical issue or could that reflect something?

      Response and revision plan: We thank the reviewer for spotting this. We have re-assessed all Ki67 micrographs and noted that the originally chosen examples indeed are not fully representative. We have meantime selected more representative examples of Ki67-positive cells in control and mutant tissues, reflecting no difference in the principal nature of Ki67 staining (already taken care of, will be provided with manuscript revision).

      Fig 2C: Panels mounted differently for ear and tail skin (different order to present the individual stainings, Dapi for tail skin only).

      Response and revision plan: We will harmonize the sequence of panels in figure 2 with submission of the revised manuscript.

      3- LC branch analysis (Fig 1 and 2)

      While Fig 1 indicates that ear skin LCs form in average twice as few branches as tail skin LCs (3-4 versus 8-9 branches per cell), Fig 2 shows the opposite (10-12 versus 6-7 branches per cell).

      Is this due to a very distinct pattern between the 2 considered ages (4 weeks versus 8-10 weeks)? Could the author double-check that there is no methodological bias in their analysis?


      Response: We thank the reviewer for hinting us on this apparent inconsistency. Indeed, our initial analysis suffered from a bias in detecting LC dendrites, as the tissue cellularity and overall morphology significantly differs between 4-week-old and adult animals: In adult animals, the immunostainings show a higher baseline background signal for the skin epithelium compared to P28. We had noted this beforehand and had adjusted the imaging pipeline accordingly, with a more stringent thresholding to eliminate background signals in the case of adult tissues. While we were able to detect the described ArpC4 phenotype, this strategy resulted in a reduced ability to detect dendrites (both in control and mutant tissues), explaining the seemingly reduced number of dendrites in adult vs. 4-week-old tissues.

      Revision plan: We have double-checked both the micrographs and the corresponding quantifications and did not identify errors. Instead, our assumption -that a too high stringency for background reduction in adults caused the discrepancy- turned out correct. At present, we are re-doing the detailled analyses of LC morphology at 4-week and adult stages by confocal microscopy using a 63x objective rather than a 40x objective as done previously. First results confirm that with this approach the number of LC dendrites across these ages are largely comparable, while the phenotypes of ArpC4 loss are retained. We will provide a completely new analysis with revision of the manuscript.

      4- Fig 3 E-G

      How many animals were examined (n=5)? Reproducible accros animals? Why was it done with 4-week animals (phenotype not complete? Event occurring before loss in numbers...)

      Response and revision plan: As mentioned in the figure legend for Fig. 3F we have analysed N = 4 control and N= 5 KO mice (for clarity, we will add this information to Figure 3E and G in the revised document). We chose the 4-week time-point as this was the stage when the loss of LCs first became apparent (even though non-significant at this age). We aimed to learn whether changes in nuclear morphology and nuclear envelope markers represented early molecular and cellular events following ArpC4 loss. Compared to later stages, this strategy poses a reduced risk to detect indirect effects of ArpC4 loss. We will clarify this in the revised manuscript text.

      Staining Lamin A/C globally more intense in the Arpc4-KO epidermis (also seems to apply to the masks corresponding to the LCs). Surprising to see that the quantification indicates a major drop of Lamin A/C intensity in the LCs.

      Response and revision plan: We again thank the reviewer for this careful assessment. The originally chosen micrographs are indeed not fully representative. As with many tissue stainings, there is inter-sample variability. We have now revisited the micrographs and did not find a significant global reduction of Lamin A/C in the entire epidermis (including keratinocytes/KCs). The drop of Lamin A/C intensity is restricted to ArpC4 LCs -and not KCs- and in line with the reduced Lamin A/C expression data in DCs (Fig. 3C,D). We have selected more representative examples, which will be provided with the revised manuscript.

      Legend Fig 4D replace confocal microscopy by STED microscopy

      Revision plan: We will replace "confocal microscopy" by "STED microscopy" accordingly.

      6- Figure 4F

      Intensity/background of γH2Ax staining very distinct between the 2 micrographs shown for WT and Arpc4-KO epidermis.

      Response and revision plan: We have revisited the micrographs and now selected more representative examples, which will be provided in the revised manuscript.

      7- Figure 7C, F, H

      Gating strategies: would be better to harmonize the style of the plots (dot plots and 2 types of contour plots have been used...)

      Response and revision plan: We agree and will provide a harmonized plot illustration in the revised manuscript.

      8- Figure 7H

      Legend of lower gating strategy seems to be wrong (KO and not WT).

      Response and revision plan: We thank the reviewer for pointing out this mistake. A corrected figure display will be provided with revision.

      Reviewer #1 (Significance (Required)):

      Strengths: the general quality of the manuscript is high. It is very clearly written and it contains a very detailed method section that would allow reproducing the reported experiments. This work entails a clear novelty in that it represents the first investigation of the role of ArpC4 in LCs. It opens an interesting perspective about specific mechanisms sustaining the maintenance of myeloid cell subsets in peripheral tissues. This work is therefore expected to be of interest for a large audience of cellular immunologists and beyond. Challenging skin function with an external trigger would lift the relevance for a even wider audience (see main point 6).

      __Response: __see point 6.

      Limitations: in its current version the manuscript suffers from a lack of solidity around a few analysis (see main points on ArpC4 and Arp2/3 protein expression, nuclear envelop rupture analysis,...). It also tends to formulate a narrative centered on the ArpC4 intra-nuclear function that is not definitely proven.

      The field of expertise of this reviewer is: cellular immunology and actin remodeling.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      SUMMARY This is a study in experimental mice employing both in vitro and, importantly, in vivo approaches. EPIDERMAL LANGERHANS CELLS serve as a paradigm for the maintenance of homeostasis of myeloid cells in a tissue, epidermis in this case. In addition to well known functions of the ACTIN NETWORK in cell migration, chemotaxis, cell adherence and phagocytosis the authors reveal a critical function of actin networks in the survival of cells in their home tissue.

      Actin-related proteins (Arp), specifically here the Arp2/3 complex, are necessary to form the filamentous actin networks. The authors use conditional knock-out mice where Arpc4 (an essential component of the Arp2/3 complex) is deleted under the control of CD11c, the most prominent dendritic cell marker which is also expressed on Langerhans cells. In normal mice, epidermal Langerhans cells reside in the epidermis virtually life-long. They initially settle the epidermis around and few days after birth an establish a dense network by a burst of proliferation and then they "linger on" by low level maintenance proliferation. In the epidermis of Arpc4 knock-out mice Langerhans cells also start off with this proliferative burst but, strikingly, they do not stay but are massively reduced by the age of 8-12 weeks.

      The analyses of this decline revealed that

      -- the shape (number of nuclear lobes) and integrity of cell nuclei was compromised; they were fragile and ruptured to some degree when Arpc4 was knocked out, i.e., the Arp2/3 complex was missing;

      -- DNA damage, as detected by staining for gamma-H2Ax or 53BP1 accumulated when Arpc4 was knocked out, i.e., the Arp2/3 complex was missing;

      -- recruitment of DNA repair molecules was inhibited when Arpc4 was knocked out, i.e., the Arp2/3 complex was missing;

      -- gene signatures of interferon signaling and response were increased when Arpc4 was knocked out, i.e., the Arp2/3 complex was missing;

      -- in vivo migration of dendritic cells and Langerhans cells from the skin to the draining lymph nodes in an inflammatory setting (FITC painting of the skin) was impaired when Arpc4 was knocked out, i.e., the Arp2/3 complex was missing;

      -- the persistence of the typical dense network of Langerhans cells in the epidermis, created by proliferation shortly after birth, is abrogated when Arpc4 was knocked out, i.e., the Arp2/3 complex was missing. Importantly, this was not the case for myeloid cell populations that settle a tissue without needing that initial burst of proliferation. For instance, numbers of colonic macrophages were not affected when Arpc4 was knocked out, i.e., the Arp2/3 complex was missing.

      Thus, the authors conclude that the Arp2/3 complex is essential by its formation of actin networks to maintain the integrity of nuclei and ensure DNA repair thereby ascertaining the maintenance proliferation of Langerhans cells and, as the consequence, the persistence of the dense epidermal netowrk of Langerhans cells.

      Up-to-date methodology from the fields of cell biology and cellular immunology (cell isolation from tissues, immunofluorescence, multiparameter flow cytometry, FISH, "good old" - but important - transmission electronmicroscopy, etc.) was used at high quality (e.g., immunofluorescence pictures!). Quantitative and qualitative analytical methods were timely and appropriate (e.g., Voronoi diagrams, cell shape profiling tools, Cre-lox gene-deletion technology, etc.). Importantly, the authors used a clever method, that they had developed several years ago, namely the analysis of dendritic cell migration in microchannels of defined widths. Molecular biology methods such as RNAseq were also employed and analysed by appropriate bioinformatic tools.

      MAJOR COMMENTS:

      • ARE THE KEY CONCLUSIONS CONVINCING? Yes, they are.

      • SHOULD THE AUTHORS QUALIFY SOME OF THEIR CLAIMS AS PRELIMINARY OR SPECULATIVE, OR REMOVE THEM ALTOGETHER? No, I think it is ok as it stands. The authors are wording their claims and conclusions not apodictically but cautiously, as it should be. They point out explicitely which lines of investigations they did not follow up here.

      • WOULD ADDITIONAL EXPERIMENTS BE ESSENTIAL TO SUPPORT THE CLAIMS OF THE PAPER? REQUEST ADDITIONAL EXPERIMENTS ONLY WHERE NECESSARY FOR THE PAPER AS IT IS, AND DO NOT ASK AUTHORS TO OPEN NEW LINES OF EXPERIMENTATION. I think that the here presented experimental evidence suffices to support the conclusions drawn. No additional experiments are necessary.

      • ARE THE SUGGESTED EXPERIMENTS REALISTIC IN TERMS OF TIME AND RESOURCES? IT WOULD HELP IF YOU COULD ADD AN ESTIMATED COST AND TIME INVESTMENT FOR SUBSTANTIAL EXPERIMENTS. Not applicable.

      • ARE THE DATA AND THE METHODS PRESENTED IN SUCH A WAY THAT THEY CAN BE REPRODUCED? Yes, they are.

      • ARE THE EXPERIMENTS ADEQUATELY REPLICATED AND STATISTICAL ANALYSIS ADEQUATE? Yes.

      __Response: __We thank the reviewer very much for assessing our work, for providing constructive suggestions, and for acknowledging the strength of the study.

      MINOR COMMENTS:

      • SPECIFIC EXPERIMENTAL ISSUES THAT ARE EASILY ADDRESSABLE. None

      • ARE PRIOR STUDIES REFERENCED APPROPRIATELY? Essentially yes. Regarding the reduction / loss of the adult epidermal Langerhans cell network, it may be of some interest to also refer to / discuss to another one of the few examples of this phenomenon. There, the initial burst of proliferation is followed by reduced proliferation and increased apoptosis when a critical member of the mTOR signaling cascade is conditionally knocked out (Blood 123:217, 2014).

      __Response and revision plan: __As suggested, we will include into the revised manuscript further examples with related phenotypes regarding the progressive decline of LCs.

      • ARE THE TEXT AND FIGURES CLEAR AND ACCURATE? Yes they are. Figures are well arranged for easy comprehension.

      • DO YOU HAVE SUGGESTIONS THAT WOULD HELP THE AUTHORS IMPROVE THE PRESENTATION OF THEIR DATA AND CONCLUSIONS?

      1. Materials & Methods. The authors write, regarding flow cytometry of epidermal cells: "Briefly, 1cm2 of back skin from 8-14 weeks old female wild-type and knockout littermates was dissociated in 0.25 mg/mL Liberase (Sigma, cat. #5401020001) and 0.5 mg/mL DNase (Sigma, cat.#10104159001) in 1 mL of RPMI (Sigma) and mechanically disaggregated in Eppendorf tubes, FOLLOWED BY INCUBATED for 2 h at 37 {degree sign}C." Followed by what?

      __Response and revision plan: __We apologize for this mistake. The text should read: "... followed by blocking and antibody labeling of cells in single cell suspension.". We will provide the correct text in the revised manuscript.

      Materials & Methods. BMDC electronmicroscopy. What is "IF". Please specify.

      __Response and revision plan: __We also regret this mistake in the method text. It should read: "... For electron microscopy analysis, after PDMS removal, cells were fixed using 2.5% glutaraldehyde ...". We will correct this in the revised manuscript.

      RESULTS in gene expression analyses. The authors observe some increase in apoptosis (as detected by cleaved-Caspase-3 staining). Is this observation in immunofluorescence also evident in the RNAseq data (where the IFN changes were seen), i.e., in Figure 5.

      __Response and revision plan: __We will check our RNAseq data regarding any changes in apoptosis-related genes and, if so, include these in the revised manuscript.

      Figure 7 F and G. Perhaps the authors may want to swap upper and lower panels in F or G, so that macrophage FACS plots and bar graphs are in the same row - ob, obiously, DC plots and bars likewise.

      __Response and revision plan: __We agree and will harmonize the panel sequence in the revised manuscript.

      Figure 7H. "Gating strategy in ArpC4WT Lung (previously gated in Live CD45+ cells)" - The lower row is knock-out, not WT. This is indicated correctly in the legand, but in the figure both rows are labeled as WT.

      __Response and revision plan: __Indeed, the legend information is correct, but the corresponding figure panel is incorrect. We will provide a corrected version with revision.

      The reference by Park et al. 2021 is missing in the list.

      __Response and revision plan: __We will add the reference to the revised bibliography.

      Figure 1D. Sure, the bar graphs are meant to say "CD11c"? The FACS plots show "CD11b".

      __Response and revision plan: __We will check the panels and correct where necessary.

      As to cDC1. In Figure 1D the FACS plot shows an absence of CD103+ cDC1 cells. In contrast, In Figure 7A-left side panel, there is not difference in cDC1 cells between WT and KO mice. Is therefore the flow cytometry plot in Figure 1D not representative regarding cDC1 cells? Correct?

      __Response and revision plan: __The reviewer is correct about this apparent discrepancy. We have not observed differences in the control vs. Aprc4-KO cDC1 population, hence Figure 7 represents our findings. For figure 1, we have by mistake chosen a non-representative plot, with the aim of illustrating the gating strategy. We apologize for this mistake and will provide a corrected an representative FACS plot figure in the revised manuscript.

      Reviewer #2 (Significance (Required)):

      • DESCRIBE THE NATURE AND SIGNIFICANCE OF THE ADVANCE (E.G. CONCEPTUAL, TECHNICAL, CLINICAL) FOR THE FIELD. This is a conceptual advance. It adds a big step to our understanding of how immune cells in tissues (which all come from the bone marrow or are seeded before birth from embryonal hematopoietic organs such as yolk sac and fetal liver) can remain resident in these tissues. For cell types such as Langerhans cells, which establish their final population density within their tissues of residence, the presented finding convincingly buttress the role of proliferation and thereby the role for the actin-related protein complex 2/3 (Arp2/3).

      • PLACE THE WORK IN THE CONTEXT OF THE EXISTING LITERATURE (PROVIDE REFERENCES, WHERE APPROPRIATE). While we know much about actin-related proteins (Arp), as correctly cited by the authors, this knowledge is derived mostly from in vitro studies. The submitted study translates the findings to an in vivo setting for the first time.

      • STATE WHAT AUDIENCE MIGHT BE INTERESTED IN AND INFLUENCED BY THE REPORTED FINDINGS. Skin immunologists foremost, but these findings are of interest to the entire community of immunologists, but also cell biologists.

      • DEFINE YOUR FIELD OF EXPERTISE. My expertise is in skin immunology, in particular skin dendritic cells including Langerhans cells.

      We acknowledge the referee for their positive assessment of our manuscript.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      Summary:

      The manuscript identifies a role of the Arp2/3 complex, the major regulator of actin branching in cells, for controlling the homeostasis of murine Langerhans cells (LCs), a specialized subset of dendritic cells in the skin epidermis. The findings of the study are based on the analysis of CD11c-Cre Arpc4-flox mice, a conditional knockout mouse model, which interferes with Arp2/3 function in Langerhans cells and other CD11c-expressing myeloid cells, e.g. dendritic cell or macrophage subsets. By using immunofluorescence and flow cytometry analysis of epidermis and skin tissues, the authors provide a detailed analysis of LC numbers at different developmental stages (postnatal day 1, 7, 28, and adult mice) and demonstrate that Arpc4-deficiency does not interfere with the establishment of LC networks until postnatal day 28. However, LCs in ear and tail skin are substantially reduced in Arpc4-deficient mice at 8-12 weeks of age. In parallel to their in vivo model, the authors analyze cultures of bone marrow-derived dendritic cells (BMDCs) from control and CD11c-Cre Arpc4-flox mice. Arpc4-deficiency in BMDCs, which develop over 8-10 days in culture, results in nuclear shape and lamina abnormalities, as well as signs of increased DNA damage. Aspects of this phenotype are also detected in Langerhans cells in epidermal preparations. Transcriptomic analysis of BMDCs highlights a gene signature of increased expression of the interferon response pathway and alterations in cell cycle regulation. Arpc4-deficient BMDCs show increased expression of DNA damage markers and reduced expression of certain DNA repair factors. Based on these correlative findings from the BMDC model, the authors conclude that the decline in LC numbers might develop from the accumulation of DNA damage over time, which the authors phrease "pre-mature aging of Langerhans cells". Lastly, the authors show a heterogenous picture how Arp2/3 depletion affects distinct DC populations in CD11c-Cre Arpc4-flox mice. While some tissue-resident DC subsets appear normal in numbers, others are declined in numbers in the tissue. This may be related to their proliferation potential in tissues.

      Major comments:

      • Are the claims and the conclusions supported by the data or do they require additional experiments or analyses to support them?

      1) The authors claim that Arpc4 deficiency selectively compromises myeloid cell populations that rely on proliferation for tissue colonization (Figure 7). The presented data might give hints for such a general hypothesis, but solid experimental proof to prove this is lacking. When comparing myeloid cell subsets from foru different irgans, the authors refer to published data that some dendritic cell subsets are more proliferative in tissues than others and that CD11cCre Arpc4-flox mice appear to have reduced cell numbers in these populations. However, the presented data are purely correlative and no functional connection to cell proliferation has been made to the phenotypes. While some dendritic cell subsets (Langerhans cells, alveolar DCs) show reduced cell numbers in CD11cCre Arpc4-flox mice, other myeloid cell cells subsets are unaffected (e.g. dermal cDC1 and 2, colon macrophages).There could be plenty of other reasons that might underly the observed discrepancies between these cell subsets, e.g. Arp2/3 knockout efficiency and myeloid cell turnover in the tissue are just two examples, which have not been taken into consideration. Direct measurement of cell proliferation, e.g. BrdU labeling, and the observed phenotype would be missing to make such claims. The data could either be removed. Experimentally addressing these points could take 3-6 months.

      Response and planned revisions: We thank the referee for bringing this point. We agree that these results give hints that support our conclusion but that do not address this question directly. However, we would like to insist on the fact that our conclusion is based on studies from others showing that alveolar macrophages self-maintain themselves through proliferation (Bain et al. Mucosal Immunology 2022). In contrast, it has been reported that most colonic macrophages are derived from monocytes that are being recruited to the gut through life (Bain et al. Mucosal Immunity 2023)

      We propose to better explain and discuss these points in our revised manuscripts. In addition, we will stress that we do not exclude that different intracellular Arpc4-dependent processes might contribute to the phenotypes observed (beyond maintenance of DNA integrity). These revisions will help mitigate our conclusions and leave open the potential implication of alternative mechanisms that will be discussed as suggested by the referee.

      2) The authors claim that DC subsets (e.g. dermal cDCs), which develop from pre-DCs, are not affected by Arp2/3 depletion (Figure 7, although the FACS plot in Fig. 1D would suggest a different picture for cDC1). This is surprising in light of the data with bone marrow-derived DCs (BMDCs), the major in vitro model of this study, which develop from CDPs that again develop from pre-DCs. BMDCs did show aberrant nuclei and signs of DNA damage. How would the authors then explain the discrepancies of the BMDC model with DC subsets, where the authors feel that the pre-DC origin explains the phenotypic difference? This is a general concern of the data interpretation and conclusions.

      __Response: __We thank the referee to bring this point that indeed requires clarification. Two non-exclusive hypotheses could explain this apparent discrepancy:

      • The ontogeny of bone-marrow-derived DCs: Depending on the protocol used, there might be variations in the precursors DCs develop from. We use one of the first protocols, which was pioneered by Paola Ricciardi-Castagnoli lab (Winzler et al. J.Exp.Med. 1997). It relies on a supernatant from J558 cells transfected with GMCSF, which contains additional cytokines and mainly generate DC2-like DCs. Langerhans cells are closer to DC2s, which resemble more macrophages than DC1s. We thus chose this protocol rather than the protocols that use Flt3-L, which produce both DC1s and DC2s developed from common dendritic-cell precursors (CDPs). It is thus possible that our BM-derived DCs develop from other precursor cells that are possibly closer to monocyte precursors.
      • As shown in Figure 5C, kinetics of acquisition of CD11c expression, and thus deletion of the Arpc4 gene, might be distinct in vivo and in vitro. In vivo, as stated in our manuscript, DCs acquire CD11c as preDCs and undergo few rounds of divisions after. In vitro, as shown by our cycling experiments, BM-derived DCs continuously cycle, so they will keep dividing after having acquire CD11c (around day 7) and deleting the Arpc4 gene. __Revision plan: __We propose to mention these hypotheses in the discussion of our manuscript to explain the apparent contradiction raised by the referee.

      3) In line with point 2, the authors never show that BMDCs show reduced proliferation, reduced cell numbers or increased cell death in Arpc4-deficient cell cultures, as a consequence of the detected DNA damage and impaired DNA repair. In fact, Figure 5C even shows that cell growth rates between control and KO are equal. This is a major mismatch in the current study. Since the authors use the BMDC model to explain the declining cell numbers in Langerhans cells (which derive from fetal liver cells), this phenotype is not mirrored by the BMDC culture and it remains open whether the observed changes in nuclear DNA damage and repair are indeed directly linked to the observed phenotype of declining cell numbers in the tissue. These aspects require argumentation why cell growth is unchanged in KO cells. Additional experiments addressing these points with sufficient biological replicates (cultures from different mice) could take 2-3 months, including preparation time.

      __Response____: __We thank the referee for bringing this point, which was probably not properly discussed in the first version of our manuscript. Indeed, Arpc4KO BM-derived DCs do not show the premature cell death phenotype observed in LCs in vivo, as stated by the referee. There are at least two putative non-exclusive explanations for this. First, unlike LCs, which are long-lived cells, BM-derived DCs can be kept in culture for only 10-12 days. As DNA damage-induced cell death takes time (LCs only start to die about 3-4 weeks after network establishment), the lifespan of BM-DCs could simply not be long enough to observe this phenotype. Second, in the epidermis, LCs are physically constrained and continuously exposed to diverse signals that might increase their sensitivity to DNA damage and thereby induction of subsequent cell death.

      __Revision Plan: __We will clarify this point in our revised manuscript by providing putative explanations for the death phenotype of Arpc4-deficient LCs not being observed in BM-derived DCs. We will further explain that this does not invalidate this cellular model as it was used to raise hypotheses on the putative role played by Arpc4 in myeloid cells, i.e. maintenance of DNA integrity, which was then confirmed in vivo (Arpc4KO LCs do indeed display DNA damage in the epidermis). Without this "imperfect cellular model", we would have probably not been able to uncover this novel function of Arp2/3 in immune cells.

      4) The authors refer to a "pre-mature aging" phenotype of Arpc4-deficient BMDCs and LCs, based on reductions in Lamin B, Lamin A and increases in gH2AX and 53BP1. I find this term and overstatement of the current data and suggest that other markers for cell senescence, such as p53, Rb, p21 and b-Galactosidase are then also used to make such strong claim on "aging" and cell senescence. Experimentally addressing this point with sufficient biological replicates could take 2-3 months, including preparation time.

      __Revision Plan: __We will assess the expression of these genes and senescence signatures in our RNAseq analysis as well as in Arpc4WT and Arpc4KO-derived DCs, as suggested by the referee.

      5) The study does not provide a mechanism how the Arp2/3 complex would mediate the observed effects on DNA damage and repairs has not been addressed in the cell model, and only potential scenarios from other non-myeloid cell lines are discussed. It remains unclear whether the observed phenotypes in Arpc4-depleted myleoid cells relate to the direct nuclear function of Arp2/3 or the cytosolic function of Arp2/3, including its roles in cytoskeletal regulation that may have secondary effects on the nuclear alterations. This is a general concern of the presented data, data on mechanism might require more than 6 months.

      __Revision Plan: __The referee is correct: Our manuscript shows that Arp2/3 deficiency in specific myeloid cells impacts on their survival in vivo and proposes that this could result at least in part from impaired maintenance of DNA integrity in these cells. We do not know whether this also applies to non-myeloid cells, which, although very interesting, is beyond the scope of the present study. In addition, we do not have any experimental tool to distinguish whether the DNA damage phenotype of Arpc4KO cells involves the nuclear or cortical pool of F-actin, this is why we have left this question open in the discussion of our manuscript.

      6) OPTIONAL: The authors make a strong case arguing that the increased interferon expression signature (based on the transcriptomics data) reflects the nuclear ruptures in Arpc4-deficient cells and adds to the observed phenotype. If this is so, what happens then in STING knockout cells in the presence of CK666 inhibitor?


      __Revision Plan____: __The referee is correct in that we do not show this point experimentally and should therefore temper this conclusion.

      • Are the data and the methods presented in such a way that they can be reproduced?

      1) The analyses include quite a number of intensity calculations of immunofluorescence signals (Fig. 3D, E; Fig. 4E, Fig. 5B and 6B)? The background stainings are often variable or very high. In some cases it is even unclear whether stainings are really detecting protein and go beyond background staining (Fig. 6A, Fig. 5F). How were immunofluorescence data acquired and dealt with different background staining intensities?

      __Revision Plan: __We will carefully describe the microscopes used for image acquisition as well as the downstream analyses for each experiment, which indeed vary depending on the signals observed with distinct antibodies or construct.

      2) It remained unclear to me on which basis the nuclear deformations in Fig. 3G, H were calculated?

      __Revision Plan: __We will carefully describe the methods used to quantify nuclear deformations.

      3) The detailed phenotype of control mice is a bit unclear. It appears as if these were Cre-negative animals. Did the authors have some proof-of-principle experiments showing that CD11cCre Arpc4 +/+ animals have comparable phenotypes to Cre-negative animals?

      • Are the experiments adequately replicated and statistical analysis adequate?

      __Revision Plan: __We have never observed any decline in LC numbers in other mouse lines/genotypes (for example in cPLA2flox/flox;CD11c-Cre mice shown in the manuscript, Fig. S6B), excluding a putative role for the Cre in LC death.

      For most experiments, the number of biological replicates (mice, or BMDC cultures from different mice) and individual values (n, cells) are indicated. Statistical analysis appears adequate.

      Minor comments:

      • Prior published studies on Arp2/3 function in immune cells are referenced accordingly. A number of additional pre-print manuscripts on this topic have not been cited and could be considered referencing.


      __Revision Plan: __We will fix this point and cite additional, relevant preprints.

      • The text is very clearly and very well written. Figures are clear and accurate for most cases. There are some open questions:

      • Fig. 1B: The number of dots betwenn graph and legend do not match. The dots are not n=12 for both genotypes. Additionally: What do the symbols in the circles in the graph stand for? This is also in another later figure unclear.

      • Fig. 2C: The current IF presentation (overlay MHCII with Ki67) is not very helpful. An additional image that shows only the Ki67 signal in the MHCII mask would be very helpful.

      • Fig. 4B: BMDCs of which culture day were used for these experiments?

      • Fig. 4A and D shows the same representative cells for two biological messages, which is only moderately convincing regarding a "general" phenotype.

      • Fig. 5, B: Scale bars are missing.

      __Revision Plan: __We will fix all these points.

      Reviewer #3 (Significance (Required)):

      Strengths and Advance:

      The study provides strong data and a very detailed analysis of how the Arp2/3 complex regulates stages of Langerhans cell development and homeostasis. The role of the Arp2/3 complex as regulator of actin branching, which is involved in many cellular functions, has previously not been reported for this cell type. Previous research in immune cells have already studied the Arp2/3 complex, but studies were focussed on its role in migration and the majority of published phenotypes related to cell migration. While there are already a number of in vitro studies showing that the Arp2/3 complex can regulate aspects of cell cycle control or cell death in non-immune cells, most of these studies were performed with immortalized, non-immune cell lines, which can be more easily manipulated to dissect mechanistic aspects of the cellular phenotype, but are limited in their physiological interpretation. Hence, it is a major strength of this study to investigate the effects of Arp2/3 in a primary immune cell type, directly in the native and physiological environment. This is important because in vitro data from other cell types cannot be easily extrapolated to any other cell type and it is critical for our understanding to collect physiological data from tissues, where the biology really happens. The finding that the Arp2/3 complex regulates the tissue-residency of Langerhans cell through processes that are unrelated to migration are partially unexpected, shifting the view of this protein complex's physiological role to other cell biological processes, e.g. regulation of cell proliferation.

      Limitations: The limitations of the study are detailed in the five major points listed above. The study accumulates many experiments that characterize the phenotype of Arpc4-depleted cells, showing signs of DNA damage in Langerhans cells and cultures of BMDCs. How the Arp2/3 complex would mechanistically mediate the observed effects on DNA damage and repairs have not been addressed. It also remains open whether this is due to the effects of the Arp2/3 complex in the nucleus or the cytosol, which would be biologically extremely important to understand. Above that, there are some discrepancies regarding the phenotype of the BMDC model, which does neither entirely match the Langerhans cell phenotype in the tissue (reduced proliferation, LC derive from different progenitors), nor other endogenous DC populations, which should also derive from similar progenitors.

      Audience and reviewer background:

      In its current form, the manuscript will already be of interest for several research fields: Langerhans cell and dendritic cell homeostasis, immune cell trafficking, actin and cytoskeleton regulation in immune cells, physiological role of actin-regulating proteins. My own field of expertise is immune cell trafficking in mouse models, leukocyte migration and cytoskeletal regulation. I cannot judge the analysis and clustering of the bulk RNA sequencing data.

      3. Description of the revisions that have already been incorporated in the transferred manuscript

      Please insert a point-by-point reply describing the revisions that were already carried out and included in the transferred manuscript. If no revisions have been carried out yet, please leave this section empty.

      • *

      4. Description of analyses that authors prefer not to carry out

      Please include a point-by-point response explaining why some of the requested data or additional analyses might not be necessary or cannot be provided within the scope of a revision. This can be due to time or resource limitations or in case of disagreement about the necessity of such additional data given the scope of the study. Please leave empty if not applicable.

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      Summary:

      • This is a study in experimental mice employing both in vitro and, importantly, in vivo approaches. EPIDERMAL LANGERHANS CELLS serve as a paradigm for the maintenance of homeostasis of myeloid cells in a tissue, epidermis in this case. In addition to well known functions of the ACTIN NETWORK in cell migration, chemotaxis, cell adherence and phagocytosis the authors reveal a critical function of actin networks in the survival of cells in their home tissue.

      • Actin-related proteins (Arp), specifically here the Arp2/3 complex, are necessary to form the filamentous actin networks. The authors use conditional knock-out mice where Arpc4 (an essential component of the Arp2/3 complex) is deleted under the control of CD11c, the most prominent dendritic cell marker which is also expressed on Langerhans cells. In normal mice, epidermal Langerhans cells reside in the epidermis virtually life-long. They initially settle the epidermis around and few days after birth an establish a dense network by a burst of proliferation and then they "linger on" by low level maintenance proliferation. In the epidermis of Arpc4 knock-out mice Langerhans cells also start off with this proliferative burst but, strikingly, they do not stay but are massively reduced by the age of 8-12 weeks.

      • The analyses of this decline revealed that

      a) the shape (number of nuclear lobes) and integrity of cell nuclei was compromised; they were fragile and ruptured to some degree when Arpc4 was knocked out, i.e., the Arp2/3 complex was missing;

      b) DNA damage, as detected by staining for gamma-H2Ax or 53BP1 accumulated when Arpc4 was knocked out, i.e., the Arp2/3 complex was missing;

      c) recruitment of DNA repair molecules was inhibited when Arpc4 was knocked out, i.e., the Arp2/3 complex was missing;

      d) gene signatures of interferon signaling and response were increased when Arpc4 was knocked out, i.e., the Arp2/3 complex was missing;

      e) in vivo migration of dendritic cells and Langerhans cells from the skin to the draining lymph nodes in an inflammatory setting (FITC painting of the skin) was impaired when Arpc4 was knocked out, i.e., the Arp2/3 complex was missing;

      f) the persistence of the typical dense network of Langerhans cells in the epidermis, created by proliferation shortly after birth, is abrogated when Arpc4 was knocked out, i.e., the Arp2/3 complex was missing. Importantly, this was not the case for myeloid cell populations that settle a tissue without needing that initial burst of proliferation. For instance, numbers of colonic macrophages were not affected when Arpc4 was knocked out, i.e., the Arp2/3 complex was missing.

      • Thus, the authors conclude that the Arp2/3 complex is essential by its formation of actin networks to maintain the integrity of nuclei and ensure DNA repair thereby ascertaining the maintenance proliferation of Langerhans cells and, as the consequence, the persistence of the dense epidermal netowrk of Langerhans cells.

      • Up-to-date methodology from the fields of cell biology and cellular immunology (cell isolation from tissues, immunofluorescence, multiparameter flow cytometry, FISH, "good old" - but important - transmission electronmicroscopy, etc.) was used at high quality (e.g., immunofluorescence pictures!). Quantitative and qualitative analytical methods were timely and appropriate (e.g., Voronoi diagrams, cell shape profiling tools, Cre-lox gene-deletion technology, etc.). Importantly, the authors used a clever method, that they had developed several years ago, namely the analysis of dendritic cell migration in microchannels of defined widths. Molecular biology methods such as RNAseq were also employed and analysed by appropriate bioinformatic tools.

      Major comments:

      • ARE THE KEY CONCLUSIONS CONVINCING? Yes, they are.

      • SHOULD THE AUTHORS QUALIFY SOME OF THEIR CLAIMS AS PRELIMINARY OR SPECULATIVE, OR REMOVE THEM ALTOGETHER? No, I think it is ok as it stands. The authors are wording their claims and conclusions not apodictically but cautiously, as it should be. They point out explicitely which lines of investigations they did not follow up here.

      • WOULD ADDITIONAL EXPERIMENTS BE ESSENTIAL TO SUPPORT THE CLAIMS OF THE PAPER? REQUEST ADDITIONAL EXPERIMENTS ONLY WHERE NECESSARY FOR THE PAPER AS IT IS, AND DO NOT ASK AUTHORS TO OPEN NEW LINES OF EXPERIMENTATION. I think that the here presented experimental evidence suffices to support the conclusions drawn. No additional experiments are necessary.

      • ARE THE SUGGESTED EXPERIMENTS REALISTIC IN TERMS OF TIME AND RESOURCES? IT WOULD HELP IF YOU COULD ADD AN ESTIMATED COST AND TIME INVESTMENT FOR SUBSTANTIAL EXPERIMENTS. Not applicable.

      • ARE THE DATA AND THE METHODS PRESENTED IN SUCH A WAY THAT THEY CAN BE REPRODUCED? Yes, they are.

      • ARE THE EXPERIMENTS ADEQUATELY REPLICATED AND STATISTICAL ANALYSIS ADEQUATE? Yes.

      Minor comments:

      • SPECIFIC EXPERIMENTAL ISSUES THAT ARE EASILY ADDRESSABLE. None

      • ARE PRIOR STUDIES REFERENCED APPROPRIATELY? Essentially yes. Regarding the reduction / loss of the adult epidermal Langerhans cell network, it may be of some interest to also refer to / discuss to another one of the few examples of this phenomenon. There, the initial burst of proliferation is followed by reduced proliferation and increased apoptosis when a critical member of the mTOR signaling cascade is conditionally knocked out (Blood 123:217, 2014).

      • ARE THE TEXT AND FIGURES CLEAR AND ACCURATE? Yes they are. Figures are well arranged for easy comprehension.

      • DO YOU HAVE SUGGESTIONS THAT WOULD HELP THE AUTHORS IMPROVE THE PRESENTATION OF THEIR DATA AND CONCLUSIONS?

      • Materials & Methods. The authors write, regarding flow cytometry of epidermal cells: "Briefly, 1cm2 of back skin from 8-14 weeks old female wild-type and knockout littermates was dissociated in 0.25 mg/mL Liberase (Sigma, cat. #5401020001) and 0.5 mg/mL DNase (Sigma, cat.#10104159001) in 1 mL of RPMI (Sigma) and mechanically disaggregated in Eppendorf tubes, FOLLOWED BY INCUBATED for 2 h at 37 {degree sign}C." Followed by what?

      • Materials & Methods. BMDC electronmicroscopy. What is "IF". Please specify.

      • RESULTS in gene expression analyses. The authors observe some increase in apoptosis (as detected by cleaved-Caspase-3 staining). Is this observation in immunofluorescence also evident in the RNAseq data (where the IFN changes were seen), i.e., in Figure 5.

      • Figure 7 F and G. Perhaps the authors may want to swap upper and lower panels in F or G, so that macrophage FACS plots and bar graphs are in the same row - ob, obiously, DC plots and bars likewise.

      • Figure 7H. "Gating strategy in ArpC4WT Lung (previously gated in Live CD45+ cells)" - The lower row is knock-out, not WT. This is indicated correctly in the legand, but in the figure both rows are labeled as WT.

      • The reference by Park et al. 2021 is missing in the list.

      • Figure 1D. Sure, the bar graphs are meant to say "CD11c"? The FACS plots show "CD11b".

      • As to cDC1. In Figure 1D the FACS plot shows an absence of CD103+ cDC1 cells. In contrast, In Figure 7A-left side panel, there is not difference in cDC1 cells between WT and KO mice. Is therefore the flow cytometry plot in Figure 1D not representative regarding cDC1 cells? Correct?

      Significance

      • DESCRIBE THE NATURE AND SIGNIFICANCE OF THE ADVANCE (E.G. CONCEPTUAL, TECHNICAL, CLINICAL) FOR THE FIELD. This is a conceptual advance. It adds a big step to our understanding of how immune cells in tissues (which all come from the bone marrow or are seeded before birth from embryonal hematopoietic organs such as yolk sac and fetal liver) can remain resident in these tissues. For cell types such as Langerhans cells, which establish their final population density within their tissues of residence, the presented finding convincingly buttress the role of proliferation and thereby the role for the actin-related protein complex 2/3 (Arp2/3).

      • PLACE THE WORK IN THE CONTEXT OF THE EXISTING LITERATURE (PROVIDE REFERENCES, WHERE APPROPRIATE). While we know much about actin-related proteins (Arp), as correctly cited by the authors, this knowledge is derived mostly from in vitro studies. The submitted study translates the findings to an in vivo setting for the first time.

      • STATE WHAT AUDIENCE MIGHT BE INTERESTED IN AND INFLUENCED BY THE REPORTED FINDINGS. Skin immunologists foremost, but these findings are of interest to the entire community of immunologists, but also cell biologists.

      • DEFINE YOUR FIELD OF EXPERTISE. My expertise is in skin immunology, in particular skin dendritic cells including Langerhans cells.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Revision Plan

      June 28, 2025

      Manuscript number: RC-2025-02982

      Corresponding author(s): Babita Madan, Nathan Harmston, David Virshup

      General Statements In Wnt signaling, the relative contributions of ‘canonical (β-catenin dependent) and non- canonical (β-catenin independent) signaling remains unclear. Here, we exploited a unique and highly robust in vivo system to study this. Our study is therefore the first comprehensive analysis of the β-catenin independent arm of the Wnt signaling pathway in a cancer model and illustrates how a combination of cis-regulatory elements can determine Wnt-dependent gene regulation.

      We are very pleased with the reviews; it appears we communicated our goal and our findings clearly, and in general the reviewers felt the study provided important information, was well planned and the results were “crystal clear”.

      While more experiments could strengthen and extend the results, we feel our results are already very robust due to the use of multiple replicates in the in vivo system.

      The Virshup lab in Singapore closed July 1, 2025 and so additional wet lab studies are not feasible.

      1. Description of the planned revisions

      Insert here a point-by-point reply that explains what revisions, additional experimentations and analyses are planned to address the points raised by the referees.

      Below we address the points raised by the reviewers:

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      The article has the merit of addressing a yet-unsolved question in the field (if beta-catenin can also repress genes) that only a limited number of studies has tried to tackle, and provides useful datasets for the community. The system employed is elegant, and the PORCN-inhibition bypassed by a ____constitutively active beta-catenin is clean and ingenious. The manuscript is clearly written.

      We thank the reviewers for their kind comments on the importance of the data. Our orthotopic model provides the opportunity to exploit robust Wnt regulated gene expression in a more responsive microenvironment than can be achieved in cell culture and simple flank xenograft models.

      Here we propose a series of thoughts and comments that, if addressed, would in our opinion improve the study and its description.

      1) We wonder why a xenograft model is necessary to induce a robust WNT response in these cells.

      The authors describe this set-up as a strength, as it is supposed to provide physiological relevance, yet it is not clear to us why this is the case.

      We welcome the opportunity to expand on our choice of an orthotopic xenograft model. It has been long established that cancer cells behave differently in different in vivo locations (Killion et al., 1998). Building on this, we confirmed this in our system that identical pancreatic cancer cells treated with the same PORCN inhibitor had very different responses in vitro, in the flank and in their orthotopic environment (Madan et al., 2018). To quote from our prior paper, “Looking only at genes decreasing more than 1.5-fold at 56 hours, we would have missed 817/1867 (44%) genes using a subcutaneous or 939/1867 (50%) using an in vitro model. Thus, the overall response to Wnt inhibition was reduced in the subcutaneous model and further blunted in vitro. An orthotopic model more accurately represents real biology.

      The reason for this is presumably the very different orthotopic microenvironment, including tissue appropriate stroma-tumor, vascular-tumor, lymphatic-tumor, and humoral interactions.

      Moreover, as the authors homogenize the tumour to perform bulk RNA-seq, we wonder whether they are not only sequencing mRNA from the cancer cells but also from infiltrating immune cells and/or from the surrounding connective tissue.

      In experiments generating RNA-seq data from xenograft models, the resulting sequences can originate from either human (graft) or mouse (host). In order to account for this, following standard practice, we filtered reads prior to alignment using Xenome (Conway et al., 2012). We have added additional text to the methods to highlight this step in our pipeline.

      2) If, as the established view implies, Wnt/beta-catenin only leads to gene activation, pathway

      inhibition would free up the transcriptional machinery - there is evidence that some of its constituents are rate-limiting. The free machinery could now activate some other genes: the net effect observed would be their increased transcription upon Wnt inhibition, irrespective of beta-catenin's presence. Could this be considered as an alternative explanation for the genes that go up in both control and bcat4A lines upon ETC-159 administration? This, we think, is in part corroborated by the absence of enrichment of biological pathways in this group of genes. The genes that are beta-catenin-dependent and downregulated (D&R) are obviously not affected by this alternative explanation.

      This is an interesting suggestion, and we will incorporate this thought into our discussion of potential mechanisms.

      3) The authors mention that HPAF-II are Wnt addicted. Do they die upon ETC-159 administration, and is this effect rescued by exogenous WNT addition?

      We and several others have previously reported that Wnt-addicted cells differentiate and/or senesce upon Wnt withdrawal in vivo but not in vitro. This is related to the broader changes in gene expression in the orthotopic tumors. The effect of PORCN inhibition has been demonstrated by us and others and is rescued by Wnt addition, downstream activation of Wnt signaling by e.g. APC mutation, and, as we show here, stabilized β-catenin.

      4) Line 120: the authors write about Figure 1C: "This demonstrates that the growth of β-cat4A cells in vitro largely requires Wnts to activate β-catenin signaling." The opposite is true: control cells require WNT and form less colony with ETC159, while β-cat4A are independent from Wnt secretion.

      We appreciate the reviewer pointing out our mis-statement. This error has now been corrected in the revised manuscript.

      5) Lines 226-229: "The β-catenin independent repressed genes were notably enriched for motifs bound by homeobox factors including GSC2, POU6F2, and MSGN1. This finding aligns with the known role of non-canonical Wnt signaling in embryonic development" This statement assumes that target genes, or at least the beta-catenin independent ones, are conserved across tissues, including developing organs. This contrasts with the view that target genes in addition to the usual suspects (e.g., AXIN2, SP5 etc.) are modulated tissue-specifically - a view that the authors (and in fact, these reviewers) appear to support in their introduction.

      We agree with the reviewer that a majority of Wnt-regulated genes are tissue specific. Indeed, the β-catenin independent Wnt-repressed genes may also be tissue specific. In other tissues, we speculate that other β-catenin independent Wnt-repressed genes may also have homeobox factor binding sites as well and so the general concept remains valid. We do not have sufficient data in other tissues to resolve this issue.

      7) The luciferase and mutagenesis work presented in Figure 5 are crystal-clear. One important aspect that remains to be clarified is whether beta-catenin and/or TCF7L2 directly bind to the NRE sites. Or do the authors hypothesize that another factor binds here? We suggest the authors to show TCF7L2 binding tracks at the NRE/WRE motifs in the main figures.

      A major question of the reviewers was, can we provide additional evidence that the NRE is bound by LEF/TCF family members. Our initial analysis of more datasets indicates TCF7L2 peaks are enriched on NREs in Wnt-β-catenin responsive cell lines like HCT116 and PANC1. These analyses appear to further support the model that the NRE binds TCF7L2, but we fully agree these analyses can neither prove nor disprove the model.

      In our revision, we will analyze additional cut and run datasets as suggested and look at the HEPG2 datasets suggested by reviewer 1. We are concerned about tissue specificity as some of the genes are not expressed in e.g. HEPG2 or HEK293 cells where datasets are available. However, our data continues to support a functional role for the NRE in the modulation of β-catenin regulated genes. The best analysis would be more ChIP-Seq or Cut and Run assays on tissues, not cells, but these studies are beyond what we can do.

      What about other TCF/LEFs and beta-catenin? Are there relevant datasets that could be explored to test whether all these bind here during Wnt activation?

      As above, We will analyze additional ChIP and Cut & Run datasets to address this question looking at β-catenin and other LEF/TCF family members. We also reflect on the fact that ChIP-Seq does not necessarily imply that the targeted factor (e.g.,TCF7L2) is bound in the target site in all the cells.

      The repression might be mediated by beta-catenin partnering with other factors that bind the NRE even by competing with TCF7L2.

      We appreciate the insightful comments and now incorporate this into our discussion.

      8) In general, while we greatly appreciate the github page to replicate the analysis, we feel that the methods' description is lacking, both concerning analytical details (e.g., the cutoff used for MACS2 peak calling) or basic experimental planning (e.g, how the luciferase assays were performed).

      We thank reviewers for the suggestions and will add further details regarding the analysis

      and experimental planning in the method sections.

      9) The paper might benefit from the addition of quality metrics on the RNA-seq. Interesting for example would be to see a PCA analysis - as a more unbiased approach - rather than the kmeans clustering.

      We have this data and will add it to the revised manuscript.

      10) It seems that in Figure 3A the clusters are mislabelled as compared to Figure 3B and Figure 1. Here the repressor clusters are labelled DR5, DR6 and DN7 whereas in the rest of the paper they are labelled DR1, DR2 and DN1.

      Thank you for pointing out this issue. This has now been corrected in Figure 3.

      11) The siCTNNB1 in Figure 5E is described to be a significant effect in the text whereas in Figure 5E this has a p value of 0.075.

      Thank you for pointing out the p value did not cross the 0.05 threshold. We have modified the text to remove the word ‘significant’.

      12) Line 396: 'Here we confirm and extend the identification of a TCF-dependent negative regulatory element (NRE), where beta-catenin interacts with TCF to repress gene expression'. We suggest caution in stating that beta-catenin and TCF directly repress gene expression by binding to NRE. In the current state the authors do not show that TCF & beta-catenin bind to these elements. See our previous point 7.

      We appreciate the suggestion of the reviewers. We will be more cautious in our interpretation.

      Further suggestions - or food for thoughts:

      13) A frequently asked question in the field concerns the off-target effects of CHIR treatment as opposed to exposure to WNT ligands. CHIR treatment - in parallel to bcat4A overexpression - would allow the authors to delineate WNT independent effects of CHIR treatment and settle this debate.

      We thank the reviewers for suggesting this interesting experiment to sort out the non- Wnt effects of GSK3 inhibition. Such a study would require a new set of animal experiments and a different analysis; we think this is beyond the scope of this manuscript.

      14) We think that Figure 4C could be strengthened by adding more public TCF-related datasets (e.g., from ENCODE) to confirm the observation across datasets from different laboratories. In particular, the HEPG2 could possibly be improved as there is an excellent TCF7L2 dataset available by ENCODE.

      Many more datasets are easily searchable through: https://www.factorbook.org/.

      As above, we will analyze the HEPG2 dataset. We plan on updating Fig 4 with data from analysis from different datasets such as (Blauwkamp et al., 2008; Zambanini et al., 2022).

      15) The authors show that there is no specific spacing between NREs and WREs. This implies that it is not likely that TCF7L2 recognizes both at the same time through the C-clamp. Do the authors think that there might be a pattern discernible when comparing the location of WRE and NRE in relation to the TCF7L2 ChIP-seq peak summit? This would allow inferring whether TCF7L2 more likely directly binds the WRE (presumably) and if the NRE is bound by a cofactor.

      This is an interesting suggestion and we will conduct this analysis as suggested on available datasets (as the result may be different in different tissue types with varying degrees of Wnt/β-catenin signaling).

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Overall, the study provides a solid framework for understanding noncanonical transcriptional ____outputs of Wnt signaling in a cancer context. The majority of the conclusions are well supported by the data. However, there are a few substantive points that require clarification before the manuscript is ready for publication.

      Major Comments

      The authors' central claim-that their findings represent a comprehensive analysis of the β-catenin- independent arm of Wnt signaling and uncover a "cis-regulatory grammar" governing Wnt-dependent gene activation versus repression-is overstated based on the presented data.

      We appreciate the reviewers concern and will temper our language.

      Specifically:

      • Figure 3B identifies TF-binding motifs enriched among different Wnt-responsive gene clusters, but the authors only functionally investigate the role of NRE in β-catenin-dependent repression, particularly in the context of TCF motif interaction.

      • To support a broader claim regarding cis-regulatory grammar, additional analyses are required:

      o What is the distribution of NREs across all clusters? Are they exclusive to β-catenin-dependent repressed clusters, or more broadly present?

      The distribution of the NREs is a statistically significant enrichment; they are observed in the repressed clusters more frequently than expected by chance alone, but they are present elsewhere as well. We have tempered our language around the cis-regulatory grammar.

      o Do NREs interact with other enriched motifs beyond TCF? Is this interaction specific to repression or also involved in activation?

      This is an interesting question beyond the scope of this analysis. Our dataset uses multiple interventions; The NREs may interact with other motifs but we would need more transcriptional analysis data with biological intervention to assess this.

      o A more comprehensive analysis of cis-element combinations is needed to draw conclusions about their collective influence on gene regulation across clusters.

      We agree; This would be a great question if we had TCF binding data in our orthotopic xenograft model. It’s a dataset we do not have, nor do we have the resources to pursue this.

      Other important clarifications:

      • The use of the term "wild-type" to describe HPAF-II cells is potentially misleading. These cells are not genetically wild-type and harbor multiple oncogenic alterations.

      Thank you for pointing this out. We will use the word “parental” in the text

      • The manuscript does not clearly present the kinetics of Wnt target downregulation upon ETC-159 treatment of HPAF-II cells. Understanding whether repression mirrors activation dynamics (e.g., delay or persistence of Wnt effects) is essential to interpreting the system's temporal behavior.

      We previously addressed the temporal dynamics of activation and repression in our more comprehensive time course papers (Harmston et al., 2020; Madan et al., 2018); there are differences in the dynamics that are difficult to tease out in this new dataset as the density of time points is less. Having said that, we will compare the time course and annotate the sets of genes identified in this current study with the data from our original study to provide more information on the temporal dynamics of this system.

      Minor Comment

      • The statement in Figure 1C (lines 119-120) that "growth of β-cat4A cells in vitro largely requires Wnts to activate β-catenin signaling" is inconsistent with the data. As the β-cat4A allele encodes a constitutively active form of β-catenin, Wnts should not be required. Please revise this conclusion for clarity.

      We thank the reviewers for pointing out this mis-statement. We have corrected this.

      Reviewer #2 (Significance (Required)):

      This study offers a systematic classification of Wnt-responsive gene expression dynamics, differentiating between β-catenin-dependent and -independent mechanisms. The insights into temporal expression patterns and the potential role of the NRE element in transcriptional repression add depth to our understanding of Wnt signaling. These findings have relevance for developmental biology, stem cell biology, and cancer research-particularly in understanding how Wnt-mediated repression may influence tumor progression and therapeutic response.

      Nice review; thank you.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      … The work advances understanding of Wnt mediated repression via cis regulatory grammar.

      Major Concerns

      1) Statistical thresholds and clustering - The criteria for classifying β catenin-dependent versus - independent genes rely on FDR cutoffs above or below 0.1. If the more stringent cutoff of 0.05 was used, how many genes would still be considered Wnt regulated?

      We can readily address this in a revised manuscript.

      2) Validation of selected β catenin-dependent and -independent Wnt target genes - While the authors identify β catenin-dependent and -independent Wnt target genes (4 selected genes from different clusters in Fig.2), RT-qPCR based validation of Axin2 has been performed in Fig. S3. Authors should also validate other 3 genes as well.

      We had considered performing qPCR to re-validate some of our gene-expression changes but qPCR analyses is intrinsically more error prone than RNAseq, and we believe the literature shows that qPCR from the same samples will not add any extra utility. Previous studies that have examined this question have reported excellent correlation between the RNAseq and pPCR (Asmann et al., 2009; Griffith et al., 2010; Wu et al., 2014).

      3) NRE mechanistic insight - The most important contribution of this manuscript is the extension of the importance of the NRE motif in Wnt regulated enhancers. But the mutagenesis data provided is insufficient to conclusively nail down that the NREs are responsible for the repression. The effects in the synthetic reporters in Fig. 4D are small - it's not clear that there is much activity in the MimRep to be repressed by the NREs. The data in Fig. 5 is a better context to test the importance of the NREs, but the authors use deletion analysis which is too imprecise and settle for single nucleotide mutants in individual NREs in the ABHD11-AS1 reporter. In the Axin2 report, they mutate sequences outside of the NRE. It's too inconsistent. They should mutate 3 or 4 positions within the NRE in BOTH motifs in the context of the ABHD11-AS1 reporter. Same for the Axin2 reporter.

      We feel our analysis, coupled with the Kim paper (Kim et al., 2017), support the role of the NRE. We agree that more data is always desirable, but in our current circumstances are we cannot add additional wetlab experiments.

      Regarding Figure 4D, this is a synthetic system lacking the endogenous elements in the promoter. We agree with the reviewer that the effect is small but we would also like to point out that adding the well-established 2WRE in front of the MinRep increased the transcription activity to 1.5 fold, which is of similar magnitude change of the 2NRE deceasing the transcriptional activity 1/1.5 = 0.6.

      In Kim et al, it was shown that mutating the 11st nucleotide of the NRE motif showed the strongest effect, so we followed their lead in only mutated the 11st nucleotide in ABHD11- AS1 NRE.

      As for the putative NRE sequence present in AXIN2 promoter, its downstream sequence is polyT (__GTGTTTTTTTT__TTTTTTTTTT), if we only mutate 11st nucleotide to G/C, we could create similar sequence to NRE, so we mutated sequences outside of the NRE to fully disrupt it.

      4) Even if the mutagenesis is done more completely, the results simply replicate that of the Goentoro group. In Kim et al 2017, they provide suggestive (not convincing) evidence that TCFs directly bind to the NRE. The authors of this manuscript should explore that in more detail, e.g., can purified TCF bind to the NRE sequence? Can the authors design experiments to directly test whether beta-catenin is acting through the NRE - their data currently only demonstrates that the NRE provide a negative input to the reporters - that's an important mechanistic difference.

      We point out that our minimal reporter studies with the NRE showed a repressive effect in HCT116 (colorectal cancer cells with stabilized β-catenin) but not HT1080 (sarcoma cells with low Wnt) supporting the importance of β-catenin acting through the NRE (Figs. 4D, 4E).

      We fully agree with the reviewers that additional study of TCF interaction with the NRE would be of value. While EMSA and culture-based ChIP assays would be of some value, the best study should be done in vivo where the system is most robust. We are not in a position to do these studies, but we will add in a discussion of this as a limitation of the current study.

      5) In vertebrates, some TCFs are more repressive than others and TLEs have been implicated in repressive. Exploring these factors in the context of the NRE would increase the value of this story.

      This is an interesting idea but beyond the scope of the current manuscript. It is likely this would be dependent on tissue specific expression, local expression levels, and local binding of co-factors. As we look at other TCF members in other datasets we may be able to address this. Further wetlab experiments are beyond the scope of this work.

      **Referees cross-commenting**

      I respectfully disagree that the luciferase assays are sufficient. Using deletion analysis to understand the function of specific binding sites is insufficient and the more specific mutations of NREs are incomplete. Regarding this paper extending our knowledge of direct transcriptional repression by Wnt/bcat signaling, I don't agree that it adds much - there are numerous datasets where Wnt signaling activates and represses genes - the trick is determining whether any of the repressed genes are the result and direct regulation by TCF/bcat. They don't explore that. The main finding is an extension of the work by Lea Goentoro on the importance of the NRE motif, but they don't address whether TCF directly associates with this sequence. Goentoro argued in the 2017 paper that it does, but that data is unconvincing to me. Can purified TCF bind the NRE? Without that information (done carefully) this manuscript is very limited.

      We respectfully disagree with the reviewer regarding the contribution of this manuscript. There are certainly many datasets looking at Wnt-regulated genes in tissue culture, but these cell-based studies are underpowered to really understand Wnt biology. There are only two papers, ours and Cantú’s, that address Wnt repressed genes in any depth. No prior papers have differentiated β-catenin dependent from β-catenin independent genes before, and certainly not in an orthotopic animal model.

      A major impact of our study is the finding that only 10% of Wnt regulated genes are independent of β-catenin, at least in pancreatic cancer. We feel this is a major contribution. We further add to this analysis by re-enforcing/extend the prior evidence on the NRE in humans (and correct the motif sequence!) for Wnt-repressed genes. Our data supports the fine-tuning of the Wnt/β-catenin regulated genes by a cis-regulatory grammar.

      Reviewer #3 (Significance (Required)):

      Overall, this study advances our understanding of the dual roles of Wnt signaling in gene activation and repression, highlighting the role of the NRE motif. But this is an extension of the original NRE paper (Kim et al 2017) with no mechanistic advance beyond that original work. The transcriptomics in the first part of the manuscript have some value, but similar data sets already exist.

      We respectfully but strongly disagree with the reviewer. First, our work examines the NRE in a large-scale in vivo transcriptome dataset, significantly extending the candidate gene approach of Kim et al. Secondly, we disagree with the comment that “similar data sets already exist.” Indeed, reviewer 1 (C. Cantú) specifically pointed out we had addressed an “yet-unsolved question in the field” on whether and how β-catenin repressed genes.

      __3. __Description of the revisions that have already been incorporated in the transferred manuscript

      To date we have only corrected several typographical errors.

      1. Description of analyses that authors prefer not to carry out

      We fully agree with the reviewers that additional study of TCF interaction with the NRE would be of value. While EMSA and cell culture-based ChIP assays would be of some modest value, they have already been done in vitro by Kim et al. (Kim et al., 2017) and the best next study should be done in vivo in Wnt-responsive cancers or tissues where the biology is most robust (Madan et al., 2018) . We are not in a position to do these studies, but we will add this into the discussion as a limitation of the current study. We also acknowledge that the NRE may interact with other currently unidentified factors.

      Reviewer 1 asked about considering experiments to determine non-Wnt effects of GSK3 inhibitors like CHIR. Such a study, while interesting, would require a new set of animal experiments and a different analysis; we think this is beyond the scope of this manuscript.

      Finally, we note that the Virshup lab at Duke-NUS Medical School in Singapore, where these in vivo studies were performed, has closed as of July 1, 2025 and the various lab members have moved on to new adventures. Because of this, we are unable to undertake new wet-lab studies.

      Thank you for your consideration,

      For the authors,

      David Virshup

      References:

      Asmann YW, Klee EW, Thompson EA, Perez EA, Middha S, Oberg AL, Therneau TM, Smith DI,

      Poland GA, Wieben ED, Kocher J-PA. 2009. 3’ tag digital gene expression profiling of human

      brain and universal reference RNA using Illumina Genome Analyzer. BMC Genom 10:531–

      1. doi:10.1186/1471-2164-10-531

      Blauwkamp TA, Chang MV, Cadigan KM. 2008. Novel TCF-binding sites specify transcriptional

      repression by Wnt signalling. The EMBO Journal 27:1436–1446. doi:10.1038/emboj.2008.80

      Conway T, Wazny J, Bromage A, Tymms M, Sooraj D, Williams ED, Beresford-Smith B. 2012.

      Xenome—a tool for classifying reads from xenograft samples. Bioinformatics 28:i172–i178.

      doi:10.1093/bioinformatics/bts236

      Griffith M, Griffith OL, Mwenifumbo J, Goya R, Morrissy AS, Morin RD, Corbett R, Tang MJ, Hou

      Y-C, Pugh TJ, Robertson G, Chittaranjan S, Ally A, Asano JK, Chan SY, Li HI, McDonald H,

      Teague K, Zhao Y, Zeng T, Delaney A, Hirst M, Morin GB, Jones SJM, Tai IT, Marra MA.

      1. Alternative expression analysis by RNA sequencing. Nat Methods 7:843–847.

      doi:10.1038/nmeth.1503

      Harmston N, Lim JYS, Arqués O, Palmer HG, Petretto E, Virshup DM, Madan B. 2020.

      Widespread Repression of Gene Expression in Cancer by a Wnt/β-Catenin/MAPK Pathway.

      Cancer Res 81:464–475. doi:10.1158/0008-5472.can-20-2129

      Killion JJ, Radinsky R, Fidler IJ. 1998. Orthotopic models are necessary to predict therapy of

      transplantable tumors in mice. Cancer metastasis reviews 17:279–284.

      Kim K, Cho J, Hilzinger TS, Nunns H, Liu A, Ryba BE, Goentoro L. 2017. Two-Element

      Transcriptional Regulation in the Canonical Wnt Pathway. Current Biology 27:2357-2364.e5.

      doi:10.1016/j.cub.2017.06.037

      Madan B, Harmston N, Nallan G, Montoya A, Faull P, Petretto E, Virshup DM. 2018. Temporal

      dynamics of Wnt-dependent transcriptome reveals an oncogenic Wnt/MYC/ribosome axis. J

      Clin Invest 128:5620–5633. doi:10.1172/jci122383

      Wu AR, Neff NF, Kalisky T, Dalerba P, Treutlein B, Rothenberg ME, Mburu FM, Mantalas GL,

      Sim S, Clarke MF, Quake SR. 2014. Quantitative assessment of single-cell RNA-sequencing

      methods. Nat Methods 11:41–46. doi:10.1038/nmeth.2694

      Zambanini G, Nordin A, Jonasson M, Pagella P, Cantù C. 2022. A new cut&run low volume-

      urea (LoV-U) protocol optimized for transcriptional co-factors uncovers Wnt/b-catenin tissue-

      specific genomic targets. Development 149. doi:10.1242/dev.201124

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      MHC (Major Histocompatibility Complex) genes have long been mentioned as cases of trans-species polymorphism (TSP), where alleles might have their most recent common ancestor with alleles in a different species, rather than other alleles in the same species (e.g., a human MHC allele might coalesce with a chimp MHC allele, more recently than the two coalesce with other alleles in either species). This paper provides a more complete estimate of the extent and ages of TSP in primate MHC loci. The data clearly support deep TSP linking alleles in humans to (in some cases) old world monkeys, but the amount of TSP varies between loci.

      Strengths:

      The authors use publicly available datasets to build phylogenetic trees of MHC alleles and loci. From these trees they are able to estimate whether there is compelling support for Trans-species polymorphisms (TSPs) using Bayes Factor tests comparing different alternative hypotheses for tree shape. The phylogenetic methods are state-of-the-art and appropriate to the task.

      The authors supplement their analyses of TSP with estimates of selection (e.g., dN/dS ratios) on motifs within the MHC protein. They confirm what one would suspect: classical MHC genes exhibit stronger selection at amino acid residues that are part of the peptide binding region, and non-classical MHC exhibit less evidence of selection. The selected sites are associated with various diseases in GWAS studies.

      Weaknesses:

      An implication drawn from this paper (and previous literature) is that MHC has atypically high rates of TSP. However, rates of TSP are not estimated for other genes or gene families, so readers have no basis of comparison. No framework to know whether the depth and frequency of TSP is unusual for MHC family genes, relative to other random genes in the genome, or immune genes in particular. I expect (from previous work on the topic), that MHC is indeed exceptional in this regard, but some direct comparison would provide greater confidence in this conclusion.

      We agree that context is important! Although we expected to get the most interesting results from studying the classical genes, we did include the non-classical genes specifically for comparison. They are located in the same genomic region, have multiple sequences catalogued in different species (although they are less diverse), and perform critical immune functions. We think this is a more appropriate set to compare with the classical MHC genes than, say, a random set of genes. Interestingly, we did not detect TSP in these non-classical genes. This likely means that the classical MHC genes are truly exceptional, but it could also mean that not enough sequences are available for the non-classical genes to detect TSP. 

      It would be very interesting to repeat this analysis for another gene family to see whether such deep TSP also occurs in other immune or non-immune gene families. We are lucky that decades of past work and a dedicated database exists for cataloging MHC sequences. When this level of sequence collection is achieved for other highly polymorphic gene families, it will be possible to do a comparable analysis.  

      Given the companion paper's evidence of genic gain/loss, it seems like there is a real risk that the present study under-estimates TSP, if cases of TSP have been obscured by the loss of the TSP-carrying gene paralog from some lineages needed to detect the TSP. Are the present analyses simply calculating rates of TSP of observed alleles, or are you able to infer TSP rates conditional on rates of gene gain/loss?

      We were not able to infer TSP rates conditional on rates of gene gain/loss. We agree that some cases of TSP were likely lost due to the loss of a gene paralog from certain species. Furthermore, the dearth of MHC whole-region and allele sequences available for most primates makes it difficult to detect TSP, even if the gene paralog is still present. Long-read sequencing of more primate genomes should help with this. We agree that it would also be very interesting to study TSPs that were maintained for millions of years but were lost recently.

      Figure 5 (and 6) provide regression model fits (red lines in panel C) relating evolutionary rates (y axis not labeled) to site distance from the peptide binding groove, on the protein product. This is a nice result. I wonder, however, whether a linear model (as opposed to non-linear) is the most biologically reasonable choice, and whether non-linear functions have been evaluated. The authors might consider generalized additive models (GAMs) as an alternative that relaxes linearity assumptions.

      We agree that a linear model is likely not the most biologically reasonable choice, as protein interactions are complex. However, we made the choice to implement the simplest model because the evolutionary rates we inferred were relative, making parameters relatively meaningless. We were mainly concerned with positive or negative slopes and we leave the rest to the protein interaction experts.

      The connection between rapidly evolving sites, and disease associations (lines 382-3) is very interesting. However, this is not being presented as a statistical test of association. The authors note that fast-evolving amino acids all have at least one association: but is this really more disease-association than a random amino acid in the MHC? Or, a randomly chosen polymorphic amino acid in MHC? A statistical test confirming an excess of disease associations would strengthen this claim.

      To strengthen this claim, we added Figure 6 - Figure Supplement 7 (NOTE: this needs to be renamed as Table 1 - Figure Supplement 1, which the eLife template does not allow). Here, we plot the number of associations for each amino acid against evolutionary rate, revealing a significant positive slope in Class I. We also added explanatory text for this figure in lines 400-404.

      Reviewer #2 (Public review):

      Summary

      In this study, the authors characterized population genetic variation in the MHC locus across primates and looked for signals of long-term balancing selection (specifically trans-species polymorphism, TSP) in this highly polymorphic region. To carry out these tasks, they used Bayesian methods for phylogenetic inference (i.e. BEAST2) and applied a new Bayesian test to quantify evidence supporting monophyly vs. transspecies polymorphism for each exon across different species pairs. Their results, although mostly confirmatory, represent the most comprehensive analyses of primate MHC evolution to date and novel findings or possible discrepancies are clearly pointed out. However, as the authors discuss, the available data are insufficient to fully capture primates' MHC evolution.

      Strengths of the paper include: using appropriate methods and statistically rigorous analyses; very clear figures and detailed description of the results methods that make it easy to follow despite the complexity of the region and approach; a clever test for TSP that is then complemented by positive selection tests and the protein structures for a quite comprehensive study.

      That said, weaknesses include: lack of information about how many sequences are included and whether uneven sampling across taxa might results in some comparisons without evidence for TSP; frequent reference to the companion paper instead of summarizing (at least some of) the critical relevant information (e.g., how was orthology inferred?); no mention of the quality of sequences in the database and whether there is still potential effects of mismapping or copy number variation affecting the sequence comparison.

      To address these comments, we added Tables 2-4 to allow readers to more readily understand the data we included in each group. We refer to these tables in the introduction (line 95), in the “Data” section of the results (lines 128-129), and the “Data” section of the methods (lines 532-534).  We also added text (lines 216-219 and 250-252) to more explicitly point out that our method is conservative when few sequences are available.

      We also added a paragraph to the discussion which addresses data quality and mismapping issues (lines 473-499).

      We clarified the role of our companion paper (line 49-50) by changing “In our companion paper, we explored the relationships between the different classical and non-classical genes” to “In our companion paper, we built large multi-gene trees to explore the relationships between the different classical and non-classical genes.” We also changed the text in lines 97-99 from “In our companion paper, we compared genes across dozens of species and learned more about the orthologous relationships among them” to “In our companion paper, we built trees to compare genes across dozens of species. When paired with previous literature, these trees helped us infer orthology and assign sequences to genes in some cases.”

      Reviewer #3 (Public review):

      Summary

      The study uses publicly available sequences of classical and non-classical genes from a number of primate species to assess the extent and depth of TSP across the primate phylogeny. The analyses were carried out in a coherent and, in my opinion, robust inferential framework and provided evidence for ancient (even > 30 million years) TSP at several classical class I and class II genes. The authors also characterise evolutionary rates at individual codons, map these rates onto MHC protein structures, and find that the fastest evolving codons are extremely enriched for autoimmune and infectious disease associations.

      Strengths

      The study is comprehensive, relying on a large data set, state-of-the-art phylogenetic analyses and elegant tests of TSP. The results are not entirely novel, but a synthesis and re-analysis of previous findings is extremely valuable and timely.

      Weaknesses

      I've identified weaknesses in several areas (details follow in the next section):

      -  Inadequate description and presentation of the data used

      -  Large parts of the results read like extended figure captions, which breaks the flow. - Older literature on the subject is duly cited, but the authors don't really discuss their findings in the context of this literature.

      -  The potential impact of mechanisms other than long-term maintenance of allelic lineages by balancing selection, such as interspecific introgression and incorrect orthology assessment, needs to be discussed.

      We address these comments in the more detailed section below.

      Recommendations for the authors:  

      Reviewer #1 (Recommendations for the authors):

      The abstract could benefit from being sharpened. A personal pet peeve is a common habit of saying we don't know everything about a topic (line 16 - "lack a full picture of primate MHC evolution"); We never know everything on a topic, so this is hardly a strong rationale to do more work on it. This is followed by "to start addressing this gap" - which is vague because you haven't explicitly stated any gap, you simply said we are not yet omniscent on the topic. Please clearly identify a gap in our knowledge, a question that you will be able to answer with this paper.

      That makes sense! We added another sentence to the abstract to make the specific gap clearer. Inserted “In particular, we do not know to what extent genes and alleles are retained across speciation events” in lines 16-17.

      Reviewer #2 (Recommendations for the authors):

      - Some discussion of alternative explanations when certain comparisons were not found to have TSP - is this consistent with genetic drift sometimes leading to lineage loss, or does it suggest that the proposed tradeoff between autoimmunity and pathogen recognition might differ depending on primates' life history and/or exposure to similar pathogens? Could the trade-off of pathogen to self-recognition not be as costly in some species?

      This is consistent with genetic drift, as no lineages are expected to be maintained across these distantly-diverged primates under neutral selection. These ideas are certainly possible, but our Bayes Factor test only reveals evidence (or lack thereof) for deviations from the species tree and cannot provide reasons why or why not.

      - It would be interesting to put these results on very long-term balancing selection in the context of what has been reported at the region for shorter term balancing selection. The discussion compares findings of previous genes in the literature but not regarding the time scale.

      Indeed, there is some evidence for the idea of “divergent allele advantage”, in which MHC-heterozygous individuals have a greater repertoire of peptides that they can present, leading to greater resistance against pathogens and greater fitness. This heterozygote advantage thus leads to balancing selection (Pierini and Lenz, 2018; Chowell et al., 2019). Our discussion mentions other time scales of balancing selection across the primates at the MHC and other loci, but we choose to focus more on long-term than short-term balancing selection.

      - Lines 223-226 - how is the difference in BF across exons in MHC-A to be interpreted? The paragraph is about MHC-A, but then the explanation in the last sentence is for when similar BF are observed which is not the case for MHC-A. Is this interpreted as lack of evidence for TSP? Or something about recombination or gene conversion? Or that one exon may be under balancing selection but not the other?

      Thank you for pointing out the confusing logic in this paragraph. 

      Previous: “For MHC-A, Bayes factors vary considerably depending on exon and species pair. Many sequences had to be excluded from MHC-A comparisons because they were identified as gene-converted in the \textit{GENECONV} analysis or were previously identified as recombinants \citep{Hans2017,Gleimer2011,Adams2001}. Importantly, for MHC-A we do not see concordance in Bayes factors across the different exons, whereas we do for the other gene groups. Similar Bayes factors across all exons for a given comparison is thus evidence in favor of TSP being the primary driver of the observed deep coalescence structure (rather than recombination or gene conversion).” Current (lines 228-238): 

      “For MHC-A, Bayes factors vary considerably depending on exon and species pair. Past work suggests that this gene has had a long history of gene conversion affecting different exons, resulting in different evolutionary histories for different parts of the gene \citep{Hans2017,Gleimer2011,Adams2001}. Indeed, we excluded many MHC-A sequences from our Bayes factor calculations because they were identified as gene-converted in our \textit{GENECONV} analysis or were previously suggested to be recombinants. As shown in \FIG{bayes_factors_classI}, the lack of concordance in Bayes factors across the different exons for MHC-A is evidence for gene conversion, rather than balancing selection, being the most important factor in this gene's evolution. In contrast, the other gene groups generally show concordance in Bayes factors across exons. We interpret this as evidence in favor of TSP being the primary driver of the observed deep coalescence structure for MHC-B and -C (rather than recombination or gene conversion).”

      - In Figures 5C and 6C, the points sometimes show a kind of smile pattern of possibly higher rates further from the peptide. Did authors explore other fits like a polynomial? Or, whether distance only matters in close proximity to the peptide? Out of curiosity, is it possible to map substitution time/branch into the distance to the peptide binding region for each substitution? Is there any pattern with distance to interacting proteins in non-peptide binding MHC proteins like MHC-DOA? Although they don't have a PBR they do interact with other proteins.

      Thank you for these ideas! We did not explore other fits, such as a polynomial, because we wanted to implement the simplest model. Our evolutionary rates are relative, making parameters relatively meaningless. We were mainly concerned with positive or negative slopes and we leave the rest to the protein interaction experts.

      There is most likely a relationship between evolutionary rate and the distance to interacting proteins in the non-peptide-binding molecules MHC-DM and -DO. However, there are few currently available models and it is difficult to determine which residues in these models are actually interacting. However, researchers with more experience in protein interactions would be able to undertake such an analysis. 

      - How biased is the database towards human alleles? Could this affect some of the analyses, including the coincidence of rapidly evolving sites with associations? Are there more associations than expected under some null model?

      While the database is indeed biased toward human alleles, we included only a small subset of these in order to create a more balanced data set spanning the primates. This is unlikely to affect the coincidence of rapidly-evolving sites with associations; however, we note that there are no such association studies meeting our criteria in other species, meaning the associations are only coming from studies on humans.

      - To this reader, it is unnecessary and distracting to describe the figures within the text; there are frequent sentences in the text that belongs in the figure legend instead (e.g., lines 139-143, 208-211, 214-215, 328-330, etc). It would be better to focus on the results from the figures and then cite the figure, where the colors and exactly what is plotted can be in the figure legend.

      We appreciate these comments on overall flow. We removed lines 139-143 and lengthened the Figure 2 caption (and associated supplementary figure captions) to contain all necessary detail. We removed lines 208-211 and 214-215 and lengthened the captions for Figure 3, Figure 4, and associated supplementary figures. We removed a sentence from lines 303-304.  

      - I'm still concerned that the poor mappability of short-read data is contributing in some ways. Were the sequences in the database mostly from long-reads? Was nucleotide diversity calculated directly from the sequences in the database or from another human dataset? Is missing data at some sites accounted for in the denominator?

      The sequences in the database are mostly from short reads and come from a wide array of labs. We have added a paragraph to the discussion to explain the limitations of this (lines 473-499). However, the nucleotide diversity calculations shown in Figure 1 do not rely on the MHC database; rather, they are calculated from the human genomes in the 1000 Genomes project. Nucleotide diversity would be calculable for other species, but we did not do so for exactly the reason you mention–too much missing data.

      - The Figure 2 and Figure 3 supplements took me a little bit to understand - is it really worth pointing out the top 5 Bayes-factor comparisons when there is no evidence for TSP? A lot of the colored squares are not actually supporting TSP but in the grids you can't see which are and which aren't without looking at the Bayes Factor. I wonder if it would help if only those with BF > 100 were shown? Or if these were marked some other way so that it was easy to see where TSPs are supported.

      Thank you for your perspective on these figures! We initially limited them to only show >100 Bayes factors for each gene group and region, but some gene groups have no high Bayes factors. Additionally, the “summary” tree pictured in these figures is necessarily a simplification of the full space of posterior trees. We felt that showing low Bayes factor comparisons could help readers understand this relationship. For example, allele sets that look non-monophyletic on the summary tree may still have a low Bayes factor, showing that they are generally monophyletic throughout the larger (un-visualizable) space of trees.

      Reviewer #3 (Recommendations for the authors):

      Specific comments

      Abstract

      I think the abstract would benefit from some editing. For example, one might get the impression that you equate allele sharing, which would normally be understood as sharing identical sequences, with sharing ancestral allelic lineages. This distinction is important because you can have many TSPs without sharing identical allele sequences. In l. 20 you write about "deep TSP", which requires either definition of reformulation. In l. 21-23 you seem to suggest that long-term retention of allelic lineages is surprising in the light of rapid sequence evolution - it may be, depending on the evolutionary scenarios one is willing to accept, but perhaps it's not necessary to float such a suggestion in the abstract where it cannot be properly explained due to space constraints? The last sequence needs a qualifier like "in some cases".

      Thank you for catching these! For clarity, we changed several words:

      ● “alleles” to “allelic lineages” in line 13

      ● “deep” to “ancient” in line 21

      ● “Despite” to “in addition to” in line 22

      ● Added “in some cases” to line 28

      Results - Overall, parts of the results read like extended figure captions. I understand that the authors want to make the complex figures accessible to the reader. However, including so much information in the text disrupts the flow and makes it difficult to follow what the main findings and conclusions are.

      We appreciate these comments on overall flow. We removed lines 139-143 and lengthened the Figure 2 caption (and associated supplementary figure captions) to contain all necessary detail. We removed lines 208-211 and 214-215 and lengthened the captions for Figure 3, Figure 4, and associated supplementary figures. We removed a sentence from lines 303-304.  

      l. 37-39 such a short sentence on non-classical MHC is necessarily an oversimplification, I suggest it be expanded or deleted.

      There is certainly a lot to say about each of these genes! While we do not have space in this paper’s introduction to get into these genes’ myriad functions, we added a reference to our companion paper in lines 40-41:

      “See the appendices of our companion paper \citep{Fortier2024a} for more detail.”

      These appendices are extensive, and readers can find details and references for literature on each specific gene there. In addition, several genes are mentioned in analyses further on in the results, and their specific functions are discussed in more detail when they arise.

      l. 47 -49 It would be helpful to briefly outline your criteria for selecting these 17 genes, even if this is repeated later.

      Thank you! For greater clarity, we changed the text (lines 50-52) from “Here, we look within 17 specific genes to characterize trans-species polymorphism, a phenomenon characteristic of long-term balancing selection.” to “Here, we look within 17 specific genes---representing classical, non-classical, Class I, and Class II ---to characterize trans-species polymorphism, a phenomenon characteristic of long-term balancing selection.“  

      l.85-87 I may be completely wrong, but couldn't problems with establishing orthology in some cases lead to false inferences of TSP, even in primates? Or do you think the data are of sufficient quality to ignore such a possibility? (you touch on this in pp. 261-264)

      Yes, problems with establishing orthology can lead to false inferences of TSP, and it has happened before. For example, older studies that used only exon 2 (binding-site-encoding) of the MHC-DRB genes inferred trees that grouped NWM sequences with ape and OWM sequences. Thus, they named these NWM genes MHC-DRB3 and -DRB5 to suggest orthology with ape/OWM MHC-DRB3 and -DRB5, and they also suggested possible TSP between the groups. However, later studies that used non-binding-site-encoding exons or introns noticed that these NWM sequences did not group with ape/OWM sequences (which now shared the same name), providing evidence against orthology. This illustrates that establishing orthology is critical before assessing TSP (as is comparing across regions). This is part of the reason we published a companion paper (https://doi.org/10.7554/eLife.103545.1), which clears up questions of orthology and supports the analyses we did in this paper. In cases where orthology was ambiguous, this also helped us to be conservative in our conclusions here. The problems with ambiguous gene assignment are also discussed in lines 488-499.

      l. 88-93 is the first place (others are pp. 109-118 and 460-484) where a fuller description of the data used would be welcome. It's clear that the amount of data from different species varies enormously, not only in the number of alleles per locus, but also in the loci for which polymorphism data are available. In such a synthesis study, one would expect at least a tabulation of the data used in the appendices and perhaps a summary table in the main article.

      l. 109-118 Again, a more quantitative summary of the data used, with reference to a table, would be useful.

      Thank you! To address these comments, we added Tables 2-4 to allow readers to more readily understand the data we included in each group. We refer to these tables in the introduction (line 95), in the “Data” section of the results (lines 128-129), and the “Data” section of the methods (lines 532-534). Supplementary Files listing the exact alleles and sequences used in each group are also included in the resubmission.

      l. 123-124 here you say that the definition of the "16 gene groups" is in the methods (probably pp. 471-484), but it would be useful to present an informative summary of your rationale in the introduction or here

      Thank you! We agree that it is helpful to outline these groups earlier. We have changed the paragraph in lines 123-135 from: 

      “We considered 16 gene groups and two or three different genic regions for each group: exon 2 alone, exon 3 alone, and/or exon 4 alone. Exons 2 and 3 encode the peptide-binding region (PBR) for the Class I proteins, and exon 2 alone encodes the PBR for the Class II proteins. For the Class I genes, we also considered exon 4 alone because it is comparable in size to exons 2 and 3 and provides a good contrast to the PBR-encoding exons. See the Methods for more detail on how gene groups were defined. Because few intron sequences were available for non-human species, we did not include them in our analyses.” To: 

      “We considered 16 gene groups spanning MHC classes and functions. These include the classical Class I genes (MHC-A-related, MHC-B-related, MHC-C-related), non-classical Class I genes (MHC-E-related, MHC-F-related, MHC-G-related), classical Class IIA genes (MHC-DRA-related, MHC-DQA-related, MHC-DPA-related), classical Class IIB genes (MHC-DRB-related, MHC-DQB-related, MHC-DPB-related), non-classical Class IIA genes (MHC-DMA-related, MHC-DOA-related, and non-classical Class IIB genes (MHC-DMB-related, MHC-DOB-related). We studied two or three different genic regions for each group: exon 2 alone, exon 3 alone, and (for Class I) exon 4 alone. Exons 2 and 3 encode the peptide-binding region (PBR) for the Class I proteins, and exon 2 alone encodes the PBR for the Class II proteins. For the Class I genes, we also considered exon 4 alone because it is comparable in size to exons 2 and 3 and provides a good contrast to the PBR-encoding exons. Because few intron sequences were available for non-human species, we did not include them in our analyses.”

      l. 100 "alleles" -> "allelic lineages"

      Thank you for catching this. We have changed this language in line 104.

      l. 227-238 it's important to discuss the possible effect of the number of sequences available on the detectability of TSP - this is particularly important as the properties of MHC genealogies may differ considerably from those expected for neutral genealogies.

      This is a good point that may not be obvious to readers. We have added several sentences to clarify this:

      Line 193-194: “In a neutral genealogy, monophyly of each species' sequences is expected.”

      Line 213-219: “Note that the number of sequences available for comparison also affects the detectability of TSP. For example, if the only sequences available are from the same allelic lineage, they will coalesce more recently in the past than they would with alleles from a different lineage and would not show evidence for TSP. This means our method is well-suited to detect TSP when a diverse set of allele sequences are available, but it is conservative when there are few alleles to test. There were few available alleles for some non-classical genes, such as MHC-F, and some species, such as gibbon.”

      Line 244-246: “However, since there are fewer alleles available for the non-classical genes, we note that our method is likely to be conservative here.”

      l. 301 and 624-41 it's been difficult for me to understand the rationale behind using rates at mostly gap positions as the baseline and I'd be grateful for a more extensive explanation

      Normalizing the rates posed a difficult problem. We couldn’t include every single sequence in the same alignment because BEAST’s computational needs scale with the number of sequences. Therefore, we had to run BEAST separately on smaller alignments focused on a single group of genes at a time. We still wanted to be able to compare evolutionary rates across genes, but because of the way SubstBMA is implemented, evolutionary rates are relative, not absolute. Recall that to help us compare the trees, we included a common set of “backbone” sequences in all of the 16 alignments. This set included some highly-diverged genes. Initially, we planned to use 4-fold degenerate sites as the baseline sites for normalization, but there simply weren’t enough of them once we included the “backbone” set on top of the already highly diverse set of sequences in each alignment. This diversity presented an opportunity.  In BEAST, gaps are treated as missing and do not contribute any probability to the relevant branch or site (https://groups.google.com/g/beast-users/c/ixrGUA1p4OM/m/P4R2fCDWMUoJ?pli=1). So, we figured that sites that were “mostly gap” (a gap in all the human backbone sequences but with an insertion in some sequence) were mostly not contributing to the inference of the phylogeny or evolutionary rates. Because the “backbone” sequences are common to all alignments, making the “mostly gap” sites somewhat comparable across sets while not affecting inferred rates, we figured they would be a reasonable choice for the normalization (for lack of a better option).

      We added text to lines 680 and 691-693 to clarify this rationale.

      l. 380-84 this overview seems rather superficial. Would it be possible to provide a more quantitative summary?

      To make this more quantitative, we plotted the number of associations for each amino acid against evolutionary rate, shown in Figure 6 - Figure Supplement 7 (NOTE: this needs to be renamed as Table 1 - Figure Supplement 1, which the template does not allow). This reveals a significant positive slope for the Class I genes, but not for Class II. We also added explanatory text for this figure in lines 400-404.

      Discussion - your approach to detecting TSP is elegant but deserves discussion of its limitations and, in particular, a clear explanation of why detecting TSP rather than quantifying its extent is more important in the context of this work. Another important point for discussion is alternative explanations for the patterns of TSP or, more broadly, gene tree - species tree discordance. Although long-term maintenance of allelic lineages due to long-term balancing selection is probably the most convincing explanation for the observed TSP, interspecific introgression and incorrect orthology assessment may also have contributed, and it would be good to see what the authors think about the potential contribution of these two factors.

      Overall, our goal was to use modern statistical methods and data to more confidently assess how ancient the TSP is at each gene. We have added several lines of text (as noted elsewhere in this document) to more clearly illustrate the limitations of our approach. We also agree that interspecific introgression and incorrect orthology assessment can cause similar patterns to arise. We attempted to minimize the effect of incorrect orthology assessment by creating multi-gene trees and exploring reference primate genomes, as described in our companion paper (https://doi.org/10.7554/eLife.103545.1), but cannot eliminate it completely. We have added a paragraph to the discussion to address this (lines 488-499). Interspecific introgression could also cause gene tree-species tree discordance, but we are not sure about how systematic this would have to be to cause the overall patterns we observe, nor about how likely it would have been for various clades of primates across the world.

      l. 421 -424 A more nuanced discussion distinguishing between positive selection, which facilitates the establishment of a mutation, and directional selection, which leads to its fixation, would be useful here.

      We added clarification to this sentence (line 443-445), from “Indeed, within the phylogeny we find that the most rapidly-evolving codons are substituted at around 2--4-fold the baseline rate.” to “Indeed, within the phylogeny we find that the most rapidly-evolving codons are substituted at around 2--4-fold the baseline rate, generating ample mutations upon which selection may act.”

      l. 432-434 You write here about the shaping of TCR repertoires, but I couldn't find any such information in the paper, including Table 1.

      We did not include a separate column for these, so they can be hard to spot. They take the form of “TCR 𝛽 Interaction Probability >50%”, “TCR Expression (TRAV38-1)”, or “TCR 𝛼 Interaction Probability >50%” and can be found in Table 1.

      l. 436-442 Here a more detailed discussion in the context of divergent allelic advantage and even the evolution of new S-type specificities in plants would be valuable.

      We added an additional citation to a review article to this sentence (lines 438-439).  

      l. 443 The use of the word "training" here is confusing, suggesting some kind of "education" during the lifetime of the animal.

      We agree that “train” is not an entirely appropriate term, and have changed it to “evolve” (line 465).

      489-491 What data were used for these calculations?

      Apologies for missing this citation! We used the 1000 genomes project data, and the citation has been updated (line 541-542).

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      PAPS is required for all sulfotransferase reactions in which a sulfate group is covalently attached to amino acid residues of proteins or to side chains of proteoglycans. This sulfation is crucial for properly organizing the apical extracellular matrix (aECM) and expanding the lumen in the Drosophila salivary gland. Loss of Papss potentially leads to decreased sulfation, disorganizing the aECM, and defects in lumen formation. In addition, Papss loss destabilizes the Golgi structures.

      In Papss mutants, several changes occur in the salivary gland lumen of Drosophila. The tube lumen is very thin and shows irregular apical protrusions. There is a disorganization of the apical membrane and a compaction of the apical extracellular matrix (aECM). The Golgi structures and intracellular transport are disturbed. In addition, the ZP domain proteins Piopio (Pio) and Dumpy (Dpy) lose their normal distribution in the lumen, which leads to condensation and dissociation of the Dpy-positive aECM structure from the apical membrane. This results in a thin and irregularly dilated lumen.

      1. The authors describe various changes in the lumen in mutants, from thin lumen to irregular expansion. I would like to know the correct lumen diameter, and length, besides the total area, by which one can recognize thin and irregular.

      We have included quantification of the length and diameter of the salivary gland lumen in the stage 16 salivary glands of control, Papss mutant, and salivary gland-specific rescue embryos (Figure 1J, K). As described, Papss mutant embryos have two distinct phenotypes, one group with a thin lumen along the entire lumen and the other group with irregular lumen shapes. Therefore, we separated the two groups for quantification of lumen diameter. Additionally, we have analyzed the degree of variability for the lumen diameter to better capture the range of phenotypes observed (Figure 1K'). These quantifications enable a more precise assessment of lumen morphology, allowing readers to distinguish between thin and irregular lumen phenotypes.

      The rescue is about 30%, which is not as good as expected. Maybe the wrong isoform was taken. Is it possible to find out which isoform is expressed in the salivary glands, e.g., by RNA in situ Hyb? This could then be used to analyze a more focused rescue beyond the paper.

      Thank you for this point, but we do not agree that the rescue is about 30%. In Papss mutants, about 50% of the embryos show the thin lumen phenotype whereas the other 50% show irregular lumen shapes. In the rescue embryos with a WT Papss, few embryos showed thin lumen phenotypes. About 40% of the rescue embryos showed "normal, fully expanded" lumen shapes, and the remaining 60% showed either irregular (thin+expanded) or slightly overexpanded lumen. It is not uncommon that rescue with the Gal4/UAS system results in a partial rescue because it is often not easy to achieve the balance of the proper amount of the protein with the overexpression system.

      To address the possibility that the wrong isoform was used, we performed in situ hybridization to examine the expression of different Papss spice forms in the salivary gland. We used probes that detect subsets of splice forms: A/B/C/F/G, D/H, and E/F/H, and found that all probes showed expression in the salivary gland, with varying intensities. The original probe, which detects all splice forms, showed the strongest signals in the salivary gland compared to the new probes which detect only a subset. However, the difference in the signal intensity may be due to the longer length of the original probe (>800 bp) compared to other probes that were made with much smaller regions (~200 bp). Digoxigenin in the DIG labeling kit for mRNA detection labels the uridine nucleotide in the transcript, and the probes with weaker signals contain fewer uridines (all: 147; ABCFG, 29; D, 36; EFH, 66). We also used the Papss-PD isoform, for a salivary gland-specific rescue experiment and obtained similar results to those with Papss-PE (Figure 1I-L, Figure 4D and E).

      Furthermore, we performed additional experiments to validate our findings. We performed a rescue experiment with a mutant form of Papss that has mutations in the critical rescues of the catalytic domains of the enzyme, which failed to rescue any phenotypes, including the thin lumen phenotype (Figure 1H, J-L), the number and intensity of WGA puncta (Figure 3I, I'), and cell death (Figure 4D, E). These results provide strong evidence that the defects observed in Papss mutants are due to the lack of sulfation.

      Crb is a transmembrane protein on the apicolateral side of the membrane. Accordingly, the apicolateral distribution can be seen in the control and the mutant. I believe there are no apparent differences here, not even in the amount of expression. However, the view of the cells (frame) shows possible differences. To be sure, a more in-depth analysis of the images is required. Confocal Z-stack images, with 3D visualization and orthogonal projections to analyze the membranes showing Crb staining together with a suitable membrane marker (e.g. SAS or Uif). This is the only way to show whether Crb is incorrectly distributed. Statistics of several papas mutants would also be desirable and not just a single representative image. When do the observed changes in Crb distribution occur in the development of the tubes, only during stage 16? Is papss only involved in the maintenance of the apical membrane? This is particularly important when considering the SJ and AJ, because the latter show no change in the mutants.

      We appreciate your suggestion to more thoroughly analyze Crb distribution. We adapted a method from a previous study (Olivares-Castiñeira and Llimargas, 2017) to quantify Crb signals in the subapical region and apical free region of salivary gland cells. Using E-Cad signals as a reference, we marked the apical cell boundaries of individual cells and calculated the intensity of Crb signals in the subapical region (along the cell membrane) and in the apical free region. We focused on the expanded region of the SG lumen in Papss mutants for quantification, as the thin lumen region was challenging to analyze. This quantification is included in Figure 2D. Statistical analysis shows that Crb signals were more dispersed in SG cells in Papss mutants compared to WT.

      A change in the ECM is only inferred based on the WGA localization. This is too few to make a clear statement. WGA is only an indirect marker of the cell surface and glycosylated proteins, but it does not indicate whether the ECM is altered in its composition and expression. Other important factors are missing here. In addition, only a single observation is shown, and statistics are missing.

      We understand your concern that WGA localization alone may not be sufficient to conclude changes in the ECM. However, we observed that luminal WGA signals colocalize with Dpy-YFP in the WT SG (Figure 5-figure supplement 2C), suggesting that WGA detects the aECM structure containing Dpy. The similar behavior of WGA and Dpy-YFP signals in multiple genotypes further supports this idea. In Papss mutants with a thin lumen phenotype, both WGA and Dpy-YFP signals are condensed (Figure 5E-H), and in pio mutants, both are absent from the lumen (Figure 6B, D). We analyzed WGA signals in over 25 samples of WT and Papss mutants, observing consistent phenotypes. We have included the number of samples in the text. While we acknowledge that WGA is an indirect marker, our data suggest that it is a reliable indicator of the aECM structure containing Dpy.

      Reduced WGA staining is seen in papss mutants, but this could be due to other circumstances. To be sure, a statistic with the number of dots must be shown, as well as an intensity blot on several independent samples. The images are from single confocal sections. It could be that the dots appear in a different Z-plane. Therefore, a 3D visualization of the voxels must be shown to identify and, at best, quantify the dots in the organ.

      We have quantified cytoplasmic punctate WGA signals. Using spinning disk microscopy with super-resolution technology (Olympus SpinSR10 Sora), we obtained high-resolution images of cytoplasmic punctate signals of WGA in WT, Papss mutant, and rescue SGs with the WT and mutant forms of Papss-PD. We then generated 3D reconstructed images of these signals using Imaris software (Figure 3E-H) and quantified the number and intensity of puncta. Statistical analysis of these data confirms the reduction of the number and intensity of WGA puncta in Papss mutants (Figure 3I, I'). The number of WGA puncta was restored by expressing WT Papss but not the mutant form. By using 3D visualization and quantification, we have ensured that our results are not limited to a single confocal section and account for potential variations in Z-plane localization of the dots.

      A colocalization analysis (statistics) should be shown for the overlap of WGA with ManII-GFP.

      Since WGA labels multiple structures, including the nuclear envelope and ECM structures, we focused on assessing the colocalization of the cytoplasmic WGA punctate signals and ManII-GFP signals. Standard colocalization analysis methods, such as Pearson's correlation coefficient or Mander's overlap coefficient, would be confounded by WGA signals in other tissues. Therefore, we used a fluorescent intensity line profile to examine the spatial relationship between WGA and ManII-GFP signals in WT and Papss mutants (Figure 3L, L').

      I do not understand how the authors describe "statistics of secretory vesicles" as an axis in Figure 3p. The TEM images do not show labeled secretory vesicles but empty structures that could be vesicles.

      Previous studies have analyzed "filled" electron-dense secretory vesicles in TEM images of SG cells (Myat and Andrew, 2002, Cell; Fox et al., 2010, J Cell Biol; Chung and Andrew, 2014, Development). Consistent with these studies, our WT TEM images show these vesicles. In contrast, Papss mutants show a mix of filled and empty structures. For quantification, we specifically counted the filled electron-dense vesicles (now Figure 3W). A clear description of our analysis is provided in the figure legend.

      1. The quality of the presented TEM images is too low to judge any difference between control and mutants. Therefore, the supplement must present them in better detail (higher pixel number?).

      We disagree that the quality of the presented TEM images is too low. Our TEM images have sufficient resolution to reveal details of many subcellular structures, such as mitochondrial cisternae. The pdf file of the original submission may not have been high resolution. To address this concern, we have provided several original high-quality TEM images of both WT and Papss mutants at various magnifications in Figure 2-figure supplement 2. Additionally, we have included low-magnification TEM images of WT and Papss mutants in Figure 2H and I to provide a clearer view of the overall SG lumen morphology.

      Line 266: the conclusion that apical trafficking is "significantly impaired" does not hold. This implies that Papss is essential for apical trafficking, but the analyzed ECM proteins (Pio, Dumpy) are found apically enriched in the mutants, and Dumpy is even secreted. Moreover, they analyze only one marker, Sec15, and don't provide data about the quantification of the secretion of proteins.

      We agree and have revised our statement to "defective sulfation affects Golgi structures and multiple routes of intracellular trafficking".

      DCP-1 was used to detect apoptosis in the glands to analyze acellular regions. However, the authors compare ST16 control with ST15 mutant salivary glands, which is problematic. Further, it is not commented on how many embryos were analyzed and how often they detect the dying cells in control and mutant embryos. This part must be improved.

      Thank you for the comment. We agree and have included quantification. We used stage 16 samples from WT and Papss mutants to quantify acellular regions. Since DCP-1 signals are only present at a specific stage of apoptosis, some acellular regions do not show DCP-1 signals. Therefore, we counted acellular regions regardless of DCP-1 signals. We also quantified this in rescue embryos with WT and mutant forms of Papss, which show complete rescue with WT and no rescue with the mutant form, respectively. The graph with a statistical analysis is included (Figure 4D, E).

      WGA and Dumpy show similar condensed patterns within the tube lumen. The authors show that dumpy is enriched from stage 14 onwards. How is it with WGA? Does it show the same pattern from stage 14 to 16? Papss mutants can suffer from a developmental delay in organizing the ECM or lack of internalization of luminal proteins during/after tube expansion, which is the case in the trachea.

      Dpy-YFP and WGA show overlapping signals in the SG lumen throughout morphogenesis. Dpy-YFP is SG enriched in the lumen from stage 11, not stage 14 (Figure 5-figure supplement 2). WGA is also detected in the lumen throughout SG morphogenesis, similar to Dpy. In the original supplemental figure, only a stage 16 SG image was shown for co-localization of Dpy-YFP and WGA signals in the SG lumen. We have now included images from stage 14 and 15 in Figure 5-figure supplement 2C.

      Given that luminal Pio signals are lost at stage 16 only and that Dpy signals appear as condensed structures in the lumen of Papss mutants, it suggests that the internalization of luminal proteins is not impaired in Papss mutants. Rather, these proteins are secreted but fail to organize properly.

      Line 366. Luminal morphology is characterized by bulging and constrictions. In the trachea, bulges indicate the deformation of the apical membrane and the detachment from the aECM. I can see constrictions and the collapsed tube lumen in Fig. 6C, but I don't find the bulges of the apical membrane in pio and Np mutants. Maybe showing it more clearly and with better quality will be helpful.

      Since the bulging phenotype appears to vary from sample to sample, we have revised the description of the phenotype to "constrictions" to more accurately reflect the consistent observations. We quantified the number of constrictions along the entire lumen in pio and Np mutants and included the graph in Figure 6F.

      The authors state that Papss controls luminal secretion of Pio and Dumpy, as they observe reduced luminal staining of both in papss mutants. However, the mCh-Pio and Dumpy-YFP are secreted towards the lumen. Does papss overexpression change Pio and Dumpy secretion towards the lumen, and could this be another explanation for the multiple phenotypes?

      Thank you for the comment. To clarify, we did not observe reduced luminal staining of Pio and Dpy in Papss mutants, nor did we state that Papss controls luminal secretion of Pio and Dpy. In Papss mutants, Pio luminal signals are absent specifically at stage 16 (Figure 5H), whereas strong luminal Pio signals are present until stage 15 (Figure 5G). For Dpy-YFP, the signals are not reduced but condensed in Papss mutants from stages 14-16 (Figure 5D, H).

      It remains unclear whether the apparent loss of Pio signals is due to a loss of Pio protein in the lumen or due to epitope masking resulting from protein aggregation or condensation. As noted in our response to Comment 11 internalization of luminal proteins seems unaffected in Papss mutants; proteins like Pio and Dpy are secreted into the lumen but fail to properly organize. Therefore, we have not tested whether Papss overexpression alters the secretion of Pio or Dpy.

      In our original submission, we incorrectly stated that uniform luminal mCh-Pio signals were unchanged in Papss mutants. Upon closer examination, we found these signals are absent in the expanded luminal region in stage 16 SG (where Dpy-YFP is also absent), and weak mCh-Pio signals colocalize with the condensed Dpy-YFP signals (Figure 5C, D). We have revised the text accordingly.

      Regulation of luminal ZP protein level is essential to modulate the tube expansion; therefore, Np releases Pio and Dumpy in a controlled manner during st15/16. Thus, the analysis of Pio and Dumpy in NP overexpression embryos will be critical to this manuscript to understand more about the control of luminal ZP matrix proteins.

      Thanks for the insightful suggestion. We overexpressed both the WT and mutant form of Np using UAS-Np.WT and UAS-Np.S990A lines (Drees et al., 2019) and analyzed mCh-Pio, Pio antibody, and Dpy-YFP signals. It is important to note that these overexpression experiments were done in the presence of the endogenous WT Np.

      Overexpression of Np.WT led to increased levels of mCh-Pio, Pio, and Dpy-YFP signals in the lumen and at the apical membrane. In contrast, overexpression of Np.S990A resulted in a near complete loss of luminal mCh-Pio signals. Pio antibody signals remained strong at the apical membrane but was weaker in the luminal filamentous structures compared to WT.

      Due to the GFP tag present in the UAS-Np.S990A line, we could not reliably analyze Dpy-YFP signals because of overlapping fluorescent signals in the same channel. However, the filamentous Pio signals in the lumen co-localized with GFP signals, suggesting that these structures might also include Dpy-YFP, although this cannot be confirmed definitively.

      These results suggest that overexpressed Np.S990A may act in a dominant-negative manner, competing with endogenous Np and impairing proper cleavage of Pio (and mCh-Pio). Nevertheless, some level of cleavage by endogenous Np still appears to occur, as indicated by the residual luminal filamentous Pio signals. These new findings have been incorporated into the revised manuscript and are shown in Figure 6H and 6I.

      Minor: Fig. 5 C': mChe-Pio and Dumpy-YFP are mixed up at the top of the images.

      Thanks for catching this error. It has been corrected.

      Sup. Fig7. A shows Pio in purple but B in green. Please indicate it correctly.

      It has been corrected.

      Reviewer #1 (Significance (Required)):

      In 2023, the functions of Pio, Dumpy, and Np in the tracheal tubes of Drosophila were published. The study here shows similar results, with the difference that the salivary glands do not possess chitin, but the two ZP proteins Pio and Dumpy take over its function. It is, therefore, a significant and exciting extension of the known function of the three proteins to another tube system. In addition, the authors identify papss as a new protein and show its essential function in forming the luminal matrix in the salivary glands. Considering the high degree of conservation of these proteins in other species, the results presented are crucial for future analyses and will have further implications for tubular development, including humans.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Summary: There is growing appreciation for the important of luminal (apical) ECM in tube development, but such matrices are much less well understood than basal ECMs. Here the authors provide insights into the aECM that shapes the Drosophila salivary gland (SG) tube and the importance of PAPSS-dependent sulfation in its organization and function.

      The first part of the paper focuses on careful phenotypic characterization of papss mutants, using multiple markers and TEM. This revealed reduced markers of sulfation (Alcian Blue staining) and defects in both apical and basal ECM organization, Golgi (but not ER) morphology, number and localization of other endosomal compartments, plus increased cell death. The authors focus on the fact that papss mutants have an irregular SG lumen diameter, with both narrowed regions and bulged regions. They address the pleiotropy, showing that preventing the cell death and resultant gaps in the tube did not rescue the SG luminal shape defects and discussing similarities and differences between the papss mutant phenotype and those caused by more general trafficking defects. The analysis uses a papss nonsense mutant from an EMS screen - I appreciate the rigorous approach the authors took to analyze transheterozygotes (as well as homozygotes) plus rescued animals in order to rule out effects of linked mutations.

      The 2nd part of the paper focuses on the SG aECM, showing that Dpy and Pio ZP protein fusions localize abnormally in papss mutants and that these ZP mutants (and Np protease mutants) have similar SG lumen shaping defects to the papss mutants. A key conclusion is that SG lumen defects correlate with loss of a Pio+Dpy-dependent filamentous structure in the lumen. These data suggest that ZP protein misregulation could explain this part of the papss phenotype.

      Overall, the text is very well written and clear. Figures are clearly labeled. The methods involve rigorous genetic approaches, microscopy, and quantifications/statistics and are documented appropriately. The findings are convincing, with just a few things about the fusions needing clarification.

      minor comments 1. Although the Dpy and Qsm fusions are published reagents, it would still be helpful to mention whether the tags are C-terminal as suggested by the nomenclature, and whether Westerns have been performed, since (as discussed for Pio) cleavage could also affect the appearance of these fusions.

      Thanks for the comment. Dpy-YFP is a knock-in line in which YFP is inserted into the middle of the dpy locus (Lye et al., 2014; the insertion site is available on Flybase). mCh-Qsm is also a knock-in line, with mCh inserted near the N-terminus of the qsm gene using phi-mediated recombination using the qsmMI07716 line (Chu and Hayashi, 2021; insertion site available on Flybase). Based on this, we have updated the nomenclature from Qsm-mCh to mCh-Qsm throughout the manuscript to accurately reflect the tag position. To our knowledge, no western blot has been performed on Dpy-YFP or mCh-Qsm lines. We have mentioned this explicitly in the Discussion.

      The Dpy-YFP reagent is a non-functional fusion and therefore may not be a wholly reliable reporter of Dpy localization. There is no antibody confirmation. As other reagents are not available to my knowledge, this issue can be addressed with text acknowledgement of possible caveats.

      Thanks for raising this important point. We have added a caveat in the Discussion noting this limitation and the need for additional tools, such as an antibody or a functional fusion protein, to confirm the localization of Dpy.

      TEM was done by standard chemical fixation, which is fine for viewing intracellular organelles, but high pressure freezing probably would do a better job of preserving aECM structure, which looks fairly bad in Fig. 2G WT, without evidence of the filamentous structures seen by light microscopy. Nevertheless, the images are sufficient for showing the extreme disorganization of aECM in papss mutants.

      We agree that HPF is a better method and intent to use the HPF system in future studies. We acknowledge that chemical fixation contributes to the appearance of a gap between the apical membrane and the aECM, which we did not observe in the HPF/FS method (Chung and Andrew, 2014). Despite this, the TEM images still clearly reveal that Papss mutants show a much thinner and more electron-dense aECM compared to WT (Figure 2H, I), consistent to the condensed WGA, Dpy, and Pio signals in our confocal analyses. As the reviewer mentioned, we believe that the current TEM data are sufficient to support the conclusion of severe aECM disorganization and Golgi defects in Papss mutants.

      The authors may consider citing some of the work that has been done on sulfation in nematodes, e.g. as reviewed here: https://pubmed.ncbi.nlm.nih.gov/35223994/ Sulfation has been tied to multiple aspects of nematode aECM organization, though not specifically to ZP proteins.

      Thank you for the suggestion. Pioneering studies in C. elegans have highlighted the key role of sulfation in diverse developmental processes, including neuronal organization, reproductive tissue development, and phenotypic plasticity. We have now cited several works.

      Reviewer #2 (Significance (Required)):

      This study will be of interest to researchers studying developmental morphogenesis in general and specifically tube biology or the aECM. It should be particularly of interest to those studying sulfation or ZP proteins (which are broadly present in aECMs across organisms, including humans).

      This study adds to the literature demonstrating the importance of luminal matrix in shaping tubular organs and greatly advances understanding of the luminal matrix in the Drosophila salivary gland, an important model of tubular organ development and one that has key matrix differences (such as no chitin) compared to other highly studied Drosophila tubes like the trachea.

      The detailed description of the defects resulting from papss loss suggests that there are multiple different sulfated targets, with a subset specifically relevant to aECM biology. A limitation is that specific sulfated substrates are not identified here (e.g. are these the ZP proteins themselves or other matrix glycoproteins or lipids?); therefore it's not clear how direct or indirect the effects of papss are on ZP proteins. However, this is clearly a direction for future work and does not detract from the excellent beginning made here.

      My expertise: I am a developmental geneticist with interests in apical ECM

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      In this work Woodward et al focus on the apical extracellular matrix (aECM) in the tubular salivary gland (SG) of Drosophila. They provide new insights into the composition of this aECM, formed by ZP proteins, in particular Pio and Dumpy. They also describe the functional requirements of PAPSS, a critical enzyme involved in sulfation, in regulating the expansion of the lumen of the SG. A detailed cellular analysis of Papss mutants indicate defects in the apical membrane, the aECM and in Golgi organization. They also find that Papss control the proper organization of the Pio-Dpy matrix in the lumen. The work is well presented and the results are consistent.

      Main comments

      • This work provides a detailed description of the defects produced by the absence of Papss. In addition, it provides many interesting observations at the cellular and tissular level. However, this work lacks a clear connection between these observations and the role of sulfation. Thus, the mechanisms underlying the phenotypes observed are elusive. Efforts directed to strengthen this connection (ideally experimentally) would greatly increase the interest and relevance of this work.

      Thank you for this thoughtful comment. To directly test whether the phenotypes observed in Papss mutants are due to the loss of sulfation activity, we generated transgenic lines expressing catalytically inactive forms of Papss, UAS-PapssK193A, F593P, in which key residues in the APS kinase and ATP sulfurylase domains are mutated. Unlike WT UAS-Papss (both the Papss-PD or Papss-PE isoforms), the catalytically inactive UAS-Papssmut failed to rescue any of the phenotypes, including the thin lumen phenotype (Figure 1I-L), altered WGA signals (Figure I, I') and the cell death phenotype (Figure 4D, E). These findings strongly support the conclusion that the enzymatic sulfation activity of Papss is essential for the developmental processes described in this study.

      • A main issue that arises from this work is the role of Papss at the cellular level. The results presented convincingly indicate defects in Golgi organization in Papss mutants. Therefore, the defects observed could stem from general defects in the secretion pathway rather than from specific defects on sulfation. This could even underly general/catastrophic cellular defects and lead to cell death (as observed). This observation has different implications. Is this effect observed in SGs also observed in other cells in the embryo? If Papss has a general role in Golgi organization this would be expected, as Papss encodes the only PAPs synthatase in Drosophila. Can the authors test any other mutant that specifically affect Golgi organization and investigate whether this produces a similar phenotype to that of Papss?

      Thank you for the comment. To address whether the defects observed in Papss mutants stem from general disruption of the secretory pathway due to Golgi disorganization, we examined mutants of two key Golgi components: Grasp65 and GM130.

      In Grasp65 mutants, we observed significant defects in SG lumen morpholgy, including highly irregular SG lumen shape and multiple constrictions (100%; n=10/10). However, the lumen was not uniformly thin as in Papss mutants. In contrast, GM130 mutants-although this line was very sick and difficult to grow-showed relatively normal salivary glands morphology in the few embryos that survived to stage 16 (n=5/5). It is possible that only embryos with mild phenotypes progressed to this stages, limiting interpretation. These data have now been included in Figure 3-figure supplement 2. Overall, while Golgi disruption can affect SG morphology, the specific phenotypes seen in Papss mutants are not fully recapitulated by Grasp65 or GM130 loss.

      • A model that conveys the different observations and that proposes a function for Papss in sulfation and Golgi organization (independent or interdependent?) would help to better present the proposed conclusions. In particular, the paper would be more informative if it proposed a mechanism or hypothesis of how sulfation affects SG lumen expansion. Is sulfation regulating a factor that in turn regulates Pio-Dpy matrix? Is it regulating Pio-Dpy directly? Is it regulating a product recognized by WGA? For instance, investigating Alcian blue or sulfotyrosine staining in pio, dpy mutants could help to understand whether Pio, Dpy are targets of sulfation.

      Thank you for the comment. We're also very interested in learning whether the regulation of the Pio-Dpy matrix is a direct or indirect consequence of the loss of sulfation on these proteins. One possible scenario is that sulfation directly regulates the Pio-Dpy matrix by regulating protein stability through the formation of disulfide bonds between the conserved Cys residues responsible for ZP module polymerization. Additionally, the Dpy protein contains hundreds of EGF modules that are highly susceptible to O-glycosylation. Sulfation of the glycan groups attached to Dpy may be critical for its ability to form a filamentous structure. Without sulfation, the glycan groups on Dpy may not interact properly with the surrounding materials in the lumen, resulting in an aggregated and condensed structure. These possibilities are discussed in the Discussion.

      We have not analyzed sulfation levels in pio or dpy mutants because sulfation levels in mutants of single ZP domain proteins may not provide much information. A substantial number of proteoglycans, glycoproteins, and proteins (with up to 1% of all tyrosine residues in an organism's proteins estimated to be sulfated) are modified by sulfation, so changes in sulfation levels in a single mutant may be subtle. Especially, the existing dpy mutant line is an insertion mutant of a transposable element; therefore, the sulfation sites would still remain in this mutant.

      • Interpretation of Papss effects on Pio and Dpy would be desired. The results presented indicate loss of Pio antibody staining but normal presence of cherry-Pio. This is difficult to interpret. How are these results of Pio antibody and cherry-Pio correlating with the results in the trachea described recently (Drees et al. 2023)?

      In our original submission, we stated that the uniform luminal mCh-Pio signals were not changed in Papss mutants, but after re-analysis, we found that these signals were actually absent from the expanded luminal region in stage 16 SG (where Dpy-YFP is also absent), and weak mCh-Pio signals colocalize with the condensed Dpy-YFP signals (Figure 5C, D). We have revised the text accordingly.

      After cleavages by Np and furin, the Pio protein should have three fragments. The N-terminal region contains the N-terminal half of the ZP domain, and mCh-Pio signals show this fragment. The very C-terminal region should localize to the membrane as it contains the transmembrane domain. We think the middle piece, the C-terminal ZP domain, is recognized by the Pio antibody. The mCh-Pio and Pio antibody signals in the WT trachea (Drees et al., 2023) are similar to those in the SG. mCh-Pio signals are detected in the tracheal lumen as uniform signals, at the apical membrane, and in cytoplasmic puncta. Pio antibody signals are exclusively in the tracheal lumen and show more heterogenous filamentous signals.

      In Papss mutants, the middle fragment (the C-terminal ZP domain) seems to be most affected because the Pio antibody signals are absent from the lumen. The loss of Pio antibody signals could be due to protein degradation or epitope masking caused by aECM condensation and protein misfolding. This fragment seems to be key for interacting with Dpy, since Pio antibody signals always colocalize with Dpy-YFP. The N-terminal mCh-Pio fragment does not appear to play a significant role in forming a complex with Dpy in WT (but still aggregated together in Papss mutants), and this can be tested in future studies.

      In response to Reviewer 1's comment, we performed an additional experiment to test the role of Np in cleaving Pio to help organize the SG aECM. In this experiment, we overexpressed the WT and mutant form of Np using UAS-Np.WT and UAS-Np.S990A lines (Drees et al., 2019) and analyzed mCh-Pio, Pio antibody, and Dpy-YFP signals. Np.WT overexpression resulted in increased levels of mCh-Pio, Pio, and Dpy-YFP signals in the lumen and at the apical membrane. However, overexpression of Np.S990A resulted in the absence of luminal mCh-Pio signals. Pio antibody signals were strong at the apical membrane but rather weak in the luminal filamentous structures. Since the UAS-Np.S990A line has the GFP tag, we could not reliably analyze Dpy-YFP signals due to overlapping Np.S990A.GFP signals in the same channel. However, the luminal filamentous Pio signals co-localized with GFP signals, and we assume that these overlapping signals could be Dpy-YFP signals.

      These results suggest that overexpressed Np.S990A may act in a dominant-negative manner, competing with endogenous Np and impairing proper cleavage of Pio (and mCh-Pio). Nevertheless, some level of cleavage by endogenous Np still appears to occur, as indicated by the residual luminal filamentous Pio signals. These new findings have been incorporated into the revised manuscript and are shown in Figure 6H and 6I.

      A proposed model of the Pio-Dpy aECM in WT, Papss, pio, and Np mutants has now been included in Figure 7.

      • What does the WGA staining in the lumen reveal? This staining seems to be affected differently in pio and dpy mutants: in pio mutants it disappears from the lumen (as dpy-YFP does), but in dpy mutants it seems to be maintained. How do the authors interpret these findings? How does the WGA matrix relate to sulfated products (using Alcian blue or sulfotyrosine)?

      WGA binds to sialic acid and N-acetylglucosamine (GlcNAc) residues on glycoproteins and glycolipids. GlcNAc is a key component of the glycosaminoglycan (GAG) chains that are covalently attached to the core protein of a proteoglycan, which is abundant in the ECM. We think WGA detects GlcNAc residues in the components of the aECM, including Dpy as a core component, based on the following data. 1) WGA and Dpy colocalize in the lumen, both in WT (as thin filamentous structures) and Papss mutant background (as condensed rod-like structures), and 2) are absent in pio mutants. WGA signals are still present in a highly condensed form in dpy mutants. That's probably because the dpy mutant allele (dpyov1) has an insertion of a transposable element (blood element) into intron 11 and this insertion may have caused the Dpy protein to misfold and condense. We added the information about the dpy allele to the Results section and discussed it in the Discussion.

      Minor points:

      • The morphological phenotypic analysis of Papss mutants (homozygous and transheterozygous) is a bit confusing. The general defects are higher in Papss homozygous than in transheterozygotes over a deficiency. Maybe quantifying the defects in the heterozygote embryos in the Papss mutant collection could help to figure out whether these defects relate to Papss mutation.

      We analyzed the morphology of heterozygous Papss mutant embryos. They were all normal. The data and quantifications have now been added to Figure 1-figure supplement 3.

      • The conclusion that the apical membrane is affected in Papss mutants is not strongly supported by the results presented with the pattern of Crb (Fig 2). Further evidences should be provided. Maybe the TEM analysis could help to support this conclusion

      We quantified Crb levels in the sub-apical and medial regions of the cell and included this new quantification in Figure 2D. TEM images showed variation in the irregularity of the apical membrane, even in WT, and we could not draw a solid conclusion from these images.

      • It is difficult to understand why in Papss mutants the levels of WGA increase. Can the authors elaborate on this?

      We think that when Dpy (and many other aECM components) are condensed and aggregated into the thin, rod-like structure in Papss mutants, the sugar residues attached to them must also be concentrated and shown as increased WGA signals.

      • The explanation about why Pio antibody and mcherry-Pio show different patterns is not clear. If the antibody recognizes the C-t region, shouldn't it be clearly found at the membrane rather than the lumen?

      The Pio protein is also cleaved by furin protease (Figure 5B). We think the Pio fragment recognized by the antibody should be a "C-terminal ZP domain", which is a middle piece after furin + Np cleavages.

      • The qsm information does not seem to provide any relevant information to the aECM, or sulfation.

      Since Qsm has been shown to bind to Dpy and remodel Dpy filaments in the muscle tendon (Chu and Hayashi, 2021), we believe that the different behavior of Qsm in the SG is still informative. As mentioned briefly in the Discussion, the cleaved Qsm fragment may localize differently, like Pio, and future work will need to test this. We have shortened the description of the Qsm localization in the manuscript and moved the details to the figure legend of Figure 5-figure supplement 3.

      Reviewer #3 (Significance (Required)):

      Previous reports already indicated a role for Papss in sulfation in SG (Zhu et al 2005). Now this work provides a more detailed description of the defects produced by the absence of Papss. In addition, it provides relevant data related to the nature and requirements of the aECM in the SG. Understanding the composition and requirements of aECM during organ formation is an important question. Therefore, this work may be relevant in the fields of cell biology and morphogenesis.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The manuscript by Rühling et al analyzes the mode of entry of S. aureus into mammalian cells in culture. The authors propose a novel mechanism of rapid entry that involves the release of calcium from lysosomes via NAADP-stimulated activation of TPC1, which in turn causes lysosomal exocytosis; exocytic release of lysosomal acid sphingomyelinase (ASM) is then envisaged to convert exofacial sphingomyelin to ceramide. These events not only induce the rapid entry of the bacteria into the host cells but are also described to alter the fate of the intracellular S. aureus, facilitating escape from the endocytic vacuole to the cytosol.

      Strengths:

      The proposed mechanism is novel and could have important biological consequences.

      Weaknesses:

      Unfortunately, the evidence provided is unconvincing and insufficient to document the multiple, complex steps suggested. In fact, there appear to be numerous internal inconsistencies that detract from the validity of the conclusions, which were reached mostly based on the use of pharmacological agents of imperfect specificity.

      We thank the reviewer for the detailed evaluation of our manuscript. We will address the criticism below.

      We agree with the reviewer that many of the experiments presented in our study rely on the usage of inhibitors. However, we want to emphasize that the main conclusion (invasion pathway affects the intracellular fate/phagosomal escape) was demonstrated without the use of inhibitors or genetic ablation in two key experiments (Figure5 D/E). These experiments were in line with the results we obtained with inhibitors (amitriptyline [Figure 4D], ARC39, PCK310, [Figure 4C] and Vacuolin-1 [Figure4E]). Importantly, the hypothesis was also supported by another key experiment, in which we showed the intracellular fate of bacteria is affected by removal of SM from the plasma membrane before invasion, but not by removal of SM from phagosomal membranes after bacteria internalization (Figure5A-C). Taken together, we thus believe that the main hypothesis is strongly supported by our data.

      Moreover, we either used different inhibitors for the same molecule (ASM was inhibited by ARC39, amitriptyline and PCK310 with similar outcome) or supported our hypothesis with gene-ablated cell pools (TPC1, Syt7, SARM1), as we will point out in more detail below.

      Firstly, the release of calcium from lysosomes is not demonstrated. Localized changes in the immediate vicinity of lysosomes need to be measured to ascertain that these organelles are the source of cytosolic calcium changes. In fact, 9-phenantrol, which the authors find to be the most potent inhibitor of invasion and hence of the putative calcium changes, is not a blocker of lysosomal calcium release but instead blocks plasmalemmal TRPM4 channels. On the other hand, invasion is seemingly independent of external calcium. These findings are inconsistent with each other and point to non-specific effects of 9-phenantrol. The fact that ionomycin decreases invasion efficiency is taken as additional evidence of the importance of lysosomal calcium release. It is not clear how these observations support involvement of lysosomal calcium release and exocytosis; in fact treatment with the ionophore should itself have induced lysosomal exocytosis and stimulated, rather than inhibited invasion. Yet, manipulations that increase and others that decrease cytosolic calcium both inhibited invasion.

      With respect to lysosomal Ca<sup>2<sup>+</sup></sup> release, we agree with the reviewer that direct visual demonstration of lysosomal Ca<sup>2<sup>+</sup></sup> release upon infection will improve the manuscript. We therefore performed live cell imaging to visualize lysosomal Ca<sup>2<sup>+</sup></sup> release by a previously published method.1 The approach is based on two dextran-coupled fluorophores that were incubated with host cells. The dyes are endocytosed and eventually stain the lysosomes. One of the dyes, Rhod-2, is Ca<sup>2<sup>+</sup></sup>-sensitive and can be used to estimate the lysosomal Ca<sup>2<sup>+</sup></sup> content. The second dye, AF647, is Ca<sup>2<sup>+</sup></sup>-insensitive and is used to visualize the lysosomes. If the ratio Rhod-2/AF647 within the lysosomes is decreasing, lysosomal Ca<sup>2<sup>+</sup></sup> release is indicated. We monitored lysosomal Ca<sup>2<sup>+</sup></sup> content during S. aureus infection with this method (Author response image 1 and Author response video 1). However, the lysosomes are very dynamic, and it is challenging to monitor the fluorescence intensities over time. Thus, quantitative measurements are not possible with our methodology, and we decided to not include these data in the main manuscript. However, one could speculate that lysosomal Ca<sup>2<sup>+</sup></sup> content in the selected ROI (Author response image 1 and Author response video 1) is decreased upon attachment of S. aureus to the host cells as indicated by a decrease in Rhod-2/AF647 ratio.

      Author response image 1.

      Lysosomal Ca<sup>2<sup>+</sup></sup> imaging during S. aureus infection. The lysosomes of HuLEC were stained with two dextran-coupled fluorescent dyes. A Ca<sup>2<sup>+</sup></sup>-sensitive dye Rhod-2 as well as Ca<sup>2<sup>+</sup></sup>insensitive AF647. Cells were infected with fluorescent S. aureus JE2 and monitored by live cell imaging (see Author response video 1). The intensity of Rhod-2/AF647 was measured close to a S. aureus-host contact site. Ratio of Rhod-2 vs. AF647 fluorescence intensity was calculated

      As to the TRPM4 involvement in S. aureus host cell internalization, it has been reported that TRPM4 is activated by cytosolic Ca<sup>2<sup>+</sup></sup>. However, the channel conducts monovalent cations such as K<sup>+</sup> or Na<sup>+</sup> but is impermeable for Ca<sup>2<sup>+</sup></sup> [2, 3]. The following of our observations are supporting this:

      i) S. aureus invasion is dependent on intracellular Ca<sup>2<sup>+</sup></sup>, but is independent from extracellular Ca<sup>2<sup>+</sup></sup>  (Figure 1A).

      ii) 9-phenantrol treatment reduces S. aureus internalization by host cells, illustrating the dependence of this process on TRPM4 (data removed from the manuscript) . We therefore hypothesize that TRPM4 is activated by Ca<sup>2<sup>+</sup></sup> released from lysosomes (see above).

      TRPM4 is localized to focal adhesions and is connected to actin cytoskeleton[4, 5] – a requisite of host cell entry of S. aureus.[6, 7] This speaks for an important function of TRPM4 in uptake of S. aureus in general, but does not necessarily have to be involved exclusively in the rapid uptake pathway.

      TRPM4 itself is not permeable for Ca<sup>2<sup>+</sup></sup> but is activated by the cation.  Thus, it is unlikely to cause lysosomal exocytosis. The stronger bacterial uptake reduction by treatment with 9-phenantrol when compared to Ned19 thus may be caused by the involvement of TRPM4 in additional pathways of S. aureus host cell entry involving that association of TRPM4 with focal adhesions or as pointed out by the reviewer, unspecific side effects of 9-phenantrol that we currently cannot exclude.  However, we think that experiments with 9-phenantrol distract from the main story (lysosomal Ca<sup>2<sup>+</sup></sup> and exocytosis) and might be confusing for the reader. We thus removed all data and discussion concerning 9phenantrol in the revised manuscript.

      Regarding the reduced S. aureus invasion after ionomycin treatment, we agree with the reviewer that ionomycin is known to lead to lysosomal exocytosis as was previously shown by others8 as well as our laboratory[9}. 

      We hypothesized that pretreatment with ionomycin would trigger lysosomal exocytosis and thus would reduce the pool of lysosomes that can undergo exocytosis before host cells are contacted by S. aureus. As a result, we should observe a marked reduction of S. aureus internalization in such “lysosome-depleted cells”, if the lysosomal exocytosis is coupled to bacterial uptake. Our observation of reduced bacterial internalization after ionomycin treatment supports this hypothesis.

      However, ionomycin treatment and S. aureus infection of host cells are distinct processes.  

      While ionomycin results in strong global and non-directional lysosomal exocytosis of all “releasable” lysosomes (~5-10 % of all lysosomes according to previous observations)8, we hypothesize that lysosomal exocytosis upon contact with S. aureus only involves a small proportion of lysosomes at host-bacteria contact sites. This is supported by experiments that demonstrate that ~30% of the lysosomes that are released by ionomycin treatment are exocytosed during S. aureus infection (see below and Figure 2, A-C). We added this new data as well as an according section to the discussion  (line 563 ff). Moreover, we moved the data obtained with ionomycin to Figure 2E and described our idea behind this experiment more precisely (line 166 ff).

      The proposed role of NAADP is based on the effects of "knocking out" TPC1 and on the pharmacological effects of Ned-19. It is noteworthy that TPC2, rather than TPC1, is generally believed to be the primary TPC isoform of lysosomes. Moreover, the gene ablation accomplished in the TPC1 "knockouts" is only partial and rather unsatisfactory. Definitive conclusions about the role of TPC1 can only be reached with proper, full knockouts. Even the pharmacological approach is unconvincing because the high doses of Ned-19 used should have blocked both TPC isoforms and presumably precluded invasion. Instead, invasion is reduced by only ≈50%. A much greater inhibition was reported using 9-phenantrol, the blocker of plasmalemmal calcium channels. How is the selective involvement of lysosomal TPC1 channels justified?

      As to partial gene ablation of TPC1: To avoid clonal variances, we usually perform pool sorting to obtain a cell population that predominantly contains cells -here- deficient in TPC1, but also a small proportion of wildtype cells as seen by the residual TPC1 protein on the Western blot. We observe a significant reduction in bacterial uptake in this cell pool suggesting that the uptake reduction in a pure K.O. population may be even more pronounced. 

      As to the inhibition by Ned19: 

      The scale of invasion reduction upon Ned19 treatment (50%, Figure 1B) is comparable with the reduction caused by other compounds that influence the ASM-dependent pathway (such as amitriptyline, ARC39 [Figure 2G], BAPTA-AM [Figure 1A], Vacuolin-1 [Figure 2D], β-toxin [Figure 2L] and ionomycin [Figure 2E]). Further, the partial reduction of invasion is most likely due to the concurrent activity of multiple internalization pathways which are not all targeted by the used compounds and which we briefly discuss in the manuscript.

      We agree with the reviewer that Ned19 inhibits TPC1 and TPC2. Since ablation of TPC1 reduced invasion of S. aureus, we concluded that TPC1 is important for S. aureus host cell invasion. We thus agree with the reviewer that a role for TPC2 cannot be excluded. We clarified this in the revised manuscript (Lines 552). It needs to be noted, however, that deficiency in either TPC1 or TPC2 alone was sufficient to prevent Ebola virus infection10, which is in line with our observations.

      In order to address the role of TPC2 for this review process, we kindly were gifted TPCN1/TPCN2 double knock-out HeLa cells by Norbert Klugbauer (Freiburg, Germany), which we tested for S. aureus internalization. We found that invasion was reduced in these cell lines supporting a role of lysosomal Ca<sup>2<sup>+</sup></sup> release in S. aureus host cell entry and a role for both TPC channels (Author response image 2, see end of the document). Since we did not have a single TPCN2 knock-out available we decided to exclude these data from the main manuscript.

      Author response image 2.

      Invasion efficiency is reduced in TPC1/TPC2 double K.O. HeLa cells. Invasion efficiency of S. aureus JE2 was determined in TPC1/TPC2 double K.O. cells after 10 and 30 min. Results were normalized to the parental HeLa WT cell line (set to 100 %).  

      Invoking an elevation of NAADP as the mediator of calcium release requires measurements of the changes in NAADP concentration in response to the bacteria. This was not performed. Instead, the authors analyzed the possible contribution of putative NAADP-generating systems and reported that the most active of these, CD38, was without effect, while the elimination of SARM1, another potential source of NAADP, had a very modest (≈20%) inhibitory effect that may have been due to clonal variation, which was not ruled out. In view of these data, the conclusion that NAADP is involved in the invasion process seems unwarranted.

      Our results from two independent experimental set-ups (Ned19 [Figure 1B] and TPC1 K.O. [Figure 1C & Figure 2N]) indicate the involvement of NAADP in the process. Together with the metabolomics unit at the Biocenter Würzburg, we attempted to measure cellular NAADP levels, however, this proved to be non-trivial and requires further optimization. However, we can rule out clonal variation in the SARM1 mutant since experiments were conducted with a cell pool as described above in order to avoid clonal variation of single clones.

      The mechanism behind biosynthesis of NAADP is still debated. CD38 was the first enzyme discovered to possess the ability of producing NAADP. However, it requires acidic pH to produce NAADP[11] -which does not match the characteristics of a cytosolic NAADP producer. HeLa cells do not express CD38 and hence, it is not surprising that inhibition of CD38 had no effect on S. aureus invasion in HeLa cells. However, NAADP production by HeLa cells was observed in absence of CD38[12]. Thus CD38independent NAADP generation is likely. SARM1 can produce NAADP at neutral pH[13] and is expressed in HeLa, thus providing a more promising candidate.  

      We agree with the reviewer that the reduction of S. aureus internalization after ablation of SARM1 is less pronounced than in other experiments of ours. This may be explained by NAADP originating from other enzymes, such as the recently discovered DUOX1, DUOX2, NOX1 and NOX2[14], which – with exception of DUOX2- possess a low expression even in HeLa cells. We add this to the discussion in the revised manuscript (line 579).

      We can, however, rule out clonal variation for the inhibitory effect. As stated above we generated K.O. cell pools specifically to avoid inherent problems of clonality. Thus, we also detect some residual wildtype cells within our cell pools.  

      The involvement of lysosomal secretion is, again, predicated largely on the basis of pharmacological evidence. No direct evidence is provided for the insertion of lysosomal components into the plasma membrane, or for the release of lysosomal contents to the medium. Instead, inhibition of lysosomal exocytosis by vacuolin-1 is the sole source of evidence. However, vacuolin-1 is by no means a specific inhibitor of lysosomal secretion: it is now known to act primarily as a PIKfyve inhibitor and to cause massive distortion of the endocytic compartment, including gross swelling of endolysosomes. The modest (20-25%) inhibition observed when using synaptotagmin 7 knockout cells is similarly not convincing proof of the requirement for lysosomal secretion.

      We agree with the reviewer that the manuscript will benefit from a functional analysis of lysosomal exocytosis and therefore conducted assays to investigate exocytosis in the revised manuscript. We previously showed i) by addition of specific antisera that LAMP1 transiently is exposed on the plasma membrane during ionomycin and pore-forming toxin challenge and ii) demonstrated the release of ASM activity into the culture medium under these conditions.[9] However, both measurements are not compatible with S. aureus infection, since LAMP1 antibodies also are non-specifically bound by protein A and another IgG-binding proteins on the S. aureus surface, which would bias the results. Since protein A also may serve as an adhesin in the investigated pathway, we cannot simply delete the ORF without changing other aspects of staphylococcal virulence. Further, FBS contains a ASM background activity that impedes activity measurements of cell culture medium. We previously removed this background activity by a specific heat-inactivation protocol.[9] However, S. aureus invasion is strongly reduced in culture medium containing this heat-inactivated FBS.

      We therefore developed a luminescence assay based on split NanoLuc luciferase that enables detection of LAMP1 exposed on the plasma membrane without usage of antibodies (Figure 2, A-C). We added a section on the assay in the revised manuscript. Briefly, we generated reporter cells by fusing a short peptide fragment of NanoLuc called HiBiT between the signal peptide and the mature luminal domain of LAMP1 and stably expressed the resulting protein in HeLa cells by lentiviral transduction. The LgBiT protein domain of NanoLuc luciferase (Promega) as well as the substrate Furimazine are added to the culture medium. HiBiT can reconstitute a functional NanoLuc with LgBiT and process Furimazine when lysosomes are exocytosed thereby generating luminescence measurable in a suitable plate reader. 

      With this assay we detected that  about 30% of lysosomes that were “releasable” by treatment with ionomycin are exocytosed during S. aureus infection. Lysosomal exocytosis was strongly reduced (even below the levels of untreated controls), if we treated cells with Vacuolin-1 or Ned19.  

      We agree with the reviewer that Vacuolin-1 to some extent has unspecific side effects as has been shown by others and which we addressed in the revised version of the manuscript (line 541 ff). However, our new results with the HiBiT reporter cell line clearly demonstrate a reduction of lysosomal exocytosis after Vacuolin-1 treatment. Supported by this and our other results we hypothesize that Vacuolin-1 decreases S. aureus internalization due to the inhibition of lysosomal exocytosis.

      As to the involvement of synaptotagmin 7: The effect of Syt7 K.O. on invasion was moderate in initial experiments, likely due to a high culture passage and presumably overgrowth of WT cells. However, reduction of invasion in Syt7 K.O.s was more pronounced in experiments with β-toxin complementation (Figure 2, N) and hence, we combined the two data sets (Figure 2, F). This demonstrates the reduction of bacterial invasion by ~40% in Syt7 K.O. cell pools. Moreover, Syt7 is not the only protein possibly involved in Ca<sup>2<sup>+</sup></sup>-dependent exocytosis. For instance, Syt1 has been shown to possess an overlapping function.[15] This may explain the differences between our Vacuolin-1 and Syt7 ablation experiments. We added this information to the discussion. 

      ASM is proposed to play a central role in the rapid invasion process. As above, most of the evidence offered in this regard is pharmacological and often inconsistent between inhibitors or among cell types. Some drugs affect some of the cells, but not others. It is difficult to reach general conclusions regarding the role of ASM. The argument is made even more complex by the authors' use of exogenous sphingomyelinase (beta-toxin). Pretreatment with the toxin decreased invasion efficiency, a seemingly paradoxical result. Incidentally, the effectiveness of the added toxin is never quantified/validated by directly measuring the generation of ceramide or the disappearance of SM.

      Although pharmacological inhibitors can have unspecific side effects, we want to emphasize that the inhibitors used in our study act on the enzyme ASM by completely different mechanisms. Amitriptyline is a so called functional inhibitor of ASM (FIASMA) which induces the detachment of ASM from lysosomal membranes resulting in degradation of the enzyme.[16] By contrast, ARC39 is a competitive inhibitor.[17, 18] 

      There are no inconsistencies in our data obtained with ASM inhibitors. Amitriptyline and ARC39 both reduce the invasion of S. aureus in HuLEC, HuVEC and HeLa cells (Figure 2G). ARC39 needs a longer pre-incubation, since its uptake by host cells is slower (to be published elsewhere). We observe a different outcome in 16HBE14o- and Ea.Hy 926 cells, with 16HBE14o- even demonstrating a slightly increased invasion of S. aureus upon ARC39 treatment. Amitriptyline had no effect (Figure 2G). 

      Thus, the ASM-dependent S. aureus internalization is cell type/line specific, which we state in the manuscript. The molecular origin of these differences is unclear and will require further investigation, e.g. in testing cell lines for potential differences in surface receptors. In a separate study we have already developed a biotinylation-based approach to identify potential novel host cell surface interaction partners during S. aureus infection.[19]

      Moreover, both inhibitors affected the invasion dynamics (Figure 3D), phagosomal escape (Figure 4C and Figure 4D) and Rab7 recruitment (Figure 4A and Supp. Figure 4A-C) in a similar fashion. Proper inhibition of ASM by both compounds in all cell lines used was validated by enzyme assays (Supp. Figure 2H), which again suggests that the ASM-dependent pathway does only exist in specific cell lines and also supports  that we do not observe unspecific side effects of the compounds. We clarified this in the revised manuscript.

      ASM is a key player for SM degradation and recycling. In clinical context, deficiency in ASM results in the so-called Niemann Pick disease type A/B. The lipid profile of ASM-deficient cells is massively altered[20], which will result in severe side effects. Short-term inhibition by small molecules therefore poses a clear benefit when compared to the usage of ASM K.O. cells. In order to satisfy the query of the reviewer, we generated two ASM K.O. cell pools (generated with two different sgRNAs) and tested these for S. aureus invasion efficiency (Figure 2, I). We did not observe bacterial invasion differences between WT and K.O. cells. However, when we treated the cells additionally with ASM inhibitor, we observed a strongly reduced invasion in WT cells, while invasion efficiency in ASM K.O. was only slightly affected (Figure 2, J). We concluded that the reduced invasion observed in inhibitor-treated WT cells  predominantly is due to absence of ASM, while the small reduction observed in ARC39treated ASM K.O.s is likely due to unspecific side effects.  

      We performed lipidomics on these cells and demonstrated a strongly altered sphingolipid profile in ASM K.O. cells compared to untreated and inhibitor-treated WT cells (Figure 2, K). We speculate that other ASM-independent bacterial invasion pathways are upregulated in ASM K.O.s., thereby obscuring the effect contributed by absence of ASM. We discussed this in the revised manuscript (line 518 ff).

      Moreover, we introduced the RFP-CWT escape marker into the ASM K.O. cells and measured phagosomal escape of S. aureus JE2 and Cowan I.  The latter strain is non-cytotoxic and serves as negative control, since it is known to possess a very low escape rate, due to its inability to produce toxin. Again, we compared early invaders (infection for 10 min) with early<sup>+</sup>late invaders (infection for 30 min). As observed  for JE2, “early invaders” possess lower escape rates than “early<sup>+</sup>late invaders”.

      We did not observe differences between WT and ASM K.O. cells, if we infected for only 10 min. By contrast, we observed a lower escape rate in ASM K.O (Author response image 3, see end of the document). compared to WT cells, when we infected for 30 min.  

      However, we usually observe an increased phagosomal escape, when we treated host cells with ASM inhibitors (Figure 4C and D). Reduced phagosomal escape of intracellular S. aureus in ASM K.O. cells may be caused by the altered sphingolipid profile(e.g., by interference with binding of bacterial toxins to phagosomal membranes or altered vesicular acidification). We hence think that these data are difficult to interpret, and clarification would require intense additional experimentation. Thus, we did not include this data in the manuscript. 

      Author response image 3.

      Phagosomal escape rates were established in either HeLa wild-type or ASM K.O. cells expressing the phagosomal escape reporter RFP-CWT. Host cells that were infected with the cytotoxic S. aureus strain JE2 or the non-cytotoxic strain Cowan I for 10 or 30 minutes and escape rates were determined by microscopy 3h p.i.

      As to the treatment with a bacterial sphingomyelinase:

      Treatment with the bacterial SMase (bSMase, here: β-toxin) was performed in two different ways:

      i) Pretreatment of host cells with β-toxin to remove SM from the host cell surface before infection. This removes the substrate of ASM from the cell surface prior to addition of the bacteria (Figure 2L, Figure 4A-C). Since SM is not present on the extracellular plasma membrane leaflet after treatment, a release of ASM cannot cause localized ceramide formation at the sites of lysosomal exocytosis. Similar observations were made by others.[21] 

      ii) Addition of bSMase to host cells together with the bacteria to complement for the absence of ASM (Figure 2N).  

      Removal of the ASM substrate before infection (i) prevents localized ASM-mediated conversion of SM to Cer during infection and resulted in a decreased invasion, while addition of the SMase during infection resulted in an increased invasion in TPC1 and Syt7 ablated cells. Thus, both experiments are consistent with each other and in line with our other observations. 

      Removal of SM from the plasma membrane by β-toxin was indirectly demonstrated by the absence of Lysenin recruitment to phagosomes/escaped bacteria when host cells were pretreatment with the toxin before infection (Figure5C). We also added another data set that demonstrates degradation of a fluorescence SM derivative upon β-toxin treatment of host cells (Supp Figure 2, M). In another publication, we recently quantified the effectiveness of β-toxin treatment, even though with slightly longer treatment times (75 min vs. 3h).[22]

      To clarify our experimental approaches to the readership we added an explanatory section to the revised manuscript (line 287 ff) and we also added a scheme to in Figure 2M describing the experimental settings.

      As to the general conclusions regarding the role of ASM: ASM and lysosomal exocytosis has been shown to be involved in uptake of a variety of pathogens[21, 23-27] supporting its role in the process.

      The use of fluorescent analogs of sphingomyelin and ceramide is not well justified and it is unclear what conclusions can be derived from these observations. Despite the low resolution of the images provided, it appears as if the labeled lipids are largely in endomembrane compartments, where they would presumably be inaccessible to the secreted ASM. Moreover, considering the location of the BODIPY probe, the authors would be unable to distinguish intact sphingomyelin from its breakdown product, ceramide. What can be concluded from these experiments? Incidentally, the authors report only 10% of BODIPY-positive events after 10 min. What are the implications of this finding? That 90% of the invasion events are unrelated to sphingomyelin, ASM, and ceramide?

      During the experiments with fluorescent SM analogues (Figure 3a,b), S. aureus was added to the samples immediately before the start of video recording. Hence, bacteria are slowly trickling onto the host cells, and we thus can image the initial contact between them and the bacteria, for instance, the bacteria depicted in Figure 3A contact the host cell about 9 min before becoming BODIPY-FL-positive (see Supp. Video 1, 55 min). Hence, in these cases we see the formation of phagosomes around bacteria rather than bacteria in endomembrane compartments. Since generation of phagosomes happens at the plasma membrane, SM is accessible to secreted ASM.  

      The “trickling” approach for infection is an experimental difference to our invasion measurements, in which we synchronized the infection by  centrifugation. This ensures that all bacteria have contact to host cells and are not just floating in the culture medium. However, live cell imaging of initial bacterialhost contact and synchronization of infection is hard to combine technically.

      In our invasion measurements -with synchronization-, we typically see internalization of ~20% of all added bacteria after 30 min. Hence, most bacteria that are visible in our videos likely are still extracellular and only a small proportion was internalized. This explains why only 10% of total bacteria are positive for BODIPY-FL-SM after 10 min. The proportion of internalized bacteria that are positive for BODIPY-FL-SM should be way higher but cannot be determined with this method.

      We agree with the reviewer that we cannot observe conversion of BODIPY-FL-SM by ASM. In order to do that, we attempted to visualize the conversion of a visible-range SM FRET probe (Supp. Figure 3), but the structure of the probe is not compatible with measurement of conversion on the plasma membrane, since the FITC fluorophore released into the culture medium by the ASM activity thereby gets lost for imaging. In general, the visualization of SM conversion with subcellular resolution is challenging and even with novel tools developed in our lab[28] visualization of SM on the plasma membrane is difficult. 

      The conclusions we draw from these experiments are that i.) S. aureus invasion is associated with SM and ii.) SM-associated invasion can be very fast, since bacteria are rapidly engulfed by BODIPY-FL-SM containing membranes.

      It is also unclear how the authors can distinguish lysenin entry into ruptured vacuoles from the entry of RFP-CWT, used as a criterion of bacterial escape. Surely the molecular weights of the probes are not sufficiently different to prevent the latter one from traversing the permeabilized membrane until such time that the bacteria escape from the vacuole.

      We here want to clarify that both Lysenin as well as the CWT reporter have access to ruptured vacuoles (Figure 4B). We used the Lysenin reporter in these experiments for estimation of SM content of phagosomal membranes. If a vacuole is ruptured, both the bacteria and the luminal leaflet of the phagosomal membrane remnants get in contact with the cytosol and hence with the cytosolically expressed reporters YFP-Lysenin as well as RFP-CWT resulting in “Lysenin-positive escape” when phagosomes contained SM (see Figure 5C). By contrast, either β-toxin expression by S. aureus or pretreatment with the bSMase resulted in absence of Lysenin recruitment suggesting that the phagosomal SM levels were decreased/undetectable (Figure 5C, Supp Figure 6F, G, I, J).

      Although this approach does not enable a quantitative measurement of phagosomal SM, this method is sufficient to show that β-toxin expression and pretreatment result in markedly decreased phagosomal SM levels in the host cells.

      The approach we used here to analyze “Lysenin-positive escape” can clearly be distinguished from Lysenin-based methods that were used by others.29 There Lysenin was used to show trans-bilayer movement of SM before rupture of bacteria-containing phagosomes.

      To clarify the function of Lysenin in our approach we added  additional figures (Figure 4F, Supp. Figure 5) and a movie (Supp. Video 4) to the revised manuscript.

      Both SMase inhibitors (Figure 4C) and SMase pretreatment increased bacterial escape from the vacuole. The former should prevent SM hydrolysis and formation of ceramide, while the latter treatment should have the exact opposite effects, yet the end result is the same. What can one conclude regarding the need and role of the SMase products in the escape process?

      As pointed out above, pretreatment of host cells with SMase removes SM from the plasma membrane and hence, ASM does not have access to its substrate. Hence, both treatment with either ASM inhibitors or pretreatment with bacterial SMase prevent ASM from being active on the plasma membrane and hence block the ASM-dependent uptake (Figure 2 G, L). Although overall less bacteria were internalized by host cells under these conditions, the bacteria that invaded host cells did so in an ASM-independent manner. 

      Since blockage of the ASM-dependent internalization pathway (with ASM inhibitor [Figure 4C, D], SMase pretreatment [Figure 5B] and Vacuolin-1[Figure.4E]) always resulted in enhanced phagosomal escape, we conclude that bacteria that were internalized in an ASM-independent fashion cause enhanced escape. Vice versa, bacteria that enter host cells in an ASM-dependent manner demonstrate lower escape rates. 

      This is supported by comparing the escape rates of “early” and “late” invaders [Figure 5D, E], which in our opinion is a key experiment that supports this hypothesis. The “early” invaders are predominantly ASM-dependent (see e.g. Figure 3E) and thus, bacteria that entered host cell in the first 10 min of infection should have been internalized predominantly in an ASM-dependent fashion, while slower entry pathways are active later during infection. The early ASM dependent invaders possessed lower escape rates, which is in line with the data obtained with inhibitors (e.g. Figure 4C, D).

      We hypothesize that the activity of ASM on the plasma membrane during invasion mediates the recruitment of a specific subset of receptors, which then influences downstream phagosomal maturation and escape. This hypothesis is supported by the fact that the subset of receptors interacting with S. aureus is altered upon inhibition of the ASM-dependent uptake pathway. We describe this in another study that is currently under evaluation elsewhere.  

      Reviewer #2 (Public review):

      Summary:

      In this manuscript, Ruhling et al propose a rapid uptake pathway that is dependent on lysosomal exocytosis, lysosomal Ca<sup>2<sup>+</sup></sup> and acid sphingomyelinase, and further suggest that the intracellular trafficking and fate of the pathogen is dictated by the mode of entry.

      The evidence provided is solid, methods used are appropriate and results largely support their conclusions, but can be substantiated further as detailed below. The weakness is a reliance on chemical inhibitors that can be non-specific to delineate critical steps.

      Specific comments:

      A large number of experiments rely on treatment with chemical inhibitors. While this approach is reasonable, many of the inhibitors employed such as amitriptyline and vacuolin1 have other or nondefined cellular targets and pleiotropic effects cannot be ruled out. Given the centrality of ASM for the manuscript, it will be important to replicate some key results with ASM KO cells.

      We thank the reviewer for the critical evaluation of our manuscript and plenty of constructive comments. 

      We agree with the reviewer, that ASM inhibitors such as functional inhibitors of ASM (FIASMA) like amitriptyline used in our study have unspecific side effects given their mode-of-action. FIASMAs induce the detachment of ASM from lysosomal membranes resulting in degradation of the enzyme.[16]  However, we want to emphasize that we also used the competitive inhibitor ARC39 in our study[17, 18] which acts on the enzyme by a completely different mechanism. All phenotypes (reduced invasion [Figure 2G], effect on invasion dynamics [Figure 3D], enhanced escape [Figure 4C, D] and differential recruitment of Rab7 [Supp. Figure 4A-C]) were observed with both inhibitors thereby supporting the role of ASM in the process.  

      We further agree that experiments with genetic evidence usually support and improve scientific findings. However, ASM is a cellular key player for SM degradation and recycling. In a clinical context, deficiency in ASM results in a so-called Niemann Pick disease type A/B. The lipid profile of ASMdeficient cells is massively altered[20], which in itself will result in severe side effects. Thus, the usage of inhibitors provides a clear benefit when compared to ASM K.O. cells, since ASM activity can be targeted in a short-term fashion thereby preventing larger alterations in cellular lipid composition.

      We nevertheless generated two ASM K.O. cell pools (generated with two different sgRNAs) and tested for invasion efficiency (Figure 2, I). Here, we did not observe differences between WT and mutants. However, if we treated the cells additionally with ASM inhibitor, we observed a strongly reduced invasion in WT cells, while invasion efficiency in ASM K.O. was only slightly affected (Figure 2, J). We concluded that the reduced invasion observed in WT cells upon inhibitor treatment predominantly is due to inhibition of ASM, whereas the small reduction observed in ARC39-treated ASM K.O.s is likely due to unspecific side effects. We also demonstrated a strongly altered sphingolipid profile in ASM K.O. cells when compared to untreated and inhibitor-treated WT cells (new Figure 2, K). We speculate that other ASM-independent invasion pathways are upregulated in ASM K.O.s., thereby making up for the absence of ASM. We discuss this in the revised manuscript (line 518 ff).

      We introduced the RFP-CWT escape marker into the ASM K.O. cells and measured phagosomal escape of S. aureus JE2 and Cowan I (Author response image 3). The latter serves as negative control, since it is known to possess a very low escape rate, due to its inability of toxin production. Again, we compared early invaders (infection for 10 min) with early<sup>+</sup>late invaders (infection for 30 min). As seen before for JE2, early invaders possess lower escape rates than early<sup>+</sup>late invaders. We did not observe differences between WT and K.O. cells, if we infected for 10 min. By contrast, we observed a lower escape rate in ASM K.O. compared to WT cells, when we infected for 30 min. However, we usually observe an increased phagosomal escape, when we treated host cells with ASM inhibitors (Figure 4C and D). We think that the reduced phagosomal escape in ASM K.O. is caused by the altered sphingolipid profile, which could have versatile effects (e.g., inference with binding of bacterial toxins to phagosomal membranes or changes in acidification). We hence think that these data are difficult to interpret, and clarification would require intense additional experimentation. Thus, we did not include this data in the manuscript. 

      Most experiments are done in HeLa cells. Given the pathway is projected as generic, it will be important to further characterize cell type specificity for the process. Some evidence for a similar mechanism in other cell types S. aureus infects, perhaps phagocytic cell type, might be good. 

      Whenever possible we performed the experiments not only in HeLa but also in HuLECs. For example, we refer to experiments concerning the role of Ca<sup>2<sup>+</sup></sup> (Figure 1A/Supp.Figure1A), lysosomal Ca<sup>2<sup>+</sup></sup>/Ned19 (Figure1B/Supp Figure 1C), lysosomal exocytosis/Vacuolin-1 (Figure 2D/Supp. Figure2D), ASM/ARC39 and amitriptyline (Figure 2G), surface SM/β-toxin (Figure 2L/Supp. Figure 2L), analysis of invasion dynamics (complete Figure 3) and measurement of cell death during infection (Figure 6C<sup>+</sup>E, Supp. Figure 8A<sup>+</sup>B).

      HuLECs, however, are not really genetically amenable and hence we were not able to generate gene deletions in these cells and upon introduction of the fluorescence escape reporter the cells are not readily growing. 

      As to ASM involvement in phagocytic cells: a role for ASM during the uptake of S. aureus by macrophages was previously reported by others.[25] However, in professional phagocytes S. aureus does not escape from the phagosome and replicates within the phagosome.[30]

      I'm a little confused about the role of ASM on the surface. Presumably, it converts SM to ceramide, as the final model suggests. Overexpression of b-toxin results in the near complete absence of SM on phagosomes (having representative images will help appreciate this), but why is phagosomal SM detected at high levels in untreated conditions? If bacteria are engulfed by SM-containing membrane compartments, what role does ASM play on the surface? If surface SM is necessary for phagosomal escape within the cell, do the authors imply that ASM is tuning the surface SM levels to a certain optimal range? Alternatively, can there be additional roles for ASM on the cell surface? Can surface SM levels be visualized (for example, in Figure 4 E, F)?

      We initially hypothesized that we would detect higher phagosomal SM levels upon inhibition of ASM, since our model suggests SM cleavage by ASM on the host cell surface during bacterial cell entry. However, we did not detect any changes in our experiments (Supp. Figure 4F). We currently favor the following explanation: SM is the most abundant sphingolipid in human cells.[31] If peripheral lysosomes are exocytosed and thereby release ASM, only a localized and relative small proportion of SM may get converted to Cer, which most likely is below our detection limit. In addition, the detection of cytosolically exposed phagosomal SM by YFP-Lysenin is not quantitative and provides a “Yes or No” measurement. Hence, we think that the rather limited SM to Cer conversion in combination with the high abundance of SM in cellular membranes does not visibly affect the recruitment of the Lysenin reporter. 

      In our experiments that employ BODIPY-FL-SM (Figure 3a<sup>+</sup>b), we cannot distinguish between native SM and downstream metabolites such as Cer. Hence, again we cannot make any assumptions on the extent to which SM is converted on the surface during bacterial internalization. Although our laboratory recently used trifunctional sphingolipid analogs to analyze the SM to Cer conversion[22], the visualization of this process on the plasma membrane is currently still challenging.

      Overall, we hypothesize that the localized generation of Cer on the surface by released ASM leads to generation of Cer-enriched platforms. Subsequently, a certain subset of receptors may be recruited to these platforms and influence the uptake process. These platforms are supposed to be very small, which also would explain that we did not detect changes in Lysenin recruitment.

      Related to that, why is ASM activity on the cell surface important? Its role in non-infectious or other contexts can be discussed.

      ASM release by lysosomal exocytosis is implied in plasma membrane repair upon injury. We added a short description of the role of extracellular ASM in the introduction (line 35).

      If SM removal is so crucial for uptake, can exocytosis of lysosomes alone provide sufficient ASM for SM removal? How much or to what extent is lysosomal exocytosis enhanced by initial signaling events? Do the authors envisage the early events in their model happening in localized confines of the PM, this can be discussed.

      Ionomycin treatment led to a release of ~10 % of all lysosomes and also increased extracellular ASM activity.[8, 9] In the revised manuscript, we developed an assay to determine lysosomal exocytosis during S. aureus infection (Figure 2, A-C). We detected lysosomal exocytosis of ~30% when compared to ionomycin treatment  during infection. Since this is only a fraction of the “releasable lysosomes”, we assume that the effects (lysosomal Ca<sup>2<sup>+</sup></sup> liberation, lysosomal exocytosis and ASM activity) are very localized and take place only at host-pathogen contact sites (see also above). We discuss this in the revised manuscript (line 563 ff). To our knowledge it is currently unclear to which extent the released ASM affects surface SM levels. We attempted to visualize the local ASM activity on the cell surface by using a visible range FRET probe (Supp. Fig. 3). Cleavage of the probe by ASM on the surface leads to release of FITC into the cell culture medium, which does not contribute a measurable signal at the surface. 

      How are inhibitor doses determined? How efficient is the removal of extracellular bacteria at 10 min? It will be good to substantiate the cfu experiments for infectivity with imaging-based methods. Are the roles of TPC1 and TPC2 redundant? If so, why does silencing TPC1 alone result in a decrease in infectivity? For these and other assays, it would be better to show raw values for infectivity. Please show alterations in lysosomal Ca<sup>2<sup>+</sup></sup> at the doses of inhibitors indicated. Is lysosomal Ca<sup>2<sup>+</sup></sup> released upon S. aureus binding to the cell surface? Will be good to directly visualize this.

      Concerning the inhibitor concentrations, we either used values established in published studies or recommendations of the suppliers (e.g. 2-APB, Ned19, Vacuolin-1). For ASM inhibitors, we determined proper inhibition of ASM by activity assays. Concentrations of ionomycin resulting in Ca<sup>2<sup>+</sup></sup> influx and lysosomal exocytosis was determined in earlier studies of our lab.[9, 32] 

      As to the removal of bacteria at 10 min p.i.: Lysostaphin is very efficient for removal of extracellular S. aureus and sterilizes the tissue culture supernatant. It significantly lyses bacteria within a few minutes, as determined by turbidity assays.[33]

      As to imaging-based infectivity assays: We performed imaging-based invasion assays to show reduced invasion efficiency with two ASM inhibitors in the revised manuscript with similar results as obtained by CFU counts (Supp. Figure 2, J).

      Regarding the roles of TPC1 and TPC2: from our data we cannot conclude whether the roles of TPC1 and TPC2 are redundant. One could speculate that since blockage of TPC1 alone is sufficient to reduce internalization of bacteria, that both channels may have distinct roles. On the other hand, there might be a Ca<sup>2<sup>+</sup></sup> threshold in order to initiate lysosomal exocytosis that can only be attained if TPC1 and TPC2 are activated in parallel. Thus, our observations are in line with another study that shows reduced Ebola virus infection in absence of either TPC1 or TPC2.[34] In order to address the role of TPC2 for this review process, we kindly were gifted TPCN1/TPCN2 double knock-out HeLa cells by Norbert Klugbauer (Freiburg, Germany), which we tested for S. aureus internalization. We found that invasion was reduced in these double KO cell lines even further supporting a role of lysosomal Ca<sup>2<sup>+</sup></sup> release in S. aureus host cell entry (Author response image 2, see end of the document). Since we did not have a single TPCN2 knockout available, we decided to exclude these data from the main manuscript.

      As to raw CFU counts: whereas the observed effects upon blocking the invasion of S. aureus are stable, the number of internalized bacteria varies between individual biological replicates, for instance, by differences in host cell fitness or growth differences in bacterial cultures, which are prepared freshly for each experiment.

      With respect to visualization of lysosomal Ca<sup>2<sup>+</sup></sup> release: we agree with the reviewer that direct visual demonstration of lysosomal Ca<sup>2<sup>+</sup></sup> release upon infection would improve the manuscript. We therefore performed live cell imaging to visualize lysosomal Ca<sup>2<sup>+</sup></sup> release by a previously published method.[1] The approach is based on two dextran-coupled fluorophores that were incubated with host cells. The dyes are endocytosed and eventually stain the lysosomes. One of the dyes, Rhod-2, is Ca<sup>2<sup>+</sup></sup>-sensitive and can be used to estimate the lysosomal Ca<sup>2<sup>+</sup></sup> content. The second dye, AF647, is Ca<sup>2<sup>+</sup></sup>-insensitive and is used to visualize the lysosomes. If the ratio Rhod-2/AF647 within the lysosomes is decreasing, lysosomal Ca<sup>2<sup>+</sup></sup> release is indicated. We monitored lysosomal Ca<sup>2<sup>+</sup></sup> content during S. aureus infection with this method (Author response image 1 and Author response video 1). However, the lysosomes are very dynamic, and it is challenging to monitor the fluorescence intensities over time. Thus, quantitative measurements are not possible with our methodology, and we decided to not include these data in the final manuscript. However, one could speculate that lysosomal Ca<sup>2<sup>+</sup></sup> content in the selected ROI (Author response image 1 and Author response video 1) is decreased upon attachment of S. aureus to the host cells as indicated by a decrease in Rhod-2/AF647 ratio.

      The precise identification of cytosolic vs phagosomal bacteria is not very easy to appreciate. The methods section indicates how this distinction is made, but how do the authors deal with partial overlaps and ambiguities generally associated with such analyses? Please show respective images.

      The number of events (individual bacteria) for the live cell imaging data should be clearly mentioned.

      We apologize for not having sufficiently explained the technology to detect escaped S. aureus. The cytosolic location of S. aureus is indicated by recruitment of RFP-CWT.[35] CWT is the cell wall targeting domain of lysostaphin, which efficiently binds to the pentaglycine cross bridge in the peptidoglycan of S. aureus. This reporter is exclusively and homogenously expressed in the host cytosol. Only upon rupture of phagoendosomal membranes, the reporter can be recruited to the cell wall of now cytosolically located bacteria. S. aureus mutants, for instance in the agr quorum sensing system, cannot break down the phagosomal membrane in non-professional phagocytes and thus stay unlabeled by the CWT-reporter.[35] We  include several images (Figure 4, F, Supp. Figure 5) /movies (Supp. Video 4) of escape events in the revised manuscript.  The bacteria numbers for live cell experiments are now shown in Supp. Figure 7.

      In the phagosome maturation experiments, what is the proportion of bacteria in Rab5 or Rab7 compartments at each time point? Will the decreased Rab7 association be accompanied by increased Rab5? Showing raw values and images will help appreciate such differences. Given the expertise and tools available in live cell imaging, can the authors trace Rab5 and Rab7 positive compartment times for the same bacteria?

      We included the proportion of Rab7-associated bacteria in the revised manuscript (Supp. Figure 4A and C) and also shortly mention these proportions in the text (line 353). Usually, we observe that Rab5 is only transiently (for a few minutes) present on phagosomes and only afterwards the phagosomes become positive for Rab7. We do not think that a decrease in Rab7-positive phagosomes would increase the proportion of Rab5-positive phagosomes. However, we cannot exclude this hypothesis with our data.

      We can achieve tracing of individual bacteria for recruitment of Rab5/Rab7 only manually, which impedes a quantitative evaluation. However, we included a Video (Supp. Video 3)  that illustrates the consecutive recruitment of the GTPases.

      The results with longer-term infection are interesting. Live cell imaging suggests that ASM-inhibited cells show accelerated phagosomal escape that reduces by 6 hpi. Where are the bacteria at this time point ? Presumably, they should have reached lysosomes. The relationship between cytosolic escape, replication, and host cell death is interesting, but the evidence, as presented is correlative for the populations. Given the use of live cell imaging, can the authors show these events in the same cell?

      We think that most bacteria-containing phagoendosomes should have fused with lysosomes 6 h p.i. as we have previously shown by acidification to pH of 5 and LAMP1 decoration.[36]

      The correlation between phagosomal escape and replication in the cytosol of non-professional phagocytes has been observed by us and others. In the revised manuscript we also provide images (Supp. Figure 5)/videos (Supp. Video 4) to show this correlation in our experiments.

      Given the inherent heterogeneity in uptake processes and the use of inhibitors in most experiments, the distinction between ASM-dependent and independent pathways might not be as clear-cut as the authors suggest. Some caution here will be good. Can the authors estimate what fraction of intracellular bacteria are taken up ASM-dependent?

      We agree with the reviewer that an overlap between internalization pathways is likely. A clear distinction is therefore certainly non-trivial. Alternative to ASM-dependent and ASM-independent pathways, the ASM activity may also accelerate one or several internalization pathways. We address this limitation in the discussion of the revised manuscript (line 596 ff).

      Early in infection (~10 min after contact with the cells), the proportion of bacteria that enter host cells ASM-dependently is relatively high amounting to roughly 75-80% in HuLEC. After 30 min, this proportion is decreasing to about 50%. We included a paragraph in the discussion of the revised manuscript (line 593 ff).

      Reviewer #2 (Recommendations for the authors):

      (1) The experiment in Figure 4H is interesting. Details on what proportion of the cell is double positive, and if only this fraction was used for analysis will be good.

      We did use all bacteria found in the images independently from whether host cells were infected with only one or both strains. We unfortunately cannot properly determine the proportion of cells that are double infected, since i) we record the samples with CLSM and hence, cannot exclude that there are intracellular bacteria found in higher or lower optical sections. ii) we visualized cells by staining Nuclei and did not stain the cell borders, thus we cannot precisely tell to which host cell the bacteria localize.

      (2) Data is sparse for steps 5 and 6 of the model (line 330).

      We apologize for the inconvenience. There is a related study published  elsewhere[19], in which we identified NRCAM and PTK7 as putative receptors involved in this invasion pathway. We included a section in the discussion with the corresponding citation (line 569).

      (3) Data for the reduced number of intracellular bacteria upon blocking ASM-dependent uptake (line 235) is not clear. Do they mean decreased invasion efficiency? These two need not be the same.

      We changed “reduced number of intracellular bacteria” to “invasion efficiency”.

      (4) b-toxin added to the surface can get endocytosed. Can its surface effect be delineated from endo/phagosomal effect?

      We attempted to delineate effects contributed by the toxin activity on the surface vs. within phagosomes (Figure 5 A-C). We see an increased phagosomal escape, when we pretreated host cells with β-toxin (removal of SM form the surface) and infected either in presence (toxin will be taken up together with the bacteria into the phagosome) or in absence (toxin was washed away shortly before infection) of β-toxin. By contrast, overexpression of β-toxin by S. aureus did not affect phagosomal escape rates. The proper activity of β-toxin was confirmed by absence of Lysenin recruitment during phagosomal escape in all three conditions. We concluded that the activity on the surface and not the activity in the phagosome is important.

      (5) The potential role(s) of bacterial factors in the uptake and subsequent intracellular stages can be discussed.

      There are multiple bacterial adhesins known in S. aureus. These usually are either covalently attached to the bacterial cell wall such as the sortase-dependently anchored Fibronectin-binding Proteins A and B but also secreted and “cell wall binding” proteins as well at non proteinaceous factor such as wall-teichoic acids. A discussion of these factors would thus be out of the scope of this manuscript, and we here suggest reverting to specialized reviews on that topic.

      (6) The manuscript is not very easy to read. The abstract could be rephrased for better clarity and succinctness, with a clearly stated problem statement. The introduction is somewhat haphazard, I feel it can be better structured.

      We apologize for the inconvenience. We stated the problem/research question in the abstract and tried to improve the introduction without adding too much unnecessary detail. In general, we tried  to improve the readability of the manuscript and hope that our results and conclusions can be easier understood by the reader in the revised version.

      (7) Typo in Figure 5F. Step 6 should read "accessory receptors"

      The typo was corrected.

      References

      (1) Lloyd-Evans, E. et al. Niemann-Pick disease type C1 is a sphingosine storage disease that causes deregulation of lysosomal calcium. Nature Medicine 14, 1247-1255 (2008).

      (2) Launay, P. et al. TRPM4 Is a Ca<sup>2<sup>+</sup></sup>-Activated Nonselective Cation Channel Mediating Cell Membrane Depolarization. Cell 109, 397-407 (2002).

      (3) Nilius, B. et al. The Ca<sup>2<sup>+</sup></sup>‐activated cation channel TRPM4 is regulated by phosphatidylinositol 4,5‐biphosphate. The EMBO Journal 25, 467-478-478 (2006).

      (4) Cáceres, M. et al. TRPM4 Is a Novel Component of the Adhesome Required for Focal Adhesion Disassembly, Migration and Contractility. PLoS One 10, e0130540 (2015).

      (5) Silva, I., Brunett, M., Cáceres, M. & Cerda, O. TRPM4 modulates focal adhesion-associated calcium signals and dynamics. Biophysical Journal 123, 390a (2024).

      (6) Schlesier, T., Siegmund, A., Rescher, U. & Heilmann, C. Characterization of the Atl-mediated staphylococcal internalization mechanism. International Journal of Medical Microbiology 310, 151463 (2020).

      (7) Jevon, M. et al. Mechanisms of Internalization ofStaphylococcus aureus by Cultured Human Osteoblasts. Infection and Immunity 67, 2677-2681 (1999).

      (8) Rodriguez, A., Webster, P., Ortego, J. & Andrews, N.W. Lysosomes behave as Ca<sup>2<sup>+</sup></sup>-regulated exocytic vesicles in fibroblasts and epithelial cells. J Cell Biol 137, 93-104 (1997).

      (9) Krones & Rühling et al. Staphylococcus aureus alpha-Toxin Induces Acid Sphingomyelinase Release From a Human Endothelial Cell Line. Front Microbiol 12, 694489 (2021).

      (10) Sakurai, Y. et al. Two-pore channels control Ebola virus host cell entry and are drug targets for disease treatment. Science 347, 995-998 (2015).

      (11) Aarhus, R., Graeff, R.M., Dickey, D.M., Walseth, T.F. & Lee, H.C. ADP-ribosyl cyclase and CD38 catalyze the synthesis of a calcium-mobilizing metabolite from NADP. J Biol Chem 270, 3032730333 (1995).

      (12) Schmid, F., Fliegert, R., Westphal, T., Bauche, A. & Guse, A.H. Nicotinic acid adenine dinucleotide phosphate (NAADP) degradation by alkaline phosphatase. J Biol Chem 287, 32525-32534 (2012).

      (13) Angeletti, C. et al. SARM1 is a multi-functional NAD(P)ase with prominent base exchange activity, all regulated bymultiple physiologically relevant NAD metabolites. iScience 25, 103812 (2022).

      (14) Gu, F. et al. Dual NADPH oxidases DUOX1 and DUOX2 synthesize NAADP and are necessary for Ca(2<sup>+</sup>) signaling during T cell activation. Sci Signal 14, eabe3800 (2021).

      (15) Schonn, J.-S., Maximov, A., Lao, Y., Südhof, T.C. & Sørensen, J.B. Synaptotagmin-1 and -7 are functionally overlapping Ca<sup>2<sup>+</sup></sup> sensors for exocytosis in adrenal chromaffin cells. Proceedings of the National Academy of Sciences 105, 3998-4003 (2008).

      (16) Kornhuber, J. et al. Functional Inhibitors of Acid Sphingomyelinase (FIASMAs): a novel pharmacological group of drugs with broad clinical applications. Cell Physiol Biochem 26, 9-20 (2010).

      (17) Naser, E. et al. Characterization of the small molecule ARC39, a direct and specific inhibitor of acid sphingomyelinase in vitro. J Lipid Res 61, 896-910 (2020).

      (18) Roth, A.G. et al. Potent and selective inhibition of acid sphingomyelinase by bisphosphonates. Angew Chem Int Ed Engl 48, 7560-7563 (2009).

      (19) Rühling, M., Schmelz, F., Kempf, A., Paprotka, K. & Fraunholz Martin, J. Identification of the Staphylococcus aureus endothelial cell surface interactome by proximity labeling. mBio 0, e03654-03624 (2025).

      (20) Schuchman, E.H. & Desnick, R.J. Types A and B Niemann-Pick disease. Mol Genet Metab 120, 27-33 (2017).

      (21) Miller, M.E., Adhikary, S., Kolokoltsov, A.A. & Davey, R.A. Ebolavirus Requires Acid Sphingomyelinase Activity and Plasma Membrane Sphingomyelin for Infection. Journal of Virology 86, 7473-7483 (2012).

      (22) M. Rühling, L.K., F. Wagner, F. Schumacher, D. Wigger, D. A. Helmerich, T. Pfeuffer, R. Elflein, C. Kappe, M. Sauer, C. Arenz, B. Kleuser, T. Rudel, M. Fraunholz, J. Seibel Trifunctional sphingomyelin derivatives enable nanoscale resolution of sphingomyelin turnover in physiological and infection processes via expansion microscopy. Nat Commun accepted in principle (2024).

      (23) Peters, S. et al. Neisseria meningitidis Type IV Pili Trigger Ca(2<sup>+</sup>)-Dependent Lysosomal Trafficking of the Acid Sphingomyelinase To Enhance Surface Ceramide Levels. Infect Immun 87 (2019).

      (24) Grassmé, H. et al. Acidic sphingomyelinase mediates entry of N. gonorrhoeae into nonphagocytic cells. Cell 91, 605-615 (1997).

      (25) Li, C. et al. Regulation of Staphylococcus aureus Infection of Macrophages by CD44, Reactive Oxygen Species, and Acid Sphingomyelinase. Antioxid Redox Signal 28, 916-934 (2018).

      (26) Fernandes, M.C. et al. Trypanosoma cruzi subverts the sphingomyelinase-mediated plasma membrane repair pathway for cell invasion. J Exp Med 208, 909-921 (2011).

      (27) Luisoni, S. et al. Co-option of Membrane Wounding Enables Virus Penetration into Cells. Cell Host & Microbe 18, 75-85 (2015).

      (28) Rühling, M. et al. Trifunctional sphingomyelin derivatives enable nanoscale resolution of sphingomyelin turnover in physiological and infection processes via expansion microscopy. Nature Communications 15, 7456 (2024).

      (29) Ellison, C.J., Kukulski, W., Boyle, K.B., Munro, S. & Randow, F. Transbilayer Movement of Sphingomyelin Precedes Catastrophic Breakage of Enterobacteria-Containing Vacuoles. Curr Biol 30, 2974-2983 e2976 (2020).

      (30) Moldovan, A. & Fraunholz, M.J. In or out: Phagosomal escape of Staphylococcus aureus. Cell Microbiol 21, e12997 (2019).

      (31) Slotte, J.P. Biological functions of sphingomyelins. Progress in Lipid Research 52, 424-437 (2013).

      (32) Stelzner, K. et al. Intracellular Staphylococcus aureus Perturbs the Host Cell Ca(2<sup>+</sup>) Homeostasis To Promote Cell Death. mBio 11 (2020).

      (33) Kunz, T.C. et al. The Expandables: Cracking the Staphylococcal Cell Wall for Expansion Microscopy. Front Cell Infect Microbiol 11, 644750 (2021).

      (34) Sakurai, Y. et al. Ebola virus. Two-pore channels control Ebola virus host cell entry and are drug targets for disease treatment. Science 347, 995-998 (2015).

      (35) Grosz, M. et al. Cytoplasmic replication of Staphylococcus aureus upon phagosomal escape triggered by phenol-soluble modulin alpha. Cell Microbiol 16, 451-465 (2014).

      (36) Giese, B. et al. Staphylococcal alpha-toxin is not sufficient to mediate escape from phagolysosomes in upper-airway epithelial cells. Infect Immun 77, 3611-3625 (2009).

    1. Reviewer #2 (Public review):

      The authors aimed to develop an animal model of temporal lobe epilepsy (TLE) that will generate "on-demand" seizures and an improved platform to advance our ability to find new anti-seizure drugs (ASDs) for drug-resistant epilepsy (DRE). Unlike some of the work in this field, the authors are studying actual seizures, and hopefully events that are similar to actual epileptic seizures. To develop an optimized screening tool, however, one also needs high-throughput systems with actual seizures as a quantitative, rigorous, and reproducible outcome measures. The authors aim to provide such a model; however, this approach may be over-stated here and seems unlikely to address the critical issue of drug resistance, which is their most important claim.

      Strengths:

      - The authors have generated an animal model of "on demand" seizures, which could be used to screen new ASDs and potentially other therapies. The authors and their model make a good-faith effort to emulate the epileptic condition and to use seizure susceptibility or probability as a quantitative output measure.

      - The events considered to be seizures appear to be actual seizures, with some evidence that the seizures are different from seizures in the naïve brain. Their effort to determine how different ASDs raise seizure probability or threshold to an optogenetic stimulus to the CA1 area of the rodent hippocampus is focused on an important problem, as many if not most ASD screening uses surrogate measures that may not be as well linked to actual epileptic seizures.

      - Another concern is their stimulation of dorsal hippocampus, while ventral hippocampus would seem more appropriate.

      - Use of optogenetic techniques allows specific stimulation of the targeted CA1 pyramidal cells, and it appears that this approach is reproducible and reliable with quantitative rigor.

      - The authors have taken on a critically important problem, and have made a good-faith effort to address many of the technical concerns raised in the reviews, but the underlying problem of DRE remains.

      Weaknesses:

      - Although the model has potential advantages, it also has disadvantages. As stated by the authors, the pre-test work-load to prepare the model may not be worth the apparent advantages. And most important, the paper frequently mentions DRE but does not directly address it, and yet drug resistance is the critical issue in this field.

      - Although the paper shows examples of actual seizures, there remains some concern that some of the events might not be seizures - or a homogeneous population of seizures. More quantitative assessment of the electrical properties (e.g., duration) of the seizures and their probability is likely to be more useful than the proposed quantification in the future of the behavioral seizure stages, because the former could be both more objective and automated, while the behavioral analysis of the seizures will likely be more subjective and less reliable (and also fraught with subjectivity and analytical problems). Nonetheless, the authors point that the presence of "Racine 3 or above" behavioral seizures (in addition to their electrical data) is a good argument that many (if not all) of the "seizures" are actual epileptic seizures.

      - Optogenetic stimulation of CA1 provides cell-specificity for the stimulation, but it is not clear that this method would actually be better than electrical stimulation of a kindled rodent with superimposed hippocampal injury. The reader is unfortunately left with the concern of whether this model would be easier and more efficacious than kindling.

      - Although the authors have taken on a critically important problem, and have combined a variety of technologies, this approach may facilitate more rapid screening of ASDs against actual seizures (beneficial), but it does not really address the fundamentally critical yet difficult problem of DRE. A critical issue for DRE that is not well-addressed relates to adverse effects, which is often why many ASDs are not well tolerated by many patients (e.g., LEV). Thus, we are left with: how does this address anti-seizure DRE?

      - The focus of this paper seems to be more on seizures more than on epilepsy. In the absence of seizure spontaneity, the work seems to primarily address the issues of seizure spread and duration. Although this is useful, it does not seem to be addressing the question of what trips the system to generate a seizure.

      An appraisal of whether the authors achieved their aims, and whether the results support their conclusions:

      - The authors seem to have developed a new and useful model; however, it is not clear how this will address that core problem of DRE, which was their stated aim.

      - A discussion of the likely impact of the work on the field, and the utility of the methods and data to the community.

      - As stated before in the original review, the potential impact would primarily be aimed at the ETSP or a drug-testing CRO; however, much more work will be required to convince the epilepsy community that this approach will actually identify new ASDs for DRE. The approach is potentially time-consuming with a steep and potentially difficult optimization curve, and thus may not be readily adaptable to the typical epilepsy-models neuroscience laboratory.

      Any additional context you think would help readers interpret or understand the significance of the work:

      - The problem of DRE is much more complicated than described by the authors here; however, the paper could end up being more useful than is currently apparent. Although this work could be seen as technically - and maybe conceptually - elegant and a technical tour de force, will it "deliver on the promise"? Is it better than kindling for DRE? In attempting to improve the discovery process, how will the model move us to another level? Will this model really be any better than others, such as kindling?

    1. Author response:

      The following is the authors’ response to the original reviews

      We thank the Reviewers for their constructive comments and the Editor for the possibility to address the Reviewers’ points in this rebuttal. We 

      (1) Conducted new experiments with NP6510-Gal4 and TH-Gal4 lines to address potential behavioral differences due to targeting dopaminergic vs. both dopaminergic and serotonergic neurons

      (2) Conducted novel data analyses to emphasize the strength of sampling distributions of behavioral parameters across trials and individual flies

      (3) Provided Supplementary Movies

      (4) Calculated additional statistics

      (5) Edited and added text to address all points of the Reviewers.

      Please see our point-by-point responses below.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      Translating discoveries from model organisms to humans is often challenging, especially in neuropsychiatric diseases, due to the vast gaps in the circuit complexities and cognitive capabilities. Kajtor et al. propose to bridge this gap in the fly models of Parkinson's disease (PD) by developing a new behavioral assay where flies respond to a moving shadow by modifying their locomotor activities. The authors believe the flies' response to the shadow approximates their escape response to an approaching predator. To validate this argument, they tested several PD-relevant transgenic fly lines and showed that some of them indeed have altered responses in their assay.

      Strengths:

      This single-fly-based assay is easy and inexpensive to set up, scalable, and provides sensitive, quantitative estimates to probe flies' optomotor acuity. The behavioral data is detailed, and the analysis parameters are well-explained.

      We thank the Reviewer for the positive assessment of our study.

      Weaknesses:

      While the abstract promises to give us an assay to accelerate fly-to-human translation, the authors need to provide evidence to show that this is indeed the case. They have used PD lines extensively characterized by other groups, often with cheaper and easier-to-setup assays like negative geotaxis, and do not offer any new insights into them. The conceptual leap from a low-level behavioral phenotype, e.g. changes in walking speed, to recapitulating human PD progression is enormous, and the paper does not make any attempt to bridge it. It needs to be clarified how this assay provides a new understanding of the fly PD models, as the authors do not explore the cellular/circuit basis of the phenotypes. Similarly, they have assumed that the behavior they are looking at is an escape-from-predator response modulated by the central complex- is there any evidence to support these assumptions? Because of their rather superficial approach, the paper does not go beyond providing us with a collection of interesting but preliminary observations.

      We thank the Reviewer for pointing out some limitations of our study. We would like to emphasize that what we perceive as the main advantage of performing single-fly and single-trial analyses is the access to rich data distributions that provide more fine-scale information compared to bulk assays. We think that this is exactly going one step closer to ‘bridging the enormous conceptual leap from a low-level behavioral phenotype, e.g. changes in walking speed, to recapitulating human PD progression’, and we showcase this in our study by comparing the distributions over the entire repertoire of behavioral responses across fly mutants. Nevertheless, we agree with the Reviewer that many more steps in this direction are needed to improve translatability. Therefore, we toned down the corresponding statements in the Abstract and in the Introduction. Moreover, to further emphasize the strength of sampling distributions of behavioral parameters across trials and individual flies, we complemented our comparisons of central tendencies with testing for potential differences in data dispersion, demonstrated in the novel Supplementary Figure S4.

      Looming stimuli have been used to characterize flies’ escape behaviors. These studies uncovered a surprisingly rich behavioral repertoire (Zacarias et al., 2018), which was modulated by both sensory and motor context, e.g. walking speed at time of stimulus presentation (Card and Dickinson, 2008; Oram and Card, 2022; Zacarias et al., 2018). The neural basis of these behaviors was also investigated, revealing loom-sensitive neurons in the optic lobe and the giant fiber escape pathway (Ache et al., 2019; de Vries and Clandinin, 2012). Although less frequently, passing shadows were also employed as threat-inducing stimuli in flies (Gibson et al., 2015). We opted for this variant of the stimulus so that we could ensure that the shadow reached the same coordinates in all linear track concurrently, aiding data analysis and scalability. Similar to the cited study, we found the same behavioral repertoire as in studies with looming stimuli, with an equivalent dependence on walking speed, confirming that looming stimuli and passing shadows can both be considered as threat-inducing visual stimuli. We added a discussion on this topic to the main text.

      Reviewer #2 (Public Review):

      In this study, Kajtor et al investigated the use of a single-animal trial-based behavioral assay for the assessment of subtle changes in the locomotor behavior of different genetic models of Parkinson's disease of Drosophila. Different genotypes used in this study were Ddc-GAL4>UASParkin-275W and UAS- α-Syn-A53T. The authors measured Drosophila's response to predatormimicking passing shadow as a threatening stimulus. Along with these, various dopamine (DA) receptor mutants, Dop1R1, Dop1R2 and DopEcR were also tested.

      The behavior was measured in a custom-designed apparatus that allows simultaneous testing of 13 individual flies in a plexiglass arena. The inter-trial intervals were randomized for 40 trials within 40 minutes duration and fly responses were defined into freezing, slowing down, and running by hierarchical clustering. Most of the mutant flies showed decreased reactivity to threatening stimuli, but the speed-response behavior was genotype invariant.

      These data nicely show that measuring responses to the predator-mimicking passing shadows could be used to assess the subtle differences in the locomotion parameters in various genetic models of Drosophila.

      The understanding of the manifestation of various neuronal disorders is a topic of active research. Many of the neuronal disorders start by presenting subtle changes in neuronal circuits and quantification and measurement of these subtle behavior responses could help one delineate the mechanisms involved. The data from the present study nicely uses the behavioral response to predator-mimicking passing shadows to measure subtle changes in behavior. However, there are a few important points that would help establish the robustness of this study.

      We thank the Reviewer for the constructive comments and the positive assessment of our study.

      (1) The visual threat stimulus for measuring response behavior in Drosophila is previously established for both single and multiple flies in an arena. A comparative analysis of data and the pros and cons of the previously established techniques (for example, Gibson et al., 2015) with the technique presented in this study would be important to establish the current assay as an important advancement.

      We thank the Reviewer for this suggestion. We included the following discussion on measuring response behavior to visual threat stimuli in the revised manuscript.

      Many earlier studies used looming stimulus, that is, a concentrically expanding shadow, mimicking the approach of a predator from above, to study escape responses in flies (Ache et al., 2019; Card and Dickinson, 2008; de Vries and Clandinin, 2012; Oram and Card, 2022; Zacarias et al., 2018) as well as rodents (Braine and Georges, 2023; Heinemans and Moita, 2024; Lecca et al., 2017). These assays have the advantage of closely resembling naturalistic, ecologically relevant threatinducing stimuli, and allow a relatively complete characterization of the fly escape behavior repertoire. As a flip side of their large degree of freedom, they do not lend themselves easily to provide a fully standardized, scalable behavioral assay. Therefore, Gibson et al. suggested a novel threat-inducing assay operating with moving overhead translational stimuli, that is, passing shadows, and demonstrated that they induce escape behaviors in flies akin to looming discs (Gibson et al., 2015). This assay, coined ReVSA (repetitive visual stimulus-induced arousal) by the authors, had the advantage of scalability, while constraining flies to a walking arena that somewhat restricted the remarkably rich escape types flies otherwise exhibit. Here we carried this idea one step further by using a screen to present the shadows instead of a physically moving paddle and putting individual flies to linear corridors instead of the common circular fly arena. This ensured that the shadow reached the same coordinates in all linear tracks concurrently and made it easy to accurately determine when individual flies encountered the stimulus, aiding data analysis and scalability. We found the same escape behavioral repertoire as in studies with looming stimuli and ReVSA (Gibson et al., 2015; Zacarias et al., 2018), with a similar dependence on walking speed (Oram and Card, 2022; Zacarias et al., 2018), confirming that looming stimuli and passing shadows can both be considered as threat-inducing visual stimuli.  

      (2) Parkinson's disease mutants should be validated with other GAL-4 drivers along with DdcGAL4, such as NP6510-Gal4 (Riemensperger et al., 2013). This would be important to delineate the behavioral differences due to dopaminergic neurons and serotonergic neurons and establish the Parkinson's disease phenotype robustly.

      We thank the Reviewer for point out this limitation. To address this, we repeated our key experiments in Fig.3. with both TH-Gal4 and NP6510-Gal4 lines, and their respective controls. These yielded largely similar results to the Ddc-Gal4 lines reported in Fig.3., reproducing the decreased speed and decreased overall reactivity of PD-model flies. Nevertheless, TH-Gal4 and NP6510-Gal4 mutants showed an increased propensity to stop. Stop duration showed a significant increase not only in α-Syn but also in Parkin fruit flies. These novel results have been added to the text and are demonstrated in Supplementary Figure S3.

      (3) The DopEcR mutant genotype used for behavior analysis is w1118; PBac{PB}DopEcRc02142TM6B, Tb1. Balancer chromosomes, such as TM6B,Tb can have undesirable and uncharacterised behavioral effects. This could be addressed by removing the balancer and testing the DopEcR mutant in homozygous (if viable) or heterozygous conditions.

      We appreciate the Reviewer's comment and acknowledge the potential for the DopEcR balancer chromosome to produce unintended behavioral effects. However, given that this mutant was not essential to our main conclusions, we opted not to repeat the experiment. Nevertheless, we now discuss the possible confounds associated with using the PBac{PB}DopEcRc02142 mutant allele over the balancer chromosome. “We recognize a limitation in using PBac{PB}DopEcRc02142 over the  TM6B, Tb<sup>1</sup> balancer chromosome, as the balancer itself may induce behavioral deficits in flies. We consider this unlikely, as the PBac{PB}DopEcRc02142 mutation demonstrates behavioral effects even in heterozygotes (Ishimoto et al., 2013). Additionally, to our knowledge, no studies have reported behavioral deficits in flies carrying the TM6B, Tb<sup>1</sup> balancer chromosome over a wild-type chromosome.”

      (4) The height of the arena is restricted to 1mm. However, for the wild-type flies (Canton-S) and many other mutants, the height is usually more than 1mm. Also, a 1 mm height could restrict the fly movement. For example, it might not allow the flies to flip upside down in the arena easily. This could introduce some unwanted behavioral changes. A simple experiment with an arena of height at least 2.5mm could be used to verify the effect of 1mm height.

      We thank the Reviewer for this comment, which prompted us to reassess the dimensions of the apparatus. The height of the arena was 1.5 mm, which we corrected now in the text. We observed that the arena did not restrict the flies walking and that flies could flip in the arena. We now include two Supplementary Movies to demonstrate this.

      (5) The detailed model for Monte Carlo simulation for speed-response simulation is not described. The simulation model and its hyperparameters need to be described in more depth and with proper justification.

      We thank the Reviewer for pointing out a lack of details with respect to Monte Carlo simulations. We used a nested model built from actual data distributions, without any assumptions. Accordingly, the stimulation did not have hyperparameters typical in machine learning applications, the only external parameter being the number of resamplings (3000 for each draw). We made these modeling choices clearer and expanded this part as follows.

      “The effect of movement speed on the distribution of behavioral response types was tested using a nested Monte Carlo simulation framework (Fig. S5). This simulation aimed to model how different movement speeds impact the probability distribution of response types, comparing these simulated outcomes to empirical data. This approach allowed us to determine whether observed differences in response distributions are solely due to speed variations across genotypes or if additional behavioral factors contribute to the differences. First, we calculated the probability of each response type at different specific speed values (outer model). These probabilities were derived from the grand average of all trials across each genotype, capturing the overall tendency at various speeds. Second, we simulated behavior of virtual flies (n = 3000 per genotypes, which falls within the same order of magnitude as the number of experimentally recorded trials from different genotypes) by drawing random velocity values from the empirical velocity distribution specific to the given genotype and then randomly selecting a reaction based on the reaction probabilities associated with the drawn velocity (inner model). Finally, we calculated reaction probabilities for the virtual flies and compared it with real data from animals of the same genotype.

      Differences were statistically tested by Chi-squared test.”

      (6) The statistical analysis in different experiments needs revisiting. It wasn't clear to me if the authors checked if the data is normally distributed. A simple remedy to this would be to check the normality of data using the Shapiro-Wilk test or Kolmogorov-Smirnov test. Based on the normality check, data should be further analyzed using either parametric or non-parametric statistical tests. Further, the statistical test for the age-dependent behavior response needs revisiting as well. Using two-way ANOVA is not justified given the complexity of the experimental design. Again, after checking for the normality of data, a more rigorous statistical test, such as split-plot ANOVA or a generalized linear model could be used.

      We thank the Reviewer for this comment. We performed Kolmogorov-Smirnov test for normality on the data distributions underlying Figure 3, and normality was rejected for all data distributions at p = 0.05, which justifies the use of the non-parametric Mann-Whitney U-test. Regarding ANOVA, we would like to point out that the ANOVA hypothesis test design is robust to deviations from normality (Knief and Forstmeier, 2021; Mooi et al., 2018). While the Kruskal-Wallis test is considered a reasonable non-parametric alternative of one-way ANOVA, there is no clear consensus for a non-parametric alternative of two-way ANOVA. Therefore, we left the two-way ANOVA for Figure 5 in place; however, to increase the statistical confidence in our conclusions, we performed Kruskal-Wallis tests for the main effect of age and found significant effects in all genotypes in accordance with the ANOVA, confirming the results (Stop frequency, DopEcR p = 0.0007; Dop1R1, p = 0.004; Dop1R2, p = 9.94 × 10<sup>-5</sup>; w<sup>1118</sup>, p = 9.89 × 10<sup>-13</sup>; y<sup>1</sup> w<sup>67</sup>c<sup>23</sup>, p = 2.54 × 10<sup>-5</sup>; Slowing down frequency, DopEcR, p = 0.0421; Dop1R1, p = 5.77 x 10<sup>-6</sup>; Dop1R2, p = 0.011; w<sup>1118</sup>, p = 2.62 x 10<sup>-5</sup>; y<sup>1</sup> w<sup>67</sup>c<sup>23</sup>, p = 0.0382; Speeding up frequency, DopEcR, p = 0.0003; Dop1R1, p = 2.06 x 10<sup>-7</sup>; Dop1R2, p = 2.19 x 10<sup>-6</sup>; w<sup>1118</sup>, p = 0.0044; y<sup>1</sup> w<sup>67</sup>c<sup>23</sup>, p = 1.36 x 10<sup>-5</sup>). We also changed the post hoc Tukey-tests to post hoc Mann-Whitney tests in the text to be consistent with the statistical analyses for Figure 3. These resulted in very similar results as the Tukey-tests. Of note, there isn’t a straightforward way of correcting for multiple comparisons in this case as opposed to the Tukey’s ‘honest significance’ approach, we thus report uncorrected p values and suggest considering them at p = 0.01, which minimizes type I errors. These notes have been added to the ‘Data analysis and statistics’ Methods section.

      (7) The dopamine receptor mutants used in this study are well characterized for learning and memory deficits. In the Parkinson's disease model of Drosophila, there is a loss of DA neurons in specific pockets in the central brain. Hence, it would be apt to use whole animal DA receptor mutants as general DA mutants rather than the Parkinson's disease model. The authors may want to rework the title to reflect the same.

      We thank the Reviewer for this comment, which suggests that we were not sufficiently clear on the Drosophila lines with DA receptor mutations. We used Mi{MIC} random insertion lines for dopamine receptor mutants, namely y<sup>1</sup> w<sup>*1</sup>; Mi{MIC}Dop1R1<sup>MI04437</sup> (BDSC 43773), y<sup>1</sup> w<sup>*1</sup>; Mi{MIC}Dop1R2<sup>MI08664</sup> (BDSC 51098) (Harbison et al., 2019; Pimentel et al., 2016), and w<sup>1118</sup>; PBac{PB}DopEcR<sup>c02142</sup>/TM6B, Tb<sup>1</sup> (BDSC 10847) (Ishimoto et al., 2013; Petruccelli et al., 2020, 2016). These lines carried reported mutations in dopamine receptors, most likely generating partial knock down of the respective receptors. We made this clearer by including the full names at the first occurrence of the lines in Results (beyond those in Methods) and adding references to each of the lines.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) Please think about focusing the manuscript either on the escape response or the PD pathology and provide additional evidence to demonstrate that you indeed have a novel system to address open questions in the field.

      As detailed above, we now emphasize more that the main advantage of our single-trial-based approach lies in the appropriate statistical comparison of rich distributions of behavioral data. Please see our response to the ‘Weaknesses’ section for more details.

      (2) Please explain the rationale for choosing the genetic lines and provide appropriate genetic controls in the experiments, e.g. trans-heterozygotes. Why use Ddc-Gal4 instead of TH or other specific Split-Gal4 lines?

      We thank the Reviewer for this suggestion. We repeated our key experiments with TH-Gal4 and NP6510-Gal4 lines. Please see our response to Point #2 of Reviewer #2 for details.

      (3) Please proofread the manuscript for ommissions. e.g. there's no legend for Fig 4b.

      We respectfully point out that the legend is there, and it reads “b, Proportion of a given response type as a function of average fly speed before the shadow presentation. Top, Parkin and α-Syn flies. Bottom, Dop1R1, Dop1R2 and DopEcR mutant flies.”

      Reviewer #2 (Recommendations For The Authors):

      (1) In figure 2(c), representing the average walking speed data for different mutants would be useful to visually correlate the walking differences.

      We thank the Reviewer for this suggestion. The average walking speed was added in a scatter plot format, as suggested in the next point of the Reviewer. 

      (2) The data could be represented more clearly using scatter plots. Also, the color scheme could be more color-blindness friendly.

      We thank the Reviewer for this suggestion. We added scatter plots to Fig.2c that indeed represent the distribution of behavioral responses better. We also changed the color scheme and removed red/green labeling.

      (3) The manuscript should be checked for typos such as in line 252, 449, 484.

      Thank you. We fixed the typos.

      References

      Ache JM, Polsky J, Alghailani S, Parekh R, Breads P, Peek MY, Bock DD, von Reyn CR, Card GM. 2019. Neural Basis for Looming Size and Velocity Encoding in the Drosophila Giant Fiber Escape Pathway. Curr Biol 29:1073-1081.e4. doi:10.1016/j.cub.2019.01.079

      Braine A, Georges F. 2023. Emotion in action: When emotions meet motor circuits. Neurosci Biobehav Rev 155:105475. doi:10.1016/j.neubiorev.2023.105475

      Card G, Dickinson MH. 2008. Visually Mediated Motor Planning in the Escape Response of Drosophila. Curr Biol 18:1300–1307. doi:10.1016/j.cub.2008.07.094

      de Vries SEJ, Clandinin TR. 2012. Loom-Sensitive Neurons Link Computation to Action in the Drosophila Visual System. Curr Biol 22:353–362. doi:10.1016/j.cub.2012.01.007

      Gibson WT, Gonzalez CR, Fernandez C, Ramasamy L, Tabachnik T, Du RR, Felsen PD, Maire MR, Perona P, Anderson DJ. 2015. Behavioral Responses to a Repetitive Visual Threat Stimulus Express a Persistent State of Defensive Arousal in Drosophila. Curr Biol 25:1401– 1415. doi:10.1016/j.cub.2015.03.058

      Harbison ST, Kumar S, Huang W, McCoy LJ, Smith KR, Mackay TFC. 2019. Genome-Wide Association Study of Circadian Behavior in Drosophila melanogaster. Behav Genet 49:60–82. doi:10.1007/s10519-018-9932-0

      Heinemans M, Moita MA. 2024. Looming stimuli reliably drive innate defensive responses in male rats, but not learned defensive responses. Sci Rep 14:21578. doi:10.1038/s41598-02470256-2

      Ishimoto H, Wang Z, Rao Y, Wu C, Kitamoto T. 2013. A Novel Role for Ecdysone in Drosophila Conditioned Behavior: Linking GPCR-Mediated Non-canonical Steroid Action to cAMP Signaling in the Adult Brain. PLoS Genet 9:e1003843. doi:10.1371/journal.pgen.1003843

      Knief U, Forstmeier W. 2021. Violating the normality assumption may be the lesser of two evils. Behav Res Methods 53:2576–2590. doi:10.3758/s13428-021-01587-5

      Lecca S, Meye FJ, Trusel M, Tchenio A, Harris J, Schwarz MK, Burdakov D, Georges F, Mameli M. 2017. Aversive stimuli drive hypothalamus-to-habenula excitation to promote escape behavior. Elife 6:1–16. doi:10.7554/eLife.30697

      Mooi E, Sarstedt M, Mooi-Reci I. 2018. Market Research, Springer Texts in Business and Economics. Singapore: Springer Singapore. doi:10.1007/978-981-10-5218-7

      Oram TB, Card GM. 2022. Context-dependent control of behavior in Drosophila. Curr Opin Neurobiol 73:102523. doi:10.1016/j.conb.2022.02.003

      Petruccelli E, Lark A, Mrkvicka JA, Kitamoto T. 2020. Significance of DopEcR, a G-protein coupled dopamine/ecdysteroid receptor, in physiological and behavioral response to stressors. J Neurogenet 34:55–68. doi:10.1080/01677063.2019.1710144

      Petruccelli E, Li Q, Rao Y, Kitamoto T. 2016. The Unique Dopamine/Ecdysteroid Receptor Modulates Ethanol-Induced Sedation in Drosophila. J Neurosci 36:4647–4657. doi:10.1523/JNEUROSCI.3774-15.2016

      Pimentel D, Donlea JM, Talbot CB, Song SM, Thurston AJF, Miesenböck G. 2016. Operation of a homeostatic sleep switch. Nature 536:333–337. doi:10.1038/nature19055

      Zacarias R, Namiki S, Card GM, Vasconcelos ML, Moita MA. 2018. Speed dependent descending control of freezing behavior in Drosophila melanogaster. Nat Commun 9:1–11. doi:10.1038/s41467-018-05875-1

    1. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      The manuscript by Metheringham et al. reports on interesting new characterizations of phenotypes caused by genetic inactivation of subunits of the methyl transferase complex responsible for N6-adenosine methylation in (pre)-mRNA ("the m6A writer") in the plant Arabidopsis thaliana. The main claim of the paper is that mutants in these subunits exhibit autoimmunity, a claim that is supported by the following lines of evidence:

      • Transcriptome profiling by mRNA-seq shows a gene expression profile with differential expression of many stress- and defense-related genes.
      • The immunity-like gene expression profile is observed under growth at 17{degree sign}C but not at 27{degree sign}C, consistent with the well-known temperature-sensitivity of some (but not all) innate immunity signaling systems in plants.
      • m6A writer mutants show increased resistance to infection by the virulent Pseudomonas syringae DC3000 strain.
      • The primary biochemical defect in m6A writing is not temperature sensitive, excluding the trivial possibility that the mutant alleles chosen for study are simply ts.

      The observations are important and the manuscript is very well written, a pleasure to read: the problem is clearly presented, the experimental results are presented in a clear, logical succession, and the discussion treats important points.

      The study is valuable pending some manuscript revision on the autoimmunity interpretation of the results obtained, and a few suggested edits that can be included if the authors agree that they would improve the paper.

      The finding that an autoimmune-like state is activated in m6A writer mutants is significant because it provides a warning flag on how such mutants should be used for studying the role of m6A in stress response signaling, including reassessment of previously published work. Whether the stress state really is autoimmunity is subject to some debate, particularly because no genetic evidence to support it has been obtained. The results are nonetheless interesting and constitute an important contribution to the community, even if they remain descriptive and with nearly no insight into molecular mechanisms. My suggestions for improvement are summarized below.

      1. Although the authors do a lot to support the claim that autoimmunity is an element of m6A writer mutant phenotypes, the study does not include genetic evidence to support this claim. This is important, because if the stress/defense gene activation causes some of the morphological phenotypes of m6A writer mutants, one should be able to suppress such defects by mutation of know immune signaling components such as the appropriate nucleotide-binding leucine-rich repeat proteins, or more generic signaling components such as EDS1, PAD4 and SAG1, common to a subset of such intracellular immune receptors. Resistance to pathogens can be observed in mutants with constitutive stress response signaling, and defense-like gene expression can be induced as a secondary of other primary defects, for instance DNA damage. Similarly, while it is true that some types of immune activation are temperature sensitive, others are not 1, and clearly, elevated temperature changes so much of the physiology of the plant that sensitivity to elevated temperature cannot be used as proof of immune activation. Thus, each of the lines of evidence presented is suggestive, not conclusive. Together, they constitute a good argument, but still not a completely satisfactory proof of the main claim. I do not think that this concern means that a lot of genetic work must be undertaken to make this paper publishable, but I think that the authors should be even more careful about how they interpret their observations. I understand that they favor more or less direct activation of autoimmunity, although even if that were true, it would be unclear what the biochemical triggers of such autoimmunity would be (unmethylated RNA, absence or writer components, excess of free m6A-binding proteins etc). However, given the concerns above, I think the authors should dedicate a small paragraph in the discussion to the possibility that the primary cause of stress/defense-gene expression is unclear and may not result from innate immune surveillance of unmethylated mRNA or components of the m6A pathway as favoured by the authors.
      2. It may be of relevance to search promoters of differentially expressed genes for enrichment of cis-elements. This simple approach identified the W-box in the first papers using transcriptome profiling to characterize the immune state in Arabidopsis 2,3, and could perhaps reveal whether a WRKY-driven transcriptional program drives differential expression or whether several other transcription factor classes may also contribute substantially, as may be expected if a more complex stress-related transcriptional program is activated. I do not think that this is a deal breaker, but some additional useful information from the existing data might be gathered in this way.
      3. Stress response activation has also been clearly described in ect2 ect3 ect4 mutants4 and even if the authors find no evidence for PR1 expression in this mutant, it is still of relevance to include a mention of this result in the discussion, together with the discussion of stress response activation seen in writer mutants in earlier reports 5,6. I would not mind the authors being a bit more explicit about what their results mean for studies that try to conclude on the biological relevance of m6A in different types of stress signaling, using phenotypes writer mutants as their primary line of evidence. But this is of course up to the authors to decide on that.
      4. In the introduction on preferred m6A sequence contexts, please clarify that m6A in plants occurs both DRACH in (G)GAU contexts 7,8.
      5. When mentioning convergence on shared signaling components from immune receptors, please include a tiny bit more information for the reader. For instance, EDS1 is mentioned, but this protein is only required for signaling from (some) TIR-NBS-LRRs, not the class of CC-NBS-LRRs. Indeed, signaling by this latter class may not converge on just one to a few components, as their multimerization appears to form the ion channels required for signaling-inducing ion currents.
      6. Please clarify in the introduction and in later parts that only some forms of autoimmunity can be suppressed by elevated temperature. Sentences like "A hallmark of Arabidopsis autoimmunity is temperature sensitivity..." are a bit misleading. Temperature sensitivity has clearly been used to study some forms of EDS1-dependent immunity, to great effect in the TMV-N interaction for instance, but it is not accurate to call temperature sensitivity a "hallmark of autoimmunity".
      7. In the discussion of possible biochemical triggers of autoimmunity in m6A mutants, please consider the following:

      (A) Mention the possibility that the primary trigger may not be immune receptor-surveillance of some defect induced by lack of m6A in mRNA (as discussed above).

      (B) In connection with the consideration that lack of m6A writer components, not m6A in mRNA, may be a signal, you could include the observation from yeast that Ime4 knockouts have a much stronger phenotype than Ime4 catalytically dead mutants or knockouts of the sole yeast YTH-domain Pho92 9. Indeed, it is a bit of an embarrassment to the plant m6A community that we have not yet examined phenotypes of MTA and MTB catalytically dead mutants, and the present report should further urge the community to finally do this important experiment. 8. Just a tiny typo on page 15, Pst DC3000, not Pst D3000 (of no relevance to the overall assessment, just a help to eliminate annoying errors before final submission).

      REFERENCES

      1. Demont, H. et al. Downstream signaling induced by several plant Toll/interleukin-1 receptor-containing immune proteins is stable at elevated temperature. Cell Reports 44(2025).
      2. Petersen, M. et al. Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance. Cell 103, 1111-1120 (2000).
      3. Maleck, K. et al. The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nature Genetics 26, 403-410 (2000).
      4. Arribas-Hernández, L. et al. The YTHDF proteins ECT2 and ECT3 bind largely overlapping target sets and influence target mRNA abundance, not alternative polyadenylation. eLife 10, e72377 (2021).
      5. Bodi, Z. et al. Adenosine Methylation in Arabidopsis mRNA is Associated with the 3' End and Reduced Levels Cause Developmental Defects. Front Plant Sci 3, 48 (2012).
      6. Prall, W. et al. Pathogen-induced m6A dynamics affect plant immunity. The Plant Cell 35, 4155-4172 (2023).
      7. Arribas-Hernández, L. et al. Principles of mRNA targeting via the Arabidopsis m6A-binding protein ECT2. eLife 10, e72375 (2021).
      8. Wang, G. et al. Quantitative profiling of m6A at single base resolution across the life cycle of rice and Arabidopsis. Nature Communications 15, 4881 (2024).
      9. Ensinck, I. et al. The yeast RNA methylation complex consists of conserved yet reconfigured components with m6A-dependent and independent roles. eLife 12, RP87860 (2023).

      Significance

      The finding that an autoimmune-like state is activated in m6A writer mutants is significant because it provides a warning flag on how such mutants should be used for studying the role of m6A in stress response signaling, including reassessment of previously published work. Whether the stress state really is autoimmunity is subject to some debate, particularly because no genetic evidence to support it has been obtained. The results are nonetheless interesting and constitute an important contribution to the community, even if they remain descriptive and with nearly no insight into molecular mechanisms. I wish to congratulate the authors on another valuable contribution to the plant m6A field.

    1. Author response:

      The following is the authors’ response to the original reviews

      eLife Assessment

      This important work advances our understanding of the impact of malnutrition on hematopoiesis and subsequently infection susceptibility. Support for the overall claims is convincing in some respects and incomplete in others as highlighted by reviewers. This work will be of general interest to those in the fields of hematopoiesis, malnutrition, and dietary influence on immunity.

      We would like to thank the editors for agreeing to review our work at eLife. We greatly appreciate them assessing this study as important and of general interest to multiple fields, as well as the opportunity to respond to reviewer comments. Please find our responses to each reviewer below.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      In this study, the authors used a chronic murine dietary restriction model to study the effects of chronic malnutrition on controls of bacterial infection and overall immunity, including cellularity and functions of different immune cell types. They further attempted to determine whether refeeding can revert the infection susceptibility and immunodeficiency. Although refeeding here improves anthropometric deficits, the authors of this study show that this is insufficient to recover the impairments across the immune cell compartments.

      Strengths:

      The manuscript is well-written and conceived around a valid scientific question. The data supports the idea that malnutrition contributes to infection susceptibility and causes some immunological changes. The malnourished mouse model also displayed growth and development delays. The work's significance is well justified. Immunological studies in the malnourished cohort (human and mice) are scarce, so this could add valuable information.

      Weaknesses:

      The assays on myeloid cells are limited, and the study is descriptive and overstated. The authors claim that "this work identifies a novel cellular link between prior nutritional state and immunocompetency, highlighting dysregulated myelopoiesis as a major." However, after reviewing the entire manuscript, I found no cellular mechanism defining the link between nutritional state and immunocompetency.

      We thank the reviewer for deeming our work significant and noting the importance of the study. We appreciate the referee’s point regarding the lack of specific cellular functional data for innate immune cells and have modified the conclusions stated in text to more accurately reflect the results presented.

      Reviewer #2 (Public review):

      Summary:

      Sukhina et al. use a chronic murine dietary restriction model to investigate the cellular mechanisms underlying nutritionally acquired immunodeficiency as well as the consequences of a refeeding intervention. The authors report a substantial impact of undernutrition on the myeloid compartment, which is not rescued by refeeding despite rescue of other phenotypes including lymphocyte levels, and which is associated with maintained partial susceptibility to bacterial infection.

      Strengths:

      Overall, this is a nicely executed study with appropriate numbers of mice, robust phenotypes, and interesting conclusions, and the text is very well-written. The authors' conclusions are generally well-supported by their data.

      Weaknesses:

      There is little evaluation of known critical drivers of myelopoiesis (e.g. PMID 20535209, 26072330, 29218601) over the course of the 40% diet, which would be of interest with regard to comparing this chronic model to other more short-term models of undernutrition.

      Further, the microbiota, which is well-established to be regulated by undernutrition (e.g. PMID 22674549, 27339978, etc.), and also well-established to be a critical regulator of hematopoiesis/myelopoiesis (e.g. PMID 27879260, 27799160, etc.), is completely ignored here.

      We thank the reviewer for agreeing that the data presented support the stated conclusions and noting the experimental rigor.  The referee highlights two important areas for future mechanistic investigation that we agree are of great importance and relevant to the submitted study. We have included further discussion of the potential role cytokines and the microbiota might play in our model.

      Reviewer #3 (Public review):

      Summary:

      Sukhina et al are trying to understand the impacts of malnutrition on immunity. They model malnutrition with a diet switch from ad libitum to 40% caloric restriction (CR) in post-weaned mice. They test impacts on immune function with listeriosis. They then test whether re-feeding corrects these defects and find aspects of emergency myelopoiesis that remain defective after a precedent period of 40% CR. Overall, this is a very interesting observational study on the impacts of sudden prolonged exposure to less caloric intake.

      Strengths:

      The study is rigorously done. The observation of lasting defects after a bout of 40% CR is quite interesting. Overall, I think the topic and findings are of interest.

      Weaknesses:

      While the observations are interesting, in this reviewer's opinion, there is both a lack of mechanistic understanding of the phenomena and also some lack of resolution/detail about the phenomena itself. Addressing the following major issues would be helpful towards aspects of both:

      (1) Is it calories, per se, or macro/micronutrients that drive these phenotypes observed with 40% CR. At the least, I would want to see isocaloric diets (primarily protein, fat, or carbs) and then some of the same readouts after 40% CR. Ie does low energy with relatively more eg protein prevent immunosuppression (as is commonly suggested)? Micronutrients would be harder to test experimentally and may be out of the scope of this study. However, it is worth noting that many of the malnutrition-associated diseases are micronutrient deficiencies.

      (2) Is immunosuppression a function of a certain weight loss threshold? Or something else? Some idea of either the tempo of immunosuppression (happens at 1, in which weight loss is detected; vs 2-3, when body length and condition appear to diverge; or 5 weeks), or grade of CR (40% vs 60% vs 80%) would be helpful since the mechanism of immunosuppression overall is unclear (but nailing it may be beyond the scope of this communication).

      (3) Does an obese mouse that gets 40% CR also become immunodeficient? As it stands, this ad libitum --> 40% CR model perhaps best models problems in the industrial world (as opposed to always being 40% CR from weaning, as might be more common in the developing world), and so modeling an obese person losing a lot of weight from CR (like would be achieved with GLP-1 drugs now) would be valuable to understanding generalizability.

      (4) Generalizing this phenomenon as "bacterial" with listeriosis, which is more like a virus in many ways (intracellular phase, requires type I IFN, etc.) and cannot be given by the natural route of infection in mice, may not be most accurate. I would want to see an experiment with E.Coli, or some other bacteria, to test the statement of generalizability (ie is it bacteria, or type I IFN-pathway dominant infections, like viruses). If this is unique listeriosis, it doesn't undermine the story as it is at all, but it would just require some word-smithing.

      (5) Previous reports (which the authors cite) implicate Leptin, the levels of which scale with fat mass, as "permissive" of a larger immune compartment (immune compartment as "luxury function" idea). Is their phenotype also leptin-mediated (ie leptin AAV)?

      (6) The inability of re-feeding to "rescue" the myeloid compartment is really interesting. Can the authors do a bone marrow transplantation (CR-->ad libitum) to test if this effect is intrinsic to the CR-experienced bone marrow?

      (7) Is the defect in emergency myelopoiesis a defect in G-CSF? Ie if the authors injected G-CSF in CR animals, do they equivalently mobilize neutrophils? Does G-CSF supplementation (as one does in humans) rescue host defense against Listeria in the CR or re-feeding paradigms?

      We thank the reviewer for considering our work of interest and noting the rigor with which it was conducted. The referee raises several excellent mechanistic hypotheses and follow-up studies to perform. We agree that defining the specific dietary deficiency driving the phenotypes is of great interest. The relative contribution of calories versus macro- and micronutrients is an area we are interested in exploring in future studies, especially given the literature on the role of micronutrients in malnutrition driven wasting as the referee notes. We also agree that it will be key to determine whether non-hematopoietic cells contribute as well as the role of soluble factors such G-CSF and Leptin in mediating the immunodeficiency all warrant further study. Likewise, it will be important to evaluate how malnutrition impacts other models of infection to determine how generalizable these phenomena are. We have added these points to the discussion section as limitations of this study.

      Regarding how the phenotypes correspond to the timing of the immunosuppression relative to weight loss, we have performed new kinetics studies to provide some insight into this area. We now find that neutropenia in peripheral blood can be detected after as little as one week of dietary restriction, with neutropenia continuing to decline after prolonged restriction. These findings indicate that the impact on myeloid cell production are indeed rapid and proceed maximum weight loss, though the severity of these phenotypes does increase as malnutrition persists. We wholeheartedly agree with the reviewer that it will be interesting to explore whether starting weight impacts these phenotypes and whether similar findings can be made in obese animals as they are treated for weight loss.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      In this study, the authors used a chronic murine dietary restriction model to study the effects of chronic malnutrition on controls of bacterial infection and overall immunity, including cellularity and functions of different immune cell types. They further attempted to determine whether refeeding can revert the infection susceptibility and immunodeficiency. Although refeeding here improves anthropometric deficits, the authors of this study show that this is insufficient to recover the impairments across the immune cell compartments. The authors claim that "this work identifies a novel cellular link between prior nutritional state and immunocompetency, highlighting dysregulated myelopoiesis as a major." However, after reviewing the entire manuscript, I could not find any cellular mechanism defining the link between nutritional state and immunocompetency. The assays on myeloid cells are limited, and the study is descriptive and overstated.

      Major concerns:

      (1) Malnutrition has entirely different effects on adults and children. In this study, 6-8 weeks old C57/Bl6 mice were used that mimic adult malnutrition. I do not understand then why the refeeding strategy for inpatient treatment of severely malnourished children was utilized here.

      (2) Figure 1g shows BM cellularity is reduced, but the authors claim otherwise in the text.

      (3) What is the basis of the body condition score in Figure 1d? It will be good to have it in the supplement.

      (4) Listeria monocytogenes cause systemic infection, so bioload was not determined in tissues beyond the liver.

      (5) Figure 3; T cell functional assays were limited to CD8 T cells and lymphocytes isolated from the spleen.

      (6) Why was peripheral cell count not considered? Discrepancies exist with the absolute cell number and relative abundance data, except for the neutrophil and monocyte data, which makes the data difficult to interpret. For example, for B cells, CD4 and CD8 cells.

      (7) Also, if mice exhibit thymic atrophy, why does % abundance data show otherwise? Overall, the data is confusing to interpret.

      (8) No functional tests for neutrophil or monocyte function exist to explain the higher bacterial burden in the liver or to connect the numbers with the overall pathogen load

      The rationale for examining both innate and adaptive immunity is not clear-it is even more unclear since the exact timelines for examining both innate and adaptive immunity (D0 and D5) were used.

      (9) Figure 2e doesn't make sense - why is spleen cellularity measured when bacterial load is measured in the liver?

      (10) Although it is claimed that emergency myelopoiesis is affected, no specific marker for emergency myelopoiesis other than cell numbers was studied.

      (11) I suggest including neutrophil effector functions and looking for real markers of granulopoiesis, such as Cebp-b. Since the authors attempted to examine the entirety of immune responses, it is better to measure cell abundance, types, and functions beyond the spleen. Consider the systemic spread of m while measuring bioload.

      (12) Minor grammatical errors - please re-read the entire text and correct grammatical errors to improve the flow of the text.

      (13) Sample size details missing

      (14) Be clear on which marks were used to identify monocytes. Using just CD11b and Ly6G is insufficient for neutrophil quantification.

      (15) Also, instead of saying "undernourished patients," say "patients with undernutrition" - change throughout the text. I would recommend numbering citations (as is done for Nature citations) to ease in following the text, as there are areas when there are more than ten citations with author names.

      (16) No line numbers are provided

      (17) Abstract

      -  What does accelerated contraction mean?

      -  "In" is repeated in a sentence

      -  Be clear that the study is done in a mouse model - saying just "animals" is not sufficient

      -  Indicate how malnutrition is induced in these mice

      (18) Introduction

      -  "restriction," "immune organs," - what is this referring to?

      -  You mention lymphoid tissue and innate and adaptive immunity, which doesn't make sense.

      Please correct this.

      -  You mention a lot of lymphoid tissues, i.e. lymphoid mass gain, but how about the bone marrow and spleen, which are responsible for most innate immune compartments?

      (19) Results

      a) Figure 1

      -  Why 40% reduced diet?

      -  It would be interesting to report if the organs are smaller relative to body weight. It makes sense that the organ weight is lower in the 40RD mice, especially since they are smaller, so the novelty of this data is not apparent (Figure 1f).

      -  You say, "We observed a corresponding reduction in the cellularity of the spleen and thymus, while the cellularity of the bone marrow was unaffected (Fig. 1g)." however, your BM data is significant, so this statement doesn't reflect the data you present, please correct.

      b) Figure 2

      - Figure 2d - what tissue is this from, mentioned in the figure? And measure cellularity there. The rationale for why you look only at the spleen here is weak. Also, we would benefit from including the groups without infection here for comparison purposes.

      c) Figure 3

      - The rationale for why you further looked at T cells is weak, mainly because of the following sentence. "Despite this overall loss in lymphocyte number, the relative frequency of each population was either unchanged or elevated, indicating that while malnutrition leads to a global reduction in immune cell numbers, lymphocytes are less impacted than other immune cell populations (Supplemental 1)." Please explain in the main text.

      d) Figure 4

      -  You say the peak of the adaptive immune response, but you never looked at the peak of adaptive immune - when is this? If you have the data, please show it. You also only show d0 and d5 post-infection data for adaptive immunity, so I am unsure where this statement comes from.

      -  How did you identify neutrophils and monocytes through flow cytometry? Indicate the markers used. Also, your text does not match your data; please correct it. i.e. monocyte numbers reduced, and relative abundance increased, but your text doesn't say this.

      -  Show the flow graph first then, followed by the quantification.

      -  The study would benefit from examining markers of emergency myelopoiesis such as Cebpb through qPCR.

      -  Although the number of neutrophils is lower in the BM and spleen, how does this relate to increased bacterial load in the liver? This is especially true since you did not quantify neutrophil numbers in the liver.

      e) Figure 6

      -  Some figures are incorrectly labelled.

      -  For the refeeding data, also include the data from the 40RD group to compare the level of recovery in the outcome measures.

      (20) Discussion

      -  You claim that monocytes are reduced to the same extent as neutrophils, but this is not true.

      Please correct.

      -  Indicate some limitations of your work.

      We thank the reviewer for offering these recommendations and the constructive comments. 

      Several comments raised concerns over the rationale or reasoning behind aspects of the experimental design or the data presented, which we would like to clarify:

      • Regarding the refeeding protocol, we apologize for the confusion for the rationale. We based our methodology on the general guidelines for refeeding protocols for malnourished people. We elected to increase food intake 10% daily to avoid risk of refeeding syndrome or other complications. Our method is by no means replicates the administration of specific vitamins, minerals, electrolytes, nor precise caloric content as would be given to a human patient. The citation provided offers information from the WHO regarding the complications that can arise during refeeding syndrome, which while it is from a document on pediatric care, we did not mean to imply that our method modeled refeeding intervention for children. We have modified the text to avoid this confusion.

      • The reviewer requested more clarity on why we studied both the innate and adaptive immune system as well as why we chose the time points studied. As referenced in the manuscript, prior work has observed that caloric restriction, fasting, and malnutrition all can impact the adaptive immune system. Given these previous findings, we felt it important to evaluate how malnutrition affected adaptive immune cell populations in our model. To this end, we provide data tracking the course of T-cell responses from the start of infection through day 14 at the time that the response undergoes contraction. However, since we find that bacterial burden is not properly controlled at earlier time points (day 5), when it is understood the innate immune system is more critical for mediating pathogen clearance, we elected to better characterize the effect malnutrition had on innate immune populations, something less well described in the literature. As phenotypes both in bacterial burden and within innate immune populations were observable as early as day 5, we chose to focus on that time point rather than later time points when readouts could be further confounded by secondary or compounding effects by the lack of early control of infection. We have tried to make this rationale clear in the text and have made changes to further emphasize this reasoning.

      • The reviewer also requested an explaination over why bacterial burden was measured in the liver and the immune response was measured in the spleen. While the reviewer is correct that our model is a systemic infection, it is well appreciated that bacteria rapidly disseminate to the liver and spleen and these organs serve as major sites of infection. Given the central role the spleen plays in organizing both the innate and adaptive immune response in this model, it is common practice in the field to phenotype immune cell populations in the spleen, while using the liver to quantify bacterial burden (see PMID: 37773751 as one example of many). We acknowledge this does not provide the full scope of bacterial infection or the immune response in every potentially affected tissue, but nonetheless believe the interpretation that malnourished and previously malnourished animals do not properly control infection and their immune responses are blunted compared to controls still stands.

      The reviewer raised several points about di3erences in the results for cell frequency and absolute number and why these may deviate in some circumstances. For example, the reviewer notes that we observe thymic atrophy yet the frequency of peripheral T-cells does not decline. It should be noted that absolute number can change when frequency does not and vice versa, due to changes in other cell types within the studied population of cells. As in the case of peripheral lymphocytes in our study, the frequency can stay the same or even increase when the absolute number declines (Supplemental 1). This can occur if other populations of cells decrease further, which is indeed the case as the loss of myeloid cells is greater than that of lymphocytes. Hence, we find that the frequency of T and B cells is unchanged or elevated, despite the loss in absolute number of peripheral cell, which is our stated interpretation. We believe this is consistent with our overall observations and is why it is important to report both frequency and absolute number, as we have done. 

      We have made the requested changes to the text to address the reviewers concerns as noted to improve clarity and accuracy for the description of experiments, results, and overall conclusions drawn in the manuscript. We have also included a discussion of the limitations of our work as well as additional areas for future investigation that remain open. 

      Reviewer #2 (Recommendations for the authors):

      Regarding the known drivers of myelopoiesis, can the authors quantify circulating levels of relevant immune cytokines (e.g. type I and II IFNs, GM-CSF, etc.)?

      Regarding the microbiota (point #2), how dramatically does this undernutrition modulate the microbiota both in terms of absolute load and community composition, and how effectively/quickly is this rescued by refeeding?

      We thank the reviewer for raising these recommendations. We agree that the role of circulating factors like cytokines and growth factors in contributing to the defects in myelopoiesis is of interest and is the focus of future work. Similarly, the impact of malnutrition on the microbiota is of great interest and has been evaluated by other groups in separate studies. How the known impact of malnutrition on the microbiota affects the phenotypes we observe in myelopoiesis is unclear and warrants future investigation. We have added these points to the discussion section as limitations of this study.

    1. Author response:

      Reviewer #1 (Public Review):

      Fombellida-Lopez and colleagues describe the results of an ART intensification trial in people with HIV infection (PWH) on suppressive ART to determine the effect of increasing the dose of one ART drug, dolutegravir, on viral reservoirs, immune activation, exhaustion, and circulating inflammatory markers. The authors hypothesize that ART intensification will provide clues about the degree to which low-level viral replication is occurring in circulation and in tissues despite ongoing ART, which could be identified if reservoirs decrease and/or if immune biomarkers change. The trial design is straightforward and well-described, and the intervention appears to have been well tolerated. The investigators observed an increase in dolutegravir concentrations in circulation, and to a lesser degree in tissues, in the intervention group, indicating that the intervention has functioned as expected (ART has been intensified in vivo). Several outcome measures changed during the trial period in the intervention group, leading the investigators to conclude that their results provide strong evidence of ongoing replication on standard ART. The results of this small trial are intriguing, and a few observations in particular are hypothesis-generating and potentially justify further clinical trials to explore them in depth. However, I am concerned about over-interpretation of results that do not fully justify the authors' conclusions.

      We thank Reviewer #1 for their thoughtful and constructive comments, which will help us clarify and improve the manuscript. Below, we address each of the reviewer’s points and describe the changes that we intend to implement in the revised version. We acknowledge the reviewer’s concern regarding potential over-interpretation of certain findings, and we will take particular care to ensure that all conclusions are supported by the data and framed within the exploratory nature of the study.

      (1) Trial objectives: What was the primary objective of the trial? This is not clearly stated. The authors describe changes in some reservoir parameters and no changes in others. Which of these was the primary outcome? No a priori hypothesis / primary objective is stated, nor is there explicit justification (power calculations, prior in vivo evidence) for the small n, unblinded design, and lack of placebo control. In the abstract (line 36, "significant decreases in total HIV DNA") and conclusion (lines 244-246), the authors state that total proviral DNA decreased as a result of ART intensification. However, in Figures 2A and 2E (and in line 251), the authors indicate that total proviral DNA did not change. These statements are confusing and appear to be contradictory. Regarding the decrease in total proviral DNA, I believe the authors may mean that they observed transient decrease in total proviral DNA during the intensification period (day 28 in particular, Figure 2A), however this level increases at Day 56 and then returns to baseline at Day 84, which is the source of the negative observation. Stating that total proviral DNA decreased as a result of the intervention when it ultimately did not is misleading, unless the investigators intended the day 28 timepoint as a primary endpoint for reservoir reduction - if so, this is never stated, and it is unclear why the intervention would then be continued until day 84? If, instead, reservoir reduction at the end of the intervention was the primary endpoint (again, unstated by the authors), then it is not appropriate to state that the total proviral reservoir decreased significantly when it did not.

      We agree with the reviewer that the primary objective of the study was not explicitly stated in the submitted manuscript. We will clarify this in the revised manuscript. As registered on ClinicalTrials.gov (NCT05351684), the primary outcome was defined as “To evaluate the impact of treatment intensification at the level of total and replication-competent reservoir (RCR) in blood and in tissues”, with a time frame of 3 months. Accordingly, our aim was to explore whether any measurable reduction in the HIV reservoir (total or replication-competent) occurred during the intensification period, including at day 28, 56, or 84. The protocol did not prespecify a single time point for this effect to occur, and the exploratory design allowed for detection of transient or sustained changes within the intensification window.

      We recognize that this scope was not clearly articulated in the original text and may have led to confusion in interpreting the transient drop in total HIV DNA observed at day 28. While total DNA ultimately returned to baseline by the end of intensification, the presence of a transient reduction during this 3-month window still fits within the framework of the study’s registered objective. Moreover, although the change in total HIV DNA was transient, it aligns with the consistent direction of changes observed across the multiple independent measures, including CA HIV RNA, RNA/DNA ratio and intact HIV DNA, collectively supporting a biological effect of intensification.

      We would also like to stress that this is the first clinical trial ever, in which an ART intensification is performed not by adding an extra drug but by increasing the dosage of an existing drug. Therefore, we were more interested in the overall, cumulative, effect of intensification throughout the entire trial period, than in differences between groups at individual time points. We will clarify in the manuscript that this was a proof-of-concept phase 2 study, designed to generate biological signals rather than confirm efficacy in a powered comparison. The absence of a pre-specified statistical endpoint or sample size calculation reflects the exploratory nature of the trial.

      (2) Intervention safety and tolerability: The results section lacks a specific heading for participant safety and tolerability of the intervention. I was wondering about clinically detectable viremia in the study. Were there any viral blips? Was the increased DTG well tolerated? This drug is known to cause myositis, headache, CPK elevation, hepatotoxicity, and headache. Were any of these observed? What is the authors' interpretation of the CD4:8 ratio change (line 198)? Is this a significant safety concern for a longer duration of intensification? Was there also a change in CD4% or only in absolute counts? Was there relative CD4 depletion observed in the rectal biopsy samples between days 0 and 84? Interestingly, T cells dropped at the same timepoints that reservoirs declined... how do the authors rule out that reservoir decline reflects transient T cell decline that is non-specific (not due to additional blockade of replication)?

      We will improve the Methods section to clarify how safety and tolerability were assessed during the study. Safety evaluations were conducted on day 28 and day 84 and included a clinical examination and routine laboratory testing (liver function tests, kidney function, and complete blood count). Medication adherence was also monitored through pill counts performed by the study nurses.

      No virological blips above 50 copies/mL were observed and no adverse events were reported by participants during the 3-month intensification period. Although CPK levels were not included in the routine biological monitoring, no participant reported muscle pain or other symptoms suggestive of muscle toxicity.

      The CD4:CD8 ratio decrease noted during intensification was not associated with significant changes in absolute CD4 or CD8 counts, as shown in Figure 5. We interpret this ratio change as a transient redistribution rather than an immunological risk, therefore we do not consider it to represent a safety concern.

      We would like to clarify that CD4<sup>+</sup> T-cell counts did not significantly decrease in any of the treatment groups, as shown in Figure 5. The apparent decline observed concerns the CD4/CD8 ratio, which transiently dropped, but not the absolute number of CD4<sup>+</sup> T cells.

      (3) The investigators describe a decrease in intact proviral DNA after 84 days of ART intensification in circulating cells (Figure 2D), but no changes to total proviral DNA in blood or tissue (Figures 2A and 2E; IPDA does not appear to have been done on tissue samples). It is not clear why ART intensification would result in a selective decrease in intact proviruses and not in total proviruses if the source of these reservoir cells is due to ongoing replication. These reservoir results have multiple interpretations, including (but not limited to) the investigators' contention that this provides strong evidence of ongoing replication. However, ongoing replication results in the production of both intact and mutated/defective proviruses that both contribute to reservoir size (with defective proviruses vastly outnumbering intact proviruses). The small sample size and well-described heterogeneity of the HIV reservoir (with regard to overall size and composition) raise the possibility that the study was underpowered to detect differences over the 84-day intervention period. No power calculations or prior studies were described to justify the trial size or the duration of the intervention. Readers would benefit from a more nuanced discussion of reservoir changes observed here.

      We sincerely thank the reviewer for this insightful comment. We fully agree that the reservoir dynamics observed in our study raise several possible interpretations, and that its complexity, resulting from continuous cycles of expansion and contraction, reflects the heterogeneity of the latent reservoir.

      Total HIV DNA in PBMCs showed a transient decline during intensification (notably at day 28), ultimately returning to baseline by day 84. This biphasic pattern may reflect the combined effects of suppression of ongoing low-level replication by an increased DTG dosage, followed by the expansion of infected cell clones (mostly harboring defective proviruses). In other words, the transient decrease in total (intact + defective) DNA at day 28 may be due to an initial decrease in newly infected cells upon ART intensification, however at the subsequent time points this effect was masked by proliferation (clonal expansion) of infected cells with defective proviruses. This explains why the intact proviruses decreased, but the total proviruses did not change, between days 0 and 84.

      Importantly, we observed a significant decrease in intact proviral DNA between day 0 and day 84 in the intensification group (Figure 2D). We will highlight this result more clearly in the revised manuscript, as it directly addresses the study’s primary objective: assessing the impact of intensification on the replication-competent reservoir. In comparison, as the reviewer rightly points out, total HIV DNA includes over 90% defective genomes, which limits its interpretability as a biomarker of biologically relevant reservoir changes.

      In addition, other reservoir markers, such as cell-associated unspliced RNA and RNA/DNA ratios, also showed consistent trends supporting a modest but biologically relevant effect of intensification. Even in the absence of sustained changes in total HIV DNA, the coherence across these independent measures suggests a signal indicative of ongoing replication in at least some individuals, and at specific timepoints.

      Regarding tissue reservoirs, the lack of substantial change in total HIV DNA between days 0 and 84 is also in line with the predominance of defective sequences in these compartments. Moreover, the limited increase in rectal tissue dolutegravir levels during intensification (from 16.7% to 20% of plasma concentrations) may have limited the efficacy of the intervention in this site.

      As for the IPDA on rectal biopsies, we attempted the assay using two independent DNA extraction methods (Promega Reliaprep and Qiagen Puregene), but both yielded high DNA Shearing Index values, and intact proviral detection was successful in only 3 of 40 samples. Given the poor DNA integrity and weak signals, these results were not interpretable.

      That said, we fully acknowledge the limitations of our study, especially the small sample size, and we agree with the reviewer that caution is needed when interpreting these findings. In the revised manuscript, we will adopt a more measured tone in the discussion, clearly stating that these observations are exploratory and hypothesis-generating, and require confirmation in larger, more powered studies. Nonetheless, we believe that the convergence of multiple reservoir markers pointing in the same direction constitutes a potentially meaningful biological signal that deserves further investigation.

      (4) While a few statistically significant changes occurred in immune activation markers, it is not clear that these are biologically significant. Lines 175-186 and Figure 3: The change in CD4 cells + for TIGIT looks as though it declined by only 1-2%, and at day 84, the confidence interval appears to widen significantly at this timepoint, spanning an interquartile range of 4%. The only other immune activation/exhaustion marker change that reached statistical significance appears to be CD8 cells + for CD38 and HLA-DR, however, the decline appears to be a fraction of a percent, with the control group trending in the same direction. Despite marginal statistical significance, it is not clear there is any biological significance to these findings; Figure S6 supports the contention that there is no significant change in these parameters over time or between groups. With most markers showing no change and these two showing very small changes (and the latter moving in the same direction as the control group), these results do not justify the statement that intensifying DTG decreases immune activation and exhaustion (lines 38-40 in the abstract and elsewhere).

      We agree with the reviewer that the observed changes in immune activation and exhaustion markers were modest. We will revise the manuscript to reflect this more accurately. We will also note that these differences, while statistically significant (e.g., in TIGIT+ CD4+ T cells and CD38+HLA-DR+ CD8+ T cells), were limited in magnitude. We will explicitly acknowledge these limitations and interpret the findings with appropriate caution.

      (5) There are several limitations of the study design that deserve consideration beyond those discussed at line 327. The study was open-label and not placebo-controlled, which may have led to some medication adherence changes that confound results (authors describe one observation that may be evidence of this; lines 146-148). Randomized/blinded / cross-over design would be more robust and help determine signal from noise, given relatively small changes observed in the intervention arm. There does not seem to be a measurement of key outcome variables after treatment intensification ceased - evidence of an effect on replication through ART intensification would be enhanced by observing changes once intensification was stopped. Why was intensification maintained for 84 days? More information about the study duration would be helpful. Table 1 indicates that participants were 95% male. Sex is known to be a biological variable, particularly with regard to HIV reservoir size and chronic immune activation in PWH. Worldwide, 50% of PWH are women. Research into improving management/understanding of disease should reflect this, and equal participation should be sought in trials. Table 1 shows differing baseline reservoir sizes between the control and intervention groups. This may have important implications, particularly for outcomes where reservoir size is used as the denominator.

      We will expand the limitations section to address several key aspects raised by the reviewer: the absence of blinding and placebo control, the predominantly male study population, and the lack of post-intervention follow-up. While we acknowledge that open-label designs can introduce behavioral biases, including potential changes in adherence, we will now explicitly state that placebo-controlled, blinded trials would provide a more robust assessment and are warranted in future research.

      The 84-day duration of intensification was chosen based on previous studies and provided sufficient time for observing potential changes in viral transcription and reservoir dynamics. However, we agree that including post-intervention follow-up would have strengthened the conclusions, and we will highlight this limitation and future direction in the revised manuscript.

      The sex imbalance is now clearly acknowledged as a limitation in the revised manuscript, and we fully support ongoing efforts to promote equitable recruitment in HIV research. We would like to add that, in our study, rectal biopsies were coupled with anal cancer screening through HPV testing. This screening is specifically recommended for younger men who have sex with men (MSM), as outlined in the current EACS guidelines (see: https://eacs.sanfordguide.com/eacs-part2/cancer/cancer-screening-methods). As a result, MSM participants had both a clinical incentive and medical interest to undergo this procedure, which likely contributed to the higher proportion of male participants in the study.

      Lastly, although baseline total HIV DNA was higher in the intensified group, our statistical approach is based on a within-subject (repeated-measures) design, in which the longitudinal change of a parameter within the same participant during the study was the main outcome. In other words, we are not comparing absolute values of any marker between the groups, we are looking at changes of parameters from baseline within participants, and these are not expected to be affected by baseline imbalances.

      (6) Figure 1: the increase in DTG levels is interesting - it is not uniform across participants. Several participants had lower levels of DTG at the end of the intervention. Though unlikely to be statistically significant, it would be interesting to evaluate if there is a correlation between change in DTG concentrations and virologic / reservoir / inflammatory parameters. A positive relationship between increasing DTG concentration and decreased cell-associated RNA, for example, would help support the hypothesis that ongoing replication is occurring.

      We agree with the reviewer that assessing correlations between DTG concentrations and virological, immunological, or inflammatory markers would be highly informative. In fact, we initially explored this question in a preliminary way by examining whether individuals who showed a marked increase in DTG levels after intensification also demonstrated stronger changes in the viral reservoir. While this exploratory analysis did not reveal any clear associations, we would like to emphasize that correlating biological effects with DTG concentrations measured at a single timepoint may have limited interpretability. A more comprehensive understanding of the relationship between drug exposure and reservoir dynamics would ideally require multiple pharmacokinetic measurements over time, including pre-intensification baselines. This is particularly important given that DTG concentrations vary across individuals and over time, depending on adherence, metabolism, and other individual factors. We will clarify these points in the revised manuscript.

      (7) Figure 2: IPDA in tissue- was this done? scRNA in blood (single copy assay) - would this be expected to correlate with usCaRNA? The most unambiguous result is the decrease in cell-associated RNA - accompanying results using single-copy assay in plasma would be helpful to bolster this result.

      As mentioned in our response to point 3, we attempted IPDA on tissue samples, but technical limitations prevented reliable detection of intact proviruses. Regarding residual viremia, we did perform ultra-sensitive plasma HIV RNA quantification but due to a technical issue (an inadvertent PBMC contamination during plasma separation) that affected the reliability of the results we felt uncomfortable including these data in the manuscript.

      The use of the US RNA / Total DNA ratio is not helpful/difficult to interpret since the control and intervention arms were unmatched for total DNA reservoir size at study entry.

      We respectfully disagree with this comment. The US RNA / Total DNA ratio is commonly used to assess the relative transcriptional activity of the viral reservoir, rather than its absolute size. While we acknowledge that the total HIV-1 DNA levels differed at baseline between the two groups, the US RNA / Total DNA ratio specifically reflects the relationship between transcriptional activity and reservoir size within each individual, and is therefore not directly confounded by baseline differences in total DNA alone.

      Moreover, our analyses focus on within-subject longitudinal changes from baseline, not on direct between-group comparisons of absolute marker values. As such, the observed changes in the US RNA / Total DNA ratio over time are interpreted relative to each participant's baseline, mitigating concerns related to baseline imbalances between groups.

      Reviewer #2 (Public Review):

      Summary:

      An intensification study with a double dose of 2nd generation integrase inhibitor with a background of nucleoside analog inhibitors of the HIV retrotranscriptase in 2, and inflammation is associated with the development of co-morbidities in 20 individuals randomized with controls, with an impact on the levels of viral reservoirs and inflammation markers. Viral reservoirs in HIV are the main impediment to an HIV cure, and inflammation is associated with co-morbidities.

      Strengths:

      The intervention that leads to a decrease of viral reservoirs and inflammation is quite straightforward forward as a doubling of the INSTI is used in some individuals with INSTI resistance, with good tolerability.

      This is a very well documented study, both in blood and tissues, which is a great achievement due to the difficulty of body sampling in well-controlled individuals on antiretroviral therapy. The laboratory assays are performed by specialists in the field with state-of-the art quantification assays. Both the introduction and the discussion are remarkably well presented and documented.

      The findings also have a potential impact on the management of chronic HIV infection.

      Weaknesses:

      I do not think that the size of the study can be considered a weakness, nor the fact that it is open-label either.

      We thank Reviewer #2 for their constructive and supportive comments. We appreciate their positive assessment of the study design, the translational relevance of the intervention, and the technical quality of the assays. We also take note of their perspective regarding sample size and study design, which supports our positioning of this trial as an exploratory, hypothesis-generating phase 2 study.

      Reviewer #3 (Public Review):

      The introduction does a very good job of discussing the issue around whether there is ongoing replication in people with HIV on antiretroviral therapy. Sporadic, non-sustained replication likely occurs in many PWH on ART related to adherence, drug interactions and possibly penetration of antivirals into sanctuary areas of replication and as the authors point out proving it does not occur is likely not possible and proving it does occur is likely very dependent on the population studied and the design of the intervention. Whether the consequences of this replication in the absence of evolution toward resistance have clinical significance challenging question to address.

      It is important to note that INSTI-based therapy may have a different impact on HIV replication events that results in differences in virus release for specific cell type (those responsible for "second phase" decay) by blocking integration in cells that have completed reverse transcription prior to ART initiation but have yet to be fully activated. In a PI or NNRTI-based regimen, those cells will release virus, whereas with an INSTI-based regimen, they will not.

      Given the very small sample size, there is a substantial risk of imbalance between the groups in important baseline measures. Unfortunately, with the small sample size, a non-significant P value is not helpful when comparing baseline measures between groups. One suggestion would be to provide the full range as opposed to the inter-quartile range (essentially only 5 or 6 values). The authors could also report the proportion of participants with baseline HIV RNA target not detected in the two groups.

      We thank Reviewer #3 for their thoughtful and balanced review. We are grateful for the recognition of the strength of the Introduction, the complexity of evaluating residual replication, and the technical execution of the assays. We also appreciate the insightful suggestions for improving the clarity and transparency of our results and discussion.

      We will revise the manuscript to address several of the reviewer’s key concerns. We agree that the small sample size increases the risk of baseline imbalances. We will acknowledge these limitations in the revised manuscript. We will provide both the full range and the IQR in Table 1 in the revised manuscript.

      A suggestion that there is a critical imbalance between groups is that the control group has significantly lower total HIV DNA in PBMC, despite the small sample size. The control group also has numerically longer time of continuous suppression, lower unspliced RNA, and lower intact proviral DNA. These differences may have biased the ability to see changes in DNA and US RNA in the control group.

      We acknowledge the significant baseline difference in total HIV DNA between groups, which we have clearly reported. However, the other variables mentioned, duration of continuous viral suppression, unspliced RNA levels, and intact proviral DNA, did not differ significantly between groups at baseline, despite differences in the median values. These numerical differences do not necessarily indicate a critical imbalance.

      Notably, there was no significant difference in the change in US RNA/DNA between groups (Figure 2C).

      The nonsignificant difference in the change in US RNA/DNA between groups is not unexpected, given the significant between-group differences for both US RNA and total DNA changes. Since the ratio combines both markers, it is likely to show attenuated between-group differences compared to the individual components. However, while the difference did not reach statistical significance (p = 0.09), we still observed a trend towards a greater reduction in the US RNA/Total DNA ratio in the intervention group.

      The fact that the median relative change appears very similar in Figure 2C, yet there is a substantial difference in P values, is also a comment on the limits of the current sample size.

      Although we surely agree that in general, the limited sample size impacts statistical power, we would like to point out that in Figure 2C, while the medians may appear similar, the ranges do differ between groups. At days 56 and 84, the median fold changes from baseline are indeed close but the full interquartile range in the DTG group stays below 1, while in the control group, the interquartile range is wider and covers approximately equal distance above and below 1. This explains the difference in p values between the groups.

      The text should report the median change in US RNA and US RNA/DNA when describing Figures 2A-2C.

      These data are already reported in the Results section (lines 164–166): "By day 84, US RNA and US RNA/total DNA ratio had decreased from day 0 by medians (IQRs) of 5.1 (3.3–6.4) and 4.6 (3.1–5.3) fold, respectively (p = 0.016 for both markers)."

      This statistical comparison of changes in IPDA results between groups should be reported. The presentation of the absolute values of all the comparisons in the supplemental figures is a strength of the manuscript.

      In the assessment of ART intensification on immune activation and exhaustion, the fact that none of the comparisons between randomized groups were significant should be noted and discussed.

      We would like to point out that a statistically significant difference between the randomized groups was observed for the frequency of CD4<sup>+</sup> T cells expressing TIGIT, as shown in Figure 3A and reported in the Results section (p = 0.048).

      The changes in CD4:CD8 ratio and sCD14 levels appear counterintuitive to the hypothesis and are commented on in the discussion.

      Overall, the discussion highlights the significant changes in the intensified group, which are suggestive. There is limited discussion of the comparisons between groups where the results are less convincing.

      We will temper the language accordingly and add commentary on the limited and modest nature of these changes. Similarly, we will expand our discussion of counterintuitive findings such as the CD4:CD8 ratio and sCD14 changes.

      The limitations of the study should be more clearly discussed. The small sample size raises the possibility of imbalance at baseline. The supplemental figures (S3-S5) are helpful in showing the differences between groups at baseline, and the variability of measurements is more apparent. The lack of blinding is also a weakness, though the PK assessments do help (note 3TC levels rise substantially in both groups for most of the time on study (Figure S2).

      The many assays and comparisons are listed as a strength. The many comparisons raise the possibility of finding significance by chance. In addition, if there is an imbalance at baseline outcomes, measuring related parameters will move in the same direction.

      We agree that the multiple comparisons raise the possibility of chance findings but would like to stress that in an exploratory study like this it is very important to avoid a type II error. In addition, the consistent directionality of the most relevant outcomes (US RNA and intact DNA) lends biological plausibility to the observed effects.

      The limited impact on activation and inflammation should be addressed in the discussion, as they are highlighted as a potentially important consequence of intermittent, not sustained replication in the introduction.

      The study is provocative and well executed, with the limitations listed above. Pharmacokinetic analyses help mitigate the lack of blinding. The major impact of this work is if it leads to a much larger randomized, controlled, blinded study of a longer duration, as the authors point out.

      Finally, we fully endorse the reviewer’s suggestion that the primary contribution of this study lies in its value as a proof-of-concept and foundation for future randomized, blinded trials of greater scale and duration. We will highlight this more clearly in the revised Discussion.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The authors present an interesting study using RL and Bayesian modelling to examine differences in learning rate adaptation in conditions of high and low volatility and noise respectively. Through "lesioning" an optimal Bayesian model, they reveal that apparently a suboptimal adaptation of learning rates results from incorrectly detecting volatility in the environment when it is not in fact present.

      Strengths:

      The experimental task used is cleverly designed and does a good job of manipulating both volatility and noise. The modelling approach takes an interesting and creative approach to understanding the source of apparently suboptimal adaptation of learning rates to noise, through carefully "lesioning" and optimal Bayesian model to determine which components are responsible for this behaviour.

      We thank the reviewer for this assessment.

      Weaknesses:

      The study has a few substantial weaknesses; the data and modelling both appear robust and informative, and it tackles an interesting question. The model space could potentially have been expanded, particularly with regard to the inclusion of alternative strategies such as those that estimate latent states and adapt learning accordingly.

      We thank the reviewer for this suggestion. We agree that it would be interesting to assess the ability of alternative models to reproduce the sub-optimal choices of participants in this study. The Bayesian Observer Model described in the paper is a form of Hierarchical Gaussian Filter, so we will assess the performance of a different class of models that are able to track uncertainty-- RL based models that are able to capture changes of uncertainty (the Kalman filter, and the model described by Cochran and Cisler, Plos Comp Biol 2019). We will assess the ability of the models to recapitulate the core behaviour of participants (in terms of learning rate adaption) and, if possible, assess their ability to account for the pupillometry response.

      Reviewer #2 (Public review):

      Summary:

      In this study, the authors aimed to investigate how humans learn and adapt their behavior in dynamic environments characterized by two distinct types of uncertainty: volatility (systematic changes in outcomes) and noise (random variability in outcomes). Specifically, they sought to understand how participants adjust their learning rates in response to changes in these forms of uncertainty.

      To achieve this, the authors employed a two-step approach:

      (1) Reinforcement Learning (RL) Model: They first used an RL model to fit participants' behavior, revealing that the learning rate was context-dependent. In other words, it varied based on the levels of volatility and noise. However, the RL model showed that participants misattributed noise as volatility, leading to higher learning rates in noisy conditions, where the optimal strategy would be to be less sensitive to random fluctuations.

      (2) Bayesian Observer Model (BOM): To better account for this context dependency, they introduced a Bayesian Observer Model (BOM), which models how an ideal Bayesian learner would update their beliefs about environmental uncertainty. They found that a degraded version of the BOM, where the agent had a coarser representation of noise compared to volatility, best fit the participants' behavior. This suggested that participants were not fully distinguishing between noise and volatility, instead treating noise as volatility and adjusting their learning rates accordingly.

      The authors also aimed to use pupillometry data (measuring pupil dilation) as a physiological marker to arbitrate between models and understand how participants' internal representations of uncertainty influenced both their behavior and physiological responses. Their objective was to explore whether the BOM could explain not just behavioral choices but also these physiological responses, thereby providing stronger evidence for the model's validity.

      Overall, the study sought to reconcile approximate rationality in human learning by showing that participants still follow a Bayesian-like learning process, but with simplified internal models that lead to suboptimal decisions in noisy environments.

      Strengths:

      The generative model presented in the study is both innovative and insightful. The authors first employ a Reinforcement Learning (RL) model to fit participants' behavior, revealing that the learning rate is context-dependent-specifically, it varies based on the levels of volatility and noise in the task. They then introduce a Bayesian Observer Model (BOM) to account for this context dependency, ultimately finding that a degraded BOM - in which the agent has a coarser representation of noise compared to volatility - provides the best fit for the participants' behavior. This suggests that participants do not fully distinguish between noise and volatility, leading to the misattribution of noise as volatility. Consequently, participants adopt higher learning rates even in noisy contexts, where an optimal strategy would involve being less sensitive to new information (i.e., using lower learning rates). This finding highlights a rational but approximate learning process, as described in the paper.

      We thank the reviewer for their assessment of the paper.

      Weaknesses:

      While the RL and Bayesian models both successfully predict behavior, it remains unclear how to fully reconcile the two approaches. The RL model captures behavior in terms of a fixed or context-dependent learning rate, while the BOM provides a more nuanced account with dynamic updates based on volatility and noise. Both models can predict actions when fit appropriately, but the pupillometry data offers a promising avenue to arbitrate between the models. However, the current study does not provide a direct comparison between the RL framework and the Bayesian model in terms of how well they explain the pupillometry data. It would be valuable to see whether the RL model can also account for physiological markers of learning, such as pupil responses, or if the BOM offers a unique advantage in this regard. A comparison of the two models using pupillometry data could strengthen the argument for the BOM's superiority, as currently, the possibility that RL models could explain the physiological data remains unexplored.

      We thank the reviewer for this suggestion. In the current version of the paper, we use an extremely simple reinforcement learning model to simply measure the learning rate in each task block (as this is the key behavioural metric we are interested in). As the reviewer highlights, this simple model doesn’t estimate uncertainty or adapt to it. Given this, we don’t think we can directly compare this model to the Bayesian Observer Model—for example, in the current analysis of the pupillometry data we classify individual trials based on the BOM’s estimate of uncertainty and show that participants adapt their learning rate as expected to the reclassified trials, this analysis would not be possible with our current RL model. However, there are more complex RL based models that do estimate uncertainty (as discussed above in response to Reviewer #1) and so may more directly be compared to the BOM. We will attempt to apply these models to our task data and describe their ability to account for participant behaviour and physiological response as suggested by the Reviewer.

      The model comparison between the Bayesian Observer Model and the self-defined degraded internal model could be further enhanced. Since different assumptions about the internal model's structure lead to varying levels of model complexity, using a formal criterion such as Bayesian Information Criterion (BIC) or Akaike Information Criterion (AIC) would allow for a more rigorous comparison of model fit. Including such comparisons would ensure that the degraded BOM is not simply favored due to its flexibility or higher complexity, but rather because it genuinely captures the participants' behavioral and physiological data better than alternative models. This would also help address concerns about overfitting and provide a clearer justification for using the degraded BOM over other potential models.

      Thank you, we will add this.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      For clarity, the methods would benefit from further detail of task framing to participants. I.e. were there explicit instructions regarding volatility/task contingencies? Or were participants told nothing?

      We have added in the following explanatory text to the methods section (page 20), clarifying the limited instructions provided to participants:

      “Participants were informed that the task would be split into 6 blocks, that they had to learn which was the best option to choose, and that this option may change over time. They were not informed about the different forms of uncertainty we were investigating or of the underlying structure of the task (that uncertainty varied between blocks).”

      In the results, it would be useful to report the general task behavior of participants to get a sense of how they performed across different parts of the task. Also, were participants excluded if they didn't show evidence of learning adaptation to volatility?

      We have added the following text reporting overall performance to the results (page 6):

      “Participants were able to learn the best option to choose in the task, selecting the most highly rewarded option on an average of 71% of trials (range 65% - 74%).”

      And the following text to the methods, confirming that participants were not excluded if they didn’t respond to volatility/noise (the failure in this adaptation is the focus of the current study) (page 19):

      “No exclusion criteria related to task performance were used.”

      The results would benefit from a more intuitive explanation of what the lesioning is trying to recapitulate; this can get quite technical and the objective is not necessarily clear, especially for the less computationally-minded reader.

      We have amended the relevant section of the results to clarify this point (page 9):

      “Having shown that an optimal learner adjusts its learning rate to changes in volatility and noise as expected, we next sought to understand the relative noise insensitivity of participants. In these analyses we “lesion” the BOM, to reduce its performance in some way, and then assess whether doing so recapitulates the pattern of learning rate adaptation observed for participants (Fig 3e). In other words, we damage the model so it performs less well and then assess whether this damage makes the behaviour of the BOM (shown in Fig 3f) more closely resemble that seen in participants (Fig 3e).”

      The modelling might be improved by the inclusion of another class of model. Specifically, models that adapt learning rates in response to the estimation of latent states underlying the current task outcomes would be very interesting to see. In a sense, these are also estimating volatility through changeability of latent states, and it would be interesting to explore whether the findings could also be explained by an incorrect assumption that the latent state has changed when outcomes are noisy.

      Thank you for this suggestion. We have added additional sections to the supplementary materials in which we use a general latent state model and a simple RL model to try to recapitulate the behaviour of participants (and to compare with the BOM). These additional sections are extensive, so are not reproduced here. We have also added in a section to the discussion in the main paper covering this interesting question in which we confirm that we were unable to reproduce participant behaviour (or the normative effect of the lesioned BOMs) using these models but suggest that alternative latent state formulations would be interesting to explore in future work (page 18):

      “A related question is whether other, non-Bayesian model formulations may be able to account for participants’ learning adaptation in response to volatility and noise. Of note, the reinforcement learning model used to measure learning rates in separate blocks does not achieve this goal—as this model is fitted separately to each block rather than adapting between blocks (NB the simple reinforcement learning model that is fitted across all blocks does not capture participant behaviour, see supplementary information). One candidate class of model that has potential here is latent-state models (Cochran & Cisler, 2019), in which the variance and unexpected changes in the process being learned (which have a degree of similarity with noise and volatility respectively) is estimated and used to alter the model’s rates of updating as well as the estimated number of states being considered. Using the model described by Cochran and Cisler, we were unable to replicate the learning rate adaptation demonstrated by participants in the current study (see supplementary information) although it remains possible that other latent state formulations may be more successful. “

      The discussion may benefit from a little more discussion of where this work leads us - what is the next step?

      As above, we have added in a suggestion about future modelling work. We have also added in a section about the outstanding interesting questions concerning the neural representation of these quantities, reproduced in response to the suggestion by reviewer #2 below.

      Reviewer #2 (Recommendations for the authors):

      The study presents an opportunity to explore potential neural coding models that could account for the cognitive processes underlying the task. In the field of neural coding, noise correlation is often measured to understand how a population of neurons responds to the same stimulus, which could be related to the noise signal in this task. Since the brain likely treats the stimulus as the same, with noise representing minor changes, this aspect could be linked to the participants' difficulty distinguishing noise from volatility. On the other hand, signal correlation is used to understand how neurons respond to different stimuli, which can be mapped to the volatility signal in the task. It would be highly beneficial if the authors could discuss how these established concepts from neural population coding might relate to the Bayesian behavior model used in the study. For instance, how might neurons encode the distinction between noise and volatility at a population level? Could noise correlation lead to the misattribution of noise as volatility at a neural level, mirroring the behavioral findings? Discussing possible neural models that could explain the observed behavior and relating it to the existing literature on neural population coding would significantly enrich the discussion. It would also open up avenues for future research, linking these behavioral findings to potential neural mechanisms.

      We thank the reviewer for this interesting suggestion. We have added in the following paragraph to the discussion section which we hope does justice to this interesting questions (page 18):

      Previous work examining the neural representations of uncertainty have tended to report correlations between brain activity and some task-based estimate of one form of uncertainty at a time (Behrens et al., 2007; Walker et al., 2020, 2023). We are not aware of work that has, for example, systematically varied volatility and noise and reported distinct correlations for each. An interesting possibility as to how different forms of uncertainty may be encoded is suggested by parallels with the neuronal decoding literature. One question addressed by this literature is how the brain decodes changes in the world from the distributed, noisy neural responses to those changes, with a particular focus on the influence of different forms of between-neuron correlation (Averbeck et al., 2006; Kohn et al., 2016). Specifically, signal-correlation, the degree to which different neurons represent similar external quantities (required to track volatility) is distinguished from, and often limited by, noise-correlation, the degree to which the activity of different neurons covaries independently of these external quantities. One possibility relevant to the current study, which resembles the underlying logic of the BOM, is that a population of neurons represents the estimated mean of the generative process that produces task outcomes. In this case, volatility would be tracked as the signal-correlation across this population, whereas noise would be analogous to the noise-correlation and, crucially, misestimation of noise as volatility might arise as misestimation of these two forms of correlation. While the current study clearly cannot adjudicate on the neural representation of these processes, our finding of distinct behavioural and physiological responses to the two forms of uncertainty, does suggest that separable neural representations of uncertainty are maintained. “

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      This is an excellent study by a superb investigator who discovered and is championing the field of migrasomes. This study contains a hidden "gem" - the induction of migrasomes by hypotonicity and how that happens. In summary, an outstanding fundamental phenomenon (migrasomes) en route to becoming transitionally highly significant.

      Strengths:

      Innovative approach at several levels. Migrasomes - discovered by Dr Yu's group - are an outstanding biological phenomenon of fundamental interest and now of potentially practical value.

      Weaknesses:

      I feel that the overemphasis on practical aspects (vaccine), however important, eclipses some of the fundamental aspects that may be just as important and actually more interesting. If this can be expanded, the study would be outstanding.

      We sincerely thank the reviewer for the encouraging and insightful comments. We fully agree that the fundamental aspects of migrasome biology are of great importance and deserve deeper exploration.

      In line with the reviewer’s suggestion, we have expanded our discussion on the basic biology of engineered migrasomes (eMigs). A recent study by the Okochi group at the Tokyo Institute of Technology demonstrated that hypoosmotic stress induces the formation of migrasome-like vesicles, involving cytoplasmic influx and requiring cholesterol for their formation (DOI: 10.1002/1873-3468.14816, February 2024). Building on this, our study provides a detailed characterization of hypoosmotic stressinduced eMig formation, and further compares the biophysical properties of natural migrasomes and eMigs. Notably, the inherent stability of eMigs makes them particularly promising as a vaccine platform.

      Finally, we would like to note that our laboratory continues to investigate multiple aspects of migrasome biology. In collaboration with our colleagues, we recently completed a study elucidating the mechanical forces involved in migrasome formation (DOI: 10.1016/j.bpj.2024.12.029), which further complements the findings presented here.

      Reviewer #2 (Public review):

      Summary:

      The authors' report describes a novel vaccine platform derived from a newly discovered organelle called a migrasome. First, the authors address a technical hurdle in using migrasomes as a vaccine platform. Natural migrasome formation occurs at low levels and is labor intensive, however, by understanding the molecular underpinning of migrasome formation, the authors have designed a method to make engineered migrasomes from cultured, cells at higher yields utilizing a robust process. These engineered migrasomes behave like natural migrasomes. Next, the authors immunized mice with migrasomes that either expressed a model peptide or the SARSCoV-2 spike protein. Antibodies against the spike protein were raised that could be boosted by a 2nd vaccination and these antibodies were functional as assessed by an in vitro pseudoviral assay. This new vaccine platform has the potential to overcome obstacles such as cold chain issues for vaccines like messenger RNA that require very stringent storage conditions.

      Strengths:

      The authors present very robust studies detailing the biology behind migrasome formation and this fundamental understanding was used to form engineered migrasomes, which makes it possible to utilize migrasomes as a vaccine platform. The characterization of engineered migrasomes is thorough and establishes comparability with naturally occurring migrasomes. The biophysical characterization of the migrasomes is well done including thermal stability and characterization of the particle size (important characterizations for a good vaccine).

      Weaknesses:

      With a new vaccine platform technology, it would be nice to compare them head-tohead against a proven technology. The authors would improve the manuscript if they made some comparisons to other vaccine platforms such as a SARS-CoV-2 mRNA vaccine or even an adjuvanted recombinant spike protein. This would demonstrate a migrasome-based vaccine could elicit responses comparable to a proven vaccine technology. 

      We thank the reviewer for the thoughtful evaluation and constructive suggestions, which have helped us strengthen the manuscript. 

      Comparison with proven vaccine technologies:

      In response to the reviewer’s comment, we now include a direct comparison of the antibody responses elicited by eMig-Spike and a conventional recombinant S1 protein vaccine formulated with Alum. As shown in the revised manuscript (Author response image 1), the levels of S1-specific IgG induced by the eMig-based platform were comparable to those induced by the S1+Alum formulation. This comparison supports the potential of eMigs as a competitive alternative to established vaccine platforms. 

      Author response image 1.

      eMigrasome-based vaccination showed similar efficacy compared with adjuvanted recombinant spike protein The amount of S1-specific IgG in mouse serum was quantified by ELISA on day 14 after immunization. Mice were either intraperitoneally (i.p.) immunized with recombinant Alum/S1 or intravenously (i.v.) immunized with eM-NC, eM-S or recombinant S1. The administered doses were 20 µg/mouse for eMigrasomes, 10 µg/mouse (i.v.) or 50 µg/mouse (i.p.) for recombinant S1 and 50 µl/mouse for Aluminium adjuvant.

      Assessment of antigen integrity on migrasomes:

      To address the reviewer’s suggestion regarding antigen integrity, we performed immunoblotting using antibodies against both S1 and mCherry. Two distinct bands were observed: one at the expected molecular weight of the S-mCherry fusion protein, and a higher molecular weight band that may represent oligomerized or higher-order forms of the Spike protein (Figure 5b in the revised manuscript).

      Furthermore, we performed confocal microscopy using a monoclonal antibody against Spike (anti-S). Co-localization analysis revealed strong overlap between the mCherry fluorescence and anti-Spike staining, confirming the proper presentation and surface localization of intact S-mCherry fusion protein on eMigs (Figure 5c in the revised manuscript). These results confirm the structural integrity and antigenic fidelity of the Spike protein expressed on eMigs.

      Recommendations for the authors

      Reviewer #1 (Recommendations For The Authors):

      I feel that the overemphasis on practical aspects (vaccine), however important, eclipses some of the fundamental aspects that may be just as important and actually more interesting. If this can be expanded, the study would be outstanding.

      I know that the reviewers always ask for more, and this is not the case here. Can the abstract and title be changed to emphasize the science behind migrasome formation, and possibly add a few more fundamental aspects on how hypotonic shock induces migrasomes?

      Alternatively, if the authors desire to maintain the emphasis on vaccines, can immunological mechanisms be somewhat expanded in order to - at least to some extent - explain why migrasomes are a better vaccine vehicle?

      One way or another, this reviewer is highly supportive of this study and it is really up to the authors and the editor to decide whether my comments are of use or not.

      My recommendation is to go ahead with publishing after some adjustments as per above.

      We’d like to thank the reviewer for the suggestion. We have changed the title of the manuscript and modified the abstract, emphasizing the fundamental science behind the development of eMigrasome. To gain some immunological information on eMig illucidated antibody responses, we characterized the type of IgG induced by eM-OVA in mice, and compared it to that induced by Alum/OVA. The IgG response to Alum/OVA was dominated by IgG1. Quite differently, eM-OVA induced an even distribution of IgG subtypes, including IgG1, IgG2b, IgG2c, and IgG3 (Figure 4i in the revised manuscript). The ratio between IgG1 and IgG2a/c indicates a Th1 or Th2 type humoral immune response. Thus, eM-OVA immunization induces a balance of Th1/Th2 immune responses.

      Reviewer #2 (Recommendations For The Authors):

      The study is a very nice exploration of a new vaccine platform. This reviewer believes that a more head-to-head comparison to the current vaccine SARS-CoV-2 vaccine platform would improve the manuscript. This comparison is done with OVA antigen, but this model antigen is not as exciting as a functional head-to-head with a SARS-CoV-2 vaccine.

      I think that two other discussion points should be included in the manuscript. First, was the host-cell protein evaluated? If not, I would include that point on how issues of host cell contamination of the migrasome could play a role in the responses and safety of a vaccine. Second, I would discuss antigen incorporation and localization into the platform. For example, the full-length spike being expressed has a native signal peptide and transmembrane domain. The authors point out that a transmembrane domain can be added to display an antigen that does not have one natively expressed, however, without a signal peptide this would not be secreted and localized properly. I would suggest adding a discussion of how a non-native signal peptide would be necessary in addition to a transmembrane domain.

      We thank the reviewer for these thoughtful suggestions and fully agree that the points raised are important for the translational development of eMig-based vaccines.

      (1) Host cell proteins and potential immunogenicity:

      We appreciate the reviewer’s suggestion to consider host cell protein contamination. Considering potential clinical application of eMigrasomes in the future, we will use human cells with low immunogenicity such as HEK-293 or embryonic stem cells (ESCs) to generate eMigrasomes. Also, we will follow a QC that meets the standard of validated EV-based vaccination techniques. 

      (2) Antigen incorporation and localization—signal peptide and transmembrane domain:

      We also agree with the reviewer’s point that proper surface display of antigens on eMigs requires both a transmembrane domain and a signal peptide for correct trafficking and membrane anchoring. For instance, in the case of full-length Spike protein, the native signal peptide and transmembrane domain ensure proper localization to the plasma membrane and subsequent incorporation into eMigs. In case of OVA, a secretary protein that contains a native signal peptide yet lacks a transmembrane domain, an engineered transmembrane domain is required. For antigens that do not naturally contain these features, both a non-native signal peptide and an artificial transmembrane domain are necessary. We have clarified this point in the revised discussion and explicitly noted the requirement for a signal peptide when engineering antigens for surface display on migrasomes.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      The chromophore molecule of animal and microbial rhodopsins is retinal which forms a Schiff base linkage with a lysine in the 7-th transmembrane helix. In most cases, the chromophore is positively charged by protonation of the Schiff base, which is stabilized by a negatively charged counterion. In animal opsins, three sites have been experimentally identified, Glu94 in helix 2, Glu113 in helix 3, and Glu181 in extracellular loop 2, where a glutamate acts as the counterion by deprotonation. In this paper, Sakai et al. investigated molecular properties of anthozoan-specific opsin II (ASO-II opsins), as they lack these glutamates. They found an alternative candidate, Glu292 in helix 7, from the sequences. Interestingly, the experimental data suggested that Glu292 is not the direct counterion in ASO-II opsins. Instead, they found that ASO-II opsins employ a chloride ion as the counterion. In the case of microbial rhodopsin, a chloride ion serves as the counterion of light-driven chloride pumps. This paper reports the first observation of a chloride ion as the counterion in animal rhodopsin. Theoretical calculation using a QM/MM method supports their experimental data. The authors also revealed the role of Glu292, which serves as the counterion in the photoproduct, and is involved in G protein activation.

      The conclusions of this paper are well supported by data, while the following aspects should be considered for the improvement of the manuscript.

      We thank the reviewer for carefully reading the manuscript and providing important suggestions. Below, we address the specific comments.

      (1) Information on sequence alignment only appears in Figure S2, not in the main figures. Figure S2 is too complicated by so many opsins and residue positions. It will be difficult for general readers to follow the manuscript because of such an organization. I recommend the authors show key residues in Figure 1 by picking up from Figure S2.

      We thank the reviewer for pointing this out. As suggested, we have selected key residues (potential counterion sites) from Fig. S2 and show them now as Fig. 1B in the revised manuscript. Fig. S2 has also been simplified by showing only the most important residues.

      (2) Halide size dependence. The authors observed spectral red-shift for larger halides. Their observation is fully coincident with the chromophore molecule in solution (Blatz et al. Biochemistry 1972), though the isomeric states are different (11-cis vs all-trans). This suggests that a halide ion is the hydrogen-bonding acceptor of the Schiff base N-H group in solution and ASO-II opsins. A halide ion is not the hydrogen-bonding acceptor in the structure of halorhodopsin, whose halide size dependence is not clearly correlated with absorption maxima (Scharf and Engelhard, Biochemistry 1994). These results support their model structure (Figure 4), and help QM/MM calculations.

      We appreciate the comment, which provides a deeper insight into our results and reinforces our conclusions. We have revised the discussion of the effect of halide size on the λ<sub>max</sub> shift to cite the prior work mentioned by the reviewer.

      (3) QM/MM calculations. According to Materials and Methods, the authors added water molecules to the structure and performed their calculations. However, Figure 4 does not include such water molecules, and no information was given in the manuscript. In addition, no information was given for the chloride binding site (contact residues) in Figure 4. More detailed information should be shown with additional figures in Figure SX.

      We thank the reviewer for making us realize that Fig. 4 was oversimplified.

      We have added following text in the “Structural modelling and QM/MM calculations of the dark state of Antho2a” section:

      Lines 220 – 223

      “The chloride ion is also coordinated by two water molecules and the backbone of Cys187 which is part of a conserved disulfide bridge (Fig. S2). The retinylidene Schiff base region also includes polar (Ser186, Tyr91) and non-polar (Ala94, Leu113) residues (Fig. 4).”

      We have updated Fig. 4 and its legend to show a more detailed environment of the protonated Schiff base and the chloride ion, including water molecules and other nearby residues.

      (4) Figure 5 clearly shows much lower activity of E292A than that of WT, whose expression levels are unclear. How did the authors normalize (or not normalize) expression levels in this experiment?

      We thank the reviewer for this valuable comment. In the previous version of the manuscript, we did not normalize the activity based on expression levels. We have considered this in the amended version.

      First, we evaluated the expression levels of wild type and E292A Antho2a by comparing absorbances at λ<sub>max</sub> (± 5 nm) of these pigments that were expressed and purified under the same conditions. Assuming that their molar absorption coefficients at the absorption maximum wavelengths are approximately the same, this can allow us to roughly compare their expression levels. The relative expression of the E292A mutant compared to the wild type (set as 1) was 0.81 at pH 6.5 and 140 mM NaCl, in which 94.0% (for E292A) and 99.8% (for wild type) of the Schiff base is protonated (Fig. 3A and B). As we conducted the live cell Ca<sup>2+</sup> assay in media at pH 7.0, we estimated the proportion of the protonated states of wild type and E292A mutant at same pH. The relative amounts of the protonated states to the wild type at pH 6.5 (set as 1) were estimated to be 0.99 for wild type and 0.84 for E292A. Together, the protonated pigment of the E292A mutant was calculated to be about 73% of that of the wild type at pH 7.0. From Fig. 5, the amplitude of Ca<sup>2+</sup> response of the E292A mutant was 12.1% of the wild type, showing that even after normalizing the expression levels, the Ca<sup>2+</sup> response amplitude was lower in the E292A mutant than in the wild type. This leads to our conclusion that the E292A mutation can also influence the G protein activation efficiency.

      We have added Fig. S11 showing the comparison of expression levels between the wild type and E292A of Antho2a (Fig. S11A) and maximum Ca<sup>2+</sup> responses after normalizing the expression levels (Fig. S11B).

      We have also revised the discussion section as follows:

      Lines 324 – 335

      “The relative expression level of the E292A mutant of Antho2a was approximately 0.81 of the wild type (set as 1), as determined by comparing absorbances at λ<sub>max</sub> for both pigments expressed and purified under identical conditions (Fig. S11A). Additionally, the fraction of protonated pigment relative to the wild type (set as 1 at pH 6.5) was estimated to be 0.94 for the E292A mutant at pH 6.5, and 0.99 and 0.84 for the wild type and the E292A mutant at pH 7.0, respectively (Fig. 3A and B). Since pH 7.0 corresponds to the conditions used in the live cell Ca<sup>2+</sup> assays, the effective amount of protonated pigment for the E292A mutant was approximately 73% of the wild type. Nevertheless, even after normalization for these differences, the Ca<sup>2+</sup> response amplitude of the E292A mutant remained significantly lower (~ 17% of wild type, compared to the observed 12% prior to normalization; Fig. 5 and Fig. S11B). These observations suggest that Glu292 serves not only as a counterion in the photoproduct but also plays an allosteric role in influencing G protein activation.”

      (5) The authors propose the counterion switching from a chloride ion to E292 upon light activation. A schematic drawing on the chromophore, a chloride ion, and E292 (and possible surroundings) in Antho2a and the photoproduct will aid readers' understanding.

      We thank the reviewer for this excellent suggestion. We have prepared a new figure with a schematic drawing of the environment of the protonated Schiff base depicting the counterion switch in Fig. S10.

      Reviewer #2 (Public review):

      Summary:

      This work reports the discovery of a new rhodopsin from reef-building corals that is characterized experimentally, spectroscopically, and by simulation. This rhodopsin lacks a carboxylate-based counterion, which is typical for this family of proteins. Instead, the authors find that a chloride ion stabilizes the protonated Schiff base and thus serves as a counterion.

      Strengths:

      This work focuses on the rhodopsin Antho2a, which absorbs in the visible spectrum with a maximum at 503 nm. Spectroscopic studies under different pH conditions, including the mutant E292A and different chloride concentrations, indicate that chloride acts as a counterion in the dark. In the photoproduct, however, the counterion is identified as E292.

      These results lead to a computational model of Antho2a in which the chloride is modeled in addition to the Schiff base. This model is improved using the hybrid QM/MM simulations. As a validation, the absorption maximum is calculated using the QM/MM approach for the protonated and deprotonated E292 residue as well as the E292A mutant. The results are in good agreement with the experiment. However, there is a larger deviation for ADC(2) than for sTD-DFT. Nevertheless, the trend is robust since the wt and E292A mutant models have similar excitation energies. The calculations are performed at a high level of theory that includes a large QM region.

      Weaknesses:

      I have a couple of questions about this study:

      We thank the reviewer for providing critical comments, particularly on the QM/MM calculations. We have carefully considered all comments and have addressed them as detailed below. Corresponding revisions have been made to the manuscript.

      (1) I find it suspicious that the absorption maximum is so close to that of rhodopsin when the counterion is very different. Is it possible that the chloride creates an environment for the deprotonated E292, which is the actual counterion?

      We think it is unlikely that the chloride ion merely facilitates deprotonation of Glu292 in such a way that it acts as the counterion of the dark state Antho2a. This conclusion is based on two results from our study. (1) λ<sub>max</sub> of wild type Antho2a in the dark is positively correlated with the ionic radius of the halide in the solution; the λ<sub>max</sub> is red shifted in the order Cl- < Br- < I- (Fig. 2E and F in the revised manuscript). This tendency is observed when the halide anion acts as a counterion of the protonated Schiff base (Blatz et al. Biochemistry 11: 848–855, 1972). (2) The QM/MM models of the dark state of Antho2a show that the calculated λ<sub>max</sub> of Antho2a with a protonated (neutral) Glu292 is much closer to the experimentally observed λ<sub>max</sub> than with a deprotonated (negatively charged) Glu292 (Fig. 4), suggesting that the Glu292 is likely to be protonated even in the presence of chloride ion. Therefore, we conclude that a solute anion, and not Glu292, acts as the counterion of the protonated Schiff base in the dark state of Antho2a. We have discussed this in the revised manuscript as follows:

      Lines 274 – 291

      “We found that the type of halide anions in the solution has a small but noticeable effect on the λ<sub>max</sub> values of the dark state of Antho2a. This is consistent with the effect observed in a counterion-less mutant of bovine rhodopsin, in which halide ions serve as surrogate counterions (Nathans, 1990; Sakmar et al., 1991). Similarly, our results align with earlier observations that the λ<sub>max</sub> of a retinylidene Schiff base in solution increases with the ionic radius of halides acting as hydrogen bond acceptors (i.e., I− > Br− > Cl−) (Blatz et al., 1972). In contrast, the λ<sub>max</sub> of halorhodopsin from Natronobacterium pharaonic does not clearly correlate with halide ionic radius (Scharf and Engelhard, 1994), as the halide ion in this case is not a hydrogen-bonding acceptor of the protonated Schiff base (Kouyama et al., 2010; Mizuno et al., 2018). Altogether, these findings support our hypothesis that in Antho2a, a solute halide ion forms a hydrogen bond with the Schiff base, thereby serving as the counterion in the dark state. Moreover, QM/MM calculations for the dark state of Antho2a suggest that Glu292 is protonated and neutral, further supporting the hypothesis that Glu292 does not serve as the counterion in the dark state. However, unlike dark state, Cl− has little to no effect on the visible light absorption of the photoproduct (Fig. S5). Therefore, we conclude that Cl− and Glu292, respectively, act as counterions for the protonated Schiff base of the dark state and photoproduct of Antho2a. This represents a unique example of counterion switching from exogeneous anion to a specific amino acid residue upon light irradiation (Fig. S10).”

      (2) The computational protocol states that water molecules have been added to the predicted protein structure. Are there water molecules next to the Schiff base, E292, and Cl-? If so, where are they located in the QM region?

      We have updated Fig. 4 to show amino acids and water molecules near the Schiff base, E292, and the chloride ion. These include Ser186, Tyr91, Ala94, Leu113, Cys187, and two water molecules coordinating the chloride ion. We have added following text in the “Structural modelling and QM/MM calculations of the dark state of Antho2a” section of the revised manuscript.

      Lines 220 – 223

      “The chloride ion is also coordinated by two water molecules and the backbone of Cys187 which is part of a conserved disulfide bridge (Fig. S2). The retinylidene Schiff base region also includes polar (Ser186, Tyr91) and non-polar (Ala94, Leu113) residues (Fig. 4).”

      Water molecules, which have been modelled by homology to other GPCR structures, were not included in the QM region. In the revised version of the manuscript, we clarify this point in the “Computational modelling and QM/MM calculations” section as follows.

      Lines 515 – 517

      “The retinal-binding pocket also contains predicted water molecules (modelled based on homologous GPCR structures) close to the Schiff base and the chloride ion which were not included in the QM region.”

      (3) If the E292 residue is the counterion in the photoproduct state, I would expect the retinal Schiff base to rotate toward this side chain upon isomerization. Can this be modeled based on the recent XFEL results on rhodopsin?

      The recent XFEL studies of rhodopsin reveal that at very early stages (1 ps after photoactivation), structural changes in retinal are limited primarily to the isomerization around the C11=C12 bond of the polyene chain, without significant rotation of the Schiff base.

      Although modelling of a later active state with planar retinal and a rotated Schiff base is feasible—e.g., guided by high-resolution structures of bovine rhodopsin’s Meta II state such as PDB ID: 3PQR, see Author response image 1 below—active states of GPCRs typically exhibit substantial conformational flexibility and heterogeneity, making the generation of precise structural models suitable for accurate QM/MM calculations challenging. Despite these uncertainties, this preliminary modelling does indicate that upon isomerization to the all-trans configuration, the retinal Schiff base would rotate towards E292, supporting our hypothesis that E292 serves as the counterion in the Antho2a photoproduct. This is now shown better in the revised Fig. S10.

      Author response image 1.

      Reviewer #3 (Public review):

      Summary:

      The paper by Saito et al. studies the properties of anthozoan-specific opsins (ASO-II) from organisms found in reef-building coral. Their goal was to test if ASO-II opsins can absorb visible light, and if so, what the key factors involved are.

      The most exciting aspect of this work is their discovery that ASO-II opsins do not have a counterion residue (Asp or Glu) located at any of the previously known sites found in other animal opsins.

      This is very surprising. Opsins are only able to absorb visible (long wavelength light) if the retinal Schiff base is protonated, and the latter requires (as the name implies) a "counter ion". However, the authors clearly show that some ASO-II opsins do absorb visible light.

      To address this conundrum, they tested if the counterion could be provided by exogenous chloride ions (Cl-). Their results find compelling evidence supporting this idea, and their studies of ASO-II mutant E292A suggest E292 also plays a role in G protein activation and is a counterion for a protonated Schiff base in the light-activated form.

      Strengths:

      Overall, the methods are well-described and carefully executed, and the results are very compelling.

      Their analysis of seven ASO-II opsin sequences undoubtedly shows they all lack a Glu or Asp residue at "normal" (previously established) counter-ion sites in mammalian opsins (typically found at positions 94, 113, or 181). The experimental studies clearly demonstrate the necessity of Cl- for visible light absorbance, as do their studies of the effect of altering the pH.

      Importantly, the authors also carried out careful QM/MM computational analysis (and corresponding calculation of the expected absorbance effects), thus providing compelling support for the Cl- acting directly as a counterion to the protonated retinal Schiff base, and thus limiting the possibility that the Cl- is simply altering the absorbance of ASO-II opsins through some indirect effect on the protein.

      Altogether, the authors achieved their aims, and the results support their conclusions. The manuscript is carefully written, and refreshingly, the results and conclusions are not overstated.

      This study is impactful for several reasons. There is increasing interest in optogenetic tools, especially those that leverage G protein-coupled receptor systems. Thus, the authors' demonstration that ASO-II opsins could be useful for such studies is of interest.

      Moreover, the finding that visible light absorbance by an opsin does not absolutely require a negatively charged amino acid to be placed at one of the expected sites (94, 113, or 181) typically found in animal opsins is very intriguing and will help future protein engineering efforts. The argument that the Cl- counterion system they discover here might have been a preliminary step in the evolution of amino acid based counterions used in animal opsins is also interesting.

      Finally, given the ongoing degradation of coral reefs worldwide, the focus on these curious opsins is very timely, as is the authors' proposal that the lower Schiff base pKa they discovered here for ASO-II opsins may cause them to change their spectral sensitivity and G protein activation due to changes in their environmental pH.

      We thank the reviewer for the comprehensive summary of the manuscript and for finding it well-described and impactful.

      Recommendations for the Authors:

      Reviewer #1 (Recommendations for the authors):

      (1) p. 5, l. 102: The authors obtained three absorption spectra out of seven. Did the authors examine the reasons for no absorption spectra for the remaining four proteins?

      We have not identified the reasons for the absence of detectable absorption spectra for the remaining four opsins. We speculate that this could result from poor retinal binding under detergent-solubilized conditions, but we have not directly tested this possibility.

      (2) p. 7, l. 141: The pH value is 7.5 in the text and 7.4 in Figure S4B.

      We thank the reviewer for finding this mistake. The correct value is 7.4 and we have revised the text accordingly.

      Reviewer #2 (Recommendations for the authors):

      The structures and the simulations should be made available to the reader by providing them in a repository.

      We have deposited the Antho2a models in Zenodo (https://zenodo.org/; an open-access repository for research data). We have added the following description in the “Data and materials availability” section of the revised manuscript.

      Lines 559 – 560

      “The structural models of wild type Antho2a with a neutral or charged Glu292 and the Antho2a E292A mutant are available in Zenodo (10.5281/zenodo.15064942).”

      Reviewer #3 (Recommendations for the authors):

      (1) In the homology models for the ASO-II opsins, are there any other possible residues that could act as counter-ion residues outside of the "normal" positions at 94, 113, or 181?

      We have updated Fig. 4 to show all residues near the retinylidene Schiff base region, which include Cl−, Glu292, Ser186, Tyr91, Ala94, Leu113, Cys187, and two water molecules.

      Apart from Cl− and Glu292, the homology models of the ASO-II opsins do not reveal any other candidate as the counterion of Schiff base. This is also suggested by the sequence alignment between opsins of the ASO-II group and other animal opsins in Fig. S2, where we show amino acid residues near the Schiff base (in addition to key motifs important for G protein activation).

      (2) It is mentioned that the ASO-II opsins do not appear to be bistable opsins in detergents - do these opsins show any ability to photo-switch back and forth when in cellular membranes?

      We have not directly tested whether Antho2a exhibits photo-switching in cellular membranes due to technical limitations associated with high light scattering in spectroscopic measurements. Instead, we recorded absorption spectra from crude extracts of detergent-solubilized cell membranes expressing Antho2a wild type (without purification) in the dark and after sequential light irradiation (Fig. S3C). This approach, which retains cellular lipids, can better preserve the photochemical properties of opsins, such as thermal stability and photoreactivity of their photoproducts, similar to intact cellular membranes. The first irradiation with green light (500 nm) led to a decrease in absorbance around the 550 nm region and an increase around the 450 nm region, indicating the formation of a photoproduct, consistent with observations using purified Antho2a.

      However, subsequent irradiation with violet light (420 nm) did not reverse these spectral changes but resulted in only a slight decrease in absorbance around 400 nm. Re-exposure to green light produced no further spectral changes aside from baseline distortions. These findings suggest that the Antho2a photoproduct has limited ability to revert to its original dark state under these conditions. Nevertheless, because detergent solubilization may influence these observations, further studies in intact cellular membranes using live-cell assay will be required to conclusively assess bistability or photo-switching properties.

      (3) The idea that E292 acts as a counterion for the protonated active state is intriguing - do the authors think the retinal decay process after light activation occurs with hydrolysis of the non-protonated form with subsequent retinal release?

      We thank the reviewer for raising this important question. We first examined whether the increased UV absorbance observed after incubating the photoproduct for 20 hours in the dark (Fig. S3D, E, violet curves) originated from free retinal released from the opsin pigment. Acid denaturation (performed at pH 1.9) of this photoproduct resulted in a main product absorbing around 400 nm (Fig. S3G). Typically, when retinal binds opsin via the Schiff base (whether protonated or deprotonated), acid denaturation traps the retinal chromophore as a protonated Schiff base, yielding an absorption spectrum with a λ<sub>max</sub> at approximately 440 nm, as observed in the dark state of Antho2a (Fig. S3F). Our results thus indicate that the UV absorbance in the photoproduct did not result from a deprotonated Schiff base but rather from retinal released during incubation. We have not directly tested whether the protonated or deprotonated form is more prone to retinal release. However, the decay of visible absorbance (associated with the protonated photoproduct) occurred more rapidly under alkaline conditions (pH 8.0), which generally favors deprotonation of the Schiff base (Fig. S3H). Thus, it is possible that the deprotonated photoproduct releases retinal more rapidly than the protonated form, but further studies are necessary to confirm this hypothesis.

      To answer the comments (2) and (3) by the reviewer, we have added new panels (C and F–H) to Fig. S3.

      We have revised the Results section as follows:

      Lines 136 – 141

      “The photoproduct remained stable for at least 5 minutes (Fig. S3A, curves 2 and 3) but did not revert to the original dark state upon subsequent irradiation (Fig. S3A and C). Instead, it underwent gradual decay accompanied by retinal release over time (Fig. S3D–G). These findings indicate that purified Antho2a is neither strictly bleach resistant nor bistable (see also Fig. S3 legend). We also observed that the protonated photoproduct decayed more rapidly at pH 8.0 (Fig. S3H) than at pH 6.5 (Fig. 3A, D, E).”

      Text:

      (4) Page 3, line 38. Consider defining eumetazoan (for lay readers).

      As suggested, we have defined eumetazoans and revised the sentence as follows:

      Lines 38 – 40

      “Opsins are present in the genomes of all eumetazoans (i.e., all animal lineages except sponges), and based on their phylogenetic relationships, they can be classified into eight groups…”

      (5) Page 3, line 42. "But, furthermore, ..." should be changed to either word alone.

      Revised as suggested.

      (6) Page 18, line 447. The HPLC method is well-described and helpful. If possible, please add a Reference, or indicate if this is a new variation of the method.

      This is a well-established method for analyzing the composition of retinal isomers bound to different states of rhodopsin pigments. We have now cited a reference describing the methodology (Terakita et al. Vision Res. 6: 639–652, 1989).

      (7) Page 11, line 267. "..type of halide anions in the solution affected the λ<sub>max</sub> values of the dark state of".

      Since the changes are not large (but clearly occur), consider changing this sentence to "..type of halide anions in the solution has a small but visible effect on the λ<sub>max</sub> values of the dark state ..."

      We have revised this sentence as suggested.

      Figures:

      (9) Consider combining Figure FS6 with Figure 2 (effect of anions on visible absorbance).

      As suggested, the previous Fig. S6 has been included in the main text as Fig. 2E and F in the revised manuscript.

    1. Author response:

      The following is the authors’ response to the previous reviews

      Public Reviews:

      Reviewer #1 (Public review):

      (1) Authors' experimental designs have some caveats to definitely support their claims. Authors claimed that aged LT-HSCs have no myeloid-biased clone expansion using transplantation assays. In these experiments, authors used 10 HSCs and young mice as recipients. Given the huge expansion of old HSC by number and known heterogeneity in immunophenotypically defined HSC populations, it is questionable how 10 out of so many old HSCs (an average of 300,000 up to 500,000 cells per mouse; Mitchell et al., Nature Cell Biology, 2023) can faithfully represent old HSC population. The Hoxb5+ old HSC primary and secondary recipient mice data (Fig. 2C and D) support this concern. In addition, they only used young recipients. Considering the importance of inflammatory aged niche in the myeloid-biased lineage output, transplanting young vs old LT-HSCs into aged mice will complete the whole picture. 

      We sincerely appreciate your insightful comment regarding the existence of approximately 500,000 HSCs per mouse in older mice. To address this, we have conducted a statistical analysis to determine the appropriate sample size needed to estimate the characteristics of a population of 500,000 cells with a 95% confidence level and a ±5% margin of error. This calculation was performed using the finite population correction applied to Cochran’s formula.

      For our calculations, we used a proportion of 50% (p = 0.5), as it has been reported that approximately 50% of HSCs are myeloid-biased1,2. The formula used is as follows:

      N \= 500,000 (total population size)

      Z = 1.96 (Z-score for a 95% confidence level)

      p = 0.5 (expected proportion)

      e \= 0.05 (margin of error)

      Applying this formula, we determined that the required sample size is approximately 384 cells. This sample size ensures that the observed proportion in the sample will reflect the characteristics of the entire population. In our study, we have conducted functional experiments across Figures 2, 3, 5, 6, S3, and S6, with a total sample size of n = 126, which corresponds to over 1260 cells. While it would be ideal to analyze all 500,000 cells, this would necessitate the use of 50,000 recipient mice, which is not feasible. We believe that the number of cells analyzed is reasonable from a statistical standpoint. 

      References

      (1) Dykstra, Brad et al. “Clonal analysis reveals multiple functional defects of aged murine hematopoietic stem cells.” The Journal of experimental medicine vol. 208,13 (2011): 2691-703. doi:10.1084/jem.20111490

      (2) Beerman, Isabel et al. “Functionally distinct hematopoietic stem cells modulate hematopoietic lineage potential during aging by a mechanism of clonal expansion.” Proceedings of the National Academy of Sciences of the United States of America vol. 107,12 (2010): 5465-70. doi:10.1073/pnas.1000834107

      (2) Authors' molecular data analyses need more rigor with unbiased approaches. They claimed that neither aged LT-HSCs nor aged ST-HSCs exhibited myeloid or lymphoid gene set enrichment but aged bulk HSCs, which are just a sum of LTHSCs and ST-HSCs by their gating scheme (Fig. 4A), showed the "tendency" of enrichment of myeloid-related genes based on the selected gene set (Fig. 4D). Although the proportion of ST-HSCs is reduced in bulk HSCs upon aging, since STHSCs do not exhibit lymphoid gene set enrichment based on their data, it is hard to understand how aged bulk HSCs have more myeloid gene set enrichment compared to young bulk HSCs. This bulk HSC data rather suggest that there could be a trend toward certain lineage bias (although not significant) in aged LT-HSCs or ST-HSCs. Authors need to verify the molecular lineage priming of LT-HSCs and ST-HSCs using another comprehensive dataset. 

      Thank you for your thoughtful feedback regarding the lack of myeloid or lymphoid gene set enrichment in aged LT-HSCs and aged ST-HSCs, despite the observed tendency for myeloid-related gene enrichment in aged bulk HSCs.

      First, we acknowledge that the GSEA results vary among the different myeloid gene sets analyzed (Fig. 4, D–F; Fig. S4, C–D). Additionally, a comprehensive analysis of mouse HSC aging using multiple RNA-seq datasets reported that nearly 80% of differentially expressed genes show poor reproducibility across datasets[1]. These factors highlight the challenges of interpreting lineage bias in HSCs based solely on previously published transcriptomic data.

      Given these points, we believe that emphasizing functional experimental results is more critical than incorporating an additional dataset to support our claim. In this regard, we have confirmed that young and aged LT-HSCs have similar differentiation capacity (Figure 3), while myeloid-biased hematopoiesis is observed in aged bulk HSCs (Figure S3). These findings are further corroborated by independent functional experiments. We sincerely appreciate your insightful comments.

      Reference

      (1) Flohr Svendsen, Arthur et al. “A comprehensive transcriptome signature of murine hematopoietic stem cell aging.” Blood vol. 138,6 (2021): 439-451. doi:10.1182/blood.2020009729

      (3) Although authors could not find any molecular evidence for myeloid-biased hematopoiesis from old HSCs (either LT or ST), they argued that the ratio between LT-HSC and ST-HSC causes myeloid-biased hematopoiesis upon aging based on young HSC experiments (Fig. 6). However, old ST-HSC functional data showed that they barely contribute to blood production unlike young Hoxb5- HSCs (ST-HSC) in the transplantation setting (Fig. 2). Is there any evidence that in unperturbed native old hematopoiesis, old Hoxb5- HSCs (ST-HSC) still contribute to blood production?

      If so, what are their lineage potential/output? Without this information, it is hard to argue that the different ratio causes myeloid-biased hematopoiesis in aging context. 

      Thank you for the insightful and important question. The post-transplant chimerism of ST-HSCs was low in Fig. 2, indicating that transplantation induced a short-term loss of hematopoietic potential due to hematopoietic stress per cell. 

      To reduce this stress, we increased the number of HSCs in transplantation setting. In Fig. S6, old LT-HSCs and old ST-HSCs were transplanted in a 50:50 or 20:80 ratio, respectively. As shown in Fig. S6.D, the 20:80 group, which had a higher proportion of old ST-HSCs, exhibited a statistically significant increase in the lymphoid percentage in the peripheral blood post-transplantation. 

      These findings suggest that old ST-HSCs contribute to blood production following transplantation. 

      Reviewer #2 (Public review):

      While aspects of their work are fascinating and might have merit, several issues weaken the overall strength of the arguments and interpretation. Multiple experiments were done with a very low number of recipient mice, showed very large standard deviations, and had no statistically detectable difference between experimental groups. While the authors conclude that these experimental groups are not different, the displayed results seem too variable to conclude anything with certainty. The sensitivity of the performed experiments (e.g. Fig 3; Fig 6C, D) is too low to detect even reasonably strong differences between experimental groups and is thus inadequate to support the author's claims. This weakness of the study is not acknowledged in the text and is also not discussed. To support their conclusions the authors need to provide higher n-numbers and provide a detailed power analysis of the transplants in the methods section. 

      Response #2-1:

      Thank you for your important remarks. The power analysis for this experiment shows that power = 0.319, suggesting that more number may be needed. On the other hand, our method for determining the sample size in Figure 3 is as follows:

      (1) First, we checked whether myeloid biased change is detected in the bulk-HSC fraction (Figure S3). The results showed that the difference in myeloid output at 16 weeks after transplantation was statistically significant (young vs. aged = 7.2 ± 8.9 vs. 42.1 ± 35.5%, p = 0.01), even though n = 10.

      (2) Next, myeloid biased HSCs have been reported to be a fraction with high selfrenewal ability (2004, Blood). If myeloid biased HSCs increase with aging, the increase in myeloid biased HSCs in LT-HSC fraction would be detected with higher sensitivity than in the bulk-HSC fraction used in Figure S3.

      (3) However, there was no difference not only in p-values but also in the mean itself, young vs aged = 51.4±31.5% vs 47.4±39.0%, p = 0.82, even though n = 8 in Figure 3. Since there was no difference in the mean itself, it is highly likely that no difference will be detected even if n is further increased.

      Regarding Figure 6, we obtained a statistically significant difference and consider the sample size to be sufficient. In addition, we have performed various functional experiments (Figures 2, 5, 6 and S6), and have obtained consistent results that expansion of myeloid biased HSCs does not occur with aging in Hoxb5+HSCs fraction. Based on the above, we conclude that the LT-HSC fraction does not differ in myeloid differentiation potential with aging.

      As the authors attempt to challenge the current model of the age-associated expansion of myeloid-biased HSCs (which has been observed and reproduced by many different groups), ideally additional strong evidence in the form of single-cell transplants is provided. 

      Response #2-2:

      Thank you for the comments. As the reviewer pointed out, we hope we could reconfirm our results using single-cell level technology in the future.

      On the other hand, we have reported that the ratio of myeloid to lymphoid cells in the peripheral blood changes when the number of HSCs transplanted, or the number of supporting cells transplanted with HSCs, is varied[1-2]. Therefore, single-cell transplant data need to be interpreted very carefully to determine differentiation potential.

      From this viewpoint, future experiments will combine the Hoxb5 reporter system with a lineage tracing system that can track HSCs at the single-cell level over time. This approach will investigate changes in the self-renewal capacity of individual HSCs and their subsequent differentiation into progenitor cells and peripheral blood cells. We have reflected this comment by adding the following sentences in the manuscript.

      [P19, L451] “In contrast, our findings should be considered in light of some limitations. In this report, we primarily performed ten to twenty cell transplantation assays. Therefore, the current theory should be revalidated using single-cell technology with lineage tracing system[3-4]. This approach will investigate changes in the self-renewal capacity of individual HSCs and their subsequent differentiation into progenitor cells and peripheral blood cells.” 

      It is also unclear why the authors believe that the observed reduction of ST-HSCs relative to LT-HSCs explains the myeloid-biased phenotype observed in the peripheral blood. This point seems counterintuitive and requires further explanation. 

      Response #2-3:

      Thank you for your comment. We apologize for the insufficient explanation. Our data, as shown in Figures 3 and 4, demonstrate that the differentiation potential of LT-HSCs remains unchanged with age. Therefore, rather than suggesting that an increase in LT-HSCs with a consistent differentiation capacity leads to myeloidbiased hematopoiesis, it seems more accurate to highlight that the relative decrease in the proportion of ST-HSCs, which remain in peripheral blood as lymphocytes, leads to a relative increase in myeloid cells in peripheral blood and thus causes myeloid-biased hematopoiesis.

      However, if we focus on the increase in the ratio of LT-HSCs, it is also plausible to explain that “with aging, the proportion of LT-HSCs capable of long-term myeloid hematopoiesis increases. As a result, from 16 weeks after transplantation, the influence of LT-HSCs maintaining the long-term ability to produce myeloid cells becomes relatively more significant, leading to an increase in the ratio of myeloid cells in the peripheral blood and causing myeloid-biased hematopoiesis.”

      Based on my understanding of the presented data, the authors argue that myeloidbiased HSCs do not exist, as 

      a) they detect no difference between young/aged HSCs after transplant (mind low nnumbers and large std!!!); b) myeloid progenitors downstream of HSCs only show minor or no changes in frequency and c) aged LT-HSCs do not outperform young LT-HSC in myeloid output LT-HSCs in competitive transplants (mind low n-numbers and large std!!!). 

      However, given the low n-numbers and high variance of the results, the argument seems weak and the presented data does not support the claims sufficiently. That the number of downstream progenitors does not change could be explained by other mechanisms, for instance, the frequently reported differentiation short-cuts of HSCs and/or changes in the microenvironment. 

      Response #2-4:

      We appreciate the comments. As mentioned above, we will correct the manuscript regarding the sample size. Regarding the interpreting of the lack of increase in the percentage of myeloid progenitor cells in the bone marrow with age, it is instead possible that various confounding factors, such as differentiation shortcuts or changes in the microenvironment, are involved.

      However, even when aged LT-HSCs and young LT-HSCs are transplanted into the same recipient mice, the timing of the appearance of different cell fractions in peripheral blood is similar (Figure 3 of this paper). Therefore, we have not obtained data suggesting that clear shortcuts exist in the differentiation process of aged HSCs into neutrophils or monocytes. Additionally, it is currently consensually accepted that myeloid cells, including neutrophils and monocytes, differentiate from GMPs[1]. Since there is no changes in the proportion of GMPs in the bone marrow with age, we concluded that the differentiation potential into myeloid cells remains consistent with aging.

      "Then, we found that the myeloid lineage proportions from young and aged LT-HSCs were nearly comparable during the observation period after transplantation (Fig. 3, B and C)." 

      [Comment to the authors]: Given the large standard deviation and low n-numbers, the power of the analysis to detect differences between experimental groups is very low. Experimental groups with too large standard deviations (as displayed here) are difficult to interpret and might be inconclusive. The absence of clearly detectable differences between young and aged transplanted HSCs could thus simply be a false-negative result. The shown experimental results hence do not provide strong evidence for the author's interpretation of the data. The authors should add additional transplants and include a detailed power analysis to be able to detect differences between experimental groups with reasonable sensitivity. 

      Response #2-5:

      Thank you for providing these insights. Regarding the sample size, we have addressed this in Response #2-1.

      Line 293: "Based on these findings, we concluded that myeloid-biased hematopoiesis observed following transplantation of aged HSCs was caused by a relative decrease in ST-HSC in the bulk-HSC compartment in aged mice rather than the selective expansion of myeloid-biased HSC clones." 

      Couldn't that also be explained by an increase in myeloid-biased HSCs, as repeatedly reported and seen in the expansion of CD150+ HSCs? It is not intuitively clear why a reduction of ST-HSCs clones would lead to a myeloid bias. The author should try to explain more clearly where they believe the increased number of myeloid cells comes from. What is the source of myeloid cells if the authors believe they are not derived from the expanded population of myeloid-biased HSCs? t 

      Response #2-6:

      Thank you for pointing this out. We apologize for the insufficient explanation. We will explain using Figure 8 from the paper.

      First, our data show that LT-HSCs maintain their differentiation capacity with age, while ST-HSCs lose their self-renewal capacity earlier, so that only long-lived memory lymphocytes remain in the peripheral blood after the loss of selfrenewal capacity in ST-HSCs (Figure 8, upper panel). In mouse bone marrow, the proportion of LT-HSCs increases with age, while the proportion of ST-HSCs relatively decreases (Figure 8, lower panel and Figure S5). 

      Our data show that merely reproducing the ratio of LT-HSCs to ST-HSCs observed in aged mice using young LT-HSCs and ST-HSCs can replicate myeloidbiased hematopoiesis. This suggests that the increase in LT-HSC and the relative decrease in ST-HSC within the HSC compartment with aging are likely to contribute to myeloid-biased hematopoiesis.

      As mentioned earlier, since the differentiation capacity of LT-HSCs remain unchaged with age, it seems more accurate to describe that the relative decrease in the proportion of ST-HSCs, which retain long-lived memory lymphocytes in peripheral blood, leads to a relative increase in myeloid cells in peripheral blood and thus causes myeloid-biased hematopoiesis.

      However, focusing on the increase in the proportion of LT-HSCs, it is also possible to explain that “with aging, the proportion of LT-HSCs capable of long-term myeloid hematopoiesis increases. As a result, from 16 weeks after transplantation, the influence of LT-HSCs maintaining the long-term ability to produce myeloid cells becomes relatively more significant, leading to an increase in the ratio of myeloid cells in the peripheral blood and causing myeloid-biased hematopoiesis.”

      Recommendations for the authors: 

      Reviewer #2 (Recommendations for the authors):

      Summary: 

      Comment #2-1: While aspects of their work are fascinating and might have merit, several issues weaken the overall strength of the arguments and interpretation. Multiple experiments were done with a very low number of recipient mice, showed very large standard deviations, and had no statistically detectable difference between experimental groups. While the authors conclude that these experimental groups are not different, the displayed results seem too variable to conclude anything with certainty. The sensitivity of the performed experiments (e.g. Figure 3; Figure 6C, D) is too low to detect even reasonably strong differences between experimental groups and is thus inadequate to support the author's claims. This weakness of the study is not acknowledged in the text and is also not discussed. To support their conclusions the authors, need to provide higher n-numbers and provide a detailed power analysis of the transplants in the methods section. 

      Response #2-1

      Thank you for your important remarks. The power analysis for this experiment shows that power = 0.319, suggesting that more number may be needed. On the other hand, our method for determining the sample size in Figure 3 is as follows: 

      (1) First, we checked whether myeloid biased change is detected in the bulk-HSC fraction (Figure S3). The results showed that the difference in myeloid output at 16 weeks after transplantation was statistically significant (young vs. aged = 7.2 {plus minus} 8.9 vs. 42.1 {plus minus} 35.5%, p = 0.01), even though n = 10. 

      (2) Next, myeloid biased HSCs have been reported to be a fraction with high selfrenewal ability (2004, Blood). If myeloid biased HSCs increase with aging, the increase in myeloid biased HSCs in LT-HSC fraction would be detected with higher sensitivity than in the bulk-HSC fraction used in Figure S3. 

      (3) However, there was no difference not only in p-values but also in the mean itself, young vs aged = 51.4{plus minus}31.5% vs 47.4{plus minus}39.0%, p = 0.82, even though n = 8 in Figure 3. Since there was no difference in the mean itself, it is highly likely that no difference will be detected even if n is further increased. 

      Regarding Figure 6, we obtained a statistically significant difference and consider the sample size to be sufficient. In addition, we have performed various functional experiments (Figures 2, 5, 6 and S6), and have obtained consistent results that expansion of myeloid-biased HSCs does not occur with aging in Hoxb5+HSCs fraction. Based on the above, we conclude that the LT-HSC fraction does not differ in myeloid differentiation potential with aging. 

      [Comment for authors]  

      Paradigm-shifting extraordinary claims require extraordinary data. Unfortunately, the authors do not provide additional data to further support their claims. Instead, the authors argue the following: Because they were able to find significant differences between experimental groups in some experiments, the absence of significant differences in the results of other experiments must be correct, too. 

      This logic is in my view flawed. Any assay/experiment with highly variable data has a very low sensitivity to detect significant differences between groups. If, as in this case, the variance is as large as the entire dynamic range of the readout, it becomes impossible to be able to detect any difference. In these cases, it is not surprising and actually expected that the mean of the group is located close to the center of the dynamic range as is the case here (center of dynamic range: 50%). In other words, this means that the experiments are simply not reproducible. It is absolutely critical to remember that any experiment and its associated statistical analysis has 3 (!!!) instead of 2 possible outcomes: 

      (1) There is a statistically significant difference 

      (2) There is no statistically significant difference 

      (3) The results of the experiment are inconclusive because the replicates are too variable and the results are not reproducible.  

      While most of us are inclined to think about outcomes (1) or (2), outcome (3) cannot be neglected. While it might be painful to accept, the only way to address concerns about data reproducibility is to provide additional data, improve reproducibility, and lower the power of the analysis to an acceptable level (e.g. able to detect difference of 5-10% between groups). 

      Without going into the technical details, the example graph from the link below illustrates that with a power 0.319 as stated by the authors, approx. 25 transplants, instead of 8, would be required. 

      Typically, however, a power of 0.8 is a reasonable value for any power analysis (although it's not a very strong power either). Even if we are optimistic and assume that there might be a reasonably large difference between experimental groups (in the example above P2 = 0.6, which is actually not that large) we can estimate that we would need over 10 transplants per group to say with confidence that two experimental groups likely do not differ. With smaller differences, these numbers increase quickly to 20+ transplants per group as can be seen in the example graph using an Alpha of 0.1 above. 

      Further reading can be found here and in many textbooks or other online resources: https://power-analysis.com/effect_size.htm  https://tss.awf.poznan.pl/pdf-188978-110207? filename=Using%20power%20analysis%20to.pdf 

      Response:

      Thank you for your feedback. We fully agree with the reviewer that paradigmshifting claims must be supported by equally robust data. It has been welldocumented that the frequency of myeloid-biased HSCs increases with age, with reports indicating that over 50% of the HSC compartment in aged mice consists of myeloid-biased HSCs[1,2]. Based on this, we believe that if aged LT-HSCs were substantially myeloid-biased, the difference should be readily detectable.

      To further validate our findings, we showed the similar preliminary experiment. The resulting data are shown below (n = 8). 

      Author response image 1.

      (A) Experimental design for competitive co-transplantation assay. Ten CD45.2<sup>+</sup> young LT-HSCs and ten CD45.2<sup>+</sup> aged LT-HSCs were transplanted with 2 × 10<sup>5</sup> CD45.1<sup>+</sup>/CD45.2<sup>+</sup> supporting cells into lethally irradiated CD45.1<sup>+</sup> recipient mice (n \= 8). (B) Lineage output of young or aged LT-HSCs at 4, 8, 12, 16 weeks after transplantation. Each bar represents an individual mouse. *P < 0.05. **P < 0.01.

      While a slight increase in myeloid-biased hematopoiesis was observed in the aged LT-HSC fraction, the difference was not statistically significant. These new results are presented alongside the original Figure 3, which was generated using a larger sample size (n = 16).

      Author response image 2.

      (A) Experimental design for competitive co-transplantation assay. Ten CD45.2<sup>+</sup> young LT-HSCs and ten CD45.2<sup>+</sup> aged LT-HSCs were transplanted with 2 × 10<sup>5</sup> CD45.1<sup>+</sup>/CD45.2<sup>+</sup> supporting cells into lethally irradiated CD45.1<sup>+</sup> recipient mice (n \= 16). (B) Lineage output of young or aged LT-HSCs at 4, 8, 12, 16 weeks after transplantation. Each bar represents an individual mouse. 

      Consistent with the original data, aged LT-HSCs exhibited a lineage output that was nearly identical to that of young LT-HSCs. Nonetheless, as the reviewer rightly pointed out, we cannot completely exclude the possibility that subtle differences may exist but remain undetected. To address this, we have added the following sentence to the manuscript:  

      [P9, L200] “These findings unmistakably demonstrated that mixed/bulk-HSCs showed myeloid skewed hematopoiesis in PB with aging. In contrast, LT-HSCs maintained a consistent lineage output throughout life, although subtle differences between aged and young LT-HSCs may exist and cannot be entirely ruled out.”

      References

      (1) Dykstra, Brad et al. “Clonal analysis reveals multiple functional defects of aged murine hematopoietic stem cells.” The Journal of experimental medicine vol. 208,13 (2011): 2691-703. doi:10.1084/jem.20111490

      (2) Beerman, Isabel et al. “Functionally distinct hematopoietic stem cells modulate hematopoietic lineage potential during aging by a mechanism of clonal expansion.” Proceedings of the National Academy of Sciences of the United States of America vol. 107,12 (2010): 5465-70. doi:10.1073/pnas.1000834107

      Comment #2-3: It is also unclear why the authors believe that the observed reduction of STHSCs relative to LT-HSCs explains the myeloid-biased phenotype observed in the peripheral blood. This point seems counterintuitive and requires further explanation. 

      Response #2-3:  

      Thank you for your comment. We apologize for the insufficient explanation. Our data, as shown in Figures 3 and 4, demonstrate that the differentiation potential of LTHSCs remains unchanged with age. Therefore, rather than suggesting that an increase in LT-HSCs with a consistent differentiation capacity leads to myeloid biased hematopoiesis, it seems more accurate to highlight that the relative decrease in the proportion of ST-HSCs, which remain in peripheral blood as lymphocytes, leads to a relative increase in myeloid cells in peripheral blood and thus causes myeloid-biased hematopoiesis. However, if we focus on the increase in the ratio of LT-HSCs, it is also plausible to explain that "with aging, the proportion of LT-HSCs capable of long-term myeloid hematopoiesis increases. As a result, from 16 weeks after transplantation, the influence of LT-HSCs maintaining the long-term ability to produce myeloid cells becomes relatively more significant, leading to an increase in the ratio of myeloid cells in the peripheral blood and causing myeloid-biased hematopoiesis." 

      [Comment for authors] 

      While this interpretation of the data might make sense the shown data do not exclude alternative explanations. The authors do not exclude the possibility that LTHSCs expand with age and that this expansion in combination with an aging microenvironment drives myeloid bias. The authors should quantify the frequency [%] and absolute number of LT-HSCs and ST-HSCs in young vs. aged animals. Especially analyzing the abs. numbers of cells will be important to support their claims as % can be affected by changes in the frequency of other populations. 

      Thank you for your very important point. As this reviewer pointed out, we do not exclude the possibility that the combination of aged microenvironment drives myeloid bias. Additionally, we acknowledge that myeloid-biased hematopoiesis with age is a complex process likely influenced by multiple factors. We would like to discuss the mechanism mentioned as a future research direction. Thank you for the insightful feedback. Regarding the point about the absolute cell numbers mentioned in the latter half of the paragraph, we will address this in detail in our subsequent response (Response #2-4).

      Comment #2-4: Based on my understanding of the presented data, the authors argue that myeloid-biased HSCs do not exist, as a) they detect no difference between young/aged HSCs after transplant (mind low n-numbers and large std!); b) myeloid progenitors downstream of HSCs only show minor or no changes in frequency and c) aged LT-HSCs do not outperform young LT-HSCs in myeloid output LTHSCs in competitive transplants (mind low n-numbers and large std!). However, given the low n-numbers and high variance of the results, the argument seems weak and the presented data does not support the claims sufficiently. That the number of downstream progenitors does not change could be explained by other mechanisms, for instance, the frequently reported differentiation short-cuts of HSCs and/or changes in the microenvironment. 

      Response #2-4:  

      We appreciate the comments. As mentioned above, we will correct the manuscript regarding the sample size. Regarding the interpreting of the lack of increase in the percentage of myeloid progenitor cells in the bone marrow with age, it is instead possible that various confounding factors, such as differentiation shortcuts or changes in the microenviroment, are involved. However, even when aged LT-HSCs and young LT-HSCs are transplanted into the same recipient mice, the timing of the appearance of different cell fractions in peripheral blood is similar (Figure 3 of this paper). Therefore, we have not obtained data suggesting that clear shortcuts exist in the differentiation process of aged HSCs into neutrophils or monocytes. Additionally, it is currently consensually accepted that myeloid cells, including neutrophils and monocytes, differentiate from GMPs1. Since there are no changes in the proportion of GMPs in the bone marrow with age, we concluded that the differentiation potential into myeloid cells remains consistent with aging. 

      Reference 

      (1) Akashi K and others, 'A Clonogenic Common Myeloid Progenitor That Gives Rise to All Myeloid Lineages', Nature, 404.6774 (2000), 193-97. 

      [Comment for authors] 

      As the relative frequency of cell population can be misleading, the authors should compare the absolute numbers of progenitors in young vs. aged mice to strengthen their argument. It would also be helpful to quantify the absolute numbers and relative frequencies in WT mice to exclude the possibility the HoxB5-trimcherry mouse model suffers from unexpected aging phenotypes and the hematopoietic system differs from wild-type animals.

      Thank you for your valuable feedback. We understand the importance of comparing the absolute numbers of progenitors in young versus aged mice to provide a more accurate representation of the changes in cell populations.

      Therefore, we quantified the absolute cell count of hematopoietic cells in the bone marrow using flow cytometry data. 

      Author response image 3.

      As previously reported, we observed a 10-fold increase in the number of pHSCs in aged mice compared to young mice. Additionally, our analysis revealed a statistically significant decrease in the number of Flk2+ progenitors and CLPs in aged mice. On the other hand, there was no statistically significant change in the number of myeloid progenitors between the two age groups. We appreciate the suggestion and hope that this additional information strengthens our argument and addresses your concerns.

      Comment #2-5:  

      "Then, we found that the myeloid lineage proportions from young and aged LT-HSCs were nearly comparable during the observation period after transplantation (Figure 3, B and C)." Given the large standard deviation and low n-numbers, the power of the analysis to detect differences between experimental groups is very low. Experimental groups with too large standard deviations (as displayed here) are difficult to interpret and might be inconclusive. The absence of clearly detectable differences between young and aged transplanted HSCs could thus simply be a false-negative result. The shown experimental results hence do not provide strong evidence for the author's interpretation of the data. The authors should add additional transplants and include a detailed power analysis to be able to detect differences between experimental groups with reasonable sensitivity. 

      Response #2-5:  

      Thank you for providing these insights. Regarding the sample size, we have addressed this in Response #2-1. 

      [Comment for authors]  

      As explained in detail in the response to #2-1 the provided arguments are not convincing. As the authors pointed out, the power of these experiments is too low to make strong claims. If the author does not intend to provide new data, the language of the manuscript needs to be adjusted to reflect this weakness. A paragraph discussing the limitations of the study mentioning the limited power of the data should be included beyond the above-mentioned rather vague statement that the data should be validated (which is almost always necessary anyway). 

      Thank you for your valuable comment. We agree with the importance of discussing potential limitations in our experimental design. In response to the reviewer’s suggestion, we have revised the manuscript to include the following sentences:

      [P19, L434] "In the co-transplantation assay shown in Figure 3, the myeloid lineage output derived from young and aged LT-HSCs was comparable (Young LT-HSC: 51.4 ± 31.5% vs. Aged LT-HSC: 47.4 ± 39.0%, p = 0.82). Although no significant difference was detected, the small sample size (n = 8) may limit the sensitivity of the assay to detect subtle myeloid-biased phenotypes."

      This addition acknowledges the potential limitations of our analysis and highlights the need for further investigation with larger cohorts.

      Comment #2-6:

      Line 293: "Based on these findings, we concluded that myeloid biased hematopoiesis observed following transplantation of aged HSCs was caused by a relative decrease in ST-HSC in the bulk-HSC compartment in aged mice rather than the selective expansion of myeloid-biased HSC clones." Couldn't that also be explained by an increase in myeloid-biased HSCs, as repeatedly reported and seen in the expansion of CD150+ HSCs? It is not intuitively clear why a reduction of STHSCs clones would lead to a myeloid bias. The author should try to explain more clearly where they believe the increased number of myeloid cells comes from. What is the source of myeloid cells if the authors believe they are not derived from the expanded population of myeloid-biased HSCs?

      Response #2-6:

      Thank you for pointing this out. We apologize for the insufficient explanation. We will explain using attached Figure 8 from the paper. First, our data show that LT-HSCs maintain their differentiation capacity with age, while ST-HSCs lose their self-renewal capacity earlier, so that only long-lived memory lymphocytes remain in the peripheral blood after the loss of self-renewal capacity in ST-HSCs (Figure 8, upper panel). In mouse bone marrow, the proportion of LT-HSCs increases with age, while the proportion of STHSCs relatively decreases (Figure 8, lower panel and Figure S5).

      Our data show that merely reproducing the ratio of LT-HSCs to ST-HSCs observed in aged mice using young LT-HSCs and ST-HSCs can replicate myeloid-biased hematopoiesis. This suggests that the increase in LT-HSC and the relative decrease in ST-HSC within the HSC compartment with aging are likely to contribute to myeloid-biased hematopoiesis.

      As mentioned earlier, since the differentiation capacity of LT-HSCs remain unchanged with age, it seems more accurate to describe that the relative decrease in the proportion of STHSCs, which retain long-lived memory lymphocytes in peripheral blood, leading to a relative increase in myeloid cells in peripheral blood and thus causes myeloid-biased hematopoiesis. However, focusing on the increase in the proportion of LT-HSCs, it is also possible to explain that "with aging, the proportion of LT-HSCs capable of long-term myeloid hematopoiesis increases. As a result, from 16 weeks after transplantation, the influence of LT-HSCs maintaining the long-term ability to produce myeloid cells become relatively more significant, leading to an increase in the ratio of myeloid cells in the peripheral blood and causing myeloid biased hematopoiesis."

      [Comment for authors]

      While I can follow the logic of the argument, my concerns about the interpretation remain as I see discrepancies in other findings in the published literature. For instance, what the authors call ST-HSCs, differs from the classical functional definition of ST-HSCs. It is thus difficult to relate the described observations to previous reports. ST-HSCs typically can contribute significantly to multiple lineages for several weeks (see for example PMID: 29625072). It is somewhat surprising that the ST-HSC in this study don't show this potential and loose their potential much quicker.

      The authors should thus provide a more comprehensive depth of immunophenotypic and molecular characterization to compare their LT-HSCs to ST-HSCs. For instance, are LT-HSCs CD41- HSCs? How do ST-HSCs differ in their surface marker expression from previously used definitions of ST-HSCs? A list of differentially expressed genes between young and old LT-HSCs and ST-HSCs should be done and will likely provide important insights into the molecular programs/markers (beyond the provided GO analysis, which seems superficial).

      Thank you for your valuable feedback. As the reviewer noted, there are indeed multiple definitions of ST-HSCs. We appreciate the opportunity to clarify our definitions of ST-HSCs. We define ST-HSCs functionally, rather than by surface antigens, which we believe is the most classical and widely accepted definition [1]. In our study, we define long-term hematopoietic stem cells (LT-HSCs) as those HSCs that continue to contribute to hematopoiesis after a second transplantation and possess long-term self-renewal potential. Conversely, we define short-term hematopoietic stem cells (ST-HSCs) as those HSCs that do not contribute to hematopoiesis after a second transplantation and only exhibit self-renewal potential in the short term. 

      Next, in the paper referenced by the reviewer[2], the chimerism of each fraction of ST-HSCs also peaked at 4 weeks and then decreased to approximately 0.1% after 12 weeks post-transplantation. Author response image 5 illustrates our ST-HSC donor chimerism in Figure 2. We believe that data in the paper referenced by the reviewer2 is consistent with our own observations of the hematopoietic pattern following ST-HSC transplantation, indicating a characteristic loss of hematopoietic potential 4 weeks after the transplantation. Furthermore, as shown in Figures 2D and 2F, the fraction of ST-HSCs does not exhibit hematopoietic activity after the second transplantation. Therefore, we consider this fraction to be ST-HSCs.

      Author response image 4.

      Additionally, the RNAseq data presented in Figures 4 and S4 revealed that the GSEA results vary among the different myeloid gene sets analyzed (Fig. 4, D–F; Fig. S4, C–D). Moreover, a comprehensive analysis of mouse HSC aging using multiple RNA-seq datasets reported that nearly 80% of differentially expressed genes show poor reproducibility across datasets[3]. From the above, while RNAseq data is indeed helpful, we believe that emphasizing functional experimental results is more critical than incorporating an additional dataset to support our claim. Thank you once again for your insightful feedback.

      References

      (1) Kiel, Mark J et al. “SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells.” Cell vol. 121,7 (2005): 1109-21. doi:10.1016/j.cell.2005.05.026

      (2) Yamamoto, Ryo et al. “Large-Scale Clonal Analysis Resolves Aging of the Mouse Hematopoietic Stem Cell Compartment.” Cell stem cell vol. 22,4 (2018): 600-607.e4. doi:10.1016/j.stem.2018.03.013

      (3) Flohr Svendsen, Arthur et al. “A comprehensive transcriptome signature of murine hematopoietic stem cell aging.” Blood vol. 138,6 (2021): 439-451. doi:10.1182/blood.2020009729

      Reviewer #3 (Public review): 

      Although the topic is appropriate and the new model provides a new way to think about lineage-biased output observed in multiple hematopoietic contexts, some of the experimental design choices, as well as some of the conclusions drawn from the results could be substantially improved. Also, they do not propose any potential mechanism to explain this process, which reduces the potential impact and novelty of the study. 

      The authors have satisfactorily replied to some of my comments. However, there are multiple key aspects that still remain unresolved.

      Reviewer #3 (Recommendations for the authors): 

      Comment #3-1,2:  

      Although the additional details are much appreciated the core of my original comments remains unanswered. There are still no details about the irradiation dose for each particular experiment. Is any transplant performed using a 9.1 Gy dose? If yes, please indicate it in text or figure legend. If not, please remove this number from the corresponding method section. 

      Again, 9.5 Gy (split in two doses) is commonly reported as sublethal. The fact that the authors used a methodology that deviates from the "standard" for the field makes difficult to put these results in context with previous studies. It is not possible to know if the direct and indirect effects of this conditioning method in the hematopoietic system have any consequences in the presented results. 

      Thank you for your clarification. We confirm that none of the transplantation experiments described were performed using a 9.1 Gy irradiation dose. We have therefore removed the mention of "9.1 Gy" from the relevant section of the Materials and Methods. We appreciate helpful suggestion to improve the clarity of the manuscript.

      [P22, L493] “12-24 hours prior to transplantation, C57BL/6-Ly5.1 mice, or aged C57BL/6J recipient mice were lethally irradiated with single doses of 8.7 Gy.”

      Regarding the reviewer’s concern about the radiation dose used in our experiments, we will address this point in more detail in our subsequent response (see Response #3-4).

      Comment #3-4(Original): When representing the contribution to PB from transplanted cells, the authors show the % of each lineage within the donor-derived cells (Figures 3B-C, 5B, 6B-D, 7C-E, and S3 B-C). To have a better picture of total donor contribution, total PB and BM chimerism should be included for each transplantation assay. Also, for Figures 2C-D and Figures S2A-B, do the graphs represent 100% of the PB cells? Are there any radioresistant cells?

      Response #3-4 (Original): Thank you for highlighting this point. Indeed, donor contribution to total peripheral blood (PB) is important information. We have included the donor contribution data for each figure above mentioned.

      In Figure 2C-D and Figure S2A-B, the percentage of donor chimerism in PB was defined as the percentage of CD45.1-CD45.2+ cells among total CD45.1-CD45.2+ and CD45.1+CD45.2+ cells as described in method section.

      Comment for our #3-4 response:  

      Thanks for sharing these data. These graphs should be included in their corresponding figures along with donor contribution to BM. 

      Regarding Figure2 C-D, as currently shown, the graphs only account for CD45.1CD45.2+ (donor-derived) and CD45.1+CD45.2+ (supporting-derived). What is the percentage of CD45.1+CD45.2- (recipient-derived)? Since the irradiation regiment is atypical, including this information would help to know more about the effects of this conditioning method. 

      Thank you for your insightful comment regarding Figure 2C-D. To address the concern that the reviewer pointed out, we provide the kinetics of the percentage of CD45.1+CD45.2- (recipient-derived) in Author response image 7.

      Author response image 5.

      As the reviewer pointed out, we observed the persistence of recipient-derived cells, particularly in the secondary transplant. As noted, this suggests that our conditioning regimen may have been suboptimal. In response, we will include the donor chimerism analysis in the total cells and add the following statement in the study limitations section to acknowledge this point:

      [P19, L439] “Additionally, in this study, we purified LT-HSCs using the Hoxb5 reporter system and employed a moderate conditioning regimen (8.7 Gy). To have a better picture of total donor contribution, total PB chimerism are presented in Figure S7 and we cannot exclude the possibility that these factors may have influenced the results. Therefore, it would be ideal to validate our findings using alternative LT-HSC markers and different conditioning regimens.”

      Comment #3-5: For BM progenitor frequencies, the authors present the data as the frequency of cKit+ cells. This normalization might be misleading as changes in the proportion of cKit+ between the different experimental conditions could mask differences in these BM subpopulations. Representing this data as the frequency of BM single cells or as absolute numbers (e.g., per femur) would be valuable.

      Response #3-5:

      We appreciate the reviewer's comment on this point. 

      Firstly, as shown in Supplemental Figures S1B and S1C, we analyze the upstream (HSC, MPP, Flk2+) and downstream (CLP, MEP, CMP, GMP) fractions in different panels. Therefore, normalization is required to assess the differentiation of HSCs from upstream to downstream.

      Additionally, the reason for normalizing by c-Kit+ is that the bone marrow analysis was performed after enrichment using the Anti-c-Kit antibody for both upstream and downstream fractions. Based on this, we calculated the progenitor populations as a frequency within the c-Kit positive cells. Next, the results of normalizing the whole bone marrow cells (live cells) are shown below. 

      Author response image 6.

      Similar to the results of normalizing c-Kit+ cells, myeloid progenitors remained unchanged, including a statistically significant decrease in CMP in aged mice. Additionally, there were no significant differences in CLP. In conclusion, similar results were obtained between the normalization with c-Kit and the normalization with whole bone marrow cells (live cells).

      However, as the reviewer pointed out, it is necessary to explain the reason for normalization with c-Kit. Therefore, we will add the following description.

      [P21, L502] For the combined analysis of the upstream (HSC, MPP, Flk2+) and downstream (CLP, MEP, CMP, GMP) fractions in Figures 1B, we normalized by cKit+ cells because we performed a c-Kit enrichment for the bone marrow analysis.

      Comment for our #3-5 response:

      I understand that normalization is necessary to compare across different BM populations. However, the best way would be to normalize to single cells. As I mentioned in my original comment, normalizing to cKit+ cells could be misleading, as the proportion of cKit+ cells could be different across the experimental conditions. Further, enriching for cKit+ cells when analyzing BM subpopulation frequencies could introduce similar potential errors. The enrichment would depend on the level of expression of cKit for each of these population, what would alter the final quantification. Indeed, CLP are typically defined as cKit-med/low. Thus, cKit enrichment would not be a great method to analyze the frequency of these cells. 

      The graph in the authors' response to my comment, show similar trend to what is represented Figure 1B for some populations. However, there are multiple statistically significant changes that disappear in this new version. This supports my original concern and, in consequence, I would encourage to represent this data as the frequency of BM single cells or as absolute numbers (e.g., per femur). 

      Thank you for your thoughtful follow-up comment. In response to the reviewer’s suggestion, we will represent the data as the frequency among total BM single cells. These revised graphs have been incorporated into the updated Figure 7F and corresponding figure legend have been revised accordingly to accurately reflect these representations. We appreciate your valuable input, which has helped us improve the clarity and rigor of our data presentation.

      Comment #3-6: Regarding Figure 1B, the authors argue that if myeloid-biased HSC clones increase with age, they should see increased frequency of all components of the myeloid differentiation pathway (CMP, GMP, MEP). This would imply that their results (no changes or reduction in these myeloid subpopulations) suggest the absence of myeloid-biased HSC clones expansion with age. This reviewer believes that differentiation dynamics within the hematopoietic hierarchy can be more complex than a cascade of sequential and compartmentalized events (e.g., accelerated differentiation at the CMP level could cause exhaustion of this compartment and explain its reduction with age and why GMP and MEP are unchanged) and these conclusions should be considered more carefully.

      Response #3-6:

      We wish to thank the reviewer for this comment. We agree with that the differentiation pathway may not be a cascade of sequential events but could be influenced by various factors such as extrinsic factors.

      In Figure 1B, we hypothesized that there may be other mechanisms causing myeloid-biased hematopoiesis besides the age-related increase in myeloid-biased HSCs, given that the percentage of myeloid progenitor cells in the bone marrow did not change with age. However, we do not discuss the presence or absence of myeloid-biased HSCs based on the data in Figure 1B. 

      Our newly proposed theories—that the differentiation capacity of LT-HSCs remains unchanged with age and that age-related myeloid-biased hematopoiesis is due to changes in the ratio of LT-HSCs to ST-HSCs—are based on functional experiment results. As the reviewer pointed out, to discuss the presence or absence of myeloid-biased HSCs based on the data in Figure 1B, it is necessary to apply a system that can track HSC differentiation at single-cell level. The technology would clarify changes in the self-renewal capacity of individual HSCs and their differentiation into progenitor cells and peripheral blood cells. The authors believe that those single-cell technologies will be beneficial in understanding the differentiation of HSCs. Based on the above, the following statement has been added to the text.

      [P19, L440] In contrast, our findings should be considered in light of some limitations. In this report, we primarily performed ten to twenty cell transplantation assays. Therefore, the current theory should be revalidated using single-cell technology with lineage tracing system1-2. This approach will investigate changes in the self-renewal capacity of individual HSCs and their subsequent differentiation into progenitor cells and peripheral blood cells. 

      Comment for our #3-6 response:

      Thanks for the response. My original comments referred to the statement "On the other hand, in contrast to what we anticipated, the frequency of GMP was stable, and the percentage of CMP actually decreased significantly with age, defying our prediction that the frequency of components of the myeloid differentiation pathway, such as CMP, GMP, and MEP would increase in aged mice if myeloid-biased HSC clones increase with age (Fig. 1 B)" (lines #129-133). Again, the absence of an increase in CMP, GMP and MEP with age does not mean the absence of and increase in myeloid-biased HSC clones. This statement should be considered more carefully. 

      Thank you for the insightful comment. We agree that the absence of an increase in CMP, GMP and MEP with age does not mean the absence of an increase in myeloid-biased HSC clones. In our revised manuscript, we have refined the statement to acknowledge this nuance more clearly. The updated text now reads as follows:

      P6, L129] On the other hand, in contrast to what we anticipated, the frequency of GMP was stable, and the percentage of CMP actually decreased significantly with age, defying our prediction that the frequency of components of the myeloid differentiation pathway, such as CMP, GMP, and MEP may increase in aged mice, if myeloid-biased HSC clones increase with age. 

      Comment #3-7: Within the few recipients showing good donor engraftment in Figure 2C, there is a big proportion of T cells that are "amplified" upon secondary transplantation (Figure 2D). Is this expected?

      Response #3-7:

      We wish to express our deep appreciation to the reviewer for insightful comment on this point. As the reviewers pointed out, in Figure 2D, a few recipients show a very high percentage of T cells. The authors had the same question and considered this phenomenon as follows:

      (1) One reason for the very high percentage of T cells is that we used 1 x 107 whole bone marrow cells in the secondary transplantation. Consequently, the donor cells in the secondary transplantation contained more T-cell progenitor cells, leading to a greater increase in T cells compared to the primary transplantation.

      (2) We also consider that this phenomenon may be influenced by the reduced selfrenewal capacity of aged LT-HSCs, resulting in decreased sustained production of myeloid cells in the secondary recipient mice. As a result, long-lived memorytype lymphocytes may preferentially remain in the peripheral blood, increasing the percentage of T cells in the secondary recipient mice.

      We have discussed our hypothesis regarding this interesting phenomenon. To further clarify the characteristics of the increased T-cell count in the secondary recipient mice, we will analyze TCR clonality and diversity in the future.

      Comment for our #3-7 response:

      Thanks for the potential explanations to my question. This fact is not commonly reported in previous transplantation studies using aged HSCs. Could Hoxb5 label fraction of HSCs that is lymphoid/T-cell biased upon secondary transplantation? The number of recipients with high frequency of lymphoid cells in the peripheral blood (even from young mice) is remarkable. 

      Response:

      Thank you for your insightful suggestion. Based on this comment, we calculated the percentage of lymphoid cells in the donor fraction at 16 weeks following the secondary transplantation, which was 56.1 ± 25.8% (L/M = 1.27). According to the Müller-Sieburg criteria, lymphoid-biased hematopoiesis is defined as having an L/M ratio greater than 10. 

      Given our findings, we concluded that the Hoxb5-labeled fraction does not specifically indicate lymphoid-biased hematopoiesis. We sincerely appreciate the valuable input, which helped us to further clarify the interpretation of our results.

      Comment #3-8: Do the authors have any explanation for the high level of variabilitywithin the recipients of Hoxb5+ cells in Figure 2C?

      Response #3-8:

      We appreciate the reviewer's comment on this point. As noted in our previous report, transplantation of a sufficient number of HSCs results in stable donor chimerism, whereas a small number of HSCs leads to increased variability in donor chimerism1. Additionally, other studies have observed high variability when fewer than 10 HSCs are transplanted2-3. Based on this evidence, we consider that the transplantation of a small number of cells (10 cells) is the primary cause of the high level of variability observed.

      Comment for our #3-8 response:

      I agree that transplanting low number of HSC increases the mouse-to-mouse variability. For that reason, a larger cohort of recipients for this kind of experiment would be ideal. 

      Response:

      Thank you for the insightful comment. We agree that a larger cohort of recipients would be ideal for this type of experiment. In Figure 2, the difference between Hoxb5<suup>+</sup> and Hoxb5⁻ cells are robust, allowing for a clear statistical distinction despite the cohort size. However, we also recognize that a larger cohort would be necessary to detect more subtle differences, particularly in Figure 3. In response, we have added the following statement to the main text to acknowledge this limitation.

      P9, L200] These findings unmistakably demonstrated that mixed/bulk-HSCs showed myeloid skewed hematopoiesis in PB with aging. In contrast, LT-HSCs maintained a consistent lineage output throughout life, although subtle differences between aged and young LT-HSCs may exist and cannot be entirely ruled out.

      Comment #3-10: Is Figure 2G considering all primary recipients or only the ones that were used for secondary transplants? The second option would be a fairer comparison.

      Response #3-10:

      We appreciate the reviewer's comment on this point. We considered all primary recipients in Figure 2G to ensure a fair comparison, given the influence of various factors such as the radiosensitivity of individual recipient mice[1]. Comparing only the primary recipients used in the secondary transplantation would result in n = 3 (primary recipient) vs. n = 12 (secondary recipient). Including all primary recipients yields n = 11 vs. n = 12, providing a more balanced comparison. Therefore, we analyzed all primary recipient mice to ensure the reliability of our results.

      Comment for our #3-10 response:

      I respectfully disagree. Secondary recipients are derived from only 3 of the primary recipients. Therefore, the BM composition is determined by the composition of their donors. Including primary recipients that are not transplanted into secondary recipients for is not the fairest comparison for this analysis. 

      Thank you for your comment and for highlighting this important issue. We acknowledge the concern that including primary recipients that are not transplanted into secondary recipients is not the fairest comparison for this analysis. In response, we have reanalyzed the data using only the primary recipients whose bone marrow was actually transplanted into secondary recipients. 

      Author response image 7.

      Importantly, the reanalysis confirmed that the kinetics of myeloid cell proportions in peripheral blood were consistent between primary and secondary transplant recipients. We sincerely appreciate your thoughtful feedback, which has helped us improve the clarity.

      Comment #3-11: When discussing the transcriptional profile of young and aged HSCs, the authors claim that genes linked to myeloid differentiation remain unchanged in the LT-HSC fraction while there are significant changes in the STHSCs. However, 2 out of the 4 genes shown in Figure S4B show ratios higher than 1 in LT-HSCs.

      Response #3-11:

      Thank you for highlighting this important point. As the reviewer pointed out, when we analyze the expression of myeloid-related genes, some genes are elevated in aged LT-HSCs compared to young LT-HSCs. However, the GSEA analysis using myeloid-related gene sets, which include several hundred genes, shows no significant difference between young and aged LT-HSCs (see Figure S4C in this paper). Furthermore, functional experiments using the co-transplantation system show no difference in differentiation capacity between young and aged LT-HSCs (see Figure 3 in this paper). Based on these results, we conclude that LT-HSCs do not exhibit any change in differentiation capacity with aging.

      Comment for our #3-11 response:

      The authors used the data in Figure S4 to claim that "myeloid genes were tended to be enriched in aged bulk-HSCs but not in aged LT-HSCs compared to their respective controls" (this is the title of the figure; line # 1326). This is based on an increase in gene expression of CD150, vWF, Selp, Itgb3 in aged cells compared to young cells (Figure S4B). However, an increase in Selp and Itgb3 is also observed for LT-HSCs (lower magnitude, but still and increase). 

      Also, regarding the GSEA, the only term showing statistical significance in bulk HSCs is "Myeloid gene set", which does not reach significance in LT-HSCs, but present a trend for enrichment (q = 0.077). None of the terms in shown in this panel present statistical significance in ST-HSCs. 

      Thank you for your valuable point. As the reviewer noted, the current title may cause confusion. Therefore, we propose changing it to the following:

      [P52, L1331] “Figure S4. Compared to their respective young controls, aged bulk-HSCs exhibit greater enrichment of myeloid gene expression than aged LT-HSCs”

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Summary:

      The authors report a study on how stimulation of receptive-field surround of V1 and LGN neurons affects their firing rates. Specifically, they examine stimuli in which a grey patch covers the classical RF of the cell and a stimulus appears in the surround. Using a number of different stimulus paradigms they find a long latency response in V1 (but not the LGN) which does not depend strongly on the characteristics of the surround grating (drifting vs static, continuous vs discontinuous, predictable grating vs unpredictable pink noise). They find that population responses to simple achromatic stimuli have a different structure that does not distinguish so clearly between the grey patch and other conditions and the latency of the response was similar regardless of whether the center or surround was stimulated by the achromatic surface. Taken together they propose that the surround-response is related to the representation of the grey surface itself. They relate their findings to previous studies that have put forward the concept of an ’inverse RF’ based on strong responses to small grey patches on a full-screen grating. They also discuss their results in the context of studies that suggest that surround responses are related to predictions of the RF content or figure-ground segregation. Strengths:

      I find the study to be an interesting extension of the work on surround stimulation and the addition of the LGN data is useful showing that the surround-induced responses are not present in the feedforward path. The conclusions appear solid, being based on large numbers of neurons obtained through Neuropixels recordings. The use of many different stimulus combinations provides a rich view of the nature of the surround-induced responses.

      Weaknesses:

      The statistics are pooled across animals, which is less appropriate for hierarchical data. There is no histological confirmation of placement of the electrode in the LGN and there is no analysis of eye or face movements which may have contributed to the surround-induced responses. There are also some missing statistics and methods details which make interpretation more difficult.

      We thank the reviewer for their positive and constructive comments, and have addressed these specific issues in response to the minor comments. For the statistics across animals, we refer to “Reviewer 1 recommendations” point 1. For the histological analysis, we refer to “Reviewer 1 recommendations point 2”. For the eye and facial movements, we refer to “Reviewer 1 recommendations point 5”. Concerning missing statistics and methods details, we refer to various responses to “Reviewer 1 recommendations”. We thoroughly reviewed the manuscript and included all missing statistical and methodological details.

      Reviewer #2 (Public review):

      Cuevas et al. investigate the stimulus selectivity of surround-induced responses in the mouse primary visual cortex (V1). While classical experiments in non-human primates and cats have generally demonstrated that stimuli in the surround receptive field (RF) of V1 neurons only modulate activity to stimuli presented in the center RF, without eliciting responses when presented in isolation, recent studies in mouse V1 have indicated the presence of purely surround-induced responses. These have been linked to prediction error signals. In this study, the authors build on these previous findings by systematically examining the stimulus selectivity of surround-induced responses.

      Using neuropixels recordings in V1 and the dorsal lateral geniculate nucleus (dLGN) of head-fixed, awake mice, the authors presented various stimulus types (gratings, noise, surfaces) to the center and surround, as well as to the surround only, while also varying the size of the stimuli. Their results confirm the existence of surround-induced responses in mouse V1 neurons, demonstrating that these responses do not require spatial or temporal coherence across the surround, as would be expected if they were linked to prediction error signals. Instead, they suggest that surround-induced responses primarily reflect the representation of the achromatic surface itself.

      The literature on center-surround effects in V1 is extensive and sometimes confusing, likely due to the use of different species, stimulus configurations, contrast levels, and stimulus sizes across different studies. It is plausible that surround modulation serves multiple functions depending on these parameters. Within this context, the study by Cuevas et al. makes a significant contribution by exploring the relationship between surround-induced responses in mouse V1 and stimulus statistics. The research is meticulously conducted and incorporates a wide range of experimental stimulus conditions, providing valuable new insights regarding center-surround interactions.

      However, the current manuscript presents challenges in readability for both non-experts and experts. Some conclusions are difficult to follow or not clearly justified.

      I recommend the following improvements to enhance clarity and comprehension:

      (1) Clearly state the hypotheses being tested at the beginning of the manuscript.

      (2) Always specify the species used in referenced studies to avoid confusion (esp. Introduction and Discussion).

      (3) Briefly summarize the main findings at the beginning of each section to provide context.

      (4) Clearly define important terms such as “surface stimulus” and “early vs. late stimulus period” to ensure understanding.

      (5) Provide a rationale for each result section, explaining the significance of the findings.

      (6) Offer a detailed explanation of why the results do not support the prediction error signal hypothesis but instead suggest an encoding of the achromatic surface.

      These adjustments will help make the manuscript more accessible and its conclusions more compelling.

      We thank the reviewer for their constructive feedback and for highlighting the need for improved clarity regarding the hypotheses and their relation to the experimental findings.

      • We have strongly improved the Introduction and Discussion section, explaining the different hypotheses and their relation to the performed experiments.

      • In the Introduction, we have clearly outlined each hypothesis and its predictions, providing a structured framework for understanding the rationale behind our experimental design. • In the Discussion, we have been more explicit in explaining how the experimental findings inform these hypotheses.

      • We explicitly mentioned the species used in the referenced studies.

      • We provided a clearer rationale for each experiment in the Results section.

      We have also always clearly stated the species that previous studies used, both in the Introduction and Discussion section.

      Reviewer #3 (Public review):

      Summary:

      This paper explores the phenomenon whereby some V1 neurons can respond to stimuli presented far outside their receptive field. It introduces three possible explanations for this phenomenon and it presents experiments that it argues favor the third explanation, based on figure/ground segregation.

      Strengths:

      I found it useful to see that there are three possible interpretations of this finding (prediction error, interpolation, and figure/ground). I also found it useful to see a comparison with LGN responses and to see that the effect there is not only absent but actually the opposite: stimuli presented far outside the receptive field suppress rather than drive the neurons. Other experiments presented here may also be of interest to the field.

      Weaknesses:

      The paper is not particularly clear. I came out of it rather confused as to which hypotheses were still standing and which hypotheses were ruled out. There are numerous ways to make it clearer.

      We thank the reviewer for their constructive feedback and for highlighting the need for improved clarity regarding the hypotheses and their relation to the experimental findings.

      • We have strongly improved the Introduction and Discussion section, explaining the different hypotheses and their relation to the performed experiments.

      • In the Introduction, we have clearly outlined each hypothesis and its predictions, providing a structured framework for understanding the rationale behind our experimental design. • In the Discussion, we have been more explicit in explaining how the experimental findings inform these hypotheses.

      ** Recommendations for the Authors:**

      Reviewer #1 (Recommendations for the Authors):

      (1) Given the data is hierarchical with neurons clustered within 6 mice (how many recording sessions per animal?) I would recommend the use of Linear Mixed Effects models. Simply pooling all neurons increases the risk of false alarms.

      To clarify: We used the standard method for analyzing single-unit recordings, by comparing the responses of a population of single neurons between two different conditions. This means that the responses of each single neuron were measured in the different conditions, and the statistics were therefore based on the pairwise differences computed for each neuron separately. This is a common and standard procedure in systems neuroscience, and was also used in the previous studies on this topic (Keller et al., 2020; Kirchberger et al., 2023). We were not concerned with comparing two groups of animals, for which hierarchical analyses are recommended. To address the reviewer’s concern, we did examine whether differences between baseline and the gray/drift condition, as well as the gray/drift compared to the grating condition, were consistent across sessions, which was indeed the case. These findings are presented in Supplementary Figure 6.

      (2) Line 432: “The study utilized three to eight-month-old mice of both genders”. This is confusing, I assume they mean six mice in total, please restate. What about the LGN recordings, were these done in the same mice? Can the authors please clarify how many animals, how many total units, how many included units, how many recording sessions per animal, and whether the same units were recorded in all experiments?

      We have now clarified the information regarding the animals used in the Methods section.

      • We state that “We included female and male mice (C57BL/6), a total of six animals for V1 recordings between three and eight months old. In two of those animals, we recorded simultaneously from LGN and V1.”

      • We state that“For each animal, we recorded around 2-3 sessions from each hemisphere, and we recorded from both hemispheres.”

      • We noted that the number of neurons was not mentioned for each figure caption. We apologize for this omission. We have now added the number for all of the figures and protocols to the revised manuscript. We note that the same neurons were recorded for the different conditions within each protocol, however because a few sessions were short we recorded more units for the grating protocol. Note that we did not make statistical comparisons between protocols.

      (3) I see no histology for confirmation of placement of the electrode in the LGN, how can they be sure they were recording from the LGN? There is also little description of the LGN experiments in the methods.

      For better clarity, we have included a reconstruction of the electrode track from histological sections of one animal post-experiment (Figure S4). The LGN was targeted via stereotactical surgery, and the visual responses in this area are highly distinct. In addition, we used a flash protocol to identify the early-latency responses typical for the LGN, which is described in the Methods section: “A flash stimulus was employed to confirm the locations of LGN at the beginning of the recording sessions, similar to our previous work in which we recorded from LGN and V1 simultaneously (Schneider et al., 2023). This stimulus consisted of a 100 ms white screen and a 2 s gray screen as the inter-stimulus interval, designed to identify visually responsive areas. The responses of multi-unit activity (MUA) to the flash stimulus were extracted and a CSD analysis was then performed on the MUA, sampling every two channels. The resulting CSD profiles were plotted to identify channels corresponding to the LGN. During LGN recordings, simultaneous recordings were made from V1, revealing visually responsive areas interspersed with non-responsive channels.”

      (4) Many statements are not backed up by statistics, for example, each time the authors report that the response at 90degree sign is higher than baseline (Line 121 amongst other places) there is no test to support this. Also Line 140 (negative correlation), Line 145, Line 180.

      For comparison purposes, we only presented statistical analyses across conditions. However, we have now added information to the figure captions stating that all conditions show values higher than the baseline.

      (5) As far as I can see there is no analysis of eye movements or facial movements. This could be an issue, for example, if the onset of the far surround stimuli induces movements this may lead to spurious activations in V1 that would be interpreted as surround-induced responses.

      To address this point, we have included a supplementary figure analyzing facial movements across different sessions and comparing them between conditions (Supplementary Figure 5). A detailed explanation of this analysis has been added to the Methods section. Overall, we observed no significant differences in face movements between trials with gratings, trials with the gray patch, and trials with the gray screen presented during baseline. Animals exhibited similar face movements across all three conditions, supporting the conclusion that the observed neural firing rate increases for the gray-patch condition are not related to face movements.

      (6) The experiments with the rectangular patch (Figure 3) seem to give a slightly different result as the responses for large sizes (75, 90) don’t appear to be above baseline. This condition is also perceptually the least consistent with a grey surface in the RF, the grey patch doesn’t appear to occlude the surface in this condition. I think this is largely consistent with their conclusions and it could merit some discussion in the results/discussion section.

      While the effect is maybe a bit weaker, the total surround stimulated also covers a smaller area because of the large rectangular gray patch. Furthermore, the early responses are clearly elevated above baseline, and the responses up to 70 degrees are still higher than baseline. Hence we think this data point for 90 degrees does not warrant a strong interpretation.

      Minor points:

      (1) Figure 1h: What is the statistical test reported in the panel (I guess a signed rank based on later figures)? Figure 4d doesn’t appear to be significantly different but is reported as so. Perhaps the median can be indicated on the distribution?

      We explained that we used a signed rank test for Figure 1h and now included the median of the distributions in Figure 4d.

      (2) What was the reason for having the gratings only extend to half the x-axis of the screen, rather than being full-screen? This creates a percept (in humans at least) that is more consistent with the grey patch being a hole in the grating as the grey patch has the same luminance as the background outside the grating.

      We explained in the Methods section that “We presented only half of the x-axis due to the large size of our monitor, in order to avoid over-stimulation of the animals with very large grating stimuli.”. Perceptually speaking, the gray patch appears as something occluding the grating, not as a “hole”.

      (3) Line 103: “and, importantly, had less than 10degree sign (absolute) distance to the grating stimulus’ RF center.” Re-phrase, a stimulus doesn’t have an RF center.

      We corrected this to “We included only single units into the analysis that met several criteria in terms of visual responses (see Methods) and, importantly, the RF center had less than 10(absolute) distance to the grating stimulus’ center. ”.

      (4) Line 143: “We recorded single neurons LGN” - should be “single LGN neurons”.

      We corrected this to “we recorded single LGN neurons”.

      (5) Line 200: They could spell out here that the latency is consistent with the latency observed for the grey patch conditions in the previous experiments. (6) Line 465: This is very brief. What criteria did they use for single-unit assignation? Were all units well-isolated or were multi-units included?

      We clarified in the Methods section that “We isolated single units with Kilosort 2.5 (Steinmetz et al., 2021) and manually curated them with Phy2 (Rossant et al., 2021). We included only single units with a maximum contamination of 10 percent.”

      (7) Line 469: “The experiment was run on a Windows 10”. Typo.

      We corrected this to “The experiment was run on Windows 10”.

      (9) Line 481: “We averaged the response over all trials and positions of the screen”. What do they mean by ’positions of the screen’?

      We changed this to “We computed the response for each position separately right, by averaging the response across all the trials where a square was presented at a given position.”

      (9) Line 483: “We fitted an ellipse in the center of the response”. How?

      We additionally explain how we preferred the detection of the RF using an ellipse fitting: “A heatmap of the response was computed. This heatmap was then smoothed, and we calculated the location of the peak response. From the heatmap we calculated the centroid of the response using the function regionprops.m that finds unique objects, we then selected the biggest area detected. Using the centroids provided as output. We then fitted an ellipse centered on this peak response location to the smoothed heatmap using the MATLAB function ellipse.m.“

      (10) Line 485 “...and positioned the stimulus at the response peak previously found”. Unclear wording, do you mean the center of the ellipse fit to the MUA response averaged across channels or something else? (11) Line 487: “We performed a permutation test of the responses inside the RF detected vs a circle from the same area where the screen was gray for the same trials.”. The wording is a bit unclear here, can they clarify what they mean by the ’same trials’, what is being compared to what here?

      We used a permutation test to compare the neuron’s responses to black and white squares inside the RF to the condition where there was no square in the RF (i.e. the RF was covered by the gray background).

      (12) Was the pink noise background regenerated on each trial or as the same noise pattern shown on each trial?

      We explain that “We randomly presented one of two different pink noise images”

      (13) Line 552: “...used a time window of the Gaussian smoothing kernel from-.05 to .05”. Missing units.

      We explained that “we used a time window of the Gaussian smoothing kernel from -.05 s to .05 s, with a standard deviation of 0.0125 s.”

      (14) Line 565: “Additionally, for the occluded stimulus, we included patch sizes of 70 degree sign and larger.”. Not sure what they’re referring to here.

      We changed this to: “For the population analyses, we analyzed the conditions in which the gray patch sizes were 70 degrees and 90 degrees”.

      (15) Line 569: What is perplexity, and how does changing it affect the t-SNE embeddings?

      Note that t-SNE is only used for visualization purposes. In the revised manuscript, we have expanded our explanation regarding the use of t-SNE and the choice of perplexity values. Specifically, we have clarified that we used a perplexity value of 20 for the Gratings with circular and rectangular occluders and 100 for the black-and-white condition. These values were empirically selected to ensure that the groups in the data were clearly separable while maintaining the balance between local and global relationships in the projected space. This choice allowed us to visually distinguish the different groups while preserving the meaningful structure encoded in the dissimilarity matrices. In particular, varying the perplexity values would not alter the conclusions drawn from the visualization, as t-SNE does not affect the underlying analytical steps of our study.

      (16) Line 572: “We trained a C-Support Vector Classifier based on dissimilarity matrices”. This is overly brief, please describe the construction of the dissimilarity matrices and how the training was implemented. Was this binary, multi-class? What conditions were compared exactly?

      In the revised manuscript, we have expanded our explanation regarding the construction of the dissimilarity matrices and the implementation of the C-Support Vector Classification (C-SVC) model (See Methods section).

      The dissimilarity matrices were calculated using the Euclidean distance between firing rate vectors for all pairs of trials (as shown in Figure 6a-b). These matrices were used directly as input for the classifier. It is important to note that t-SNE was not used for classification but only for visualization purposes. The classifier was binary, distinguishing between two classes (e.g., Dr vs St). We trained the model using 60% of the data for training and used 40% for testing. The C-SVC was implemented using sklearn, and the classification score corresponds to the average accuracy across 20 repetitions.

      Reviewer #2 (Recommendations for the Authors):

      The relationship between the current paper and Keller et al. is challenging to understand. It seems like the study is critiquing the previous study but rather implicitly and not directly. I would suggest either directly stating the criticism or presenting the current study as a follow-up investigation that further explores the observed effect or provides an alternative function. Additionally, defining the inverse RF versus surround-induced responses earlier than in the discussion would be beneficial. Some suggestions:

      (1) The introduction is well-written, but it would be helpful to clearly define the hypotheses regarding the function of surround-induced responses and revisit these hypotheses one by one in the results section.

      Indeed, we have generally improved the Introduction of the manuscript, and stated the hypotheses and their relationships to the Experiments more clearly.

      (2) Explicitly mention how you compare classic grating stimuli of varying sizes with gray patch stimuli. Do the patch stimuli all come with a full-field grating? For the full-field grating, you have one size parameter, while for the patch stimuli, you have two (size of the patch and size of the grating).

      We now clearly describe how we compare grating stimuli of varying sizes with gray patch stimuli.

      (3) The third paragraph in the introduction reads more like a discussion and might be better placed there.

      We have moved content from the third paragraph of the Introduction to the Discussion, where it fits more naturally.

      (4) Include 1-2 sentences explaining how you center RFs and detail the resolution of your method.

      We have added an explanation to the Methods: “To center the visual stimuli during the recording session, we averaged the multiunit activity across the responsive channels and positioned the stimulus at the center of the ellipse fit to the MUA response averaged across channels.”.

      (5) Motivate the use of achromatic stimuli. This section is generally quite hard to understand, so try to simplify it.

      We explained better in the Introduction why we performed this particular experiment.

      (6) The decoding analysis is great, but it is somewhat difficult to understand the most important results. Consider summarizing the key findings at the beginning of this section.

      We now provide a clearer motivation at the start of the Decoding section.

      Reviewer #3 (Recommendations for the Authors):

      I have a few suggestions to improve the clarity of the presentation.

      Abstract: it lists a series of observations and it ends with a conclusion (“based on these findings...”). However, it provides little explanation for how this conclusion would arise from the observations. It would be more helpful to introduce the reasoning at the top and show what is consistent with it.

      We have improved the abstract of the paper incorporating this feedback.

      To some extent, this applies to Results too. Sometimes we are shown the results of some experiment just because others have done a similar experiment. Would it be better to tell us which hypotheses it tests and whether the results are consistent with all 3 hypotheses or might rule one or more out? I came out of the paper rather confused as to which hypotheses were still standing and which hypotheses were ruled out.

      We have strongly improved our explanation of the hypotheses and the relationships to the experiments in the Introduction.

      It would be best if the Results section focused on the results of the study, without much emphasis on what previous studies did or did not measure. Here, instead, in the middle of Results we are told multiple times what Keller et al. (2020) did or did not measure, and what they did or did not find. Please focus on the questions and on the results. Where they agree or disagree with previous papers, tell us briefly that this is the case.

      We have revised the Results section in the revised manuscript, and ensured that there is much less focus on what previous studies did in the Results. Differences to previous work are now discussed in the Discussion section.

      The notation is extremely awkward. For instance “Gc” stands for two words (Gray center) but “Gr” stands for a single word (Grating). The double meaning of G is one of many sources of confusion.

      This notation needs to be revised. Here is one way to make it simpler: choose one word for each type of stimulus (e.g. Gray, White, Black, Drift, Stat, Noise) and use it without abbreviations. To indicate the configuration, combine two of those words (e.g. Gray/Drift for Gray in the center and Drift in the surround).

      We have corrected the notation in the figures and text to enhance readability and improve the reader’s understanding.

      Figure 1e and many subsequent ones: it is not clear why the firing rate is shown in a logarithmic scale. Why not show it in a linear scale? Anyway, if the logarithmic scale is preferred for some reason, then please give us ticks at numbers that we can interpret, like 0.1,1,10,100... or 0.5,1,2,4... Also, please use the same y-scale across figures so we can compare.

      To clarify: it is necessary to normalize the firing rates relative to baseline, in order to pool across neurons. However such a divisive normalization would be by itself problematic, as e.g. a change from 1 to 2 is the same as a change from 1 to 0.5, on a linear scale. Furthermore such division is highly outlier sensitive. For this reason taking the logarithm (base 10) of the ratio is an appropriate transformation. We changed the tick labels to 1, 2, 4 like the reviewer suggested.

      Figure 3: it is not clear what “size” refers to in the stimuli where there is no gray center. Is it the horizontal size of the overall stimulus? Some cartoons might help. Or just some words to explain.

      Figure 3: if my understanding of “size” above is correct, the results are remarkable: there is no effect whatsoever of replacing the center stimulus with a gray rectangle. Shouldn’t this be remarked upon?

      We have added a paragraph under figure 3 and in the Methods section explaining that the sizes represent the varying horizontal dimensions of the rectangular patch. In this protocol, the classical condition (i.e. without gray patch) was shown only as full-field gratings, which is depicted in the plot as size 0, indicating no rectangular patch was present.

      DETAILS The word “achromatic” appears many times in the paper and is essentially uninformative (all stimuli in this study are achromatic, including the gratings). It could be removed in most places except a few, where it is actually used to mean “uniform”. In those cases, it should be replaced by “uniform”.

      Ditto for the word “luminous”, which appears twice and has no apparent meaning. Please replace it with “uniform”.

      We have replaced the words achromatic and luminous with “uniform” stimuli to improve the clarity when we refer to only black or white stimuli.

      Page 3, line 70: “We raise some important factors to consider when describing responses to only surround stimulation.” This sentence might belong in the Discussion but not in the middle of a paragraph of Results.

      We removed this sentence.

      Neuropixel - Neuropixels (plural)

      “area LGN” - LGN

      We corrected for misspellings.

      References

      Keller, A.J., Roth, M.M., Scanziani, M., 2020. Feedback generates a second receptive field in neurons of the visual cortex. Nature 582, 545–549. doi:10.1038/s41586-020-2319-4.

      Kirchberger, L., Mukherjee, S., Self, M.W., Roelfsema, P.R., 2023. Contextual drive of neuronal responses in mouse V1 in the absence of feedforward input. Science Advances 9, eadd2498. doi:10. 1126/sciadv.add2498.

      Rossant, C., et al., 2021. phy: Interactive analysis of large-scale electrophysiological data. https://github.com/cortex-lab/phy.

      Schneider, M., Tzanou, A., Uran, C., Vinck, M., 2023. Cell-type-specific propagation of visual flicker. Cell Reports 42.

      Steinmetz, N.A., Aydin, C., Lebedeva, A., Okun, M., Pachitariu, M., Bauza, M., Beau, M., Bhagat, J., B¨ohm, C., Broux, M., Chen, S., Colonell, J., Gardner, R.J., Karsh, B., Kloosterman, F., Kostadinov, D., Mora-Lopez, C., O’Callaghan, J., Park, J., Putzeys, J., Sauerbrei, B., van Daal,R.J.J., Vollan, A.Z., Wang, S., Welkenhuysen, M., Ye, Z., Dudman, J.T., Dutta, B., Hantman, A.W., Harris, K.D., Lee, A.K., Moser, E.I., O’Keefe, J., Renart, A., Svoboda, K., H¨ausser, M., Haesler, S., Carandini, M., Harris, T.D., 2021. Neuropixels 2.0: A miniaturized high-density probe for stable, long-term brain recordings. Science 372, eabf4588. doi:10.1126/science.abf4588.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      This work aims to improve our understanding of the factors that influence female-on-female aggressive interactions in gorilla social hierarchies, using 25 years of behavioural data from five wild groups of two gorilla species. Researchers analysed aggressive interactions between 31 adult females, using behavioural observations and dominance hierarchies inferred through Elo-rating methods. Aggression intensity (mild, moderate, severe) and direction (measured as the rank difference between aggressor and recipient) were used as key variables. A linear mixed-effects model was applied to evaluate how aggression direction varied with reproductive state (cycling, trimester-specific pregnancy, or lactation) and sex composition of the group. This study highlights the direction of aggressive interactions between females, with most interactions being directed from higher- to lower-ranking adult females close in social rank. However, the results show that 42% of these interactions are directed from lower- to higher-ranking females. Particularly, lactating and pregnant females targeted higher-ranking individuals, which the authors suggest might be due to higher energetic needs, which increase risk-taking in lactating and pregnant females. Sex composition within the group also influenced which individuals were targeted. The authors suggest that male presence buffers female-on-female aggression, allowing females to target higher-ranking females than themselves. In contrast, females targeted lower-ranking females than themselves in groups with a larger ratio of females, which supposes a lower risk for the females since the pool of competitors is larger. The findings provide an important insight into aggression heuristics in primate social systems and the social and individual factors that influence these interactions, providing a deeper understanding of the evolutionary pressures that shape risk-taking, dominance maintenance, and the flexibility of social strategies in group-living species.

      The authors achieved their aim by demonstrating that aggression direction in female gorillas is influenced by factors such as reproductive condition and social context, and their results support the broader claim that aggression heuristics are flexible. However, some specific interpretations require further support. Despite this, the study makes a valuable contribution to the field of behavioural ecology by reframing how we think about intra-sexual competition and social rank maintenance in primates.

      Strengths:

      One of the study's major strengths is the use of an extensive dataset that compiles 25 years of behavioural data and 6871 aggressive interactions between 31 adult females in five social groups, which allows for a robust statistical analysis. This study uses a novel approach to the study of aggression in social groups by including factors such as the direction and intensity of aggressive interactions, which offers a comprehensive understanding of these complex social dynamics. In addition, this study incorporates ecological and physiological factors such as the reproductive state of the females and the sex composition of the group, which allows an integrative perspective on aggression within the broader context of body condition and social environment. The authors successfully integrate their results into broader evolutionary and ecological frameworks, enriching discussions around social hierarchies and risk sensitivity in primates and other animals.

      Thank you for the positive assessment of our work and the nice summary of the manuscript!

      Weaknesses:

      Although the paper has a novel approach by studying the effect of reproductive state and social environment on female-female aggression, the use of observational data without experimental manipulation limits the ability to establish causation. The authors suggest that the difference observed in female aggression direction between groups with different sex composition might be indicative of male presence buffering aggression, which seems speculative, as no direct evidence of male intervention or support was reported. Similarly, the use of reproductive state as a proxy for energetic need is an indirect measure and does not account for actual energy expenditure or caloric intake, which weakens the authors' claims that female energetic need induces risk-taking. Overall, this paper would benefit from stronger justification and empirical support to strengthen the conclusions of the study about the mechanisms driving female aggression in gorillas.

      We agree that experimental manipulation would allow us to extend our work. Unfortunately, this is not possible with wild, endangered gorillas.

      We have now added more references (Watts 1994; Watts 1997) and enriched our arguments regarding male presence buffering aggression. Previous research suggests that male gorillas may support lower-ranking females and they may intervene in female-female conflicts (Sicotte 2002). Unfortunately, our dataset did not allow us to test for male protection. We conduct proximity scans every 10 minutes and these scans are not associated to each interaction, meaning that we cannot reliably test if proximity to a male influence the likelihood to receive aggression.

      We have now clearly stated that reproductive state is an indirect proxy for energetic needs. We agree with your point about energy intake and expenditure, but unfortunately, we do not have data on energy expenditure or caloric intake to allow us to delve into more fine-grained analyses.

      Overall, we have tried to enrich the justification and empirical support to strengthen our conclusions by clarifying the text and adding more examples and references.

      Reviewer #2 (Public review):

      Summary:

      The authors' aim in this study is to assess the factors that can shift competitive incentives against higher- or lower-ranking groupmates in two gorilla species.

      Strengths:

      This is a relevant topic, where important insights could be gained. The authors brought together a substantial dataset: a long-term behavioral dataset representing two gorilla species from five social groups.

      Weaknesses:

      The authors have not fully shown the data used in the model and explored the potential of the model. Therefore, I remain cautious about the current results and conclusions.

      Some specific suggestions that require attention are

      (1) The authors described how group size can affect aggression patterns in some species (line 54), using a whole paragraph, but did not include it as an explanation variable in their model, despite that they stated the overall group size can "conflate opposing effects of females and males" (line 85). I suggest underlining the effects of numbers of males or/and females here and de-emphasizing the effect of group size in the Introduction.

      We did not use group size as a main predictor, as has been commonly done in other species, because of potentially conflating opposing effects of males and females. To further stress this point, we have specifically added in the introduction: “group size, the overall number of individuals in the group, might not be a good predictor of aggression heuristics, as it can conflate the effects of different kinds of individuals on aggression (see Smit & Robbins 2024 for an example of opposing effects of the number of females and number of males on female gorilla aggression).”

      We also “ran our analysis testing for group size (number of weaned individuals in the group), instead of the numbers of females and males, [and] its influence on interaction score was not significant (estimate=-0.001, p-value=0.682).”

      (2) There should be more details given about how the authors calculated individual Elo-ratings (line 98). It seems that authors pooled all avoidance/displacement behaviors throughout the study period. But how often was the Elo-rating they included in the model calculated? By the day or by the month? I guess it was by the day, as they "estimate female reproductive state daily" (line 123). If so, it should be made clear in the text.

      We rephrased accordingly: “We used all avoidance and displacement interactions throughout the study period and we used the function elo.seq from R package EloRating to infer daily individual female Elo-scores”. We also clarified that “This method takes into account the temporal sequence of interactions and updates an individual’s Elo-scores each day the individual interacted with another...”

      In addition, all groups were long-term studied, and the group composition seems fluctuant based on the Table 1 in Reference 11. When an individual enters/leaves the group with a stable hierarchy, it takes time before the hierarchy turns stable again. If the avoidance/displacement behaviors used for the rank relationship were not common, it would take a few days or maybe longer. Also, were the aggressive behaviors more common during rank fluctuations? In other words, if avoidance/displacement behaviors and aggressive behaviors occur simultaneously during rank fluctuations, how did the authors deal with it and take it into consideration in the analysis?

      We have shown in Reference 25 (Smit & Robbins 2025) after Reference 11 (Smit & Robbins 2024) that females form highly stable hierarchies, and that dyadic dominance relationships are not influenced by dispersal or death of third individuals. Notably, new immigrant females usually start at and remain low ranking, without large fluctuations in rank. Therefore, the presence of any fluctuation periods have limited influence in the aggressive interactions in our study system.

      The authors emphasized several times in the text that gorillas "form highly stable hierarchical relationships". Also, in Reference 25, they found very high stabilities of each group's hierarchy. However, the number of females involved in that analysis was different from that used here. They need to provide more basic info on each group's dominance hierarchy and verify their statement. I strongly suggest that the authors display Elo-rating trajectories and necessary relevant statistics for each group throughout the study period as part of the supplementary materials.

      In fact, the females involved in the present analysis and the analysis of Smit & Robbins 2025 are the same. Our present analysis is based on the hierarchies of Smit & Robbins 2025. Note that female gorillas disperse and occasionally immigrate to another study group. This is why some females may appear in the hierarchies of more than one group, giving the impression that there are more females involved in the analysis of Smit & Robbins 2025 (e.g. by counting the lines in the Elo-rating plots). We now specifically state that “We present these interactions and hierarchies in detail in Smit & Robbins 2025”, to clarify that the hierarchies are the same.

      (3) The authors stated why they differentiated the different stages based on female reproductive status. They also referred to the differences in energetic needs between stages of pregnancy and lactation (lines 127-128). However, in the mixed model, they only compared the interaction score between the female cycling stage and other stages. The model was not well explained, and the results could be expanded. I suggest conducting more pairwise comparisons in the model and presenting the statistics in the text, if there are significant results. If all three pregnancy stages differed significantly from cycling and lactating stages but not from each other, they may be merged as one pregnancy stage. More in-depth analysis would help provide better answers to the research questions.

      Thank you for pointing this out. First, when we considered one pregnancy stage, pregnant females showed indeed a significantly greater interaction score than females in other reproductive stages. We have now included that in the manuscript. However, we still find relevant to test for the different stages of pregnancy, given the difference of energetic needs in these stages. We have now included the pairwise comparisons in a new table (Table 2).

      Reviewer #3 (Public review):

      Smit and Robbins' manuscript investigates the dynamics of aggression among female groupmates across five gorilla groups. The authors utilize longitudinal data to examine how reproductive state, group size, presence of males, and resource availability influence patterns of aggression and overall dominance rankings as measured by Elo scores. The findings underscore the important role of group composition and reproductive status, particularly pregnancy, in shaping dominance relationships in wild gorillas. While the study addresses a compelling and understudied topic, I have several comments and suggestions that may enhance clarity and improve the reader's experience.

      (1) Clarification of longitudinal data - The manuscript states that 25 years of behavioral data were used, but this number appears unclear. Based on my calculations, the maximum duration of behavioral observation for any one group appears to be 18 years. Specifically:

      • ATA: 6 years

      • BIT: 8 years

      • KYA: 18 years

      • MUK: 6 years

      • ORU: 8 years

      I recommend that the authors clarify how the 25-year duration was derived.

      Indeed none of the five study “groups” has been studied for 25 years in a row. However, MUK emerged from a fission of group KYA in early 2016. So, from the start of group KYA in October 1998 to the end of group MUK in December 2023, there are 25 years and 2 months. We have now rephrased to “...starting in 1998 in one of the mountain gorilla groups” in the introduction, and to “We use a long-term behavioural dataset on five wild groups of the two gorilla species, starting in 1998” in the abstract.

      (2) Consideration of group size - The authors mention that group size was excluded from analyses to avoid conflating the opposing effects of female and male group members. While this is understandable, it may still be beneficial to explore group size effects in supplementary analyses. I suggest reporting statistics related to group size and potentially including a supplementary figure. Additionally, given that the study includes both mountain and wild gorillas, it would be helpful to examine whether any interspecies differences are apparent.

      We have now added the suggested extra test: “When we ran our analysis testing for group size (number of weaned individuals in the group), instead of the numbers of females and males, its influence on interaction score was not significant (estimate=-0.001, p-value=0.682).”

      Regarding species differences: In our analysis, we test for species (mountain vs western) and we find no significant differences between the two. This is stated in the results.

      (3) Behavioral measures clarification - Lines 112-116 describe the types of aggressive behaviors observed. It would be helpful to clarify how these behaviors differ from those used to calculate Elo scores, or whether they overlap. A brief explanation would improve transparency regarding the methodology.

      We now added short explanations into brackets for behaviours that are not obvious. We also added a sentence in the text to clarify the difference with the behaviours used to calculate Elo scores: “These two behaviours [avoidance and displacement] are ritualized, occurring in absence of aggression, they are considered a more reliable proxy of power relationships over aggression, and they are typically used to infer gorilla hierarchical relationships”.

      (4) Aggression rates versus Elo scores - The manuscript uses aggression rates rather than dominance rank (as measured by Elo scores) as the main outcome variable, but there is no explanation on why. How would the results differ if aggression rates were replaced or supplemented with Elo scores? The current justification for prioritizing aggression rates over dominance rank needs to be more clearly supported.

      The sentence we added above (“These two behaviours [avoidance and displacement] are ritualized, occurring in absence of aggression, they are considered a more reliable proxy of power relationships over aggression, and they are typically used to infer gorilla hierarchical relationships”) and the first paragraph of the results hopefully clarify that ritualized agonistic interactions are generally directionally consistent and more reliably capture the highly stable dominance relationships of female gorillas. This approach has been used to calculate dominance rank in gorillas in all studies that have considered it, dating back to the 1970s (namely in studies by Harcourt and Watts). On the other hand, aggression can be context dependent (we now clearly note that in the beginning of the Methods paragraph on aggressive interactions). Therefore, we use Eloscores inferred from ritualized interactions as base and a reliable proxy of power relationships; then we test if the direction of aggression within these relationships is driven also by energetic needs or the social environment.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      In "Changes in wing morphology..." Roy et al investigate the potential allometric scaling in wing morphology and wing kinematics in 8 different hoverfly species. Their study nicely combines different new and classic techniques, investigating flight in an important, yet understudied alternative pollinator. I want to emphasize that I have been asked to review this from a hoverfly biology perspective, as I do not work on flight kinematics. I will thus not review that part of the work.

      Strengths:

      The paper is well-written and the figures are well laid out. The methods are easy to follow, and the rationale and logic for each experiment are easy to follow. The introduction sets the scene well, and the discussion is appropriate. The summary sentences throughout the text help the reader.

      We thank the reviewer for these positive comments on our study.

      Weaknesses:

      The ability to hover is described as useful for either feeding or mating. However, several of the North European species studied here would not use hovering for feeding, as they tend to land on the flowers that they feed from. I would therefore argue that the main selection pressure for hovering ability could be courtship and mating. If the authors disagree with this, they could back up their claims with the literature.

      We thank the reviewer for this insight on potential selection pressures on hovering flight. As suggested, we now put the main emphasize on selection related to mating flight (lines 106–111).

      On that note, a weakness of this paper is that the data for both sexes are merged. If we agree that hovering may be a sexually dimorphic behaviour, then merging flight dynamics from males and females could be an issue in the interpretation. I understand that separating males from females in the movies is difficult, but this could be addressed in the Discussion, to explain why you do not (or do) think that this could cause an issue in the interpretation.

      We acknowledge that not distinguishing sexes in the flight experiment prevents investigating the hypothesis that selection may act especially on male’s flight. This weakness was not addressed in our first manuscript and is now discussed in the revised Discussion section. We nuanced the interpretation and suggested further investigation on flight dimorphism (lines 726–729).

      The flight arena is not very big. In my experience, it is very difficult to get hoverflies to fly properly in smaller spaces, and definitely almost impossible to get proper hovering. Do you have evidence that they were flying "normally" and not just bouncing between the walls? How long was each 'flight sequence'? You selected the parts with the slowest flight speed, presumably to get as close to hovering as possible, but how sure are you that this represented proper hovering and not a brief slowdown of thrust?

      We very much agree with the reviewer that flight studied in laboratory conditions does not perfectly reflects natural flight behavior. Moreover, having individual hoverflies performing stable hovering in the flight arena, in the intersecting field of view of all three cameras, is quite challenging. Therefore, we do not claim that we studied “true” hovering (i.e. flight speed = 0 m/s), but that we attempted to get as close as possible to true hovering by selecting the flight sections with the lowest flight speeds for our analysis.

      In most animal flight studies, hovering is defined as flight with advance ratios J<0.1, i.e. when the forward flight speed is less than 10% of the wingbeat-induced speed of the wingtip (Ellington, 1984a; Fry et al., 2005; Liu and Sun, 2008). By selecting the low flight-speed wingbeats for our analysis, the mean advance ratio in our experiment was 0.08±0.02 (mean±sd), providing evidence that the hoverflies were operating close to a hovering flight mode. This is explained in both the methods and results sections (lines 228–231 and 467–469, respectively).

      We however acknowledge that this definition of hovering, although generally accepted, is not perfect. We edited the manuscript to clarify that our experiment does not quantify perfect hovering (lines 186–188). We moreover added the mean±sd duration of the recorded flight sequence from which the slowest wingbeat was selected (line 179), as this info was missing, and we further describe the behaviour of the hoverflies during the experiment (lines 168–169).

      Your 8 species are evolutionarily well-spaced, but as they were all selected from a similar habitat (your campus), their ecology is presumably very similar. Can this affect your interpretation of your data? I don't think all 6000 species of hoverflies could be said to have similar ecology - they live across too many different habitats. For example, on line 541 you say that wingbeat kinematics were stable across hoverfly species. Could this be caused by their similar habitat?

      We agree with the reviewer that similarity in habitat and ecology might partially explain the similarity in the wingbeat kinematics that we observe. But this similarity in ecology between the eight studied species is in fact a design feature of our study. Here, we aim to study the effect of size on hoverfly flight, and so we designed our study such that we maximize size differences and phylogenetic spread among the eight species, while minimizing variations in habitat, ecology and flight behavior (~hovering). This allows us to best test for the effect of differences in size on the morphology, kinematics and aerodynamics of hovering flight.

      Despite this, we agree with the reviewer that it would be interesting to test whether the observed allometric morphological scaling and kinematic similarity is also present beyond the species that we studied. In our revision, we therefore extended our analysis to address this question. Performing additional flight experiments and fluid mechanics simulations was beyond the scope of our current study, but extending the morphological scaling analyses was certainly possible.

      In our revised study, we therefore extended our morphological scaling analysis by including the morphology of twenty additional hoverfly species. This extended dataset includes wing morphology data of 74 museum specimens from Naturalis Biodiversity Centre (Leiden, the Netherlands), including two males and two females per species, whenever possible (4.2±1.7 individuals per species (mean±sd)). This extended analysis shows that the allometric scaling of wing morphology with size is robust along the larger sample of species, from a wider range of habitats and ecologies. Nevertheless, we advocate for additional flight measurement in species from different habitats to ascertain the generality of our results (lines 729–732).

      Reviewer #2 (Public review):

      Summary

      Le Roy et al quantify wing morphology and wing kinematics across eight hoverfly species that differ in body mass; the aim is to identify how weight support during hovering is ensured. Wing shape and relative wing size vary significantly with body mass, but wing kinematics are reported to be size-invariant. On the basis of these results, it is concluded that weight support is achieved solely through size-specific variations in wing morphology and that these changes enabled hoverflies to decrease in size throughout their phylogenetic history. Adjusting wing morphology may be preferable compared to the alternative strategy of altering wing kinematics, because kinematics may be under strong evolutionary and ecological constraints, dictated by the highly specialised flight and ecology of the hoverflies.

      Strengths

      The study deploys a vast array of challenging techniques, including flight experiments, morphometrics, phylogenetic analysis, and numerical simulations; it so illustrates both the power and beauty of an integrative approach to animal biomechanics. The question is well motivated, the methods appropriately designed, and the discussion elegantly and convincingly places the results in broad biomechanical, ecological, evolutionary, and comparative contexts.

      We thank the reviewer for appreciating the strengths of our study.

      Weaknesses

      (1) In assessing evolutionary allometry, it is key to identify the variation expected from changes in size alone. The null hypothesis for wing morphology is well-defined (isometry), but the equivalent predictions for kinematic parameters remain unclear. Explicit and well-justified null hypotheses for the expected size-specific variation in angular velocity, angle-of-attack, stroke amplitude, and wingbeat frequency would substantially strengthen the paper, and clarify its evolutionary implications.

      We agree with the reviewer that the expected scaling of wingbeat kinematics with size was indeed unclear in our initial version of the manuscript. In our revised manuscript (and supplement), we now explicitly define how all kinematic parameters should scale with size under kinematic similarity, and how they should scale for maintaining weight support across various sizes. These are explained in the introduction (lines 46–78), method section (lines 316–327), and dedicated supplementary text (see Supplementary Info section “Geometric and kinematic similarity and scaling for weight support”). Here, we now also provide a thorough description of the isometric scaling of morphology, and scaling of the kinematics parameters under kinematic similarity.

      (2) By relating the aerodynamic output force to wing morphology and kinematics, it is concluded that smaller hoverflies will find it more challenging to support their body mass - a scaling argument that provides the framework for this work. This hypothesis appears to stand in direct contrast to classic scaling theory, where the gravitational force is thought to present a bigger challenge for larger animals, due to their disadvantageous surface-to-volume ratios. The same problem ought to occur in hoverflies, for wing kinematics must ultimately be the result of the energy injected by the flight engine: muscle. Much like in terrestrial animals, equivalent weight support in flying animals thus requires a positive allometry of muscle force output. In other words, if a large hoverfly is able to generate the wing kinematics that suffice to support body weight, an isometrically smaller hoverfly should be, too (but not vice versa). Clarifying the relation between the scaling of muscle force input, wing kinematics, and weight support would resolve the conflict between these two contrasting hypotheses, and considerably strengthen the biomechanical motivation and interpretation.

      The reviewer highlights a crucial aspect of our study: our perspective on the aerodynamic challenges associated with becoming smaller or larger. This comment made us realize that our viewpoint might be unconventional regarding general scaling literature and requires further clarification.

      Our approach is focused on the disadvantage of a reduction in size, in contrast with classic scaling theory focusing on the disadvantage of increasing in size. As correctly stated by the reviewer, producing an upward directed force to maintain weight support is often considered as the main challenge, constrained by size. Hereby, researchers often focus on the limitations on the motor system, and specifically muscle force: as animals increase in size, the ability to achieve weight support is limited by muscle force availability. An isometric growth in muscle cannot sustained the increased weight, due to the disadvantageous surface-to-volume ratio.

      In animal flight, this detrimental effect of size on the muscular motor system is also present, particularly for large flying birds. But for natural flyers, there is also a detrimental effect of size on the propulsion system, being the flapping wings. The aerodynamic forces produced by a beating wing scales linearly with the second-moment-of-area of the wing. Under isometry, this second-moment-of-area decreases at higher rate than body mass, and thus producing enough lift for weight support becomes more challenging with reducing size. Because we study tiny insects, our study focuses precisely on this constraint on the wing-based propulsion system, and not on the muscular motor system.

      We revised the manuscript to better explain how physical scaling laws differentially affect force production by the muscular flight motor system and the wingbeat-induced propulsion system (lines 46–78).

      (3) The main conclusion - that evolutionary miniaturization is enabled by changes in wing morphology - is only weakly supported by the evidence. First, although wing morphology deviates from the null hypothesis of isometry, the difference is small, and hoverflies about an order of magnitude lighter than the smallest species included in the study exist. Including morphological data on these species, likely accessible through museum collections, would substantially enhance the confidence that size-specific variation in wing morphology occurs not only within medium-sized but also in the smallest hoverflies, and has thus indeed played a key role in evolutionary miniaturization.

      We thank the reviewer for the suggestion to add additional specimens from museum collections to strengthen the conclusions of our work. In our revised study, we did so by adding the morphology of 20 additional hoverfly species, from the Naturalis Biodiversity Centre (Leiden, the Netherlands). This extended dataset includes wing morphology data of 74 museum specimens, and whenever possible we sampled at least two males and two females (4.2±1.7 individuals per species (mean±sd)). This extended analysis shows that the allometric scaling of wing morphology with size is robust along the larger sample of species, including smaller ones. We discuss these additional results now explicitly in the revised manuscript (see Discussion).

      Second, although wing kinematics do not vary significantly with size, clear trends are visible; indeed, the numerical simulations revealed that weight support is only achieved if variations in wing beat frequency across species are included. A more critical discussion of both observations may render the main conclusions less clear-cut, but would provide a more balanced representation of the experimental and computational results.

      We agree with the reviewer that variations in wingbeat kinematics between species, and specifically wingbeat frequency, are important and non-negligible. As mentioned by the reviewer, this is most apparent for the fact that weight support is only achieved with the species-specific wingbeat frequency. To address this in a more balanced and thorough way, we revised the final section of our analysis approach, by including changes in wingbeat kinematics to that analysis. By doing so, we now explicitly show that allometric changes in wingbeat frequency are important for maintaining weight support across the sampled size range, but that allometric scaling of morphology has a stronger effect. In fact, the relative contributions of morphology and kinematics to maintaining weight-support across sizes is 81% and 22%, respectively (Figure 7). We discuss this new analysis and results now thoroughly in the revised manuscript (lines 621–629, 650–664), resulting in a more balanced discussion and conclusion about the outcome of our study. We sincerely thank the reviewer for suggesting to look closer into the effect of variations in wingbeat kinematics on aerodynamic force production, as the revised analysis strengthened the study and its results.

      In many ways, this work provides a blueprint for work in evolutionary biomechanics; the breadth of both the methods and the discussion reflects outstanding scholarship. It also illustrates a key difficulty for the field: comparative data is challenging and time-consuming to procure, and behavioural parameters are characteristically noisy. Major methodological advances are needed to obtain data across large numbers of species that vary drastically in size with reasonable effort, so that statistically robust conclusions are possible.

      We thank the reviewer for their encouraging words about the scholarship of our work. We will continue to improve our methods and techniques for performing comparative evolutionary biomechanics research, and are happy to jointly develop this emerging field of research.

      Reviewer #3 (Public review):

      The paper by Le Roy and colleagues seeks to ask whether wing morphology or wing kinematics enable miniaturization in an interesting clade of agile flying insects. Isometry argues that insects cannot maintain both the same kinematics and the same wing morphology as body size changes. This raises a long-standing question of which varies allometrically. The authors do a deep dive into the morphology and kinematics of eight specific species across the hoverfly phylogeny. They show broadly that wing kinematics do not scale strongly with body size, but several parameters of wing morphology do in a manner different from isometry leading to the conclusion that these species have changed wing shape and size more than kinematics. The authors find no phylogenetic signal in the specific traits they analyze and conclude that they can therefore ignore phylogeny in the later analyses. They use both a quasi-steady simplification of flight aerodynamics and a series of CFD analyses to attribute specific components of wing shape and size to the variation in body size observed. However, the link to specific correlated evolution, and especially the suggestion of enabling or promoting miniaturization, is fraught and not as strongly supported by the available evidence.

      We thank the reviewer for the accurate description of our work, and the time and energy put into reviewing our paper. We regret that the reviewer found our conclusions with respect to miniaturization fraught and not strongly supported by the evidence. In our revision, we addressed this by no longer focusing primarily on miniaturization, by extending our morphology analysis to 20 additional species (Figures 4 and 5), improving our analysis of both the kinematics and morphology data (Figure 7), and by discussing our results in a more balanced way (see Discussion). We hope that the reviewer finds the revised manuscript of sufficient quality for publication in eLife.

      The aerodynamic and morphological data collection, modeling, and interpretation are very strong. The authors do an excellent job combining a highly interpretable quasi-steady model with CFD and geometric morphometrics. This allows them to directly parse out the effects of size, shape, and kinematics.

      We thank the reviewer for assessing our experimental and modelling approach as very strong.

      Despite the lack of a relationship between wing kinematics and size, there is a large amount of kinematic variation across the species and individual wing strokes. The absolute differences in Figure 3F - I could have a very large impact on force production but they do indeed not seem to change with body size. This is quite interesting and is supported by aerodynamic analyses.

      We agree with the reviewer that there are important and non-negligible variations in wingbeat kinematics between species. As mentioned by the reviewer, although these kinematics do not significant scale with body mass, the interspecific variations are important for maintaining weight support during hovering flight. We thus also agree with the reviewer that these kinematics variations are interesting and deserve further investigations.

      In our revised study, we did so by including these wingbeat kinematic variations in our analysis on the effect of variations in morphology and kinematics on aerodynamic force production for maintaining in-flight weight support across the sampled size range (lines 422–444, Figure 7). By doing so, we now explicitly show that variations in wingbeat kinematics are important for maintaining weight across sizes, but that allometric scaling of morphology has a stronger effect. In fact, the relative contributions of adaptations in morphology and kinematics to maintaining weight support across sizes is 81% and 22%, respectively (Figure 7). We discuss these new analysis and results now in the revised manuscript (lines 621–629, 650–664), resulting in a more balanced discussion about the relative importance of adaptations in morphology and kinematics. We hope the reviewer appreciates this newly added analysis.

      The authors switch between analyzing their data based on individuals and based on species. This creates some pseudoreplication concerns in Figures 4 and S2 and it is confusing why the analysis approach is not consistent between Figures 4 and 5. In general, the trends appear to be robust to this, although the presence of one much larger species weighs the regressions heavily. Care should be taken in interpreting the statistical results that mix intra- and inter-specific variation in the same trend.

      We agree that it was sometimes unclear whether our analysis is performed at the individual or species level. To improve clarity and avoid pseudoreplication, we now analyze all data at the species level, using phylogenetically informed analyses. Because we think that showing within-species variation is nonetheless informative, we included dedicated figures to the supplement (Figures S3 and S5) in which we show data at the individual level, as equivalent to figures 4 and 5 with data at the species level. Note that this cannot be done for flight data due to our experimental procedure. Indeed, we performed flight experiments with multiple individuals in a single experimental setup, pseudoreplication is thus possible for these flight data. This is explained in the manuscript (lines 167–175). All morphological measurements were however done on a carefully organized series of specimens and thus pseudoreplication is hereby not possible.

      The authors based much of their analyses on the lack of a statistically significant phylogenetic signal. The statistical power for detecting such a signal is likely very weak with 8 species. Even if there is no phylogenetic signal in specific traits, that does not necessarily mean that there is no phylogenetic impact on the covariation between traits. Many comparative methods can test the association of two traits across a phylogeny (e.g. a phylogenetic GLM) and a phylogenetic PCA would test if the patterns of variation in shape are robust to phylogeny.

      After extending our morphological dataset from 8 to 28 species, by including 20 additional species from a museum collection, we increased statistical power and found a significant phylogenetic signal on all morphological traits, except for the second moment of area (lines 458–460, Table S2). Although we do not detect an effect of phylogeny on flight traits, likely due to the limited number of species for which flight was quantified (n=8), we agree with the reviewer’s observation that the absence of a phylogenetic signal does not rule out the potential influence of phylogeny on the covariation between traits. This is now explicitly discussed in the manuscript (lines 599–608). As mentioned in the previous comment, we now test all relationships between body mass and other traits using phylogenetic generalized least squares (PGLS) regressions, therefore accounting for the impact of phylogeny everywhere. The revised analyses produce sensibly similar results as for our initial study, and so the main conclusions remain valid. We sincerely thank the reviewer for their suggestion for revising our statistical analysis, because the revised phylogenetic analysis strengthens our study as a whole.

      The analysis of miniaturization on the broader phylogeny is incomplete. The conclusion that hoverflies tend towards smaller sizes is based on an ancestral state reconstruction. This is difficult to assess because of some important missing information. Specifically, such reconstructions depend on branch lengths and the model of evolution used, which were not specified. It was unclear how the tree was time-calibrated. Most often ancestral state reconstructions utilize a maximum likelihood estimate based on a Brownian motion model of evolution but this would be at odds with the hypothesis that the clade is miniaturizing over time. Indeed such an analysis will be biased to look like it produces a lot of changes towards smaller body size if there is one very large taxa because this will heavily weight the internal nodes. Even within this analysis, there is little quantitative support for the conclusion of miniaturization, and the discussion is restricted to a general statement about more recently diverged species. Such analyses are better supported by phylogenetic tests of directedness in the trait over time, such as fitting a model with an adaptive peak or others.

      We thank the reviewer for their expert insight in our ancestral state estimate of body size. We agree that the accuracy of this estimate is rather low. Based on the comments by the reviewer we have now revised our main analysis and results, by no longer basing it on the apparent evolutionary miniaturization of hoverflies, but instead on the observed variations in size in our studied hoverfly species. As a result, we removed the figure mapping ancestral state estimates (called figure S1 in the first version) from the manuscript. We now explicitly mention that ascertaining the evolutionary directedness of body size is beyond the scope of our work, but that we nonetheless focus on the aerodynamic challenge of size reduction (lines 609–615).

      Setting aside whether the clade as a whole tends towards smaller size, there is a further concern about the correlation of variation in wing morphology and changes in size (and the corresponding conclusion about lack of co-evolution in wing kinematics). Showing that there is a trend towards smaller size and a change in wing morphology does not test explicitly that these two are correlated with the phylogeny. Moreover, the subsample of species considered does not appear to recapitulate the miniaturization result of the larger ancestral state reconstruction.

      As also mentioned above, we agree with the reviewer that we cannot ascertain the trajectory of body size evolution in the diversification of hoverflies. We therefore revised our manuscript such that we do no longer focus explicitly on miniaturization; instead, we discuss how morphology and kinematics scale with size, independently of potential trends over the phylogeny. To do so, we revised the title, abstract results and discussion accordingly.

      Given the limitations of the phylogenetic comparative methods presented, the authors did not fully support the general conclusion that changes in wing morphology, rather than kinematics, correlate with or enable miniaturization. The aerodynamic analysis across the 8 species does however hold significant value and the data support the conclusion as far as it extends to these 8 species. This is suggestive but not conclusive that the analysis of consistent kinematics and allometric morphology will extend across the group and extend to miniaturization. Nonetheless, hoverflies face many shared ecological pressures on performance and the authors summarize these well. The conclusions of morphological allometry and conserved kinematics are supported in this subset and point to a clade-wide pattern without having to support an explicit hypothesis about miniaturization.

      The reviewer argues here fully correct that we should be careful about extending our analysis based on eight species to hoverflies in general, and especially to extend it to miniaturization in this family of insects. As mentioned above, we therefore do no longer specifically focus on miniaturization. Moreover, we extended our analysis by including the morphology of 20 additional species of hoverflies, sampled from a museum collection. We hope that the reviewer agrees with this more balanced and focused discussion of our study.

      The data and analyses on these 8 species provide an important piece of work on a group of insects that are receiving growing attention for their interesting behaviors, accessibility, and ecologies. The conclusions about morphology vs. kinematics provide an important piece to a growing discussion of the different ways in which insects fly. Sometimes morphology varies, and sometimes kinematics depending on the clade, but it is clear that morphology plays a large role in this group. The discussion also relates to similar themes being investigated in other flying organisms. Given the limitations of the miniaturization analyses, the impact of this study will be limited to the general question of what promotes or at least correlates with evolutionary trends towards smaller body size and at what phylogenetic scale body size is systematically decreasing.

      We thank the reviewer for their encouraging words about the importance of our work on hoverfly flight. As suggested by the reviewer, we narrowed down the main question of our study by no longer focusing on apparent miniaturization, but instead on the correlation between wing morphology, wingbeat kinematics and variations in size.

      In general, there is an important place for work that combines broad phylogenetic comparison of traits with more detailed mechanistic studies on a subset of species, but a lot of care has to be taken about how the conclusions generalize. In this case, since the miniaturization trend does not extend to the 8 species subsample of the phylogeny and is only minimally supported in the broader phylogeny, the paper warrants a narrower conclusion about the connection between conserved kinematics and shared life history/ecology.

      We truly appreciated the reviewer’s positive assessment of the importance of our work and study. We also thank the reviewer for their advice to generalize the outcome of our work in a more balanced way. Based on the above comments and suggestions of the reviewer, we did so by revising several aspects of our study, including adding additional species to our study, amending the analysis, and revising the title, abstract, results and discussion sections. We hope that the reviewer warrants the revised manuscript of sufficient quality for final publication in eLife.

      Recommendations For The Authors:

      Reviewer #1 (Recommendations for the authors):

      Figure S1 is lovely. I would recommend merging it with Figure 1 so that it does not disappear.

      We appreciate the reviewer comment. However, reviewer 3 had several points of concern about the underlying analysis, which made us realize that our ancestral state estimation analysis does not conclusively support a miniaturization trend. We therefore are no longer focusing on miniaturization when interpreting our results.

      Figure 4 is beautiful. The consistent color coding throughout is very helpful.

      We thank the reviewer for this comment.

      Sometimes spaces are missing before brackets, and sometimes there are double brackets, or random line break.

      We did our best to remove these typos.

      Should line 367 refer to Table S2?

      Table S2 is now referred to when mentioning the result of phylogenetic signal (line 460 in the revised manuscript)

      Can you also refer to Figure 2 on line 377?

      Good suggestion, and so we now do so (line 462 in the revised manuscript).

      Lines 497-512: Please refer to relevant figures.

      We now refer to figure 4, and its panels (lines 621–629 in the revised manuscript).

      Figure legend 1: Do you need to say that the second author took the photos?

      We removed this reference.

      Figure legend 4: "(see top of A and B)" is not aligned with the figure layout.

      We corrected this.

      Figure 5 seems to have a double legend, A, B then A, B. Panel A says it's color-coded for body mass, but the figure seems to be color-coded for species.

      Thank you for noting this. We corrected this in the figure legend.

      Figure 6 legend: Can you confidently say that they were hovering, or do you need to modify this to flying?

      The CFD simulations were performed in full hovering (U<sub>¥</sub>=0 m/s), but any true flying hoverflies will per definition never hover perfectly. But as explained in our manuscript, we define a hovering flight mode as flying with advance ratios smaller than 0.1 (Ellington, 1984a). Based on this we can state that our hoverflies were flying in a hovering mode. We hope that the reviewer agrees with this approach.

      Reviewer #2 (Recommendations for the authors):

      Below, I provide more details on the arguments made in the public review, as well as a few additional comments and observations; further detailed comments are provided in the word document of the manuscript file, which was shared with the authors via email (I am not expecting a point-by-point reply to all comments in the word document!).

      We thank the reviewer for this detailed list of additional comments, here and in the manuscript. As suggested by the reviewer, we did not provide a point-by-point respond to all comments in the manuscript file, but did take them into account when improving our revised manuscript. Most importantly, we now define explicitly kinematic similarity as the equivalent from morphological similarity (isometry), we added a null hypothesis and the proposed references, and we revised the figures based on the reviewer suggestions.

      Null hypotheses for kinematic parameters.

      Angular amplitudes should be size-invariant under isometry. The angular velocity is more challenging to predict, and two reasonable options exist. Conservation of energy implies:

      W = 1/2 I ω2

      where I is the mass moment of inertia and W is the muscle work output (I note that this result is approximate, for it ignores external forces; this is likely not a bad assumption to first order. See the reference provided below for a more detailed discussion and more complicated calculations). From this expression, two reasonable hypotheses may be derived.

      First, in line with classic scaling theory (Hill, Borelli, etc), it may be assumed that W∝m; isometry implies that I∝m5/3 from which ω ∝m-1/3 follows at once. Note well the implication with respect to eq. 1: isometry now implies F∝m2/3, so that weight support presents a bigger challenge for larger animals; this result is completely analogous to the same problem in terrestrial animals, which has received much attention, but in strong contrast to the argument made by the authors: weight support is more challenging for larger animals, not for smaller animals.

      Second, in line with recent arguments, one may surmise that the work output is limited by the muscle shortening speed instead, which, assuming isometry and isophysiology, implies ω ∝m0 = constant; smaller animals would then indeed be at a seeming disadvantage, as suggested by the authors (but see below).

      The following references contain a more detailed discussion of the arguments for and against these two possibilities:

      Labonte, D. A theory of physiological similarity for muscle-driven motion. PNAS, 2023, 120, e2221217120

      Labonte, D.; Bishop, P.; Dick, T. & Clemente, C. J. Dynamics similarity and the peculiar allometry of maximum running speed. Nat Comms., 2024, 15, 2181

      Labonte, D. & Holt, N. Beyond power limits: the kinetic energy capacity of skeletal muscle. bioRxiv doi: 10.1101/2024.03.02.583090, 2024

      Polet, D. & Labonte, D. Optimising the flow of mechanical energy in musculoskeletal systems through gearing. bioRxiv doi: 10.1101/2024.04.05.588347, 2024

      Labonte et al 2024 also highlight that, due to force-velocity effects, the scaling of the velocity that muscle can impart will fall somewhere in between the extremes presented by the two hypotheses introduced above, so that, in general, the angular velocity should decrease with size with a slope of around -1/6 to -2/9 --- very close to the slope estimated in this manuscript, and to data on other flying animals.

      We greatly appreciate the reviewer's detailed insights on null hypotheses for kinematics, along with the accompanying references. As noted in the Public Review section (comment/reply 2.3), our study primarily explores how small-sized insects adapt to constraints imposed by the wing-based propulsion system, rather than by the muscular motor system.

      In this context, we chose to contrast the observed scaling of morphology and flight traits with a hypothetical scenario of geometric similarity (isometry) and kinematic similarity, where all size-independent kinematic parameters remain constant with body mass. While isometric expectations for morphological traits are well-defined (i.e., ), those for kinematic traits are more debatable (as pointed out by the reviewer). For this reason, we believe that adopting a simple approach based on kinematic similarity across sizes (f~m0, etcetera) enhances the interpretability of our results and strengthens the overall narrative.

      Size range

      The study would significantly benefit from a larger size range; it is unreasonable to ask for kinematic measurements, as these experiments become insanely challenging as animals get smaller; but it should be quite straightforward for wing shape and size, as this can be measured with reasonable effort from museum specimens. In particular, if a strong point on miniaturization is to be made, I believe it is imperative to include data points for or close to the smallest species.

      We appreciate that the reviewer recognizes the difficulty of performing additional kinematic measurements. Collecting additional morphological data to extend the size range was however feasible. In our revised study, we therefore extended our morphological scaling analysis by including the morphology of twenty additional hoverfly species. This extended dataset includes wing morphology data of 74 museum specimens (4.2±1.7 individuals per species (mean±sd)) from Naturalis Biodiversity Centre (Leiden, the Netherlands). This increased the studied mass range of our hoverfly species from 5 100 mg to 3 132 mg, and strengthened our results and conclusions on the morphological scaling in hoverflies.

      Is weight support the main problem?

      Phrasing scaling arguments in terms of weight support is consistent with the classic literature, but I am not convinced this is appropriate (neither here nor in the classic scaling literature): animals must be able to move, and so, by strict physical necessity, muscle forces must exceed weight forces; balancing weight is thus never really a concern for the vast majority of animals. The only impact of the differential scaling may be a variation in peak locomotor speed (this is unpacked in more detail in the reference provided above). In other words, the very fact that these hoverfly species exist implies that their muscle force output is sufficient to balance weight, and the arguably more pertinent scaling question is how the differential scaling of muscle and weight force influences peak locomotor performance. I appreciate that this is beyond the scope of this study, but it may well be worth it to hedge the language around the presentation of the scaling problem to reflect this observation, and to, perhaps, motivate future work.

      We agree with the reviewer that a question focused on muscle force would be inappropriate for this study, as muscle force and power availability is not under selection in the context of hovering flight, but instead in situation where producing increased output is advantageous (for example during take-off or rapid evasive maneuvers). But as explained in our revised manuscript (lines 81-85), we here do not focus on the scaling of the muscular motor with size and throughout phylogeny, but instead we focus on scaling of the flapping wing-based propulsion system. For this system there are known physical scaling laws that predict how this propulsion system should scale with size (in morphology and kinematics) for maintaining weight-support across sizes. In our study, we test in what way hoverflies achieve this weight support in hovering flight.

      Of course, it would be interesting to also test how peak thrust is produced by the propulsion system, for example during evasive maneuvers. In the revised manuscript, we now explicitly mention this as potential future research (lines 733–735).

      Other relevant literature

      Taylor, G. & Thomas, A. Evolutionary biomechanics: selection, phylogeny, and constraint, Oxford University Press, 2014

      This book has quite detailed analyses of the allometry of wing size and shape in birds in an explicit phylogenetic context. It was a while ago that I read it, but I think it may provide much relevant information for the discussion in this work.

      Schilder, R. J. & Marden, J. H. A hierarchical analysis of the scaling of force and power production by dragonfly flight motors J. Exp. Biol., 2004, 207, 767

      This paper also addresses the question of allometry of flight forces (if in dragonflies). I believe it is relevant for this study, as it argues that positive allometry of forces is partially achieved through variation of the mechanical advantage, in remarkable resemblance to Biewener's classic work on EMA in terrestrial animals (this is discussed and unpacked in more detail also in Polet and Labonte, cited above). Of course, the authors should not measure the mechanical advantage of this work, but perhaps this is an interesting avenue for future work.

      We thank the reviewer for these valuable literature suggestions and the insights they offer for future work.

      More generally, I thought the introduction misses an opportunity to broaden the perspective even further, by making explicit that running and flying animals face an analogous problem (with swimming likely being a curious exception!); some other references related to the role of phylogeny in biomechanical scaling analyses are provided in the comments in the word file.

      The introduction has been revised to better emphasize the generality of the scaling question addressed in our study. Specifically, we now explicitly highlight the similar constraints associated with increasing or decreasing size in both terrestrial and flying animals (lines 53–59). We thank the reviewer for this suggestion, which has improved our manuscript.

      Numerical results vs measurements

      I felt that the paper did not make the strongest possible use of the very nice numerical simulations. Part of the motivation, as I understood it, was to conduct more complex simulations to also probe the validity of the quasi-steady aerodynamics assumption on which eq. 1 is based. All parameters in eq. 1 are known (or can be approximated within reasonable bounds) - if the force output is evaluated analytically, what is the result? Is it comparable to the numerical simulations in magnitude? Is it way off? Is it sufficient to support body mass? The interplay between experiments and numerics is a main potential strength of the paper, which in my opinion is currently sold short.

      We agree with the reviewer that we did not make full use of the numerical simulations results. In fact, we did so deliberately because we aim to focus more on the fluid mechanics of hoverfly flight in a future study. That said, we thank the reviewer for suggesting to use the CFD for validating our quasi-steady model. We now do so by correlating the vertical aerodynamic force with variations in morphology and kinematics (revised Figure 7A). The striking similarity between the predicted and empirical fit shows that the quasi-steady model captures the aerodynamic force production during hovering flight surprisingly well.

      Statistics

      There are errors in the Confidence Intervals in Tab 2 (and perhaps elsewhere). Please inspect all tables carefully, and correct these mistakes. The disagreement between confidence intervals and p-values suggests a significant problem with the statistics; after a brief consultation with the authors, it appears that this result arises because Standard Major Axis regression was used (and not Reduced Major Axis regression, as stated in the manuscript). This is problematic because SMA confidence intervals become unreliable if the variables are uncorrelated, as appears to be the case for some parameters here (see https://cran.r-project.org/web/packages/lmodel2/vignettes/mod2user.pdf for more details on this point). I strongly recommend that the authors avoid SMA, and use MA, RMA or OLS instead. My recommendation would be to use RMA and OLS to inspect if the conclusions are consistent, in which case one can be shown in the SI; this is what I usually do in scaling papers, as there are some colleagues who have very strong and diverging opinions about which technique is appropriate. If the results differ, further critical analysis may be required.

      The reviewer correctly identified an error in the statistical approach: a Standard Major Axis was indeed used under inappropriate conditions. Following Reviewer #3’s comments, the expanded sample size and the resulting increase in statistical power to detect phylogenetic signal, our revised analysis now accounts for phylogenetic effects in these regressions. We therefore now report the results from Phylogenetic Least Square (PGLS) regressions (the phylogenetic equivalent of an OLS).

      Figures

      Please plot 3E-F in log space, add trendlines, and the expectation from isometry/isophysiology, to make the presentation consistent, and comparison of effect strengths across results more straightforward.

      The reviewer probably mentioned Figure 3F-I and not E-F (the four panels depicting the relationships between kinematics variables and body mass). As requested, we added the expectation for kinematic similarity to the revised figure, but prefer to not show the non-significant PGLS fits, as they are not used in any analysis. For completeness, we did add the requested figure in log-space with all trendlines to the supplement (Figure S2), and refer to it in the figure legend.

      The visual impression of the effect strength in D is a bit misleading, due to the very narrow y-axis range; it took me a moment to figure this out. I suggest either increasing the y-range to avoid this incorrect impression or to notify the reader explicitly in the caption.

      We believe the reviewer is referring to Figure 4D. As rightly pointed out, variation in non-dimensional second moment of area() is very low among species, which is consistent with literature (Ellington, 1984b). We agree that the small range on the y-axis might be confusing, and thus we increased it somewhat. More importantly, we now show, next to the trend line, the scaling for isometry (~m<sup>0</sup>) and for single-metric weight support. Especially the steepness of the last trend line shows the relatively small effect of on aerodynamic force production. This is even further highlighted by the newly added pie charts of the relative allometric scaling factor, where variations in contribute only 5% to maintaining weight support across sizes.

      Despite this small variation, these adaptations in wing shape are still significant and are highly interesting in the context of our work. We now discuss this in more detail in the revised manuscript (lines 645–649).

      In Figure 7b, one species appears as a very strong outlier, driving the regression result. Data of the same species seems to be consistent with the other species in 7a, c, and d - where does this strong departure come from? Is this data point flagged as an outlier by any typical regression metric (Cook's distance etc) for the analysis in 7b?

      We agree with the reviewer: the species in dark green (Eristalis tenax) appears as an outlier on the in Figure 7B ( vs. vertical force) in our original manuscript. This is most likely due to the narrow range of variation in ( — as the reviewer pointed out in the previous comment — which amplifies differences among species. We expanded the y-axis range in the revised Figure 7, so that the point no longer appears as an outlier (see updated graph, now on Figure 7F).

      In Figure 1, second species from the top, it reads "Eristalix tenax" when it is "Eristalis tenax" (relayed info by the Editor).

      Corrected.

      Reviewer #3 (Recommendations for the authors):

      I really like the biomechanical and aerodynamic analyses and think that these alone make for a strong paper, albeit with narrower conclusions. I think it is perfectly valid and interesting to analyze these questions within the scope of the species studied and even to say that these patterns may therefore extend to the hoverflies as a whole group given the great discussion about the shared ecology and behavior of much of the clade. However, the extension to miniaturization is too tenuous. This would need much more support, especially from the phylogenetic methods which are not rigorously presented and likely need additional tests.

      We thank the reviewer for the positive words about our study. We agree that our attempt to infer the directedness of size evolution was too simplistic, and thus the miniaturization aspect of our study would need more support. As suggested by the reviewer, we therefore do no longer focus on miniaturization, and thus removed these aspects from the title, abstract and main conclusion of our revised manuscript.

      There is a lot of missing data about the tree and the parameters used for the phylogenetic methods that should be added (especially branch lengths and models of evolution). Phylogenetic tests for the relationships of traits should go beyond the analysis of phylogenetic signals in the specific traits. My understanding is also that phylogenetic signal is not properly interpreted as a "control" on the effect of phylogeny. The PCA should probably be a phylogenetic PCA with a corresponding morphospace reconstruction.

      We agree with the reviewer that our phylogenetic approach based on phylogenetic signal only was incomplete. In our revised manuscript, we not only test for phylogenetic signal but also account for phylogeny in all regressions between traits and body mass using Phylogenetic Generalized Least Squares (PGLS) regressions. Additionally, we have provided more details about the model of evolution and the parameter estimation method in the Methods section (275–278).

      Following the reviewer suggestion, in our revised study we now also performed a phylogenetic PCA instead of a traditional PCA on the superimposed wing shape coordinates. The resulting morphospace was however almost identical to the traditional PCA (Figure S4). We nonetheless included it in the revised manuscript for completion. We thank the reviewer for this suggestion, as the revised phylogenetic analysis strengthens our study as a whole.

      For the miniaturization conclusion, my suggestion is a more rigorous phylogenetic analysis of directionality in the change in size across the larger phylogeny. However, even given this, I think the conclusion will be limited because it appears this trend does not hold up under the 8 species subsample. To support that morphology is evolutionarily correlated with miniaturization would for me require an analysis of how the change in body size relates to the change in wing shape and kinematics which is beyond what a scaling relationship does. In other words, you would need to test if the changes in body morphology occur in the same location phylogenetically with a shrinking of body size. I think even more would be required to use the words "enable" or "promote" when referring to the relationship of morphology to miniaturization because those imply evolutionary causality to me. To me, this wording would at least require an analysis that shows something like an increase in the ability of the wing morphological traits preceding the reduction in body size. Even that would likely be controversial. Both seem to be beyond the scope of what you could analyze with the given dataset.

      As mentioned in reply 3.1, we agree with the reviewer that the miniaturization aspect of our study would need more support. And thus, as suggested by the reviewer, we therefore do no longer focus primarily on miniaturization, by removing these aspects from the title, abstract and main conclusion of our revised manuscript.

      The pseudoreplication should be corrected. You can certainly report the data with all individuals, but you should also indicate in all cases if the analysis is consistent if only species are considered.

      As mentioned in the Public Review section, our revised approach avoids pseudoreplication by analyzing all data at the species level. Nonetheless, we have included supplementary figures (Figures S3 and S5) to visualize within-species variation.

      My overall suggestion is to remove the analysis of miniaturization and cast the conclusions with respect to the sampling you have. Add a basic phylogenetic test for the correlated trait analysis (like a phylogenetic GLM) which will likely still support your conclusions over the eight species and emphasize the specific conclusion about hoverflies' scaling relationships. I think that is still a very good study better supported by the extent of the data.

      We thank the reviewer for the positive assessment of our study, and their detailed and constructive feedback. As suggested by the reviewer, miniaturization is no longer the primary focus of our study, and we revised our analysis by extending the morphology dataset to more species, and by using phylogenetic regressions.

      References

      Ellington C. 1984a. The aerodynamics of hovering insect flight. III. Kinematics. Philosophical Transactions of the Royal Society of London B: Biological Sciences 305:41–78.

      Ellington C. 1984b. The aerodynamics of insect flight. II. Morphological parameters. Phil Trans R Soc Lond B 305:17–40.

      Fry SN, Sayaman R, Dickinson MH. 2005. The aerodynamics of hovering flight in Drosophila. Journal of Experimental Biology 208:2303–2318. doi:10.1242/jeb.01612

      Liu Y, Sun M. 2008. Wing kinematics measurement and aerodynamics of hovering droneflies. Journal of Experimental Biology 211:2014–2025. doi:10.1242/jeb.016931

    1. Author response:

      Reviewer #1 (Public review):

      (1) Some details are not described for experimental procedures. For example, what were the pharmacological drugs dissolved in, and what vehicle control was used in experiments? How long were pharmacological drugs added to cells?

      We apologise for the oversight. These details have now been added to the methods section of the manuscript as well as to the relevant figure legends.

      Briefly, latrunculin was used at a final concentration of 250 nM and Y27632 at a final concentration of 50 μM. Both drugs were dissolved in DMSO. The vehicle controls were effected with the highest final concentration of DMSO of the two drugs.

      The details of the drug treatments and their duration was added to the methods and to figures 6, S10, and S12.

      (2) Details are missing from the Methods section and Figure captions about the number of biological and technical replicates performed for experiments. Figure 1C states the data are from 12 beads on 7 cells. Are those same 12 beads used in Figure 2C? If so, that information is missing from the Figure 2C caption. Similarly, this information should be provided in every figure caption so the reader can assess the rigor of the experiments. Furthermore, how heterogenous would the bead displacements be across different cells? The low number of beads and cells assessed makes this information difficult to determine.

      We apologise for the oversight. We have now added this data to the relevant figure panels.

      To gain a further understanding of the heterogeneity of bead displacements across cells, we have replotted the relevant graphs using different colours to indicate different cells. This reveals that different cells appear to behave similarly and that the behaviour appears controlled by distance to the indentation or the pipette tip rather than cell identity.

      We agree with the reviewer that the number of cells examined is low. This is due to the challenging nature of the experiments that signifies that many attempts are necessary to obtain a successful measurement.

      The experiments in Fig 1C are a verification of a behaviour documented in a previous publication [1]. Here, we just confirm the same behaviour and therefore we decided that only a small number of cells was needed.

      The experiments in Fig 2C (that allow for a direct estimation of the cytoplasm’s hydraulic permeability) require formation of a tight seal between the glass micropipette and the cell, something known as a gigaseal in electrophysiology. The success rate of this first step is 10-30% of attempts for an experienced experimenter. The second step is forming a whole cell configuration, in which a hydraulic link is formed between the cell and the micropipette. This step has a success rate of ~ 50%. Whole cell links are very sensitive to any disturbance. After reaching the whole cell configuration, we applied relatively high pressures that occasionally resulted in loss of link between the cell and the micropipette. In summary, for the 12 successful measurements, hundreds of unsuccessful attempts were carried out.

      (3) The full equation for displacement vs. time for a poroelastic material is not provided. Scaling laws are shown, but the full equation derived from the stress response of an elastic solid and viscous fluid is not shown or described.

      We thank the reviewer for this comment. Based on our experiments, we found that the cytoplasm behaves as a poroelastic material. However, to understand the displacements of the cell surface in response to localised indentation, we show that we also need to take the tension of the sub membranous cortex into account. In summary, the interplay between cell surface tension generated by the cortex and the poroelastic cytoplasm controls the cell behaviour. To our knowledge, no simple analytical solutions to this type of problem exist.

      In Fig 1, we show that the response of the cell to local indentation is biphasic with a short time-scale displacement followed by a longer time-scale one. In Figs 2 and 3, we directly characterise the kinetics of cell surface displacement in response to microinjection of fluid. These kinetics are consistent with the long time-scale displacement but not the short time-scale one. Scaling considerations led us to propose that tension in the cortex may play a role in mediating the short time-scale displacement. To verify this hypothesis, we have now added new data showing that the length-scale of an indentation created by an AFM probe depends on tension in the cortex (Fig S5).

      In a previous publication [2], we derived the temporal dynamics of cell surface displacement for a homogenous poroelastic material in response to a change in osmolarity. In the current manuscript, the composite nature of the cell (membrane, cortex, cytoplasm) needs to be taken into account as well as a realistic cell shape. Therefore, we did not attempt to provide an analytical solution for the displacement of the cell surface versus time in the current work. Instead, we turned to finite element modelling to show that our observations are qualitatively consistent with a cell that comprises a tensed sub membranous actin cortex and a poroelastic cytoplasm (Fig 4). We have now added text to make this clearer for the reader.

      Reviewer #2 (Public review):

      Comments & Questions:

      The authors state, "Next, we sought to quantitatively understand how the global cellular response to local indentation might arise from cellular poroelasticity." However, the evidence presented in the following paragraph appears more qualitative than strictly quantitative. For instance, the length scale estimate of ~7 μm is only qualitatively consistent with the observed ~10 μm, and the timescale 𝜏𝑧 ≈ 500 ms is similarly described as "qualitatively consistent" with experimental observations. Strengthening this point would benefit from more direct evidence linking the short timescale to cell surface tension. Have you tried perturbing surface tension and examining its impact on this short-timescale relaxation by modulating acto-myosin contractility with Y-27632, depolymerizing actin with Latrunculin, or applying hypo/hyperosmotic shocks?

      Upon rereading our manuscript, we agree with the reviewer that some of our statements are too strong. We have now moderated these and clarified the goal of that section of the text.

      The reviewer asks if we have examined the effect of various perturbations on the short time-scale displacements. In our experimental conditions, we cannot precisely measure the time-scale of the fast relaxation because its duration is comparable to the frame rate of our image acquisition. However, we examined the amplitude of the displacement of the first phase in response to sucrose treatment and we have carried out new experiments in which we treat cells with 250nM Latrunculin to partially depolymerise cellular F-actin. Neither of these treatments had an impact on the amplitude of vertical displacements (Author response image 1).

      The absence of change in response to Latrunculin may be because the treatment decreases both the elasticity of the cytoplasm E and the cortical tension γ. As the length-scale l of the deformation of the surface scales as , the two effects of latrunculin treatment may therefore compensate one another and result in only small changes in l. We have now added this data to supplementary information and comment on this in the text.

      Author response image 1:

      Amplitude of the short time-scale displacements of beads in response to AFM indentation at δx=0µm for control cells, sucrose treated cells, and cells treated with Latrunculin B. n indicates the number of cells examined and N the number of beads.

      The reviewer’s comment also made us want to determine how cortical tension affects the length-scale of the cell surface deformation created by localised micro indentation. To isolate the role of the cortex from that of cell shape, we decided to examine rounded mitotic cells. In our experiments, we indented a mitotic cell expressing a membrane targeted GFP with a sharp AFM tip (Author response image 2).

      In our experiments, we adjusted force to generate a 2μm depth indentation and we imaged the cell profile with confocal microscopy before and during indentation. Segmentation of this data allowed us to determine the cell surface displacement resulting from indentation and measure a length scale of deformation. In control conditions, the length scale created by deformation is on the order of 1.2μm. When we inhibited myosin contractility with blebbistatin, the length-scale of deformation decreased significantly to 0.8 μm, as expected if we decrease the surface tension γ without affecting the cytoplasmic elasticity. We have now added this data to our manuscript.

      Author response image 2.

      (a) Overlay of the zx profiles of a mitotic cell before (green) and during indentation (red). The cell membrane is labelled with CellMask DeepRed. The arrowhead indicates the position of the AFM tip. Scale bar 10µm. (b) Position of the membrane along the top half of the cell before (green) and during (red) indentation. The membrane position is derived from segmentation of the data in (a). Deformation is highly localised and membrane profiles overlap at the edges. The tip position is marked by an *. (c) The difference in membrane height between pre-indentation and indentation profiles plotted in (b) with the tip located at x=0. (d) Schematic of the cell surface profile during indentation and the corresponding length scale of the deformation induced by indentation. (e) Measured length scale for an indentation ~2µm for DMSO control l=1.2±0.2µm (n=8 cells) and with blebbistatin treatment (100µM) l=0.8±0.4µm (n=9 cells) (p= 0.016

      The authors demonstrate that the second relaxation timescale increases (Figure 1, Panel D) following a hyperosmotic shock, consistent with cytoplasmic matrix shrinkage, increased friction, and consequently a longer relaxation timescale. While this result aligns with expectations, is a seven-fold increase in the relaxation timescale realistic based on quantitative estimates given the extent of volume loss?

      We thank the reviewer for this interesting question. Upon re-examining our data, we realised that the numerical values in the text related to the average rather than the median of our measurements. The median of the poroelastic time constant increases from ~0.4s in control conditions to 1.4s in sucrose, representing approximately a 3.5-fold increase.

      Previous work showed that HeLa cell volume decreases by ~40% in response to hyperosmotic shock [3]. The fluid volume fraction in cells is ~65-75%. If we assume that the water is contained in N pores of volume , we can express the cell volume as with V<sub>s</sub> the volume of the solid fraction. We can rewrite with ϕ = 0.42 -0.6. As V<sub>s</sub> does not change in response to osmotic shock, we can rewrite the volume change to obtain the change in pore size .

      The poroelastic diffusion constant scales as and the poroelastic timescale scales as . Therefore, the measured change in volume leads to a predicted increase in poroelastic diffusion time of 1.7-1.9-fold, smaller than observed in our experiments. This suggests that some intuition can be gained in a straightforward manner assuming that the cytoplasm is a homogenous porous material.

      However, the reality is more complex and the hydraulic pore size is distinct from the entanglement length of the cytoskeleton mesh, as we discussed in a previous publication [4]. When the fluid fraction becomes sufficiently small, macromolecular crowding will impact diffusion further and non-linearities will arise. We have now added some of these considerations to the discussion.

      If the authors' hypothesis is correct, an essential physiological parameter for the cytoplasm could be the permeability k and how it is modulated by perturbations, such as volume loss or gain. Have you explored whether the data supports the expected square dependency of permeability on hydraulic pore size, as predicted by simple homogeneity assumptions?

      We thank the reviewer for this comment. As discussed above, we have explored such considerations in a previous publication (see discussion in [4]). Briefly, we find that the entanglement length of the F-actin cytoskeleton does play a role in controlling the hydraulic pore size but is distinct from it. Membrane bounded organelles could also contribute to setting the pore size. In our previous publication, we derived a scaling relationship that indicates that four different length-scales contribute to setting cellular rheology: the average filament bundle length, the size distribution of particles in the cytosol, the entanglement length of the cytoskeleton, and the hydraulic pore size. Many of these length-scales can be dynamically controlled by the cell, which gives rise to complex rheology. We have now added these considerations to our discussion.

      Additionally, do you think that the observed decrease in k in mitotic cells compared to interphase cells is significant? I would have expected the opposite naively as mitotic cells tend to swell by 10-20 percent due to the mitotic overshoot at mitotic entry (see Son Journal of Cell Biology 2015 or Zlotek Journal of Cell Biology 2015).

      We thank the reviewer for this interesting question. Based on the same scaling arguments as above, we would expect that a 10-20% increase in cell volume would give rise to 10-20% increase in diffusion constant. However, we also note that metaphase leads to a dramatic reorganisation of the cell interior and in particular membrane-bounded organelles. In summary, we do not know why such a decrease could take place. We now highlight this as an interesting question for further research.

      Based on your results, can you estimate the pore size of the poroelastic cytoplasmic matrix? Is this estimate realistic? I wonder whether this pore size might define a threshold above which the diffusion of freely diffusing species is significantly reduced. Is your estimate consistent with nanobead diffusion experiments reported in the literature? Do you have any insights into the polymer structures that define this pore size? For example, have you investigated whether depolymerizing actin or other cytoskeletal components significantly alters the relaxation timescale?

      We thank the reviewer for this comment. We cannot directly estimate the hydraulic pore size from the measurements performed in the manuscript. Indeed, while we understand the general scaling laws, the pre-factors of such relationships are unknown.

      We carried out experiments aiming at estimating the hydraulic pore size in previous publications [3,4] and others have shown spatial heterogeneity of the cytoplasmic pore size [5]. In our previous experiments, we examined the diffusion of PEGylated quantum dots (14nm in hydrodynamic radius). In isosmotic conditions, these diffused freely through the cell but when the cell volume was decreased by a hyperosmotic shock, they no longer moved [3,4]. This gave an estimate of the pore radius of ~15nm.

      Previous work has suggested that F-actin plays a role in dictating this pore size but microtubules and intermediate filaments do not [4].

      There are no quantifications in Figure 6, nor is there a direct comparison with the model. Based on your model, would you expect the velocity of bleb growth to vary depending on the distance of the bleb from the pipette due to the local depressurization? Specifically, do blebs closer to the pipette grow more slowly?

      We apologise for the oversight. The quantifications are presented in Fig S10 and Fig S12. We have now modified the figure legends accordingly.

      Blebs are very heterogenous in size and growth velocity within a cell and across cells in the population in normal conditions [6]. Other work has shown that bleb size is controlled by a competition between pressure driving growth and actin polymerisation arresting it[7]. Therefore, we did not attempt to determine the impact of depressurisation on bleb growth velocity or size.

      In experiments in which we suddenly increased pressure in blebbing cells, we did notice a change in the rate of growth of blebs that occurred after we increased pressure (Author response image 3). However, the experiments are technically challenging and we decided not to perform more.

      Author response image 3:

      A. A hydraulic link is established between a blebbing cell and a pipette. At time t>0, a step increase in pressure is applied. B. Kymograph of bleb growth in a control cell (top) an in a cell subjected to a pressure increase at t=0s (bottom). Top: In control blebs, the rate of growth is slow and approximately constant over time. The black arrow shows the start of blebbing. Bottom: The black arrow shows the start of blebbing. The dashed line shows the timing of pressure application and the red arrow shows the increase in growth rate of the bleb when the pressure increase reaches the bleb. This occurs with a delay δt.

      I find it interesting that during depressurization of the interphase cells, there is no observed volume change, whereas in pressurization of metaphase cells, there is a volume increase. I assume this might be a matter of timescale, as the microinjection experiments occur on short timescales, not allowing sufficient time for water to escape the cell. Do you observe the radius of the metaphase cells decreasing later on? This relaxation could potentially be used to characterize the permeability of the cell surface.

      We thank the reviewer for this comment.

      First, we would like to clarify that both metaphase and interphase cells increase their volume in response to microinjection. The effect is easier to quantify in metaphase cells because we assume spherical symmetry and just monitor the evolution of the radius (Fig 3). However, the displacement of the beads in interphase cells (Fig 2) clearly shows that the cell volume increases in response to microinjection. For both interphase and metaphase cells, when the injection is prolonged, the membrane eventually detaches from the cortex and large blebs form until cell lysis. In contrast to the reviewer’s intuition, we never observe a relaxation in cell volume, probably because we inject fluid faster than the cell can compensate volume change through regulatory mechanisms involving ion channels.

      When we depressurise metaphase cells, we do not observe any change in volume (Fig S10). This contrasts with the increase that we observe upon pressurisation. The main difference between these two experiments is the pressure differential. During depressurisation experiments, this is the hydraulic pressure within the cell ~500Pa (Fig 6A); whereas during pressurisation experiments, this is the pressure in the micropipette, ranging from 1.4-10 kPa (Fig 3). We note in particular that, when we used the lowest pressures in our experiments, the increase in volume was very slow (see Fig 3C). Therefore, we agree with the reviewer that it is likely the magnitude of the pressure differential that explains these differences.

      I am curious about the saturation of the time lag at 30 microns from the pipette in Figure 4, Panel E for the model's prediction. A saturation which is not clearly observed in the experimental data. Could you comment on the origin of this saturation and the observed discrepancy with the experiments (Figure E panel 2)? Naively, I would have expected the time lag to scale quadratically with the distance from the pipette, as predicted by a poroelastic model and the diffusion of displacement. It seems weird to me that the beads start to move together at some distance from the pipette or else I would expect that they just stop moving. What model parameters influence this saturation? Does membrane permeability contribute to this saturation?

      We thank the reviewer for pointing this out. In our opinion, the saturation occurring at 30 microns arises from the geometry of the model. At the largest distance away from the micropipette, the cortex becomes dominant in the mechanical response of the cell because it represents an increasing proportion of the cellular material.

      To test this hypothesis, we will rerun our finite element models with a range of cell sizes. This will be added to the manuscript at a later date.

      Reviewer #3 (Public review):

      Weaknesses: I have two broad critical comments:

      (1) I sense that the authors are correct that the best explanation of their results is the passive poroelastic model. Yet, to be thorough, they have to try to explain the experiments with other models and show why their explanation is parsimonious. For example, one potential explanation could be some mechanosensitive mechanism that does not involve cytoplasmic flow; another could be viscoelastic cytoskeletal mesh, again not involving poroelasticity. I can imagine more possibilities. Basically, be more thorough in the critical evaluation of your results. Besides, discuss the potential effect of significant heterogeneity of the cell.

      We thank the reviewer for these comments and we agree with their general premise.

      Some observations could qualitatively be explained in other ways. For example, if we considered the cell as a viscoelastic material, we could define a time constant with η the viscosity and E the elasticity of the material. The increase in relaxation time with sucrose treatment could then be explained by an increase in viscosity. However, work by others has previously shown that, in the exact same conditions as our experiment, viscoelasticity cannot account for the observations[1]. In its discussion, this study proposed poroelasticity as an alternative mechanism but did not investigate that possibility. This was consistent with our work that showed that the cytoplasm behaves as a poroelastic material and not as a viscoelastic material [4]. Therefore, we decided not to consider viscoelasticity as possibility. We now explain this reasoning better and have added a sentence about a potential role for mechanotransductory processes in the discussion.

      (2) The study is rich in biophysics but a bit light on chemical/genetic perturbations. It could be good to use low levels of chemical inhibitors for, for example, Arp2/3, PI3K, myosin etc, and see the effect and try to interpret it. Another interesting question - how adhesive strength affects the results. A different interesting avenue - one can perturb aquaporins. Etc. At least one perturbation experiment would be good.

      We agree with the reviewer. In our previous studies, we already examined what biological structures affect the poroelastic properties of cells [2,4]. Therefore, the most interesting aspect to examine in our current work would be perturbations to the phenomenon described in Fig 6G and, in particular, to investigate what volume regulation mechanisms enable sustained intracellular pressure gradients. However, these experiments are particularly challenging and with very low throughput. Therefore, we feel that these are out of the scope of the present report and we mention these as promising future directions.

      References:

      (1) Rosenbluth, M. J., Crow, A., Shaevitz, J. W. & Fletcher, D. A. Slow stress propagation in adherent cells. Biophys J 95, 6052-6059 (2008). https://doi.org/10.1529/biophysj.108.139139

      (2) Esteki, M. H. et al. Poroelastic osmoregulation of living cell volume. iScience 24, 103482 (2021). https://doi.org/10.1016/j.isci.2021.103482

      (3) Charras, G. T., Mitchison, T. J. & Mahadevan, L. Animal cell hydraulics. J Cell Sci 122, 3233-3241 (2009). https://doi.org/10.1242/jcs.049262

      (4) Moeendarbary, E. et al. The cytoplasm of living cells behaves as a poroelastic material. Nat Mater 12, 253-261 (2013). https://doi.org/10.1038/nmat3517

      (5) Luby-Phelps, K., Castle, P. E., Taylor, D. L. & Lanni, F. Hindered diffusion of inert tracer particles in the cytoplasm of mouse 3T3 cells. Proc Natl Acad Sci U S A 84, 4910-4913 (1987). https://doi.org/10.1073/pnas.84.14.4910

      (6) Charras, G. T., Coughlin, M., Mitchison, T. J. & Mahadevan, L. Life and times of a cellular bleb. Biophys J 94, 1836-1853 (2008). https://doi.org/10.1529/biophysj.107.113605

      (7) Tinevez, J. Y. et al. Role of cortical tension in bleb growth. Proc Natl Acad Sci U S A 106, 18581-18586 (2009). https://doi.org/10.1073/pnas.0903353106

    1. Author response:

      The following is the authors’ response to the original reviews.

      We thank all reviewers for the highly detailed review and the time and effort which has been invested in this review. It is clear from the reviews that we’ve had the privilege to have our work extensively and thoroughly checked by knowledgeable experts, for which we are very grateful. We have read their perspectives, questions and suggested improvements with great interest. We have reflected on the public review in detail and have included detailed responses below. First, we would like to respond to four main issues pointed out by the editor and reviewers:

      (1) Lack of yield data in the manuscript: Yield data has been collected in most of the sites and years of our study, and these have already been published and cited in our manuscript. In the appendix of our manuscript, we included a table with yield data for the sites and years in which the beetle diversity was studied. These data show that strip cropping does not cause a systematic yield reduction.

      (2) Sampling design clarification: Our paper combines data from trials conducted at different locations and years. On the one hand this allows an analysis of a comprehensive dataset, but on the other hand in some cases this resulted in variations in how data were collected or processed (e.g. taxonomic level of species identification). We have added more details to the sections on sampling design and data analysis to increase clarity and transparency.

      (3) Additional data analysis: In the revised manuscript we present an analysis on the responses of abundances of the 12 most common ground beetle genera to strip cropping. This gives better insight in the variation of responses among ground beetle taxa.

      (4) Restrict findings to our system: We nuanced our findings further and focused more on the implications of our data on ground beetle communities, rather than on agrobiodiversity in a broader sense.

      Below we also respond to the editor and reviewers in more detail.

      Reviewing Editor Comments:

      (1) You only have analyzed ground beetle diversity, it would be important to add data on crop yields, which certainly must be available (note that in normal intercropping these would likely be enhanced as well).

      Most yield data have been published in three previous papers, which we already cited or cite now (one was not yet published at the time of submission). Our argumentation is based on these studies. We had also already included a table in the appendix that showed the yield data that relates specifically to our locations and years of measurement. The finding that strip cropping does not majorly affect yield is based on these findings. We revised the title of our manuscript to remove the explicit focus on yield.

      (2) Considering the heterogeneous data involving different experiments it is particularly important to describe the sampling design in detail and explain how various hierarchical levels were accounted for in the analysis.

      We agree that some important details to our analysis were not described in sufficient detail. Especially reviewer 2 pointed out several relevant points that we did account for in our analyses, but which were not clear from the text in the methods section. We are convinced that our data analyses are robust and that our conclusions are supported by the data. We revised the methods section to make our approach clearer and more transparent.

      (3) In addition to relative changes in richness and density of ground beetles you should also present the data from which these have been derived. Furthermore, you could also analyze and interpret the response of the different individual taxa to strip cropping.

      With our heterogeneous dataset it was quite complicated to show overall patterns of absolute changes in ground beetle abundance and richness, especially for the field-level analyses. As the sampling design was not always the same and occasionally samples were missing, the number of year series that made up a datapoint were different among locations and years. However, we always made sure that for the comparison of a paired monoculture and strip cropping field, the number of year series was always made equal through rarefaction. That is, the number of ground beetle(s) (species) are always expressed as the number per 2 to 6 samples. Therefore, we prefer to stick to relative changes as we are convinced that this gives a fairer representation of our complex dataset.

      We agree with the second point that both the editor and several reviewers pointed out. The indicator species analyses that we used were biased by rare species, and we now omit this analysis. Instead, we included a GLM analysis on the responses of abundances of the 12 most common ground beetle genera to strip cropping. We chose for genera here (and not species) as we could then include all locations and years within the analyses, and in most cases a genus was dominated by a single species (but notable exceptions were Amara and Harpalus, which were often made up of several species). We illustrate these analyses still in a similar fashion as we did for the indicator species analysis.

      (4) Keep to your findings and don't overstate them but try to better connect them to basic ecological hypotheses potentially explaining them.

      After careful consideration of the important points that reviewers point out, we decided to nuance our reasoning about biodiversity conservation along two key lines: (1) the extent to which ground beetles can be indicators of wider biodiversity changes; and (2) our findings that are not as straightforward positive as our narrative suggests. We still believe that strip cropping contributes positively to carabid communities, and have carefully checked the text to avoid overstatements.

      Reviewer #1 (Public review):

      Summary:

      This study demonstrates that strip cropping enhances the taxonomic diversity of ground beetles across organically-managed crop systems in the Netherlands. In particular, strip cropping supported 15% more ground beetle species and 30% more individuals compared to monocultures.

      Strengths:

      A well-written study with well-analyzed data of a complex design. The data could have been analyzed differently e.g. by not pooling samples, but there are pros and cons for each type of analysis and I am convinced this will not affect the main findings. A strong point is that data were collected for 4 years. This is especially strong as most data on biodiversity in cropping systems are only collected for one or two seasons. Another strong point is that several crops were included.

      We thank reviewer 1 for their kind words and agree with this strength of the paper. The paper combines data from trials conducted at different locations and years. On the one hand this allows an analysis of a comprehensive dataset, but on the other hand in some cases there were slight variations in how data were collected or processed (e.g. taxonomic level of species identification).

      Weaknesses:

      This study focused on the biodiversity of ground beetles and did not examine crop productivity. Therefore, I disagree with the claim that this study demonstrates biodiversity enhancement without compromising yield. The authors should present results on yield or, at the very least, provide a stronger justification for this statement.

      We acknowledge that we indeed did not formally analyze yield in our study, but we have good reason for this. The claim that strip cropping does not compromise yield comes from several extensive studies (Juventia & van Apeldoorn, 2024; Ditzler et al., 2023; Carillo-Reche et al., 2023) that were conducted in nearly all the sites and years that we included in our study. We chose not to include formal analyses of productivity for two key reasons: (1) a yield analysis would duplicate already published analyses, and (2) we prefer to focus more on the ecology of ground beetles and the effect of strip cropping on biodiversity, rather than diverging our focus also towards crop productivity. Nevertheless, we have shown the results on yield in Table S6 and refer extensively to the studies that have previously analyzed this data (line 203-207, 217-221).

      Reviwer #1 (Recommendations for the authors):

      This is a well-written study on the effects of strip cropping on ground-beetle diversity. As stated above the study is well analyzed, presented, and written but you should not pretend that you analyzed yield e.g. lines 25-27 "We show that strip cropping...enhance ground beetle biodiversity without incurring major yield loss.

      We understand the confusion caused by this sentence, and it was never our intention to give the impression that we analyzed yield losses. These findings were based on previous research by ourselves and colleagues, and we have now changed the sentence to reflect this (line 25-27).

      I think you assume that yield does not differ between strip cropping and monoculture. I am not sure this is correct as one crop might attract pests or predators spilling over to the other crop. I am also not sure if the sowing and harvest of the crop will come with the same costs. So if you assume this, you should only do it in the main manuscript and not the abstract, to justify this better.

      With three peer-reviewed papers on the same fields as we studied, we can convincingly state that strip cropping in organic agriculture generally does not result in major yield loss, although exceptions exist, which we refer to in the discussion.

      In the introduction lines 28-43, you refer to insect biomass decline. I wonder if you would like to add the study of Loboda et al. 2017 in Ecography. It seems not fitting as it is from the Artic but also the other studies you cite are not only coming from agricultural landscapes and this study is from the same time as the Hallmann et al. 2017 study and shows a decline in flies of 80%

      We have removed the sentence that this comment refers to, to streamline the introduction more.

      Lines 50-51. You only have one citation for biodiversity strategies in agricultural systems. I suggest citing Mupepele et al. 2021 in TREE. This study refers to management but also the policies and societal pressures behind it.

      We have added this citation and a recent paper by Cozim-Melges et al. (2024) here (line 49-52).

      In the methods, I am missing a section on species identifications. This would help to understand why you used "taxonomic richness".

      Thanks for pointing this out. We have now included a new section on ground beetle identification (line 304-309 in methods).

      Figure 1 is great and I like that you separated the field and crop-level data, although there is no statistical power for the crop-specific data. I personally would move k to the supplements. It is very detailed and small and therefore hard to read

      We chose to keep figure 1k, as in our view it gives a good impression of the scale of the experiment, the number of crops included and the absolute numbers of caught species.

      Reviewer #2 (Public review):

      Summary:

      The authors aimed to investigate the effects of organic strip cropping on carabid richness and density as well as on crop yields. They find on average higher carabid richness and density in strip cropping and organic farming, but not in all cases.

      We did not intend to investigate the effect of strip cropping on crop yields, but rather place our work in the framework of earlier studies that already studied yield. All the monocultures and strip cropping fields were organic farms. Our findings thus compare crop diversity effects within the context of organic farming.

      Strengths:

      Based on highly resolved species-level carabid data, the authors present estimates for many different crop types, some of them rarely studied, at the same time. The authors did a great job investigating different aspects of the assemblages (although some questions remain concerning the analyses) and they present their results in a visually pleasing and intuitive way.

      We appreciate the kind words of reviewer 2 and their acknowledgement of the extensiveness of our dataset. In our opinion, the inclusion of many different crops is indeed a strength, rarely seen in similar studies; and we are happy that the figures are appreciated.

      Weaknesses:

      The authors used data from four different strip cropping experiments and there is no real replication in space as all of these differed in many aspects (different crops, different areas between years, different combinations, design of the strip cropping (orientation and width), sampling effort and sample sizes of beetles (differing more than 35 fold between sites; L 100f); for more differences see L 237ff). The reader gets the impression that the authors stitched data from various places together that were not made to fit together. This may not be a problem per se but it surely limits the strength of the data as results for various crops may only be based on small samples from one or two sites (it is generally unclear how many samples were used for each crop/crop combination).

      The paper indeed combines data from trials conducted at different locations and years. On the one hand this allows an analysis of a comprehensive dataset, but on the other hand in some cases there were slight differences in the experimental design. At the time that we did our research, there were only a handful of farmers that were employing strip cropping within the Netherlands, which greatly reduced the number of fields for our study. Therefore, we worked in the sites that were available and studied as many crops on these sites. Since there was variation in the crops grown in the sites, for some crops we have limited replication. In the revision we have explained this more clearly (line 297-300).

      One of my major concerns is that it is completely unclear where carabids were collected. As some strips were 3m wide, some others were 6m and the monoculture plots large, it can be expected that carabids were collected at different distances from the plot edge. This alone, however, was conclusively shown to affect carabid assemblages dramatically and could easily outweigh the differences shown here if not accounted for in the models (see e.g. Boetzl et al. (2024) or Knapp et al. (2019) among many other studies on within field-distributions of carabids).

      Point well taken. Samples were always taken at least 10 meters into the field, and always in the middle of the strip. This would indeed mean that there is a small difference between the 3- and 6m wide strips regarding distance from another strip, but this was then only a difference of 1.5 to 3 meters from the edge. A difference that, based on our own extensive experience with ground beetle communities, will not have a large impact on the findings of ground beetles. The distance from field/plot edges was similar between monocultures and strip cropped fields. We present a more detailed description of the sampling design in the methods of the revised manuscript (line 294-297).

      The authors hint at a related but somewhat different problem in L 137ff - carabid assemblages sampled in strips were sampled in closer proximity to each other than assemblages in monoculture fields which is very likely a problem. The authors did not check whether their results are spatially autocorrelated and this shortcoming is hard to account for as it would have required a much bigger, spatially replicated design in which distances are maintained from the beginning. This limitation needs to be stated more clearly in the manuscript.

      To be clear, this limitation relates to the comparison that we did for the community compositions of ground beetles in two crops either in strip cropping or monocultures. In this case, it was impossible to avoid potential autocorrelation due to our field design. We also acknowledge this limitation in the results section (line 130-133). However, for our other analyses we corrected for spatial autocorrelation by including variables per location, year and crop. This grouped samples that were spatially autocorrelated. Therefore, we don’t see this as a discrepancy of our other analyses.

      Similarly, we know that carabid richness and density depend strongly on crop type (see e.g. Toivonen et al. (2022)) which could have biased results if the design is not balanced (this information is missing but it seems to be the case, see e.g. Celeriac in Almere in 2022).

      We agree and acknowledge that crop type can influence carabid richness and density, which is why we have included variables to account for differences caused by crops. However, we did not observe consistent differences between crops in how strip cropping affected ground beetle richness and density. Therefore, we don’t think that crop types would have influenced our conclusions on the overall effect of strip cropping.

      A more basic problem is that the reader neither learns where traps were located, how missing traps were treated for analyses how many samples there were per crop or crop combination (in a simple way, not through Table S7 - there has to have been a logic in each of these field trials) or why there are differences in the number of samples from the same location and year (see Table S7). This information needs to be added to the methods section.

      Point well taken. We have clarified this further in the revised manuscript (line 294-301, 318-322). As we combined data from several experimental designs that originally had slightly different research questions, this in part caused differences between numbers of rounds or samples per crop, location or year.

      As carabid assemblages undergo rapid phenological changes across the year, assemblages that are collected at different phenological points within and across years cannot easily be compared. The authors would need to standardize for this and make sure that the assemblages they analyze are comparable prior to analyses. Otherwise, I see the possibility that the reported differences might simply be biased by phenology.

      We agree and we dealt with this issue by using year series instead of using individual samples of different rounds. This approach allowed us to get a good impression of the entire ground beetle community across seasons. For our analyses we had the choice to only include data from sampling rounds that were conducted at the same time, or to include all available data. We chose to analyze all data, and made sure that the number of samples between strip cropping and monoculture fields per location, year and crop was always the same by pooling and rarefaction.

      Surrounding landscape structure is known to affect carabid richness and density and could thus also bias observed differences between treatments at the same locations (lower overall richness => lower differences between treatments). Landscape structure has not been taken into account in any way.

      We did not include landscape structure as there are only 4 sites, which does not allow a meaningful analysis of potential effects landscape structure. Studying how landscape interacts with strip cropping to influence insect biodiversity would require at least, say 15 to 20 sites, which was not feasible for this study. However, such an analysis may be possible in an ongoing project (CropMix) which includes many farms that work with strip cropping.

      In the statistical analyses, it is unclear whether the authors used estimated marginal means (as they should) - this needs to be clarified.

      In the revised manuscript we further clarified this point (line 365-366, 373-374).

      In addition, and as mentioned by Dr. Rasmann in the previous round (comment 1), the manuscript, in its current form, still suffers from simplified generalizations that 'oversell' the impact of the study and should be avoided. The authors restricted their analyses to ground beetles and based their conclusions on a design with many 'heterogeneities' - they should not draw conclusions for farmland biodiversity but stick to their system and report what they found. Although I understand the authors have previously stated that this is 'not practically feasible', the reason for this comment is simply to say that the authors should not oversell their findings.

      In the revised manuscript, we nuanced our findings by explaining that strip cropping is a potentially useful tool to support ground beetle biodiversity in agricultural fields (line 33-35).

      Reviewer #2 (Recommendations for the authors):

      In addition to the points stated under 'Weaknesses' above, I provide smaller comments and recommendations:

      Overall comments:

      (i) The carabid images used in the figures were created by Ortwin Bleich and are copyrighted. I could not find him accredited in the acknowledgements; the figure legends simply state that the images were taken from his webpage. Was his permission obtained? This should be stated.

      We have received written permission from Ortwin Bleich for using his pictures in our figures, and have accredited him for this in the acknowledgements (line 455-456).

      (ii) There is a great confusion in the field concerning terminology. The authors here use intercropping and strip cropping, a specific form of intercropping, interchangeably. I advise the authors to stick to strip cropping as it is more precise and avoids confusion with other forms of intercropping.

      We agree with the definitions given by reviewer 2 and had already used them as such in the text. We defined strip cropping in the first paragraph of the introduction and do not use the term “intercropping” after this definition to avoid confusion.

      Comments to specific lines:

      Line 19: While this is likely true, there is so far not enough compelling evidence for such a strong statement blaming agriculture. Please rephrase.

      Changed the sentence to indicate more clearly that it is one of the major drivers, but that the “blame” is not solely on agriculture (line 18-19).

      Line 22: Is this the case? I am aware of strip cropping being used in other countries, many of them in Europe. Why the focus on 'Dutch'?

      Indeed, strip cropping is now being pioneered by farmers throughout Europe. However in the Netherlands, some farmers have been pioneering strip cropping already since 2014. We have added this information to indicate that our setting is in the Netherlands, and as in our opinion it gives a bit more context to our manuscript.

      Line 24: I would argue that carabids are actually not good indicators for overall biodiversity in crop fields as they respond in a very specific way, contrasting with other taxa. It is commonly observed that carabids prefer more disturbed habitats and richness often increases with management intensity and in more agriculturally dominated landscapes - in stark contrast to other taxa like wild bees or butterflies.

      We have reworded this sentence to reflect that they are not necessarily indicators of wide agricultural biodiversity, but that they do hold keystone positions within food webs in agricultural systems (line 23-25).

      Line 31: This statement here is also too strong - carabids are not overall biodiversity and patterns found for carabids likely differ strongly from patterns that would be observed in other taxa. This study is on carabids and the conclusion should thus also refer to these in order to avoid such over-simplified generalizations.

      We agree and have nuanced this sentence to indicate that our findings are only on ground beetles (line 33-35). However, we would like to point out that the statement that “patterns found for carabids likely differ strongly from patterns that would be observed in other taxa” assumes a disassociation between carabids and other taxa.

      Line 41: I am sure the authors are aware of the various methodological shortcomings of the dataset used in Hallmann et al. (2017) which likely led to an overestimation of the actual decline. Analysing the same data, Müller et al. (2023) found that weather can explain fluctuations in biomass just as well as time. I thus advise not putting too much focus on these results here as they seem questionable.

      We have removed this sentence to streamline the introduction, thus no longer mentioning the percentages given by Hallmann et al. (2017).

      Line 46: Surely likely but to my knowledge this is actually remarkably hard to prove. Instead of using the IPBES report here that simply states this as a fact, it would be better to see some actual evidence referenced.

      We removed IPBES as a source and changed this for Dirzo et al. (2014), a review that shows the consequences of biodiversity decline on a range of different ecosystem services and ecological functions (line 45-47).

      Line 52ff: I am not sure whether this old land-sparing vs. land-sharing debate is necessary here. The authors could simply skip it and directly refer to the need of agricultural areas, the dominating land-use in many regions, to become more biodiversity-friendly. It can be linked directly to Line 61 in my opinion which would result in a more concise and arguably stronger introduction.

      After reconsidering, we agree with reviewer 2 that this section was redundant and we have removed the lines on land-sparing vs land-sharing.

      Line 59: Just a note here: this argument is not meaningful when talking about strip cropping in the Netherlands as there is virtually no land left that could be converted (if anything, agricultural land is lost to construction). The debate on land-use change towards agriculture is nowadays mostly focused on the tropics and the Global South.

      We argue that strip cropping could play an important role as a measure that does not necessarily follow the trade-off between biodiversity and agriculture for a context beyond the Netherlands (line 52-58).

      Line 69: Does this statement really need 8 references?

      Line 71: ... and this one 5 additional ones?

      We have removed excess references in these two lines (line 62-66).

      Line 74: But also likely provides the necessary crop continuity for many crop pests - the authors should keep in mind that when practitioners read agricultural biodiversity, they predominantly think of weeds and insect pests.

      We agree with reviewer 2 that agricultural biodiversity is still a controversial topic. However, as the focus in this manuscript is more on biodiversity conservation, rather than pest management, we prefer to keep this sentence as is. In other published papers and future work we focus more on the role of strip cropping for pest management.

      Line 83: Consider replacing 'moments' maybe - phenological stages or development stages?

      Although we understand the point of reviewer 2, we prefer to keep it at moments, as we did not focus on phenological stages and we only wanted to say that we set pitfall traps at several moments throughout the year. However, by placing the pitfall traps at several moments throughout the year, we did capture several phenological stages.

      Line 86: Not only farming practices - there are also massive fluctuations between years in the same crop with the same management due to effects of the weather in the previous reproductive season. Interpreting carabid assemblage changes is therefore not straightforward.

      We absolutely agree that interpreting carabid assemblage is not straightforward, but as we did not study year or crop legacy effects we chose to keep this sentence to maintain focus on our research goals.

      Line 88: 'ecolocal'?

      Typo, should have been ecological. Changed (line 81).

      Line 90: 'As such, they are often used as indicator group for wider insect diversity in agroecosystems' - this is the third repetition of this statement and the second one in this paragraph - please remove. Having worked on carabids extensively myself, I also think that this is not the true reason - they are simply easy to collect passively.

      We agree with the reviewer and have removed this sentence.

      Line 141: I have doubts about the value of the ISA looking at the results. Anchomenus dorsalis is a species extremely common in cereal monoculture fields in large parts of Europe, especially in warmer and drier conditions (H. griseus was likely only returned as it is generally rare and likely only occurred in few plots that, by chance, were strip-cropped). It can hardly be considered an indicator for diverse cropping systems but it was returned as one here (which I do not doubt). This often happens with ISA in my experience as they are very sensitive to the specific context of the data they are run on. The returned species are, however, often not really useable as indicators in other contexts. I thus believe they actually have very limited value. Apart from this, we see here that both monocultures and strip cropping have their indicators, as would likely all crop types. I wonder what message we would draw from this ...

      On close reconsideration, we agree with the reviewer that the ISAs might have been too sensitive to rare species that by chance occur in one of two crop configurations. To still get an idea on what happens with specific ground beetle groups, we chose to replace the ISAs with analyses on the 12 most common ground beetle genera. For this purpose we have added new sections to the methods (line 368-374) and results (line 135-143), replaced figure 2 and table S5, and updated the discussion (line 182-200).

      Line 165: Carabid activity is high when carabids are more active. Carabids can be more active either when (i) there are simply more carabid individuals or /and (ii) when they are starved and need to search more for prey. More carabid activity does thus not necessarily indicate more individuals, it can indicate that there is less prey. This aspect is missing here and should be discussed. It is also not true that crop diversification always increases prey biomass - especially strip cropping has previously been shown to decrease pest densities (Alarcón-Segura et al., 2022). Of course, this is a chicken-egg problem (less pests => less carabids or more carabids => less pests ?) ... this should at least be discussed.

      We have rewritten this paragraph to further discuss activity density in relation to food availability (line 175-185).

      Line 178: These species are not exclusively granivorous - this speculation may be too strong here.

      Line 185: true for all but C. melanocephalus - this species is usually more associated with hedgerows, forests etc.

      After removing the ISA’s, we also chose to remove this paragraph and replace it with a paragraph that is linked to the analyses on the 12 most common genera (line 182-200).

      Line 202: These statements are too strong for my taste - the authors should add an 'on average' here. The data show that they likely do not always enhance richness by 15 % and as the authors state, some monocultures still had higher richness and densities.

      “on average” added (line 211)

      Line 203: 'can lead' - the authors cannot tell based on their results if this is always true for all taxa.

      Changed to “can lead” (line 213)

      Line 205: What is 'diversification' here?

      This concerns measures like hedgerows or flower strips. We altered the sentence to make this clearer (line 215-216).

      Line 208: Does this statement need 5 references? (as in the introduction, the reader gets the impression the authors aimed to increase the citation count of other articles here).

      We have removed excess references (line 219-221).

      Line 222: How many are 'a few'? Maybe state a proportion.

      We only found two species, we’ve changed the sentence accordingly (line 232-233).

      Line 224: As stated above, I would not overstress the results of the ISAs - the authors stated themselves that the result for A. dorsalis is likely only based on one site ...

      We removed this sentence after removing the ISAs.

      Line 305: I think there is an additional nested random level missing - the transect or individual plot the traps were located in (or was there only one replicate for each crop/strip in each experiment)? Hard to tell as the authors provide no information on the actual sample sizes.

      Indeed, there was one field or plot per cropping system per crop per location per year from which all the samples were taken. Therefore the analysis does not miss a nested random level. We provided information on sample sizes in Table S7.

      Line 314ff: The authors describe that they basically followed a (slightly extended) Chao-Hill approach (species richness, Shannon entropy & inverse Simpson) without the sampling effort / sample completeness standardization implemented in this approach and as a reader I wonder why they did not simply just use the customary Chao-Hill approach.

      We were not aware of the Chao-Hill approach, and we see it as a compliment that we independently came up with an approach similar to a now accepted approach.

      Line 329: Unclear what was nested in what here - location / year / crop or year / location / crop ?

      For the crop-level analyses, the nested structure was location > year > crop. This nested structure was chosen as every location was sampled across different years and (for some locations) the crops differed among years. However, as we pooled the samples from the same field in the field-level analyses, using the same random structure would have resulted in each individual sampling unit being distinguished as a group. Therefore, the random structure here was only location > year. We explain this now more clearly in lines 329 and 355-357.

      Line 334: I can see why the authors used these distributions but it is presented here without any justification. As a side note: Gamma (with log link) would likely be better for the Shannon model as well (I guess it cannot be 0 or negative ...).

      We explain this now better in lines 360-364.

      Line 341: Why Hellinger and not simply proportions?

      We used Hellinger transformation to give more weight to rarer species. Our pitfall traps were often dominated by large numbers of a few very abundant / active species. If we had used proportions, these species would have dominated the community analyses. We clarified this in the text (line 379-381).

      Line 348: An RDA is constrained by the assumptions / model the authors proposed and "forces" the data into a spatial ordination that resembles this model best. As the authors previously used an unconstrained PERMANOVA, it would be better to also use an NMDS that goes along with the PERMANOVA.

      The initial goal of the RDA was not to directly visualize the results of the PERMANOVA, but to show whether an overall crop configuration effect occurred, both for the whole dataset and per location. We have now added NMDS figures to link them to the PERMANOVA and added these to the supplementary figures (fig S6-S8). We also mention this approach in the methods section (line 387-390).

      Line 355f: This is also a clear indication of the strong annual fluctuations in carabid assemblages as mentioned above.

      Indeed.

      Line 361: 'pairwise'.

      Typo, we changed this.

      Line 362: reference missing.

      Reference added (line 405)

      References

      Alarcón-Segura, V., Grass, I., Breustedt, G., Rohlfs, M., Tscharntke, T., 2022. Strip intercropping of wheat and oilseed rape enhances biodiversity and biological pest control in a conventionally managed farm scenario. J. Appl. Ecol. 59, 1513-1523.

      Boetzl, F.A., Sponsler, D., Albrecht, M., Batáry, P., Birkhofer, K., Knapp, M., Krauss, J., Maas, B., Martin, E.A., Sirami, C., Sutter, L., Bertrand, C., Baillod, A.B., Bota, G., Bretagnolle, V., Brotons, L., Frank, T., Fusser, M., Giralt, D., González, E., Hof, A.R., Luka, H., Marrec, R., Nash, M.A., Ng, K., Plantegenest, M., Poulin, B., Siriwardena, G.M., Tscharntke, T., Tschumi, M., Vialatte, A., Van Vooren, L., Zubair-Anjum, M., Entling, M.H., Steffan-Dewenter, I., Schirmel, J., 2024. Distance functions of carabids in crop fields depend on functional traits, crop type and adjacent habitat: a synthesis. Proceedings of the Royal Society B: Biological Sciences 291, 20232383.

      Hallmann, C.A., Sorg, M., Jongejans, E., Siepel, H., Hofland, N., Schwan, H., Stenmans, W., Müller, A., Sumser, H., Hörren, T., Goulson, D., de Kroon, H., 2017. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS One 12, e0185809.

      Knapp, M., Seidl, M., Knappová, J., Macek, M., Saska, P., 2019. Temporal changes in the spatial distribution of carabid beetles around arable field-woodlot boundaries. Scientific Reports 9, 8967.

      Müller, J., Hothorn, T., Yuan, Y., Seibold, S., Mitesser, O., Rothacher, J., Freund, J., Wild, C., Wolz, M., Menzel, A., 2023. Weather explains the decline and rise of insect biomass over 34 years. Nature.

      Toivonen, M., Huusela, E., Hyvönen, T., Marjamäki, P., Järvinen, A., Kuussaari, M., 2022. Effects of crop type and production method on arable biodiversity in boreal farmland. Agriculture, Ecosystems & Environment 337, 108061.

      Reviewer #3 (Public review):

      Summary:

      In this paper, the authors made a sincere effort to show the effects of strip cropping, a technique of alternating crops in small strips of several meters wide, on ground beetle diversity. They state that strip cropping can be a useful tool for bending the curve of biodiversity loss in agricultural systems as strip cropping shows a relative increase in species diversity (i.e. abundance and species richness) of the ground beetle communities compared to monocultures. Moreover, strip cropping has the added advantage of not having to compromise on agricultural yields.

      Strengths:

      The article is well written; it has an easily readable tone of voice without too much jargon or overly complicated sentence structure. Moreover, as far as reviewing the models in depth without raw data and R scripts allows, the statistical work done by the authors looks good. They have well thought out how to handle heterogenous, yet spatially and temporarily correlated field data. The models applied and the model checks performed are appropriate for the data at hand. Combining RDA and PCA axes together is a nice touch.

      We thank reviewer 3 for their kind words and appreciation for the simple language and analysis that we used.

      Weaknesses:

      The evidence for strip cropping bringing added value for biodiversity is mixed at best. Yes, there is an increase in relative abundance and species richness at the field level, but it is not convincingly shown this difference is robust or can be linked to clear structural and hypothesised advantages of the strip cropping system. The same results could have been used to conclude that there are only very limited signs of real added value of strip cropping compared to monocultures.

      Point well taken. We agree that the effect of strip cropping on carabid beetle communities are subtle and we nuanced the text in the revised version to reflect this. See below for more details on how we revised the manuscript to reflect this point.

      There are a number of reasons for this:

      (1) Significant differences disappear at crop level, as the authors themselves clearly acknowledge, meaning that there are no differences between pairs of similar crops in the strip cropping fields and their respective monoculture. This would mean the strips effectively function as "mini-monocultures".

      This is indeed in line with our conclusions. Based on our data and results, the advantages of strip cropping seem mostly to occur because crops with different communities are now on the same field, rather than that within the strips you get mixtures of communities related to different crops. We discussed this in the first paragraph of the discussion in the original submission (line 161-164).

      The significant relative differences at the field level could be an artifact of aggregation instead of structural differences between strip cropping and monocultures; with enough data points things tend to get significant despite large variance. This should have been elaborated further upon by the authors with additional analyses, designed to find out where differences originate and what it tells about the functioning of the system. Or it should have provided ample reason for cautioning in drawing conclusions about the supposed effectiveness of strip cropping based on these findings.

      We believe that this is a misunderstanding of our approach. In the field-level analyses we pooled samples from the same field (i.e. pseudo-replicates were pooled), resulting in a relatively small sample size of 50 samples. We revised the methods section to better explain this (line 318-322). Therefore, the statement “with enough data points things tend to get significant” is not applicable here.

      (2) The authors report percentages calculated as relative change of species richness and abundance in strip cropping compared to monocultures after rarefaction. This is in itself correct, however, it can be rather tricky to interpret because the perspective on actual species richness and abundance in the fields and treatments is completely lost; the reported percentages are dimensionless. The authors could have provided the average cumulative number of species and abundance after rarefaction. Also, range and/or standard error would have been useful to provide information as to the scale of differences between treatments. This could provide a new perspective on the magnitude of differences between the two treatments which a dimensionless percentage cannot.

      We agree that this would be the preferred approach if we would have had a perfectly balanced dataset. However, this approach is not feasible with our unbalanced design and differences in sampling effort. While we acknowledge the limitation of the interpretation of percentages, it does allow reporting relative changes for each combination of location, year and crop. The number of samples on which the percentages were based were always kept equal (through rarefaction) between the cropping systems (for each combination of location, year and crop), but not among crops, years and location. This approach allowed us to make a better estimation whenever more samples were available, as we did not always have an equal number of samples available between both cropping systems. For example, sometimes we had 2 samples from a strip cropped field and 6 from the monoculture, here we would use rarefaction up to 2 samples (where we would just have a better estimation from the monoculture). In other cases, we had 4 samples in both strip cropped and monoculture fields, and we chose to use rarefaction to 4 samples to get a better estimation altogether. Adding a value for actual richness or abundance to the figures would have distorted these findings, as the variation would be huge (as it would represent the number of ground beetle(s) species per 2 to 6 pitfall samples). Furthermore, the dimension that reviewer 3 describes would thus be “The number of ground beetle species / individuals per 2 to 6 samples”, not a very informative unit either.

      (3) The authors appear to not have modelled the abundance of any of the dominant ground beetle species themselves. Therefore it becomes impossible to assess which important species are responsible (if any) for the differences found in activity density between strip cropping and monocultures and the possible life history traits related reasons for the differences, or lack thereof, that are found. A big advantage of using ground beetles is that many life history traits are well studied and these should be used whenever there is reason, as there clearly is in this case. Moreover, it is unclear which species are responsible for the difference in species richness found at the field level. Are these dominant species or singletons? Do the strip cropping fields contain species that are absent in the monoculture fields and are not the cause of random variation or sampling? Unfortunately, the authors do not report on any of these details of the communities that were found, which makes the results much less robust.

      Thank you for raising this point. We have reconsidered our indicator species analysis and found that it is rather sensitive for rare species and insensitive to changes in common species. Therefore, we have replaced the indicator species analyses with a GLM analysis for the 12 most common genera of ground beetles in the revised manuscript. This will allow us to go more in depth on specific traits of the genera which abundances change depending on the cropping system. In the revised manuscript, we will also discuss these common genera more in depth, rather than focusing on rarer species (line 135-143, 182-200 in discussion). Furthermore, we have added information on rarity and habitat preference to the table that shows species abundances per location (Table S2), and mention these aspects briefly in the results (line 145-153).

      (4) In the discussion they conclude that there is only a limited amount of interstrip movement by ground beetles. Otherwise, the results of the crop-level statistical tests would have shown significant deviation from corresponding monocultures. This is a clear indication that the strips function more like mini-monocultures instead of being more than the sum of its parts.

      This is in line with our point in the first paragraph of the discussion and an important message of our manuscript.

      (5) The RDA results show a modelled variable of differences in community composition between strip cropping and monoculture. Percentages of explained variation of the first RDA axis are extremely low, and even then, the effect of location and/or year appear to peak through (Figure S3), even though these are not part of the modelling. Moreover, there is no indication of clustering of strip cropping on the RDA axis, or in fact on the first principal component axis in the larger RDA models. This means the explanatory power of different treatments is also extremely low. The crop level RDA's show some clustering, but hardly any consistent pattern in either communities of crops or species correlations, indicating that differences between strip cropping and monocultures are very small.

      We agree and we make a similar point in the first paragraph of the discussion (line 160-162).

      Furthermore, there are a number of additional weaknesses in the paper that should be addressed:

      The introduction lacks focus on the issues at hand. Too much space is taken up by facts on insect decline and land sharing vs. land sparing and not enough attention is spent on the scientific discussion underlying the statements made about crop diversification as a restoration strategy. They are simply stated as facts or as hypotheses with many references that are not mentioned or linked to in the text. An explicit link to the results found in the large number of references should be provided.

      We revised the introduction by omitting the land sharing vs. land sparing topic and better linking references to our research findings.

      The mechanistic understanding of strip cropping is what is at stake here. Does strip cropping behave similarly to intercropping, a technique that has been proven to be beneficial to biodiversity because of added effects due to increased resource efficiency and greater plant species richness? This should be the main testing point and agenda of strip cropping. Do the biodiversity benefits that have been shown for intercropping also work in strip cropping fields? The ground beetles are one way to test this. Hypotheses should originate from this and should be stated clearly and mechanistically.

      We agree with the reviewer and clarified this research direction clearer in the introduction of the revised manuscript (line 66-72).

      One could question how useful indicator species analysis (ISA) is for a study in which predominantly highly eurytopic species are found. These are by definition uncritical of their habitat. Is there any mechanistic hypothesis underlying a suspected difference to be found in preferences for either strip cropping or monocultures of the species that were expected to be caught? In other words, did the authors have any a priori reasons to suspect differences, or has this been an exploratory exercise from which unexplained significant results should be used with great caution?

      Point well taken. We agree that the indicator species analysis has limitations and therefore now replaced this with GLM analysis for the 12 most common ground beetle genera.

      However, setting these objections aside there are in fact significant results with strong species associations both with monocultures and strip cropping. Unfortunately, the authors do not dig deeper into the patterns found a posteriori either. Why would some species associate so strongly with strip cropping? Do these species show a pattern of pitfall catches that deviate from other species, in that they are found in a wide range of strips with different crops in one strip cropping field and therefore may benefit from an increased abundance of food or shelter? Also, why would so many species associate with monocultures? Is this in any way logical? Could it be an artifact of the data instead of a meaningful pattern? Unfortunately, the authors do not progress along these lines in the methods and discussion at all.

      We thank reviewer 3 for these valuable perspectives. In the revised manuscript, we further explored the species/genera that respond to cropping systems and discuss these findings in more detail in the revised manuscript (line 182-200 in discussion).

      A second question raised in the introduction is whether the arable fields that form part of this study contain rare species. Unfortunately, the authors do not elaborate further on this. Do they expect rare species to be more prevalent in the strip cropping fields? Why? Has it been shown elsewhere that intercropping provides room for additional rare species?

      The answer is simply no, we did not find more rare species in strip cropping. In the revised manuscript, we added a column for rarity (according to waarneming.nl) in the table showing abundances of species per location (table S2). We only found two rare species, one of which we only found a single individual and one that was more related to the open habitat created by a failed wheat field. We discuss this more in depth in the revised results (line 145-153).

      Considering the implications the results of this research can have on the wider discussion of bending the curve and the effects of agroecological measures, bold claims should be made with extreme restraint and be based on extensive proof and robust findings. I am not convinced by the evidence provided in this article that the claim made by the authors that strip cropping is a useful tool for bending the curve of biodiversity loss is warranted.

      We believe that strip cropping can be a useful tool because farmers readily adopt it and it can result in modest biodiversity gains without yield loss. However, strip cropping is indeed not a silver bullet (which we also don’t claim). We nuanced the implications of our study in the revised manuscript (line 30-35, 232-237).

      Reviewer #3 (Recommendations for the authors):

      General comments:

      (1) I am missing the R script and data files in the manuscript. This is a serious drawback in assessing the quality of the work.

      Datasets and R scripts will be made available upon completion of the manuscript.

      (2) I have doubts about the clarity of the title. It more or less states that strip cropping is designed in order to maintain productivity. However, the main objective of strip cropping is to achieve ecological goals without losing productivity. I suggest a rethink of the title and what it is the authors want to convey.

      As the title lead to false expectations for multiple reviewers regarding analyses on yield, we chose to alter the title and removed any mention of yield in the title.

      (3) Line 22: I would add something along the lines of: "As an alternative to intercropping, strip cropping is pioneerd by Dutch farmers... " This makes the distinction and the connection between the two more clear.

      In our opinion, strip cropping is a form of intercropping. We have changed this sentence to reflect this point better. (line 21-22)

      (4) Line 24: "these" should read "they"

      After changing this sentence, this typo is no longer there (line 24).

      (5) Line 34-48. I think this introduction is too long. The paper is not directly about insect decline, so the authors could consider starting with line 43 and summarising 34-42 in one or two sentences.

      Removed a sentence on insect declines here to make the introduction more streamlined.

      (6) Line 51-59. I am not convinced the land sparing - land sharing idea adds anything to the paper. It is not used in the discussion and solicits much discussion in and of itself unnecessary in this paper. The point the authors want to make is not arable fields compared to natural biodiversity, but with increases in biodiversity in an already heavily degraded ecosystem; intensive agriculture. I think the introduction should focus on that narrative, instead of the land sparing-sharing dichotomy, especially because too little attention is spent on this narrative.

      We removed the section on land-sparing vs land-sharing as it was indeed off-topic.

      (7) Line 85. Dynamics is not correctly used here. It should read Ground beetle communities are sensitive.

      Changed accordingly (line 78-79).

      (8) Line 90-91. Here, it should be added that ground beetles are used as indicators for ground-dwelling insect diversity, not wider insect diversity in agricultural systems. In fact, Gerlach et al., the reference included, clearly warn against using indicator groups in a context that is too wide for a single indicator group to cover and Van Klink (2022) has recently shown in a meta-analysis that the correlation between trends in insect groups is often rather poor.

      We removed the sentence that claimed ground beetles to be indicators of general biodiversity, and have focused the text in general more on ground beetle biodiversity, rather than general biodiversity.

      (9) Line 178: was there a high weed abundance measured in the stripcropping fields? Or has there been reports on higher weed abundance in general? The references provided do not appear to support this claim.

      To our knowledge, there is only one paper on the effect of strip cropping on weeds (Ditzler et al., 2023). This paper shows strip cropping (and more diverse cropping systems) reduce weed cover, but increase weed richness and diversity. We mistakenly mentioned that crop diversification increases weed seed biomass, but have changed this accordingly to weed seed richness. The paper from Carbonne et al. (2022) indeed doesn’t show an effect of crop diversification on weeds. However, it does show a positive relation between weed seed richness and ground beetle activity density. We have moved this citation to the right place in the sentence (line 172-175).

      (10) Line 279-288. The description of sampling with pitfalls is inadequate. Please follow the guidelines for properly incorporating sufficient detail on pitfall sampling protocols as described in Brown & Matthews 2016,

      We were sadly not aware of this paper prior to the experiments, but have at least added information on all characteristics of the pitfall traps as mentioned in the paper (line 290-294).

      (11) Lines 307-310. What reasoning lies behind the choice to focus on the most beetle-rich monocultures? Do the authors have references for this way of comparing treatments? Is there much variation in the monocultures that solicits this approach? It would be preferable if the authors could elaborate on why this method is used, provide references that it is a generally accepted statistical technique and provide additional assesments of the variation in the data so it can be properly related to more familiar exploratory data analysis techniques.

      We ran two analyses for the field-level richness and abundance. First we used all combinations of monocultures and strip cropping. However, as strip cropping is made up of (at least) 2 crops, we had 2 constituent monocultures. As we would count a comparison with the same strip cropped field twice when we included both monocultures, we also chose to run the analyses again with only those monocultures that had the highest richness and abundance. This choice was done to get a conservative estimate of ground beetle richness increases through strip cropping. We explained this methodology further in the statistical analysis section (line 329-335).

      In Figure S6 the order of crop combinations is altered between 2021 on the left and 2022 on the right. This is not helpful to discover any possible patterns.

      We originally chose this order as it represented also the crop rotations, but it is indeed not helpful without that context. Therefore, we chose to change the order to have the same crop combinations within the rows.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      (1) Why was V1 separated from the rest of the visual cortex, and why the rest of the areas were simply lumped into an EVC ROI? It would be helpful to understand the separation into ROIs.

      We thank the reviewer for raising the concerns regarding the definition of ROI. Our approach to analyze V1 separately was based on two key considerations. First, previous studies consistently identify V1 as the main locus of sensory-like templates during featurespecific preparatory attention (Kok et al., 2014; Aitken et al., 2020). Second, V1 shows the strongest orientation selectivity within the visual hierarchy (Priebe, 2016). In contrast, the extrastriate visual cortex (EVC; comprising V2, V2, V3AB and V4) demonstrates broader selectivity, such as complex features like contour and texture (Grill-Spector & Malach, 2004). Thus, we think it would be particularly informative to analyze V1 data separately as our experiment examines orientation-based attention. We should also note that we conducted MVPA separately for each visual ROIs (V2, V3, V3AB and V4). After observing similar patterns of results across these regions, we averaged the decoding accuracies into a single value and labeled it as EVC. This approach allowed us to simplify data presentation while preserving the overall data pattern in decoding performance. We now added the related explanations on the ROI definition in the revised texts (Page 26; Line 576-581).

      (2) It would have been helpful to have a behavioral measure of the "attended" orientation to show that participants in fact attended to a particular orientation and were faster in the cued condition. The cue here was 100% valid, so no such behavioral measure of attention is available here.

      We thank the reviewer for the comments. We agree that including valid and neutral cue trials would have provided valuable behavioral measures of attention; Yet, our current design was aimed at maximizing the number of trials for decoding analysis due to fMRI time constraints. Thus, we could not fit additional conditions to measure the behavioral effects of attention. However, we note that in our previous studies using a similar feature cueing paradigm, we observed benefits of attentional cueing on behavioral performance when comparing valid and neutral conditions (Liu et al., 2007; Jigo et al., 2018). Furthermore, our neural data indeed demonstrated attention-related modulation (as indicated by MVPA results, Fig. 2 in the main texts) so we are confident that on average participants followed the instruction and deployed their attention accordingly. We now added the related explanations on this point in the revised texts (Page 23; Line 492-498).

      (3) As I was reading the manuscript I kept thinking that the word attention in this manuscript can be easily replaced with visual working memory. Have the authors considered what it is about their task or cognitive demand that makes this investigation about attention or working memory?

      We thank the reviewer for this comment. We added the following extensive discussion on this point in the revised texts (Page 18; Line 363-381).

      “It could be argued that preparatory attention relies on the same mechanisms as working memory maintenance. While these functions are intuitively similar and likely overlap, there is also evidence indicating that they can be dissociated (Battistoni et al., 2017). In particular, we note that in our task, attention is guided by symbolic cues (color-orientation associations), while working memory tasks typically present the actual visual stimulus as the memorandum. A central finding in working memory studies is that neural signals during WM maintenance are sensory in nature, as demonstrated by generalizable neural activity patterns from stimulus encoding to maintenance in visual cortex (Harrison & Tong, 2009; Serences et al., 2009; Rademaker et al., 2019). However, in our task, neural signals during preparation were nonsensory, as demonstrated by a lack of such generalization in the No-Ping session (see also Gong et al., 2022). We believe that the differences in cue format and task demand in these studies may account for such differences. In addition to the difference in the sensory nature of the preparatory versus delay-period activity, our ping-related results also exhibited divergence from working memory studies (Wolff et al., 2017; 2020). While these studies used the visual impulse to differentiate active and latent representations of different items (e.g., attended vs. unattended memory item), our study demonstrated the active and latent representations of a single item in different formats (i.e., non-sensory vs. sensory-like). Moreover, unlike our study, the impulse did not evoke sensory-like neural patterns during memory retention (Wolff et al., 2017). These observations suggest that the cognitive and neural processes underlying preparatory attention and working memory maintenance could very well diverge. Future studies are necessary to delineate the relationship between these functions both at the behavioral and neural level.”

      (4) If I understand correctly, the only ROI that showed a significant difference for the crosstask generalization is V1. Was it predicted that only V1 would have two functional states? It should also be made clear that the only difference where the two states differ is V1.

      We thank the reviewer for this comment. We would like to clarify that our analyses revealed similar patterns of preparatory attentional representations in V1 and EVC. During the Ping session, the cross-task generalization analyses revealed decodable information in both V1 and EVC (ps < 0.001), significantly higher than that in the No-Ping session for V1 (independent t-test: t(38) = 3.145, p = 0.003; Cohen’s d = 0.995) and EVC (independent t-test: t(38) = 2.153, p = 0.038, Cohen’s d = 0.681) (Page 10; Line 194-196). While both areas maintained similar representations, additional measures (Mahalanobis distance, neural-behavior relationship and connectivity changes) showed more robust ping-evoked changes in V1 compared to EVC. This differential pattern likely reflects the primary role of V1 in orientation processing, with EVC showing a similar but weaker response profile. We have revised the text to clarity this point (Page 16; Line 327-329).

      (5) My primary concern about the interpretation of the finding is that the result, differences in cross-task decoding within V1 between the ping and no-ping condition might simply be explained by the fact that the ping condition refocuses attention during the long delay thus "resharpening" the template. In the no-ping condition during the 5.5 to 7.5 seconds long delay, attention for orientation might start getting less "crisp." In the ping condition, however, the ping itself might simply serve to refocus attention. So, the result is not showing the difference between the latent and non-latent stages, rather it is the difference between a decaying template representation and a representation during the refocused attentional state. It is important to address this point. Would a simple tone during the delay do the same? If so, the interpretation of the results will be different.

      We thank the reviewer for this comment. The reviewer proposed an alternative account suggesting that visual pings may function to refocus attention, rather than reactivate latent information during the preparatory period. If this account holds (i.e., attention became weaker in the no-ping condition and it was strengthened by the ping due to re-focusing), we would expect to observe a general enhancement of attentional decoding during the preparatory period. However, our data reveal no significant differences in overall attention decoding between two conditions during this period (ps > 0.519; BF<sub>excl</sub> > 3.247), arguing against such a possibility.

      The reviewer also raised an interesting question about whether an auditory tone during preparation could produce effects similar to those observed with visual pings. Although our study did not directly test this possibility, existing literature provides some relevant evidence. In particular, prior studies have shown that latent visual working memory contents are selectively reactivated by visual impulses, but not by auditory stimuli (Wolff et al., 2020). This finding supports the modality-specificity for visually encoded contents, suggesting that sensory impulses must match the representational domain to effectively access latent visual information, which also argues against the refocusing hypothesis above. However, we do think that this is an important question that merits direct investigation in future studies. We now added the related discussion on this point in the revised texts (Page 10, Line 202-203; Page 19, Line 392395).

      (6) The neural pattern distances measured using Mahalanobis values are really great! Have the authors tried to use all of the data, rather than the high AMI and low AMI to possibly show a linear relationship between response times and AMI?

      We thank the reviewer for this comment. We took the reviewer’s suggestion to explore the relationship between attentional modulation index (AMI) and RTs across participants for each session (see Figure 3). In the No-Ping session, we observed no significant correlation between AMI and RT (r = -0.366, p = 0.113). By contrast, the same analysis in the Ping condition revealed a significantly negative correlation (r = -0.518, p = 0.019). These results indicate that the attentional modulations evoked by visual impulse was associated with faster RTs, supporting the functional relevance of activating sensory-like representations during preparation. We have now included these inter-subject correlations in the main texts (Page 13, Line 258-264; Fig 3D and 3E) along with within-subject correlations in the Supplementary Information (Page 6, Line, 85-98; S3 Fig).

      (7) After reading the whole manuscript I still don't understand what the authors think the ping is actually doing, mechanistically. I would have liked a more thorough discussion, rather than referencing previous papers (all by the co-author).

      We thank the reviewer for this comment regarding the mechanistic basis of visual pings. We agree that this warrants deeper discussion. One possibility, as informed by theoretical studies of working memory, is that the sensory-like template could be maintained via an “activity-silent” mechanism through short-term changes in synaptic weights (Mongillo et al., 2008). In this framework, a visual impulse may function as nonspecific inputs that momentarily convert latent traces into detectable activity patterns (Rademaker & Serences, 2017). Related to our findings, it is unlikely that the orientation-specific templates observed during the Ping session emerged from purely non-sensory representations and were entirely induced by an exogenous ping, which was devoid of any orientation signal. Instead, the more parsimonious explanation is that visual impulse reactivated pre-existing latent sensory signals. To our knowledge, the detailed circuit-level mechanism of such reactivation is still unclear; existing evidence only suggests a relationship between ping-evoked inputs and the neural output (Wolff et al., 2017; Fan et al., 2021; Duncan et al., 2023). We now included the discussion on this point in the main texts (Page 19, Line 383-401).

      Reviewer #2 (Public review):

      (1) The origin of the latent sensory-like representation. By 'pinging' the neural activity with a high-contrast, task-irrelevant visual stimulus during the preparation period, the authors identified the representation of the attentional feature target that contains the same information as perceptual representations. The authors interpreted this finding as a 'sensory-like' template is inherently hosted in a latent form in the visual system, which is revealed by the pinging impulse. However, I am not sure whether such a sensory-like template is essentially created, rather than revealed, by the pinging impulses. First, unlike the classical employment of the pinging technique in working memory studies, the (latent) representation of the memoranda during the maintenance period is undisputed because participants could not have performed well in the subsequent memory test otherwise. However, this appears not to be the case in the present study. As shown in Figure 1C, there was no significant difference in behavioral performance between the ping and the no-ping sessions (see also lines 110-125, pg. 5-6). In other words, it seems to me that the subsequent attentional task performance does not necessarily rely on the generation of such sensory-like representations in the preparatory period and that the emergence of such sensory-like representations does not facilitate subsequent attentional performance either. In such a case, one might wonder whether such sensory-like templates are really created, hosted, and eventually utilized during the attentional process. Second, because the reference orientations (i.e. 45 degrees and 135 degrees) have remained unchanged throughout the experiment, it is highly possible that participants implicitly memorized these two orientations as they completed more and more trials. In such a case, one might wonder whether the 'sensory-like' templates are essentially latent working memory representations activated by the pinging as was reported in Wolff et al. (2017), rather than a functional signature of the attentional process.

      We thank the reviewer for this comment. We agree that the question of whether the sensory-like template is created or merely revealed by visual pinging is crucial for the understanding our findings. First, we acknowledge that our task may not be optimized for detecting changes in accuracy, as the task difficulty was controlled using individually adjusted thresholds (i.e., angular difference). Nevertheless, we observed some evidence supporting the neural-behavioral relationships. In particular, the impulse-driven sensory-like template in V1 contributed to facilitated faster RTs during stimulus selection (Page 12, Fig. 3D and 3E in the main texts; also see our response to R1, Point 6).

      Second, the reviewer raised an important concern about whether the attended feature might be stored in the memory system due to the trial-by-trial repetition of attention conditions (attend 45º or attend 135º). Although this is plausible, we don’t think it is likely. We note that neuroimaging evidence shows that attended working memory contents maintain sensory-like representations in visual cortex (Harrison & Tong, 2009; Serences et al., 2009; Rademaker et al., 2019), with generalizable neural activity patterns from perception to working memory delay-period, whereas unattended items in multi-item working memory tasks are stored in a latent state for prospective use (Wolff et al., 2017). Importantly, our task only required maintaining a single attentional template at a time. Thus, there was no need to store it via latent representations, if participants simply used a working memory mechanism for preparatory attention. Had they done so, we should expect to find evidence for a sensory template, i.e., generalizable neural pattern between perception and preparation in the No-Ping condition, which was not what we found. We have mentioned this point in the main texts (Page 18, Line 367-372).

      (2) The coexistence of the two types of attentional templates. The authors interpreted their findings as the outcome of a dual-format mechanism in which 'a non-sensory template' and a latent 'sensory-like' template coexist (e.g. lines 103-106, pg. 5). While I find this interpretation interesting and conceptually elegant, I am not sure whether it is appropriate to term it 'coexistence'. First, it is theoretically possible that there is only one representation in either session (i.e. a non-sensory template in the no-ping session and a sensory-like template in the ping session) in any of the brain regions considered. Second, it seems that there is no direct evidence concerning the temporal relationship between these two types of templates, provided that they commonly emerge in both sessions. Besides, due to the sluggish nature of fMRI data, it is difficult to tell whether the two types of templates temporally overlap.

      We thank the reviewer for the comment regarding our interpretation of the ‘coexistence’ of non-sensory and sensory-like attentional template. While we acknowledge the limitations of fMRI in resolving temporal relationships between these two types of templates, several aspects of our data support a dual-format interpretation.

      First, our key findings remained consistent for the subset of participants (N=14) who completed both No-Ping and Ping sessions in counterbalanced order. It thus seems improbable that participants systematically switched cognitive strategies (e.g., using non-sensory templates in the No-Ping session versus sensory-like templates in the Ping session) in response to the task-irrelevant, uninformative visual impulse. Second, while we agree with the reviewer that the temporal dynamics between these two templates remain unclear, it is difficult to imagine that orientation-specific templates observed during the Ping session emerged de novo from a purely non-sensory templates and an exogenous ping. In other words, if there is no orientation information at all to begin with, how does it come into being from an orientation-less external ping? It seems to us that the more parsimonious explanation is that there was already some orientation signal in a latent format, and it was activated by the ping, in line with the models of “activity-silent” working memory. To address these concerns, we have added the related discussion of these alternative interpretations in the main texts (Page 19, Line 387-391)

      (3) The representational distance. The authors used Mahalanobis distance to quantify the similarity of neural representation between different conditions. According to the authors' hypothesis, one would expect greater pattern similarity between 'attend leftward' and 'perceived leftward' in the ping session in comparison to the no-ping session. However, this appears not to be the case. As shown in Figures 3B and C, there was no major difference in Mahalanobis distance between the two sessions in either ROI and the authors did not report a significant main effect of the session in any of the ANOVAs. Besides, in all the ANOVAs, the authors reported only the statistic term corresponding to the interaction effect without showing the descriptive statistics related to the interaction effect. It is strongly advised that these descriptive statistics related to the interaction effect should be included to facilitate a more effective and intuitive understanding of their data.

      We thank the reviewer for this comment. We expected greater pattern similarity between 'attend leftward' and 'perceived leftward' in the Ping session in comparison to the Noping session. This prediction was supported by a significant three-way interaction effect between session × attended orientation × perceived orientation (F(1,38) = 5.00, p = 0.031, η<sub>p</sub><sup>2</sup> = 0.116). In particular, there was a significant interaction between attended orientation × perceived orientation (F(1,19) = 9.335, p = 0.007, η<sub>p</sub><sup>2</sup> = 0.329) in the Ping session, but not in the No-Ping session (F(1,19) = 0.017, p = 0.898, η<sub>p</sub><sup>2</sup> = 0.001). These above-mentioned statistical results were reported in the original texts. In addition, this three-way mixed ANOVA (session × attended orientation × perceived orientation) on Mahalanobis distance in V1 revealed no significant main effects (session: F(1,38) = 0.009, p = 0.923, η<sub>p</sub><sup>2</sup> < 0.001; attended orientation: F(1,38) = 0.116, p = 0.735, η<sub>p</sub><sup>2</sup> = 0.003; perceived orientation: (F(1,38) = 1.106, p = 0.300, η<sub>p</sub><sup>2</sup> = 0.028). We agree with the reviewer that a complete reporting of analyses enhances understanding of the data. Therefore, we have now included the main effects in the main texts (Page 11, Line 233).

      We thank the reviewer for the suggestion regarding the inclusion of descriptive statistics for interaction effects. However, since the data were already visualized in Fig. 3B and 3C in the main texts, to maintain conciseness and consistency with the reporting style of other analyses in the texts, we have opted to include these statistics in the Supplementary Information (Page 5, Table 1).

      Reviewer #3 (Public review):

      (1) The title is "Dual-format Attentional Template," yet the supporting evidence for the nonsensory format and its guiding function is quite weak. The author could consider conducting further generalization analysis from stimulus selection to preparation stages to explore whether additional information emerges.

      We thank the reviewer for this comment. Our approach to investigate whether preparatory attention is encoded in sensory or non-sensory format - by training classifier using separate runs of perception task – closely followed methods from previous studies (Stokes et al., 2009; Peelen et al., 2011; Kok et al., 2017). Following the reviewer’s suggestion, we performed generalization analyses by training classifiers on activity during the stimulus selection period and testing them preparatory activity. However, we observed no significant generalization effects in either No-Ping and Ping sessions (ps > 0.780). This null result may stem from a key difference in the neural representations: classifiers trained on neural activity from stimulus selection period necessarily encode both target and distractor information, thus relying on somewhat different information than classifier trained exclusively on isolated target information in the perception task.

      (2) In Figure 2, the author did not find any decodable sensory-like coding in IPS and PFC, even during the impulse-driven session, indicating that these regions do not represent sensory-like information. However, in the final section, the author claimed that the impulse-driven sensorylike template strengthens informational connectivity between sensory and frontoparietal areas. This raises a question: how can we reconcile the lack of decodable coding in these frontoparietal regions with the reported enhancement in network communication? It would be helpful if the author provided a clearer explanation or additional evidence to bridge this gap.

      We thank the reviewer for this comment. We would like to clarity that although we did not observe sensory-like coding during preparation in frontoparietal areas, we did observe attentional signals in these regions, as evidenced by the above-chance within-task attention decoding performance (Fig. 2 in the main texts). This could reflect different neural codes in different areas, and suggests that inter-regional communication does not necessarily require identical representational formats. It seems plausible that the representation of a non-sensory attentional template in frontoparietal areas supports top-down attentional control, consistent with theories suggesting increasing abstraction as the cortical hierarchy ascends (Badre, 2008; Brincat et al., 2018), and their interaction with the sensory representation in the visual areas is enhanced by the visual impulse.

      (3) Given that the impulse-driven sensory-like template facilitated behavior, the author proposed that it might also enhance network communication. Indeed, they observed changes in informational connectivity. However, it remains unclear whether these changes in network communication have a direct and robust relationship with behavioral improvements.

      We thank the reviewer for the suggestion. To examine how network communication relates to behavior, we performed a correlation analysis between information connectivity (IC) and RTs across participants (see Figure S5). We observed a trend of correlations between V1-PFC connectivity and RTs in the Ping session (r = -0.394, p = 0.086), but not in the NoPing session (r = -0.046, <i.p\</i> = 0.846). No significant correlations were found between V1-IPS and RTs (\ps\ > 0.400) or between ICs and accuracy (ps > 0.399). These results suggests that ping-enhanced connectivity might contributed to facilitated responses. Although we may not have sufficient statistical power to warrant a strong conclusion, we think this result is still highly suggestive, so we now added the texts in the Supplementary Information (Page 8, Line 116121; S5 Fig) and mentioned this result in the main texts (Page 14, Line 292-293).

      (4) I'm uncertain about the definition of the sensory-like template in this paper. Is it referring to the Ping impulse-driven condition or the decodable performance in the early visual cortex? If it is the former, even in working memory, whether pinging identifies an activity-silent mechanism is currently debated. If it's the latter, the authors should consider whether a causal relationship - such as "activating the sensory-like template strengthens the informational connectivity between sensory and frontoparietal areas" - is reasonable.

      We apologize for the confusions. The sensory-like template by itself does not directly refer to representations under Ping session or the attentional decoding in early visual cortex. Instead, it pertains to the representational format of attentional signals during preparation. Specifically, its existence is inferred from cross-task generalization, where neural patterns from a perception task (perceive 45º or perceive 135º) generalize to an attention task (attend 45 º or attend 135º). We think this is a reasonable and accepted operational definition of the representational format. Our findings suggest that the sensory-like template likely existed in a latent state and was reactivated by visual pings, aligning more closely with the first account raised by the reviewer.

      We agree with the reviewer that whether ping identifies an activity-silent mechanism is currently debated (Schneegans & Bays, 2017; Barbosa et al., 2021). It is possible that visual impulse amplified a subtle but active representation of the sensory template during attentional preparation and resulted in decodable performance in visual cortex. Distinguishing between these two accounts likely requires neurophysiological measurements, which are beyond the scope of the current study. We have explicitly addressed this limitation in our Discussion (Page 19, Line 395-399).

      Nevertheless, the latent sensory-like template account remains plausible for three reasons. First, our interpretation aligns with theoretical framework proposing that the brain maintains more veridical, detailed target templates than those typically utilized for guiding attention (Wolfe, 2021; Yu et al., 2023). Second, this explanation is consistent with the proposed utility of latent working memory for prospective use, as maintaining a latent sensory-like template during preparation would be useful for subsequent stimulus selection. The latter point was further supported by the reviewer’s suggestion about whether “activating the sensory-like template strengthens the informational connectivity between sensory and frontoparietal areas is reasonable”. Our additional analyses (also refer to our response to Reviewer 3, Point 3) suggested that impulse-enhanced V1-PFC connectivity was associated with a trend of faster behavioral responses (r = -0.394, p = 0.086; see Supplementary Information, Page 8, Line 116-121; S5 Fig). Considering these findings in totality, we think it is reasonable to suggest that visual impulse may strengthen information flow among areas to enhance attentional control.

      Recommendation for the Authors:

      Reviewer #1 (Recommendation for the authors):

      I hate to suggest another fMRI experiment, but in order to make strong claims about two states, I would want to see the methodological and interpretation confounds addressed. Ping condition - would a tone lead to the same result of sharpening the template? If so, then why? Can a ping be manipulated in its effectiveness? That would be an excellent manipulation condition.

      We thank the reviewer for the comments. Please refer to our reply to Reviewer 1, Point 5 for detailed explanation.

      Reviewer #2 (Recommendation for the authors):

      It is strongly advised that these descriptive statistics related to the interaction effect should be included to facilitate a more effective understanding of their data.

      We thank the reviewer for the comments. We now included the relevant descriptive statistics in the Supplementary Information, Table 1.

      Reviewer #3 (Recommendation for the authors):

      In addition to p-values, I see many instances of 'ps'. Does this indicate the plural form of p?

      We used ‘ps’ to denote the minimal p-value across multiple statistical analyses, such as when applying identical tests to different region groups.

      References

      Aitken, F., Menelaou, G., Warrington, O., Koolschijn, R. S., Corbin, N., Callaghan, M. F., & Kok, P. (2020). Prior expectations evoke stimulus-specific activity in the deep layers of the primary visual cortex. PLoS Biology, 18(12), e3001023.

      Badre, D. (2008). Cognitive control, hierarchy, and the rostro–caudal organization of the frontal lobes. Trends in Cognitive Sciences, 12(5), 193-200.

      Barbosa, J., Lozano-Soldevilla, D., & Compte, A. (2021). Pinging the brain with visual impulses reveals electrically active, not activity-silent, working memories. PLoS Biology, 19(10), e3001436.

      Battistoni, E., Stein, T., & Peelen, M. V. (2017). Preparatory attention in visual cortex. Annals of the New York Academy of Sciences, 1396(1), 92-107.

      Brincat, S. L., Siegel, M., von Nicolai, C., & Miller, E. K. (2018). Gradual progression from sensory to task-related processing in cerebral cortex. Proceedings of the National Academy of Sciences, 115(30), E7202-E7211.

      Duncan, D. H., van Moorselaar, D., & Theeuwes, J. (2023). Pinging the brain to reveal the hidden attentional priority map using encephalography. Nature Communications, 14(1), 4749.

      Grill-Spector, K., & Malach, R. (2004). The human visual cortex. Annual Review of Neuroscience, 27(1), 649-677.

      Gong, M., Chen, Y., & Liu, T. (2022). Preparatory attention to visual features primarily relies on nonsensory representation. Scientific Reports, 12(1), 21726.

      Fan, Y., Han, Q., Guo, S., & Luo, H. (2021). Distinct Neural Representations of Content and Ordinal Structure in Auditory Sequence Memory. Journal of Neuroscience, 41(29), 6290–6303.

      Harrison, S. A., & Tong, F. (2009). Decoding reveals the contents of visual working memory in early visual areas. Nature, 458(7238), 632-635.

      Jigo, M., Gong, M., & Liu, T. (2018). Neural determinants of task performance during feature-based attention in human cortex. eNeuro, 5(1).

      Kok, P., Failing, M. F., & de Lange, F. P. (2014). Prior expectations evoke stimulus templates in the primary visual cortex. Journal of Cognitive Neuroscience, 26(7), 1546-1554.

      Kok, P., Mostert, P., & De Lange, F. P. (2017). Prior expectations induce prestimulus sensory templates. Proceedings of the National Academy of Sciences, 114(39), 10473-10478.

      Liu, T., Stevens, S. T., & Carrasco, M. (2007). Comparing the time course and efficacy of spatial and feature-based attention. Vision Research, 47(1), 108-113.

      Mongillo, G., Barak, O., & Tsodyks, M. (2008). Synaptic theory of working memory. Science, 319(5869), 1543-1546.

      Peelen, M. V., & Kastner, S. (2011). A neural basis for real-world visual search in human occipitotemporal cortex. Proceedings of the National Academy of Sciences, 108(29), 12125-12130. Priebe, N. J. (2016). Mechanisms of orientation selectivity in the primary visual cortex. Annual Review of Vision Science, 2(1), 85-107.

      Rademaker, R. L., & Serences, J. T. (2017). Pinging the brain to reveal hidden memories. Nature Neuroscience, 20(6), 767-769.

      Rademaker, R. L., Chunharas, C., & Serences, J. T. (2019). Coexisting representations of sensory and mnemonic information in human visual cortex. Nature Neuroscience, 22(8), 1336-1344.

      Serences, J. T., Ester, E. F., Vogel, E. K., & Awh, E. (2009). Stimulus-specific delay activity in human primary visual cortex. Psychological Science, 20(2), 207-214.

      Schneegans, S., & Bays, P. M. (2017). Restoration of fMRI decodability does not imply latent working memory states. Journal of Cognitive Neuroscience, 29(12), 1977-1994.

      Stokes, M., Thompson, R., Nobre, A. C., & Duncan, J. (2009). Shape-specific preparatory activity mediates attention to targets in human visual cortex. Proceedings of the National Academy of Sciences, 106(46), 19569-19574.

      Wolfe, J. M. (2021). Guided Search 6.0: An updated model of visual search. Psychonomic Bulletin & Review, 28(4), 1060-1092.

      Wolff, M. J., Jochim, J., Akyürek, E. G., & Stokes, M. G. (2017). Dynamic hidden states underlying working-memory-guided behavior. Nature Neuroscience, 20(6), 864 – 871.

      Wolff, M. J., Kandemir, G., Stokes, M. G., & Akyürek, E. G. (2020). Unimodal and bimodal access to sensory working memories by auditory and visual impulses. Journal of Neuroscience, 40(3), 671-681.

      Yu, X., Zhou, Z., Becker, S. I., Boettcher, S. E., & Geng, J. J. (2023). Good-enough attentional guidance. Trends in Cognitive Sciences, 27(4), 391-403.

    1. Reviewer #1 (Public review):

      This study is part of an ongoing effort to clarify the effects of cochlear neural degeneration (CND) on auditory processing in listeners with normal audiograms. This effort is important because ~10% of people who seek help for hearing difficulties have normal audiograms and current hearing healthcare has nothing to offer them.

      The authors identify two shortcomings in previous work that they intend to fix. The first is a lack of cross-species studies that make direct comparisons between animal models in which CND can be confirmed and humans for which CND must be inferred indirectly. The second is the low sensitivity of purely perceptual measures to subtle changes in auditory processing. To fix these shortcomings, the authors measure envelope following responses (EFRs) in gerbils and humans using the same sounds, while also performing histological analysis of the gerbil cochleae, and testing speech perception while measuring pupil size in the humans.

      The study begins with a comprehensive assessment of the hearing status of the human listeners. The only differences found between the young adult (YA) and middle aged (MA) groups are in thresholds at frequencies > 10 kHz and DPOAE amplitudes at frequencies > 5 kHz. The authors then present the EFR results, first for the humans and then for the gerbils, showing that amplitudes decrease more rapidly with increasing envelope frequency for MA than for YA in both species. The histological analysis of the gerbil cochleae shows that there were, on average, 20% fewer IHC-AN synapses at the 3 kHz place in MA relative to YA, and the number of synapses per IHC was correlated with the EFR amplitude at 1024 Hz.

      The study then returns to the humans to report the results of the speech perception tests and pupillometry. The correct understanding of keywords decreased more rapidly with decreasing SNR in MA than in YA, with a noticeable difference at 0 dB, while pupillary slope (a proxy for listening effort) increased more rapidly with decreasing SNR for MA than for YA, with the largest differences at SNRs between 5 and 15 dB. Finally, the authors report that a linear combination of audiometric threshold, EFR amplitude at 1024 Hz, and a few measures of pupillary slope is predictive of speech perception at 0 dB SNR.

      I only have two questions/concerns about the specific methodologies used:

      (1) Synapse counts were made only at the 3 kHz place on the cochlea. But the EFR sounds were presented at 85 dB SPL, which means that a rather large section of the cochlea will actually be excited. Do we know how much of the EFR actually reflects AN fibers coming from the 3 kHz place? And are we sure that this is the same for gerbils and humans given the differences in cochlear geometry, head size, etc.?

      [Note added after revision: the authors have added new data, references, and discussion that have answered my initial questions].

      (2) Unless I misunderstood, the predictive power of the final model was not tested on held out data. The standard way to fit and test such model would be to split the data into two segments, one for training and hyperparameter optimization, and one for testing. But it seems that the only spilt was for training and hyperparameter optimization.

      [Note added after revision: the authors now make it clear in their response that the modeling tells us how much of the current data can be explained but not necessary about generalization to other datasets.]

      While I find the study to be generally well executed, I am left wondering what to make of it all. The purpose of the study with respect to fixing previous methodological shortcomings was clear, but exactly how fixings these shortcomings has allowed us to advance is not. I think we can be more confident than before that EFR amplitude is sensitive to CND, and we now know that measures of listening effort may also be sensitive to CND. But where is this leading us?

      I think what this line of work is eventually aiming for is to develop a clinical tool that can be used to infer someone's CND profile. That seems like a worthwhile goal but getting there will require going beyond exploratory association studies. I think we're ready to start being explicit about what properties a CND inference tool would need to be practically useful. I have no idea whether the associations reported in this study are encouraging or not because I have no idea what level of inferential power is ultimately required.

      [Note added after revision: the authors have added to the Discussion to put their work into a broader perspective.]

      That brings me to my final comment: there is an inappropriate emphasis on statistical significance. The sample size was chosen arbitrarily. What if the sample had been half the size? Then few, if any, of the observed effects would have been significant. What if the sample had been twice the size? Then many more of the observed effects would have been significant (particularly for the pupillometry). I hope that future studies will follow a more principled approach in which relevant effect sizes are pre-specified (ideally as the strength of association that would be practically useful) and sample sizes are determined accordingly.

      [Note added after revision: my intention with this comment was not to make a philosophical or nitty-gritty point about statistics. It was more of a follow on to the previous point. Because I don't know what sort of effect size is big enough to matter (for whatever purpose), I don't find the statistical significance (or lack thereof) of the effect size observed to be informative. But I don't think there is anything more that the authors can or should do in this regard.]

      So, in summary, I think this study is a valuable but limited advance. The results increase my confidence that non-invasive measures can be used to infer underlying CND, but I am unsure how much closer we are to anything that is practically useful.

    2. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      This study is part of an ongoing effort to clarify the effects of cochlear neural degeneration (CND) on auditory processing in listeners with normal audiograms. This effort is important because ~10% of people who seek help for hearing difficulties have normal audiograms and current hearing healthcare has nothing to offer them.

      The authors identify two shortcomings in previous work that they intend to fix. The first is a lack of cross-species studies that make direct comparisons between animal models in which CND can be confirmed and humans for which CND must be inferred indirectly. The second is the low sensitivity of purely perceptual measures to subtle changes in auditory processing. To fix these shortcomings, the authors measure envelope following responses (EFRs) in gerbils and humans using the same sounds, while also performing histological analysis of the gerbil cochleae, and testing speech perception while measuring pupil size in the humans.

      The study begins with a comprehensive assessment of the hearing status of the human listeners. The only differences found between the young adult (YA) and middle-aged (MA) groups are in thresholds at frequencies > 10 kHz and DPOAE amplitudes at frequencies > 5 kHz. The authors then present the EFR results, first for the humans and then for the gerbils, showing that amplitudes decrease more rapidly with increasing envelope frequency for MA than for YA in both species. The histological analysis of the gerbil cochleae shows that there were, on average, 20% fewer IHC-AN synapses at the 3 kHz place in MA relative to YA, and the number of synapses per IHC was correlated with the EFR amplitude at 1024 Hz.

      The study then returns to the humans to report the results of the speech perception tests and pupillometry. The correct understanding of keywords decreased more rapidly with decreasing SNR in MA than in YA, with a noticeable difference at 0 dB, while pupillary slope (a proxy for listening effort) increased more rapidly with decreasing SNR for MA than for YA, with the largest differences at SNRs between 5 and 15 dB. Finally, the authors report that a linear combination of audiometric threshold, EFR amplitude at 1024 Hz, and a few measures of pupillary slope is predictive of speech perception at 0 dB SNR.

      I only have two questions/concerns about the specific methodologies used:

      (1) Synapse counts were made only at the 3 kHz place on the cochlea. However, the EFR sounds were presented at 85 dB SPL, which means that a rather large section of the cochlea will actually be excited. Do we know how much of the EFR actually reflects AN fibers coming from the 3 kHz place? And are we sure that this is the same for gerbils and humans given the differences in cochlear geometry, head size, etc.?

      Thank you for raising this important point. The frequency regions that contribute to the generation of EFRs, especially at the suprathreshold sound levels presented here are expected to be broad, with a greater leaning towards higher frequencies and reaching up to one octave above the center frequency. We have investigated this phenomenon in earlier published articles using both low/high pass masking noise and computational models using data from rodent models and humans (Encina-Llamas et al. 2017; Parthasarathy, Lai, and Bartlett 2016). So, the expectation here is that the EFRs reflect a wider frequency region centered at 3 kHz. The difference in cochlear activation regions between humans and gerbils for EFRs have not been systematically studied to our knowledge but given the general agreement between humans and other rodent models stated above, we expect this to be similar to gerbils as well. Additionally, all current evidence points to cochlear synapse loss with age being flat across frequencies, in contrast to cochlear synapse loss with noise which is dependent on the bandwidth of the noise exposure.

      Histological evidence for this flat loss across frequencies is found in mice and human temporal bones (Parthasarathy and Kujawa 2018; Sergeyenko et al. 2013; Wu et al. 2018). We find this to be true in our gerbils as well. Author response image 1 shows the patterns of synapse loss as a function of cochlear place. We focused on synapse loss at 3 kHz to keep the analysis focused on the center frequency of the stimulus and minimize compounding errors due to averaging synapse counts across multiple frequency regions. We have now added some explanatory language in the discussion.

      Author response image 1.

      Cochlear synapse counts per inner hair cell (IHC) in young and middle-aged gerbils as a function of cochlear frequency.

      (2) Unless I misunderstood, the predictive power of the final model was not tested on heldout data. The standard way to fit and test such a model would be to split the data into two segments, one for training and hyperparameter optimization, and one for testing. But it seems that the only split was for training and hyperparameter optimization.

      The goal of the analysis in this current manuscript was inference, rather than prediction, i.e., to find the important/significant variables that contribute to speech intelligibility in noise, rather than predicting the behavioral deficit of speech performance in a yet-unforeseen sample of adults.

      Additionally, we used a repeated 10-fold cross-validation approach for our model building exercise as detailed in the Elastic Net Regression section of the methods. This repeated-cross validation calculated the mean square error on a held-out fold and average it repeatedly to reduce the inherent variability of randomly choosing a validation set. The repeated 10-fold CV approach is both more stable and efficient compared to a validation set approach, or splitting the data into two segments: training and test, and provides a better estimate of the test error by utilizing more observations for training (vide Chapter 5,(James et al. 2021). These predictive MSEs along with the R-squared for the final model give us a good idea of the predictive performance, as, for the linear model the R-squared is the correlation between the observed and the predicted response. Future studies with a larger sample size can facilitate having a designated test set and still have enough statistical power to perform predictive analyses.

      While I find the study to be generally well executed, I am left wondering what to make of it all. The purpose of the study with respect to fixing previous methodological shortcomings was clear, but exactly how fixing these shortcomings has allowed us to advance is not. I think we can be more confident than before that EFR amplitude is sensitive to CND, and we now know that measures of listening effort may also be sensitive to CND. But where is this leading us? I think what this line of work is eventually aiming for is to develop a clinical tool that can be used to infer someone's CND profile. That seems like a worthwhile goal but getting there will require going beyond exploratory association studies. I think we're ready to start being explicit about what properties a CND inference tool would need to be practically useful. I have no idea whether the associations reported in this study are encouraging or not because I have no idea what level of inferential power is ultimately required.

      Studies with CND have so far been largely inferential in humans, since currently we cannot confirm CND in vivo. Hence any measures of putative CND in humans can only be interpreted based on evidence from other animal studies. Our translational approach is partly meant to address this deficit, as mentioned in the Introduction section. By using identical stimuli, recording, acquisition and analysis parameters we hope to reduce some of the variability that may be associated with this inference between human and other animal models. Until direct measurements of CND in humans are possible, the intended goal is to provide diagnostic biomarkers that have face validity – i.e., that explain variance related to speech intelligibility deficits in this population.

      We’ve added more to the discussion to state that our work demonstrates the need for next generation diagnostic measures of auditory processing that incorporate cognitive factors associated with listening effort to better capture speech in noise perceptual abilities.

      That brings me to my final comment: there is an inappropriate emphasis on statistical significance. The sample size was chosen arbitrarily. What if the sample had been half the size? Then few, if any, of the observed effects would have been significant. What if the sample had been twice the size? Then many more of the observed effects would have been significant (particularly for the pupillometry). I hope that future studies will follow a more principled approach in which relevant effect sizes are pre-specified (ideally as the strength of association that would be practically useful) and sample sizes are determined accordingly.

      We agree that pre-determining sample sizes is the optimal approach towards designing a study. The sample sizes here were chosen a priori based on previously published data in young adults with normal hearing thresholds (McHaney et al. 2024; Parthasarathy et al. 2020). With the lack of published literature especially for the EFRs at 1024Hz AM in middle aged adults, there are practical challenges in pre-determining the sample size (given a prefixed power and an effect size) with limited precursors to supply good estimates of the parameters (e.g., mean, s.d. for each age group for a two-sample test). We hope that this data set now shared will enable us and other researchers to conduct power analyses for successive studies that use similar metrics on this population.

      Several authors, including Heinsburg and Weeks (2022) argue that post-hoc power could be “misleading and simply not informative” and encourage using other indicators of poorly powered studies such as the width of the confidence interval. Since the elastic net estimate is a non-linear and non-differentiable function of the response values—even for fixed tuning parameters—it is difficult to obtain an accurate estimate of its standard error (Tibshirani and Taylor 2012). While acknowledging the limitations of post-hoc power analyses, we performed a retrospective power calculation for our linear model with the predictors that we selected (EFR @ 1024Hz, Pupil slope for QuickSIN at selected SNRs and analyses windows, and PTA). The calculated Cohen’s effect size was 0.56, which is considered large (Cohen 2013). With this effect size, a power analysis with our sample size revealed a very high retrospective power of 0.99 with a significance level of 0.05. The minimum number of subjects needed to get 80% power with this effect size was N = 21. Hence for the final model, we are confident that our results hold true with adequate statistical power.

      So, in summary, I think this study is a valuable but limited advance. The results increase my confidence that non-invasive measures can be used to infer underlying CND, but I am unsure how much closer we are to anything that is practically useful.

      Thank you for your comments. We hope that this study establishes a framework for the eventual development of the next generation of objective diagnostics tests in the hearing clinic that provide insights into the underlying neurophysiology of the auditory pathway and take into effect top-down contributors such as listening effort.

      Reviewer #2 (Public review):

      Summary:

      This paper addresses the bottom-up and top-down causes of hearing difficulties in middleaged adults with clinically-normal audiograms using a cross-species approach (humans vs. gerbils, each with two age groups) mixing behavioral tests and electrophysiology. The study is not only a follow-up of Parthasarathy et al (eLife 2020), since there are several important differences.

      Parthasarathy et al. (2020) only considered a group of young normal-hearing individuals with normal audiograms yet with high complaints of hearing in noisy situations. Here, this issue is considered specifically regarding aging, using a between-subject design comparing young NH and older NH individuals recruited from the general population, without additional criterion (i.e. no specifically high problems of hearing in noise). In addition, this is a cross-species approach, with the same physiological EFR measurements with the same stimuli deployed on gerbils.

      This article is of very high quality. It is extremely clear, and the results show clearly a decrease of neural phase-locking to high modulation frequencies in both middle-aged humans and gerbils, compared to younger groups/cohorts. In addition, pupillometry measurements conducted during the QuickSIN task suggest increased listening efforts in middle-aged participants, and a statistical model including both EFRs and pupillometry features suggests that both factors contribute to reduced speech-in-noise intelligibility evidenced in middle-aged individuals, beyond their slight differences in audiometric thresholds (although they were clinically normal in both groups).

      These provide strong support to the view that normal aging in humans leads to auditory nerve synaptic loss (cochlear neural degeneration - CNR- or, put differently, cochlear synaptopathy) as well as increased listening effort, before any clearly visible audiometric deficits as defined in current clinical standards. This result is very important for the community since we are still missing direct evidence that cochlear synaptopathy might likely underlie a significant part of hearing difficulties in complex environments for listeners with normal thresholds, such as middle-aged and senior listeners. This paper shows that these difficulties can be reasonably well accounted for by this sensory disorder (CND), but also that listening effort, i.e. a top-down factor, further contributes to this problem. The methods are sound and well described and I would like to emphasize that they are presented concisely yet in a very precise manner so that they can be understood very easily - even for a reader who is not familiar with the employed techniques. I believe this study will be of interest to a broad readership.

      I have some comments and questions which I think would make the paper even stronger once addressed.

      Main comments:

      (1) Presentation of EFR analyses / Interpretation of EFR differences found in both gerbils and humans:

      a) Could the authors comment further on why they think they found a significant difference only at the highest mod. frequency of 1024 Hz in their study? Indeed, previous studies employing SAM or RAM tones very similar to the ones employed here were able to show age effects already at lower modulation freqs. of ~100H; e.g. there are clear age effects reported in human studies of Vasilikov et al. (2021) or Mepani et al. (2021), and also in animals (see Garrett et al. bioXiv: https://www.biorxiv.org/content/biorxiv/early/2024/04/30/2020.06.09.142950.full.p df).

      Previously published studies in animal models by us and others suggests that EFRs elicited to AM rates > 700Hz are most sensitive to confirmed CND (Parthasarathy and Kujawa 2018; Shaheen, Valero, and Liberman 2015). This is likely because these AM rates fall well outside of phase-locking limits in the auditory midbrain and cortex (Joris, Schreiner, and Rees 2004), and hence represent a ‘cleaner’ signal from the auditory periphery that may not be modulated by complex excitatory/inhibitory feedback circuits present more centrally (Caspary et al. 2008). We have also demonstrated that we are able to acquire high quality EFRs at 1024Hz AM rates both in a previously published study in young normal hearing adults (McHaney et al. 2024), and in middle aged adults in the present study as seen in Fig. 1 H-J. We posit that the lack of age-related differences at the lower AM rates may be indicative of compensatory plasticity with age (central ‘gain’) that occurs with age in more central regions of the auditory pathway (Auerbach, Radziwon, and Salvi 2019; Parthasarathy and Kujawa 2018). We now expand on this in the discussion. A secondary reason for the lack of change in slower modulation rates may be the difference in stimulus between sinusoidally amplitude modulated tones used here, and the rectangular amplitude modulated tones in other studies, as discussed in response to the comment below.

      Furthermore, some previous EEG experiments in humans that SAM tones with modulation freqs. of ~100Hz showed that EFRs do not exhibit a single peak, i.e. there are peaks not only at fm but also for the first harmonics (e.g. 2fm or 3fm) see e.g.Garrett et al. bioXiv https://www.biorxiv.org/content/biorxiv/early/2024/04/30/2020.06.09.142950.full.pd f. Did the authors try to extract EFR strength by looking at the summed amplitude of multiple peaks (Vasilikov Hear Res. 2021), in particular for the lower modulation frequencies? (indeed, there will be no harmonics for the higher mod. freqs).

      We examined peak amplitudes for the AM rate and harmonics for the 110 Hz AM condition as shown in Author response image 2. The quantified amplitudes of the first four harmonics did not differ with age (ps > .08).

      Additionally, the harmonic structures obtained were also not as robust as would be expected with rectangular amplitude modulated stimuli. The choice of sinusoidal modulation may explain why. We have previously published studies systematically modulating the rise time of the envelope per cycle in amplitude modulated tones, where the individual period of the envelope is described by Env (t) = t<sup>x</sup> (1-t), where t goes from 0 to 1 in one period, and where x = 0.05 represents a highly damped envelope akin to the rising envelope f a rectangular modulation, and x = 1 representing a symmetric, near-sinusoidal envelope (Parthasarathy and Bartlett 2011). The harmonic structure was much more developed in the damped envelopes compared to the symmetric envelopes and response amplitudes were also higher for the damped envelopes overall, a result also observed in Mepani et. al., 2021. Hence, we believe the rapid rise time may contribute to the harmonic structures evidenced in studies using RAM stimuli, and the absence of this rapid onset may result in reduced harmonic structures in our EFRs. Some language regarding this issue is now added to the discussion.

      Author response image 2.

      Harmonics analysis for the first four harmonics of envelope following responses elicited to the 110Hz AM stimulus.

      b) How do the present EFR results relate to FFR results, where effects of age are already at low carrier freqs? (e.g. Märcher-Rørsted et al., Hear. Res., 2022 for pure tones with freq < 500 Hz). Do the authors think it could be explained by the fact that this is not the same cochlear region, and that synapses die earlier in higher compared to lower CFs? This should be discussed. Beyond the main group effect of age, there were no negative correlations of EFRs with age in the data?

      We believe the current results are in close agreement with these studies showing deficits in pure tone phase locking with age. These tones are typically at ~300-500Hz or above, and phase locking to these tones likely involves the same or similar peripheral neural generators in the auditory nerve and brainstem. Emerging evidence also seems to suggest that TFS coding measured using pure tone phase locking is closely related to sound with amplitude modulation in the same range (Ponsot et al. 2024). Unpublished observations from our lab support this view as well. In this data set, we begin to see EFR responses at 512 Hz diverge with age, but this difference does not reach statistical significance. This may be due to specific AM frequencies selected or a lack of statistical power. Using more continuous AM frequency sweeps such as with our recently published dynamic amplitude modulated tones (Parida et al. 2024) may help resolve these AM frequency specific challenges and help us investigate changes over a broader range of AM frequencies. Ongoing studies are currently exploring this hypothesis. Some explanatory language is now presented in the discussion.

      (2) Size of the effects / comparing age effects between two species:

      Although the size of the age effect on EFRs cannot be directly compared between humans and gerbils - the comparison remains qualitative - could the authors at least provide references regarding the rate of synaptic loss with aging in both humans and gerbils, so that we understand that the yNH/MA difference can be compared between the two age groups used for gerbils; it would have been critical in case of a non-significant age effect in one species.

      Current evidence seems to suggest that humans have more synaptic loss than gerbils, though exact comparison of lifespan between the two species is challenging due to differences in slopes of growth trajectories between species. Post-mortem temporal bone studies demonstrate a ~40-50% loss of synapses in humans by the fifth decade of life. On the other hand, our gerbils in the current study showed approximately 15-20% loss. Based on our findings and previous studies, it is reasonable to assume that our gerbil data underestimate the temporal processing deficits that would be seen in humans due to CND.

      We have added this information and citations to the discussion section.

      Equalization/control of stimuli differences across the two species: For measuring EFRs, SAM stimuli were presented at 85 dB SPL for humans vs. 30 dB above the detection threshold (inferred from ABRs) for gerbils - I do not think the results strongly depend on this choice, but it would be good to comment on why you did not choose also to present stimuli 30 dB above thresholds in humans.

      We chose to record EFRs to stimuli presented at 85 dB SPL in humans, as opposed to 30 dB SL, because 30 dB SL in humans would have corresponded to an intensity that makes EEG recordings unfeasible. The average PTA across younger and middle-aged adults was 7.51 dB HL (~19.51 dB SPL), which would have resulted in an average stimulus intensity of ~50 dB SPL at 30 dB SL. This intensity level would have been far too low to reliably record EFRs without presenting many thousands of trials. In a pilot study, we recorded EFRs at 75 dB SL, which equated to an average of 83.9 dB SPL. Thus, we chose the suprathreshold level of 85 dB SPL for the current study to obtain reliable responses with just 1000 trials.

      Simulations of EFRs using functional models could have been used to understand (at least in humans) how the differences in EFRs obtained between the two groups are quantitatively compatible with the differences in % of remaining synaptic connections known from histopathological studies for their age range (see the approach in Märcher-Rørsted et al., Hear. Res., 2022)

      We agree with the reviewer that phenomenological models would be a useful approach to examining differences between age groups and species. We have previously used the Zilany/Carney model to examine differences in EFRs with age in rats (Parthasarathy, Lai, and Bartlett 2016). It is unclear if such models will directly translate to responses form gerbils. However, this is a subject of ongoing study in our lab.

      (3) Synergetic effects of CND and listening effort:

      Could you test whether there is an interaction between CND and listening effort? (e.g. one could hypothesize that MA subjects with the largest CND have also higher listening effort).

      We have previously reported that EFRs and listening effort are not linearly related (McHaney et al. 2024). We found the same to be largely true in the current study as well. We ran correlations between EFR amplitudes at 1024 Hz and listening effort at each SNR level in the listening and integrations windows. We did not observe any significant relationships between EFRs at 1024 Hz and listening effort in the listening window (all ps > .05). In the integration window, we did see a significant correlation between listening effort at SNR 5 and EFRs at 1024 Hz, which was significant after correcting for multiple comparisons (r = -.42, p-adj = .021). However, we chose to not report these multiple oneto-one correlations in the current study and instead opted for the elastic net regression analysis to better understand the multifactorial contributions to speech-in-noise abilities. These results also do not preclude non-linear relationships between listening effort and EFRs which may be present based on emerging results (Bramhall, Buran, and McMillan 2025), and will be explored in future studies.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      A few more minor comments/questions:

      (1) How old were the YA gerbils on average? 18 weeks, or 19 weeks, or 22 weeks?

      Young gerbils were on average 22 weeks. We have updated the manuscript accordingly.

      (2) "Gerbils share the same hearing frequency range as humans" is misleading; the gerbil hearing range extends to much higher frequencies.

      We have revised the statement to say: “The hearing range of gerbils largely overlaps with that of humans, making them an ideal animal model for direct comparison in crossspecies studies.”

      (3) The writing contains more than a few typos and grammatical errors.

      We have completed a thorough revision to correct for grammatical and typographical errors.

      (4) Suggesting that correlation and linear modelling are "independent" methods is misleading since they are both measuring linear associations. A better word would be "different".

      Thank you for this suggestion. We have rephrased the sentence as “two separate approaches”

      (5) The phrase "Our results reveal perceptual deficits ... driven by CND" in the abstract is too strong. Correlation is not causation.

      We have revised this phrase to say they “are associated with CND.”

      Reviewer #2 (Recommendations for the authors):

      More general comments:

      (1) Recruitment criterion related to hearing-in-noise difficulties:

      If I understood correctly, the middle-aged participants recruited for this study do not have specific hearing in noise difficulties, some could, as with 10% in the general population, but they were not recruited using this criterion. If this is correct, this should be stated explicitly, as it constitutes an important methodological choice and a difference with your eLife 2020 study. If you were to use this specific recruitment criterion for both groups here, what differences would you expect?

      Our participants were not required to have specific complaints of speech perception in noise challenges to be eligible for this study. We included middle-aged adults here, as opposed to only younger adults as in Parthasarathy et al. (2020), with the assumption that middle-aged adults were likely to have some cochlear synapse loss and individual variability in the degree of synapse loss based on post-mortem data from human temporal bones. We have recently published studies identifying the specific clinical populations of patients with self-perceived hearing loss, including those adults who have received assessments for auditory processing disorders (Cancel et al. 2023). Ongoing studies in the lab are aimed at recruiting from this population.

      It is striking here that the QuickSIN test does not exhibit the same variability at low SNRS here as with the digits-in-noise used in your eLife 2020 study. Why would QuickSIN more appropriate than the Digits-in-noise test? Would you expect the same results with the Digits-in-noise test?

      Our 2020 eLife study investigated the effects of TFS coding in multi-talker speech intelligibility. TFS coding is specifically hypothesized to be related to multi-talker speech, compared to broadband maskers. The digits test was appropriate in that context as the ‘masker’ there was two competing speakers also speaking digits. In this study, we wanted to test the effects of CND on speech in noise perception using clinically relevant speech in noise tests. The Digits test is devoid of linguistic context and is essentially closed set (participants know that only a digit will be presented). However, QuickSIN consists of open set sentences of moderate context, making it closer to real world listening situations. Additionally, we recently published pupillometry recorded in response to QuickSIN in young adults ((McHaney et al. 2024) and identified QuickSIN as a promising screening tool for self-perceived hearing difficulties (Cancel et al. 2023). These factors informed our choice of using QuickSIN in the current study.

      (2) Why is the increase in listening effort interpreted as an increase in gain? please clarify (p10, 1st paragraph; [these data suggest a decrease in peripheral neural coding, with a concomitant increase in central auditory activity or 'gain'])

      In the above referenced paragraph, we were discussing the increase in 40 Hz AM rate EFRs in middle-aged adults as an increase in central gain. We have revised parts of this paragraph to better communicate that we were discussing the EFRs and not listening effort: “We observed decreases in EFRs at modulation rates that were selective to the auditory periphery (i.e., 1024 Hz) in middle-aged adults, while EFRs primarily generated from the central auditory structures were not different from those in younger adults (Fig. 1K). These data suggest that middle-aged adults exhibited an increase in central auditory activity, or ‘gain’, in the presence of decreased peripheral neural coding. The perceptual consequences of this gain are unclear, but our findings align with emerging evidence suggesting that gain is associated with selective deficits in speech-in-noise abilities”

      (3) Further discussion on the relationship/differences between markers EFR marker of CND (this study) and MEMR marker of CND(Bharadwaj et al., 2022) is needed.

      We now make mention of other candidate markers of CND (ABR wave I and MEMRs) in the discussion and expand on why we chose the EFR.

      (4) Further analyses and discussion would be needed to be related to extended high-freq thresholds:

      Did you test for a potential correlation of your EFR marker of CND with extended high-freq. thresholds ? (could be paralleling the amount of CND in these individuals) Why won't you also consider measuring extended HF in Gerbils?

      We acknowledge that there is increasing evidence to suggest extended high frequency thresholds may be an early marker for hidden hearing loss/CND. We have examined an additional correlation for extended high frequency pure tone averages (8k-16k Hz) with EFR amplitudes at 1024 Hz AM rate, which revealed a significant relationship (r = -.43, p < .001). However, we opted to exclude this analysis from our current study as we wanted to reduce reporting on several one-to-one correlations. Therefore, we chose the elastic net regression model to examine individual contributions to speech in noise abilities. EHF thresholds were included in the elastic net regression models, but were not found to be significant upon accounting for individual differences in PTA.

      Additionally, our electrophysiological experimental paradigm was not designed with the consideration of extended high frequencies—we used ER3C transducers which are not optimal for frequencies above ~6kHz. Future studies could use transducers such as the ER2 or free field speakers to examine the influence of extended high frequencies on the EFRs and measure high frequency thresholds in gerbils.

      Minor Comments:

      (1) Abstract: repetition of 'later in life' in the first two sentences - please reformulate.

      We have revised the first two sentences to state: “Middle-age is a critical period of rapid changes in brain function that presents an opportunity for early diagnostics and intervention for neurodegenerative conditions later in life. Hearing loss is one such early indicator linked to many comorbidities in older age.”

      (2) Sentence on page 3 [However, these behavioral readouts may minimize subliminal changes in perception that are reflected in listening effort but not in accuracies (26-28)] is not clear.

      We’ve added a sentence just after that states: “Specifically, two individuals may show similar accuracies on a listening task, but one individual may need to exert substantially more listening effort to achieve the same accuracy as the other.”

      (3) The second paragraph of page 11 should go to a methods (model) section, not to the discussion.

      We have now moved a portion of this paragraph to the Elastic Net Regression subsection of the Statistical Analysis in the Methods.

      (4) Please checks references: references 13 and 25 are identical.

      Fixed

      References

      Auerbach, Benjamin D., Kelly Radziwon, and Richard Salvi. 2019. “Testing the Central Gain Model: Loudness Growth Correlates with Central Auditory Gain Enhancement in a Rodent Model of Hyperacusis.” Neuroscience 407:93–107. https://doi.org/10.1016/j.neuroscience.2018.09.036.

      Bramhall, Naomi F., Brad N. Buran, and Garnett P. McMillan. 2025. “Associations Between Physiological Indicators of Cochlear Deafferentation and Listening Effort in Military Veterans with Normal Audiograms.” Hearing Research, April, 109263. https://doi.org/10.1016/j.heares.2025.109263.

      Cancel, Victoria E., Jacie R. McHaney, Virginia Milne, Catherine Palmer, and Aravindakshan Parthasarathy. 2023. “A Data-Driven Approach to Identify a Rapid Screener for Auditory Processing Disorder Testing Referrals in Adults.” Scientific Reports 13 (1): 13636. https://doi.org/10.1038/s41598-023-40645-0.

      Caspary, D. M., L. Ling, J. G. Turner, and L. F. Hughes. 2008. “Inhibitory Neurotransmission, Plasticity and Aging in the Mammalian Central Auditory System.” Journal of Experimental Biology 211 (11): 1781–91. https://doi.org/10.1242/jeb.013581.

      Cohen, Jacob. 2013. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. New York: Routledge. https://doi.org/10.4324/9780203771587.

      Encina-Llamas, Gerard, Aravindakshan Parthasarathy, James Michael Harte, Torsten Dau, Sharon G. Kujawa, Barbara Shinn-Cunningham, and Bastian Epp. 2017. “Hidden Hearing Loss with Envelope Following Responses (EFRs): The off-Frequency Problem: 40th MidWinter Meeting of the Association for Research in Otolaryngology.” In .

      James, Gareth, Daniela Witten, Trevor Hastie, and Robert Tibshirani. 2021. An Introduction to Statistical Learning: With Applications in R. Springer Texts in Statistics. New York, NY: Springer US. https://doi.org/10.1007/978-1-0716-1418-1.

      Joris, P. X., C. E. Schreiner, and A. Rees. 2004. “Neural Processing of Amplitude-Modulated Sounds.” Physiological Reviews 84 (2): 541–77. https://doi.org/10.1152/physrev.00029.2003.

      McHaney, Jacie R., Kenneth E. Hancock, Daniel B. Polley, and Aravindakshan Parthasarathy. 2024. “Sensory Representations and Pupil-Indexed Listening Effort Provide Complementary Contributions to Multi-Talker Speech Intelligibility.” Scientific Reports 14 (1): 30882. https://doi.org/10.1038/s41598-024-81673-8.

      Parida, Satyabrata, Kimberly Yurasits, Victoria E. Cancel, Maggie E. Zink, Claire Mitchell, Meredith C. Ziliak, Audrey V. Harrison, Edward L. Bartlett, and Aravindakshan Parthasarathy. 2024. “Rapid and Objective Assessment of Auditory Temporal Processing Using Dynamic Amplitude-Modulated Stimuli.” Communications Biology 7 (1): 1–10. https://doi.org/10.1038/s42003-024-07187-1.

      Parthasarathy, A., and E. L. Bartlett. 2011. “Age-Related Auditory Deficits in Temporal Processing in F-344 Rats.” Neuroscience 192:619–30. https://doi.org/10.1016/j.neuroscience.2011.06.042.

      Parthasarathy, A., J. Lai, and E. L. Bartlett. 2016. “Age-Related Changes in Processing Simultaneous Amplitude Modulated Sounds Assessed Using Envelope Following Responses.” Jaro-Journal of the Association for Research in Otolaryngology 17 (2): 119–32. https://doi.org/10.1007/s10162-016-0554-z.

      Parthasarathy, A., Kenneth E Hancock, Kara Bennett, Victor DeGruttola, and Daniel B Polley. 2020. “Bottom-up and Top-down Neural Signatures of Disordered Multi-Talker Speech Perception in Adults with Normal Hearing.” Edited by Barbara G Shinn-Cunningham, Huan Luo, Fan-Gang Zeng, and Christian Lorenzi. eLife 9 (January):e51419. https://doi.org/10.7554/eLife.51419.

      Parthasarathy, Aravindakshan, and Sharon G. Kujawa. 2018. “Synaptopathy in the Aging Cochlea: Characterizing Early-Neural Deficits in Auditory Temporal Envelope Processing.” The Journal of Neuroscience. https://doi.org/10.1523/jneurosci.324017.2018.

      Ponsot, Emmanuel, Pauline Devolder, Ingeborg Dhooge, and Sarah Verhulst. 2024. “AgeRelated Decline in Neural Phase-Locking to Envelope and Temporal Fine Structure Revealed by Frequency Following Responses: A Potential Signature of Cochlear Synaptopathy Impairing Speech Intelligibility.” bioRxiv. https://doi.org/10.1101/2024.12.11.628010.

      Sergeyenko, Yevgeniya, Kumud Lall, M. Charles Liberman, and Sharon G. Kujawa. 2013. “Age-Related Cochlear Synaptopathy: An Early-Onset Contributor to Auditory Functional Decline.” Journal of Neuroscience 33 (34): 13686–94. https://doi.org/10.1523/jneurosci.1783-13.2013.

      Shaheen, L. A., M. D. Valero, and M. C. Liberman. 2015. “Towards a Diagnosis of Cochlear Neuropathy with Envelope Following Responses.” J Assoc Res Otolaryngol. https://doi.org/10.1007/s10162-015-0539-3.

      Tibshirani, Ryan J., and Jonathan Taylor. 2012. “Degrees of Freedom in Lasso Problems.” The Annals of Statistics 40 (2): 1198–1232. https://doi.org/10.1214/12-AOS1003.

      Wu, P. Z., L. D. Liberman, K. Bennett, V. de Gruttola, J. T. O’Malley, and M. C. Liberman. 2018. “Primary Neural Degeneration in the Human Cochlea: Evidence for Hidden Hearing Loss in the Aging Ear.” Neuroscience. https://doi.org/10.1016/j.neuroscience.2018.07.053.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public review):

      Wang et al. investigated how sexual failure influences sweet taste perception in male Drosophila. The study revealed that courtship failure leads to decreased sweet sensitivity and feeding behavior via dopaminergic signaling. Specifically, the authors identified a group of dopaminergic neurons projecting to the suboesophageal zone that interacts with sweet-sensing Gr5a+ neurons. These dopaminergic neurons positively regulate the sweet sensitivity of Gr5a+ neurons via DopR1 and Dop2R receptors. Sexual failure diminishes the activity of these dopaminergic neurons, leading to reduced sweet-taste sensitivity and sugar-feeding behavior in male flies. These findings highlight the role of dopaminergic neurons in integrating reproductive experiences to modulate appetitive sensory responses.

      Previous studies have explored the dopaminergic-to-Gr5a+ neuronal pathways in regulating sugar feeding under hunger conditions. Starvation has been shown to increase dopamine release from a subset of TH-GAL4 labeled neurons, known as TH-VUM, in the suboesophageal zone. This enhanced dopamine release activates dopamine receptors in Gr5a+ neurons, heightening their sensitivity to sugar and promoting sucrose acceptance in flies. Since the function of the dopaminergic-to-Gr5a+ circuit motif has been well established, the primary contribution of Wang et al. is to show that mating failure in male flies can also engage this circuit to modulate sugar-feeding behavior. This contribution is valuable because it highlights the role of dopaminergic neurons in integrating diverse internal state signals to inform behavioral decisions.

      An intriguing discrepancy between Wang et al. and earlier studies lies in the involvement of dopamine receptors in Gr5a+ neurons. Prior research has shown that Dop2R and DopEcR, but not DopR1, mediate starvation-induced enhancement of sugar sensitivity in Gr5a+ neurons. In contrast, Wang et al. found that DopR1 and Dop2R, but not DopEcR, are involved in the sexual failure-induced decrease in sugar sensitivity in these neurons. I wish the authors had further explored or discussed this discrepancy, as it is unclear how dopamine release selectively engages different receptors to modulate neuronal sensitivity in a context-dependent manner.

      Our immunostaining experiments showed that three dopamine receptors, Dop1R1, Dop2R, and DopEcR were expressed in Gr5a<sup>+</sup> neurons in the proboscis, which was consistent with previous findings by using RT-PCR (Inagaki et al 2012). As the reviewer pointed out, we found that Dop1R1 and Dop2R were required for courtship failure-induced suppression of sugar sensitivity, whereas Marella et al 2012 and Inagaki et al 2012 found that Dop2R and DopEcR were required for starvation-induced enhancement of sugar sensitivity. These results may suggest that different internal states (courtship failure vs. starvation) modulate the peripheral sensory system via different signaling pathways (e.g. different subsets of dopaminergic neurons; different dopamine release mechanisms; and different dopamine receptors). We have discussed these possibilities in the revised manuscript.

      The data presented by Wang et al. are solid and effectively support their conclusions. However, certain aspects of their experimental design, data analysis, and interpretation warrant further review, as outlined below.

      (1) The authors did not explicitly indicate the feeding status of the flies, but it appears they were not starved. However, the naive and satisfied flies in this study displayed high feeding and PER baselines, similar to those observed in starved flies in other studies. This raises the concern that sexually failed flies may have consumed additional food during the 4.5-hour conditioning period, potentially lowering their baseline hunger levels and subsequently reducing PER responses. This alternative explanation is worth considering, as an earlier study demonstrated that sexually deprived males consumed more alcohol, and both alcohol and food are known rewards for flies. To address this concern, the authors could remove food during the conditioning phase to rule out its influence on the results.

      This is an important consideration. To rule out potential confound from food intake during courtship conditioning, we have now also conducted courtship conditioning in vials absent of food. In the absence of any feeding opportunity over the 4.5-hour courtship conditioning period, sexually rejected males still exhibited a robust decrease in sweet taste sensitivity compared with Naïve and Satisfied controls (Figure 1-supplement 1C). These data confirm that the suppression of PER is driven by courtship failure per se, rather than by differences in feeding during the conditioning phase.

      (2) Figure 1B reveals that approximately half of the males in the Failed group did not consume sucrose yet Figure 1-S1A suggests that the total volume consumed remained unchanged. Were the flies that did not consume sucrose omitted from the dataset presented in Figure 1-S1A? If so, does this imply that only half of the male flies experience sexual failure, or that sexual failure affects only half of males while the others remain unaffected? The authors should clarify this point.

      Our initial description of the experimental setup might be a bit confusing. Here is a brief clarification of our experimental design and we have further clarified the details in the revised manuscript, which should resolve the reviewer’s concerns:

      After the behavioral conditioning, male flies were divided for two assays. On the one hand, we quantified PER responses of individual flies. As shown in Figure 1C, Failed males exhibited decreased sweet sensitivity (as demonstrated by the right shift of the dose-response curve). On the other hand, we sought to quantify food consumption of individual flies by using the MAFE assay (Qi et al 2005).

      In the initial submission, we used 400 mM sucrose for the MAFE assay. When presented with 400 mM sucrose, approximately 100% of the flies in the Naïve and Satisfied groups, and 50% of the flies in the Failed group, extended their proboscis and started feeding, as a natural consequence of decreased sugar sensitivity (Figure 1B). We were able to quantify the actual volume of food consumed of these flies showing PER responses towards 400 mM sucrose and observed no change (Figure 1-supplement 1A, left). To avoid potential confusion, we have now repeated the MAFE assay with 800 mM sucrose, which elicited feeding in ~100% of flies among all three groups, as shown in Figure 1C. Again, we observed no change in food intake (Figure 1-supplement 1A, right).

      These experiments in combination suggest that sexual failure suppresses sweet sensitivity of the Failed males. Meanwhile, as long as they still responded to a certain food stimulus and initiated feeding, the volume of food consumption remained unchanged. These results led us to focus on the modulatory effect of sexual failure on the sensory system, the main topic of this present study.

      (3) The evidence linking TH-GAL4 labeled dopaminergic neurons to reduced sugar sensitivity in Gr5a+ neurons in sexually failed males could be further strengthened. Ideally, the authors would have activated TH-GAL4 neurons and observed whether this restored GCaMP responses in Gr5a+ neurons in sexually failed males. Instead, the authors performed a less direct experiment, shown in Figures 3-S1C and D. The manuscript does not describe the condition of the flies used in this experiment, but it appears that they were not sexually conditioned. I have two concerns with this experiment. First, no statistical analysis was provided to support the enhancement of sucrose responses following activation of TH-GAL4 neurons. Second, without performing this experiment in sexually failed males, the authors lack direct evidence to confirm that the dampened response of Gr5a+ neurons to sucrose results from decreased activity in TH-GAL4 neurons.

      We have now quantified the effect of TH<sup>+</sup> neuron activation on Gr5a<sup>+</sup> neuron calcium responses. in Naïve males, dTRPA1-mediated activation of TH<sup>+</sup> cells significantly enhanced sucrose-induced calcium responses (Figure 3-supplement 1C); while in Failed males, the baseline activity of Gr5a<sup>+</sup> neurons was lower (Figure 3C), the same activation also produced significant (even slightly larger) effect on the calcium responses of Gr5a<sup>+</sup> neurons (Figure 3-supplement 1D).

      Taken together, we would argue that these experiments using both Naïve and Failed males were adequate to show a functional link between TH<sup>+</sup> neurons and Gr5a<sup>+</sup> neurons. Combining with the results that these neurons form active synapses (Figure 3-supplement 1B) and that the activity of TH<sup>+</sup> neurons was dampened in sexually failed males (Figure 3G-I), our data support the notion that sexual failure suppresses sweet sensitivity via TH-Gr5a circuitry.

      (4) The statistical methods used in this study are poorly described, making it unclear which method was used for each experiment. I suggest that the authors include a clear description of the statistical methods used for each experiment in the figure legends. Furthermore, as I have pointed out, there is a lack of statistical comparisons in Figures 3-S1C and D, a similar problem exists for Figures 6E and F.

      We have added detailed information of statistical analysis in each figure legend.

      (5) The experiments in Figure 5 lack specificity. The target neurons in this study are Gr5a+ neurons, which are directly involved in sugar sensing. However, the authors used the less specific Dop1R1- and Dop2R-GAL4 lines for their manipulations. Using Gr5a-GAL4 to specifically target Gr5a+ neurons would provide greater precision and ensure that the observed effects are directly attributable to the modulation of Gr5a+ neurons, rather than being influenced by potential off-target effects from other neuronal populations expressing these dopamine receptors.

      We agree with the reviewer that manipulating Dop1R1 and Dop2R genes (Figure 4) and the neurons expressing them (Figure 5) might have broader impacts. For specificity, we have also tested the role of Dop1R1 and Dop2R in Gr5a<sup>+</sup> neurons by RNAi experiments (Figure 6). As shown by both behavioral and calcium imaging experiments, knocking down Dop1R1 and Dop2R in Gr5a<sup>+</sup> neurons both eliminated the effect of sexual failure to dampen sweet sensitivity, further confirming the role of these two receptors in Gr5a<sup>+</sup> neurons.

      (6) I found the results presented in Fig. 6F puzzling. The knockdown of Dop2R in Gr5a+ neurons would be expected to decrease sucrose responses in naive and satisfied flies, given the role of Dop2R in enhancing sweet sensitivity. However, the figure shows an apparent increase in responses across all three groups, which contradicts this expectation. The authors may want to provide an explanation for this unexpected result.

      We agree that there might be some potential discrepancies. We have now addressed the issues by re-conducting these calcium imaging experiments again with a head-to-head comparison with the controls (Gr5a-GCaMP, +/- Dop1R1 and Dop2R RNAi).

      In these new experiments, Dop1R1 or Dop2R knockdown completely prevented the suppression of Gr5a<sup>+</sup> neuron responsiveness by courtship failure (Figure 6E), whereas the activities of Gr5a<sup>+</sup> neurons in Naïve/Satisfied groups were not altered. These results demonstrate that Dop1R1 and Dop2R are specifically required to mediate the decrease in sweet sensitivity following courtship failure.

      (7) In several instances in the manuscript, the authors described the effects of silencing dopamine signaling pathways or knocking down dopamine receptors in Gr5a neurons with phrases such as 'no longer exhibited reduced sweet sensitivity' (e.g., L269 and L288), 'prevent the reduction of sweet sensitivity' (e.g., L292), or 'this suppression was reversed' (e.g. L299). I found these descriptions misleading, as they suggest that sweet sensitivity in naive and satisfied groups remains normal while the reduction in failed flies is specifically prevented or reversed. However, this is not the case. The data indicate that these manipulations result in an overall decrease in sweet sensitivity across all groups, such that a further reduction in failed flies is not observed. I recommend revising these descriptions to accurately reflect the observed phenotypes and avoid any confusion regarding the effects of these manipulations.

      We have changed the wording in the revised manuscript. In brief, we think that these manipulations have two consequences: suppressing the overall sweet sensitivity, and eliminating the effect of sexual failure on sweet sensitivity.

      Reviewer #2 (Public review):

      Summary:

      The authors exposed naïve male flies to different groups of females, either mated or virgin. Male flies can successfully copulate with virgin females; however, they are rejected by mated females. This rejection reduces sugar preference and sensitivity in males. Investigating the underlying neural circuits, the authors show that dopamine signaling onto GR5a sensory neurons is required for reduced sugar preference. GR5a sensory neurons respond less to sugar exposure when they lack dopamine receptors.

      Strengths:

      The findings add another strong phenotype to the existing dataset about brain-wide neuromodulatory effects of mating. The authors use several state-of-the-art methods, such as activity-dependent GRASP to decipher the underlying neural circuitry. They further perform rigorous behavioral tests and provide convincing evidence for the local labellar circuit.

      Weaknesses:

      The authors focus on the circuit connection between dopamine and gustatory sensory neurons in the male SEZ. Therefore, it is still unknown how mating modulates dopamine signaling and what possible implications on other behaviors might result from a reduced sugar preference.

      We agree with the reviewer that in the current study, we did not examine the exact mechanism of how mating experience suppressed the activity of dopaminergic neurons in the SEZ. The current study mainly focused on the behavioral characterization (sexual failure suppresses sweet sensitivity) and the downstream mechanism (TH-Gr5a pathway). We think that examining the upstream modulatory mechanism may be more suitable for a separate future study.

      We believe that a sustained reduction in sweet sensitivity (not limited to sucrose but extend to other sweet compounds Figure 1-supplement 1D-E) upon courtship failure suggests a generalized and sustained consequence on reward-related behaviors. Sexual failure may thus resemble a state of “primitive emotion” in fruit flies. We have further discussed this possibility in the revised manuscript.

      Reviewer #3 (Public review):

      Summary

      In this work, the authors asked how mating experience impacts reward perception and processing. For this, they employ fruit flies as a model, with a combination of behavioral, immunostaining, and live calcium imaging approaches.

      Their study allowed them to demonstrate that courtship failure decreases the fraction of flies motivated to eat sweet compounds, revealing a link between reproductive stress and reward-related behaviors. This effect is mediated by a small group of dopaminergic neurons projecting to the SEZ. After courtship failure, these dopaminergic neurons exhibit reduced activity, leading to decreased Gr5a+ neuron activity via Dop1R1 and Dop2R signaling, and leading to reduced sweet sensitivity. The authors therefore showed how mating failure influences broader behavioral outputs through suppression of the dopamine-mediated reward system and underscores the interactions between reproductive and reward pathways.

      Concern

      My main concern regarding this study lies in the way the authors chose to present their results. If I understood correctly, they provided evidence that mating failure induces a decrease in the fraction of flies exhibiting PER. However, they also showed that food consumption was not affected (Fig. 1, supplement), suggesting that individuals who did eat consumed more. This raises questions about the analysis and interpretation of the results. Should we consider the group as a whole, with a reduced sensitivity to sweetness, or should we focus on individuals, with each one eating more? I am also concerned about how this could influence the results obtained using live imaging approaches, as the flies being imaged might or might not have been motivated to eat during the feeding assays. I would like the authors to clarify their choice of analysis and discuss this critical point, as the interpretation of the results could potentially be the opposite of what is presented in the manuscript.

      Please refer to our responses to the Public Review (Reviewer 1, Point 2) for details.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      (1) The label for the y-axis in Figure 1B should be "fraction", not "percentage".

      We have revised the figure as suggested.

      (2) I suggest that the authors indicate the ROIs they used to quantify the signal intensity in Figure 3E and G.

      We have revised the figures as suggested.

      (3) There is a typo in Figure 4A: it should be "Wilde type", not "Wide type".

      We have revised the figure as suggested.

      (4) The elav-GAL4/+ data in Figure 4-S1B, C, and D appears to be reused across these panels. However, the number of asterisks indicating significance in the MAT plots differs between them (three in panels B and C, and four in panel D). Is this a typo?

      It is indeed a typo, and we have revised the figure accordingly.

      Reviewer #2 (Recommendations for the authors):

      Additional comments:

      The authors should add this missing literature about dopamine and neuromodulation in courtship:

      Boehm et al., 2022 (eLife) - this study shows that mating affects olfactory behavior in females.

      Cazalé-Debat et al., 2024 (Nature) - Mating proximity blinds threat perception.

      Gautham et al., 2024 (Nature) - A dopamine-gated learning circuit underpins reproductive state-dependent odor preference in Drosophila females.

      We have added these references in the introduction section.

      Has the mating behavior been quantified? How often did males copulate with mated and virgin females?

      We tried to examine the copulation behavior based on our video recordings. In the “Failed” group (males paired with mated females), we observed virtually no successful copulation events at all, confirming that nearly 100% of those males experienced sexual failure. In contrast, males in the “Satisfied” group (paired with virgin females) mated on average 2-3 times during the 4.5-hour conditioning period. We have added some explanations in the manuscript.

      Do the rejected males live shorter? Is the effect also visible when they are fed with normal fly food, or is it only working with sugar?

      We did not directly measure the lifespan of these males. But we conducted a relevant assay (starvation resistance), in which “Failed” males died significantly faster than both Naïve and Satisfied controls, indicating a clear reduction in their ability to endure food deprivation (Figure 1-supplement 1B). Since sweet taste is a primary cue for food detection in Drosophila, and sugar makes up a large portion of their standard diet, the drop in sugar sensitivity we observed in Failed males could likewise impair their perception and consumption of regular fly food, hence their resistance to starvation.

      Also, the authors mention that the reward pathway is affected, this is probably the case as sugar sensation is impaired. One interesting experiment would be (and maybe has been done?) to test rejected males in normal odor-fructose conditioning. The data would suggest that they would do worse.

      We have already measured how courtship failure affected fructose sensitivity (Figure 1 supplement 1D), and we found that the reduction in fructose perception was even more profound than for sucrose. We have not yet tested whether Failed males showed deficits in odor-fructose associative conditioning. That was indeed a very interesting direction to explore. But olfactory reward learning relies on molecular and circuit mechanisms distinct from those governing taste. We therefore argue such experiments would be more suitable in a separate, follow up study.

      The authors could have added another group where males are exposed to other males. It would be interesting if this is also a "stressful" context and if it would also reduce sugar preference - probably beyond the scope of this paper.

      In our experiments, all flies, including those in the Naïve, Failed, and Satisfied groups, were housed in groups of 25 males per vial before the conditioning period (and the Naïve group remained in the same group housing until PER testing). This means every cohort experienced the same level of “social stress” from male-male interactions. While it would indeed be interesting to compare that to solitary housing or other male-only exposures, isolation itself imposes a different kind of stress, and disentangling these effects on sugar preference would require a separate, dedicated study beyond the scope of the present work.

      Would the behavior effect also show up with experienced males? Maybe this has been tested before. Does mating rejection in formerly successful males have the same impact?

      As suggested by the reviewer, we performed an additional experiment in which males that had previously mated successfully were subsequently subjected to courtship rejection. As shown in Figure 1 supplement 1F, prior successful mating did not prevent the decline in sweet sensitivity induced by subsequent mating failure, indicating that even experienced males exhibit the reduction in sugar sensitivity after rejection.

      Is the same circuit present and functioning in females? Does manipulating dopamine receptors in GR5a neurons in females lead to the same phenotype? This would suggest that different internal states in males and females could lead to the same phenotype and circuit modulations.

      This is indeed a very interesting suggestion. In male flies, Gr5a-specific knockdown of dopamine receptors did not alter baseline sweet sensitivity, but it selectively prevented the reduction in sugar perception that followed mating failure (Figure 6C-D), indicating that this dopaminergic pathway is engaged only in the context of courtship rejection. By extension, knocking down the same receptors in female GR5a neurons would likewise be expected to leave their basal sugar sensitivity unchanged. Moreover, because there is currently no established paradigm for inducing mating failure in female flies, we cannot yet test whether sexual rejection similarly modulates sweet taste in females, or whether it operates via the same circuit.

      Reviewer #3 (Recommendations for the authors):

      Suggestions to the authors:

      Introduction, line 61. I suggest the authors add references in fruit flies concerning the rewarding nature of mating. For example, the paper from Zhang et al, 2016 "Dopaminergic Circuitry Underlying Mating Drive" demonstrates the role of the dopamine rewarding system in mating drive. There is a large body of literature showing the link between dopamine and mating.

      We have added this literature in the introduction section.

      Figure 1B and Figure Supplement 1: If I understood correctly, Figure Supplement 1A shows that the total food consumption across all tested flies remains unchanged. However, fewer flies that failed to mate consumed sucrose. I would be curious to see the results for sucrose consumption per individual fly that did eat. According to their results, individual flies that failed to mate should consume more sucrose. This would change the conclusion. The authors currently show that a group of flies that failed to mate consumed less sucrose overall, but since fewer males actually ate, those that failed to mate and did eat consumed more sucrose. The authors should distinguish between failed and satisfied flies in two groups: those that ate and those that did not.

      Please see our responses to the Public Review for details (Reviewer 1, Point 2).

      Figure 1C, right: For a better understanding of all the "MAT" figures, I suggest the authors start the Y axis with the unit 25 and increase it to 400. This would match better the text (line 114) saying that it was significantly elevated in the failed group. As it is, we have the impression of a decrease in the graph.

      We have revised the figures accordingly.

      Line 103: When suggesting a reduced likelihood of meal initiation of these males, do these males take longer to eat when they did it? In other words, is the latency to eat increased in failed males? That would be a good measure of motivational state.

      We tried to analyze feeding latency in the MAFE assay by measuring the time from sucrose presentation to the first proboscis extension, but it was too short to be accurately accounted. Nevertheless, when conducting the experiments, we did not feel/observe any significant difference in the feeding latency between Failed males and Naïve or Satisfied controls.

      Line 117. I don't understand which results the authors refer to when writing "an overall elevation in the threshold to initiate feeding upon appetitive cues". Please specify.

      This phrase refers to the fact that for every sweet tastant we tested, including sucrose (Figure 1C), fructose and glucose (Figure 1 supplement 1D-E), the concentration-response curve in Failed males shifted to the right, and the Mean Acceptance Threshold (MAT) was significantly higher. In other words, for these different appetitive cues, mating failure raised the concentration of sugar required to trigger a proboscis extension, indicating a general elevation in the threshold to initiate feeding upon an appetitive cue.

      Figure 1D. Please specify the time for the satisfied group.

      For clarity, the Naïve and Satisfied groups in Figure 1D each represent pooled data from 0 to 72 hours post-treatment, as their sweet sensitivity remained stable throughout this period. Only the Failed group was shown with time-resolved data, since it was the only group exhibiting a dynamic change in sugar sensitivity over time. We have now specified this in the figure legend.

      Figure 1F. The phenotype was not totally reversed in failed-re-copulated males. Could it be due to the timing between failure and re-copulation? I suggest the authors mention in the figure or in the text, the time interval between failure and re-copulation.

      We’d like to clarify that the interval between the initial treatment (“Failed”) and the opportunity for re copulation was within 30 minutes. The incomplete reversal in the Failed-re-copulated group indeed raised interesting questions. One possible explanation is that mating failure reduces synaptic transmissions between the SEZ dopaminergic neurons and Gr5a<sup>+</sup> sweet sensory neurons (Figure 3), and the regeneration of these transmissions takes a longer time. We have added this information to the figure legend and the Method section.

      Line 227-228 and Figure 3E. The authors showed that the synaptic connections between dopaminergic neurons and Gr5a+ GRNs were significantly weakened. I am wondering about the delay between mating failure and the GFP observation. It would be informative to know this timing to interpret this decrease in synaptic connections. If the timing is relatively long, it is possible that we can observe a neuronal plasticity. However, if this timing is very short, I would not expect such synaptic plasticity.

      The interval between the behavioral treatment and the GRASP-GFP experiment was approximately 20 hours. We chose this time window because it was sufficient for both GFP expression and accumulation. Therefore, the observed reduction in synaptic connections between dopaminergic neurons and Gr5a<sup>+</sup> GRNs likely reflects a genuine, experience-induced structural and functional change rather than an immediate, transient effect. We have added this information to the revised manuscript for clarity in the Method section.

      Line 240-243: The authors demonstrated that there is a reduction of CaLexA-mediated GFP signals in dopaminergic neurons in the SEZ after mating failure, but not a reduction in Gr5a+ GRNs. I suggest replacing "indicate" with "suggest' in line 240.

      We have made the change accordingly. Meanwhile, we would like to clarify that while we observed a reduction of NFAT signal in SEZ dopaminergic neurons (Figure 3G), we did not directly test NFAT signal in Gr5a<sup>+</sup> neurons. Notably, the results that the synaptic transmissions from SEZ dopaminergic neurons to Gr5a<sup>+</sup> neurons were weakened (Figure 3E-F), and the reduction of NFAT signal in SEZ dopaminergic neurons (Figure 3G-I), were in line with a reduction in sweet sensitivity of Gr5a<sup>+</sup> neurons upon courtship failure (Figure 3B-D).

      Line 243: replace "consecutive" with "constitutive".

      We have revised it accordingly.

      Figure 5: I have trouble understanding the results obtained in Figure 5. Both constitutive activation and inhibition of Dop1R1 and Dop2R neurons lead to the same results, knowing that males who failed mating no longer exhibit decreased sweet sensitivity. I would have expected contrary results for both experimental conditions. I suggest the author to discuss their results.

      Both activation and inhibition of Dop1R1 and Dop2R neurons eliminated the effect of courtship failure on sweet sensitivity (Figure 5). These results are in line with our hypothesis that courtship failure leads to changes in dopamine signaling and hence sweet sensitivity. If dopamine signaling via Dop1R1 and Dop2R was locked, either to a silenced or a constitutively activated state, the effect of courtship failure on sweet sensitivity was eliminated.

      Nevertheless, as the reviewer pointed out, constitutive activation/inhibition should in principle lead to the opposite effect on Naïve flies. In fact, when Dop1R1<sup>+</sup>/Dop2R<sup>+</sup> neurons were silenced in Naïve flies, PER to sucrose was significantly reduced (Figure 5C-D), confirming that these neurons normally facilitate sweet sensation. Meanwhile, while neuronal activation by NaChBac did show a trend towards enhanced PER compared to the GAL4/+ controls, it did not exhibit a difference compared to +>UAS-NaChBac controls that showed a high PER level, likely due to a potential ceiling effect. We have added the discussions to the manuscript.

      Figure 7: I suggest the authors modify their figure a bit. It is not clear why in failed mating, the red arrow in "behavioral modulation" goes to the fly. The authors should find another way to show that mating failure decreased the percentage of flies that are motivated to eat sugar.

      We have modified the figure as suggested.

      Overall, I would suggest the authors be precautious with their conclusion. For example, line 337= "sexual failure suppressed feeding behavior". This is not what is shown by this study. Here, the study shows that mating failure decreases the fraction of flies to eat sucrose. Unless the authors demonstrate that this decrease is generalizable to other metabolites, I suggest the authors modify their conclusion.

      While we primarily used sucrose as the stimulant in our experiments, we also tested responses to two other sugars: fructose and glucose (Figure 1 supplement 1D-E). In all three cases, mating failure led to a significant reduction in sweet perception, suggesting that the effect of courtship failure is not limited to a single metabolite but rather reflects a general decrease in sweet sensitivity. Meanwhile, reduced sweet sensitivity indeed led to a reduction of feeding initiation (Figure 1).

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      Horizontal gene transfer is the transmission of genetic material between organisms through ways other than reproduction. Frequent in prokaryotes, this mode of genetic exchange is scarcer in eukaryotes, especially in multicellular eukaryotes. Furthermore, the mechanisms involved in eukaryotic HGT are unknown. This article by Banerjee et al. claims that HGT occurs massively between cells of multicellular organisms. According to this study, the cell free chromatin particles (cfChPs) that are massively released by dying cells are incorporated in the nucleus of neighboring cells. These cfChPs are frequently rearranged and amplified to form concatemers, they are made of open chromatin, expressed, and capable of producing proteins. Furthermore, the study also suggests that cfChPs transmit transposable elements (TEs) between cells on a regular basis, and that these TEs can transpose, multiply, and invade receiving cells. These conclusions are based on a series of experiments consisting in releasing cfChPs isolated from various human sera into the culture medium of mouse cells, and using FISH and immunofluorescence to monitor the state and fate of cfChPs after several passages of the mouse cell line.

      Strengths:

      The results presented in this study are interesting because they may reveal unsuspected properties of some cell types that may be able to internalize free-circulating chromatin, leading to its chromosomal incorporation, expression, and unleashing of TEs. The authors propose that this phenomenon may have profound impacts in terms of diseases and genome evolution. They even suggest that this could occur in germ cells, leading to within-organism HGT with long-term consequences.

      Weaknesses:

      The claims of massive HGT between cells through internalization of cfChPs are not well supported because they are only based on evidence from one type of methodological approach: immunofluorescence and fluorescent in situ hybridization (FISH) using protein antibodies and DNA probes. Yet, such strong claims require validation by at least one, but preferably multiple, additional orthogonal approaches. This includes, for example, whole genome sequencing (to validate concatemerization, integration in receiving cells, transposition in receiving cells), RNA-seq (to validate expression), ChiP-seq (to validate chromatin state).

      We have responded to this criticism under “Reviewer #1 (Recommendations for the authors, item no. 1-4)”.

      Another weakness of this study is that it is performed only in one receiving cell type (NIH3T3 mouse cells). Thus, rather than a general phenomenon occurring on a massive scale in every multicellular organism, it could merely reflect aberrant properties of a cell line that for some reason became permeable to exogenous cfChPs. This begs the question of the relevance of this study for living organisms.

      We have responded to this criticism under “Reviewer #1 (Recommendations for the authors, item no. 6)”.

      Should HGT through internalization of circulating chromatin occur on a massive scale, as claimed in this study, and as illustrated by the many FISH foci observed in Fig 3 for example, one would expect that the level of somatic mosaicism may be so high that it would prevent assembling a contiguous genome for a given organism. Yet, telomere-to-telomere genomes have been produced for many eukaryote species, calling into question the conclusions of this study.

      The reviewer is right in expecting that the level of somatic mosaicism may be so high that it would prevent assembling a contiguous genome. This is indeed the case, and we find that beyond ~ 250 passages the cfChPs treated NIH3T3 cells begin to die out apparently become their genomes have become too unstable for survival. This point will be highlighted in the revised version (pp. 45-46, lines 725-731).

      Reviewer #2 (Public review):

      I must note that my comments pertain to the evolutionary interpretations rather than the study's technical results. The techniques appear to be appropriately applied and interpreted, but I do not feel sufficiently qualified to assess this aspect of the work in detail.

      I was repeatedly puzzled by the use of the term "function." Part of the issue may stem from slightly different interpretations of this word in different fields. In my understanding, "function" should denote not just what a structure does, but what it has been selected for. In this context, where it is unclear if cfChPs have been selected for in any way, the use of this term seems questionable.

      We agree. We have removed the term “function” wherever we felt we had used it inappropriately.

      Similarly, the term "predatory genome," used in the title and throughout the paper, appears ambiguous and unjustified. At this stage, I am unconvinced that cfChPs provide any evolutionary advantage to the genome. It is entirely possible that these structures have no function whatsoever and could simply be byproducts of other processes. The findings presented in this study do not rule out this neutral hypothesis. Alternatively, some particular components of the genome could be driving the process and may have been selected to do so. This brings us to the hypothesis that cfChPs could serve as vehicles for transposable elements. While speculative, this idea seems to be compatible with the study's findings and merits further exploration.

      We agree with the reviewer’s viewpoint. We have replaced the term “predatory genome” with a more realistic term “satellite genome” in the title and throughout the manuscript. We have also thoroughly revised the discussion section and elaborated on the potential role of LINE-1 and Alu elements carried by the concatemers in mammalian evolution. (pp. 46-47, lines 743-756).

      I also found some elements of the discussion unclear and speculative, particularly the final section on the evolution of mammals. If the intention is simply to highlight the evolutionary impact of horizontal transfer of transposable elements (e.g., as a source of new mutations), this should be explicitly stated. In any case, this part of the discussion requires further clarification and justification.

      As mentioned above, we have revised the “discussion” section taking into account the issues raised by the reviewer and highlighted the potential role of cfChPs in evolution by acting as vehicles of transposable elements.

      In summary, this study presents important new findings on the behavior of cfChPs when introduced into a foreign cellular context. However, it overextends its evolutionary interpretations, often in an unclear and speculative manner. The concept of the "predatory genome" should be better defined and justified or removed altogether. Conversely, the suggestion that cfChPs may function at the level of transposable elements (rather than the entire genome or organism) could be given more emphasis.

      As mentioned above, we have replaced the term “predatory genome” with “satellite genome” and revised the “discussion” section taking into account the issues raised by the reviewer.

      Reviewer #1 (Recommendations for the authors):

      (1) I strongly recommend validating the findings of this study using other approaches. Whole genome sequencing using both short and long reads should be used to validate the presence of human DNA in the mouse cell line, as well as its integration into the mouse genome and concatemerization. Breakpoints between mouse and human DNA can be searched in individual reads. Finding these breakpoints in multiple reads from two or more sequencing technologies would strengthen their biological origin. Illumina and ONT sequencing are now routinely performed by many labs, such that this validation should be straightforward. In addition to validating the findings of the current study, it would allow performance of an in-depth characterization of the rearrangements undergone by both human cfChPs and the mouse genome after internalization of cfChPs, including identification of human TE copies integrated through bona fide transposition events into the mouse genome. New copies of LINE and Alu TEs should be flanked by target site duplications. LINE copies should be frequently 5' truncated, as observed in many studies of somatic transposition in human cells.

      (2) Furthermore, should the high level of cell-to-cell HGT detected in this study occur on a regular basis within multicellular organisms, validating it through a reanalysis of whole genome sequencing data available in public databases should be relatively easy. One would expect to find a high number of structural variants that for some reason have so far gone under the radar.

      (3) Short and long-read RNA-seq should be performed to validate the expression of human cfChPs in mouse cells. I would also recommend performing ChIP-seq on routinely targeted histone marks to validate the chromatin state of human cfChPs in mouse cells.

      (4) The claim that fused human proteins are produced in mouse cells after exposing them to human cfChPs should be validated using mass spectrometry.

      The reviewer has suggested a plethora of techniques to validate our findings. Clearly, it is neither possible to undertake all of them nor to incorporate them into the manuscript. However, as suggested by the reviewer, we did conduct transcriptome sequencing of cfChPs treated NIH3T3 cells and were able to detect the presence of human-human fusion sequences (representing concatemerisation) as well as human-mouse fusion sequences (representing genomic integration). However, we realized that the amount of material required to be incorporated into the manuscript to include “material and methods”, “results”, “discussion”, “figures” and “legends to figures” and “supplementary figures and tables” would be so massive that it will detract from the flow of our work and hijack it in a different direction. We have, therefore, decided to publish the transcriptome results as a separate manuscript. However, to address the reviewer’s concerns we have now referred to results of our earlier whole genome sequencing study of NIH3T3 cells similarly treated with cfChPs wherein we had conclusively detected the presence of human DNA and human Alu sequences in the treated mouse cells. These findings have now been added as an independent paragraph (pp. 48, lines. 781-792).

      (5) It is unclear from what is shown in the paper (increase in FISH signal intensity using Alu and L1 probes) if the increase in TE copy number is due to bona fide transposition or to amplification of cfChPs as a whole, through mechanisms other than transposition. It is also unclear whether human TEs end up being integrated into the neighboring mouse genome. This should be validated by whole genome sequencing.

      Our results suggest that TEs amplify and increase their copy number due to their association with DNA polymerase and their ability to synthesize DNA (Figure 14a and b). Our study design cannot demonstrate transposition which will require real time imaging.

      The possibility of incorporation of TEs into the mouse genome is supported by our earlier genome sequencing work, referred to above, wherein we detected multiple human Alu sequences in the mouse genome (pp. 48, lines. 781-792).

      (6) In order to be able to generalize the findings of this study, I strongly encourage the authors to repeat their experiments using other cell types.

      We thank the reviewer for this suggestion. We have now used four different cell lines derived from four different species and demonstrated that horizontal transfer of cfChPs occur in all of them suggesting that it is a universal phenomenon. (pp. 37, lines 560-572) and (Supplementary Fig. S14a-d).

      We have also mentioned this in the abstract (pp. 3, lines 52-54).

      (7) Since the results obtained when using cfChPs isolated from healthy individuals are identical to those shown when using cfChPs from cancer sera, I wonder why the authors chose to focus mainly on results from cancer-derived cfChPs and not on those from healthy sera.

      Most of the experiments were conducted using cfChPs isolated from cancer patients because of our especial interest in cancer, and our earlier results (Mittra et al., 2015) which had shown that cfChPs isolated from cancer patients had significantly greater activity in terms of DNA damage and activation of apoptotic pathways than those isolated from healthy individuals. We have now incorporated the above justification on (pp. 6, lines. 124-128).

      (8) Line 125: how was the 10-ng quantity (of human cfChPs added to the mouse cell culture) chosen and how does it compare to the quantity of cfChPs normally circulating in multicellular organisms?

      We chose to use 10ng based on our earlier report in which we had obtained robust biological effects such as activation of DDR and apoptotic pathways using this concentration of cfChPs (Mittra I et. al. 2015). We have now incorporated the justification of using this dose in our manuscript (pp. 51-52, lines. 867-870).

      (9) Could the authors explain why they repeated several of their experiments in metaphase spreads, in addition to interphase?

      We conducted experiments on metaphase spreads in addition to those on chromatin fibres because of the current heightened interest in extra-chromosomal DNA in cancer, which have largely been based on metaphase spreads. We were interested to see how the cfChP concatemers might relate to the characteristics of cancer extrachromosomal DNA and whether the latter in fact represent cfChPs concatemers acquired from surrounding dying cancer cells. We have now mentioned this on pp. 7, lines 150-155.

      (10) Regarding negative controls consisting in checking whether human probes cross-react with mouse DNA or proteins, I suggest that the stringency of washes (temperature, reagents) should be clearly stated in the manuscript, such that the reader can easily see that it was identical for controls and positive experiments.

      We were fully aware of these issues and were careful to ensure that washing steps were conducted meticulously. The careful washing steps have been repeatedly emphasized under the section on “Immunofluorescence and FISH” (pp. 54-55, lines. 922-944).

      (11) I am not an expert in Immuno-FISH and FISH with ribosomal probes but it can be expected that ribosomal RNA and RNA polymerase are quite conserved (and thus highly similar) between humans and mice. A more detailed explanation of how these probes were designed to avoid cross-reactivity would be welcome.

      We were aware of this issue and conducted negative control experiment to ensure that the human ribosomal RNA probe and RNA polymerase antibody did not cross-react with mouse. Please see Supplementary Fig. S4c.

      (12) Finally, I could not understand why the cfChPs internalized by neighboring cells are called predatory genomes. I could not find any justification for this term in the manuscript.

      We agree and this criticism has also been made by #Reviewer 2. We have now replaced the term “predatory” genomes with “satellite” genomes.

      Reviewer #2 (Recommendations for the authors):

      (1) P2 L34: The term "role" seems to imply "what something is supposed to do" (similar to "function"). Perhaps "impact" would be more neutral. Additionally, "poorly defined" is vague-do you mean "unknown"?

      We thank the reviewer for this suggestion. We have now rephrased the sentence to read “Horizontal gene transfer (HGT) plays an important evolutionary role in prokaryotes, but it is thought to be less frequent in mammals.” (pp. 2, lines. 26-27).

      (2) P2 L35: It seems that the dash should come after "human blood."

      Thank you, we have changed the position of the dash (pp. 2, line. 29).

      (3) P2 L37: Must we assume these structures have a function? Could they not simply be side effects of other processes?

      We think this is a matter of semantics, especially since we show that cfChPs once inside the cell perform many functions such as replication, DNA synthesis, RNA synthesis, protein synthesis etc. We, therefore, think the word “function” is not inappropriate.

      (4) Abstract: After reading the abstract, I am unclear on the concept of a "predatory genome." Based on the summarized results, it seems one cannot conclude that these elements provide any adaptive value to the genome.

      We agree. We have now replaced the term “predatory” genomes with a more realistic term viz. “satellite” genomes.

      (5) Video abstract: The video abstract does not currently stand on its own and needs more context to be self-explanatory.

      Thank you for pointing this out. We have now created a new and much more professional video with more context which we hope will meet with the reviewer’s approval.

      (6) P4 L67: Again, I am uncertain that HGT should be said to have "a role" in mammals, although it clearly has implications and consequences. Perhaps "role" here is intended to mean "consequence"?

      We have now changed the sentence to read as follows “However, defining the occurrence of HGT in mammals has been a challenge” (pp. 4, line. 73).

      (7) P6 L111: The phrase "to obtain a new perspective about the process of evolution" is unclear. What exactly is meant by this statement?

      We have replaced this sentence altogether which now reads “The results of these experiments are presented in this article which may help to throw new light on mammalian evolution, ageing and cancer” (pp. 5-6, lines 116-118).

      (8) P38 L588: The term "predatory genome" has not been defined, making it difficult to assess its relevance.

      This issue has been addressed above.

      (9) P39 L604: The statement "transposable elements are not inherent to the cell" suggests that some TEs could originate externally, but this does not rule out that others are intrinsic. In other words, TEs are still inherent to the cell.

      This part of the discussion section has been rewritten and the above sentence has been deleted.

      (10) P39 L609: The phrase "may have evolutionary functions by acting as transposable elements" is unclear. Perhaps it is meant that these structures may serve as vehicles for TEs?

      This sentence has disappeared altogether in the revised discussion section.

      (11) P41 L643: "Thus, we hypothesize ... extensively modified to act as foreign genetic elements." This sentence is unclear. Are the authors referring to evolutionary changes in mammals in general (which overlooks the role of standard mutational processes)? Or is it being proposed that structural mutations (including TE integrations) could be mediated by cfChPs in addition to other mutational mechanisms?

      We have replaced this sentence which now reads “Thus, “within-self” HGT may occur in mammals on a massive scale via the medium of cfChP concatemers that have undergone extensive and complex modifications resulting in their behaviour as “foreign” genetic elements” (pp. 47, lines 763-766).

      (12) P41 L150: The paragraph beginning with "It has been proposed that extreme environmental..." transitions too abruptly from HGT to adaptation. Is it being proposed that cfChPs are evolutionary processes selected for their adaptive potential? This idea is far too speculative at this stage and requires clarification.

      We agree. This paragraph has been removed.

      (13) P43 L681: This summary appears overly speculative and unclear, particularly as the concept of a "predatory genome" remains undefined and thus cannot be justified. It suggests that cfChPs represent an alternative lifestyle for the entire genome, although alternative explanations seem far more plausible at this point.

      We have now replaced the term “predatory” genome with “satellite” genome. The relevant part of the summary section has also been partially revised (pp. 49-50, lines 817-831).

      Changes independent of reviewers’ comments.

      We have made the following additions / modifications.

      (1) The abstract has been modified and it’s “conclusion” section has been rewritten.

      (2) Section 1.14 has been newly added together with accompanying Figures 15 a,b and c.

      (3) The “Discussion” section has been greatly modified and parts of it has been rewritten.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Reviewer #1:

      In the future, could you please include the exact changes made to the manuscript in the relevant section of the rebuttal, so it's clear which changes addressed the comment? That would make it easier to see what you refer to exactly - currently I have to guess which manuscript changes implement e.g. "We have tried to make these points more evident".

      Yes, we apologize for the inconvenience.

      On possible navigation solutions:

      I'm not sure if I follow this argument. If the networks uses a shifted allocentric representation centred on its initial state, it couldn't consistently decode the position from different starting positions within the same environment (I don't think egocentric is the right term here - egocentric generally refers to representations relative to the animal's own direction like "to the left" rather than "to the west" but these would not work in the allocentric decoding scheme here). In other words: If I path integrate my location relative to my starting location s1 in environment 1 and learn how to decode that representation to an environment location, I cannot use the same representation when I start from s2 in environment 1, because everything will have shifted. I still believe using boundaries is the only solution to infer the absolute location for the agent here (because that's the only information that it gets), and that's the reason for finding boundary representations (and not grid cells). Imagine doing this task on a perfect torus where there are no boundaries: it would be impossible to ever find out at what 'absolute' location you are in the environment. I have therefore not updated this part of my review, but do let me know if I misunderstood.

      Thank you for addressing this point, which is a somewhat unusual feature of our network: We believe the point you raise applies if the decoding were fixed. However, in our case, the decoding is dynamic and depends on the firing pattern, as place unit centers are decoded on a per-trajectory basis. Thus, a new place-like basis may be formed for each trajectory (and in each environment). Hence, the model is not constrained to reuse its representation across trajectories or environments, as place centers are inferred based on unit firing. However, we do observe that the network learns to use a fixed place field placement in each geometry, which likely reflects some optimal solution to the decoding problem. This might also help to explain the hexagonal arrangement of learned field centers. Finally, we agree that egocentric may not be entirely accurate, but we found it to be the best word to distinguish from the allocentric-type navigation adopted by the network.

      Regarding noise injection:

      Beyond that noise level, the network might return to high correlations, but that must be due to the boundary interactions - very much like what happens at the very beginning of entering an environment: the network has learned to use the boundary to figure out where it is from an uninformative initial hidden state. But I don't think this is currently reflected well in the main text. That still reads "Thus, even though the network was trained without noise, it appears robust even to large perturbations. This suggests that the learned solutions form an approximate attractor." I think your new (very useful!) velocity ablations show that only small noise is compensated for by attractor dynamics, and larger noise injections are error corrected through boundary interactions. I've added this to the new review.

      Thank you for your kind feedback: We have changed the phrasing in the text to say “robust even to moderate perturbations. ” As we hold that, while numerically small, the amount of injected noise is rather large when compared to the magnitude of activities in the network (see Fig. A5d); the largest maximal rate is around 0.1, which is similar to the noise level at which output representations fail to re-converge. However, some moderation is appropriate, we agree.

      On contexts being attractive:

      In the new bit of text, I'm not sure why "each environment appears to correspond to distinct attractive states (as evidenced by the global-type remapping behavior)", i.e. why global-type remapping is evidence for attractive states. Again, to me global-type remapping is evidence that contexts occupy different parts of activity space, but not that they are attractive. I like the new analysis in Appendix F, as it demonstrates that the context signal determines which region of activity space is selected (as opposed to the boundary information!). If I'm not mistaken, we know three things: 1. Different contexts exist in different parts of representation space, 2. Representations are attractive for small amounts of noise, 3. The context signal determines which point in representation space is selected (thanks to the new analysis in Appendix F). That seems to be in line with what the paper claims (I think "contexts are attractive" has been removed?) so I've updated the review.

      It seems to us that we are in agreement on this point; our aim is simply to point out that a particular context signal appears to correspond to a particular (discrete) attractor state (i.e., occupying a distinct part of representation space, as you state), it just seems we use slightly different language, but to avoid confusion, we changed this to say that “representations are attractive”.

      Thanks again for engaging with us, this discussion has been very helpful in improving the paper.

      Reviewer #2:

      However, I still struggle to understand the entire picture of the boundary-to-place-to-grid model. After all, what is the role of grid cells in the proposed view? Are they just redundant representations of the space? I encourage the authors to clarify these points in the last two paragraphs on pages 17-18 of the discussion.

      Thank you for your feedback. While we have discussed the possible role of a grid code to some extent, we agree that this point requires clarification. We have therefore added to the discussion on the role of grid cells, which now reads “While the lack of grid cells in this model is interesting, it does not disqualify grid cells from serving as a neural substrate for path integration. Rather, it suggests that path integration may also be performed by other, non-grid spatial cells, and/or that grid cells may serve additional computational purposes. If grid cells are involved during path integration, our findings indicate that additional tasks and constraints are necessary for learning such representations. This possibility has been explored in recent normative models, in which several constraints have been proposed for learning grid-like solutions. Examples include constraints concerning population vector magnitude, conformal isometry \cite{xu_conformal_2022, schaeffer_self-supervised_2023, schoyen_hexagons_2024}, capacity, spatial separation and path invariance \cite{schaeffer_self-supervised_2023}. Another possibility is that grid cells are geared more towards other cognitive tasks, such as providing a neural metric for space \cite{ginosar_are_2023, pettersen_self-supervised_2024}, or supporting memory and inference-making \cite{whittington_tolman-eichenbaum_2020}. That our model performs path integration without grid cells, and that a myriad of independent constraints are sufficient for grid-like units to emerge in other models, presents strong computational evidence that grid cells are not solely defined by path integration, and that path integration is not only reserved for grid cells.”

      Thank you again for your time and input.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      In their comprehensive analysis Diallo et al. deorphanise the first olfactory receptor of a nonhymenopteran eusocial insect - a termite and identified the well-established trail pheromone neocembrene as the receptor's best ligand. By using a large set of odorants the authors convincingly show that, as expected for a pheromone receptor, PsimOR14 is very narrowly tuned. While the authors first make use of an ectopic expression system, the empty neuron of Drosophila melanogaster, to characterise the receptor's responses, they next perform single sensillum recordings with different sensilla types on the termite antenna. By that, they are able to identify a sensillum that houses three neurons, of which the B neuron exhibits the narrow responses described for PsimOR14. Hence the authors do not only identify the first pheromone receptor in a termite but can even localize its expression on the antenna. The authors in addition perform a structural analysis to explain the binding properties of the receptor and its major and minor ligands (as this is beyond my expertise, I cannot judge this part of the manuscript). Finally, they compare expression patterns of ORs in different castes and find that PsimOR14 is more strongly expressed in workers than in soldier termites, which corresponds well with stronger antennal responses in the worker caste.

      Strengths:

      The manuscript is well-written and a pleasure to read. The figures are beautiful and clear. I actually had a hard time coming up with suggestions.

      We thank the reviewer for the positive comments.

      Weaknesses:

      Whenever it comes to the deorphanization of a receptor and its potential role in behaviour (in the case of the manuscript it would be trail-following of the termite) one thinks immediately of knocking out the receptor to check whether it is necessary for the behaviour. However, I definitely do not want to ask for this (especially as the establishment of CRISPR Cas-9 in eusocial insects usually turns out to be a nightmare). I also do not know either, whether knockdowns via RNAi have been established in termites, but maybe the authors could consider some speculation on this in the discussion.

      We agree that a functional proof of the PsimOR14 function using reverse genetics would be a valuable addition to the study to firmly establish its role in trail pheromone sensing. Nevertheless, such a functional proof is difficult to obtain. Due to the very slow ontogenetic development inherent to termites (several months from an egg to the worker stage) the CRISPR Cas-9 is not a useful technique for this taxon. By contrast, termites are quite responsive to RNAimediated silencing and RNAi has previously been used for the silencing of the ORCo co-receptor in termites resulting in impairment of the trail-following behavior (DOI: 10.1093/jee/toaa248). Likewise, our previous experiments showed a decreased ORCo transcript abundance, lower sensitivity to neocembrene and reduced neocembrene trail following upon dsPsimORCo administration to P. simplex workers, while we did not succeed in reducing the transcript abundance of PsimOR14 upon dsPsimOR14 injection. We do not report these negative results in the present manuscript so as not to dilute the main message. In parallel, we are currently developing an alternative way of dsRNA delivery using nanoparticle coating, which may improve the RNAi experiments with ORs in termites.

      Reviewer #2 (Public review):

      Summary:

      In this manuscript, the authors performed the functional analysis of odorant receptors (ORs) of the termite Prorhinotermes simplex to identify the receptor of trail-following pheromone. The authors performed single-sensillum recording (SSR) using the transgenic Drosophila flies expressing a candidate of the pheromone receptor and revealed that PsimOR14 strongly responds to neocembrene, the major component of the pheromone. Also, the authors found that one sensillum type (S I) detects neocembrene and also performed SSR for S I in wild termite workers. Furthermore, the authors revealed the gene, transcript, and protein structures of PsimOR14, predicted the 3D model and ligand docking of PsimOR14, and demonstrated that PsimOR14 is higher expressed in workers than soldiers using RNA-seq for heads of workers and soldiers of P. simplex and that EAG response to neocembrene is higher in workers than soldiers. I consider that this study will contribute to further understanding of the molecular and evolutionary mechanisms of the chemoreception system in termites.

      Strength:

      The manuscript is well written. As far as I know, this study is the first study that identified a pheromone receptor in termites. The authors not only present a methodology for analyzing the function of termite pheromone receptors but also provide important insights in terms of the evolution of ligand selectivity of termite pheromone receptors.

      We thank the reviewer for the overall positive evaluation of the manuscript.

      Weakness:

      As you can see in the "Recommendations to the Authors" section below, there are several things in this paper that are not fully explained about experimental methods. Except for this point, this paper appears to me to have no major weaknesses.

      We address point by point the specific comments listed in the Recommendation to the authors chapter below.

      Reviewer #3 (Public review):

      Summary:

      Chemical communication is essential for the organization of eusocial insect societies. It is used in various important contexts, such as foraging and recruiting colony members to food sources. While such pheromones have been chemically identified and their function demonstrated in bioassays, little is known about their perception. Excellent candidates are the odorant receptors that have been shown to be involved in pheromone perception in other insects including ants and bees but not termites. The authors investigated the function of the odorant receptor PsimOR14, which was one of four target odorant receptors based on gene sequences and phylogenetic analyses. They used the Drosophila empty neuron system to demonstrate that the receptor was narrowly tuned to the trail pheromone neocembrene. Similar responses to the odor panel and neocembrene in antennal recordings suggested that one specific antennal sensillum expresses PsimOR14. Additional protein modeling approaches characterized the properties of the ligand binding pocket in the receptor. Finally, PsimOR14 transcripts were found to be significantly higher in worker antennae compared to soldier antennae, which corresponds to the worker's higher sensitivity to neocembrene.

      Strengths:

      The study presents an excellent characterization of a trail pheromone receptor in a termite species. The integration of receptor phylogeny, receptor functional characterization, antennal sensilla responses, receptor structure modeling, and transcriptomic analysis is especially powerful. All parts build on each other and are well supported with a good sample size.

      We thank the reviewer for these positive comments.

      Weaknesses:

      The manuscript would benefit from a more detailed explanation of the research advances this work provides. Stating that this is the first deorphanization of an odorant receptor in a clade is insufficient. The introduction primarily reviews termite chemical communication and deorphanization of olfactory receptors previously performed. Although this is essential background, it lacks a good integration into explaining what problem the current study solves.

      We understand the comment about the lack of an intelligible cue to highlight the motivation and importance of the present study. In the current version of the manuscript the introduction has been reworked. As suggested by Reviewer 3 in the Recommendations section below, the introduction now integrates some parts of the original discussion, especially the part discussing the OR evolution and emergence of eusociality in hymenopteran social insects and in termites, while underscoring the need of data from termites to compare the commonalities and idiosyncrasies in neurophysiological (pre)adaptations potentially linked with the independent eusociality evolution in the two main social insect clades.

      Selecting target ORs for deorphanization is an essential step in the approach. Unfortunately, the process of choosing these ORs has not been described. Were the authors just lucky that they found the correct OR out of the 50, or was there a specific selection process that increased the probability of success?

      Indeed, we were extremely lucky. Our strategy was to first select a modest set of ORs to confirm the feasibility of the Empty Neuron Drosophila system and newly established SSR setup, while taking advantage of having a set of termite pheromones, including those previously identified in the P. simplex model, some of them de novo synthesized for this project. The selection criteria for the first set of four receptors were (i) to have full-length ORF and at least 6 unambiguously predicted transmembrane regions, and (ii) to be represented on different branches (subbranches) of the phylogenetic tree. Then it was a matter of a good luck to hit the PsimOR14 selectively responding to the genuine P. simplex trail-following pheromone main component. In the revised version, we state these selection criteria in the results section (Phylogenetic reconstruction and candidate OR selection).

      The deorphanization attempts of additional P. simplex ORs are currently running.

      The authors assigned antennal sensilla into five categories. Unfortunately, they did not support their categories well. It is not clear how they were able to differentiate SI and SII in their antennal recordings.

      We agree that the classification of multiporous sensilla into five categories lacks robust discrimination cues. The identification of the neocembrene-responding sensillum was initially carried out by SSR measurements on individual olfactory sensilla of P. simplex workers one-by-one and the topology of each tested sensillum was recorded on optical microscope photographs taken during the SSR experiment. Subsequently, the SEM and HR-SEM were performed in which we localized the neocembrene sensillum and tried to find distinguishing characters. We admit that these are not robust. Therefore, in the revised version of the manuscript we decided to abandon the attempt of sensilla classification and only report the observations about the specific sensillum in which we consistently recorded the response to neocembrene (and geranylgeraniol). The modifications affect Fig. 4, its legend and the corresponding part of the results section (Identification of P. simplex olfactory sensillum responding to neocembrene).

      The authors used a large odorant panel to determine receptor tuning. The panel included volatile polar compounds and non-volatile non-polar hydrocarbons. Usually, some heat is applied to such non-volatile odorants to increase volatility for receptor testing. It is unclear how it is possible that these non-volatile compounds can reach the tested sensilla without heat application.

      The reviewer points at an important methodological error we made while designing the experiments. Indeed, the inclusion of long-chain hydrocarbons into Panel 1 without additional heat applied to the odor cartridges was inappropriate, even though the experiments were performed at 25–26 °C. We carefully considered the best solution to correct the mistake and finally decided to remove all tested ligands beyond C22 from Panel 1, i.e. altogether five compounds. These changes did not affect the remaining Panels 2-4 (containing compounds with sufficient volatility), nor did they affect the message of the manuscript on highly selective response of PsimOR14 to neocembrene (and geranylgeryniol). In consequence, Figures 2, 3 and 5 were updated, along with the supplementary tables containing the raw data on SSR measurements. In addition, the tuning curve for PsimOR14 was re-built and receptor lifetime sparseness value re-calculated (without any important change). We also exchanged squalene for limonene in the docking and molecular dynamics analysis and made new calculations.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      (1) L 208: "than" instead of "that"

      Corrected.

      (2) L 527+527 strange squares (•) before dimensions

      Apparently an error upon file conversion, corrected.

      (3) L553 "reconstructing" instead of "reconstruct"

      Corrected.

      (4) Two references (Chahda et al. and Chang et al. appear too late in the alphabet.

      Corrected. Thank you for spotting this mistake. Due to our mistake the author list was ordered according to the alphabet in Czech language, which ranks CH after H.

      Reviewer #2 (Recommendations for the authors):

      (1) L148: Why did the authors select only four ORs (PsimOR9, 14, 30, and 31) though there are 50 ORs in P. simplex? I would like you to explain why you chose them.

      Our strategy was to first select a modest set of ORs to confirm the feasibility of the Empty Neuron Drosophila system and newly established SSR setup, while taking advantage of having a set of termite pheromones, including those previously identified in the P. simplex model, some of them de novo synthesized for this project. Then, it was a matter of a good luck to hit the PsimOR14 selectively responding to the genuine P. simplex trail-following pheromone main component, while the deorphanization attempts of a set of additional P. simplex ORs is currently running. In the revised version of the manuscript, we state the selection criteria for the four ORs studied in the Results section (Phylogenetic reconstruction and candidate OR selection).

      (2) L149: Where is Figure 1A? Does this mean Figure 1?

      Thank you for spotting this mistake. Fig. 1 is now properly labelled as Fig. 1A and 1B in the figure itself and in the legend. Also the text now either refers to either 1A or 1B.

      (3) Figure 1: The authors also showed the transcription abundance of all 50 ORs of P. simplex in the right bottom of Figure 1, but there is no explanation about it in the main text.

      The heatmap reporting the transcript abundances is now labelled as Fig. 1B and is referred to in the discussion section (in the original manuscript it was referred to on the same place as Fig. 1).

      (4) L260-265: The authors confirmed higher expression of PsimOR14 in workers than soldiers by using RNA-seq data and stronger EAG responses of PsimOR14 to neocembrene in workers than soldiers, but I think that confirming the expression levels of PsimOR14 in workers and soldiers by RT-qPCR would strengthen the authors' argument (it is optional).

      qPCR validation is a suitable complement to read count comparison of RNA Seq data, especially when the data comes from one-sample transcriptomes and/or low coverage sequencing. Yet, our RNA Seq analysis is based on sequencing of three independent biological replicates per phenotype (worker heads vs. soldier heads) with ~20 millions of reads per sample. Thus, the resulting differential gene expression analysis is a sufficient and powerful technique in terms of detection limit and dynamic range.

      We admit that the replicate numbers and origin of the RNA seq data should be better specified since the Methods section only referred to the GenBank accession numbers in the original manuscript. Therefore, we added more information in the Methods section (Bioinformatics) and make clear in the Methods that this data comes from our previous research and related bioproject.

      (5) L491: I think that "The synthetic processes of these fatty alcohols are ..." is better.

      We replaced the sentence with “The de novo organic synthesis of these fatty alcohols is described …”

      (6) L525 and 527: There are white squares between the number and the unit. Perhaps some characters have been garbled.

      Apparently an error upon file conversion, corrected.

      (7) L795: ORCo?

      Corrected.

      (8) L829-830 & Figure 4: Where is Figure 4D?

      Thank you for spotting this mistake from the older version of Figure 4. The SSR traces referred to in the legend are in fact a part of Figure 5. Moreover, Figure 4 is now reworked based on the comments by Reviewer 3.

      (9) L860-864: Why did the authors select the result of edgeR for the volcano plot in Figure 7 although the authors use both DESeq2 and edgeR? An explanation would be needed.

      Both algorithms, DESeq2 and EdgeR, are routinely used for differential gene expression analysis. Since they differ in read count normalization method and statistical testing we decided to use both of them independently in order to reduce false positives. Because the resulting fold changes were practically identical in both algorithms (results for both analyses are listed in Supplementary table S15), we only reported in Fig. 7 the outputs for edgeR to avoid redundancies. We added in the Results section the information that both techniques listed PsimOR14 among the most upregulated in workers.

      Reviewer #3 (Recommendations for the authors):

      The discussion contains many descriptions that would fit better into the introduction, where they could be used to hint at the study's importance (e.g., 292-311, 381-412). The remaining parts often lack a detailed discussion of the results that integrates details from other insect studies. Although references were provided, no details were usually outlined. It would be helpful to see a stronger emphasis on what we learn from this study.

      Along with rewriting the introduction, we also modified the discussion. As suggested, the lines 292-311 were rewritten and placed in the introduction. By contrast, we preferred to keep the two paragraphs 381-412 in the discussion, since both of them outline the potential future interesting targets of research on termite ORs.

      As suggested, the discussion has been enriched and now includes comparative examples and relevant references about the broad/narrow selectivity of insect ORs, about the expected breadth of tuning of pheromone receptors vs. ORs detecting environmental cues, about the potential role of additional neurons housed in the neocembrene-detecting sensillum of P. simplex workers, etc. From both introduction and discussion the redundant details on the chemistry of termite communication have been removed.

      This includes explanations of the advantages of the specific methodologies the authors used and how they helped solve the manuscript's problem. What does the phylogeny solve? Was it used to select the ORs tested? It would be helpful to discuss what the phylogeny shows in comparison to other well-studied OR phylogenies, like those from the social Hymenoptera.

      We understand the comment. In fact, our motivation to include the phylogenetic tree of termite ORs was essentially to demonstrate (i) the orthologous nature of OR diversity with few expansions on low taxonomic levels, and (ii) to demonstrate graphically the relationship among the four selected sequences. We do not attempt here for a comprehensive phylogenetic analysis, because it would be redundant given that we recently published a large OR phylogeny which includes all sequences used in the present manuscript and analysed them in the proper context of related (cockroaches) and unrelated insect taxa (Johny et al., 2023). This paper also discusses the termite phylogenetic pattern with those observed in other Insecta. This paper is repeatedly cited on appropriate places of the present manuscript and its main observations are provided in the Introduction section. Therefore, we feel that thorough discussion on termite phylogeny would be redundant in the present paper.

      The authors categorized the sensilla types. Potential problems in the categorization aside, it would be helpful to know if it is expected that you have sensilla specialized in perceiving one specific pheromone. What is known about sensilla in other insects?

      We understand. In the discussion of the revised version, we develop more about the features typical/expected for a pheromone receptor and the sensillum housing this receptor together with two other olfactory sensory neurons, including examples from other insects.

      As the manuscript currently stands, specialist readers with their respective background knowledge would find this study very interesting. In contrast, the general reader would probably fail to appreciate the importance of the results.

      We hope that the re-organized and simplified introduction may now be more intelligible even for non-specialist readers.

      (1) L35: Should "workers" be replaced with "worker antennae"?

      Corrected.

      (2) L62: Should "conservativeness" be replaced by "conservation"?

      Replaced with “parsimony”.

      (3) L129: How and why did the authors choose four candidate ORs? I could not find any information about this in the manuscript. I wondered why they did not pick the more highly expressed PsimOr20 and 26 (Figure 7).

      As already replied above in the Weaknesses section, we selected for the first deorphanization attempts only a modest set of four ORs, while an additional set is currently being tested. We also explained above the inclusion criteria, i.e. (i) full-length ORF and at least 6 unambiguously predicted transmembrane regions, and (ii) presence on different branches (subbranches) of the OR phylogeny. For these reasons, we did not primarily consider the expression patterns of different ORs. As for Fig. 7, it shows differential expression between soldiers and workers, which was not the primary guideline either and the data was obtained only after having the ORs tested by SSR. Yet, even though we had data on P. simplex ORs expression (Fig. 1B), we did not presume that pheromone receptors should be among the most expressed ORs, given the richness of chemical cues detected by worker termites and unlike, e.g., male moths, where ORs for sex pheromones are intuitively highly expressed.

      The strategy of OR selection is specified in the results section of the revised manuscript under “Phylogenetic reconstruction and candidate OR selection”.

      (4) 198 to 200: SI, II, and III look very similar. Additional measurements rather than qualitative descriptions are required to consider them distinct sensilla. The bending of SIII could be an artifact of preparation. I do not see how the authors could distinguish between SI and SII under the optical microscope for recordings. A detailed explanation is required.

      As we responded above in “Weaknesses” chapter, we admit that the sensilla classification is not intelligible. Therefore, we decided in the revised version to abandon the classification of sensilla types and only focus on the observations made on the neocembreneresponding sensillum. To recognize the specific sensillum, we used its topology on the last antennal segment. Because termite antennae are not densely populated with sensilla, it is relatively easy to distinguish individual sensilla based on their topology on the antenna, both in optical microscope and SEM photographs. The modifications affect Fig. 4, its legend and the corresponding part of the results section (Identification of P. simplex olfactory sensillum responding to neocembrene).

      (5) 208: "Than" instead of "that"

      Corrected.

      (6) 280: I suggest replacing "demand" with "capabilities"

      Corrected.

      (7) 312: Why "nevertheless? It sounds as if the authors suggest that there is evidence that ORs are not important for communication. This should be reworded.

      We removed “Nevertheless” from the beginning of the sentence.

      (8) 321 to 323: This sentence sounds as if something is missing. I suggest rewriting it.

      This sentence simply says that empty neuron Drosophila is a good tool for termite OR deorphanization and that termite ORs work well Drosophila ORCo. We reworded the sentence.

      (9) 323: I suggest starting a new paragraph.

      Corrected.

      (10) 421: How many colonies were used for each of the analyses?

      The data for this manuscript were collected from three different colonies collected in Cuba. We now describe in the Materials and Methods section which analyses were conducted with each of the colonies.

      (11) 430: Did the termites originate from one or multiple colonies and did the authors sample from the Florida and Cuba population?

      The data for this manuscript were collected from three different colonies collected in Cuba. We now describe in the Materials and Methods section which analyses were conducted with each of the colonies.

      (12) 501: How was the termite antenna fixated? The authors refer to the Drosophila methods, but given the large antennal differences between these species, more specific information would be helpful.

      Understood. We added the following information into the Methods section under “Electrophysiology”: “The grounding electrode was carefully inserted into the clypeus and the antenna was fixed on a microscope slide using a glass electrode. To avoid the antennal movement, the microscope slide was covered with double-sided tape and the three distal antennal segments were attached to the slide.”

      (13)509: I want to confirm that the authors indicate that the outlet of the glass tube with the airstream and odorant is 4 cm away from the Drosophila or termite antenna. The distance seems to be very large.

      Thank you for spotting this obvious mistake. The 4 cm distance applies for the distance between the opening for Pasteur pipette insertion into the delivery tube, the outlet itself is situated approx. 1 cm from the antenna. This information is now corrected.

      (14) 510/527: It looks like all odor panels were equally applied onto the filter paper despite the difference in solvent (hexane and paraffin oil). How was the solvent difference addressed?

      In our study we combine two types of odorant panels. First, we test on all four studied receptors a panel containing several compounds relevant for termite chemical communication including the C12 unsaturated alcohols, the diterpene neocembrene, the sesquiterpene (3R,6E)-nerolidol and other compounds. These compounds are stored in the laboratory as hexane solutions to prevent the oxidation/polymerization and it is not advisable to transfer them to another solvent. In the second step we used three additional panels of frequently occurring insect semiochemicals, which are stored as paraffin oil solutions, so as to address the breadth of PsimOR14 tuning. We are aware that the evaporation dynamics differ between the two solvents but we did not have any suitable option how to solve this problem. We believe that the use of the two solvents does not compromise the general message on the receptor specificity. For each panel, the corresponding solvent is used as a control. Similarly, the use of two different solvents for SSR can be encountered in other studies, e.g. 10.1016/j.celrep.2015.07.031.

      (15) 518: delta spikes/sec works for all tables except for the wild type in Table S5. I could not figure out how the authors get to delta spikes/sec in that table.

      Thank you for your sharp eye. Due to our mistake, the values of Δ spikes per second reported in Table S5 for W1118 were erroneously calculated using the formula for 0.5 sec stimulation instead of 1 sec. We corrected this mistake which does not impact the results interpretation in Table S5 and Fig. 2.

      522: Did the workers and soldiers originate from different colonies or different populations?

      We now clearly describe in the Material and Methods section the origin of termites for different experiments. EAG measurements were made using individuals (workers, soldiers) from one Cuban colony.

      (16) Figure 6C/D: I suggest matching colors between the two figures. For example, instead of using an orange circle in C and a green coloration of the intracellular flap in D, I recommend using blue, which is not used for something else. In addition, the binding pocket could be separated better from anything else in a different color.

      We agree that the color match for the intracellular flap was missing. This figure is now reworked and the colors should have a better match and the binding region is better delineated.

      (17) Figure 7/Table S15: It is unclear where the transcriptome data originate and what they are based on. Are these antennal transcriptomes or head transcriptomes? Do these data come from previous data sets or data generated in this study? Figure 7 refers to heads, Table S15 to workers and soldiers, and the methods only refer to antennal extractions. This should be clarified in the text, the figure, and the table.

      We admit that the replicate numbers and origin of the RNA seq data should be better specified and that the information that the RNASeq originated from samples of heads+antennae of workers and soldiers should be provided at appropriate places. Therefore, we added more information on replicates and origin of the data in the Methods section (Bioinformatics) and make clear that this data comes from our previous research and refer to the corresponding bioproject. Likewise, the Figure 7 legend and Table S15 heading have been updated.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Strengths:

      The study was designed as a 6-month follow-up, with repeated behavioral and EEG measurements through disease development, providing valuable and interesting findings on AD progression and the effect of early-life choline supplantation. Moreover, the behavioral data that suggest an adverse effect of low choline in WT mice are interesting and important beyond the context of AD.

      Thank you for identifying several strengths.

      Weaknesses:

      (1) The multiple headings and subheadings, focusing on the experimental method rather than the narrative, reduce the readability.

      We have reduced the number of headings.

      (2) Quantification of NeuN and FosB in WT littermates is needed to demonstrate rescue of neuronal death and hyperexcitability by high choline supplementation and also to gain further insights into the adverse effect of low choline on the performance of WT mice in the behavioral test.

      We agree and have added WT data for the NeuN and ΔFosB analyses. These data are included in the text and figures. For NeuN, the Figure is Figure 6. For ΔFosB it is Figure 7. In brief, the high choline diet restored NeuN and ΔFosB to the levels of WT mice.

      Below is Figure 6 and its legend to show the revised presentation of data for NeuN. Afterwards is the revised figure showing data for ΔFosB. After that are the sections of the Results that have been revised.

      Author response image 1.

      Choline supplementation improved NeuN immunoreactivity (ir) in hilar cells in Tg2576 animals. A. Representative images of NeuN-ir staining in the anterior DG of Tg2576 animals. (1) A section from a Tg2576 mouse fed the low choline diet. The area surrounded by a box is expanded below. Red arrows point to NeuN-ir hilar cells. Mol=molecular layer, GCL=granule cell layer, HIL=hilus. Calibration for the top row, 100 µm; for the bottom row, 50 µm. (2) A section from a Tg2576 mouse fed the intermediate diet. Same calibrations as for 1. (3) A section from a Tg2576 mouse fed the high choline diet. Same calibrations as for 1. B. Quantification methods. Representative images demonstrate the thresholding criteria used to quantify NeuN-ir. (1) A NeuN-stained section. The area surrounded by the white box is expanded in the inset (arrow) to show 3 hilar cells. The 2 NeuN-ir cells above threshold are marked by blue arrows. The 1 NeuN-ir cell below threshold is marked by a green arrow. (2) After converting the image to grayscale, the cells above threshold were designated as red. The inset shows that the two cells that were marked by blue arrows are red while the cell below threshold is not. (3) An example of the threshold menu from ImageJ showing the way the threshold was set. Sliders (red circles) were used to move the threshold to the left or right of the histogram of intensity values. The final position of the slider (red arrow) was positioned at the onset of the steep rise of the histogram. C. NeuN-ir in Tg2576 and WT mice. Tg2576 mice had either the low, intermediate, or high choline diet in early life. WT mice were fed the standard diet (intermediate choline). (1) Tg2576 mice treated with the high choline diet had significantly more hilar NeuN-ir cells in the anterior DG compared to Tg2576 mice that had been fed the low choline or intermediate diet. The values for Tg2576 mice that received the high choline diet were not significantly different from WT mice, suggesting that the high choline diet restored NeuN-ir. (2) There was no effect of diet or genotype in the posterior DG, probably because the low choline and intermediate diet did not appear to lower hilar NeuN-ir.

      Author response image 2.

      Choline supplementation reduced ∆FosB expression in dorsal GCs of Tg2576 mice. A. Representative images of ∆FosB staining in GCL of Tg2576 animals from each treatment group. (1) A section from a low choline-treated mouse shows robust ∆FosB-ir in the GCL. Calibration, 100 µm. Sections from intermediate (2) and high choline (3)-treated mice. Same calibration as 1. B. Quantification methods. Representative images demonstrating the thresholding criteria established to quantify ∆FosB. (1) A ∆FosB -stained section shows strongly-stained cells (white arrows). (2) A strict thresholding criteria was used to make only the darkest stained cells red. C. Use of the strict threshold to quantify ∆FosB-ir. (1) Anterior DG. Tg2576 mice treated with the choline supplemented diet had significantly less ∆FosB-ir compared to the Tg2576 mice fed the low or intermediate diets. Tg2576 mice fed the high choline diet were not significantly different from WT mice, suggesting a rescue of ∆FosB-ir. (2) There were no significant differences in ∆FosB-ir in posterior sections. D. Methods are shown using a threshold that was less strict. (1) Some of the stained cells that were included are not as dark as those used for the strict threshold (white arrows). (2) All cells above the less conservative threshold are shown in red. E. Use of the less strict threshold to quantify ∆FosB-ir. (1) Anterior DG. Tg2576 mice that were fed the high choline diet had less ΔFosB-ir pixels than the mice that were fed the other diets. There were no differences from WT mice, suggesting restoration of ∆FosB-ir by choline enrichment in early life. (2) Posterior DG. There were no significant differences between Tg2576 mice fed the 3 diets or WT mice.

      Results, Section C1, starting on Line 691:

      “To ask if the improvement in NeuN after MCS in Tg256 restored NeuN to WT levels we used WT mice. For this analysis we used a one-way ANOVA with 4 groups: Low choline Tg2576, Intermediate Tg2576, High choline Tg2576, and Intermediate WT (Figure 5C). Tukey-Kramer multiple comparisons tests were used as the post hoc tests. The WT mice were fed the intermediate diet because it is the standard mouse chow, and this group was intended to reflect normal mice. The results showed a significant group difference for anterior DG (F(3,25)=9.20; p=0.0003; Figure 5C1) but not posterior DG (F(3,28)=0.867; p=0.450; Figure 5C2). Regarding the anterior DG, there were more NeuN-ir cells in high choline-treated mice than both low choline (p=0.046) and intermediate choline-treated Tg2576 mice (p=0.003). WT mice had more NeuN-ir cells than Tg2576 mice fed the low (p=0.011) or intermediate diet (p=0.003). Tg2576 mice that were fed the high choline diet were not significantly different from WT (p=0.827).”

      Results, Section C2, starting on Line 722:

      “There was strong expression of ∆FosB in Tg2576 GCs in mice fed the low choline diet (Figure 7A1). The high choline diet and intermediate diet appeared to show less GCL ΔFosB-ir (Figure 7A2-3). A two-way ANOVA was conducted with the experimental group (Tg2576 low choline diet, Tg2576 intermediate choline diet, Tg2576 high choline diet, WT intermediate choline diet) and location (anterior or posterior) as main factors. There was a significant effect of group (F(3,32)=13.80, p=<0.0001) and location (F(1,32)=8.69, p=0.006). Tukey-Kramer post-hoc tests showed that Tg2576 mice fed the low choline diet had significantly greater ΔFosB-ir than Tg2576 mice fed the high choline diet (p=0.0005) and WT mice (p=0.0007). Tg2576 mice fed the low and intermediate diets were not significantly different (p=0.275). Tg2576 mice fed the high choline diet were not significantly different from WT (p>0.999). There were no differences between groups for the posterior DG (all p>0.05).”

      “∆FosB quantification was repeated with a lower threshold to define ∆FosB-ir GCs (see Methods) and results were the same (Figure 7D). Two-way ANOVA showed a significant effect of group (F(3,32)=14.28, p< 0.0001) and location (F(1,32)=7.07, p=0.0122) for anterior DG but not posterior DG (Figure 7D). For anterior sections, Tukey-Kramer post hoc tests showed that low choline mice had greater ΔFosB-ir than high choline mice (p=0.0024) and WT mice (p=0.005) but not Tg2576 mice fed the intermediate diet (p=0.275); Figure 7D1). Mice fed the high choline diet were not significantly different from WT (p=0.993; Figure 7D1). These data suggest that high choline in the diet early in life can reduce neuronal activity of GCs in offspring later in life. In addition, low choline has an opposite effect, suggesting low choline in early life has adverse effects.”

      (3) Quantification of the discrimination ratio of the novel object and novel location tests can facilitate the comparison between the different genotypes and diets.

      We have added the discrimination index for novel object location to the paper. The data are in a new figure: Figure 3. In brief, the results for discrimination index are the same as the results done originally, based on the analysis of percent of time exploring the novel object.

      Below is the new Figure and legend, followed by the new text in the Results.

      Author response image 3.

      Novel object location results based on the discrimination index. A. Results are shown for the 3 months-old WT and Tg2576 mice based on the discrimination index. (1) Mice fed the low choline diet showed object location memory only in WT. (2) Mice fed the intermediate diet showed object location memory only in WT. (3) Mice fed the high choline diet showed memory both for WT and Tg2576 mice. Therefore, the high choline diet improved memory in Tg2576 mice. B. The results for the 6 months-old mice are shown. (1-2) There was no significant memory demonstrated by mice that were fed either the low or intermediate choline diet. (3) Mice fed a diet enriched in choline showed memory whether they were WT or Tg2576 mice. Therefore, choline enrichment improved memory in all mice.

      Results, Section B1, starting on line 536:

      “The discrimination indices are shown in Figure 3 and results led to the same conclusions as the analyses in Figure 2. For the 3 months-old mice (Figure 3A), the low choline group did not show the ability to perform the task for WT or Tg2576 mice. Thus, a two-way ANOVA showed no effect of genotype (F(1,74)=0.027, p=0.870) or task phase (F(1,74)=1.41, p=0.239). For the intermediate diet-treated mice, there was no effect of genotype (F(1,50)=0.3.52, p=0.067) but there was an effect of task phase (F(1,50)=8.33, p=0.006). WT mice showed a greater discrimination index during testing relative to training (p=0.019) but Tg2576 mice did not (p=0.664). Therefore, Tg2576 mice fed the intermediate diet were impaired. In contrast, high choline-treated mice performed well. There was a main effect of task phase (F(1,68)=39.61, p=<0.001) with WT (p<0.0001) and Tg2576 mice (p=0.0002) showing preference for the moved object in the test phase. Interestingly, there was a main effect of genotype (F(1,68)=4.50, p=0.038) because the discrimination index for WT training was significantly different from Tg2576 testing (p<0.0001) and Tg2576 training was significantly different from WT testing (p=0.0003).”

      “The discrimination indices of 6 months-old mice led to the same conclusions as the results in Figure 2. There was no evidence of discrimination in low choline-treated mice by two-way ANOVA (no effect of genotype, (F(1,42)=3.25, p=0.079; no effect of task phase, F(1,42)=0.278, p=0.601). The same was true of mice fed the intermediate diet (genotype, F(1,12)=1.44, p=0.253; task phase, F(1,12)=2.64, p=0.130). However, both WT and Tg2576 mice performed well after being fed the high choline diet (effect of task phase, (F(1,52)=58.75, p=0.0001, but not genotype (F(1,52)=1.197, p=0.279). Tukey-Kramer post-hoc tests showed that both WT (p<0.0001) and Tg2576 mice that had received the high choline diet (p=0.0005) had elevated discrimination indices for the test session.”

      (4) The longitudinal analyses enable the performance of multi-level correlations between the discrimination ratio in NOR and NOL, NeuN and Fos levels, multiple EEG parameters, and premature death. Such analysis can potentially identify biomarkers associated with AD progression. These can be interesting in different choline supplementation, but also in the standard choline diet.

      We agree and added correlations to the paper in a new figure (Figure 9). Below is Figure 9 and its legend. Afterwards is the new Results section.

      Author response image 4.

      Correlations between IIS, Behavior, and hilar NeuN-ir. A. IIS frequency over 24 hrs is plotted against the preference for the novel object in the test phase of NOL. A greater preference is reflected by a greater percentage of time exploring the novel object. (1) The mice fed the high choline diet (red) showed greater preference for the novel object when IIS were low. These data suggest IIS impaired object location memory in the high choline-treated mice. The low choline-treated mice had very weak preference and very few IIS, potentially explaining the lack of correlation in these mice. (2) There were no significant correlations for IIS and NOR. However, there were only 4 mice for the high choline group, which is a limitation. B. IIS frequency over 24 hrs is plotted against the number of dorsal hilar cells expressing NeuN. The dorsal hilus was used because there was no effect of diet on the posterior hilus. (1) Hilar NeuN-ir is plotted against the preference for the novel object in the test phase of NOL. There were no significant correlations. (2) Hilar NeuN-ir was greater for mice that had better performance in NOR, both for the low choline (blue) and high choline (red) groups. These data support the idea that hilar cells contribute to object recognition (Kesner et al. 2015; Botterill et al. 2021; GoodSmith et al. 2022).

      Results, Section F, starting on Line 801:

      “F. Correlations between IIS and other measurements

      As shown in Figure 9A, IIS were correlated to behavioral performance in some conditions. For these correlations, only mice that were fed the low and high choline diets were included because mice that were fed the intermediate diet did not have sufficient EEG recordings in the same mouse where behavior was studied. IIS frequency over 24 hrs was plotted against the preference for the novel object in the test phase (Figure 9A). For NOL, IIS were significantly less frequent when behavior was the best, but only for the high choline-treated mice (Pearson’s r, p=0.022). In the low choline group, behavioral performance was poor regardless of IIS frequency (Pearson’s r, p=0.933; Figure 9A1). For NOR, there were no significant correlations (low choliNe, p=0.202; high choline, p=0.680) but few mice were tested in the high choline-treated mice (Figure 9B2).

      We also tested whether there were correlations between dorsal hilar NeuN-ir cell numbers and IIS frequency. In Figure 9B, IIS frequency over 24 hrs was plotted against the number of dorsal hilar cells expressing NeuN. The dorsal hilus was used because there was no effect of diet on the posterior hilus. For NOL, there was no significant correlation (low choline, p=0.273; high choline, p=0.159; Figure 9B1). However, for NOR, there were more NeuN-ir hilar cells when the behavioral performance was strongest (low choline, p=0.024; high choline, p=0.016; Figure 9B2). These data support prior studies showing that hilar cells, especially mossy cells (the majority of hilar neurons), contribute to object recognition (Botterill et al. 2021; GoodSmith et al. 2022).”

      We also noted that all mice were not possible to include because they died or other reasons, such a a loss of the headset (Results, Section A, Lines 463-464): Some mice were not possible to include in all assays either because they died before reaching 6 months or for other reasons.

      Reviewer #2 (Public Review):

      Strengths:

      The strength of the group was the ability to monitor the incidence of interictal spikes (IIS) over the course of 1.2-6 months in the Tg2576 Alzheimer's disease model, combined with meaningful behavioral and histological measures. The authors were able to demonstrate MCS had protective effects in Tg2576 mice, which was particularly convincing in the hippocampal novel object location task.

      We thank the Reviewer for identifying several strengths.

      Weaknesses:

      Although choline deficiency was associated with impaired learning and elevated FosB expression, consistent with increased hyperexcitability, IIS was reduced with both low and high choline diets. Although not necessarily a weakness, it complicates the interpretation and requires further evaluation.

      We agree and we revised the paper to address the evaluations that were suggested.

      Reviewer #1 (Recommendations For The Authors):

      (1) A reference directing to genotyping of Tg2576 mice is missing.

      We apologize for the oversight and added that the mice were genotyped by the New York University Mouse Genotyping core facility.

      Methods, Section A, Lines 210-211: “Genotypes were determined by the New York University Mouse Genotyping Core facility using a protocol to detect APP695.”

      (2) Which software was used to track the mice in the behavioral tests?

      We manually reviewed videos. This has been clarified in the revised manuscript. Methods, Section B4, Lines 268-270: Videos of the training and testing sessions were analyzed manually. A subset of data was analyzed by two independent blinded investigators and they were in agreement.

      (3) Unexpectedly, a low choline diet in AD mice was associated with reduced frequency of interictal spikes yet increased mortality and spontaneous seizures. The authors attribute this to postictal suppression.

      We did not intend to suggest that postictal depression was the only cause. It was a suggestion for one of many potential explanations why seizures would influence IIS frequency. For postictal depression, we suggested that postictal depression could transiently reduce IIS. We have clarified the text so this is clear (Discussion, starting on Line 960):

      If mice were unhealthy, IIS might have been reduced due to impaired excitatory synaptic function. Another reason for reduced IIS is that the mice that had the low choline diet had seizures which interrupted REM sleep. Thus, seizures in Tg2576 mice typically started in sleep. Less REM sleep would reduce IIS because IIS occur primarily in REM. Also, seizures in the Tg2576 mice were followed by a depression of the EEG (postictal depression; Supplemental Figure 3) that would transiently reduce IIS. A different, radical explanation is that the intermediate diet promoted IIS rather than low choline reducing IIS. Instead of choline, a constituent of the intermediate diet may have promoted IIS.

      However, reduced spike frequency is already evident at 5 weeks of age, a time point with a low occurrence of premature death. A more comprehensive analysis of EEG background activity may provide additional information if the epileptic activity is indeed reduced at this age.

      We did not intend to suggest that premature death caused reduced spike frequency. We have clarified the paper accordingly. We agree that a more in-depth EEG analysis would be useful but is beyond the scope of the study.

      (4) Supplementary Fig. 3 depicts far more spikes / 24 h compared to Fig. 7B (at least 100 spikes/24h in Supplementary Fig. 3 and less than 10 spikes/24h in Fig. 7B).

      We would like to clarify that before and after a seizure the spike frequency is unusually high. Therefore, there are far more spikes than prior figures.

      We clarified this issue by adding to the Supplemental Figure more data. The additional data are from mice without a seizure, showing their spikes are low in frequency.

      All recordings lasted several days. We included the data from mice with a seizure on one of the days and mice without any seizures. For mice with a seizure, we graphed IIS frequency for the day before, the day of the seizure, and the day after. For mice without a seizure, IIS frequency is plotted for 3 consecutive days. When there was a seizure, the day before and after showed high numbers of spikes. When there was no seizure on any of the 3 days, spikes were infrequent on all days.

      The revised figure and legend are shown below. It is Supplemental Figure 4 in the revised submission.

      Author response image 5.

      IIS frequency before and after seizures. A. Representative EEG traces recorded from electrodes implanted in the skull over the left frontal cortex, right occipital cortex, left hippocampus (Hippo) and right hippocampus during a spontaneous seizure in a 5 months-old Tg2576 mouse. Arrows point to the start (green arrow) and end of the seizure (red arrow), and postictal depression (blue arrow). B. IIS frequency was quantified from continuous video-EEG for mice that had a spontaneous seizure during the recording period and mice that did not. IIS frequency is plotted for 3 consecutive days, starting with the day before the seizure (designated as day 1), and ending with the day after the seizure (day 3). A two-way RMANOVA was conducted with the day and group (mice with or without a seizure) as main factors. There was a significant effect of day (F(2,4)=46.95, p=0.002) and group (seizure vs no seizure; F(1,2)=46.01, p=0.021) and an interaction of factors (F(2,4)=46.68, p=0.002)..Tukey-Kramer post-hoc tests showed that mice with a seizure had significantly greater IIS frequencies than mice without a seizure for every day (day 1, p=0.0005; day 2, p=0.0001; day 3, p=0.0014). For mice with a seizure, IIS frequency was higher on the day of the seizure than the day before (p=0.037) or after (p=0.010). For mice without a seizure, there were no significant differences in IIS frequency for day 1, 2, or 3. These data are similar to prior work showing that from one day to the next mice without seizures have similar IIS frequencies (Kam et al., 2016).

      In the text, the revised section is in the Results, Section C, starting on Line 772:

      “At 5-6 months, IIS frequencies were not significantly different in the mice fed the different diets (all p>0.05), probably because IIS frequency becomes increasingly variable with age (Kam et al. 2016). One source of variability is seizures, because there was a sharp increase in IIS during the day before and after a seizure (Supplemental Figure 4). Another reason that the diets failed to show differences was that the IIS frequency generally declined at 5-6 months. This can be appreciated in Figure 8B and Supplemental Figure 6B. These data are consistent with prior studies of Tg2576 mice where IIS increased from 1 to 3 months but then waxed and waned afterwards (Kam et al., 2016).”

      (5) The data indicating the protective effect of high choline supplementation are valuable, yet some of the claims are not completely supported by the data, mainly as the analysis of littermate WT mice is not complete.

      We added WT data to show that the high choline diet restored cell loss and ΔFosB expression to WT levels. These data strengthen the argument that the high choline diet was valuable. See the response to Reviewer #1, Public Review Point #2.

      • Line 591: "The results suggest that choline enrichment protected hilar neurons from NeuN loss in Tg2576 mice." A comparison to NeuN expression in WT mice is needed to make this statement.

      These data have been added. See the response to Reviewer #1, Public Review Point #2.

      • Line 623: "These data suggest that high choline in the diet early in life can reduce hyperexcitability of GCs in offspring later in life. In addition, low choline has an opposite effect, again suggesting this maternal diet has adverse effects." Also here, FosB quantification in WT mice is needed.

      These data have been added. See the response to Reviewer #1, Public Review Point #2.

      (7) Was the effect of choline associated with reduced tauopathy or A levels?

      The mice have no detectable hyperphosphorylated tau. The mice do have intracellular A before 6 months. This is especially the case in hilar neurons, but GCs have little (Criscuolo et al., eNeuro, 2023). However, in neurons that have reduced NeuN, we found previously that antibodies generally do not work well. We think it is because the neurons become pyknotic (Duffy et al., 2015), a condition associated with oxidative stress which causes antigens like NeuN to change conformation due to phosphorylation. Therefore, we did not conduct a comparison of hilar neurons across the different diets.

      (8) Since the mice were tested at 3 months and 6 months, it would be interesting to see the behavioral difference per mouse and the correlation with EEG recording and immunohistological analyses.

      We agree that would be valuable and this has been added to the paper. Please see response to Reviewer #1, Public Review Point #4.

      Reviewer #2 (Recommendations For The Authors):

      There were several areas that could be further improved, particularly in the areas of data analysis (particularly with images and supplemental figures), figure presentation, and mechanistic speculation.

      Major points:

      (1) It is understandable that, for the sake of labor and expense, WT mice were not implanted with EEG electrodes, particularly since previous work showed that WT mice have no IIS (Kam et al. 2016). However, from a standpoint of full factorial experimental design, there are several flaws - purists would argue are fatal flaws. First, the lack of WT groups creates underpowered and imbalanced groups, constraining statistical comparisons and likely reducing the significance of the results. Also, it is an assumption that diet does not influence IIS in WT mice. Secondly, with a within-subject experimental design (as described in Fig. 1A), 6-month-old mice are not naïve if they have previously been tested at 3 months. Such an experimental design may reduce effect size compared to non-naïve mice. These caveats should be included in the Discussion. It is likely that these caveats reduce effect size and that the actual statistical significance, were the experimental design perfect, would be higher overall.

      We agree and have added these points to the Limitations section of the Discussion. Starting on Line 1050: In addition, groups were not exactly matched. Although WT mice do not have IIS, a WT group for each of the Tg2576 groups would have been useful. Instead, we included WT mice for the behavioral tasks and some of the anatomical assays. Related to this point is that several mice died during the long-term EEG monitoring of IIS.

      (2) Since behavior, EEG, NeuN and FosB experiments seem to be done on every Tg2576 animal, it seems that there are missed opportunities to correlate behavior/EEG and histology on a per-mouse basis. For example, rather than speculate in the discussion, why not (for example) directly examine relationships between IIS/24 hours and FosB expression?

      We addressed this point above in responding to Reviewer #1, Public Review Point #4.

      (3) Methods of image quantification should be improved. Background subtraction should be considered in the analysis workflow (see Fig. 5C and Fig. 6C background). It would be helpful to have a Methods figure illustrating intermediate processing steps for both NeuN and FosB expression.

      We added more information to improve the methods of quantification. We did use a background subtraction approach where ImageJ provides a histogram of intensity values, and it determines when there is a sharp rise in staining relative to background. That point is where we set threshold. We think it is a procedure that has the least subjectivity.

      We added these methods to the Methods section and expanded the first figure about image quantification, Figure 6B. That figure and legend are shown above in response to Reviewer #1, Point #2.

      This is the revised section of the Methods, Section C3, starting on Line 345:

      “Photomicrographs were acquired using ImagePro Plus V7.0 (Media Cybernetics) and a digital camera (Model RET 2000R-F-CLR-12, Q-Imaging). NeuN and ∆FosB staining were quantified from micrographs using ImageJ (V1.44, National Institutes of Health). All images were first converted to grayscale and in each section, the hilus was traced, defined by zone 4 of Amaral (1978). A threshold was then calculated to identify the NeuN-stained cell bodies but not background. Then NeuN-stained cell bodies in the hilus were quantified manually. Note that the threshold was defined in ImageJ using the distribution of intensities in the micrograph. A threshold was then set using a slider in the histogram provided by Image J. The slider was pushed from the low level of staining (similar to background) to the location where staining intensity made a sharp rise, reflecting stained cells. Cells with labeling that was above threshold were counted.”

      (4) This reviewer is surprised that the authors do not speculate more about ACh-related mechanisms. For example, choline deficiency would likely reduce Ach release, which could have the same effect on IIS as muscarinic antagonism (Kam et al. 2016), and could potentially explain the paradoxical effects of a low choline diet on reducing IIS. Some additional mechanistic speculation would be helpful in the Discussion.

      We thank the Reviewer for noting this so we could add it to the Discussion. We had not because we were concerned about space limitations.

      The Discussion has a new section starting on Line 1009:

      “Choline and cholinergic neurons

      There are many suggestions for the mechanisms that allow MCS to improve health of the offspring. One hypothesis that we are interested in is that MCS improves outcomes by reducing IIS. Reducing IIS would potentially reduce hyperactivity, which is significant because hyperactivity can increase release of A. IIS would also be likely to disrupt sleep since it represents aberrant synchronous activity over widespread brain regions. The disruption to sleep could impair memory consolidation, since it is a notable function of sleep (Graves et al. 2001; Poe et al. 2010). Sleep disruption also has other negative consequences such as impairing normal clearance of A (Nedergaard and Goldman 2020). In patients, IIS and similar events, IEDs, are correlated with memory impairment (Vossel et al. 2016).

      How would choline supplementation in early life reduce IIS of the offspring? It may do so by making BFCNs more resilient. That is significant because BFCN abnormalities appear to cause IIS. Thus, the cholinergic antagonist atropine reduced IIS in vivo in Tg2576 mice. Selective silencing of BFCNs reduced IIS also. Atropine also reduced elevated synaptic activity of GCs in young Tg2576 mice in vitro. These studies are consistent with the idea that early in AD there is elevated cholinergic activity (DeKosky et al. 2002; Ikonomovic et al. 2003; Kelley et al. 2014; Mufson et al. 2015; Kelley et al. 2016), while later in life there is degeneration. Indeed, the chronic overactivity could cause the degeneration.

      Why would MCS make BFCNs resilient? There are several possibilities that have been explored, based on genes upregulated by MCS. One attractive hypothesis is that neurotrophic support for BFCNs is retained after MCS but in aging and AD it declines (Gautier et al. 2023). The neurotrophins, notably nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) support the health of BFCNs (Mufson et al. 2003; Niewiadomska et al. 2011).”

      Minor points:

      (1) The vendor is Dyets Inc., not Dyets.

      Thank you. This correction has been made.

      (2) Anesthesia chamber not specified (make, model, company).

      We have added this information to the Methods, Section D1, starting on Line 375: The animals were anesthetized by isoflurane inhalation (3% isoflurane. 2% oxygen for induction) in a rectangular transparent plexiglas chamber (18 cm long x 10 cm wide x 8 cm high) made in-house.

      (3) It is not clear whether software was used for the detection of behavior. Was position tracking software used or did blind observers individually score metrics?

      We have added the information to the paper. Please see the response to Reviewer #1, Recommendations for Authors, Point #2.

      (4) It is not clear why rat cages and not a true Open Field Maze were used for NOL and NOR.

      We used mouse cages because in our experience that is what is ideal to detect impairments in Tg2576 mice at young ages. We think it is why we have been so successful in identifying NOL impairments in young mice. Before our work, most investigators thought behavior only became impaired later. We would like to add that, in our experience, an Open Field Maze is not the most common cage that is used.

      (5) Figure 1A is not mentioned.

      It had been mentioned in the Introduction. Figure B-D was the first Figure mentioned in the Results so that is why it might have been missed. We now have added it to the first section of the Results, Line 457, so it is easier to find.

      6) Although Fig 7 results are somewhat complicated compared to Fig. 5 and 6 results, EEG comes chronologically earlier than NeuN and FosB expression experiments.

      We have kept the order as is because as the Reviewer said, the EEG is complex. For readability, we have kept the EEG results last.

      (7) Though the statistical analysis involved parametric and nonparametric tests, It is not clear which normality tests were used.

      We have added the name of the normality tests in the Methods, Section E, Line 443: Tests for normality (Shapiro-Wilk) and homogeneity of variance (Bartlett’s test) were used to determine if parametric statistics could be used. We also added after this sentence clarification: When data were not normal, non-parametric data were used. When there was significant heteroscedasticity of variance, data were log transformed. If log transformation did not resolve the heteroscedasticity, non-parametric statistics were used. Because we added correlations and analysis of survival curves, we also added the following (starting on Line 451): For correlations, Pearson’s r was calculated. To compare survival curves, a Log rank (Mantel-Cox) test was performed.

      Figures:

      (1) In Fig. 1A, Anatomy should be placed above the line.

      We changed the figure so that the word “Anatomy” is now aligned, and the arrow that was angled is no longer needed.

      In Fig. 1C and 1D, the objects seem to be moved into the cage, not the mice. This schematic does not accurately reflect the Fig. 1C and 1D figure legend text.

      Thank you for the excellent point. The figure has been revised. We also updated it to show the objects more accurately.

      Please correct the punctuation in the Fig. 1D legend.

      Thank you for mentioning the errors. We corrected the legend.

      For ease of understanding, Fig. 1C and 1D should have training and testing labeled in the figure.

      Thank you for the suggestion. We have revised the figure as suggested.

      Author response image 6.

      (2) In Figure 2, error bars for population stats (bar graphs) are not obvious or missing. Same for Figure 3.

      We added two supplemental figures to show error bars, because adding the error bars to the existing figures made the symbols, colors, connecting lines and error bars hard to distinguish. For novel object location (Fig. 2) the error bars are shown in Supp. Fig. 2. For novel object recognition, the error bars are shown in Supplemental Fig. 3.

      (3) The authors should consider a Methods figure for quantification of NeuN and deltaFOSB (expansions of Fig. 5C and Fig. 6C).

      Please see Reviewer #1, Public Review Point #2.

      (4) In Figure 5, A should be omitted and mentioned in the Methods/figure legend. B should be enlarged. C should be inset, zoomed-in images of the hilus, with an accompanying analysis image showing a clear reduction in NeuN intensity in low choline conditions compared to intermediate and high choline conditions. In D, X axes could delineate conditions (figure legend and color unnecessary). Figure 5C should be moved to a Methods figure.

      We thank the review for the excellent suggestions. We removed A as suggested. We expanded B and included insets. We used different images to show a more obvious reduction of cells for the low choline group. We expanded the Methods schematics. The revised figure is Figure 6 and shown above in response to Reviewer 1, Public Review Point #2.

      (5) In Figure 6, A should be eliminated and mentioned in the Methods/figure legend. B should be greatly expanded with higher and lower thresholds shown on subsequent panels (3x3 design).

      We removed A as suggested. We expanded B as suggested. The higher and lower thresholds are shown in C. The revised figure is Figure 7 and shown above in response to Reviewer 1, Public Review Point #2.

      (6) In Figure 7, A2 should be expanded vertically. A3 should be expanded both vertically and horizontally. B 1 and 2 should be increased, particularly B1 where it is difficult to see symbols. Perhaps colored symbols offset/staggered per group so that the spread per group is clearer.

      We added a panel (A4) to show an expansion of A2 and A3. However, we did not see that a vertical expansion would add information so we opted not to add that. We expanded B1 as suggested but opted not to expand B2 because we did not think it would enhance clarity. The revised figure is below.

      Author response image 7.

      (7) Supplemental Figure 1 could possibly be combined with Figure 1 (use rounded corner rat cage schematic for continuity).

      We opted not to combine figures because it would make one extremely large figure. As a result, the parts of the figure would be small and difficult to see.

      (8) Supplemental Figure 2 - there does not seem to be any statistical analysis associated with A mentioned in the Results text.

      We added the statistical information. It is now Supplemental Figure 4:

      Author response image 8.

      Mortality was high in mice treated with the low choline diet. A. Survival curves are shown for mice fed the low choline diet and mice fed the high choline diet. The mice fed the high choline diet had a significantly less severe survival curve. B. Left: A photo of a mouse after sudden unexplained death. The mouse was found in a posture consistent with death during a convulsive seizure. The area surrounded by the red box is expanded below to show the outstretched hindlimb (red arrow). Right: A photo of a mouse that did not die suddenly. The area surrounded by the box is expanded below to show that the hindlimb is not outstretched.

      The revised text is in the Results, Section E, starting on Line 793:

      “The reason that low choline-treated mice appeared to die in a seizure was that they were found in a specific posture in their cage which occurs when a severe seizure leads to death (Supplemental Figure 5). They were found in a prone posture with extended, rigid limbs (Supplemental Figure 5). Regardless of how the mice died, there was greater mortality in the low choline group compared to mice that had been fed the high choline diet (Log-rank (Mantel-Cox) test, Chi square 5.36, df 1, p=0.021; Supplemental Figure 5A).”

      Also, why isn't intermediate choline also shown?

      We do not have the data from the animals. Records of death were not kept, regrettably.

      Perhaps labeling of male/female could also be done as part of this graph.

      We agree this would be very interesting but do not have all sex information.

      B is not very convincing, though it is understandable once one reads about posture.

      We have clarified the text and figure, as well as the legend. They are above.

      Are there additional animals that were seen to be in a specific posture?

      There are many examples, and we added them to hopefully make it more convincing.

      We also added posture in WT mice when there is a death to show how different it is.

      Is there any relationship between seizures detected via EEG, as shown in Supplemental Figure 3, and death?

      Several mice died during a convulsive seizure, which is the type of seizure that is shown in the Supplemental Figure.

      (9) Supplemental Figure 3 seems to display an isolated case in which EEG-detected seizures correlate with increased IIEs. It is not clear whether there are additional documented cases of seizures that could be assembled into a meaningful population graph. If this data does not exist or is too much work to include in this manuscript, perhaps it can be saved for a future paper.

      We have added other cases and revised the graph. This is now Supplemental Figure 4 and is shown above in response to Reviewer #1, Recommendation for Authors Point #4.

      Frontal is misspelled.

      We checked and our copy is not showing a misspelling. However, we are very grateful to the Reviewer for catching many errors and reading the manuscript carefully.

      (10) Supplemental Figure 4 seems incomplete in that it does not include EEG data from months 4, 5, and 6 (see Fig. 7B).

      We have added data for these ages to the Supplemental Figure (currently Supplemental Figure 6) as part B. In part A, which had been the original figure, only 1.2, 2, and 3 months-old mice were shown because there were insufficient numbers of each sex at other ages. However, by pooling 1.2 and 2 months (Supplemental Figure 6B1), 3 and 4 months (B2) and 5 and 6 months (B3) we could do the analysis of sex. The results are the same – we detected no sex differences.

      Author response image 9.

      A. IIS frequency was similar for each sex. A. IIS frequency was compared for females and males at 1.2 months (1), 2 months (2), and 3 months (3). Two-way ANOVA was used to analyze the effects of sex and diet. Female and male Tg2576 mice were not significantly different. B. Mice were pooled at 1.2 and 2 months (1), 3 and 4 months (2) and 5 and 6 months (3). Two-way ANOVA analyzed the effects of sex and diet. There were significant effects of diet for (1) and (2) but not (3). There were no effects of sex at any age. (1) There were significant effects of diet (F(2,47)=46.21, p<0.0001) but not sex (F(1,47)=0.106, p=0.746). Female and male mice fed the low choline diet or high choline diet were significantly different from female and male mice fed the intermediate diet (all p<0.05, asterisk). (2) There were significant effects of diet (F(2,32)=10.82, p=0.0003) but not sex (F(1,32)=1.05, p=0.313). Both female and male mice of the low choline group were significantly different from male mice fed the intermediate diet (both p<0.05, asterisk) but no other pairwise comparisons were significant. (3) There were no significant differences (diet, F(2,23)=1.21, p=0.317); sex, F(1,23)=0.844, p=0.368).

      The data are discussed the Results, Section G, tarting on Line 843:

      In Supplemental Figure 6B we grouped mice at 1-2 months, 3-4 months and 5-6 months so that there were sufficient females and males to compare each diet. A two-way ANOVA with diet and sex as factors showed a significant effect of diet (F(2,47)=46.21; p<0.0001) at 1-2 months of age, but not sex (F1,47)=0.11, p=0.758). Post-hoc comparisons showed that the low choline group had fewer IIS than the intermediate group, and the same was true for the high choline-treated mice. Thus, female mice fed the low choline diet differed from the females (p<0.0001) and males (p<0.0001) fed the intermediate diet. Male mice that had received the low choline diet different from females (p<0.0001) and males (p<0.0001) fed the intermediate diet. Female mice fed the high choline diet different from females (p=0.002) and males (p<0.0001) fed the intermediate diet, and males fed the high choline diet difference from females (p<0.0001) and males (p<0.0001) fed the intermediate diet.

      For the 3-4 months-old mice there was also a significant effect of diet (F(2,32)=10.82, p=0.0003) but not sex (F(1,32)=1.05, p=0.313). Post-hoc tests showed that low choline females were different from males fed the intermediate diet (p=0.007), and low choline males were also significantly different from males that had received the intermediate diet (p=0.006). There were no significant effects of diet (F(2,23)=1.21, p=0.317) or sex (F(1,23)=0.84, p=0.368) at 5-6 months of age.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this study, Bonnifet et al. profile the presence of L1 ORF1p in the mouse and human brain. They claim that ORF1p is expressed in the human and mouse brain at a steady state and that there is an age-dependent increase in expression. This is a timely report as two recent papers have extensively documented the presence of full-length L1 transcripts in the mouse and human brain (PMID: 38773348 & PMID: 37910626). Thus, the finding that L1 ORF1p is consistently expressed in the brain is not surprising, but important to document.

      Thank you for recognizing the importance of this study. The two cited papers have indeed reported the presence of full-length transcripts in the mouse and human brain. However, the first (PMID: 38773348) report has shown evidence of full-length LINE-1 RNA and ORF1 protein expression in the mouse hippocampus (but not elsewhere) and the second (PMID: 37910626) shows full-length LINE-1 RNA expression and H3K4me3-ChIP data in the frontal and temporal lobe of the human brain, but not protein expression.

      Strengths:

      Several parts of this manuscript appear to be well done and include the necessary controls. In particular, the evidence for steady-state expression of ORF1p in the mouse brain appears robust.

      Weaknesses:

      Several parts of the manuscript appear to be more preliminary and need further experiments to validate their claims. In particular, the data suggesting expression of L1 ORF1p in the human brain and the data suggesting increased expression in the aged brain need further validation. Detailed comments:

      (1) The expression of ORF1p in the human brain shown in Figure 1j is not convincing. Why are there two strong bands in the WB? How can the authors be sure that this signal represents ORF1p expression and not nonspecific labelling? Additional validations and controls are needed to verify the specificity of this signal.

      We have validated the antibody against human ORF1p (Abcam 245249-> https://www.abcam.com/enus/products/primary-antibodies/line-1-orf1p-antibody-epr22227-6-ab245249), which we use for Western blotting experiments (please see Fig1J and new Suppl Fig.2A,B and C), by several means.

      (1) We have done immunoprecipitations and co-immunoprecipitations followed by quantitative mass spectrometry (LC-MS/MS; data not shown as they are part of a different study). We efficiently detect ORF1p in IPs (Western blot now added in Suppl Fig2B) and by quantitative mass spectrometry (5 independent samples per IP-ORF1p and IP-IgG: ORF1p/IgG ratio: 40.86; adj p-value 8.7e-07; human neurons in culture; data not shown as they are part of a different study). We also did co-IPs followed by Western blot using two different antibodies, either the Millipore clone 4H1 (https://www.merckmillipore.com/CH/en/product/Anti-LINE-1-ORF1p-Antibody-clone-4H1,MM_NF-MABC1152?ReferrerURL=https%3A%2F%2Fwww.google.com%2F) or the Abcam antibody to immunoprecipitate and the Abcam antibody for Western blotting on human brain samples. Indeed, the Millipore antibody does not work well on Western Blots in our hands. We consistently revealed a double band indicating that both bands are ORF1p-derived. We have added an ORF1p IP-Western blot as Suppl Fig. 2B which clearly shows the immunoprecipitation of both bands by the Abcam antibody. Abcam also reports a double band, and they suspect that the lower band is a truncated form (see the link to their website above). ORF1p Western blots done by other labs with different antibodies have detected a second band in human samples

      • Sato, S. et al. LINE-1 ORF1p as a candidate biomarker in high grade serous ovarian carcinoma. Sci Rep 13, 1537 (2023) in Figure 1D

      • McKerrow, W. et al. LINE-1 expression in cancer correlates with p53 mutation, copy number alteration, and S phase checkpoint. Proc. Natl. Acad. Sci. U.S.A. 119, e2115999119 (2022)) showing a Western blot of an inducible LINE-1 (ORFeus) detected by the MABC1152 ORF1p antibody from Millipore Sigma in Figure 7 - Walter et al. eLife 2016;5:e11418. (DOI: 10.7554/eLife.11418) in mouse ES cells with an antibody made inhouse (gift from another lab; in Figure 2B)

      The lower band might thus be a truncated form of ORF1p or a degradation product which appears to be shared by mouse and human ORF1p. We have now mentioned this in the revised version of the paper (lines 183-189).

      (2) We have used the very well characterized antibody from Millipore ((https://www.merckmillipore.com/CH/en/product/Anti-LINE-1-ORF1p-Antibody-clone-4H1,MM_NFMABC1152?ReferrerURL=https%3A%2F%2Fwww.google.com%2F)) for immunostainings and detect ORF1p staining in human neurons in the very same brain regions (Fig 2H, new Suppl Fig. 2E) including the cerebellum in the human brain. We added a 2nd antibody-only control (Suppl Fig. 2E).

      (3) We also did antibody validation by siRNA knock-down. However, it is important to note, that these experiments were done in LUHMES cells, a neuronal cell line which we differentiated into human dopaminergic neurons. In these cells, we only occasionally detect a double band on Western blots, but mostly only reveal the upper band at ≈ 40kD. The results of the knockdown are now added as Suppl Fig. 2C.

      Altogether, based on our experimental validations and evidence from the literature, we are very confident that it is indeed ORF1p that we detect on the blots and by immmunostainings in the human brain.

      (2) The data shown in Figure 2g are not convincing. How can the authors be sure that this signal controls are needed to verify the specificity of this signal. represents ORF1p expression and not non-specific labelling? Extensive additional validations and

      In line 117-123 of the manuscript, we had specified “Importantly, the specificity of the ORF1p antibody, a widely used, commercially available antibody [18,34–38], was confirmed by blocking the ORF1p antibody with purified mouse ORF1p protein resulting in the complete absence of immunofluorescence staining (Suppl Fig. 1A), by using an inhouse antibody against mouse ORF1p[17] which colocalized with the anti-ORF1p antibody used (Suppl Fig. 1B, quantified in Suppl Fig. 1C), and by immunoprecipitation and mass spectrometry used in this study (see Author response image 1)”.

      Figure 2G shows a Western blot using an extensively used and well characterized ORF1p antibody from abcam (mouse ORF1p, Rabbit Recombinant Monoclonal LINE-1 ORF1p antibody-> (https://www.abcam.com/enus/products/primary-antibodies/line-1-orf1p-antibody-epr21844-108-ab216324; cited in at least 11 publications) after FACS-sorting of neurons (NeuN+) of the mouse brain. We have validated this ORF1p antibody ourselves in IPs (please see Fig 6A) and co-IP followed by mass spectrometry (LC/MS-MS; see Fig 6, where we detect ORF1p exclusively in the 5 independent ORF1p-IP samples and not at all in 5 independent IgG-IP control samples, please also see Suppl Table 2). In this analysis, we detect ORF1p with a ratio and log2fold of ∞ , indicating that this proteins only found in IP-ORF1p samples (5/5) and not in the IP-control samples ((not allowing for the calculation of a ratio with p-value), please see Suppl Table 2)

      Author response image 1.

      In addition, we have added new data showing the entire membrane of the Western blot in Fig1H (now Suppl Fig.1E) and a knock-down experiment using siRNA against ORF1p or control siRNA in mouse dopaminergic neurons in culture (MN9D; new Suppl Fig.1D). This together makes us very confident that we are looking at a specific ORF1p signal. The band in Figure 2G is at the same height as the input and there are no other bands visible (except the heavy chain of the NeuN antibody, which at the same time is a control for the sorting). We added some explanatory text to the revised version of the manuscript in lines 120-124 and lines 253-256).

      Please note that in the IP of ORF1p shown in Fig6A, there is a double band as well, strongly suggesting that the lower band might be a truncated or processed form of ORF1p. As stated above, this double band has been detected in other studies (Walter et al. eLife 2016;5:e11418. DOI: 10.7554/eLife.11418) in mouse ES cells using an in-house generated antibody against mouse ORF1p. Thus, with either commercial or in-house generated antibodies in some mouse and human samples, there is a double band corresponding to full-length ORF1p and a truncated or processed version of it.

      We noticed that we have not added the references of the primary antibodies used in Western blot experiments in the manuscript, which was now corrected in the revised version.

      (3) The data showing a reduction in ORF1p expression in the aged mouse brain is confusing and maybe even misleading. Although there is an increase in the intensity of the ORF1p signal in ORF1p+ cells, the data clearly shows that fewer cells express ORF1p in the aged brain. If these changes indicate an overall loss or gain of ORF1p, expression in the aged brain is not resolved. Thus, conclusions should be more carefully phrased in this section. It is important to show the quantification of NeuN+ and NeuN- cells in young vs aged (not only the proportions as shown in Figure 3b) to determine if the difference in the number of ORF1p+ cells is due to loss of neurons or perhaps a sampling issue. More so, it would be essential to perform WB and/or proteomics experiments to complement the IHC data for the aged mouse samples.

      We thank the reviewer for this comment and we agree that the representation has been confusing, which is why we added data to Suppl Fig.5 (F-K) using a different representation. As suggested by the reviewer, in new Suppl Fig. 5F-K, we now show the number of ORF1p+, NeuN+ or NeuN- cells per mm2. These graphs indicate that the number per mm2 of ORF1p+ cells overall do not decrease significantly (with the dorsal striatum as an exception, but possibly due to technical limitations which we now discuss in the results section, line 332-335). Globally, there is thus no loss of ORF1p+ expressing cells. There is also no global nor region-specific decrease in the number of neuronal cells (NeuN+ per mm2) although proportions change (Suppl Fig 2E, confocal acquisitions), thus most likely due to a gain of non-neuronal cells in this region. Concerning Western blots on mouse brain tissues from young and aged individuals, we unfortunately ran into limits regarding tissue availability of aged mice.

      (4) The transcriptomic data presented in Figure 4 and Figure 5 are not convincing. Quantification of transposon expression on short read sequencing has important limitations. Longer reads and complementary approaches are needed to study the expression of evolutionarily young L1s (see PMID: 38773348 & PMID: 37910626 for examples of the current state of the art). Given the read length and the unstranded sequencing approach, I would at least ask the authors to add genome browser tracks of the upregulated loci so that we can properly assess the clarity of the results. I would also suggest adding the mappability profile of the elements in question. In addition, since this manuscript focuses on ORF1p, it would be essential to document changes in protein levels (and not just transcripts) in the ageing human brain.

      We agree that there are limitations to the analysis of TEs with short read sequencing and we have added more text on this aspect in the revised version (results section) and highlighted the problem of limited and disequilibrated sample size in the discussion (line 638-644). The approaches shown in PMID: 38773348 & PMID: 37910626 or even a combination of them, would be ideal of course. However, here we re-analyzed a unique preexisting dataset (Dong et al, Nature Neuroscience, 2018; http://dx.doi.org/10.1038/s41593-018-0223-0), which contains RNA-seq data of human post-mortem dopaminergic neurons in a relatively high number of brain-healthy individuals of a wide age range including some “young” individuals which is rare in post-mortem studies. Such data is unfortunately not available with long read sequencing or any other more appropriate approach yet. Limitations are evident, but all limitations will apply equally to both groups of individuals that we compare. The general mappability profile of the full-length LINE-1 “UIDs” was shown in old Suppl Fig 6A. We have colorhighlighted now in new Suppl Fig 8C the specific elements in this graph. Most importantly, we have now used, as a condensate of suggestions by all reviewers, a combination of mappability score, post-hoc power calculation, visualization and correlation with adjacent gene expression in order to retain a specific locus with confidence or not. Using these criteria, we retained UID-68 (Fig 5D) which has a relatively high mappability score (Suppl Fig.8C) plus an overlap of umap 50 mappability peaks and read mapping when visualizing the locus in IGV (new Fig. 5E), very high post-hoc power (96.6%; continuous endpoint, two independent samples, alpha 0.05) and no correlation with adjacent gene expression per individual (Fig. 5F, G). Based on these criteria, we had to exclude UID-129, UID-37, UID-127 and UID-137, reinforcing the notion that a combination of quality control criteria might be crucial to retain a specific locus with confidence. This is now mentioned in the manuscript in the discussion in line 427430).

      We will not be able to document changes in protein levels in aged human dopaminergic neurons as we do not have access to this material. We have tried to obtain human substantia nigra tissues but were not able to get sufficient amounts to do laser-capture microdissection or FACS analyses, especially of young individuals. There are still important limitations to tissue availability, especially of young individuals, and even more so of specific regions of interest like the substantia nigra pars compacta affected in Parkinson disease.

      (5) More information is needed on RNAseq of microdissections of dopaminergic neurons from 'healthy' postmortem samples of different ages. No further information on these samples is provided. I would suggest adding a table with the clinical information of these samples (especially age, sex, and cause of death). The authors should also discuss whether this experiment has sufficient power. The human ageing cohort seems very small to me.

      This is a re-analysis of a published dataset (Dong et al, Nat Neurosci, 2018; doi:10.1038/s41593-018-0223-0), available through dbgap (phs001556.v1.p1). In this original article, the criteria for inclusion as a brain-healthy control were as follows:

      “…Subjects… were without clinicopathological diagnosis of a neurodegenerative disease meeting the following stringent inclusion and exclusion criteria. Inclusion criteria: (i) absence of clinical or neuropathological diagnosis of a neurodegenerative disease, for example, PD according to the UKPDBB criteria[47], Alzheimer’s disease according to NIA-Reagan criteria[48], or dementia with Lewy bodies by revised consensus criteria[49]; for the purpose of this analysis incidental Lewy body cases (not meeting clinicopathological diagnostic criteria for PD or other neurodegenerative disease) were accepted for inclusion; (ii) PMI ≤ 48 h; (iii) RIN[50] ≥ 6.0 by Agilent Bioanalyzer (good RNA integrity); and (iv) visible ribosomal peaks on the electropherogram. Exclusion criteria were: (i) a primary intracerebral event as the cause of death; (2) brain tumor (except incidental meningiomas); (3) systemic disorders likely to cause chronic brain damage.”

      We do not have access to the cause of death, but we have added available metadata as Suppl_Table 5 to the manuscript.

      We have performed a post-hoc power analysis (using the “Post-hoc Power Calculator” https://clincalc.com/stats/Power.aspx, which evaluates the statistical power of an existing study and added the results to the revision. Due to this analysis, we have indeed taken out Suppl Fig 7 as a whole which had shown data of three full-length LINE-1 loci (UID-37, UID-127 and UID-137) with low power (between 17-66% power). The locus shown in Fig. 5D of the UID-68) had a post-hoc power score of 96.6% which increases our confidence in this full-length LINE-1 element being upregulated in aged dopaminergic neurons. UID-129 had a post-hoc power score of 97%. However, visualization and mappability analysis of the UID-129 locus led us to exclude this UID.

      The post-hoc power analysis for L1HS and L1PA2 revealed a low power (28.4% and 32.8% respectively). We have added these results to the manuscript (line 359-362), but decided to keep the data in as this will hopefully be a motivation for future confirmation studies knowing that the availability of similar data from brain-healthy human dopaminergic neurons especially of young individuals will be low.

      (6) The findings in this manuscript apply to both human and mouse brains. However, the landscape of the evolutionarily young L1 subfamilies between these two species is very different and should be part of the discussion. For example, the regulatory sequences that drive L1 expression are quite different in human and mouse L1s. This should be discussed.

      Indeed, they are different. We have added a paragraph to the discussion (lines 539-548).

      (7) On page 3 the authors write: "generally accepted that TE activation can be both, a cause and consequence of aging". This statement does not reflect the current state of the field. On the contrary, this is still an area of extensive investigation and many of the findings supporting this hypothesis need to be confirmed in independent studies. This statement should be revised to reflect this reality.

      We agree, this is overstated, we have changed this sentence accordingly to:

      “It is now, 31 years after the initial proposition of the “transposon theory of aging” by Driver and McKechnie [14], still a matter of debate whether TE activation can be both, a cause and a consequence of aging [15,16].”

      Reviewer #2 (Public Review):

      Summary:

      Bonnifet et al. sought to characterize the expression pattern of L1 ORF1p expression across the entire mouse brain, in young and aged animals, and to corroborate their characterization with Western blotting for L1 ORF1p and L1 RNA expression data from human samples. They also queried L1 ORF1p interacting partners in the mouse brain by IP-MS.

      Strengths:

      A major strength of the study is the use of two approaches: a deep-learning detection method to distinguish neuronal vs. non-neuronal cells and ORF1p+ cells vs. ORF1p- cells across large-scale images encompassing multiple brain regions mapped by comparison to the Allen Brain Atlas, and confocal imaging to give higher resolution on specific brain regions. These results are also corroborated by Western blotting on six mouse brain regions. Extension of their analysis to post-mortem human samples, to the extent possible, is another strength of the paper. The identification of novel ORF1p interactors in the brain is also a strength in that it provides a novel dataset for future studies.

      Thank you for highlighting the strength of our study.

      Weaknesses:

      The main weakness of the study is that cell type specificity of ORF1p expression was not examined beyond neuron (NeuN+) vs non-neuron (NeuN-). Indeed, a recent study (Bodea et al. 2024, Nature Neuroscience) found that ORF1p expression is characteristic of parvalbumin-positive interneurons, and it would be very interesting to query whether other neuronal subtypes in different brain regions are distinguished by ORF1p expression.

      We agree that this point is important to address. We have mentioned in the manuscript our previous work, which showed that in the mouse ventral midbrain, dopaminergic neurons (TH+/NeuN+) express ORF1p and that these neurons express higher levels of ORF1p than adjacent non-dopaminergic neurons (TH-/NeuN+; Blaudin de Thé et al, EMBO J, 2018). Others have shown evidence of full-length L1 RNA expression in both excitatory and inhibitory neurons but much less expression in non-neuronal cells (Garza et al, SciAdv, 2023). Further, ORF1p expression was documented in excitatory (CamKIIa-positive) and CamKIIa-negative neurons in the mouse frontal cortex (Zhang et al, Cell Res, 2022, doi.org/10.1038/s41422-022-00719-6). We do detect ORF1p staining in mouse (Fig. 1B, panel 10) and human Purkinje cells (based on morphology and in accordance with data from Takahashi et al, Neuron, 2022; DOI: 10.1016/j.neuron.2022.08.011) and most probably basket cells (based on anatomical location in the molecular layer near Purkinje cells) of the cerebellum (Suppl Fig.4). Some Purkinje cells express PV in mice (https://doi.org/10.1016/j.mcn.2021.103650 and 10.1523/JNEUROSCI.22-1607055.2002), as do stellate and basket cells of the molecular layer (10.1523/JNEUROSCI.22-16-07055.2002). While ORF1p is expressed in PV cells of the hippocampus (Bodea et al, Nat Neurosci, 2024) and in the human and mouse cerebellum in PV-expressing neurons, it does not seem as if ORF1p expression is restricted to PV cells overall. To adress this question experimentally, we have now performed ORF1p stainings in different brain regions (hippocampus, cortex, hindbrain, thalamus, ventral midbrain and cerebellum) together with parvalbumin (PV) stainings and in some cases including the lectin WFA (Wisteria floribunda agglutinin, which specifically stains glycoproteins surrounding PV+ neurons). We have added this data to the manuscript as Suppl Fig.4. While PV-positive neurons often co-stain with ORF1p, not all ORF1p positive cells are PV-positive. We have also deepened the discussion of this aspect in the revised manuscript (line 579-599).

      The data suggesting that ORF1p expression is increased in aged mouse brains is intriguing, although it seems to be based upon modestly (up to 27%, dependent on brain region) higher intensity of ORF1p staining rather than a higher proportion of ORF1+ neurons. Indeed, the proportion of NeuN+/Orf1p+ cells actually decreased in aged animals. It is difficult to interpret the significance and validity of the increase in intensity, as Hoechst staining of DNA, rather than immunostaining for a protein known to be stably expressed in young and aged neurons, was used as a control for staining intensity.

      We have now separated the analysis of NeuN+, ORF1p+ and NeuN- cells (please see new Suppl Fig5F-K) which highlights the fact that there is indeed no change in the number of ORF1p+ cells in the young compared to the aged mouse brain. However, while neuronal cell numbers throughout the brain do not change significantly (new Suppl Fig.5F), while cell proportions in the ventral midbrain (confocal microscopy based quantifications) change, possibly due to a combination of a slight loss in neurons and a gain in non-neuronal cell numbers (Suppl Fig3E). Please also keep in mind that the ventral midbrain region on images taken on a confocal microscope are a much smaller region than the midbrain motor region as specified by ABBA on images taken by the slide scanner. A different marker than DNA as a control requires the use of a protein that is stably expressed throughout the brain and throughout age. We are not aware of a protein for which this has been established. To nevertheless try to address this issue, we used whole-brain imaging intensity data for the protein Rbfox3 (NeuN) which we originally used as a marker for cell identity. We have now added the quantifications of the protein Rbfox3 (NeuN) to Fig3 (new Fig3B). As shown in this figure, NeuN intensity is not stable from one individual to another, neither in control mice nor in the aged control group. Most importantly, NeuN staining intensity does not increase in aged mice. As we did not use NeuN intensity but presence or absence of NeuN as a marker for cell identity, the instability of NeuN intensity from one individual mouse to another does not have an influence on the data presented in this manuscript. It does indicate however, that the overall increase of ORF1p in aged mice is not a mere reflection of a general decrease in protein turnover. As stated above, the DNA staining with Hoechst controls for technical artefacts. Using Hoechst and NeuN as control, we have thus provided evidence for the fact that the increase in ORF1p intensity per cell is indeed specific for ORF1p. This is now added to the results section (line 299-301).

      The main weakness of the IP-MS portion of the study is that none of the interactors were individually validated or subjected to follow-up analyses. The list of interactors was compared to previously published datasets, but not to ORF1p interactors in any other mouse tissue.

      As stated in the manuscript, the list of previously published datasets does include a mouse dataset with ORF1p interacting proteins in mouse spermatocytes (please see line 479-480: “ORF1p interactors found in mouse spermatocytes were also present in our analysis including CNOT10, CNOT11, PRKRA and FXR2 among others (Suppl_Table4).”) -> De Luca, C., Gupta, A. & Bortvin, A. Retrotransposon LINE-1 bodies in the cytoplasm of piRNA-deficient mouse spermatocytes: Ribonucleoproteins overcoming the integrated stress response. PLoS Genet 19, e1010797 (2023)). We indeed did not validate any interactors for several reasons (economic reasons and time constraints (post-doc leaving)). However, we feel that the significant overlap with previously published interactors highlights the validity of our data and we anticipate that this list of ORF1p protein interactors in the mouse brain will be of further use for the community.

      The authors achieved the goals of broadly characterizing ORF1p expression across different regions of the mouse brain, and identifying putative ORF1p interactors in the mouse brain. However, findings from both parts of the study are somewhat superficial in depth.

      This provides a useful dataset to the field, which likely will be used to justify and support numerous future studies into L1 activity in the aging mammalian brain and in neurodegenerative disease. Similarly, the list of ORF1p interacting proteins in the brain will likely be taken up and studied in greater depth.

      Reviewer #3 (Public Review):

      The question about whether L1 exhibits normal/homeostatic expression in the brain (and in general) is interesting and important. L1 is thought to be repressed in most somatic cells (with the exception of some stem/progenitor compartments). However, to our knowledge, this has not been authoritatively / systematically examined and the literature is still developing with respect to this topic. The full gamut of biological and pathobiological roles of L1 remains to be shown and elucidated and this area has garnered rapidly increasing interest, year-by-year. With respect to the brain, L1 (and repeat sequences in general) have been linked with neurodegeneration, and this is thought to be an aging-related consequence or contributor (or both) of inflammation. This study provides an impressive and apparently comprehensive imaging analysis of differential L1 ORF1p expression in mouse brain (with some supporting analysis of the human brain), compatible with a narrative of non-pathological expression of retrotransposition-competent L1 sequences. We believe this will encourage and support further research into the functional roles of L1 in normal brain function and how this may give way to pathological consequences in concert with aging. However, we have concerns with conclusions drawn, in some cases regardless of the lack of statistical support from the data. We note a lack of clarity about how the 3rd party pre-trained machine learning models perform on the authors' imaging data (validation/monitoring tests are not reported), as well as issues (among others) with the particular implementation of co-immunoprecipitation (ORF1p is not among the highly enriched proteins and apparently does not reach statistical significance for the comparison) - neither of which may be sufficiently rigorous.

      Thank you for your comments on our manuscript.

      We have addressed the concerns about the machine learning paradigm (see Author response image 1). Concerning the co-IP-MS, we can confirm that ORF1p is among the highly enriched proteins as it was not found in the IgG control (in 5 independent samples), only in the ORF1p-IP (in 5 out of 5 independent samples). This is what the infinite sign in Suppl Table 2 indicates and this is why there is no p-value assigned as infinite/0 doesn’t allow to calculate a pvalue. We have made this clearer in the revised version of the manuscript and added a legend to Suppl Table 2.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      I would recommend the authors remove the human data and expand the analysis of the aged mice. This would most likely result in a much stronger manuscript.

      We do think that the imaging data and the Western blots are convincing (please also see our detailed response above to the criticism concerning the antibody we used and the newly added data) and very much reflects what we find in the mouse brain, i.e. concerning the percentage of neurons expressing ORF1p and the percentage of ORF1p+ cells being neuronal. When it comes to the transcriptomic data on aged dopaminergic neurons, we have further discussed the limitations of this study in the revised manuscript and hope that the findings inspire others in the field to redo these types of analyses using the now state-of-the-art NGS technologies to address the question and validate what we have found.

      Reviewer #2 (Recommendations For The Authors):

      The characterization of ORF1p expression across the mouse brain would be vastly more informative if cell identity was established beyond NeuN+/NeuN---the neuronal predominance of L1 activity in the brain has long been observed. Indeed, even corroboration of the PV+ interneuron signature previously reported would both lend credence to the present study and provide valuable confirmation to the field.

      We agree. Please see our response above as well as the new experimental data we added (Suppl Fig5.F-K).

      The increased intensity (but not prevalence in terms of % of Orf1p positive cells) of Orf1p expression in aged mouse brains would be more convincing with further context and perhaps better controls. Is overall protein turnover in aged neurons simply slower than in neurons from younger brains? Immunostaining with another protein marker, rather than Hoescht staining of DNA, to demonstrate that increased staining intensity is unique to Orf1p, would make this result more compelling.

      To address this question, we have now added the quantifications of the protein Rbfox3 (NeuN) to Fig3 (Fig. 3B). As shown in this figure, NeuN intensity is not stable from one individual to another, neither in control mice nor in the aged control group. As we did not use NeuN intensity but presence or absence of NeuN as a marker for cell identity, this does not have any influence on the data presented in this manuscript. It does indicate however, that the overall increase of ORF1p in aged mice is not a mere reflection of a general decrease in protein turnover. As stated above, the DNA staining with Hoechst controls for technical artefacts. Using Hoechst and NeuN as control, we have thus provided evidence for the fact that the increase in ORF1p intensity per cell is indeed specific for ORF1p.

      Western blotting on cell lysates from aged vs young NeunN+ sorted cells would also strengthen this conclusion, although I appreciate the technical challenge of physically isolating whole mature neuronal cells.

      Indeed, this would be feasible but only after FACS sorting, which is technically challenging on whole brain cells (less so on nuclei). We unfortunately do not have the possibility to embark on this right now.

      Concerning data presentation, Figure 3A would be much more informative if the graph was broken down to show the proportion of ORF1p+ and ORF1p- cells, regardless of NeuN status, and the proportion of NeuN+ and NeuN- cells shown independently of Orf1p status. It is difficult to ascertain the relationship of either of these variables to age, as the graph is presented now.

      We followed the suggestions of the reviewer agreeing that breaking down this figure into either ORF1p+ or NeuN+ or NeuN- cells without double attribution is easier to interpret. However, we also chose to use cell densities (cell numbers/ per mm2) to represent the data (new Suppl Fig.5F-K) which is even more precise while proportions are now shown in Suppl Fig.3A-E. Indeed, while it is important to realize that the variables ORF1p+/- or NeuN+/- are not completely independent of each other (as shown in proportions of old Fig4A and B, new Suppl Fig3A and B) as they form four categories (NeuN+/ORF1p+; NeuN+/ORF1p-. NeuN-/ORF1p+, NeuN-/ORF1p-), we can see from the data that there is no overall change in neuron number in the mouse brain between 3 month and 16 months of age. There isn’t an overall change of the density of ORF1p+ cells nor NeuN- cells in the mouse brain with the exception of a decrease in cell density of ORF1p-positive cells in the dorsal striatum accompanied by an increase in non-neuronal cell density (but as discussed above and in the manuscript (line 332-337), this might be due to technical limitations). Thus, while ORF1p intensities per cell increase significantly in older mice, here is no significant change in ORF1p+ cell number.

      Reviewer #3 (Recommendations For The Authors):

      (1) According to the description in Materials and Methods on the analysis of the confocal images (lines 731-743) the authors used Cell-Pose for both the nuclei and cell segmentation tasks, using model=cyto and diameter=30 for the first (nuclei) and model=cyto2 and diameter=40 for the second (cell). Description of analysis of sagittal brain regions (lines 746-764) indicates the pre-trained model DSB2018 from StarDist 2D was used for nuclei detection, and Cell-Pose using model cyto2 and diameter=30 for cell segmentation. Detected nuclei were then matched to segmented cell areas based on overlap criteria and each nucleus was labeled as 'positive' or 'negative' for either OFR1P or NEU-N.

      As described in its three publications (1, 2, 3), Cell-Pose as a segmentation tool is trained in different datasets, with cyto2 being trained on a more varied dataset than cyto. In their library they also offer a model specific for nuclei2. Some description and explanation on the reasons two different models were used for nuclei detection and not choosing the offered specific pre-trained model by Cell-Pose in either case.

      According to the cellpose library documentation "Changing the diameter will change the results that the algorithm outputs. When the diameter is set smaller than the true size then cellpose may over-split cells. Similarly, if the diameter is set too big then cellpose may over-merge cells.". It would be useful to offer the justification of the pixels chosen for the analysis (possibly average pixel counts in a subsample of Hoechst images).

      Answers to questions 1-5:

      Regarding ABBA, slices were first positioned and oriented manually along the Z-axis, without using DeepSlice. Automated affine registration was then applied in the XY plane, followed by manual refinement. 1 slice per mouse brain, 4 mouse brains per condition.

      Regarding the gradient heatmap, as stated in the figure legend of Fig3F; Represented is the fold-change in percent (aged vs young) of the “mean of the mean” ORF1p expression per ORF1p+ cell quantified mapped onto the nine different regions analyzed. More precisely, the heatmap shows the percentage increase in the mean of all mean cell intensities in the aged condition, normalized to the mean of all mean cell intensities in the young condition. The pre-trained models and hyperparameters were selected based on their optimal performance across our image datasets. For slide scanner images, the StarDist DSB 2018 model was chosen over a Cellpose model because it more effectively avoided detecting out-of-focus nuclei, which were common in slide scanner images due to the lack of optical sectioning. This issue was not present in confocal images, where Cellpose cyto model was used instead. To assess the performance of each model and diameter setting, we computed the average precision (AP) metric, which is defined as AP = TP/(TP+FP+FN), where TP = true positives, FP = false positives, and FN = false negatives. The AP was calculated at the commonly used Intersection over Union (IoU) threshold of 0.5. For confocal images, Cellpose models and hyperparameters were evaluated on eight images per channel, capturing intensity variability across different mouse ages and brain regions. A total of approximately 2,000 nuclei and 1,000 NeuN and ORF1p cells were manually annotated. The AP values at an IoU threshold of 0.5 were: 0.995 for nuclei, 0.960 for NeuN, and 0.974 for ORF1p cells. These high AP values confirm that the selected models and diameter settings were well-suited for analyzing the entire dataset. For slide scanner images, nuclei and cell detection were evaluated on 14 images per channel, with approximately 800 nuclei and 400 NeuN and ORF1p cells manually annotated. The AP values were lower compared to confocal images, mainly due to a lower signal-to-noise ratio, which led to an increased number of false positives and false negatives: 0.806 for nuclei, 0.675 for NeuN, and 0.695 for ORF1p cells. This decline in performance was expected given the challenges posed by slide scanner images, including background noise and out-of-focus objects. Notably, the observed false positives primarily correspond to small-sized nuclei/cells or those with low intensity, which evade the stringent filters that were applied. While fine-tuning the models could further enhance detection robustness, we considered that the selected models and diameter settings were suitable for processing the entire dataset.

      We added a paragraph to the materials & methods section with this new information; for confocal images (line 847-855), slide scanner images (line 878-885).

      Author response table 1.

      (2) Next to no information is offered regarding the brain segment registration and how the results were analyzed: The ABBA plug-in has two modules manual and automatic, via a DL pre-trained model called DeepSlice. The authors should report which mode of ABBA they used, how many slices per mouse brain, and how many brains. Moreover, there is no explanation of how the gradient heatmap of the brain regions (Figure 3G) was calculated.

      Please see above

      (3) Even the best algorithms produce some False predictions. In this application of the (3rd party) cellpose, StarDist, and ABBA pre-trained models, such cases of wrong predictions would have amplified downstream effects on the analysis e.g., wrongly characterizing certain cells as 'negative' (falsely not detected cell, falsely detected nucleus), or worse, biasing against certain cell subgroups (falsely not detected 'type' of nuclei). This is even more troubling with the variety of models used for the nuclei segmentation task, and the parameters in each. It is possible the authors performed optimizations and reported exactly such optimized values for their dataset, they should however still explicitly offer these detailed validation and optimization processes. The low statistical significance throughout the quantified results from these IF experiments (Figures 1-3) is also a cause for needing an explicit description of how these algorithms perform on the authors' data.

      It is good practice that a pre-trained model when applied to a new dataset like the one that the authors produced for this work, would require basic monitoring for how it performs in the new, previously unseen dataset, even when the model's generalizability has been reported previously as great. It would be best if the authors had handannotated a few images as the validation set and produced some model performance metrics as a supplemental table for all pre-trained models they used, in the datasets they used them at. Alternatively, the authors are offered the ability by the cellpose team to fine-tune the model for their data, and this could be used to perform the experiments for this work instead if the performance metrics of the used cellpose (cyto and cyto2) models prove to be poor.

      Please see above

      (4) The legend for Figure 1A indicates that Cell-Pose was used for cell detection and StarDist for nuclei detection in the confocal images (line 960). This needs clarification and correction.

      Please see above

      (5) Some explanation of why the models used were changed when using confocal or the slide scanner microscope would be nice.

      Please see above

      (6) The legend title of Figure 3 (line 1040) "Fig. 3: ORF1p expression is increased throughout the whole mouse brain in the context of aging" is misleading as half the panels in the figure demonstrate a decrease in ORF1pexpressing cells. The two can be both true, but in a more nuanced relationship. A more modest representation of the data in the title is also warranted by the unimpressive statistical significance achieved (notably with no correction for multiple testing, which would further inflate them).

      We have toned down the tile of Fig. 3 to “ORF1p expression is increased in some regions of the aged mouse brain” while leaving its meaning as globally. There is indeed no significant loss of ORF1p expressing cells (Suppl Fig. 5F; except in the dorsal striatum (Supl Fig. 5I, please see also discussion above), but there is a significant increase in ORF1p intensity per cell overall (Fig. 3A,C,F) and in several regions of the mouse brain (Fig E, G and H).

      (7) Figure 4 suffers for significance. For example in panel A, the few genes with the highest -log10P value, ie above 1.3 (p-value of ~0.05) have a log2-fold change of 0.2-0.3 (fold change 1.14-1.23). There are no hits with even the modest log2-fold change of 0.5 (fold-change 1.4). The big imbalance between young/old samples for these RNA seq experiments (6 vs 36 mice) could be an issue here too.

      The reviewer refers to mouse samples (“6 to 36 mice”), but this is data of human post-mortem dopaminergic neurons from brain-healthy individuals which were laser-captured and sequenced as reported by Dong et al, Nat Neurosci, 2018. There is indeed a big imbalance between young and old samples which are linked to the difficulties in availability of brain-healthy post-mortem tissues from young individuals which are obviously much rarer than from older people. We agree that the fold-enrichment are modest and p-values rather high, but we argue to keep this data in as it is based on rare post-mortem human brain tissues which were difficult to obtain and will be very difficult to obtain in sufficient number in future studies. We hope however, that these results will encourage such studies in the future and motivate researchers to further look into the expression of TEs in aging brain tissues with higher sample sizes and more suitable sequencing techniques. We have now in the revised version toned down some sentences (i.e. line 359: modest, but significant increase in several young…) and have now also added a post-hoc power analysis (results section line 359-362: “There was a modest but significant increase in several younger LINE-1 elements including L1HS and L1PA2 at the “name” level (Fig. 4A, B), an analysis which was however underpowered (post-hoc power calculation; L1HS: 28.4%; L1PA2: 32.8%) and thus awaits further confirmation in independent studies.”)

      (8) Figure legend 4C (line 1088) should offer more explanation on what is compared for these correlations: the young vs old results, all intensities of all experiments, and intensities separately for each sample.

      We have added the missing information to Figure legend 4C (line 1209-1215): “Correlation of the RNA expression levels of LINE-1 elements with known transposable element regulators in human dopaminergic neurons (all ages included). What was compared are the expression levels of LINE-1 elements with known regulators of TEs for each individual sample, all ages included.”

      (9) Figure 5, panel D. The regressions are all driven by 1-2 outliers. Should be removed as they don't add anything.

      We agree and therefore have performed an outlier test (ROUT (Q=1%) and identified outliers (1 in each graph) have been taken out from the analysis. We argue that the information of a non-correlation of UID-68 and adjacent gene expression is important as it rules out a dependency of expression of the full-length LINE-1 depending on neighboring gene expression (see new Fig5E-G).

      (10) Figure 6 panel B. It is unexpected that the GO terms with the highest enrichment also show weak significance and vice-versa. Fold enrichment in the PANTHER tool is defined as the % of GO-term genes in the sample divided by the %GO-term genes in the background (organism).

      This is not unexpected as GO terms contain different numbers of proteins. Indeed, the significance can be different if the GO term contains for example 3 or 300 proteins. A GO term containing only few proteins with a high fold change between the conditions (here: ORF1p-IP vs whole mouse genome) will lead to a rather low significance for example. If you look at the last 6 categories in Fig 6B, you can appreciate that they have very similar values for enrichment but very different significance levels (FDR).

      (11) Many citations in the References sections are referred to by doi and "Published online" date. These should be corrected to include the citation in standard format (journal name, volume, issue, pages, etc).

      We apologize for this and have corrected this in the revised version.

      (12) (line 970) Legend of Figure 1 is missing label referencing panel C (ie (C) Bar plot showing the total....).

      Thank you for pointing this out, this has been corrected.

      (13) The bottom violin plot in Figure 1C lacks sufficient explanation (what are the M1-4 categories?). The same problem with panel G (same Figure 1).

      This has now been better explained. The M1-M4 categories denominate individual mice numbered from 1 to 4 for (results are shown per individual).

      -> specified in line 1098-1099 (Fig.1C) and new text (1117-1118: Fig.1G): Four three-month-old Swiss/ OF1 mice (labeled as M1 to M4) are represented each by a different color, the scattered line represents the median. ****p<0.0001, nested one-way ANOVA. Total cells analyzed = 4645

      (14) Figure 1B; confocal image 2 (Hippocampus) does not seem to tell the same story as the main slide scanner image. Overall, more explicit phrasing regarding how the Images in Figure 1B are not blow-outs of the bigger one but different, confocal images of the same regions.

      We have changed the sentence to: “Representative images acquired on a confocal microscope of immunostainings showing ORF1p expression (orange) in 10 different regions of the mouse brain.”, which hopefully helps to indicate that these images are indeed not blow-outs of the slide scanner image.

      (15) Young are defined as 3 months and 'old' as 16 months mice. 16-month group name would be better as "adults". Example of age range considered 'old': "Young (3-6-month-old) and aged (18-27-month-old) male mice were age- and source-matched for each experiment." https://www.cell.com/cell-metabolism/fulltext/S1550-4131(23)00462X?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS15504131230 0462X%3Fshowall%3Dtrue

      This is true, but the 16-month age group does not have a designation when looking at Mouse Life history stages in C57Bl/6 mice from the Jackson laboratory (see https://www.jax.org/news-and-insights/jax-blog/2017/november/when-are-mice-considered-old#), they are neither middle-aged nor old. We therefore believe that the designation as “aged” still holds true.

      (16) Lines 63-65 > To our understanding, both ORF1 and ORF2 proteins are thought to exhibit cis preference.

      Yes, that is true, but the sentence as it is does not make a claim about ORF2p not having cis-preference.

      (17) Figure 1I is only referred to as "Figure I". Twice. Page 8, line 173 & 176.

      Thank you, has been corrected.

      (18) Lines 178-182 >To investigate intra-individual expression patterns of ORF1p in the post-mortem human brain, we analyzed three brain regions of a neurologically healthy individual (Figure 1J) by Western blotting. ORF1p was expressed at different levels in the cingulate gyrus, the frontal cortex, and the cerebellum underscoring a widespread expression of human ORF1p across the human brain." > It is difficult for us to gauge how believable the blots are without knowing the amount of protein loaded.

      We have loaded 10ug of tissue lysate per lane (tissue pulverized with a Covaris Cryoprep; amount now mentioned in the materials & methods section). We have added some more information on the antibody in the revised manuscript (line 183-194).

      We say this from our experience conducting similar blots of anti-ORF1p IPs from human brain tissues using the same antibody (4H1) without successful detection of enriched protein by western blot (of course there can be many reasons for that, but knowing the amount of protein loaded is important for reproducibility). In addition, we find the "double" ORF1p bands they see in almost every blot atypical.

      In our hands, the 4H1 antibody does not work well on Western blots, but it immunoprecipitates well and works very well on immunostainings. However, the abcam AB 245249 works well for Western blotting (and IPs) which is why we used this antibody for these applications, respectively. As described above, there is evidence that the double band is not atypical, but rather frequent, which we now also mention in the revised manuscript line 183191: “To investigate intra-individual expression patterns of ORF1p in the post-mortem human brain, we analyzed three brain regions of a neurologically-healthy individual (Fig. 1J, entire Western blot membrane in Suppl Fig. 2A) by Western blotting using a commercial and well characterized antibody which we further validated by several means. The double band pattern in Western blots has been observed in other studies for human ORF1p outside of the brain (Sato et al, SciRep, 2023, McKerrow et al, PNAS, 2022) as well as for mouse ORF1p (Walter et al, eLife, 2016). We also validated the antibody by immunoprecipitation and siRNA knock-down in human dopaminergic neurons in culture (differentiated LUHMES cells, Suppl Fig. 2B and 2C) where we detect however in most cases the upper band only. The nature of the lower band is unknown, but might be due to truncation, specific proteolysis or degradation. ORF1p was expressed at different levels in the human post-mortem cingulate gyrus, the frontal cortex and the cerebellum underscoring a widespread expression of human ORF1p across the human brain. This was in accordance with ORF1p immunostainings of the human post mortem cingulate gyrus (Fig. 2H and Suppl Fig. 2E) and frontal cortex (Suppl Fig. 2E), with an absence of ORF1p staining when using the secondary antibody only (Suppl Fig. 2E).”

      In some images a band is labeled as IgG heavy chain (e.g. presumably from the FACS, Figure 2G, and IP, Figure 6A - which could contain residual antibody) - however, this is avoidable by using a different antibody for capture than detection - which also helps reduce false positive results.

      Unfortunately, we have only an antibody raised in rabbit available to perform IPs and Western blots on mouse tissues and therefore cannot avoid the detection of the IgG heavy chain.

      Aside from these, there seem to be persistent 'double bands' in the region of ORF1p. Generally, we are unaccustomed to seeing such 'double bands' in human anti-ORF1p western blots and IP-western blots, and since, in this study, this is seen in both mouse and human blots, it raises some doubts. Having the molecular mass ladder on each blot to at least allow for the assessment of migration consistency and would therefore be very helpful.

      We have added the molecular weights on the Western blots (Fig.1H, Fig. 2G and Suppl Fig.1D and E). As discussed also above, there is accumulating evidence that in some tissues, there are persistent double bands detected using ORF1p antibodies in both, mouse and human tissues.

      Human ORF1p detection:

      We have validated the antibody against human ORF1p (Abcam 245249-> https://www.abcam.com/enus/products/primary-antibodies/line-1-orf1p-antibody-epr22227-6-ab245249), which we use for Western blotting experiments (please see Fig1J and new Suppl Fig.2A,B and C), by several means.

      (1) We have done immunoprecipitations and co-immunoprecipitations followed by quantitative mass spectrometry (LC-MS/MS; data not shown as they are part of a different study). We efficiently detect ORF1p in IPs (Western blot now added in Suppl Fig2B) and by quantitative mass spectrometry (5 independent samples per IP-ORF1p and IP-IgG: ORF1p/IgG ratio: 40.86; adj p-value 8.7e-07; human neurons in culture; data not shown as they are part of a different study). We also did co-IPs followed by Western blot using two different antibodies, either the Millipore clone 4H1 (https://www.merckmillipore.com/CH/en/product/Anti-LINE-1-ORF1p-Antibody-clone- 4H1,MM_NF-MABC1152?ReferrerURL=https%3A%2F%2Fwww.google.com%2F) or the Abcam antibody to immunoprecipitate and the Abcam antibody for Western blotting on human brain samples. Indeed, the Millipore antibody does not work well on Western Blots in our hands. We consistently revealed a double band indicating that both bands are ORF1p-derived. We have added an ORF1p IP-Western blot as Suppl Fig. 2B which clearly shows the immunoprecipitation of both bands by the Abcam antibody. Abcam also reports a double band, and they suspect that the lower band is a truncated form (see the link to their website above). ORF1p Western blots done by other labs with different antibodies have detected a second band in human samples

      • Sato, S. et al. LINE-1 ORF1p as a candidate biomarker in high grade serous ovarian carcinoma. Sci Rep 13, 1537 (2023) in Figure 1D

      • McKerrow, W. et al. LINE-1 expression in cancer correlates with p53 mutation, copy number alteration, and S phase checkpoint. Proc. Natl. Acad. Sci. U.S.A. 119, e2115999119 (2022)) showing a Western blot of an inducible LINE-1 (ORFeus) detected by the MABC1152 ORF1p antibody from Millipore Sigma in Figure 7 - Walter et al. eLife 2016;5:e11418. (DOI: 10.7554/eLife.11418) in mouse ES cells with an antibody made inhouse (gift from another lab; in Figure 2B)

      The lower band might thus be a truncated form of ORF1p or a degradation product which appears to be shared by mouse and human ORF1p. We have now mentioned this in the revised version of the paper (lines 183-189).

      (2) We have used the very well characterized antibody from Millipore ((https://www.merckmillipore.com/CH/en/product/Anti-LINE-1-ORF1p-Antibody-clone-4H1,MM_NF-MABC1152?ReferrerURL=https%3A%2F%2Fwww.google.com%2F)) for immunostainings and detect ORF1p staining in human neurons in the very same brain regions (Fig 2H, new Suppl Fig. 2E) including the cerebellum in the human brain. We added a 2nd antibody-only control (Suppl Fig. 2E).

      (3) We also did antibody validation by siRNA knock-down. However, it is important to note, that these experiments were done in LUHMES cells, a neuronal cell line which we differentiated into human dopaminergic neurons. In these cells, we only occasionally detect a double band on Western blots, but mostly only reveal the upper band at ≈ 40kD. The results of the knockdown are now added as Suppl Fig. 2C.

      Altogether, based on our experimental validations and evidence from the literature, we are very confident that it is indeed ORF1p that we detect on the blots and by immmunostainings in the human brain.

      Mouse ORF1p detection: In line 117-123 of the manuscript, we had specified “Importantly, the specificity of the ORF1p antibody, a widely used, commercially available antibody [18,34–38], was confirmed by blocking the ORF1p antibody with purified mouse ORF1p protein resulting in the complete absence of immunofluorescence staining (Suppl Fig. 1A), by using an inhouse antibody against mouse ORF1p[17] which colocalized with the anti-ORF1p antibody used (Suppl Fig. 1B, quantified in Suppl Fig. 1C), and by immunoprecipitation and mass spectrometry used in this study (see Author response image 1)”.

      Figure 2G shows a Western blot using an extensively used and well characterized ORF1p antibody from abcam (mouse ORF1p, Rabbit Recombinant Monoclonal LINE-1 ORF1p antibody-> (https://www.abcam.com/enus/products/primary-antibodies/line-1-orf1p-antibody-epr21844-108-ab216324; cited in at least 11 publications) after FACS-sorting of neurons (NeuN+) of the mouse brain. We have validated this ORF1p antibody ourselves in IPs (please see Fig 6A) and co-IP followed by mass spectrometry (LC/MS-MS; see Fig 6, where we detect ORF1p exclusively in the 5 independent ORF1p-IP samples and not at all in 5 independent IgG-IP control samples, please also see Suppl Table 2). In this analysis, we detect ORF1p with a ratio and log2fold of ∞ , indicating that this proteins only found in IP-ORF1p samples (5/5) and not in the IP-control samples ((not allowing for the calculation of a ratio with p-value), please see Suppl Table 2)

      In addition, we have added new data showing the entire membrane of the Western blot in Fig1H (now Suppl Fig.1E) and a knock-down experiment using siRNA against ORF1p or control siRNA in mouse dopaminergic neurons in culture (MN9D; new Suppl Fig.1D). This together makes us very confident that we are looking at a specific ORF1p signal. The band in Figure 2G is at the same height as the input and there are no other bands visible (except the heavy chain of the NeuN antibody, which at the same time is a control for the sorting). We added some explanatory text to the revised version of the manuscript in lines 120-124 and lines 253-256).

      Please note that in the IP of ORF1p shown in Fig6A, there is a double band as well, strongly suggesting that the lower band might be a truncated or processed form of ORF1p. As stated above, this double band has been detected in other studies (Walter et al. eLife 2016;5:e11418. DOI: 10.7554/eLife.11418) in mouse ES cells using an in-house generated antibody against mouse ORF1p. Thus, with either commercial or in-house generated antibodies in some mouse and human samples, there is a double band corresponding to full-length ORF1p and a truncated or processed version of it.

      We noticed that we have not added the references of the primary antibodies used in Western blot experiments in the manuscript, which was now corrected in the revised version.

      (19) Figure 1H, 1J, 6A: Show/indicate molecular weight marker.

      The molecular weight markers were added (please see Fig.1H, Fig. 2G and Suppl Fig.1D and E).

      (20) Page 10, line 223. " ...expressing ORF1p and ORF1p"?

      Thank you, this was corrected.

      (21) Lines 279-280 "An increase of ORF1p expression was also observed in three other regions albeit not significant." > This means it is not distinguishable as a change under the assumptions and framework of the analysis; please remove this statement.

      We agree, we removed this sentence.

      (22) Page 13, line 301. Labeling the group with a mean age of 57.5 as "young" might be a bit misleading.

      This is why we put the “young” in quotation marks.

      (23) Lines 309-311 "however there was a significant increase in several younger LINE-1 elements including L1HS and L1PA2 at the "name" level (Figure 4A, B)". > Effect size is tiny; is this really viable as biologically significant? Maybe just remove the volcano plot? Does panel A add anything not covered by B?

      We would like to keep the Volcano plot, even though effect sizes are small (which we acknowledge in the manuscript line 359-362: “There was a modest but significant increase in several younger LINE-1 elements including L1HS and L1PA2 at the “name” level (Fig. 4A, B), an analysis which was however underpowered (posthoc power calculation; L1HS: 28.4%; L1PA2: 32.8%) and thus awaits further confirmation in independent studies.” The reason for this decision is to illustrate a general increase in expression (even with a small effect size) of several LINE-1 elements at the name level with the youngest LINE-1 elements being amongst those with the highest effect.

      (24) Lines 327-328 "The transcripts of these genes showed, although not statistically significant, a trend for decreased expression in the elderly (Supplementary Figure 5D-G). > I do not recommend doing this.

      We agree and take it out.

      (25) Lines 339-342 "While several tools using expectation maximization algorithms in assigning multi-mapping reads have been developed and successfully tested in simulations 48,54, we used a different approach in mapping unique reads to the L1Base annotation of full-length LINE-1" > Generally, this section is not clear - what is the rationale for the approach (compared to the stated norms)? Ideally, justify this analytical choice and provide a basic comparison to other more standard approaches (even if briefly in a supplement).

      We thank the reviewer for his comment. Indeed, randomly assigning multi-mapping reads is usually a good strategy to quantify the expression of repeats at the family level (Teissandier et al. 2019) which we did in the first part of the analysis (class, family and name level). However, our main goal was to focus on specific single fulllength LINE elements which can encode ORF1p. We therefore decided to only use uniquely mapped reads, which is by definition the only way to be sure that a sequencing read really comes from a specific genomic location, and which will to not over-estimate their expression level. In this sense, we have added some explanatory text to this specific section. We also added a section to the discussion (line 638-644): This analysis has technical limitations inherent to transcriptomic analysis of repeat elements especially as it is based on short-read sequences and on a limited and disequilibrated number of individuals in both groups. Nevertheless, we tried to rule out several biases by demonstrating that mappability did not correlate with expression overall and used a combination of visualization, post-hoc power analysis and analysis of the mappability profile of each differentially expressed fulllength LINE-1 locus.

      (26) Page 16, line 389. The age span covered is 59 years although the difference in mean age between the two groups is only 25.5 years - please indicate both metrics.

      We have added this additional metric in line 432.

      (27) Lines 394-397 "Further, correlation analyses suggest that L1HS expression might possibly be controlled by the homeoprotein EN1, a protein specifically expressed in dopaminergic neurons in the ventral midbrain 50, the heterochromatin binding protein HP1, two known regulators of LINE-1, and the DNA repair proteins XRCC5/6." > This reads like a drastic reach unless framed explicitly as a 'tempting speculation' (or similar). I don't think this claim should be made as it is without further validation.

      We believe to have used careful language (“correlation analysis suggests”.“might possibly be controlled”) in the results section as well as in the discussion (line 660-671): “Matrix correlation analysis of several known LINE-1 regulators, both positive and negative, revealed possible regulators of young LINE-1 sequences in human dopaminergic neurons. Despite known and most probable cell-type unspecific regulatory factors like the heterochromatin binding protein CBX5/HP1 [51] or the DNA repair proteins XRCC5 and XRCC6 [49], we identified the homeoprotein EN1 as negatively correlated with young LINE-1 elements including L1HS and L1PA2. EN1 is an essential protein for mouse dopaminergic neuronal survival [50] and binds, in its properties as a transcription factor, to the promoter of LINE-1 in mouse dopaminergic neurons [17]. As EN1 is specifically expressed in dopaminergic neurons in the ventral midbrain, our findings suggests that EN1 controls LINE-1 expression in human dopaminergic neurons as well and serves as an example for a neuronal sub-type specific regulation of LINE-1.” To this we added: “Although these proteins are known regulators of LINE-1, this correlative relationship awaits experimental validation.”

      (28) Mouse protein/gene names are all capital letters on page 17/18. Changes on page 18/19. This should be consistent.

      Thank you, this has been corrected (all capital).

      (29) Page 23, line 559. The estimated ORF1p/ORF2p ratio referenced is based on an overexpression of L1 from a plasmid (ref87). > It should be made clear to the reader that it is still unknown whether such a ratio is representative of native conditions.

      OK, this is indeed true. Thank you for pointing this out. (line 621-622)

      (30) Lines 613-616 "Further, GO term analysis contained expected categories like "P-body", mRNA metabolism related categories, and "ribonucleoprotein granule". We also identified NXF1 as a protein partner of ORF1p, a protein found to interact with LINE-1 RNA related to its nuclear export 89." > There is no reason to speculate that the proteins in the pulldown are specific to L1 RNAs.

      We did not speculate that the proteins in the pulldown are specific to LINE-1 RNA. We just mentioned that NXF1 was an ORF1p protein partner and that it had been found previously as a LINE-1 RNA interactor.

      ORF1p is present in large heterogeneous assemblies - not every protein should be assigned an L1-related function and many proteins will be participating in general RNA-granule functions (given L1 ORFs are known to accumulate in such structures). Moreover, the granules are not the same in every cell type. IP is done in low salt and overnight incubation (poorly controlled for non-specific accumulation).

      We state that these key interactors are “probably” essential for completing or repressing the LINE-1 life cycle. It is true that we cannot affirm this. We therefore added a sentence to the discussion (line 679): “This supports the validity of the list of ORF1p partners identified, although we cannot rule out the possibility that unspecific protein partners might be pulled down due to colocalization in the same subcellular compartment.”

      (31) Lines 629-631" These results complete the picture of the post-transcriptional and translational control of ORF1p and suggest that these mechanisms, despite a steady-state expression, are operational in neurons." > Stating that these results complete the picture, which is still very much open for completion (granted, these results add to the picture), is an unneeded over-reach.

      We agree. We changed “complete” to “add to “ the picture.

      (32) Lines 641-644 "Finally, we found components of RNA polymerase II and the SWI/SNF complex as partners of ORF1p. This further indicates that ORF1p has access to the nucleus in mouse brain neurons as described for other cells 95,96, implying that ORF1p potentially has access to chromatin." > There is no way to know if this is a post-lysis effect - we have no real specificity information. The mock IP control is insufficient for this conclusion without further validation.

      We added: “however a bias due to a post-lysis effect cannot be excluded.” Line 711

      (33) ab216324 for IF and ab245122 for IP - why? What is the difference? Both are rated equally for IF and IP - please provide a rationale for reagent selection and use.

      These two antibodies are the same except their storage buffer. ab245122 is azide and BSA-free, while ab216324 contains the preservative sodium azide (0.01%) and the following constituents: PBS, 40% Glycerol (glycerin, glycerine), 0.05% BSA. As azide and BSA can affect coupling of antibodies to beads, antibodies which do not contain these components in their buffer are preferred for IPs (but can be stored less long).

      (34) Page 35, line 862. "1.3 x 105" should be "1.3 x 105".

      We added a regular x but we are not sure if this is what the reviewer was referring to ?

      (35) MS comparison in Figure 6. Why is the comparison not being made between young vs. old brain/neurons? This would be more informative instead of just showing what they IP over a mock IgG control and the comparison would track better with other experiments in the rest of the paper.

      Yes, that is true. However, we did not do this at the time as we did not have old mouse brain tissue available. Services from official animal providers in France have unfortunately only recently expanded their offer with regard to the availability of aged animals.

      (36) Supplementary Table 2 (MS data) is lacking information. How many peptides (unique/total) were discovered for each protein? Why are all ratios and p-values not listed for every protein in the table? LFQ protein intensity values should also be listed. Each supplementary table should have a legend as a separate tab in the document.

      As stated in the SupplTable2 and now made clearer in an independent tab file in SupplTable2 which contains a legend to the table, some proteins do not have associated p values and ratios as these proteins are found only in the ORF1p IP and not in the IgG control. This is why these proteins have an indefinite sign instead of a foldenrichment and no p-value assigned as we cannot calculate a ratio with X/0 which again makes it impossible to obtain a p-value. Concerning the absence of LFQ protein intensity values, as stated in the materials & methods section, we did not use these values (linear model) but instead the intensity values of the peptides: “The label free quantification was performed by peptide Extracted Ion Chromatograms (XICs), reextracted by conditions and computed with MassChroQ version 2.2.21 109. For protein quantification, XICs from proteotypic peptides shared between compared conditions (TopN matching) with missed cleavages were used. Median and scale normalization at peptide level was applied on the total signal to correct the XICs for each biological replicate (n=5). To estimate the significance of the change in protein abundance, a linear model (adjusted on peptides and biological replicates) was performed, and p-values were adjusted using the Benjamini–Hochberg FDR procedure.”

      The number of peptides unique/total for each protein has been added to Suppl_Table2 along other available information.

      (37) Poor overlap in 6C could in part be explained by the use of different sample/tissue types, but more likely the big difference could come from the very different conditions at which the IPs were performed (buffers and incubation times etc.).

      The overlap seems poor, but nevertheless is bigger as by chance (representation factor 2.6, p<5.4e-08). We agree that this can be in part explained by different experimental conditions which we now added to the discussion (line 478: “However, differences in experimental conditions could also influence this overlap.”)

      (38) Figure 6D is a very uninspiring representation of the data. What is the point of showing several binary interactions? Was the IgG control proteome also analyzed? Have proteins displayed in Figure 6 been corrected for that?

      The point of showing these interactions is that OFR1p interacts with clustered proteins. ORF1p interacts with proteins that belong to specific GO terms (Fig6b), but these proteins are also interacting with each other more than expected (Fig6C). This is the benefit of showing a STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) representation, which is a database of known and predicted protein–protein interactions. Indeed, proteins in Fig6 have been corrected for the IgG proteome. We only show proteins that were enriched or uniquely present in the ORF1p IP condition compared to the IgG control (please see Suppl_Table2).

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      The authors set out to illuminate how legumes promote symbiosis with beneficial nitrogen-fixing bacteria while maintaining a general defensive posture towards the plethora of potentially pathogenic bacteria in their environment. Intriguingly, a protein involved in plant defence signalling, RIN4, is implicated as a type of 'gatekeeper' for symbiosis, connecting symbiosis signalling with defence signalling. Although questions remain about how exactly RIN4 enables symbiosis, the work opens an important door to new discoveries in this area.

      Strengths:

      The study uses a multidisciplinary, state-of-the-art approach to implicate RIN4 in soybean nodulation and symbiosis development. The results support the authors' conclusions.

      Weaknesses:

      No serious weaknesses, although the manuscript could be improved slightly from technical and communication standpoints.

      Reviewer #2 (Public Review):

      Summary:

      The study by Toth et al. investigates the role of RIN4, a key immune regulator, in the symbiotic nitrogen fixation process between soybean and rhizobium. The authors found that SymRK can interact with and phosphorylate GmRIN4. This phosphorylation occurs within a 15 amino acid motif that is highly conserved in Nfixation clades. Genetic studies indicate that GmRIN4a/b play a role in root nodule symbiosis. Based on their data, the authors suggest that RIN4 may function as a key regulator connecting symbiotic and immune signaling pathways.

      Overall, the conclusions of this paper are well supported by the data, although there are a few areas that need clarification.

      Strengths:

      This study provides important insights by demonstrating that RIN4, a key immune regulator, is also required for symbiotic nitrogen fixation.

      The findings suggest that GmRIN4a/b could mediate appropriate responses during infection, whether it is by friendly or hostile organisms.

      Weaknesses:

      The study did not explore the immune response in the rin4 mutant. Therefore, it remains unknown how GmRIN4a/b distinguishes between friend and foe.

      Reviewer #3 (Public Review):

      Summary:

      This manuscript by Toth et al reveals a conserved phosphorylation site within the RIN4 (RPM1-interacting protein 4) R protein that is exclusive to two of the four nodulating clades, Fabales and Rosales. The authors present persuasive genetic and biochemical evidence that phosphorylation at the serine residue 143 of GmRIN4b, located within a 15-aa conserved motif with a core five amino acids 'GRDSP' region, by SymRK, is essential for optimal nodulation in soybean. While the experimental design and results are robust, the manuscript's discussion fails to clearly articulate the significance of these findings. Results described here are important to understand how the symbiosis signaling pathway prioritizes associations with beneficial rhizobia, while repressing immunity-related signals.

      Strengths:

      The manuscript asks an important question in plant-microbe interaction studies with interesting findings.

      Overall, the experiments are detailed, thorough, and very well-designed. The findings appear to be robust.

      The authors provide results that are not overinterpreted and are instead measured and logical.

      Weaknesses:

      No major weaknesses. However, a well-thought-out discussion integrating all the findings and interpreting them is lacking; in its current form, the discussion lacks 'boldness'. The primary question of the study - how plants differentiate between pathogens and symbionts - is not discussed in light of the findings. The concluding remark, "Taken together, our results indicate that successful development of the root nodule symbiosis requires cross-talk between NF-triggered symbiotic signaling and plant immune signaling mediated by RIN4," though accurate, fails to capture the novelty or significance of the findings, and left me wondering how this adds to what is already known. A clear conclusion, for eg, the phosphorylation of RIN4 isoforms by SYMRK at S143 modulates immune responses during symbiotic interactions with rhizobia, or similar, is needed.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      I have no major criticism of the work, although it could be improved by addressing the following minor points:

      (1) Page 8, Figure 2 legend. Consider changing "proper symbiosis formation" to "normal nodulation" or something that better reflects control of nodule development/number.

      We thank you for the suggestion, the legend was changed to “...required for normal nodule formation” (see Page 10, revised manuscript)

      (2) Page 9. Cut "newly" from the first sentence of paragraph 2, as S143 phosphorylation was identified previously.

      Thank you for the suggestion, we removed “newly” from the sentence.

      (3) Page 10, Figure 3. Panels B showing green-fluorescent nodules are unnecessary given the quantitative data presented in the accompanying panel A. This goes for similar supplemental figures later.

      We appreciate the comment; regarding Figure 3 (complementing rin4b mutant, we updated the figures according to the other reviewer’s comment) and Suppl Figure 6 (OE phenotype of phospho-mimic/negative mutants), we removed the panels showing the micrographs. At the same time, we did not modify Figure 2 (where micrographs showing transgenic roots carrying the silencing constructs) for the sake of figure completeness. (See Page 10, revised manuscript)

      (4) Consider swapping Figure 3 for Supplemental Figure S7, which I think shows more clearly the importance of RIN4 phosphorylation in nodulation.

      We appreciate the comment and have swapped the figures according to the reviewer’s suggestion. Legend, figure description, and manuscript text have been updated accordingly. (See page 12 and 38, revised manuscript)

      (5) Page 10. Replace "it will be referred to S143..." with "we refer to S143 instead of ....".

      We replaced it according to the comment.

      (6) Page 11, delete "While" from "While no interactions could be observed...".

      We deleted it according to the suggestion.

      (7) Page 33, Fig S5. How many biological replicates were performed to produce the data presented in panel C and what do the error bar and asterisk indicate? Check that this information is provided in all figures that show errors and statistical significance.

      Thank you for the remark. The experiment was repeated three times, and this note was added to the figure description. All the other figure legends with error bar(s) were checked whether replicates are indicated accordingly.

      (8) Page 37, Fig S11, panel B. Are averages of data from the 2 biological and 3 technical replicates shown? Add error bars and tests of significant difference.

      Averages of a total of 6 replicates (from 2 biological replicates, each run in triplicates) are shown. We thank the reviewer for pointing out the missing error bars and statistical test, we have updated the figure accordingly.

      (9) Fig S12. Why are panels A, C, E, and G presented? The other panels seem to show the same data more clearly- showing the linear relationship between peak area ratio and protein concentration.

      We have taken the reviewer’s comment into consideration and revised the figure, removing the calibration curves and showing only four panels. The figure legend has been corrected accordingly. (Please see page 43, revised masnuscript). The original figure (unlike other revised figures) had to be deleted from the revised manuscript,as it caused technical issues when converting the document into pdf.

      Reviewer #2 (Recommendations For The Authors):

      Some small suggestions:

      (1) It's good to include a protein schematic for RIN4 in Figure 1.

      We appreciate the reviewer’s suggestion and we have drawn a protein schematic and added it to Figure 1. The figure legend was updated accordingly.

      (2) There appears to be incorrect labeling in Figure 2c; please double-check and make the necessary corrections.

      With respect, we do not understand the comment about incorrect labeling. Would the reviewer please help us out and give more explanation? In Figure 2C, RIN4a and RIN4b expression was checked in transgenic roots expressing either EV (empty vector) or different silencing constructs targeting RIN4a/b.

      Reviewer #3 (Recommendations For The Authors):

      I enjoyed the level of detail and precision in experimental design.

      A discussion point could be - What does it mean that nodule number but not fixation is affected? Is RIN4 only involved in the entry stage of infection but not in nodules during N-fixation?

      Current/Our data suggest that RIN4 does indeed appear to be involved in infection. This hypothesis is supported by the findings that RIN4a/b was found phosphorylated in root hairs but not in root (or it was not detected in the root). The interaction with the early signaling RLKs also suggests that RIN4 is likely involved in the early stage of symbiosis formation.

      How would the authors explain their observation "However, the motif is retained in non-nodulating Fabales (such as C. canadensis, N. schottii; SI Appendix, Figure S2) and Rosales species as well." What does this imply about the role in symbiosis that the authors propose?

      We appreciate the reviewer’s question. The motif seems to be retained, however, it might be not only the motif but also the protein structure that in case of nodulating plants might be different. We have not investigated the structure of RIN4, how it would look based on certain features/upon interaction with another protein and/or post-translational modification(s). Griesman et al, (2018) showed the absence of certain genes within Fabales in non-nodulating species, we can speculate that these absent genes can’t interact with RIN4 in those species, therefore the lack of downstream signaling could be possible (in spite of the retained motif in non-nodulating species). At this point, there is not enough data or knowledge to further speculate.

      qPCR analysis of symbiotic pathway genes showed that both NIN-dependent and NIN-independent branches of the symbiosis signaling pathway were negatively affected in the rin4b mutant. Please derive a conclusion from this.

      We appreciate the comment, it also prompted us to correct the following sentence; original: “Since NIN is responsible for induction of NF-YA and ERN1 transcription factors, their reduced expression in rin4b plants was not unexpected (Fig. 5). “As ERN1 expression is independent of NIN (Kawaharada et al, 2017). The following sentences were also deleted as it represented a repetition of a statement above these sentences: “Soybean NF-YA1 homolog responded significantly to rhizobial treatment in rin4b plants, whereas NF-YA3 induction did not show significant induction (Fig. 5).“

      We added the following conclusion/hypothesis: “Based on the results of the expression data presented above, it seems that both NIN-dependent and NINindependent branches of the symbiotic signaling pathways are affected in the rin4b mutant background. This indicates that the role of RIN4 protein in the symbiotic pathway can be placed upstream of CYCLOPS, as the CYCLOPS transcription activating complex is responsible (directly or indirectly) for the activation of all TFs tested in our expression analysis (Singh et al, 2014/47, 48).” (Please see Page 16, revised manuscript)

      The authors are highly encouraged to write a thoughtful discussion that would accompany the detailed experimental work performed in this manuscript.

      We appreciate the comment, and we did some work on the discussion part of the document. (Please see Pages 17-19, revised manuscript)

      Some minor suggestions for overall readability are below.

      What about immune signaling genes? Given that authors hypothesize that "Absence of AtRIN4 leads to increased PTI responses and, therefore, it might be that GmRIN4b absence also causes enhanced PTI which might have contributed to significantly fewer nodules." Could check marker immune signaling gene expression FLS2 and others.

      We appreciate the reviewer’s comment, and while we believe those are very interesting questions/suggestions, answering them is out of the scope of the current manuscript. Partially because it has been shown that several defenseresponsive genes that were described in leaf immune responses could not be confirmed to respond in a similar manner in root (Chuberre et al., 2018). It was also shown that plant immune responses are compartmentalized and specialized in roots (Chuberre et al., 2018). If we were looking at immune-responsive genes, the signal might be diluted because of its specialized and compartmentalized nature. Another reason why these questions cannot be answered as a part of the current manuscript is because finding a suitable immune responsive gene would require rigorous experiments (not only in root, but also in root hair (over a timecourse) which would be a ground work for a separate study (root hair isolation is not a trivial experiment, it requires at least 250-300 seedlings per treatment/per time-point).

      Regarding FLS2, it is known in Arabidopsis that its expression is tissue-specific within the root, and it seems that FLS2 expression is restricted to the root vasculature (Wyrsch et al, 2015). In our manuscript, we showed that RIN4a/b is highly expressed in root hairs, as well as RIN4 phosphorylation was detectable in root hair but not in the root; therefore, we do not see the reason to investigate FLS2 expression.

      "in our hands only ERN1a could be amplified. One possible explanation for this observation is that primers were designed based on Williams 82 reference genome, while our rin4b mutant was generated in the Bert cultivar background." Is the sequence between the two cultivars and the primers that bind to ERN1b in both cultivars so different? If not, this explanation is not very convincing.

      At the time of performing the experiment the genomic sequence of the Bert cultivar (used for generating rin4b edited lines) was not publicly available. In accordance with the reviewer’s comment, we removed the explanation, as it does not seem to be relevant. (See page 16, revised manuscript)

      The figures are clear and there is a logical flow. The images of fluorescing nodules in Figure 2,3 panels with nodules are not informative or unbiased .

      We appreciate the comment, as for Figure 3 (complementing rin4b mutant), we updated the figures according to the other reviewer’s comment and Suppl. Figure 6 (OE phenotype of phospho-mimic/negative mutants) we removed the panels showing the micrographs. At the same time, we did not modify Figure 2 (where micrographs showing transgenic roots carrying the silencing constructs) for the sake of figure completeness. (See pages 10, 12 and 38, revised manuscript)

      What does the exercise in isolation of rin4 mutants in lotus tell us? Is it worth including?

      Isolation of the Ljrin4 mutant suggests that RIN4 carries such an importance that the mutant version of it is lethal for the plant (as in Arabidospis, where most of the evidence regarding the role of RIN4 has been described), and an additional piece of evidence that RIN4 is similarly crucial across most land plant species.

      Sentence ambiguous. "Co-expression of RIN4a and b with SymRKßΔMLD and NFR1α _resulted in YFP fluorescence detected by Confocal Laser Scanning Microscopy (SI Appendix, Figure S8) suggesting that RIN4a and b proteins closely associate with both RLKs." Were all 4 expressed together?

      Thank you for the remark. Not all 4 proteins were co-expressed together. We adjusted the sentence as follows: “Co-expression of RIN4a/ and b with SymRKßΔMLD as well as and NFR1α resulted in YFP fluorescence…” I hope it is phrased in a clearer way. (See page 13, revised manuscript)

      Minor spelling errors throughout.. Costume-made (custom made?)

      Thank you for noticing. According to the Cambridge online dictionary, it is written with a hyphen, therefore, we added a hyphen and corrected the manuscript accordingly.

      CRISPR-cas9 or CRISPR/Cas9? Keep it consistent throughout. CRISPR-cas9 is the latest consensus.

      We corrected it to “CRISPR-Cas9” throughout the manuscript.

      References are missing for several 'obvious statements' but please include them to reach a broader audience. For example the first 5 sentences of the introduction. Also, statements such as 'Root hairs are the primary entry point for rhizobial infection in most legumes.'.

      Thank you for the comment. To make it clearer, we also added reference #1, after the third sentence of the introduction, as well as we added an additional review as reference. This additional review was also cited as the source for the sentence “Root hairs are the primary…” (Please see page 2, revised manuscript)

      Can you provide a percent value? Silencing of RIN4a and RIN4b resulted in significantly reduced nodule numbers on soybean transgenic roots in comparison to transgenic roots carrying the empty vector control. Also, this wording suggests it was a double K.D. but from the images, it appears they were individually silenced.

      We appreciate the reviewer's comment. We observed a 50-70% reduction in the number of nodules. We adjusted the text according to the reviewer's remark. (See page 9, revised manuscript)

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary

      This manuscript reports preliminary evidence of successful optogenetic activation of single retinal ganglion cells (RGCs) through the eye of a living monkey using adaptive optics (AO).

      Strengths

      The eventual goals of this line of research have enormous potential impact in that they will probe the perceptual impact of activating single RGCs. While I think more data should be included, the four examples shown look quite convincing. Weaknesses

      While this is undoubtedly a technical achievement and an important step along this group's stated goal to measure the perceptual consequences of single-RGC activations, the presentation lacks the rigor that I would expect from what is really a methods paper. In my view, it is perfectly reasonable to publish the details of a method before it has yielded any new biological insights, but in those publications, there is a higher burden to report the methodological details, full data sets, calibrations, and limitations of the method. There is considerable room for improvement in reporting those aspects. Specifically, more raw data should be shown for activations of neighboring RGCs to pinpoint the actual resolution of the technique, and more than two cells (one from each field of view) should be tested.

      We have expanded sections discussing both the methodology and limitations of this technique via a rewrite of the results and discussion section. The data used in the paper is available online via the link provided in the manuscript. We agree that a more detailed investigation of the strengths and limitations of the approach would have been a laudable goal. However, before returning to more detailed studies, we have shifted our effort to developing the monkey psychophysical performance we need to combine with the single cell stimulation approach described here. In addition, the optogenetic ChrimsonR used in this study is not the best choice for this experiment because of its poor sensitivity. We are currently exploring the use of ChRmine (as described in lines 93-97), which is roughly 2 orders of magnitude more sensitive. We have also been working on methods to improve probe stabilization to reduce tracking errors during eye movements. Once these improvements have been implemented, we will undertake the more detailed studies suggested here. Nonetheless, as a pragmatic matter, we submit that it is valuable to document proof-of-concept with this manuscript.

      Some information about the density of labeled RGCs in these animals would also be helpful to provide context for how many well-isolated target cells exist per animal.

      We agree. Getting reliable information about labeled cell density would be difficult without detailed histology of the retina, which we are reluctant to do because it would require sacrificing these precious and expensive monkeys from which we continue to get valuable information. We are actively exploring methods to reduce the cell density to make isolation easier including the use of the CAMKII promoter as well as the use of intracranial injections via AAV.retro that would allow calcium indicator expression in the peripheral retina where RGCs form a monolayer. It may be that the rarity of isolated RGCS will not be a fundamental limitation of the approach in the future.

      Reviewer #2 (Public Review):

      This proof-of-principle study lays important groundwork for future studies. Murphy et al. expressed ChrimsonR and GCaMP6s in retinal ganglion cells of a living macaque. They recorded calcium responses and stimulated individual cells, optically. Neurons targeted for stimulation were activated strongly whereas neighboring neurons were not.

      The ability to record from neuronal populations while simultaneously stimulating a subset in a controlled way is a high priority for systems neuroscience, and this has been particularly challenging in primates. This study marks an important milestone in the journey towards this goal.

      The ability to detect stimulation of single RGCs was presumably due to the smallness of the light spot and the sparsity of transduction. Can the authors comment on the importance of the latter factor for their results? Is it possible that the stimulation protocol activated neurons nearby the targeted neuron that did not express GCaMP? Is it possible that off-target neurons near the targeted neuron expressed GCaMP, and were activated, but too weakly to produce a detectable GCaMP signal? In general, simply knowing that off-target signals were undetectable is not enough; knowing something about the threshold for the detection of off-target signals under the conditions of this experiment is critical.

      We agree with these points. We cannot rule out the possibility that some nearby cells were activated but we could not detect this because they did not express GCaMP. We also do not know whether cells responded but our recording methods were not sufficiently sensitive to detect them. A related limitation is that we do not know of course what the relationship is between the threshold for detection with calcium imaging and what the psychophysical detection threshold would have been an awake behaving monkey. Nonetheless, the data show that we can produce a much larger response in the target cell than in nearby cells whose response we can measure, and we suggest that that is a valuable contribution even if we can’t argue that the isolation is absolute. We’ve acknowledged these important limitations in the revised manuscript in lines 66-77.

      Minor comments:

      Did the lights used to stimulate and record from the retina excite RGCs via the normal lightsensing pathway? Were any such responses recorded? What was their magnitude?

      The recording light does activate the normal light-sensing pathway to some extent, although it does not fall upon the RGC receptive fields directly. There was a 30 second adaptation period at the beginning of each trial to minimize the impact of this on the recording of optogeneticallymediated responses, as described in lines 222-224. The optogenetic probe does not appear to significantly excite the cone pathway, and we do not see the expected off-target excitations that would result from this.

      The data presented attest to a lack of crosstalk between targeted and neighboring cells. It is therefore surprising that lines 69-72 are dedicated to methods for "reducing the crosstalk problem". More information should be provided regarding the magnitude of this problem under the current protocol/instrumentation and the techniques that were used to circumvent it to obtain the data presented.

      The “crosstalk problem” referred to in this quote refers to crosstalk caused by targeting cells at higher eccentricities that are more densely packed, which are not represented in the data. The data presented is limited to the more isolated central RGCs.

      Optical crosstalk could be spatial or spectral. Laying out this distinction plainly could help the reader understand the issues quickly. The Methods indicate that cells were chosen on the basis that they were > 20 µm from their nearest (well-labeled) neighbor to mitigate optical crosstalk, but the following sentence is about spectral overlap.

      We have added a clearer explanation of what precisely we mean by crosstalk in lines 213-221.

      Figure 2 legend: "...even the nearby cell somas do not show significantly elevated response (p >> 0.05, unpaired t-test) than other cells at more distant locations." This sentence does not indicate how some cells were classified as "nearby" whereas others were classified as being "at more distant locations". Perhaps a linear regression would be more appropriate than an unpaired t-test here.

      The distinction here between “nearby” and “more distant” is 50 µm. We have clarified this in the figure caption. Performing a linear regression on cell response over distance shows a slight downward trend in two of the four cells shown here, but this trend does not reach the threshold of significance.

      Line 56: "These recordings were... acquired earlier in the session where no stimulus was present." More information should be provided regarding the conditions under which this baseline was obtained. I assume that the ChrimsonR-activating light was off and the 488 nmGCaMP excitation light was on, but this was not stated explicitly. Were any other lights on (e.g. room lights or cone-imaging lights)? If there was no spatial component to the baseline measurement, "where" should be "when".

      Your assumptions are correct. There was no spatial component to the baseline measurement, and these measurements are explained in more detail in lines 240-243.

      Please add a scalebar to Figure 1a to facilitate comparison with Figure 2.

      This has been done.

      Lines 165-173: Was the 488 nm light static or 10 Hz-modulated? The text indicates that GCaMP was excited with a 488 nm light and data were acquired using a scanning light ophthalmoscope, but line 198 says that "the 488 nm imaging light provides a static stimulus".

      The 488nm is effectively modulated at 25 Hz by the scanning action of the system. I believe the 10 Hz modulated you speak of is the closed-loop correction rate of the adaptive optics. The text has been updated in lines 217-219 to clarify this.

      A potential application of this technology is for the study of visually guided behavior in awake macaques. This is an exciting prospect. With that in mind, a useful contribution of this report would be a frank discussion of the hurdles that remain for such application (in addition to eye movements, which are already discussed).

      Lines 109-130 now offer an expanded discussion of this topic.

      Reviewer #3 (Public Review):

      This paper reports a considerable technical achievement: the optogenetic activation of single retinal ganglion cells in vivo in monkeys. As clearly specified in the paper, this is an important step towards causal tests of the role of specific ganglion cell types in visual perception. Yet this methodological advance is not described currently in sufficient detail to replicate or evaluate. The paper could be improved substantially by including additional methodological details. Some specific suggestions follow.

      The start of the results needs a paragraph or more to outline how you got to Figure 1. Figure 1 itself lacks scale bars, and it is unclear, for example, that the ganglion cells targeted are in the foveal slope.

      The results have been rewritten with additional explanation of methodology and the location of the RGCs has been clarified.

      The text mentions the potential difficulties targeting ganglion cells at larger eccentricities where the soma density increases. If this is something that you have tried it would be nice to include some of that data (whether or not selective activation was possible). Related to this point, it would be helpful to include a summary of the ganglion cell density in monkey retina.

      This is not something we tried, as we knew that the axial resolution allowed by the monkey’s eye would result in an axial PSF too large to only hit a single cell. The overall ganglion cell density is less relevant than the density of cells expressing ChrimsonR/GCaMP, which we only have limited info about without detailed histology.

      Related to the point in the previous paragraph - do you have any experiments in which you systematically moved the stimulation spot away from the target ganglion cell to directly test the dependence of stimulation on distance? This would be a valuable addition to the paper.

      We agree that this would have been a valuable addition to the paper, but we are reluctant to do them now. We are implementing an improved method to track the eye and a better optogenetic agent in an entirely new instrument, and we think that future experiments along these lines would be best done when those changes are completed.

      The activity in Figure 1 recovers from activation very slowly - much more slowly than the light response of these cells, and much more slowly than the activity elicited in most optogenetic studies. Can you quantify this time course and comment on why it might be so slow?

      We attribute the slow recovery to the calcium dynamics of the cell, and this slow recovery time is consistent with calcium responses seen in our lab elicited via the cone pathway. Similar time courses can be seen in Yin (2013) for RGCs excited via their cone inputs.

      Traces from non-targeted cells should be shown in Figure 1 along with those of targeted cells.

      We have added this as part of Figure 2.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Although we have no further revisions on the manuscript, we would like to respond to the remaining comments from the reviewers as follows.

      Reviewer 1:

      The authors have addressed some concerns raised in the initial review but some remain. In particular it is still unclear what conclusions can be drawn about taskrelated activity from scans that are performed 30 minutes after the behavioral task. I continue to think that a reorganization/analysis data according to event type would be useful and easier to interpret across the two brain areas, but the authors did not choose to do this. Finally, switching the cue-response association, I am convinced, would help to strengthen this study.

      As for the task-related activity, the strategy for PET scan was explained in our response to the comment 2 from Reviewer 2. Briefly, rats receive intravenous administration of 18F-FDG solution before the start of the behavioral session. The 18FFDG uptake into the cells starts immediately and reaches the maximum level until 30 min, being kept at least for 1 h. A 30-min PET scan is executed 25 min after the session. Therefore, the brain activity reflects the metabolic state during task performance in rats.

      Regarding data presentation of the electrophysiological experiments, we described the subpopulations of event-related neurons showing notable neuronal activity patterns in the order of aDLS and pVLS, according to the procedure of explanations for the behavioral study

      For switching the cue-response association, we mentioned the difference in firing activity between HR and LL trials, suggesting that different combinations between the stimulus and response may affect the level of firing activity. As suggested by the reviewer, an examination of switching the cue-response association is useful to confirm our interpretation. We will address this issue in our future studies.

      Reviewer 2:

      The authors have made important revisions to the manuscript and it has improved in clarity. They also added several figures in the rebuttal letter to answer questions by the reviewers. I would ask that these figures are also made public as part of the authors' response or if not, included in the manuscript.

      We will present the figures publicly available as part of our response.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      Syed et al. investigate the circuit underpinnings for leg grooming in the fruit fly. They identify two populations of local interneurons in the right front leg neuromere of ventral nerve cord, i.e. 62 13A neurons and 64 13B neurons. Hierarchical clustering analysis identifies 10 morphological classes for both populations. Connectome analysis reveals their circuit interactions: these GABAergic interneurons provide synaptic inhibition either between the two subpopulations, i.e., 13B onto 13A, or among each other, i.e., 13As onto other 13As, and/or onto leg motoneurons, i.e., 13As and 13Bs onto leg motoneurons. Interestingly, 13A interneurons fall into two categories, with one providing inhibition onto a broad group of motoneurons, being called "generalists", while others project to a few motoneurons only, being called "specialists". Optogenetic activation and silencing of both subsets strongly affect leg grooming. As well as activating or silencing subpopulations, i.e., 3 to 6 elements of the 13A and 13B groups, has marked effects on leg grooming, including frequency and joint positions, and even interrupting leg grooming. The authors present a computational model with the four circuit motifs found, i.e., feed-forward inhibition, disinhibition, reciprocal inhibition, and redundant inhibition. This model can reproduce relevant aspects of the grooming behavior.

      Strengths:

      The authors succeeded in providing evidence for neural circuits interacting by means of synaptic inhibition to play an important role in the generation of a fast rhythmic insect motor behavior, i.e., grooming. Two populations of local interneurons in the fruit fly VNC comprise four inhibitory circuit motifs of neural action and interaction: feed-forward inhibition, disinhibition, reciprocal inhibition, and redundant inhibition. Connectome analysis identifies the similarities and differences between individual members of the two interneuron populations. Modulating the activity of small subsets of these interneuron populations markedly affects the generation of the motor behavior, thereby exemplifying their important role in generating grooming.

      We thank the reviewer for their thoughtful and constructive evaluation of our work. We are encouraged by their recognition of the major contributions of our study, including the identification of multiple inhibitory circuit motifs and their contribution to organizing rhythmic leg grooming behavior. We also appreciate the reviewer’s comments highlighting our use of connectomics, targeted manipulations, and modeling to reveal how distinct subsets of inhibitory interneurons contribute to motor behavior.

      Weaknesses:

      Effects of modulating activity in the interneuron populations by means of optogenetics were conducted in the so-called closed-loop condition. This does not allow for differentiation between direct and secondary effects of the experimental modification in neural activity, as feedforward and feedback effects cannot be disentangled. To do so, open loop experiments, e.g., in deafferented conditions, would be important. Given that many members of the two populations of interneurons do not show one, but two or more circuit motifs, it remains to be disentangled which role the individual circuit motif plays in the generation of the motor behavior in intact animals.

      We appreciate the reviewer’s point regarding the role of sensory feedback in our experimental design. We agree that reafferent (sensory) input from ongoing movements could contribute to the behavioral outcomes of our optogenetic manipulations. However, our aim was not to isolate central versus peripheral contributions, but rather to assess the role of 13A/B neurons within the intact, operational sensorimotor system during natural grooming behavior.

      These inhibitory neurons form recurrent loops, synapse onto motor neurons, and receive proprioceptive input—placing them in a position to both shape central motor output and process sensory feedback. As such, manipulating their activity engages both central control and sensory consequences.

      The finding that silencing 13A neurons in dusted flies disrupts rhythmic leg coordination highlights their role in organizing grooming movements. Prior studies (e.g., Ravbar et al., 2021) show that grooming rhythms persist when sensory input is reduced, indicating a central origin, while sensory feedback refines timing, coordination, and long-timescale stability. We concluded that rhythmicity arises centrally but is shaped and stabilized by mechanosensory or proprioceptive feedback. Our current results are consistent with this view and support a model in which inhibitory premotor neurons participate in a closed-loop control architecture that generates and tunes rhythmic output.

      While we agree that fully removing sensory feedback and parsing distinct roles for neurons that participate in multiple circuit motifs would be desirable, we do not see a plausible experimental path to accomplish this - we would welcome suggestions!

      We considered the method used by Mendes and Mann (eLife 2023) to assess sensory feedback to walking, 5-40-GAL4, DacRE-flp, UAS->stop>TNT + 13A/B-spGAL4 X UAS-csChrimson. This would require converting one targeting system to LexA and presents significant technical challenges. More importantly, we believe the core interpretation issue would remain: broadly silencing proprioceptors would produce pleiotropic effects and impair baseline coordination, making it difficult to distinguish whether observed changes reflect disrupted rhythm generation or secondary consequences of impaired sensory input.

      We will clarify in the revised manuscript that our behavioral experiments were performed in freely moving flies under closed-loop conditions. We thank the reviewer for highlighting these important considerations and will revise the manuscript to better communicate the scope and interpretation of our findings.

      Reviewer #2 (Public review):

      Summary:

      This manuscript by Syed et al. presents a detailed investigation of inhibitory interneurons, specifically from the 13A and 13B hemilineages, which contribute to the generation of rhythmic leg movements underlying grooming behavior in Drosophila. After performing a detailed connectomic analysis, which offers novel insights into the organization of premotor inhibitory circuits, the authors build on this anatomical framework by performing optogenetic perturbation experiments to functionally test predictions derived from the connectome. Finally, they integrate these findings into a computational model that links anatomical connectivity with behavior, offering a systems-level view of how inhibitory circuits may contribute to grooming pattern generation.

      Strengths:

      (1) Performing an extensive and detailed connectomic analysis, which offers novel insights into the organization of premotor inhibitory circuits.

      (2) Making sense of the largely uncharacterized 13A/13B nerve cord circuitry by combining connectomics and optogenetics is very impressive and will lay the foundation for future experiments in this field.

      (3) Testing the predictions from experiments using a simplified and elegant model.

      We thank the reviewer for their thoughtful and encouraging evaluation of our work. We are especially grateful for their recognition of our detailed connectome analysis and its contribution to understanding the organization of premotor inhibitory circuits. We appreciate the reviewer’s comments highlighting the integration of connectomics with optogenetic perturbations to functionally interrogate the 13A and 13B circuits, as well as their recognition of our modeling approach as a valuable framework for linking circuit architecture to behavior.

      Weaknesses:

      (1) In Figure 4, while the authors report statistically significant shifts in both proximal inter-leg distance and movement frequency across conditions, the distributions largely overlap, and only in Panel K (13B silencing) is there a noticeable deviation from the expected 7-8 Hz grooming frequency. Could the authors clarify whether these changes truly reflect disruption of the grooming rhythm?

      We are re-analyzing the whole dataset in the light of the reviews (specifically, we are now applying LMM to these statistics). For the panels in question (H-J), there is indeed a large overlap between the frequency distributions, but the box plots show median and quartiles, which partially overlap. (In the current analysis, as it stands, differences in means were small yet significant.) However, there is a noticeable (not yet quantified) difference in variability between the frequencies (the experimental group being the more variable one). If the activations/deactivations of 13A/B circuits disrupt the rhythm, we would indeed expect the frequencies to become more variable. So, in the revised version we will quantify the differences in both the means and the variabilities, and establish whether either shows significance after applying the LMM.

      More importantly, all this data would make the most sense if it were performed in undusted flies (with controls) as is done in the next figure.

      In our assay conditions, undusted flies groom infrequently. We used undusted flies for some optogenetic activation experiments, where the neuron activation triggers behavior initiation, but we chose to analyze the effect of silencing inhibitory neurons in dusted flies because dust reliably activates mechanosensory neurons and elicits robust grooming behavior, enabling us to assess how manipulation of 13A/B neurons alters grooming rhythmicity and leg coordination.

      (2) In Figure 4-Figure Supplement 1, the inclusion of walking assays in dusted flies is problematic, as these flies are already strongly biased toward grooming behavior and rarely walk. To assess how 13A neuron activation influences walking, such experiments should be conducted in undusted flies under baseline locomotor conditions.

      We agree that there are better ways to assay potential contributions of 13A/13B neurons to walking. We intended to focus on how normal activity in these inhibitory neurons affects coordination during grooming, and we included walking because we observed it in our optogenetic experiments and because it also involves rhythmic leg movements. The walking data is reported in a supplementary figure because we think this merits further study with assays designed to quantify walking specifically. We will make these goals clearer in the revised manuscript and we are happy to share our reagents with other research groups more equipped to analyze walking differences.

      (3) For broader lines targeting six or more 13A neurons, the authors provide specific predictions about expected behavioral effects-e.g., that activation should bias the limb toward flexion and silencing should bias toward extension based on connectivity to motor neurons. Yet, when using the more restricted line labeling only two 13A neurons (Figure 4 - Figure Supplement 2), no such prediction is made. The authors report disrupted grooming but do not specify whether the disruption is expected to bias the movement toward flexion or extension, nor do they discuss the muscle target. This is a missed opportunity to apply the same level of mechanistic reasoning that was used for broader manipulations.

      While we know which two neurons are labeled based on confocal expression, assigning their exact identity in the EM datasets has been challenging. One of these neurons appears absent from our 13A reconstructions of the right T1 neuropil in FANC, although we did locate it in MANC. However, its annotation in MANC has undergone multiple revisions, making confident assignment difficult at this time. Since we can’t be sure which motor neurons and muscles are most directly connected, we did not want to predict this line’s effect on leg movements.

      (4) Regarding Figure 5: The 70ms on/off stimulation with a slow opsin seems problematic. CsChrimson off kinetics are slow and unlikely to cause actual activity changes in the desired neurons with the temporal precision the authors are suggesting they get. Regardless, it is amazing that the authors get the behavior! It would still be important for the authors to mention the optogenetics caveat, and potentially supplement the data with stimulation at different frequencies, or using faster opsins like ChrimsonR.

      We were also surprised - and intrigued - by the behavioral consequences of activating these inhibitory neurons with CsChrimson. We tried several different activation paradigms: pulsed from 8Hz to 500Hz and with various on/off intervals. Because several of these different stimulation protocols resulted in grooming, and with different rhythmic frequencies, we think the phenotypes are a specific property of the neural circuits we have activated, rather than the kinetics of CsChrimson itself.

      We will include the data from other frequencies in a new Supplementary Figure, we will discuss the caveats CsChrimson’s slow off-kinetics present to precise temporal control of neural activity, and we will try ChrimsonR in future experiments.

      Overall, I think the strengths outweigh the weaknesses, and I consider this a timely and comprehensive addition to the field.

      Thank you!

      Reviewer #3 (Public review):

      Summary:

      The authors set out to determine how GABAergic inhibitory premotor circuits contribute to the rhythmic alternation of leg flexion and extension during Drosophila grooming. To do this, they first mapped the ~120 13A and 13B hemilineage inhibitory neurons in the prothoracic segment of the VNC and clustered them by morphology and synaptic partners. They then tested the contribution of these cells to flexion and extension using optogenetic activation and inhibition and kinematic analyses of limb joints. Finally, they produced a computational model representing an abstract version of the circuit to determine how the connectivity identified in EM might relate to functional output. The study, in its current form, makes an important but overclaimed contribution to the literature due to a mismatch between the claims in the paper and the data presented.

      Strengths:

      The authors have identified an interesting question and use a strong set of complementary tools to address it:

      (1) They analysed serial‐section TEM data to obtain reconstructions of every 13A and 13B neuron in the prothoracic segment. They manually proofread over 60 13A neurons and 64 13B neurons, then used automated synapse detection to build detailed connectivity maps and cluster neurons into functional motifs.

      (2) They used optogenetic tools with a range of genetic driver lines in freely behaving flies to test the contribution of subsets of 13A and 13B neurons.

      (3) They used a connectome-constrained computational model to determine how the mapped connectivity relates to the rhythmic output of the behavior.

      We appreciate the reviewer’s thorough and constructive feedback on our work. We are encouraged by their recognition of the complementary approaches used in our study.

      Weaknesses:

      The manuscript aims to reveal an instructive, rhythm-generating role for premotor inhibition in coordinating the multi-joint leg synergies underlying grooming. It makes a valuable contribution, but currently, the main claims in the paper are not well-supported by the presented evidence.

      Major points

      (1) Starting with the title of this manuscript, "Inhibitory circuits generate rhythms for leg movements during Drosophila grooming", the authors raise the expectation that they will show that the 13A and 13B hemilineages produce rhythmic output that underlies grooming. This manuscript does not show that. For instance, to test how they drive the rhythmic leg movements that underlie grooming requires the authors to test whether these neurons produce the rhythmic output underlying behavior in the absence of rhythmic input. Because the optogenetic pulses used for stimulation were rhythmic, the authors cannot make this point, and the modelling uses a "black box" excitatory network, the output of which might be rhythmic (this is not shown). Therefore, the evidence (behavioral entrainment; perturbation effects; computational model) is all indirect, meaning that the paper's claim that "inhibitory circuits generate rhythms" rests on inferred sufficiency. A direct recording (e.g., calcium imaging or patch-clamp) from 13A/13B during grooming - outside the scope of the study - would be needed to show intrinsic rhythmogenesis. The conclusions drawn from the data should therefore be tempered. Moreover, the "black box" needs to be opened. What output does it produce? How exactly is it connected to the 13A-13B circuit?

      We will modify the title to better reflect our strongest conclusions: “Inhibitory circuits coordinate rhythmic leg movements during Drosophila grooming”

      Our optogenetic activation was delivered in a patterned (70 ms on/off) fashion that entrains rhythmic movements but does not rule out the possibility that the rhythm is imposed externally. In the manuscript, we state that we used pulsed light to mimic a flexion-extension cycle and note that this approach tests whether inhibition is sufficient to drive rhythmic leg movements when temporally patterned. While this does not prove that 13A/13B neurons are intrinsic rhythm generators, it does demonstrate that activating subsets of inhibitory neurons is sufficient to elicit alternating leg movements resembling natural grooming and walking.

      Our goal with the model was to demonstrate that it is possible to produce rhythmic outputs with this 13A/B circuit, based on the connectome. The “black box” is a small recurrent neural network (RNN) consisting of 40 neurons in its hidden layer. The inputs are the “dust” levels from the environment (the green pixels in Figure 6I), the “proprioceptive” inputs (“efference copy” from motor neurons), and the amount of dust accumulated on both legs. The outputs (all positive) connect to the 13A neurons, the 13B neurons, and to the motor neurons. We refer to it as the “black box” because we make no claims about the actual excitatory inputs to these circuits. Its function is to provide input, needed to run the network, that reflects the distribution of “dust” in the environment as well as the information about the position of the legs.

      The output of the “black box” component of the model might be rhythmic. In fact, in most instances of the model implementation this is indeed the case. However, as mentioned in the current version of the manuscript: “But the 13A circuitry can still produce rhythmic behavior even without those external sensory inputs (or when set to a constant value), although the legs become less coordinated.” Indeed, when we refine the model (with the evolutionary training) without the “black box” (using a constant input of 0.1) the behavior is still rhythmic and sustained. Therefore, the rhythmic activity and behavior can emerge from the premotor circuitry itself without a rhythmic input.

      The context in which the 13A and 13B hemilineages sit also needs to be explained. What do we know about the other inputs to the motorneurons studied? What excitatory circuits are there?

      We agree that there are many more excitatory and inhibitory, direct and indirect, connections to motor neurons that will also affect leg movements for grooming and walking. Our goal was to demonstrate what is possible from a constrained circuit of inhibitory neurons that we mapped in detail, and we hope to add additional components to better replicate the biological circuit as behavioral and biomechanical data is obtained by us and others. We will add this clarification of the limits of the scope to the Discussion.

      Furthermore, the introduction ignores many decades of work in other species on the role of inhibitory cell types in motor systems. There is some mention of this in the discussion, but even previous work in Drosophila larvae is not mentioned, nor crustacean STG, nor any other cell types previously studied. This manuscript makes a valuable contribution, but it is not the first to study inhibition in motor systems, and this should be made clear to the reader.

      We thank the reviewer for this important reminder and we will expand our discussion of the relevant history and context in our revision. Previous work on the contribution of inhibitory neurons to invertebrate motor control certainly influenced our research and we should acknowledge this better.

      (2) The experimental evidence is not always presented convincingly, at times lacking data, quantification, explanation, appropriate rationales, or sufficient interpretation.

      We are committed to improving the clarity, rationale, and completeness of our experimental descriptions. We will revisit the statistical tests applied throughout the manuscript and expand the Methods.

      (3) The statistics used are unlike any I remember having seen, essentially one big t-test followed by correction for multiple comparisons. I wonder whether this approach is optimal for these nested, high‐dimensional behavioral data. For instance, the authors do not report any formal test of normality. This might be an issue given the often skewed distributions of kinematic variables that are reported. Moreover, each fly contributes many video segments, and each segment results in multiple measurements. By treating every segment as an independent observation, the non‐independence of measurements within the same animal is ignored. I think a linear mixed‐effects model (LMM) or generalized linear mixed model (GLMM) might be more appropriate.

      We thank the reviewer for raising this important point regarding the statistical treatment of our segmented behavioral data. Our initial analysis used independent t-tests with Bonferroni correction across behavioral classes and features, which allowed us to identify broad effects. However, we acknowledge that this approach does not account for the nested structure of the data. To address this, we will re-analyze key comparisons using linear mixed-effects models (LMMs) as suggested by the reviewer. This approach will allow us to more appropriately model within-fly variability and test the robustness of our conclusions. We will update the manuscript based on the outcomes of these analyses.

      (4) The manuscript mentions that legs are used for walking as well as grooming. While this is welcome, the authors then do not discuss the implications of this in sufficient detail. For instance, how should we interpret that pulsed stimulation of a subset of 13A neurons produces grooming and walking behaviours? How does neural control of grooming interact with that of walking?

      We do not know how the inhibitory neurons we investigated will affect walking or how circuits for control of grooming and walking might compete. We speculate that overlapping pre-motor circuits may participate in walking and grooming because both behaviors have extension flexion cycles at similar frequencies, but we do not have hard experimental data to support. This would be an interesting area for future research. Here, we focused on the consequences of activating specific 13A/B neurons during grooming because they were identified through a behavioral screen for grooming disruptions, and we had developed high-resolution assays and familiarity with the normal movements in this behavior. We will clarify this rationale in the revised discussion.

      (5) The manuscript needs to be proofread and edited as there are inconsistencies in labelling in figures, phrasing errors, missing citations of figures in the text, or citations that are not in the correct order, and referencing errors (examples: 81 and 83 are identical; 94 is missing in text).

      We will carefully proofread the manuscript to fix all figure labeling, citation order, and referencing errors.

    1. Author Response:

      The following is the authors’ response to the previous reviews.

      We carefully read through the second-round reviews and the additional reviews. To us, the review process is somewhat unusual and very much dominated by referee 2, who aggressively insists that we mixed up the trigeminal nucleus and inferior olive and that as a consequence our results are meaningless. We think the stance of referee 2 and the focus on one single issue (the alleged mix-up of trigeminal nucleus and inferior olive) is somewhat unfortunate, leaves out much of our findings and we debated at length on how to deal with further revisions. In the end, we decided to again give priority to addressing the criticism of referees 2, because it is hard to go on with a heavily attacked paper without resolving the matter at stake. The following is a summary of, what we did:

      Additional experimental work:

      (1) We checked if the peripherin-antibody indeed reliably identifies climbing fibers.

      To this end, we sectioned the elephant cerebellum and stained sections with the peripherin-antibody. We find: (i) the cerebellar white matter is strongly reactive for peripherin-antibodies, (ii) cerebellar peripherin-antibody staining of has an axonal appearance. (iii) Cerebellar Purkinje cell somata appear to be ensheated by peripherin-antibody staining. (iv) We observed that the peripherin-antibody reactivity gradually decreases from Purkinje cell somata to the pia in the cerebellar molecular layer. This work is shown in our revised Figure 2. All these four features align with the distribution of climbing fibers (which arrive through the white matter, are axons, ensheat Purkinje cell somata, and innervate Purkinje cell proximally not reaching the pia). In line with previous work, which showed similar cerebellar staining patterns in several species (Errante et al. 1998), we conclude that elephant climbing fibers are strongly reactive for peripherin-antibodies.

      (2) We delineated the elephant olivo-cerebellar tract.

      The strong peripherin-antibody reactivity of elephant climbing fibers enabled us to delineate the elephant olivo-cerebellar tract. We find the elephant olivo-cerebellar tract is a strongly peripherin-antibody reactive, well-delineated fiber tract several millimeters wide and about a centimeter in height. The unstained olivo-cerebellar tract has a greyish appearance. In the anterior regions of the olivo-cerebellar tract, we find that peripherin-antibody reactive fibers run in the dorsolateral brainstem and approach the cerebellar peduncle, where the tract gradually diminishes in size, presumably because climbing fibers discharge into the peduncle. Indeed, peripherin-antibody reactive fibers can be seen entering the cerebellar peduncle. Towards the posterior end of the peduncle, the olivo-cerebellar disappears (in the dorsal brainstem directly below the peduncle. We note that the olivo-cerebellar tract was referred to as the spinal trigeminal tract by Maseko et al. 2013. We think the tract in question cannot be the spinal trigeminal tract for two reasons: (i) This tract is the sole brainstem source of peripherin-positive climbing fibers entering the peduncle/ the cerebellum; this is the defining characteristic of the olivo-cerebellar tract. (ii) The tract in question is much smaller than the trigeminal nerve, disappears posterior to where the trigeminal nerve enters the brainstem (see below), and has no continuity with the trigeminal nerve; the continuity with the trigeminal nerve is the defining characteristic of the spinal trigeminal tract, however.

      The anterior regions of the elephant olivo-cerebellar tract are similar to the anterior regions of olivo-cerebellar tract of other mammals in its dorsolateral position and the relation to the cerebellar peduncle. In its more posterior parts, the elephant olivo-cerebellar tract continues for a long distance (~1.5 cm) in roughly the same dorsolateral position and enters the serrated nucleus that we previously identified as the elephant inferior olive. The more posterior parts of the elephant olivo-cerebellar tract therefore differ from the more posterior parts of the olivo-cerebellar tract of other mammals, which follows a ventromedial trajectory towards a ventromedially situated inferior olive. The implication of our delineation of the elephant olivo-cerebellar tract is that we correctly identified the elephant inferior olive.

      (3) An in-depth analysis of peripherin-antibody reactivity also indicates that the trigeminal nucleus receives no climbing fiber input.

      We also studied the peripherin-antibody reactivity in and around the trigeminal nucleus. We had also noted in the previous submission that the trigeminal nucleus is weakly positive for peripherin, but that the staining pattern is uniform and not the type of axon bundle pattern that is seen in the inferior olive of other mammals. To us, this observation already argued against the presence of climbing fibers in the trigeminal nucleus. We also noted that the myelin stripes of the trigeminal nucleus were peripherin-antibody-negative. In the context of our olivo-cerebellar tract tracing we now also scrutinized the surroundings of the trigeminal nucleus for peripherin-antibody reactivity. We find that the ventral brainstem surrounding the trigeminal nucleus is devoid of peripherin-antibody reactivity. Accordingly, no climbing fibers, (which we have shown to be strongly peripherin-antibody-positive, see our point 1) arrive at the trigeminal nucleus. The absence of climbing fiber input indicates that previous work that identified the (trigeminal) nucleus as the inferior olive (Maseko et al 2013) is unlikely to be correct.

      (4) We characterized the entry of the trigeminal nerve into the elephant brain.

      To better understand how trigeminal information enters the elephant’s brain, we characterized the entry of the trigeminal nerve. This analysis indicated to us that the trigeminal nerve is not continuous with the olivo-cerebellar tract (the spinal trigeminal tract of Maseko et al. 2013) as previously claimed by Maseko et al. 2013. We show some of this evidence in Referee-Figure 1 below. The reason we think the trigeminal nerve is discontinuous with the olivo-cerebellar tract is the size discrepancy between the two structures. We first show this for the tracing data of Maseko et al. 2013. In the Maseko et al. 2013 data the trigeminal nerve (Referee-Figure 1A, their plate Y) has 3-4 times the diameter of the olivocerebellar tract (the alleged spinal trigeminal tract, Referee-Figure 1B, their plate Z). Note that most if not all trigeminal fibers are thought to continue from the nerve into the trigeminal tract (see our rat data below). We plotted the diameter of the trigeminal nerve and diameter of the olivo-cerebellar (the spinal trigeminal tract according to Maseko et al. 2013) from the Maseko et al. 2013 data (Referee-Figure 1C) and we found that the olivocerebellar tract has a fairly consistent diameter (46 ± 9 mm2, mean ± SD). Statistical considerations and anatomical evidence suggest that the tracing of the trigeminal nerve into the olivo-cerebellar (the spinal trigeminal tract according to Maseko et al. 2013) is almost certainly wrong. The most anterior point of the alleged spinal trigeminal tract has a diameter of 51 mm2 which is more than 15 standard deviations different from the most posterior diameter (194 mm2) of the trigeminal tract. For this assignment to be correct three-quarters of trigeminal nerve fibers would have to spontaneously disappear, something that does not happen in the brain. We also made similar observations in the African elephant Bibi, where the trigeminal nerve (Referee-Figure 1D) is much larger in diameter than the olivocerebellar tract (Referee-Figure 1E). We could also show that the olivocerebellar tract disappears into the peduncle posterior to where the trigeminal nerve enters (Referee-Figure 1F). Our data are very similar to Maseko et al. indicating that their outlining of structures was done correctly. What appears to have been oversimplified, is the assignment of structures as continuous. We also quantified the diameter of the trigeminal nerve and the spinal trigeminal tract in rats (from the Paxinos & Watson atlas; Referee-Figure 1D); as expected we found the trigeminal nerve and spinal trigeminal tract diameters are essentially continuous.

      In our hands, the trigeminal nerve does not continue into a well-defined tract that could be traced after its entry. In this regard, it differs both from the olivo-cerebellar tract of the elephant or the spinal trigeminal tract of the rodent, both of which are well delineated. We think the absence of a well-delineated spinal trigeminal tract in elephants might have contributed to the putative tracing error highlighted in our Referee-Figure 1A-C.

      We conclude that a size mismatch indicates trigeminal fibers do not run in the olivo-cerebellar tract (the spinal trigeminal tract according to Maseko et al. 2013).

      Author response image 1.

      The trigeminal nerve is discontinuous with the olivo-cerebellar tract (the spinal trigeminal tract according to Maseko et al. 2013). A, Trigeminal nerve (orange) in the brain of African elephant LAX as delineated by Maseko et al. 2013 (coronal section; their plate Y). B, Most anterior appearance of the spinal trigeminal tract of Maseko et al. 2013 (blue; coronal section; their plate Z). Note the much smaller diameter of the spinal trigeminal tract compared to the trigeminal nerve shown in C, which argues against the continuity of the two structures. Indeed, our peripherin-antibody staining showed that the spinal trigeminal tract of Maseko corresponds to the olivo-cerebellar tract and is discontinuous with the trigeminal nerve. C, Plot of the trigeminal nerve and olivo-cerebellar tracts (the spinal trigeminal tract according to Maseko et al. 2013) diameter along the anterior-posterior axis. The trigeminal nerve is much larger in diameter than the olivocerebellar tract (the spinal trigeminal tract according to Maseko et al. 2013). C, D measurements, for which sections are shown in panels C and D respectively. The olivocerebellar tract (the spinal trigeminal tract according to Maseko et al. 2013) has a consistent diameter; data replotted from Maseko et al. 2013. At mm 25 the inferior olive appears. D, Trigeminal nerve entry in the brain of African elephant Bibi; our data, coronal section, the trigeminal nerve is outlined in orange, note the large diameter. E, Most anterior appearance of the olivo-cerebellar tract in the brain of African elephant Bibi; our data, coronal section, approximately 3 mm posterior to the section shown in A, the olivocerebellar tract is outlined in blue. Note the smaller diameter of the olivo-cerebellar tract compared to the trigeminal nerve, which argues against the continuity of the two structures. F, Plot of the trigeminal nerve and olivo-cerebellar tract diameter along the anterior-posterior axis. The nerve and olivo-cerebellar tract are discontinuous and the trigeminal nerve is much larger in diameter than the olivocerebellar tract (the spinal trigeminal tract according to Maseko et al. 2013); our data. D, E measurements, for which sections are shown in panels D and E respectively. At mm 27 the inferior olive appears. G, In the rat the trigeminal nerve is continuous in size with the spinal trigeminal tract. Data replotted from Paxinos and Watson.

      Reviewer 2 (Public Review):

      As indicated in my previous review of this manuscript (see above), it is my opinion that the authors have misidentified, and indeed switched, the inferior olivary nuclear complex (IO) and the trigeminal nuclear complex (Vsens). It is this specific point only that I will address in this second review, as this is the crucial aspect of this paper - if the identification of these nuclear complexes in the elephant brainstem by the authors is incorrect, the remainder of the paper does not have any scientific validity.

      Comment: We agree with the referee that it is most important to sort out, the inferior olivary nuclear complex (IO) and the trigeminal nuclear complex, respectively.Change: We did additional experimental work to resolve this matter as detailed at the beginning of our response. Specifically, we ascertained that elephant climbing fibers are strongly peripherin-positive. Based on elephant climbing fiber peripherin-reactivity we delineated the elephant olivo-cerebellar tract. We find that the olivo-cerebellar connects to the structure we refer to as inferior olive to the cerebellum (the referee refers to this structure as the trigeminal nuclear complex). We also found that the trigeminal nucleus (the structure the referee refers to as inferior olive) appears to receive no climbing fibers. We provide indications that the tracing of the trigeminal nerve into the olivo-cerebellar tract by Maseko et al. 2023 was erroneous (Author response image 1). These novel findings support our ideas but are very difficult to reconcile with the referee’s partitioning scheme.

      The authors, in their response to my initial review, claim that I "bend" the comparative evidence against them. They further claim that as all other mammalian species exhibit a "serrated" appearance of the inferior olive, and as the elephant does not exhibit this appearance, that what was previously identified as the inferior olive is actually the trigeminal nucleus and vice versa. 

      For convenience, I will refer to IOM and VsensM as the identification of these structures according to Maseko et al (2013) and other authors and will use IOR and VsensR to refer to the identification forwarded in the study under review. <br /> The IOM/VsensR certainly does not have a serrated appearance in elephants. Indeed, from the plates supplied by the authors in response (Referee Fig. 2), the cytochrome oxidase image supplied and the image from Maseko et al (2013) shows a very similar appearance. There is no doubt that the authors are identifying structures that closely correspond to those provided by Maseko et al (2013). It is solely a contrast in what these nuclear complexes are called and the functional sequelae of the identification of these complexes (are they related to the trunk sensation or movement controlled by the cerebellum?) that is under debate.

      Elephants are part of the Afrotheria, thus the most relevant comparative data to resolve this issue will be the identification of these nuclei in other Afrotherian species. Below I provide images of these nuclear complexes, labelled in the standard nomenclature, across several Afrotherian species. 

      (A) Lesser hedgehog tenrec (Echinops telfairi) 

      Tenrecs brains are the most intensively studied of the Afrotherian brains, these extensive neuroanatomical studies undertaken primarily by Heinz Künzle. Below I append images (coronal sections stained with cresol violet) of the IO and Vsens (labelled in the standard mammalian manner) in the lesser hedgehog tenrec. It should be clear that the inferior olive is located in the ventral midline of the rostral medulla oblongata (just like the rat) and that this nucleus is not distinctly serrated. The Vsens is located in the lateral aspect of the medulla skirted laterally by the spinal trigeminal tract (Sp5). These images and the labels indicating structures correlate precisely with that provide by Künzle (1997, 10.1016, see his Figure 1K,L. Thus, in the first case of a related species, there is no serrated appearance of the inferior olive, the location of the inferior olive is confirmed through connectivity with the superior colliculus (a standard connection in mammals) by Künzle (1997), and the location of Vsens is what is considered to be typical for mammals. This is in agreement with the authors, as they propose that ONLY the elephants show the variations they report. 

      (B) Giant otter shrew (Potomogale velox) 

      The otter shrews are close relatives of the Tenrecs. Below I append images of cresyl violet (left column) and myelin (right column) stained coronal sections through the brainstem with the IO, Vsens and Sp5 labelled as per standard mammalian anatomy. Here we see hints of the serration of the IO as defined by the authors, but we also see many myelin stripes across the IO. Vsens is located laterally and skirted by the Sp5. This is in agreement with the authors, as they propose that ONLY the elephants show the variations they report.

      (C) Four-toed sengi (Petrodromus tetradactylus) 

      The sengis are close relatives of the Tenrecs and otter shrews, these three groups being part of the Afroinsectiphilia, a distinct branch of the Afrotheria. Below I append images of cresyl violet (left column) and myelin (right column) stained coronal sections through the brainstem with the IO, Vsens and Sp5 labelled as per standard mammalian anatomy. Here we see vague hints of the serration of the IO (as defined by the authors), and we also see many myelin stripes across the IO. Vsens is located laterally and skirted by the Sp5. This is in agreement with the authors, as they propose that ONLY the elephants show the variations they report. 

      (D) Rock hyrax (Procavia capensis) 

      The hyraxes, along with the sirens and elephants form the Paenungulata branch of the Afrotheria. Below I append images of cresyl violet (left column) and myelin (right column) stained coronal sections through the brainstem with the IO, Vsens and Sp5 labelled as per the standard mammalian anatomy. Here we see hints of the serration of the IO (as defined by the authors), but we also see evidence of a more "bulbous" appearance of subnuclei of the IO (particularly the principal nucleus), and we also see many myelin stripes across the IO. Vsens is located laterally and skirted by the Sp5. This is in agreement with the authors, as they propose that ONLY the elephants show the variations they report. 

      (E) West Indian manatee (Trichechus manatus) 

      The sirens are the closest extant relatives of the elephants in the Afrotheria. Below I append images of cresyl violet (top) and myelin (bottom) stained coronal sections (taken from the University of Wisconsin-Madison Brain Collection, https://brainmuseum.org, and while quite low in magnification they do reveal the structures under debate) through the brainstem with the IO, Vsens and Sp5 labelled as per standard mammalian anatomy. Here we see the serration of the IO (as defined by the authors). Vsens is located laterally and skirted by the Sp5. This is in agreement with the authors, as they propose that ONLY the elephants show the variations they report.

      These comparisons and the structural identification, with which the authors agree as they only distinguish the elephants from the other Afrotheria, demonstrate that the appearance of the IO can be quite variable across mammalian species, including those with a close phylogenetic affinity to the elephants. Not all mammal species possess a "serrated" appearance of the IO. Thus, it is more than just theoretically possible that the IO of the elephant appears as described prior to this study. 

      So what about elephants? Below I append a series of images from coronal sections through the African elephant brainstem stained for Nissl, myelin, and immunostained for calretinin. These sections are labelled according to standard mammalian nomenclature. In these complete sections of the elephant brainstem, we do not see a serrated appearance of the IOM (as described previously and in the current study by the authors). Rather the principal nucleus of the IOM appears to be bulbous in nature. In the current study, no image of myelin staining in the IOM/VsensR is provided by the authors. However, in the images I provide, we do see the reported myelin stripes in all stains - agreement between the authors and reviewer on this point. The higher magnification image to the bottom left of the plate shows one of the IOM/VsensR myelin stripes immunostained for calretinin, and within the myelin stripes axons immunopositive for calretinin are seen (labelled with an arrow). The climbing fibres of the elephant cerebellar cortex are similarly calretinin immunopositive (10.1159/000345565). In contrast, although not shown at high magnification, the fibres forming the Sp5 in the elephant (in the Maseko description, unnamed in the description of the authors) show no immunoreactivity to calretinin. 

      Comment: We appreciate the referee’s additional comments. We concede the possibility that some relatives of elephants have a less serrated inferior olive than most other mammals. We maintain, however, that the elephant inferior olive (our Figure 1J) has the serrated appearance seen in the vast majority of mammals.

      Change: None.

      Peripherin Immunostaining 

      In their revised manuscript the authors present immunostaining of peripherin in the elephant brainstem. This is an important addition (although it does replace the only staining of myelin provided by the authors which is unusual as the word myelin is in the title of the paper) as peripherin is known to specifically label peripheral nerves. In addition, as pointed out by the authors, peripherin also immunostains climbing fibres (Errante et al., 1998). The understanding of this staining is important in determining the identification of the IO and Vsens in the elephant, although it is not ideal for this task as there is some ambiguity. Errante and colleagues (1998; Fig. 1) show that climbing fibres are peripherin-immunopositive in the rat. But what the authors do not evaluate is the extensive peripherin staining in the rat Sp5 in the same paper (Errante et al, 1998, Fig. 2). The image provided by the authors of their peripherin immunostaining (their new Figure 2) shows what I would call the Sp5 of the elephant to be strongly peripherin immunoreactive, just like the rat shown in Errant et al (1998), and more over in the precise position of the rat Sp5! This makes sense as this is where the axons subserving the "extraordinary" tactile sensitivity of the elephant trunk would be found (in the standard model of mammalian brainstem anatomy). Interestingly, the peripherin immunostaining in the elephant is clearly lamellated...this coincides precisely with the description of the trigeminal sensory nuclei in the elephant by Maskeo et al (2013) as pointed out by the authors in their rebuttal. Errante et al (1998) also point out peripherin immunostaining in the inferior olive, but according to the authors this is only "weakly present" in the elephant IOM/VsensR. This latter point is crucial. Surely if the elephant has an extraordinary sensory innervation from the trunk, with 400 000 axons entering the brain, the VsensR/IOM should be highly peripherin-immunopositive, including the myelinated axon bundles?! In this sense, the authors argue against their own interpretation - either the elephant trunk is not a highly sensitive tactile organ, or the VsensR is not the trigeminal nuclei it is supposed to be. 

      Comment: We made sure that elephant climbing fibers are strongly peripherin-positive (our revised Figure 2). As we noted in already our previous ms, we see weak diffuse peripherin-reactivity in the trigeminal nucleus (the inferior olive according to the referee), but no peripherin-reactive axon bundles (i.e. climbing fibers) that are seen in the inferior olive of other species. We also see no peripherin-reactive axon bundles (i.e. the olivo-cerebellar tract) arriving in the trigeminal nucleus as the tissue surrounding the trigeminal nucleus is devoid of peripherin-reactivity. Again, this finding is incompatible with the referee’s ideas. As far as we can tell, the trigeminal fibers are not reactive for peripherin in the elephant, i.e. we did not observe peripherin-reactivity very close to the nerve entry, but unfortunately, we did not stain for peripherin-reactivity into the nerve. As the referee alludes to the absence of peripherin-reactivity in the trigeminal tract is a difference between rodents and elephants.

      Change: Our novel Figure 2.

      Summary: 

      (1) Comparative data of species closely related to elephants (Afrotherians) demonstrates that not all mammals exhibit the "serrated" appearance of the principal nucleus of the inferior olive. 

      (2) The location of the IO and Vsens as reported in the current study (IOR and VsensR) would require a significant, and unprecedented, rearrangement of the brainstem in the elephants independently. I argue that the underlying molecular and genetic changes required to achieve this would be so extreme that it would lead to lethal phenotypes. Arguing that the "switcheroo" of the IO and Vsens does occur in the elephant (and no other mammals) and thus doesn't lead to lethal phenotypes is a circular argument that cannot be substantiated. 

      (3) Myelin stripes in the subnuclei of the inferior olivary nuclear complex are seen across all related mammals as shown above. Thus, the observation made in the elephant by the authors in what they call the VsensR, is similar to that seen in the IO of related mammals, especially when the IO takes on a more bulbous appearance. These myelin stripes are the origin of the olivocerebellar pathway, and are indeed calretinin immunopositive in the elephant as I show. 

      (4) What the authors see aligns perfectly with what has been described previously, the only difference being the names that nuclear complexes are being called. But identifying these nuclei is important, as any functional sequelae, as extensively discussed by the authors, is entirely dependent upon accurately identifying these nuclei. 

      (4) The peripherin immunostaining scores an own goal - if peripherin is marking peripheral nerves (as the authors and I believe it is), then why is the VsensR/IOM only "weakly positive" for this stain? This either means that the "extraordinary" tactile sensitivity of the elephant trunk is non-existent, or that the authors have misinterpreted this staining. That there is extensive staining in the fibre pathway dorsal and lateral to the IOR (which I call the spinal trigeminal tract), supports the idea that the authors have misinterpreted their peripherin immunostaining.

      (5) Evolutionary expediency. The authors argue that what they report is an expedient way in which to modify the organisation of the brainstem in the elephant to accommodate the "extraordinary" tactile sensitivity. I disagree. As pointed out in my first review, the elephant cerebellum is very large and comprised of huge numbers of morphologically complex neurons. The inferior olivary nuclei in all mammals studied in detail to date, give rise to the climbing fibres that terminate on the Purkinje cells of the cerebellar cortex. It is more parsimonious to argue that, in alignment with the expansion of the elephant cerebellum (for motor control of the trunk), the inferior olivary nuclei (specifically the principal nucleus) have had additional neurons added to accommodate this cerebellar expansion. Such an addition of neurons to the principal nucleus of the inferior olive could readily lead to the loss of the serrated appearance of the principal nucleus of the inferior olive, and would require far less modifications in the developmental genetic program that forms these nuclei. This type of quantitative change appears to be the primary way in which structures are altered in the mammalian brainstem. 

      Comment: We still disagree with the referee. We note that our conclusions rest on the analysis of 8 elephant brainstems, which we sectioned in three planes and stained with a variety of metabolic and antibody stains and in which assigned two structures (the inferior olive and the trigeminal nucleus). Most of the evidence cited by the referee stems from a single paper, in which 147 structures were identified based on the analysis of a single brainstem sectioned in one plane and stained with a limited set of antibodies. Our synopsis of the evidence is the following.

      (1) We agree with the referee that concerning brainstem position our scheme of a ventromedial trigeminal nucleus and a dorsolateral inferior olive deviates from the usual mammalian position of these nuclei (i.e. a dorsolateral trigeminal nucleus and a ventromedial inferior olive).

      (2) Cytoarchitectonics support our partitioning scheme. The compact cellular appearance of our ventromedial trigeminal nucleus is characteristic of trigeminal nuclei. The serrated appearance of our dorsolateral inferior olive is characteristic of the mammalian inferior olive; we acknowledge that the referee claims exceptions here. To our knowledge, nobody has described a mammalian trigeminal nucleus with a serrated appearance (which would apply to the elephant in case the trigeminal nucleus is situated dorsolaterally).

      (3) Metabolic staining (Cyto-chrome-oxidase reactivity) supports our partitioning scheme. Specifically, our ventromedial trigeminal nucleus shows intense Cyto-chrome-oxidase reactivity as it is seen in the trigeminal nuclei of trigeminal tactile experts.

      (4) Isomorphism. The myelin stripes on our ventromedial trigeminal nucleus are isomorphic to trunk wrinkles. Isomorphism is a characteristic of somatosensory brain structures (barrel, barrelettes, nose-stripes, etc) and we know of no case, where such isomorphism was misleading.

      (5) The large-scale organization of our ventromedial trigeminal nuclei in anterior-posterior repeats is characteristic of the mammalian trigeminal nuclei. To our knowledge, no such organization has ever been reported for the inferior olive.

      (6) Connectivity analysis supports our partitioning scheme. According to our delineation of the elephant olivo-cerebellar tract, our dorsolateral inferior olive is connected via peripherin-positive climbing fibers to the cerebellum. In contrast, our ventromedial trigeminal nucleus (the referee’s inferior olive) is not connected via climbing fibers to the cerebellum.

      Change: As discussed, we advanced further evidence in this revision. Our partitioning scheme (a ventromedial trigeminal nucleus and a dorsolateral inferior olive) is better supported by data and makes more sense than the referee’s suggestion (a dorsolateral trigeminal nucleus and a ventromedial inferior olive). It should be published.

      Reviewer #3 (Public Review):

      Summary: 

      The study claims to investigate trunk representations in elephant trigeminal nuclei located in the brainstem. The researchers identify large protrusions visible from the ventral surface of the brainstem, which they examined using a range of histological methods. However, this ventral location is usually where the inferior olivary complex is found, which challenges the author's assertions about the nucleus under analysis. They find that this brainstem nucleus of elephants contains repeating modules, with a focus on the anterior and largest unit which they define as the putative nucleus principalis trunk module of the trigeminal. The nucleus exhibits low neuron density, with glia outnumbering neurons significantly. The study also utilizes synchrotron X-ray phase contrast tomography to suggest that myelin-stripe-axons traverse this module. The analysis maps myelin-rich stripes in several specimens and concludes that based on their number and patterning that they likely correspond with trunk folds; however this conclusion is not well supported if the nucleus has been misidentified. 

      Comment: The referee provides a summary of our work. The referee also notes that the correct identification of the trigeminal nucleus is critical to the message of our paper.

      Change: In line with these assessments we focused our revision efforts on the issue of trigeminal nucleus identification, please see our introductory comments and our response to Referee 2.

      Strengths: 

      The strength of this research lies in its comprehensive use of various anatomical methods, including Nissl staining, myelin staining, Golgi staining, cytochrome oxidase labeling, and synchrotron X-ray phase contrast tomography. The inclusion of quantitative data on cell numbers and sizes, dendritic orientation and morphology, and blood vessel density across the nucleus adds a quantitative dimension. Furthermore, the research is commendable for its high-quality and abundant images and figures, effectively illustrating the anatomy under investigation.

      Comment: We appreciate this positive assessment.

      Change: None

      Weaknesses: 

      While the research provides potentially valuable insights if revised to focus on the structure that appears to be inferior olivary nucleus, there are certain additional weaknesses that warrant further consideration. First, the suggestion that myelin stripes solely serve to separate sensory or motor modules rather than functioning as an "axonal supply system" lacks substantial support due to the absence of information about the neuronal origins and the termination targets of the axons. Postmortem fixed brain tissue limits the ability to trace full axon projections. While the study acknowledges these limitations, it is important to exercise caution in drawing conclusions about the precise role of myelin stripes without a more comprehensive understanding of their neural connections. 

      Comment: We understand these criticisms and the need for cautious interpretation. As we noted previously, we think that the Elife-publishing scheme, where critical referee commentary is published along with our ms, will make this contribution particularly valuable.

      Change: Our additional efforts to secure the correct identification of the trigeminal nucleus.

      Second, the quantification presented in the study lacks comparison to other species or other relevant variables within the elephant specimens (i.e., whole brain or brainstem volume). The absence of comparative data to different species limits the ability to fully evaluate the significance of the findings. Comparative analyses could provide a broader context for understanding whether the observed features are unique to elephants or more common across species. This limitation in comparative data hinders a more comprehensive assessment of the implications of the research within the broader field of neuroanatomy. Furthermore, the quantitative comparisons between African and Asian elephant specimens should include some measure of overall brain size as a covariate in the analyses. Addressing these weaknesses would enable a richer interpretation of the study's findings. 

      Comment: We understand, why the referee asks for additional comparative data, which would make our study more meaningful. We note that we already published a quantitative comparison of African and Asian elephant facial nuclei (Kaufmann et al. 2022). The quantitative differences between African and Asian elephant facial nuclei are similar in magnitude to what we observed here for the trigeminal nucleus, i.e. African elephants have about 10-15% more facial nucleus neurons than Asian elephants. The referee also notes that data on overall elephant brain size might be important for interpreting our data. We agree with this sentiment and we are preparing a ms on African and Asian elephant brain size. We find – unexpectedly given the larger body size of African elephants – that African elephants have smaller brains than Asian elephants. The finding might imply that African elephants, which have more facial nucleus neurons and more trigeminal nucleus trunk module neurons, are neurally more specialized in trunk control than Asian elephants.

      Change: We are preparing a further ms on African and Asian elephant brain size, a first version of this work has been submitted.

      Reviewer #4 (Public Review): 

      Summary: 

      The authors report a novel isomorphism in which the folds of the elephant trunk are recognizably mapped onto the principal sensory trigeminal nucleus in the brainstem. Further, they identifiy the enlarged nucleus as being situated in this species in an unusual ventral midline position. 

      Comment: The referee summarizes our work.

      Change: None.

      Strengths: 

      The identity of the purported trigeminal nucleus and the isomorphic mapping with the trunk folds is supported by multiple lines of evidence: enhanced staining for cytochrome oxidase, an enzyme associated with high metabolic activity; dense vascularization, consistent with high metabolic activity; prominent myelinated bundles that partition the nucleus in a 1:1 mapping of the cutaneous folds in the trunk periphery; near absence of labeling for the anti-peripherin antibody, specific for climbing fibers, which can be seen as expected in the inferior olive; and a high density of glia.

      Comment: The referee again reviews some of our key findings.

      Change: None. 

      Weaknesses: 

      Despite the supporting evidence listed above, the identification of the gross anatomical bumps, conspicuous in the ventral midline, is problematic. This would be the standard location of the inferior olive, with the principal trigeminal nucleus occupying a more dorsal position. This presents an apparent contradiction which at a minimum needs further discussion. Major species-specific specializations and positional shifts are well-documented for cortical areas, but nuclear layouts in the brainstem have been considered as less malleable. 

      Comment: The referee notes that our discrepancy with referee 2, needs to be addressed with further evidence and discussion, given the unusual position of both inferior olive and trigeminal nucleus in the partitioning scheme and that the mammalian brainstem tends to be positionally conservative. We agree with the referee. We note that – based on the immense size of the elephant trigeminal ganglion (50 g), half the size of a monkey brain – it was expected that the elephant trigeminal nucleus ought to be exceptionally large.

      Change: We did additional experimental work to resolve this matter: (i) We ascertained that elephant climbing fibers are strongly peripherin-positive. (ii) Based on elephant climbing fiber peripherin-reactivity we delineated the elephant olivo-cerebellar tract. We find that the olivo-cerebellar connects to the structure we refer to as inferior olive to the cerebellum. (iii) We also found that the trigeminal nucleus (the structure the referee refers to as inferior olive) appears to receive no climbing fibers. (iv) We provide indications that the tracing of the trigeminal nerve into the olivo-cerebellar tract by Maseko et al. 2023 was erroneous (Referee-Figure 1). These novel findings support our ideas.

      Reviewer #5 (Public Review): 

      After reading the manuscript and the concerns raised by reviewer 2 I see both sides of the argument - the relative location of trigeminal nucleus versus the inferior olive is quite different in elephants (and different from previous studies in elephants), but when there is a large disproportionate magnification of a behaviorally relevant body part at most levels of the nervous system (certainly in the cortex and thalamus), you can get major shifting in location of different structures. In the case of the elephant, it looks like there may be a lot of shifting. Something that is compelling is that the number of modules separated but the myelin bands correspond to the number of trunk folds which is different in the different elephants. This sort of modular division based on body parts is a general principle of mammalian brain organization (demonstrated beautifully for the cuneate and gracile nucleus in primates, VP in most of species, S1 in a variety of mammals such as the star nosed mole and duck-billed platypus). I don't think these relative changes in the brainstem would require major genetic programming - although some surely exists. Rodents and elephants have been independently evolving for over 60 million years so there is a substantial amount of time for changes in each l lineage to occur.

      I agree that the authors have identified the trigeminal nucleus correctly, although comparisons with more out groups would be needed to confirm this (although I'm not suggesting that the authors do this). I also think the new figure (which shows previous divisions of the brainstem versus their own) allows the reader to consider these issues for themselves. When reviewing this paper, I actually took the time to go through atlases of other species and even look at some of my own data from highly derived species. Establishing homology across groups based only on relative location is tough especially when there appears to be large shifts in relative location of structures. My thoughts are that the authors did an extraordinary amount of work on obtaining, processing and analyzing this extremely valuable tissue. They document their work with images of the tissue and their arguments for their divisions are solid. I feel that they have earned the right to speculate - with qualifications - which they provide. 

      Comment: The referee summarizes our work and appears to be convinced by the line of our arguments. We are most grateful for this assessment. We add, again, that the skeptical assessment of referee 2 will be published as well and will give the interested reader the possibility to view another perspective on our work.

      Change: None. 

      Recommendations for the authors: 

      Reviewer #1 (Recommendations For The Authors):

      With this manuscript being virtually identical to the previous version, it is possible that some of the definitive conclusions about having identified the elephant trigeminal nucleus and trunk representation should be moderated in a more nuanced manner, especially given the careful and experienced perspective from reviewers with first hand knowledge elephant neuroanatomy.

      Comment: We agree that both our first and second revisions were very much centered on the debate of the correct identification of the trigeminal nucleus and that our ms did not evolve as much in other regards. This being said we agree with Referee 2 that we needed to have this debate. We also think we advanced important novel data in this context (the delineation of elephant olivo-cerebellar tract through the peripherin-antibody).

      Changes: Our revised Figure 2. 

      The peripherin staining adds another level of argument to the authors having identified the trigeminal brainstem instead of the inferior olive, if differential expression of peripherin is strong enough to distinguish one structure from the other.

      Comment: We think we showed too little peripherin-antibody staining in our previous revision. We have now addressed this problem.

      Changes: Our revised Figure 2, i.e. the delineation of elephant olivo-cerebellar tract through the peripherin-antibody).

      There are some minor corrections to be made with the addition of Fig. 2., including renumbering the figures in the manuscript (e.g., 406, 521). 

      I continue to appreciate this novel investigation of the elephant brainstem and find it an interesting and thorough study, with the use of classical and modern neuroanatomical methods.

      Comment: We are thankful for this positive assessment.

      Reviewer #2 (Recommendations For The Authors):

      I do realise the authors are very unhappy with me and the reviews I have submitted. I do apologise if feelings have been hurt, and I do understand the authors put in a lot of hard work and thought to develop what they have; however, it is unfortunate that the work and thoughts are not correct. Science is about the search for the truth and sometimes we get it wrong. This is part of the scientific process and why most journals adhere to strict review processes of scientific manuscripts. As I said previously, the authors can use their data to write a paper describing and quantifying Golgi staining of neurons in the principal olivary nucleus of the elephant that should be published in a specialised journal and contextualised in terms of the motor control of the trunk and the large cerebellum of the elephant. 

      Comment: We appreciate the referee’s kind words. Also, no hard feelings from our side, this is just a scientific debate. In our experience, neuroanatomical debates are resolved by evidence and we note that we provide evidence strengthening our identification of the trigeminal nucleus and inferior olive. As far as we can tell from this effort and the substantial evidence accumulated, the referee is wrong.

      Reviewer #4 (Recommendations For The Authors):

      As a new reviewer, I have benefited from reading the previous reviews and Author response, even while having several new comments to add. 

      (1) The identification of the inferior olive and trigeminal nuclei is obviously center stage. An enlargement of the trigeminal nuclei is not necessarily problematic, given the published reports on the dramatic enlargement of the trigeminal nerve (Purkart et al., 2022). At issue is the conspicuous relocation of the trigeminal nuclei that is being promoted by Reveyaz et al. Conspicuous rearrangements are not uncommon; for example, primary sensory cortical fields in different species (fig. 1 in H.H.A. Oelschlager for dolphins; S. De Vreese et al. (2023) for cetaceans, L. Krubitzer on various species, in the context of evolution). The difficult point here concerns what looks like a rather conspicuous gross anatomical rearrangement, in BRAINSTEM - the assumption being that the brainstem bauplan is going to be specifically conservative and refractory to gross anatomical rearrangement. 

      Comment: We agree with the referee that the brainstem rearrangements are unexpected. We also think that the correct identification of nuclei needs to be at the center of our revision efforts.

      Change: Our revision provided further evidence (delineation of the olivo-cerebellar tract, characterization of the trigeminal nerve entry) about the identity of the nuclei we studied.

      Why would a major nucleus shift to such a different location? and how? Can ex vivo DTI provide further support of the correct identification? Is there other "disruption" in the brainstem? What occupies the traditional position of the trigeminal nuclei? An atlas-equivalent coronal view of the entire brainstem would be informative. The Authors have assembled multiple criteria to support their argument that the ventral "bumps" are in fact a translocated trigeminal principal nucleus: enhanced CO staining, enhanced vascularization, enhanced myelination (via Golgi stains and tomography), very scant labeling for a climbing fiber specific antibody ( anti-peripherin), vs. dense staining of this in the alternative structure that they identify as IO; and a high density of glia. Admittedly, this should be sufficient, but the proposed translocation (in the BRAINSTEM) is sufficiently startling that this is arguably NOT sufficient. <br /> The terminology of "putative" is helpful, but a more cogent presentation of the results and more careful discussion might succeed in winning over at least some of a skeptical readership. 

      Comment: We do not know, what led to the elephant brainstem rearrangements we propose. If the trigeminal nuclei had expanded isometrically in elephants from the ancestral pattern, one would have expected a brain with big lateral bumps, not the elephant brain with its big ventromedial bumps. We note, however, that very likely the expansion of the elephant trigeminal nuclei did not occur isometrically. Instead, the neural representation of the elephant nose expanded dramatically and in rodents the nose is represented ventromedially in the brainstem face representation. Thus, we propose a ‘ventromedial outgrowth model’ according to which the elephant ventromedial trigeminal bumps result from a ventromedially direct outgrowth of the ancestral ventromedial nose representation.

      We advanced substantially more evidence to support our partitioning scheme, including the delineation of the olivo-cerebellar tract based on peripherin-reactivity. We also identified problems in previous partitioning schemes, such as the claim that the trigeminal nerve continues into the ~4x smaller olivocerebellar tract (Referee-Figure 1C, D); we think such a flow of fibers, (which is also at odds with peripherin-antibody-reactivity and the appearance of nerve and olivocerebellar tract), is highly unlikely if not physically impossible. With all that we do not think that we overstate our case in our cautiously presented ms.

      Change: We added evidence on the identification of elephant trigeminal nuclei and inferior olive.

      (2) Role of myelin. While the photos of myelin are convincing, it would be nice to have further documentation. Gallyas? Would antibodies to MBP work? What is the myelin distribution in the "standard" trigeminal nuclei (human? macaque or chimpanzee?). What are alternative sources of the bundles? Regardless, I think it would be beneficial to de-emphasize this point about the role of myelin in demarcating compartments. <br /> I would in fact suggest an alternative (more neutral) title that might highlight instead the isomorphic feature; for example, "An isomorphic representation of Trunk folds in the Elephant Trigeminal Nucleus." The present title stresses myelin, but figure 1 already focuses on CO. Additionally, the folds are actually mentioned almost in passing until later in the manuscript. I recommend a short section on these at the beginning of the Results to serve as a useful framework.

      Here I'm inclined to agree with the Reviewer, that the Authors' contention that the myelin stipes serve PRIMARILY to separate trunk-fold domains is not particularly compelling and arguably a distraction. The point can be made, but perhaps with less emphasis. After all, the fact that myelin has multiple roles is well-established, even if frequently overlooked. In addition, the Authors might make better use of an extensive relevant literature related to myelin as a compartmental marker; for example, results and discussion in D. Haenelt....N. Weiskopf (eLife, 2023), among others. Another example is the heavily myelinated stria of Gennari in primate visual cortex, consisting of intrinsic pyramidal cell axons, but where the role of the myelination has still not been elucidated. 

      Comment: (1) Documentation of myelin. We note that we show further identification of myelinated fibers by the fluorescent dye fluomyelin in Figure 4B. We also performed additional myelin stains as the gold-myelin stain after the protocol of Schmued (Referee-Figure 2). In the end, nothing worked quite as well to visualize myelin-stripes as the bright-field images shown in Figure 4A and it is only the images that allowed us to match myelin-stripes to trunk folds. Hence, we focus our presentation on these images.

      (2) Title: We get why the referee envisions an alternative title. This being said, we would like to stick with our current title, because we feel it highlights the major novelty we discovered.

      (3) We agree with many of the other comments of the referee on myelin phenomenology. We missed the Haenelt reference pointed out by the referee and think it is highly relevant to our paper

      Change: 1. Review image 2. Inclusion of the Haenelt-reference.

      Author response image 2.

      Myelin stripes of the elephant trunk module visualized by Gold-chloride staining according to Schmued. A, Low magnification micrograph of the trunk module of African elephant Indra stained with AuCl according to Schmued. The putative finger is to the left, proximal is to the right. Myelin stripes can easily be recognized. The white box indicates the area shown in B. B, high magnification micrograph of two myelin stripes. Individual gold-stained (black) axons organized in myelin stripes can be recognized.

      Schmued, L. C. (1990). A rapid, sensitive histochemical stain for myelin in frozen brain sections. Journal of Histochemistry & Cytochemistry,38(5), 717-720.

      Are the "bumps" in any way "analogous" to the "brain warts" seen in entorhinal areas of some human brains (G. W. van Hoesen and A. Solodkin (1993)? 

      Comment: We think this is a similar phenomenon.

      Change: We included the Hoesen and A. Solodkin (1993) reference in our discussion.

      At least slightly more background (ie, a separate section or, if necessary, supplement) would be helpful, going into more detail on the several subdivisions of the ION and if these undergo major alterations in the elephant.

      Comment: The strength of the paper is the detailed delineation of the trunk module, based on myelin stripes and isomorphism. We don’t think we have strong evidence on ION subdivisions, because it appears the trigeminal tract cannot be easily traced in elephants. Accordingly, we find it difficult to add information here.

      Change: None.

      Is there evidence from the literature of other conspicuous gross anatomical translocations, in any species, especially in subcortical regions? 

      Comment: The best example that comes to mind is the star-nosed mole brainstem. There is a beautiful paper comparing the star-nosed mole brainstem to the normal mole brainstem (Catania et al 2011). The principal trigeminal nucleus in the star-nosed mole is far more rostral and also more medial than in the mole; still, such rearrangements are minor compared to what we propose in elephants.

      Catania, Kenneth C., Duncan B. Leitch, and Danielle Gauthier. "A star in the brainstem reveals the first step of cortical magnification." PloS one 6.7 (2011): e22406.

      Change: None.

      (3) A major point concerns the isomorphism between the putative trigeminal nuclei and the trunk specialization. I think this can be much better presented, at least with more discussion and other examples. The Authors mention about the rodent "barrels," but it seemed strange to me that they do not refer to their own results in pig (C. Ritter et al., 2023) nor the work from Ken Catania, 2002 (star-nosed mole; "fingerprints in the brain") or other that might be appropriate. I concur with the Reviewer that there should be more comparative data. 

      Comment: We agree.

      Change: We added a discussion of other isomorphisms including the the star-nosed mole to our paper.

      (4) Textual organization could be improved. 

      The Abstract all-important Introduction is a longish, semi "run-on" paragraph. At a minimum this should be broken up. The last paragraph of the Introduction puts forth five issues, but these are only loosely followed in the Results section. I think clarity and good organization is of the upmost importance in this manuscript. I recommend that the Authors begin the Results with a section on the trunk folds (currently figure 5, and discussion), continue with the several points related to the identification of the trigeminal nuclei, and continue with a parallel description of ION with more parallel data on the putative trigeminal and IO structures (currently referee Table 1, but incorporate into the text and add higher magnification of nucleus-specific cell types in the IO and trigeminal nuclei). Relevant comparative data should be included in the Discussion.

      Comment: 1. We agree with the referee that our abstract needed to be revised. 2. We also think that our ms was heavily altered by the insertion of the new Figure 2, which complemented Figure 1 from our first submission and is concerned with the identification of the inferior olive. From a standpoint of textual flow such changes were not ideal, but the revisions massively added to the certainty with which we identify the trigeminal nuclei. Thus, although we are not as content as we were with the flow, we think the ms advanced in the revision process and we would like to keep the Figure sequence as is. 3. We already noted above that we included additional comparative evidence.

      Change: 1. We revised our abstract. 2. We added comparative evidence.

      Reviewer #5 (Recommendations For The Authors): 

      The data is invaluable and provides insights into some of the largest mammals on the planet. 

      Comment: We are incredibly thankful for this positive assessment.

    2. Author response:

      The following is the authors’ response to the original reviews.

      We are thankful for the handling of our manuscript. The following is a summary of our response and what we have done:

      (1) We are most thankful for the very thorough evaluation of our manuscript.

      (2) We were a bit shocked by the very negative commentary of referee 2.

      (3) We think, what put referee 2 off so much is that we were overconfident in the strength of our conclusions. We consider such overconfidence a big mistake. We have revised the manuscript to fix this problem.

      (4) We respond in great depth to all criticism and also go into technicalities.

      (5) We consider the possibility of a mistake. Yet, we carefully weighed the evidence advanced by referee 2 and by us and found that a systematic review supports our conclusions. Hence, we also resist the various attempts to crush our paper.

      (6) We added evidence (peripherin-antibody staining; our novel Figure 2) that suggests we correctly identified the inferior olive.

      (7) The eLife format – in which critical commentary is published along with the paper – is a fantastic venue to publish, what appears to be a surprisingly controversial issue.

      eLife assessment

      This potentially valuable study uses classic neuroanatomical techniques and synchrotron X-ray tomography to investigate the mapping of the trunk within the brainstem nuclei of the elephant brain. Given its unique specializations, understanding the somatosensory projections from the elephant trunk would be of general interest to evolutionary neurobiologists, comparative neuroscientists, and animal behavior scientists. However, the anatomical analysis is inadequate to support the authors' conclusion that they have identified the elephant trigeminal sensory nuclei rather than a different brain region, specifically the inferior olive.

      Comment: We are happy that our paper is considered to be potentially valuable. Also, the editors highlight the potential interest of our work for evolutionary neurobiologists, comparative neuroscientists, and animal behavior scientists. The editors are more negative when it comes to our evidence on the identification of the trigeminal nucleus vs the inferior olive. We have five comments on this assessment. (i) We think this assessment is heavily biased by the comments of referee 2. We show that the referee’s comments are more about us than about our paper. Hence, the referee failed to do their job (refereeing our paper) and should not have succeeded in leveling our paper. (ii) We have no ad hoc knock-out experiments to distinguish the trigeminal nucleus vs the inferior olive. Such experiments (extracellular recording & electrolytic lesions, viral tracing would be done in a week in mice, but they cannot and should not be done in elephants. (iii) We have extraordinary evidence. Nobody has ever described a similarly astonishing match of body (trunk folds) and myeloarchitecture in the brain before. (iv) We show that our assignment of the trigeminal nucleus vs the inferior olive is more plausible than the current hypothesis about the assignment of the trigeminal nucleus vs the inferior olive as defended by referee 2. We think this is why it is important to publish our paper. (v) We think eLife is the perfect place for our publication because the deviating views of referee 2 are published along.

      Change: We performed additional peripherin-antibody staining to differentiate the inferior olive and trigeminal nucleus. Peripherin is a cytoskeletal protein that is found in peripheral nerves and climbing fibers. Specifically, climbing fibers of various species (mouse, rabbit, pig, cow, and human; Errante et al., 1998) are stained intensely with peripherin-antibodies. What is tricky for our purposes is that there is also some peripherin-antibody reactivity in the trigeminal nuclei (Errante et al., 1998). Such peripherin-antibody reactivity is weaker, however, and lacks the distinct axonal bundle signature that stems from the strong climbing fiber peripherin-reactivity as seen in the inferior olive (Errante et al., 1998). As can be seen in our novel Figure 2, we observe peripherin-reactivity in axonal bundles (i.e. in putative climbing fibers), in what we think is the inferior olive. We also observe weak peripherin-reactivity, in what we think is the trigeminal nucleus, but not the distinct and strong labeling of axonal bundles. These observations are in line with our ideas but are difficult to reconcile with the views of the referee. Specifically, the lack of peripherin-reactive axon bundles suggests that there are no climbing fibers in what the referee thinks is the inferior olive.

      Errante, L., Tang, D., Gardon, M., Sekerkova, G., Mugnaini, E., & Shaw, G. (1998). The intermediate filament protein peripherin is a marker for cerebellar climbing fibres. Journal of neurocytology, 27, 69-84.

      Reviewer #1 :

      Summary:

      This fundamental study provides compelling neuroanatomical evidence underscoring the sensory function of the trunk in African and Asian elephants. Whereas myelinated tracts are classically appreciated as mediating neuronal connections, the authors speculate that myelinated bundles provide functional separation of trunk folds and display elaboration related to the "finger" projections. The authors avail themselves of many classical neuroanatomical techniques (including cytochrome oxidase stains, Golgi stains, and myelin stains) along with modern synchrotron X-ray tomography. This work will be of interest to evolutionary neurobiologists, comparative neuroscientists, and the general public, with its fascinating exploration of the brainstem of an icon sensory specialist. 

      Comment: We are incredibly grateful for this positive assessment.

      Changes: None.

      Strengths: 

      - The authors made excellent use of the precious sample materials from 9 captive elephants. 

      - The authors adopt a battery of neuroanatomical techniques to comprehensively characterize the structure of the trigeminal subnuclei and properly re-examine the "inferior olive".

      - Based on their exceptional histological preparation, the authors reveal broadly segregated patterns of metabolic activity, similar to the classical "barrel" organization related to rodent whiskers. 

      Comment: The referee provides a concise summary of our findings.

      Changes: None.

      Weaknesses: 

      - As the authors acknowledge, somewhat limited functional description can be provided using histological analysis (compared to more invasive techniques). 

      - The correlation between myelinated stripes and trunk fold patterns is intriguing, and Figure 4 presents this idea beautifully. I wonder - is the number of stripes consistent with the number of trunk folds? Does this hold for both species? 

      Comment: We agree with the referee’s assessment. We note that cytochrome-oxidase staining is an at least partially functional stain, as it reveals constitutive metabolic activity. A significant problem of the work in elephants is that our recording possibilities are limited, which in turn limits functional analysis. As indicated in Figure 5 (our former Figure 4) for the African elephant Indra, there was an excellent match of trunk folds and myelin stripes. Asian elephants have more, and less conspicuous trunk folds than African elephants. As illustrated in Figure 7, Asian elephants have more, and less conspicuous myelin stripes. Thus, species differences in myelin stripes correlate with species differences in trunk folds.

      Changes: We clarify the relation of myelin stripe and trunk fold patterns in our description of Figure 7.

      Reviewer #2 (Public Review): 

      The authors describe what they assert to be a very unusual trigeminal nuclear complex in the brainstem of elephants, and based on this, follow with many speculations about how the trigeminal nuclear complex, as identified by them, might be organized in terms of the sensory capacity of the elephant trunk.

      Comment: We agree with the referee’s assessment that the putative trigeminal nucleus described in our paper is highly unusual in size, position, vascularization, and myeloarchitecture. This is why we wrote this paper. We think these unusual features reflect the unique facial specializations of elephants, i.e. their highly derived trunk. Because we have no access to recordings from the elephant brainstem, we cannot back up all our functional interpretations with electrophysiological evidence; it is therefore fair to call them speculative.

      Changes: None.

      The identification of the trigeminal nuclear complex/inferior olivary nuclear complex in the elephant brainstem is the central pillar of this manuscript from which everything else follows, and if this is incorrect, then the entire manuscript fails, and all the associated speculations become completely unsupported. 

      Comment: We agree.

      Changes: None.

      The authors note that what they identify as the trigeminal nuclear complex has been identified as the inferior olivary nuclear complex by other authors, citing Shoshani et al. (2006; 10.1016/j.brainresbull.2006.03.016) and Maseko et al (2013; 10.1159/000352004), but fail to cite either Verhaart and Kramer (1958; PMID 13841799) or Verhaart (1962; 10.1515/9783112519882-001). These four studies are in agreement, but the current study differs.

      Comment & Change: We were not aware of the papers of Verhaart and included them in the revised manusript.

      Let's assume for the moment that the four previous studies are all incorrect and the current study is correct. This would mean that the entire architecture and organization of the elephant brainstem is significantly rearranged in comparison to ALL other mammals, including humans, previously studied (e.g. Kappers et al. 1965, The Comparative Anatomy of the Nervous System of Vertebrates, Including Man, Volume 1 pp. 668-695) and the closely related manatee (10.1002/ar.20573). This rearrangement necessitates that the trigeminal nuclei would have had to "migrate" and shorten rostrocaudally, specifically and only, from the lateral aspect of the brainstem where these nuclei extend from the pons through to the cervical spinal cord (e.g. the Paxinos and Watson rat brain atlases), the to the spatially restricted ventromedial region of specifically and only the rostral medulla oblongata. According to the current paper, the inferior olivary complex of the elephant is very small and located lateral to their trigeminal nuclear complex, and the region from where the trigeminal nuclei are located by others appears to be just "lateral nuclei" with no suggestion of what might be there instead.

      Comment: We have three comments here:

      (1) The referee correctly notes that we argue the elephant brainstem underwent fairly major rearrangements. In particular, we argue that the elephant inferior olive was displaced laterally, by a very large cell mass, which we argue is an unusually large trigeminal nucleus. To our knowledge, such a large compact cell mass is not seen in the ventral brain stem of any other mammal.

      (2) The referee makes it sound as if it is our private idea that the elephant brainstem underwent major rearrangements and that the rest of the evidence points to a conventional ‘rodent-like’ architecture. This is far from the truth, however. Already from the outside appearance (see our Figure 1B and Figure 7A) it is clear that the elephant brainstem has huge ventral bumps not seen in any other mammal. An extraordinary architecture also holds at the organizational level of nuclei. Specifically, the facial nucleus – the most carefully investigated nucleus in the elephant brainstem – has an appearance distinct from that of the facial nuclei of all other mammals (Maseko et al., 2013; Kaufmann et al., 2022). If both the overall shape and the constituting nuclei of the brainstem are very different from other mammals, it is very unlikely if not impossible that the elephant brainstem follows in all regards a conventional ‘rodent-like’ architecture.

      (3) The inferior olive is an impressive nucleus in the partitioning scheme we propose (Figure 2). In fact – together with the putative trigeminal nucleus we describe – it’s the most distinctive nucleus in the elephant brainstem. We have not done volumetric measurements and cell counts here, but think this is an important direction for future work. What has informed our work is that the inferior olive nucleus we describe has the serrated organization seen in the inferior olive of all mammals. We will discuss these matters in depth below.

      Changes: None.

      Such an extraordinary rearrangement of brainstem nuclei would require a major transformation in the manner in which the mutations, patterning, and expression of genes and associated molecules during development occur. Such a major change is likely to lead to lethal phenotypes, making such a transformation extremely unlikely. Variations in mammalian brainstem anatomy are most commonly associated with quantitative changes rather than qualitative changes (10.1016/B978-0-12-804042-3.00045-2). 

      Comment: We have two comments here:

      (1) The referee claims that it is impossible that the elephant brainstem differs from a conventional brainstem architecture because this would lead to lethal phenotypes etc. Following our previous response, this argument does not hold. It is out of the question that the elephant brainstem looks very different from the brainstem of other mammals. Yet, it is also evident that elephants live. The debate we need to have is not if the elephant brainstem differs from other mammals, but how it differs from other mammals.

      (2) In principle we agree with the referee’s thinking that the model of the elephant brainstem that is most likely to be correct is the one that requires the least amount of rearrangements to other mammals. We therefore prepared a comparison of the model the referee is proposing (Maseko et al., 2013; see Referee Table 1 below) with our proposition. We scored these models on their similarity to other mammals. We find that the referee’s ideas (Maseko et al., 2013) require more rearrangements relative to other mammals than our suggestion.

      Changes: Inclusion of Referee Table 1, which we discuss in depth below.

      The impetus for the identification of the unusual brainstem trigeminal nuclei in the current study rests upon a previous study from the same laboratory (10.1016/j.cub.2021.12.051) that estimated that the number of axons contained in the infraorbital branch of the trigeminal nerve that innervate the sensory surfaces of the trunk is approximately 400 000. Is this number unusual? In a much smaller mammal with a highly specialized trigeminal system, the platypus, the number of axons innervating the sensory surface of the platypus bill skin comes to 1 344 000 (10.1159. Yet, there is no complex rearrangement of the brainstem trigeminal nuclei in the brain of the developing or adult platypus (Ashwell, 2013, Neurobiology of Monotremes), despite the brainstem trigeminal nuclei being very large in the platypus (10.1159/000067195). Even in other large-brained mammals, such as large whales that do not have a trunk, the number of axons in the trigeminal nerve ranges between 400,000 and 500,000 (10.1007. The lack of comparative support for the argument forwarded in the previous and current study from this laboratory, and that the comparative data indicates that the brainstem nuclei do not change in the manner suggested in the elephant, argues against the identification of the trigeminal nuclei as outlined in the current study. Moreover, the comparative studies undermine the prior claim of the authors, informing the current study, that "the elephant trigeminal ganglion ... point to a high degree of tactile specialization in elephants" (10.1016/j.cub.2021.12.051). While clearly, the elephant has tactile sensitivity in the trunk, it is questionable as to whether what has been observed in elephants is indeed "truly extraordinary".

      Comment: These comments made us think that the referee is not talking about the paper we submitted, but that the referee is talking about us and our work in general. Specifically, the referee refers to the platypus and other animals dismissing our earlier work, which argued for a high degree of tactile specialization in elephants. We think the referee’s intuitions are wrong and our earlier work is valid.

      Changes: We prepared a Author response image 1 (below) that puts the platypus brain, a monkey brain, and the elephant trigeminal ganglion (which contains a large part of the trunk innervating cells) in perspective.

      Author response image 1.

      The elephant trigeminal ganglion is comparatively large. Platypus brain, monkey brain, and elephant ganglion. The elephant has two trigeminal ganglia, which contain the first-order somatosensory neurons. They serve mainly for tactile processing and are large compared to a platypus brain (from the comparative brain collection) and are similar in size to a monkey brain. The idea that elephants might be highly specialized for trunk touch is also supported by the analysis of the sensory nerves of these animals (Purkart et al., 2022). Specifically, we find that the infraorbital nerve (which innervates the trunk) is much thicker than the optic nerve (which mediates vision) and the vestibulocochlear nerve (which mediates hearing). Thus, not everything is large about elephants; instead, the data argue that these animals are heavily specialized for trunk touch.

      But let's look more specifically at the justification outlined in the current study to support their identification of the unusually located trigeminal sensory nuclei of the brainstem. 

      (1) Intense cytochrome oxidase reactivity.

      (2) Large size of the putative trunk module.

      (3) Elongation of the putative trunk module.

      (4) The arrangement of these putative modules corresponds to elephant head

      anatomy. 

      (5) Myelin stripes within the putative trunk module that apparently match trunk folds. <br /> (6) Location apparently matches other mammals.

      (7) Repetitive modular organization apparently similar to other mammals. <br /> (8) The inferior olive described by other authors lacks the lamellated appearance of this structure in other mammals.

      Comment: We agree those are key issues.

      Changes: None.

      Let's examine these justifications more closely.

      (1) Cytochrome oxidase histochemistry is typically used as an indicative marker of neuronal energy metabolism. The authors indicate, based on the "truly extraordinary" somatosensory capacities of the elephant trunk, that any nuclei processing this tactile information should be highly metabolically active, and thus should react intensely when stained for cytochrome oxidase. We are told in the methods section that the protocols used are described by Purkart et al (2022) and Kaufmann et al (2022). In neither of these cited papers is there any description, nor mention, of the cytochrome oxidase histochemistry methodology, thus we have no idea of how this histochemical staining was done. To obtain the best results for cytochrome oxidase histochemistry, the tissue is either processed very rapidly after buffer perfusion to remove blood or in recently perfusion-fixed tissue (e.g., 10.1016/0165-0270(93)90122-8). Given: (1) the presumably long post-mortem interval between death and fixation - "it often takes days to dissect elephants"; (2) subsequent fixation of the brains in 4% paraformaldehyde for "several weeks"; (3) The intense cytochrome oxidase reactivity in the inferior olivary complex of the laboratory rat (Gonzalez-Lima, 1998, Cytochrome oxidase in neuronal metabolism and Alzheimer's diseases); and (4) The lack of any comparative images from other stained portions of the elephant brainstem; it is difficult to support the justification as forwarded by the authors. The histochemical staining observed is likely background reactivity from the use of diaminobenzidine in the staining protocol. Thus, this first justification is unsupported. 

      Comment: The referee correctly notes the description of our cytochrome-oxidase reactivity staining was lacking. This is a serious mistake of ours for which we apologize very much. The referee then makes it sound as if we messed up our cytochrome-oxidase staining, which is not the case. All successful (n = 3; please see our technical comments in the recommendation section) cytochrome-oxidase stainings were done with elephants with short post-mortem times (≤ 2 days) to brain removal/cooling and only brief immersion fixation (≤ 1 day). Cytochrome-oxidase reactivity in elephant brains appears to be more sensitive to quenching by fixation than is the case for rodent brains. We think it is a good idea to include a cytochrome-oxidase staining overview picture because we understood from the referee’s comments that we need to compare our partitioning scheme of the brainstem with that of other authors. To this end, we add a cytochrome-oxidase staining overview picture (Author response image 3) along with an alternative interpretation from Maseko et al., 2013.

      Changes: (1) We added details on our cytochrome-oxidase reactivity staining protocol and the cytochrome-oxidase reactivity in the elephant brain in the manuscript and in our response to the general recommendations.

      (2) We provide a detailed discussion of the technicalities of cytochrome-oxidase staining below in the recommendation section, where the referee raised further criticisms.

      (3) We include a cytochrome-oxidase staining overview picture (Author response image 2) along with an alternative interpretation from Maseko et al., 2013.

      Author response image 2.

      Cytochrome-oxidase staining overview. Coronal cytochrome-oxidase staining overview from African elephant cow Indra; the section is taken a few millimeters posterior to the facial nucleus. Brown is putatively neural cytochrome-reactivity, and white is the background. Black is myelin diffraction and (seen at higher resolution, when you zoom in) erythrocyte cytochrome-reactivity in blood vessels (see our Figure 1E-G); such blood vessel cytochrome-reactivity is seen, because we could not perfuse the animal. There appears to be a minimal outside-in-fixation artifact (i.e. a more whitish/non-brownish appearance of the section toward the borders of the brain). This artifact is not seen in sections from Indra that we processed earlier or in other elephant brains processed at shorter post-mortem/fixation delays (see our Figure 1C).

      The same structures can be recognized in Author response image 2 and Supplememntary figure 36 of Maseko et al. (2013). The section is taken at an anterior-posterior level, where we encounter the trigeminal nuclei in pretty much all mammals. Note that the neural cytochrome reactivity is very high, in what we refer to as the trigeminal-nuclei-trunk-module and what Maseko et al. refer to as inferior olive. Myelin stripes can be recognized here as white omissions.

      At the same time, the cytochrome-oxidase-reactivity is very low in what Maseko et al. refer to as trigeminal nuclei. The indistinct appearance and low cytochrome-oxidase-reactivity of the trigeminal nuclei in the scheme of Maseko et al. (2013) is unexpected because trigeminal nuclei stain intensely for cytochrome-oxidase-reactivity in most mammals and because the trigeminal nuclei represent the elephant’s most important body part, the trunk. Staining patterns of the trigeminal nuclei as identified by Maseko et al. (2013) are very different at more posterior levels; we will discuss this matter below.

      Justifications (2), (3), and (4) are sequelae from justification (1). In this sense, they do not count as justifications, but rather unsupported extensions. 

      Comment: These are key points of our paper that the referee does not discuss.

      Changes: None.

      (4) and (5) These are interesting justifications, as the paper has clear internal contradictions, and (5) is a sequelae of (4). The reader is led to the concept that the myelin tracts divide the nuclei into sub-modules that match the folding of the skin on the elephant trunk. One would then readily presume that these myelin tracts are in the incoming sensory axons from the trigeminal nerve. However, the authors note that this is not the case: "Our observations on trunk module myelin stripes are at odds with this view of myelin. Specifically, myelin stripes show no tapering (which we would expect if axons divert off into the tissue). More than that, there is no correlation between myelin stripe thickness (which presumably correlates with axon numbers) and trigeminal module neuron numbers. Thus, there are numerous myelinated axons, where we observe few or no trigeminal neurons. These observations are incompatible with the idea that myelin stripes form an axonal 'supply' system or that their prime function is to connect neurons. What do myelin stripe axons do, if they do not connect neurons? We suggest that myelin stripes serve to separate rather than connect neurons." So, we are left with the observation that the myelin stripes do not pass afferent trigeminal sensory information from the "truly extraordinary" trunk skin somatic sensory system, and rather function as units that separate neurons - but to what end? It appears that the myelin stripes are more likely to be efferent axonal bundles leaving the nuclei (to form the olivocerebellar tract). This justification is unsupported.

      Comment: The referee cites some of our observations on myelin stripes, which we find unusual. We stand by the observations and comments. The referee does not discuss the most crucial finding we report on myelin stripes, namely that they correspond remarkably well to trunk folds.

      Changes: None.

      (6) The authors indicate that the location of these nuclei matches that of the trigeminal nuclei in other mammals. This is not supported in any way. In ALL other mammals in which the trigeminal nuclei of the brainstem have been reported they are found in the lateral aspect of the brainstem, bordered laterally by the spinal trigeminal tract. This is most readily seen and accessible in the Paxinos and Watson rat brain atlases. The authors indicate that the trigeminal nuclei are medial to the facial nerve nucleus, but in every other species, the trigeminal sensory nuclei are found lateral to the facial nerve nucleus. This is most salient when examining a close relative, the manatee (10.1002/ar.20573), where the location of the inferior olive and the trigeminal nuclei matches that described by Maseko et al (2013) for the African elephant. This justification is not supported. 

      Comment: The referee notes that we incorrectly state that the position of the trigeminal nuclei matches that of other mammals. We think this criticism is justified.

      Changes: We prepared a comparison of the Maseko et al. (2013) scheme of the elephant brainstem with our scheme of the elephant brainstem (see below Referee Table 1). Here we acknowledge the referee’s argument and we also changed the manuscript accordingly.

      (7) The dual to quadruple repetition of rostrocaudal modules within the putative trigeminal nucleus as identified by the authors relies on the fact that in the neurotypical mammal, there are several trigeminal sensory nuclei arranged in a column running from the pons to the cervical spinal cord, these include (nomenclature from Paxinos and Watson in roughly rostral to caudal order) the Pr5VL, Pr5DM, Sp5O, Sp5I, and Sp5C. However, these nuclei are all located far from the midline and lateral to the facial nerve nucleus, unlike what the authors describe in the elephants. These rostrocaudal modules are expanded upon in Figure 2, and it is apparent from what is shown that the authors are attributing other brainstem nuclei to the putative trigeminal nuclei to confirm their conclusion. For example, what they identify as the inferior olive in Figure 2D is likely the lateral reticular nucleus as identified by Maseko et al (2013). This justification is not supported.

      Comment: The referee again compares our findings to the scheme of Maseko et al. (2013) and rejects our conclusions on those grounds. We think such a comparison of our scheme is needed, indeed.

      Changes: We prepared a comparison of the Maseko et al. (2013) scheme of the elephant brainstem with our scheme of the elephant brainstem (see below Referee Table 1).

      (8) In primates and related species, there is a distinct banded appearance of the inferior olive, but what has been termed the inferior olive in the elephant by other authors does not have this appearance, rather, and specifically, the largest nuclear mass in the region (termed the principal nucleus of the inferior olive by Maseko et al, 2013, but Pr5, the principal trigeminal nucleus in the current paper) overshadows the partial banded appearance of the remaining nuclei in the region (but also drawn by the authors of the current paper). Thus, what is at debate here is whether the principal nucleus of the inferior olive can take on a nuclear shape rather than evince a banded appearance. The authors of this paper use this variance as justification that this cluster of nuclei could not possibly be the inferior olive. Such a "semi-nuclear/banded" arrangement of the inferior olive is seen in, for example, giraffe (10.1016/j.jchemneu.2007.05.003), domestic dog, polar bear, and most specifically the manatee (a close relative of the elephant) (brainmuseum.org; 10.1002/ar.20573). This justification is not supported. 

      Comment: We carefully looked at the brain sections referred to by the referee in the brainmuseum.org collection. We found contrary to the referee’s claims that dogs, polar bears, and manatees have a perfectly serrated (a cellular arrangement in curved bands) appearance of the inferior olive. Accordingly, we think the referee is not reporting the comparative evidence fairly and we wonder why this is the case.

      Changes: None.

      Thus, all the justifications forwarded by the authors are unsupported. Based on methodological concerns, prior comparative mammalian neuroanatomy, and prior studies in the elephant and closely related species, the authors fail to support their notion that what was previously termed the inferior olive in the elephant is actually the trigeminal sensory nuclei. Given this failure, the justifications provided above that are sequelae also fail. In this sense, the entire manuscript and all the sequelae are not supported.

      Comment: We disagree. To summarize:

      (1) Our description of the cytochrome oxidase staining lacked methodological detail, which we have now added; the cytochrome oxidase reactivity data are great and support our conclusions.

      (2)–(5)The referee does not really discuss our evidence on these points.

      (6) We were wrong and have now fixed this mistake.

      (7) The referee asks for a comparison to the Maseko et al. (2013) scheme (agreed, see Referee Table 1).

      (8) The referee bends the comparative evidence against us.

      Changes: None.

      A comparison of the elephant brainstem partitioning schemes put forward by Maseko et al 2013 and by Reveyaz et al.

      To start with, we would like to express our admiration for the work of Maseko et al. (2013). These authors did pioneering work on obtaining high-quality histology samples from elephants. Moreover, they made a heroic neuroanatomical effort, in which they assigned 147 brain structures to putative anatomical entities. Most of their data appear to refer to staining in a single elephant and one coronal sectioning plane. The data quality and the illustration of results are excellent.

      We studied mainly two large nuclei in six (now 7) elephants in three (coronal, parasagittal, and horizontal) sectioning planes. The two nuclei in question are the two most distinct nuclei in the elephant brainstem, namely an anterior ventromedial nucleus (the trigeminal trunk module in our terminology; the inferior olive in the terminology of Maseko et al., 2013) and a more posterior lateral nucleus (the inferior olive in our terminology; the posterior part of the trigeminal nuclei in the terminology of Maseko et al., 2013).

      Author response image 3 gives an overview of the two partitioning schemes for inferior olive/trigeminal nuclei along with the rodent organization (see below).

      Author response image 3.

      Overview of the brainstem organization in rodents & elephants

      The strength of the Maseko et al. (2013) scheme is the excellent match of the position of elephant nuclei to the position of nuclei in the rodent (Author response image 3). We think this positional match reflects the fact that Maseko et al. (2013) mapped a rodent partitioning scheme on the elephant brainstem. To us, this is a perfectly reasonable mapping approach. As the referee correctly points out, the positional similarity of both elephant inferior olive and trigeminal nuclei to the rodent strongly argues in favor of the Maseko et al. (2013), because brainstem nuclei are positionally very conservative.

      Other features of the Maseko et al. (2013) scheme are less favorable. The scheme marries two cyto-architectonically very distinct divisions (an anterior indistinct part) and a super-distinct serrated posterior part to be the trigeminal nuclei. We think merging entirely distinct subdivisions into one nucleus is a byproduct of mapping a rodent partitioning scheme on the elephant brainstem. Neither of the two subdivisions resemble the trigeminal nuclei of other mammals. The cytochrome oxidase staining patterns differ markedly across the anterior indistinct part (see our Author response image 3) and the posterior part of the trigeminal nuclei and do not match with the intense cytochrome oxidase reactivity of other mammalian trigeminal nuclei (Author response image 2). Our anti-peripherin staining (the novel Figure 2 of our manuscript) indicates that there probably no climbing fibers, in what Maseko et al. think. is inferior olive; this is a potentially fatal problem for the hypothesis. The posterior part of Maseko et al. (2013) trigeminal nuclei has a distinct serrated appearance that is characteristic of the inferior olive in other mammals. Moreover, the inferior olive of Maseko et al. (2013) lacks the serrated appearance of the inferior olive seen in pretty much all mammals; this is a serious problem.

      The partitioning scheme of Reveyaz et al. comes with poor positional similarity but avoids the other problems of the Maseko et al. (2013) scheme. Our explanation for the positionally deviating location of trigeminal nuclei is that the elephant grew one of the if not the largest trigeminal systems of all mammals. As a result, the trigeminal nuclei grew through the floor of the brainstem. We understand this is a post hoc just-so explanation, but at least it is an explanation.

      The scheme of Reveyaz et al. was derived in an entirely different way from the Maseko model. Specifically, we were convinced that the elephant trigeminal nuclei ought to be very special because of the gigantic trigeminal ganglia (Purkart et al., 2022). Cytochrome-oxidase staining revealed a large distinct nucleus with an elongated shape. Initially, we were freaked out by the position of the nucleus and the fact that it was referred to as inferior olive by other authors. When we found an inferior-olive-like nucleus at a nearby (although at an admittedly unusual) location, we were less worried. We then optimized the visualization of myelin stripes (brightfield imaging etc.) and were able to collect an entire elephant trunk along with the brain (African elephant cow Indra). When we made the one-to-one match of Indra’s trunk folds and myelin stripes (former Figure 4, now Figure 5) we were certain that we had identified the trunk module of the trigeminal nuclei. We already noted at the outset of our rebuttal that we now consider such certainty a fallacy of overconfidence. In light of the comments of Referee 2, we feel that a further discussion of our ideas is warranted.

      A strength of the Reveyaz model is that nuclei look like single anatomical entities. The trigeminal nuclei look like trigeminal nuclei of other mammals, the trunk module has a striking resemblance to the trunk and the inferior olive looks like the inferior olive of other mammals.

      We evaluated the fit of the two models in the form of a table (Author response table 1; below). Unsurprisingly, Author response table 1 aligns with our views of elephant brainstem partitioning.

      Author response table 1

      Qualitative evaluation of elephant brainstem partitioning schemes

      ++ = Very attractive; + = attractive; - = unattractive; -- = very unattractive

      We scored features that are clear and shared by all mammals – as far as we know them – as very attractive.

      We scored features that are clear and are not shared by all mammals – as far as we know them – as very unattractive.

      Attractive features are either less clear or less well-shared features.

      Unattractive features are either less clear or less clearly not shared features.

      Author response table 1 suggests two conclusions to us. (i) The Reveyaz et al. model has mainly favorable properties. The Maseko et al. (2013) model has mainly unfavorable properties. Hence, the Reveyaz et al. model is more likely to be true. (ii) The outcome is not black and white, i.e., both models have favorable and unfavorable properties. Accordingly, we overstated our case in our initial submission and toned down our claims in the revised manuscript.

      What the authors have not done is to trace the pathway of the large trigeminal nerve in the elephant brainstem, as was done by Maseko et al (2013), which clearly shows the internal pathways of this nerve, from the branch that leads to the fifth mesencephalic nucleus adjacent to the periventricular grey matter, through to the spinal trigeminal tract that extends from the pons to the spinal cord in a manner very similar to all other mammals. Nor have they shown how the supposed trigeminal information reaches the putative trigeminal nuclei in the ventromedial rostral medulla oblongata. These are but two examples of many specific lines of evidence that would be required to support their conclusions. Clearly, tract tracing methods, such as cholera toxin tracing of peripheral nerves cannot be done in elephants, thus the neuroanatomy must be done properly and with attention to detail to support the major changes indicated by the authors. 

      Comment: The referee claims that Maseko et al. (2013) showed by ‘tract tracing’ that the structures they refer to trigeminal nuclei receive trigeminal input. This statement is at least slightly misleading. There is nothing of what amounts to proper ‘tract tracing’ in the Maseko et al. (2013) paper, i.e. tracing of tracts with post-mortem tracers. We tried proper post-mortem tracing but failed (no tracer transport) probably as a result of the limitations of our elephant material. What Maseko et al. (2013) actually did is look a bit for putative trigeminal fibers and where they might go. We also used this approach. In our hands, such ‘pseudo tract tracing’ works best in unstained material under bright field illumination, because myelin is very well visualized. In such material, we find: (i) massive fiber tracts descending dorsoventrally roughly from where both Maseko et al. 2013 and we think the trigeminal tract runs. (ii) These fiber tracts run dorsoventrally and approach, what we think is the trigeminal nuclei from lateral.

      Changes: Ad hoc tract tracing see above.

      So what are these "bumps" in the elephant brainstem? 

      Four previous authors indicate that these bumps are the inferior olivary nuclear complex. Can this be supported?

      The inferior olivary nuclear complex acts "as a relay station between the spinal cord (n.b. trigeminal input does reach the spinal cord via the spinal trigeminal tract) and the cerebellum, integrating motor and sensory information to provide feedback and training to cerebellar neurons" (https://www.ncbi.nlm.nih.gov/books/NBK542242/). The inferior olivary nuclear complex is located dorsal and medial to the pyramidal tracts (which were not labeled in the current study by the authors but are clearly present in Fig. 1C and 2A) in the ventromedial aspect of the rostral medulla oblongata. This is precisely where previous authors have identified the inferior olivary nuclear complex and what the current authors assign to their putative trigeminal nuclei. The neurons of the inferior olivary nuclei project, via the olivocerebellar tract to the cerebellum to terminate in the climbing fibres of the cerebellar cortex.

      Comment: We agree with the referee that in the Maseko et al. (2013) scheme the inferior olive is exactly where we expect it from pretty much all other mammals. Hence, this is a strong argument in favor of the Maseko et al. (2013) scheme and a strong argument against the partitioning scheme suggested by us.

      Changes: Please see our discussion above.

      Elephants have the largest (relative and absolute) cerebellum of all mammals (10.1002/ar.22425), this cerebellum contains 257 x109 neurons (10.3389/fnana.2014.00046; three times more than the entire human brain, 10.3389/neuro.09.031.2009). Each of these neurons appears to be more structurally complex than the homologous neurons in other mammals (10.1159/000345565; 10.1007/s00429-010-0288-3). In the African elephant, the neurons of the inferior olivary nuclear complex are described by Maseko et al (2013) as being both calbindin and calretinin immunoreactive. Climbing fibres in the cerebellar cortex of the African elephant are clearly calretinin immunopositive and also are likely to contain calbindin (10.1159/000345565). Given this, would it be surprising that the inferior olivary nuclear complex of the elephant is enlarged enough to create a very distinct bump in exactly the same place where these nuclei are identified in other mammals? 

      Comment: We agree with the referee that it is possible and even expected from other mammals that there is an enlargement of the inferior olive in elephants. Hence, a priori one might expect the ventral brain stem bumps to the inferior olive, this is perfectly reasonable and is what was done by previous authors. The referee also refers to calbindin and calretinin antibody reactivity. Such antibody reactivity is indeed in line with the referee’s ideas and we considered these findings in our Referee Table 1. The problem is, however, that neither calbindin nor calretinin antibody reactivity are highly specific and indeed both nuclei in discussion (trigeminal nuclei and inferior olive) show such reactivity. Unlike the peripherin-antibody staining advanced by us, calbindin nor calretinin antibody reactivity cannot distinguish the two hypotheses debated.

      Changes: Please see our discussion above.

      What about the myelin stripes? These are most likely to be the origin of the olivocerebellar tract and probably only have a coincidental relationship with the trunk. Thus, given what we know, the inferior olivary nuclear complex as described in other studies, and the putative trigeminal nuclear complex as described in the current study, is the elephant inferior olivary nuclear complex. It is not what the authors believe it to be, and they do not provide any evidence that discounts the previous studies. The authors are quite simply put, wrong. All the speculations that flow from this major neuroanatomical error are therefore science fiction rather than useful additions to the scientific literature. 

      Comment: It is unlikely that the myelin stripes are the origin of the olivocerebellar tract as suggested by the referee. Specifically, the lack of peripherin-reactivity indicates that these fibers are not climbing fibers (our novel Figure 2). In general, we feel the referee does not want to discuss the myelin stripes and obviously thinks we made up the strange correspondence of myelin stripes and trunk folds.

      Changes: Please see our discussion above.

      What do the authors actually have? 

      The authors have interesting data, based on their Golgi staining and analysis, of the inferior olivary nuclear complex in the elephant.

      Comment: The referee reiterates their views.

      Changes: None.

      Reviewer #3 (Public Review):

      Summary: 

      The study claims to investigate trunk representations in elephant trigeminal nuclei located in the brainstem. The researchers identified large protrusions visible from the ventral surface of the brainstem, which they examined using a range of histological methods. However, this ventral location is usually where the inferior olivary complex is found, which challenges the author's assertions about the nucleus under analysis. They find that this brainstem nucleus of elephants contains repeating modules, with a focus on the anterior and largest unit which they define as the putative nucleus principalis trunk module of the trigeminal. The nucleus exhibits low neuron density, with glia outnumbering neurons significantly. The study also utilizes synchrotron X-ray phase contrast tomography to suggest that myelin-stripe-axons traverse this module. The analysis maps myelin-rich stripes in several specimens and concludes that based on their number and patterning they likely correspond with trunk folds; however, this conclusion is not well supported if the nucleus has been misidentified.

      Comment: The referee gives a concise summary of our findings. The referee acknowledges the depth of our analysis and also notes our cellular results. The referee – in line with the comments of Referee 2 – also points out that a misidentification of the nucleus under study is potentially fatal for our analysis. We thank the referee for this fair assessment.

      Changes: We feel that we need to alert the reader more broadly to the misidentification concern. We think the critical comments of Referee 2, which will be published along with our manuscript, will go a long way in doing so. We think the eLife publishing format is fantastic in this regard. We will also include pointers to these concerns in the revised manuscript.

      Strengths: 

      The strength of this research lies in its comprehensive use of various anatomical methods, including Nissl staining, myelin staining, Golgi staining, cytochrome oxidase labeling, and synchrotron X-ray phase contrast tomography. The inclusion of quantitative data on cell numbers and sizes, dendritic orientation and morphology, and blood vessel density across the nucleus adds a quantitative dimension. Furthermore, the research is commendable for its high-quality and abundant images and figures, effectively illustrating the anatomy under investigation.

      Comment: Again, a very fair and balanced set of comments. We are thankful for these comments.

      Changes: None.

      Weaknesses: 

      While the research provides potentially valuable insights if revised to focus on the structure that appears to be the inferior olivary nucleus, there are certain additional weaknesses that warrant further consideration. First, the suggestion that myelin stripes solely serve to separate sensory or motor modules rather than functioning as an "axonal supply system" lacks substantial support due to the absence of information about the neuronal origins and the termination targets of the axons. Postmortem fixed brain tissue limits the ability to trace full axon projections. While the study acknowledges these limitations, it is important to exercise caution in drawing conclusions about the precise role of myelin stripes without a more comprehensive understanding of their neural connections.

      Comment: The referee points out a significant weakness of our study, namely our limited understanding of the origin and targets of the axons constituting the myelin stripes. We are very much aware of this problem and this is also why we directed high-powered methodology like synchrotron X-ray tomograms to elucidate the structure of myelin stripes. Such analysis led to advances, i.e., we now think, what looks like stripes are bundles and we understand the constituting axons tend to transverse the module. Such advances are insufficient, however, to provide a clear picture of myelin stripe connectivity.

      Changes: We think solving the problems raised by the referee will require long-term methodological advances and hence we will not be able to solve these problems in the current revision. Our long-term plans for confronting these issues are the following: (i) Improving our understanding of long-range connectivity by post-mortem tracing and MR-based techniques such as Diffusion-Tensor-Imaging. (ii) Improving our understanding of mid and short-range connectivity by applying even larger synchrotron X-ray tomograms and possible serial EM.

      Second, the quantification presented in the study lacks comparison to other species or other relevant variables within the elephant specimens (i.e., whole brain or brainstem volume). The absence of comparative data for different species limits the ability to fully evaluate the significance of the findings. Comparative analyses could provide a broader context for understanding whether the observed features are unique to elephants or more common across species. This limitation in comparative data hinders a more comprehensive assessment of the implications of the research within the broader field of neuroanatomy. Furthermore, the quantitative comparisons between African and Asian elephant specimens should include some measure of overall brain size as a covariate in the analyses. Addressing these weaknesses would enable a richer interpretation of the study's findings.

      Comment: The referee suggests another series of topics, which include the analysis of brain parts volumes or overall brain size. We agree these are important issues, but we also think such questions are beyond the scope of our study.

      Changes: We hope to publish comparative data on elephant brain size and shape later this year.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      I realize that elephant brains are a limiting resource in this project, along with the ability to perform functional investigations. However, I believe that Prof. Jon Kaas (Vanderbilt University) has one or more series of Nissl-stained brainstems from elephants. These might be of potential interest, as they were previously used to explore general patterns of trigeminal brainstem organization in a comparative manner (see Sawyer and Sarko, 2017, "Comparative Anatomy and Evolution of the Somatosensory Brain Stem" in the Evolution of Nervous System series) and might shed light on the positioning of the trigeminal complex and IO, with parts of the trigeminal nerve itself still attached to these sections.

      Comment: The referee suggests adding data from more elephants and we think this is a great suggestion because our ns are small. We followed this advice. We agree we need more comparative neuroanatomy of elephants and the urgency of this matter is palpable in the heated debate we have with Referee 2. Specifically, we need more long-range and short-range analysis of elephant brains.

      Changes: We plan to include data in the revised manuscript about cytoarchitectonics (Nissl), cytochrome-oxidase reactivity, and possibly also antibody reactivity from an additional animal, i.e., from the African elephant cow Bibi. The quality of this specimen is excellent and the post-mortem time to brain extraction was very short.

      We also have further plans for connectivity analysis (see our response above), but such data will not become available fast enough for the revision.

      Other recommendations: 

      - A general schematic showing input from trunk to PrV to the trigeminal subnuclei (as well as possibly ascending connections) might be informative to the reader, in terms of showing which neural relay is being examined.

      Comment: We think this is a very good suggestion in principle, but we were not satisfied with the schematics we came up with.

      Changes: None.

      - Perhaps a few more sentences described the significance of synchrotron tomography for those who may be unfamiliar.

      Comment & Change: We agree and implement this suggestion.

      - "Belly-shaped" trunk module description is unclear on page 9. 

      Comment & Change: We clarified this matter.

      - Typo on the last sentence of page 9. 

      Comment & Change: We fixed this mistake.

      Reviewer #2 (Recommendations For The Authors): 

      The data is only appropriate a specialized journal and is limited to the Golgi analysis of neurons within the inferior olivary complex of the elephant. This reviewer considers that the remainder of the work is speculation and that the paper in its current version is not salvageable.

      Comment: Rather than suggesting changes, the referee makes it clear that the referee does not want to see our paper published. We think this desire to reject is not rooted in a lack of quality of our work. In fact, we did an immense amount of work (detailed cytoarchitectonic analysis of six (now seven) elephant brainstems rather than one as in the case of our predecessors), cell counts, and X-ray tomography. Instead, we think the problem is rooted in the fact that we contradict the referee. To us, such suppression of diverging opinions – provided they are backed up with data – is a scientifically deeply unhealthy attitude. Science lives from the debate and this is why we did not exclude any referees even though we knew that our results do not align with the views of all of the few actors in the field.

      Changes: We think the novel eLife publishing scheme was developed to prevent such abuse. We look forward to having our data published along with the harsh comments of the referee. The readers and subsequent scientific work will determine who’s right and who’s wrong.

      In order to convince readers of the grand changes to the organization of the brainstem in a species suggested by the authors the data presented needs to be supported. It is not. 

      Comment: Again, this looks to us like more of the ‘total-rejection-commentary’ than like an actual recommendation.

      Changes: None.

      The protocol for the cytochrome oxidase histochemistry is not available in the locations indicated by the authors, and it is very necessary to provide this, as I fully believe that the staining obtained is not real, given the state of the tissue used. 

      Comment: We apologize again for not including the necessary details on our cytochrome-oxidase staining.

      From these comments (and the initial comments above) it appears that the referee is uncertain about the validity of cytochrome-oxidase staining. We (M.B., the senior author) have been doing this particular stain for approximately three decades. The referee being unfamiliar with cytochrome-oxidase staining is fine, but we can’t comprehend how the referee then comes to the ‘full belief’ that our staining patterns are ‘not real’ when the visual evidence indicates the opposite. We feel the referee does not want to believe our data.

      From hundreds of permutations, we can assure the referee that cytochrome-oxidase staining can go wrong in many ways. The most common failure outcome in elephants is a uniform light brown stain after hours or days of the cytochrome-oxidase reaction. This outcome is closely associated with long ≥2 days post-mortem/fixation times and reflects the quenching of cytochrome-oxidases by fixation. Interestingly, cytochrome-oxidase staining in elephant brains is distinctly more sensitive to quenching by fixation than cytochrome-oxidase staining in rodent brains. Another, more rare failure of cytochrome-oxidase staining comes as entirely white or barely colored sections; this outcome is usually associated with a bad reagent (most commonly old DAB, but occasionally also old or bad catalase, in case you are using a staining protocol with catalase). Another nasty cytochrome-oxidase staining outcome is smeary all-black sections. In this case, a black precipitate sticks to sections and screws up the staining (filtering and more gradual heating of the staining solution usually solve this problem). Thus, you can get uniformly white, uniformly light brown, and smeary black sections as cytochrome-oxidase staining failures. What you never get from cytochrome-oxidase staining as an artifact are sections with a strong brown to lighter brown differential contrast. All sections with strong brown to lighter brown differential contrast (staining successes) show one and the same staining pattern in a given brain area, i.e., brownish barrels in the rodent cortex, brownish barrelettes (trigeminal nuclei) in the rodent brainstem, brownish putative trunk modules/inferior olives (if we believe the referee) in the elephant brainstem. Cytochrome-oxidase reactivity is in this regard remarkably different from antibody staining. In antibody staining you can get all kinds of interesting differential contrast staining patterns, which mean nothing. Such differential contrast artifacts in antibody staining arise as a result of insufficient primary antibody specificity, the secondary antibody binding non-specifically, and of what have you not reasons. The reason that the brown differential contrast of cytochrome-oxidase reaction is pretty much fool-proof, relates to the histochemical staining mechanism, which is based on the supply of specific substrates to a universal mitochondrial enzyme. The ability to reveal mitochondrial metabolism and the universal and ‘fool-proof’ staining qualities make the cytochrome-oxidase reactivity a fantastic tool for comparative neuroscience, where you always struggle with insufficient information about antigen reactivity.

      We also note that the contrast of cytochrome-oxidase reactivity seen in the elephant brainstem is spectacular. As the Referee can see in our Figure 1C we observe a dark brown color in the putative trunk module, with the rest of the brain being close to white. Such striking cytochrome-oxidase reactivity contrast has been observed only very rarely in neuroanatomy: (i) In the rest of the elephant brain (brainstem, thalamus cortex) we did not observe as striking contrast as in the putative trunk module (the inferior olive according to the referee). (ii) In decades of work with rodents, we have rarely seen such differential activity. For example, cortical whisker-barrels (a classic CO-staining target) in rodents usually come out as dark brown against a light brown background.

      What all of this commentary means is that patterns revealed by differential cytochrome-oxidase staining in the elephant brain stem are real.

      Changes: We added details on our cytochrome-oxidase reactivity staining protocol and commented on cytochrome-oxidase reactivity in the elephant brain in general.

      The authors need to recognize that the work done in Africa on elephant brains is of high quality and should not be blithely dismissed by the authors - this stinks of past colonial "glory", especially as the primary author on these papers is an African female.

      Comment: The referee notes that we unfairly dismiss the work of African scientists and that our paper reflects a continuation of our horrific colonial past because we contradict the work of an African woman. We think such commentary is meant to be insulting and prefer to return to the scientific discourse. We are staunch supporters of diversity in science. It is simply untrue, that we do not acknowledge African scientists or the excellent work done in Africa on elephant brains. For example, we cite no less than four papers from the Manger group. We refer countless times in the manuscript to these papers, because these papers are highly relevant to our work. We indeed disagree with two anatomical assignments made by Maseko et al., 2013. Such differences should not be overrated, however. As we noted before, such differences relate to only 2 out of 147 anatomical assignments made by these authors. More generally, discussing and even contradicting papers is the appropriate way to acknowledge scientists. We already expressed we greatly admire the pioneering work of the Manger group. In our view, the perfusion of elephants in the field is a landmark experiment in comparative neuroanatomy. We closely work with colleagues in Africa and find them fantastic collaborators. When the referee is accusing us of contradicting the work of an African woman, the referee is unfairly and wrongly accusing us of attacking a scientist’s identity. More generally, we feel the discussion should focus on the data presented.

      Changes: None.

      In addition, perfusing elephants in the field with paraformaldehyde shortly after death is not a problem "partially solved" when it comes to collecting elephant tissue (n.b., with the right tools the brain of the elephant can be removed in under 2 hours). It means the problem IS solved. This is evidenced by the quality of the basic anatomical, immuno-, and Golgi-staining of the elephant tissue collected in Africa.

      Comment: This is not a recommendation. We repeat: In our view, the perfusion of elephants in the field by the Manger group is a landmark experiment in comparative neuroanatomy. Apart, from that, we think the referee got our ‘partially solved comment’ the wrong way. It is perhaps worthwhile to recall the context of this quote. We first describe the numerous limitations of our elephant material; admitting these limitations is about honesty. Then, we wanted to acknowledge previous authors who either paved the way for elephant neuroanatomy (Shoshani) or did a better job than we did (Manger; see the above landmark experiment). These citations were meant as an appreciation of our predecessors’ work and by far not meant to diminish their work. Why did we say that the problems of dealing with elephant material are only partially solved? Because elephant neuroanatomy is hard and the problems associated with it are by no means solved. Many previous studies rely on single specimen and our possibilities of accessing, removing, processing, and preserving elephant brains are limited and inferior to the conditions elsewhere. Doing a mouse brain is orders of magnitude easier than doing an elephant brain (because the problems of doing mouse anatomy are largely solved), yet it is hard to publish a paper with six elephant brains because the referees expect evidence at least half as good as what you get in mice.

      Changes: We replaced the ‘partially solved’ sentence.

      The authors need to give credit where credit is due - the elephant cerebellum is clearly at the core of controlling trunk movement, and as much as primary sensory and final stage motor processing is important, the complexity required for the neural programs needed to move the trunk either voluntarily or in response to stimuli, is being achieved by the cerebellum. The inferior olive is part of this circuit and is accordingly larger than one would expect.

      Comment: We think it is very much possible that the elephant cerebellum is important in trunk control.

      Changes: We added a reference to the elephant cerebellum in the introduction of our manuscript.

    1. Author response:

      The following is the authors’ response to the current reviews.

      We thank you for sending our manuscript for the second round of review.  We are encouraged by the comments from reviewer #2 that our supplementary work on naïve T cells and antibody blockade work satisfied their previous concerns and is important for our work.

      The Editors raised concerns that we have shared preliminary data on Nrn1 and AMPAR double knockout mice.  We apologize for our enthusiasm for these studies.  Because of the publication model by eLife, we shared that data not because we needed to persuade the reviewer for publication purposes but rather to agree with the reviewer that the molecular target of Nrn1 is important, and we are progressing in understanding this subject.


      The following is the authors’ response to the original reviews.

      To Reviewer #1:

      Thank you for your thorough review and comments on our work, which you described as “the role of neuritin in T cell biology studied here is new and interesting.”.  We have summarized your comments into two categories: biology and investigation approach, experimental rigor, and data presentation.

      Biology and Investigation approach comments:

      (1) Questions regarding the T cell anergy model:

      Major point “(4) Figure 1E-H. The authors assume that this immunization protocol induces anergic cells, but they provide no experimental evidence for this. It would be useful to show that T cells are indeed anergic in this model, especially those that are OVA-specific. The lack of IL-2 production by Cltr cells could be explained by the presence of fewer OVA-specific cells, rather than by an anergic status.”

      T cell anergy is a well-established concept first described by Schwartz’s group. It refers to the hyporesponsive T cell functional state in antigen-experienced CD4 T cells (Chappert and Schwartz, 2010; Fathman and Lineberry, 2007; Jenkins and Schwartz, 1987; Quill and Schwartz, 1987).  Anergic T cells are characterized by their inability to expand and to produce IL2 upon subsequent antigen re-challenge. In this paper, we have borrowed the existing in vivo T cell anergy induction model used by Mueller’s group for T cell anergy induction (Vanasek et al., 2006).  Specifically, Thy1.1+ Ctrl or Nrn1-/- TCR transgenic OTII cells were co-transferred with the congenically marked Thy1.2+ WT polyclonal Treg cells into TCR-/- mice.  After anergy induction, the congenically marked TCR transgenic T cells were recovered by sorting based on Thy1.1+ congenic marker, and subsequently re-stimulation ex vivo with OVA323-339 peptide. We evaluated the T cell anergic state based on OTII cell expansion in vivo and IL2 production upon OVA323-339 restimulation ex vivo.  

      “The authors assume that this immunization protocol induces anergic cells, but they provide no experimental evidence for this.”

      Because the anergy model by Mueller's group is well established (Vanasek et al., 2006), we did not feel that additional effort was required to validate this model as the reviewer suggested. Moreover, the limited IL2 production among the control cells upon restimulation confirms the validity of this model.

      “The lack of IL-2 production by Cltr cells could be explained by the presence of fewer OVAspecific cells, rather than by an anergic status”.

      Cells from Ctrl and Nrn1-/- mice on a homogeneous TCR transgenic (OTII) background were used in these experiments. The possibility that substantial variability of TCR expression or different expression levels of the transgenic TCR could have impacted IL2 production rather than anergy induction is unlikely.

      Overall, we used this in vivo anergy model to evaluate the Nrn1-/- T cell functional state in comparison to Ctrl cells under the anergy induction condition following the evaluation of Nrn1 expression, particularly in anergic T cells.  Through studies using this anergy model, we observed a significant change in Treg induction among OTII cells. We decided to pursue the role of Nrn1 in Treg cell development and function rather than the biology of T cell anergy as evidenced by subsequent experiments.

      Minor points “(6) On which markers are anergic cells sorted for RNAseq analysis?”

      Cells were sorted out based on their congenic marker marking Ctrl or Nrn1-/- OTII cells transferred into the host mice.  We did not specifically isolate anergic cells for sequencing.

      (2) Question regarding the validity of iTreg differentiation model.

      Major point: “(5) Figure 2A-C and Figure 3. The use of iTregs to try to understand what is happening in vivo is problematic. iTregs are cells that have probably no equivalent in vivo, and so may have no physiological relevance. In any case, they are different from pTreg cells generated in vivo. Working with pTreg may be challenging, that is why I would suggest generating data with purified nTreg. Moreover, it was shown in the article of Gonzalez-Figueroa 2021 that Nrn1-/- nTreg retained a normal suppressive function, which would not be what is concluded by the authors of this manuscript. Moreover, we do not even know what the % of Foxp3 cells is in the iTreg used (after differentiation and 20h of re-stimulation) and whether this % is the same between Ctlr and Nrn1 KO cells.”.

      We thank Reviewer #1 for their feedback. While it is true that iTregs made in vitro and in vivo generated pTregs display several distinctions (e. g., differences in Foxp3 expression stability, for example), we strongly disagree with this statement by Revieweer#1 “The use of iTregs to try to understand what is happening in vivo is problematic. iTregs are cells that have probably no equivalent in vivo, and so may have no physiological relevance.”  The induced Treg cell (iTreg) model was established over 20 years ago (Chen et al., 2003; Zheng et al., 2002), and the model is widely adopted with over 2000 citations. Further, it has been instrumental in understanding different aspects of regulatory T cell biology (Hurrell et al., 2022; John et al., 2022; Schmitt and Williams, 2013; Sugiura et al., 2022).   

      Because we have observed reduced pTreg generation in vivo, we choose to use the in vitro iTreg model system to understand the mechanistic changes involved in Treg cell differentiation and function, specifically, neuritin’s role in this process. We have made no claim that iTreg cell biology is identical to pTreg generated in vivo or nTreg cells. However, the iTreg culture system has proved to be a good in vitro system for deciphering molecular events involved in complex processes. As such, it remains a commonly used approach by many research groups in the Treg cell field (Hurrell et al., 2022; John et al., 2022; Sugiura et al., 2022). Moreover, applying the iTreg in vitro culture system has been instrumental in helping us identify the cell electrical state change in Nrn1-/- CD4 cells and revealed the biological link between Nrn1 and the ionotropic AMPA receptor (AMPAR), which we will discuss in the subsequent discussion. It is technically challenging to use nTreg cells for T cell electrical state studies due to their heterogeneous nature from development in an in vivo environment and the effect of manipulation during the nTreg cell isolation process, which can both affect the T cell electrical state.   

      “Moreover, it was shown in the article of Gonzalez-Figueroa 2021 that Nrn1-/- nTreg retained a normal suppressive function, which would not be what is concluded by the authors of this manuscript.” 

      We have also carried out nTreg studies in vitro in addition to iTreg cells. Similar to Gonzalez-Figueroa et al.'s findings, we did not observe differences in suppression function between Nrn1-/- and WT nTreg using the in vitro suppression assay. However, Nrn1-/- nTreg cells revealed reduced suppression function in vivo (Fig. 2D-L). In fact, Gonzalez-Figueroa et al. observed reduced plasma cell formation after OVA immunization in Treg-specific Nrn1-/- mice, implicating reduced suppression from Nrn1-/- follicular regulatory T (Tfr) cells. Thus, our observation of the reduced suppression function of Nrn1-/- nTreg toward effector T cell expansion, as presented in Fig. 2D-L, does not contradict the results from Gonzalez-Figueroa et al. Rather, the conclusions of these two studies agree that Nrn1 can play important roles in immune suppression observable in vivo that are not captured readily by the in vitro suppression assay.

      “Moreover, we do not even know what the % of Foxp3 cells is in the iTreg used (after differentiation and 20h of re-stimulation) and whether this % is the same between Ctlr and Nrn1 KO cells.”

      We have stated in the manuscript on page 7 line 208 that “Similar proportions of Foxp3+ cells were observed in Nrn1-/- and Ctrl cells under the iTreg culture condition, suggesting that Nrn1 deficiency does not significantly impact Foxp3+ cell differentiation”. In the revised manuscript, we will include the data on the proportion of Foxp3+ cells before iTreg restimulation.

      (3) Confirmation of transcriptomic data regarding amino acids or electrolytes transport change

      Minor point“(3) Would not it be possible to perform experiments showing the ability of cells to transport amino acids or electrolytes across the plasma membrane? This would be a more interesting demonstration than transcriptomic data.”

      We appreciate Review# 1’s suggestion regarding “perform experiments showing the ability of cells to transport amino acids or electrolytes across the plasma membrane”.  We have indeed already performed such experiments corroborating the transcriptomics data on differential amino acid and nutrient transporter expression. Specifically, we loaded either iTreg or Th0 cells with membrane potential (MP) dye and measured MP level change after adding the complete set of amino acids (complete AA).  Upon entry, the charge carried by AAs may transiently affect cell membrane potential. Different AA transporter expression patterns may show different MP change patterns upon AA entry, as we showed in Author response image 1. We observed reduced MP change in Nrn1-/- iTreg compared to the Ctrl, whereas in the context of Th0 cells, Nrn1-/- showed enhanced MP change than the Ctrl. We can certainly include these data in the revised manuscript.

      Author response image 1.

      Membrane potential change induced by amino acids entry. a. Nrn1-/- or WT iTreg cells loaded with MP dye and MP change was measured upon the addition of a complete set of AAs. b. Nrn1-/- or WT Th0 cells loaded with MP dye and MP change was measured upon the addition of a complete set of AAs.

      (4) EAE experiment data assessment

      Minor point ”(5) Figure 5F. How are cells re-stimulated? If polyclonal stimulation is used, the experiment is not interesting because the analysis is done with lymph node cells. This analysis should either be performed with cells from the CNS or with MOG restimulation with lymph node cells.”

      In the EAE study, the Nrn1-/- mice exhibit similar disease onset but a protracted non-resolving disease phenotype compared to the WT control mice.  Several reasons may contribute to this phenotype: 1. Enhanced T effector cell infiltration/persistence in the central nervous system (CNS); 2. Reduced Treg cell-mediated suppression to the T effector cells in the CNS; 3. Protracted non-resolving inflammation at the immunization site has the potential to continue sending T effector cells into CNS, contributing to persistent inflammation. Based on this reasoning, we examined the infiltrating T effector cell number and Treg cell proportion in the CNS.  We also restimulated cells from draining lymph nodes close to the inflammation site, looking for evidence of persistent inflammation.  When mice were harvested around day 16 after immunization, the inflammation at the local draining lymph node should be at the contraction stage.  We stimulated cells with PMA and ionomycin intended to observe all potential T effector cells involved in the draining lymph node rather than only MOG antigen-specific cells.  We disagree with Reviewer #1’s assumption that “This analysis should either be performed with cells from the CNS or with MOG restimulation with lymph node cells.”. We think the experimental approach we have taken has been appropriately tailored to the biological questions we intended to answer.

      Experimental rigor and data presentation.

      (1) data labeling and additional supporting data

      Major points

      (2) The authors use Nrn1+/+ and Nrn1+/- cells indiscriminately as control cells on the basis of similar biology between Nrn1+/+ and Nrn1+/- cells at homeostasis. However, it is quite possible that the Nrn1+/- cells have a phenotype in situations of in vitro activation or in vivo inflammation (cancer, EAE). It would be important to discriminate Nrn1+/- and Nrn1+/+ cells in the data or to show that both cell types have the same phenotype in these conditions too.

      (3) Figure 1A-D. Since the authors are using the Nrp1 KO mice, it would be important to confirm the specificity of the anti-Nrn1 mAb by FACS. Once verified, it would be important to add FACS results with this mAb in Figures 1A-C to have single-cell and quantitative data as well.

      Minor points  

      (1) Line 119, 120 of the text. It is said that one of the most up-regulated genes in anergic cells is Nrn1 but the data is not shown.

      (2) For all figures showing %, the titles of the Y axes are written in an odd way. For example, it is written "Foxp3% CD4". It would be more conventional and clearer to write "% Foxp3+ / CD4+" or "% Foxp3+ among CD4+".

      (4) For certain staining (Figure 3E, H) it would be important to show the raw data, in addition to MFI or % values.

      We can adapt the labeling and provide additional data, including Nrn1 staining on Treg cells and flow graphs for pmTOR and pS6 staining (Fig. 3H), as requested by Reviewer #1.

      (2) Experimental rigor:

      General comments:

      “However, it is disappointing that reading this manuscript leaves an impression of incomplete work done too quickly.”

      We were discouraged to receive the comment, “this manuscript leaves an impression of incomplete work done too quickly.” Our study of this novel molecule began without any existing biological tools such as antibodies, knockout mice, etc.  Over the past several years, we have established our own antibodies for Nrn1 detection, obtained and characterized Nrn1 knockout mice, and utilized multiple approaches to identify the molecular mechanism of Nrn1 function. Through the use of the in vitro iTreg system described in this manuscript, we identified the association of Nrn1 deficiency with cell electrical state change, potentially connected to AMPAR function. We have further corroborated our findings by generating Nrn1 and AMPAR T cell specific double knockout mice and confirmed that T cell specific AMPAR deletion could abrogate the phenotype caused by the Nrn1 deficiency (see Support Figure 2).  We did not include the double knockout data in the current manuscript because AMPAR function has not yet been studied thoroughly in T cell biology, and we feel this topic warrants examination in its own right.  However, the unpublished data support the finding that Nrn1 modulates the T cell electrical state and, consequently, metabolism, ultimately influencing tolerance and immunity.  In its current form, the manuscript represents the first characterization of the novel molecule Nrn1 in anergic cells, Tregs, and effector T cells. While this work has led to several exciting additional questions, we disagree that the novel characterization we have presented Is incomplete. We feel that our present data set, which squarely highlights Nrn1’s role as an important immune regulator while shedding unprecedented light on the molecular events involved, will be of considerable interest to a broad field of researchers.

      “Multiple models have been used, but none has been studied thoroughly enough to provide really conclusive and unambiguous data. For example, 5 different models were used to study T cells in vivo. It would have been preferable to use fewer, but to go further in the study of mechanisms.”

      We have indeed used multiple in vivo models to reveal Nrn1's function in Treg differentiation, Treg suppression function, T effector cell differentiation and function, and the overall impact on autoimmune disease. Because the impact of ion channel function is often context-dependent, we examined the biological outcome of Nrn1 deficiency in several in vivo contexts.  We would appreciate it if Reviewer#1 would provide a specific example, given the Nrn1 phenotype, of how to proceed deeper to investigate the electrical change in the in vivo models.

      “Major points

      (1) A real weakness of this work is the fact that in most of the results shown, there are few biological replicates with differences that are often small between Ctrl and Nrn1 -/-. The systematic use of student's t-test may lead to thinking that the differences are significant, which is often misleading given the small number of samples, which makes it impossible to know whether the distributions are Gaussian and whether a parametric test can be used. RNAseq bulk data are based on biological duplicates, which is open to criticism.”

      We respectfully disagree with Reviewer #1 on the question of statistical power and significance to our work. We have used 5-8 mice/group for each in vivo model and 3-4 technical replicates for the in vitro studies, with a minimum of 2-3 replicate experiments. These group sizes and replication numbers are in line with those seen in high-impact publications. While some differences between Ctrl and Nrn1-/- appear small, they have significant biological consequences, as evidenced by the various Nrn1-/- in vivo phenotypes. Furthermore, we believe we have subjected our data to the appropriate statistical tests to ensure rigorous analysis and representation of our findings.

      To Reviewer #2.

      We thank Reviewer #2 for the careful review of the manuscript. We especially appreciate the comments that “The characterizations of T cell Nrn1 expression both in vitro and in vivo are comprehensive and convincing. The in vivo functional studies of anergy development, Treg suppression, and EAE development are also well done to strengthen the notion that Nrn1 is an important regulator of CD4 responsiveness.”

      “The major weakness of this study stems from a lack of a clear molecular mechanism involving Nrn1. “  

      We fully understand this comment from Reviewer #2. The main mechanism we identified contributing to the functional defect of Nrn1-/- T cells involves novel effects on the electric and metabolic state of the cells. Although we referenced neuronal studies that indicate Nrn1 is the auxiliary protein for the ionotropic AMPA-type glutamate receptor (AMPAR) and may affect AMPAR function, we did not provide any evidence in this manuscript as the topic requires further in-depth study.   

      For the benefit of this discussion, we include our preliminary Nrn1 and AMPAR double knockout data (Author response image 2), which indicates that abrogating AMPAR expression can compensate for the defect caused by Nrn1 deficiency in vitro and in vivo. This preliminary data supports the notion that Nrn1 modulates AMPAR function, which causes changes in T cell electric and metabolic state, influencing T cell differentiation and function.  

      Author response image 2.

      Deletion of AMPAR expression in T cells compensates for the defect caused by Nrn1 deficiency. Nrn1-/- mice were crossed with T cell-specific AMPAR knockout mice (AMPARfl/flCD4Cre+) mice. The following mice were generated and used in the experiment: T cell specific AMPAR-knockout and Nrn1 knockout mice (AKONKO), Nrn1 knockout mice (AWTNKO), Ctrl mice (AWTNWT). a. Deletion of AMPAR compensates for the iTreg cell defect observed in Nrn1-/- CD4 cells. iTreg live cell proportion, cell number, and Ki67 expression among Foxp3+ cells 3 days after aCD3 restimulation. b. Deletion of AMPAR in T cells abrogates the enhanced autoimmune response in Nrn1-/- Mouse in the EAE disease model. Mouse relative weight change and disease score progression after EAE disease induction.  

      Ion channels can influence cell metabolism through multiple means (Vaeth and Feske, 2018; Wang et al., 2020). First, ion channels are involved in maintaining cell resting membrane potential. This electrical potential difference across the cell membrane is essential for various cellular processes, including metabolism (Abdul Kadir et al., 2018; Blackiston et al., 2009; Nagy et al., 2018; Yu et al., 2022). Second, ion channels facilitate the movement of ions across cell membranes. These ions are essential for various metabolic processes. For example, ions like calcium (Ca2+), potassium (K+), and sodium (Na+) play crucial roles in signaling pathways that regulate metabolism (Kahlfuss et al., 2020). Third, ion channel activity can influence cellular energy balance due to ATP consumption associated with ion transport to maintain ion balances (Erecińska and Dagani, 1990; Gerkau et al., 2019). This, in turn, can impact processes like ATP production, which is central to cellular metabolism. Thus, ion channel expression and function determine the cell’s bioelectric state and contribute to cell metabolism (Levin, 2021).

      Because the AMPAR function has not been thoroughly studied using a genetic approach in T cells, we do not intend to include the double knockout data in this manuscript before fully characterizing the T cell-specific AMPAR knockout mice.  

      “Although the biochemical and informatics studies are well-performed, it is my opinion that these results are inconclusive in part due to the absence of key "naive" control groups. This limits my ability to understand the significance of these data.

      Specifically, studies of the electrical and metabolic state of Nrn1-/- inducible Treg cells (iTregs) would benefit from similar data collected from wild-type and Nrn1-/- naive CD4 T cells.”

      We appreciate the reviewer’s comments. This comment reflects two concerns in data interpretation:

      (1) Are Nrn1-/- naïve T cells fundamentally different from WT cells? Does this fundamental difference contribute to the observed electrical and metabolic phenotype in iTreg or Th0 cells? This is a very good question we will perform the experiments as the reviewer suggested. While Nrn1 is expressed at a basal (low) level in naïve T cells, deletion of Nrn1 may cause changes in naïve T cell phenotype.   

      (2) Is the Nrn1-/- phenotype caused by Nrn1 functional deficiency or due to the secondary effect of Nrn1 deletion, such as non-physiological cell membrane structure changes?

      We have done the following experiment to address this concern.  We have cultured WT T cells in the presence of Nrn1 antibody and compared the outcome with Nrn1-/- iTreg cells (Figure 3-figure supplement 2D,E,F). WT iTreg cells under antibody blockade exhibited similar changes as Nrn1-/- iTreg cells, confirming the physiological relevance of the Nrn1-/- phenotype.

      Manuscript Revision based on the Reviewer’s suggestions:

      Reviewer #1:

      Major points (3) Figure 1A-D. Since the authors are using the Nrp1 KO mice, it would be important to confirm the specificity of the anti-Nrn1 mAb by FACS. 

      Following the suggestion by Reviewer#1, We have included the Nrn1 Ab staining on activated Nrn1-/- CD4 cells in Figure 1D. We have also added the staining of cell surface Nrn1 on Treg cells in Figure 1-figure supplement 1D.

      Major point: (5) “Moreover, we do not even know what the % of Foxp3 cells is in the iTreg used (after differentiation and 20h of re-stimulation) and whether this % is the same between Ctlr and Nrn1 KO cells.”

      In the revised manuscript, we have included the proportion of Foxp3+ cells among Nrn1-/- and ctrl iTreg cells developed under the iTreg culture condition in Figure 2A.

      Minor points  

      (2) For all figures showing %, the titles of the Y axes are written in an odd way. For example, it is written "Foxp3% CD4". It would be more conventional and clearer to write "% Foxp3+ / CD4+" or "% Foxp3+ among CD4+".

      Following reviewer#1’s suggestion, we have changed the Y-axis label in all the relevant figures.

      (3) Would not it be possible to perform experiments showing the ability of cells to transport amino acids or electrolytes across the plasma membrane? This would be a more interesting demonstration than transcriptomic data.”

      We appreciate Review# 1’s suggestion regarding “perform experiments showing the ability of cells to transport amino acids or electrolytes across the plasma membrane”.  We have used AAinduced cellular MP changes to confirm differential AA transporter expression patterns and their impact on cellular MP levels.  The data are included in the revised manuscript in Figure 3H and Figure 4K.

      (4) For certain staining (Figure 3E, H) it would be important to show the raw data, in addition to MFI or % values.

      We appreciated Reviewer #1’s suggestion and have included the histogram staining data for Figure 3E. We have moved the original Figure 3H to the supplemental figure and included the histogram staining data in Figure 3-figure supplement 1C.  Similarly, we have included the histogram staining data in Figure 4-figure supplement 1C.

      Reviewer#2:

      “Although the biochemical and informatics studies are well-performed, it is my opinion that these results are inconclusive in part due to the absence of key "naive" control groups. This limits my ability to understand the significance of these data.

      Specifically, studies of the electrical and metabolic state of Nrn1-/- inducible Treg cells (iTregs) would benefit from similar data collected from wild-type and Nrn1-/- naive CD4 T cells.”

      We greatly appreciate Reviewer#2’s suggestion and have carried out experiments on naïve CD4 cells derived from Nrn1-/- and WT mice. We have compared membrane potential, AA-induced MP change between Nrn1-/- and WT naïve T cells, and the metabolic state of Nrn1-/- and WT naïve T cells by carrying out glucose stress tests and mitochondria stress tests using a seahorse assay.  Moreover, to investigate whether the phenotype revealed in Nrn1-/- CD4 cells was caused by a secondary effect of cell membrane structure change due to Nrn1 deletion, we carried out Nrn1 antibody blockade in WT CD4 cells and investigated the phenotypic change. These new results are included in Figure 3-figure supplement 2.

      Reference:

      Abdul Kadir, L., M. Stacey, and R. Barrett-Jolley. 2018. Emerging Roles of the Membrane Potential: Action Beyond the Action Potential. Front Physiol 9:1661.

      Blackiston, D.J., K.A. McLaughlin, and M. Levin. 2009. Bioelectric controls of cell proliferation: ion channels, membrane voltage and the cell cycle. Cell Cycle 8:3527-3536.

      Chappert, P., and R.H. Schwartz. 2010. Induction of T cell anergy: integration of environmental cues and infectious tolerance. Current opinion in immunology 22:552-559.

      Chen, W., W. Jin, N. Hardegen, K.J. Lei, L. Li, N. Marinos, G. McGrady, and S.M. Wahl. 2003. Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. The Journal of experimental medicine 198:1875-1886.

      Erecińska, M., and F. Dagani. 1990. Relationships between the neuronal sodium/potassium pump and energy metabolism. Effects of K+, Na+, and adenosine triphosphate in isolated brain synaptosomes. J Gen Physiol 95:591-616.

      Fathman, C.G., and N.B. Lineberry. 2007. Molecular mechanisms of CD4+ T-cell anergy. Nat Rev Immunol 7:599-609.

      Gerkau, N.J., R. Lerchundi, J.S.E. Nelson, M. Lantermann, J. Meyer, J. Hirrlinger, and C.R. Rose. 2019. Relation between activity-induced intracellular sodium transients and ATP dynamics in mouse hippocampal neurons. The Journal of physiology 597:5687-5705.

      Hurrell, B.P., D.G. Helou, E. Howard, J.D. Painter, P. Shafiei-Jahani, A.H. Sharpe, and O. Akbari. 2022. PD-L2 controls peripherally induced regulatory T cells by maintaining metabolic activity and Foxp3 stability. Nature communications 13:5118.

      Jenkins, M.K., and R.H. Schwartz. 1987. Antigen presentation by chemically modified splenocytes induces antigen-specific T cell unresponsiveness in vitro and in vivo. The Journal of experimental medicine 165:302-319.

      John, P., M.C. Pulanco, P.M. Galbo, Jr., Y. Wei, K.C. Ohaegbulam, D. Zheng, and X. Zang. 2022. The immune checkpoint B7x expands tumor-infiltrating Tregs and promotes resistance to anti-CTLA-4 therapy. Nature communications 13:2506.

      Kahlfuss, S., U. Kaufmann, A.R. Concepcion, L. Noyer, D. Raphael, M. Vaeth, J. Yang, P. Pancholi, M. Maus, J. Muller, L. Kozhaya, A. Khodadadi-Jamayran, Z. Sun, P. Shaw, D. Unutmaz, P.B. Stathopulos, C. Feist, S.B. Cameron, S.E. Turvey, and S. Feske. 2020. STIM1-mediated calcium influx controls antifungal immunity and the metabolic function of nonpathogenic Th17 cells. EMBO molecular medicine 12:e11592.

      Levin, M. 2021. Bioelectric signaling: Reprogrammable circuits underlying embryogenesis, regeneration, and cancer. Cell 184:1971-1989.

      Nagy, E., G. Mocsar, V. Sebestyen, J. Volko, F. Papp, K. Toth, S. Damjanovich, G. Panyi, T.A. Waldmann, A. Bodnar, and G. Vamosi. 2018. Membrane Potential Distinctly Modulates Mobility and Signaling of IL-2 and IL-15 Receptors in T Cells. Biophys J 114:2473-2482.

      Quill, H., and R.H. Schwartz. 1987. Stimulation of normal inducer T cell clones with antigen presented by purified Ia molecules in planar lipid membranes: specific induction of a long-lived state of proliferative nonresponsiveness. Journal of immunology (Baltimore, Md. : 1950) 138:3704-3712.

      Schmitt, E.G., and C.B. Williams. 2013. Generation and function of induced regulatory T cells. Frontiers in immunology 4:152.

      Sugiura, A., G. Andrejeva, K. Voss, D.R. Heintzman, X. Xu, M.Z. Madden, X. Ye, K.L. Beier, N.U. Chowdhury, M.M. Wolf, A.C. Young, D.L. Greenwood, A.E. Sewell, S.K. Shahi, S.N. Freedman, A.M. Cameron, P. Foerch, T. Bourne, J.C. Garcia-Canaveras, J. Karijolich, D.C. Newcomb, A.K. Mangalam, J.D. Rabinowitz, and J.C. Rathmell. 2022. MTHFD2 is a metabolic checkpoint controlling effector and regulatory T cell fate and function. Immunity 55:65-81.e69.

      Vaeth, M., and S. Feske. 2018. Ion channelopathies of the immune system. Current opinion in immunology 52:39-50.

      Vanasek, T.L., S.L. Nandiwada, M.K. Jenkins, and D.L. Mueller. 2006. CD25+Foxp3+ regulatory T cells facilitate CD4+ T cell clonal anergy induction during the recovery from lymphopenia. Journal of immunology (Baltimore, Md. : 1950) 176:5880-5889.

      Wang, Y., A. Tao, M. Vaeth, and S. Feske. 2020. Calcium regulation of T cell metabolism. Current opinion in physiology 17:207-223.

      Yu, W., Z. Wang, X. Yu, Y. Zhao, Z. Xie, K. Zhang, Z. Chi, S. Chen, T. Xu, D. Jiang, X. Guo, M. Li, J. Zhang, H. Fang, D. Yang, Y. Guo, X. Yang, X. Zhang, Y. Wu, W. Yang, and D. Wang. 2022. Kir2.1-mediated membrane potential promotes nutrient acquisition and inflammation through regulation of nutrient transporters. Nature communications 13:3544.

      Zheng, S.G., J.D. Gray, K. Ohtsuka, S. Yamagiwa, and D.A. Horwitz. 2002. Generation ex vivo of TGF-beta-producing regulatory T cells from CD4+CD25- precursors. Journal of immunology (Baltimore, Md. : 1950) 169:4183-4189.

    1. Author response:

      The following is the authors’ response to the current reviews.

      Reviewer #1 (Public Review):

      Summary:

      This manuscript explores the impact of serotonin on olfactory coding in the antennal lobe of locusts and odor-evoked behavior. The authors use serotonin injections paired with an odorevoked palp-opening response assay and bath application of serotonin with intracellular recordings of odor-evoked responses from projection neurons (PNs).

      Strengths:

      The authors make several interesting observations, including that serotonin enhances behavioral responses to appetitive odors in starved and fed animals, induces spontaneous bursting in PNs, directly impacts PN excitability, and uniformly enhances PN responses to odors.

      Weaknesses:

      The one remaining issue to be resolved is the theoretical discrepancy between the physiology and the behavior. The authors provide a computational model that could explain this discrepancy and provide the caveat that while the physiological data was collected from the antennal lobe, but there could be other olfactory processing stages involved. Indeed other processing stages could be the sites for the computational functions proposed by the model. There is an additional caveat which is that the physiological data were collected 5-10 minutes after serotonin application whereas the behavioral data were collected 3 hours after serotonin application. It is difficult to link physiological processes induced 5 minutes into serotonin application to behavioral consequences 3 hours subsequent to serotonin application. The discrepancy between physiology and behavior could easily reflect the timing of action of serotonin (i.e. differences between immediate and longer-term impact).

      For our behavioral experiments, we waited 3 hours after serotonin injection to allow serotonin to penetrate through the layers of air sacks and the sheath, and for the locusts to calm down and recover their baseline POR activity levels. For the physiology experiments, we noticed that the quality of the patch decreased over time after serotonin introduction. Hence, it was difficult to hold cells for that long. However, the point raised by the reviewer is well-taken. We have performed additional experiments to show that the changes in POR levels to different odorants are rapid and can be observed within 15 minutes of injecting serotonin (Author response image 2) and that the physiological changes in PNs (bursting spontaneous activity, maintenance of temporal firing patterns, and increase odor-evoked responses) persists when the cells are held for longer duration (i.e. 3 hours akin to our behavioral experiments). It is worth noting that 3-hour in-vivo intracellular recordings are not easily achievable and come with many experimental constraints. So far, we have managed to record from two PNs that were held for this long and add them to this rebuttal to support our conclusions. (Author response image 1).

      Author response image 1.

      Spontaneous and odor-evoked responses in individual PNs remain consistent for three hours after serotonin introduction into the recording chamber/bath. (A) Representative intracellular recording showing membrane potential fluctuations in a projection neuron (PN) in the antennal lobe. Spontaneous and odor-evoked responses to four odorants (pink color bars, 4 s duration) are shown before (control) and after serotonin application (5HT). Voltage traces 30 minutes (30min), 1 hour (1h), 2 hours (2h), and 3 hours (3h) after 5HT application are shown to illustrate the persisting effect of serotonin during spontaneous and odor-evoked activity periods. (B) Rasterized spiking activities in two recorded PNs are shown. Spontaneous and odor-evoked responses are shown in all 5 consecutive trials. Note that the odor-evoked response patterns are maintained, but the spontaneous activity patterns are altered after serotonin introduction.

      Author response image 2.

      Palp-opening response (POR) patterns to different odorants remain consistent following serotonin introduction. The probability of PORs is shown as a bar plot for four different odorants; hexanol (green), benzaldehyde (blue), linalool (red), and ammonium (purple). PORs before serotonin injection (solid bars) are compared against response levels after serotonin injection (striped bars). As can be noted, PORs to the four odorants remain consistent when tested 15 minutes and 3 hours after (5HT) serotonin injection.

      Overall, the study demonstrates the impact of serotonin on odor-evoked responses of PNs and odor-guided behavior in locusts. Serotonin appears to have non-linear effects including changing the firing patterns of PNs from monotonic to bursting and altering behavioral responses in an odor-specific manner, rather than uniformly across all stimuli presented.

      We thank the reviewer for again providing very useful feedback for improving our manuscript.

      Reviewer #2 (Public Review):

      Summary:

      The authors investigate the influence of serotonin on feeding behavior and electrophysiological responses in the antennal lobe of locusts. They find that serotonin injection changes behavior in an odor-specific way. In physiology experiments, they can show that projection neurons in the antennal lobe generally increase their baseline firing and odor responses upon serotonin injection. Using a modeling approach the authors propose a framework on how a general increase in antennal lobe output can lead to odor-specific changes in behavior.

      Strengths:

      This study shows that serotonin affects feeding behavior and odor processing in the antennal lobe of locusts, as serotonin injection increases activity levels of projection neurons. This study provides another piece of evidence that serotonin is a general neuromodulator within the early olfactory processing system across insects and even phyla.

      Weaknesses:

      I still have several concerns regarding the generalizability of the model and interpretation of results. The authors cannot provide evidence that serotonin modulation of projection neurons impacts behavior.

      This is true and likely to be true for any study linking neural responses to behavior. There are multiple circuits and pathways that would get impacted by a neuromodulator like serotonin. What we showed with our physiology is how spontaneous and odor-evoked responses in the very first neural network that receives olfactory sensory neuron input are altered by serotonin. Given the specificity of the changes in behavioral outcomes (i.e. odor-specific increase and decrease in an appetitive behavior) and non-specificity in the changes at the level of individual PNs (general increase in odor-evoked spiking activity), we presented a relatively simple computational model to address the apparent mismatch between neural and behavioral responses. (Author response image 4).

      The authors show that odor identity is maintained after 5-HT injection, however, the authors do not show if PN responses to different odors were differently affected after serotonin exposure.

      The PN responses to different odorants changed in a qualitatively similar fashion. (Author response image 3)

      Author response image 3.

      PN activity before and after 5HT application are compared for different cellodor combinations. As can be noted, the changes are qualitatively similar in all cases. After 5HT application, the baseline activity became more bursty, but the odor-evoked response patterns were robustly maintained for all odorants.

      Regarding the model, the authors show that the model works for odors with non-overlapping PN activation. However, only one appetitive, one neutral, and one aversive odor has been tested and modeled here. Can the fixed-weight model also hold for other appetitive and aversive odors that might share more overlap between active PNs? How could the model generate BZA attraction in 5-HT exposed animals (as seen in behavior data in Figure 1) if the same PNs just get activated more?

      Author response image 4.

      Testing the generality of the proposed computational model. To test the generality of the model proposed we used a published dataset [Chandak and Raman, 2023]: Neural dataset – 89 PN responses to a panel of twenty-two odorants; Behavioral dataset – probability of POR responses to the same twenty-two odorants. We built the model using just the three odorants overlapping between the two datasets: hexanol, benzaldehyde and linalool. The true probability of POR values of the twenty odorants and the POR probability predicted by the model are shown for all twenty-two odorants as a scatter plot. As can be noted, there is a high correlation (0.79) between the true and the predicted values.

      The authors should still not exclude the possibility that serotonin injections could affect behavior via modulation of other cell types than projection neurons. This should still be discussed, serotonin might rather shut down baseline activation of local inhibitory neurons - and thus lead to the interesting bursting phenotypes, which can also be seen in the baseline response, due to local PN-to-LN feedback.

      As we agreed, there could be other cells that are impacted by serotonin release. Our goal in this study was to characterize how spontaneous and odor-evoked responses in the very first neural network that receives olfactory sensory neuron input are altered by serotonin. Within this circuit, there are local inhibitory neurons (LNs), as correctly indicated by this reviewer. Surprisingly, our preliminary data indicates that LNs are not shut down but also have an enhanced odor-evoked neural response. (Author response image 5.) Further data would be needed to verify this observation and determine the mechanism that mediate the changes in PN excitability. Irrespective, since PN activity should incorporate the effects of changes in the local neuron responses and is the sole output from the antennal lobe that drives all downstream odor-evoked activity, we focused on them in this study.

      Author response image 5.

      Representative traces showing intracellular recording from a local neuron in the antennal lobe. Five consecutive trials are shown. Note that LNs in the locust antennal lobe are non-spiking. The LN activity before, during, and after the presentation of benzaldehyde and hexanol (colored bar; 4s) are shown. The Left and Right panels show LN activity before and after the application of 5HT. As can be noted, 5HT did not shut down odor-evoked activity in this local neuron.

      The authors did not fully tone down their claims regarding causality between serotonin and starved state behavioral responses. There is no proof that serotonin injection mimics starved behavioral responses.

      Specific minor issues:<br /> It is still unclear how naturalistic the chosen odor concentrations are. This is especially important as behavioral responses to different concentrations of odors are differently modulated after serotonin injection (Figure 2: Linalool and Ammonium). The new method part does not indicate the concentrations of odors used for electrophysiology.

      All odorants were diluted to 0.01-10% concentration by volume in either mineral oil or distilled water. This information is included in the Methods section. For most odorants used in the study, the lower concentrations only evoked a very weak neural response, and the higher concentrations evoked more robust responses. The POR responses for these odorants at various concentrations chosen are included in Figure 2. Note, that the responses to linalool and ammonium remained weak throughout the concentration changes, compared to hexanol and benzaldehyde.

      Did all tested PNs respond to all odorants?

      No, only a subset of them responses to each odorant. These responses have been well characterized in earlier publications [included refs].

      The authors do not show if PN responses to different odors were differently affected after serotonin exposure. They describe that ON responses were robust, but OFF responses were less consistent after 5-HT injection. Was this true across all odors tested? Example traces are shown, but the odor is not indicated in Figure 4A. Figure 4D shows that many odor-PN combinations did not change their peak spiking activity - was this true across odorants? In Figure 5 - are PNs ordered by odor-type exposure?

      Also, Figure 6A only shows example trajectories for odorants - how does the average look? Regarding the data used for the model - can the new dataset from the 82 odor-PN pairs reproduce the activation pattern of the previously collected dataset of 89 pairs?

      What is shown in Figure 6A is the trial-averaged response trajectory combining activities of all 82 odor-PN pairs. 82 odor-PN pair was collected intracellularly examining the responses to four odorants before and after 5HT application. The second dataset involving 89 PN responses to 22 odorants was collected extracellularly. They have qualitative similarities in each odorant activate a unique subset of those neurons.

      The authors toned down their claims that serotonin injection can mimic the starved state behavioral response. However, some sentences still indicate this finding and should also be toned down:

      last sentence of introduction - "In sum, our results provide a more systems-level view of how a specific neuromodulator (serotonin) alters neural circuits to produce flexible behavioral outcomes."

      We believe we showed this with our computational model, how uniform changes in the neural responses could lead to variable and odor-specific changes in behavioral PORs.

      discussion: "Finally, fed locusts injected with serotonin generated similar appetitive responses to food-related odorants as starved locusts indicating the role of serotonin in hunger statedependent modulation of odor-evoked responses." This claim is not supported.

      Figure 7 shows that the fed locusts had lower POR to hex and bza. The POR responses significantly increased after the 5HT application. However, we have rephrased this sentence to limit our claims to this result. "Finally, fed locusts injected with serotonin generated similar appetitive palp-opening responses to food-related odorants as observed in starved locusts”

      last results: "However, consistent with results from the hungry locusts, the introduction of serotonin increased the appetitive POR responses to HEX and BZA. Intriguingly, the appetitive responses of fed locusts treated with 5HT were comparable or slightly higher than the responses of hungry locusts to the same set of odorants."

      Again this sentence simply describes the result shown in Figure 7.

      In Figure 7 - BZA response seems unchanged in hungry and fed animals and only 5-HT injection enhances the response. There is only one example where 5-HT application and starvation induce the same change in behavior - N=1 is not enough to conclude that serotonin influences food-driven behaviors.

      The reviewer is ignoring the lack of changes to PORs to linalool and ammonium. Taken together, serotonin increased PORs to only two of the four odorants in starved locusts. The responses after 5HT modulation to these four odorants were similar in fed locusts treated with 5HT and starved locusts.

      Also, this seems to be wrongly interpreted in Figure 7: "It is worth noting that responses to LOOL and AMN, non-food related odorants with weaker PORs, remained unchanged in fed locusts treated with 5HT." The authors indicate a significant reduction in POR after 5-HT injection on LOOL response in Figure 7.

      Revised.<br /> It is worth noting that responses to LOOL and AMN, non-food related odorants with weaker PORs, and reduced in fed locusts treated with 5HT."

      Also, the newly added sentence at the end of the discussion does not make sense: "However, since 5HT increased behavioral responses in both fed and hungry locusts, the precise role of 5HT modulation and whether it underlies hunger-state dependent modulation of appetitive behavior still remains to be determined."<br /> The authors did not test 5-HT injection in starved animals

      The results shown in Figure 1 compare the POR responses of starved locusts before and after 5HT introduction.

      We again thank the reviewer for useful feedback to further improve our manuscript.


      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      This manuscript explores the impact of serotonin on olfactory coding in the antennal lobe of locusts and odor-evoked behavior. The authors use serotonin injections paired with an odor-evoked palp-opening response assay and bath application of serotonin with intracellular recordings of odor-evoked responses from projection neurons (PNs).

      Strengths:

      The authors make several interesting observations, including that serotonin enhances behavioral responses to appetitive odors in starved and fed animals, induces spontaneous bursting in PNs, and uniformly enhances PN responses to odors. Overall, I had no technical concerns. Weaknesses:

      While there are several interesting observations, the conclusions that serotonin enhanced sensitivity specifically and that serotonin had feeding-state-specific effects, were not supported by the evidence provided. Furthermore, there were other instances in which much more clarification was needed for me to follow the assumptions being made and inadequate statistical testing was reported.

      Major concerns.

      • To enhance olfactory sensitivity, the expected results would be that serotonin causes locusts to perceive each odor as being at a relatively higher concentration. The authors recapitulate a classic olfactory behavioral phenomenon where higher odor concentrations evoke weaker responses which is indicative of the odors becoming aversive. If serotonin enhanced the sensitivity to odors, then the dose-response curve should have shifted to the left, resulting in a more pronounced aversion to high odor concentrations. However, the authors show an increase in response magnitude across all odor concentrations. I don't think the authors can claim that serotonin enhances the behavioral sensitivity to odors because the locusts no longer show concentration-dependent aversion. Instead, I think the authors can claim that serotonin induces increased olfactory arousal.

      The reviewer makes a valid point. Bath application of serotonin increased POR behavioral responses across all odor concentrations, and concentration-dependent aversion was also not observed. Furthermore, the monotonic relationship between projection neuron responses and the intensity of current injection is altered when serotonin is exogenously introduced (see Author response image 1; see below for more explanation). Hence, our data suggests that serotonin alters the dose-response relationship between neural/behavioral responses and odor intensity. As recommended, we have followed what the reviewer has suggested and revised our claim to serotonin inducing increase in olfactory arousal. The new physiology data has been added as Supplementary Figure 3 to the revised manuscript.

      • The authors report that 5-HT causes PNs to change from tonic to bursting and conclude that this stems from a change in excitability. However, excitability tests (such as I/V plots) were not included, so it's difficult to disambiguate excitability changes from changes in synaptic input from other network components.

      To confirm that the PN excitability did indeed change after serotonin application, we performed a new set of current-clamp recordings. In these experiments, we monitored the spiking activities in individual PNs as we injected different levels of current injections (200 – 1000 pico Amperes). Note that locust LNs that provide recurrent inhibition arborize and integrate inputs from a large number of sensory neurons and projection neurons. Therefore, activating a single PN should not activate the local neurons and therefore the antennal lobe network.

      We found that the total spiking activity monotonically increased with the magnitude of the current injection in all four PNs recorded (Author response image 1). However, after serotonin injection, we found that the spiking activity remained relatively stable and did not systematically vary with the magnitude of the current injection. While the changes in odor-evoked responses may incorporate both excitability changes in individual PNs and recurrent feedback inhibition through GABAergic LNs, these results from our current injection experiments unambiguously indicate that there are changes in excitability at the level of individual PNs. We have added this result to the revised manuscript.

      Author response image 1.

      Current-injection induced spiking activity in individual PNs is altered after serotonin application. (A) Representative intracellular recordings showing membrane potential fluctuations as a function of time for one projection neuron (PNs) in the locust antennal lobe. A two-second window when a positive 200-1000pA current was applied is shown. Firing patterns before (left) and after (right) serotonin application are shown for comparison. Note, the spiking activity changes after the 5HT application. The black bar represents the 20mV scale. (B) Dose-response curves showing the average number of action potentials (across 5 trials) during the 2second current pulse before (green) and after (purple) serotonin for each recorded PN. Note that the current intensity was systematically increased from 200 pA to 1000 pA. The (C) The mean number of spikes across the four recorded cells during current injection is shown. The color progression represents the intensity of applied current ranging 200pA (leftmost bar) to 1000pA (rightmost bar). The dose-response trends before (green) and after (purple) 5HT application are shown for comparison. The error bars represent SEM across the four cells.

      • There is another explanation for the theoretical discrepancy between physiology and behavior, which is that odor coding is further processing in higher brain regions (ie. Other than the antennal lobe) not studied in the physiological component of this study. This should at least be discussed.

      This is a valid argument. For our model of neural mapping onto behavior to work, we only need the odorant that evokes or suppresses PORs to activate a distinct set of neurons. Having said that, our extracellular recording results (Fig. 6E) indicate that hexanol (high POR) and linalool (low POR) do activate highly non-overlapping sets of PNs in the antennal lobe. Hence, our results suggest that the segregation of neural activity based on behavioral relevance already begins in the antennal lobe. We have added this clarification to the discussion section.

      • The authors cannot claim that serotonin underlies a hunger state-dependent modulation, only that serotonin impacts responses to appetitive odors. Serotonin enhanced PORs for starved and fed locusts, so the conclusion would be that serotonin enhances responses regardless of the hunger state. If the authors had antagonized 5-HT receptors and shown that feeding no longer impacts POR, then they could make the claim that serotonin underlies this effect. As it stands, these appear to be two independent phenomena.

      This is also a valid point. We have clarified this in the revised manuscript.

      Reviewer #2 (Public Review):

      Summary:

      The authors investigate the influence of serotonin on feeding behavior and electrophysiological responses in the antennal lobe of locusts. They find that serotonin injection changes behavior in an odorspecific way. In physiology experiments, they can show that antennal lobe neurons generally increase their baseline firing and odor responses upon serotonin injection. Using a modeling approach the authors propose a framework on how a general increase in antennal lobe output can lead to odorspecific changes in behavior. The authors finally suggest that serotonin injection can mimic a change in a hunger state.

      Strengths:

      This study shows that serotonin affects feeding behavior and odor processing in the antennal lobe of locusts, as serotonin injection increases activity levels of antennal lobe neurons. This study provides another piece of evidence that serotonin is a general neuromodulator within the early olfactory processing system across insects and even phyla. Weaknesses:

      I have several concerns regarding missing control experiments, unclear data analysis, and interpretation of results.

      A detailed description of the behavioral experiments is lacking. Did the authors also provide a mineral oil control and did they analyze the baseline POR response? Is there an increase in baseline response after serotonin exposure already at the behavioral output level? It is generally unclear how naturalistic the chosen odor concentrations are. This is especially important as behavioral responses to different concentrations of odors are differently modulated after serotonin injection (Figure 2: Linalool and Ammonium).

      POR protocol: Sixth instar locusts (Schistocera americana) of either sex were starved for 24-48 hours before the experiment or taken straight from the colony and fed blades of grass for the satiated condition. Locusts were immobilized by placing them in the plastic tube and securing their body with black electric tape (see Author response image 2). Locusts were given 20 - 30 minutes to acclimatize after placement in the immobilization tube. As can be noted, the head of the locusts along with the antenna and maxillary palps protruded out of this immobilization tube so they can be freely moved by the locusts. Note that the maxillary palps are sensory organs close to the mouth parts that are used to grab food and help with the feeding process.

      It is worth noting that our earlier studies had shown that the presentation of ‘appetitive odorants’ triggers the locust to open their maxillary palps even when no food is presented (Saha et al., 2017; Nizampatnam et al., 2018; Nizampatnam et al., 2022; Chandak and Raman, 2023.) Furthermore, our earlies results indicate that the probability of palp opening varies across different odorants (Chandak and Raman, 2023). We chose four odorants that had a diverse range of palp-opening: supra-median (hexanol), median (benzaldehyde), and sub-median (linaool). Therefore, each locust in our experiments was presented with one concentration of four odorants (hexanol, benzaldehyde, linalool, and ammonium) in a pseudorandomized order. The odorants were chosen based on our physiology results such that they evoked different levels of spiking activities.

      The odor pulse was 4 s in duration and the inter-pulse interval was set to 60 s. The experiments were recorded using a web camera (Microsoft) placed right in front of the locusts. The camera was fully automated with the custom MATLAB script to start recording 2 seconds before the odor pulse and end recording at odor termination. An LED was used to track the stimulus onset/offset. The POR responses were manually scored offline. Responses to each odorant were scored a 0 or 1 depending on if the palps remained closed or opened. A positive POR was defined as a movement of the maxillary palps during the odor presentation time window as shown on the locust schematic (Main Paper Figure 1).

      Author response image 2.

      Pictures showing the behavior experiment setup and representative palp-opening responses in a locust.

      As the reviewer inquired, we performed a new series of POR experiments, where we explored POR responses to mineral oil and hexanol, before and after serotonin injection. For this study, we used 10 locusts that were starved 24-48 hours before the experiment. Note that hexanol was diluted at 1% (v/v) concentration in mineral oil. Our results reveal that locusts PORs to hexanol (~ 50% PORs) were significantly higher than those triggered by mineral oil (~10% PORs). Injection of serotonin increased the POR response rate to hexanol but did not alter the PORs evoked by mineral oil (Author response image 3).

      Author response image 3.

      Serotonin does not alter the palp-opening responses evoked by paraffin oil. The PORs before and after (5HT) serotonin injection are summarized and shown as a bar plot for hexanol and paraffin oil. Striped bars signify the data collected after 5HT injection. Significant differences are identified in the plot (one-tailed paired-sample t-test; (*p<0.05).

      Regarding recordings of potential PNs - the authors do not provide evidence that they did record from projection neurons and not other types of antennal lobe neurons. Thus, these claims should be phrased more carefully.

      In the locust antennal lobe, only the cholinergic projection neurons fire full-blown sodium spikes. The GABAergic local neurons only fire calcium ‘spikelets’ (Laurent, TINS, 1996; Stopfer et al., 2003; see Author response image 4 for an example). Hence, we are pretty confident that we are only recording from PNs. Furthermore, due to the physiological properties of the LNs, their signals being too small, they are also not detected in the extracellular recordings from the locust antennal lobe. Hence, we are confident with our claims and conclusion.

      Author response image 4.

      PN vs LN physiological differences: Left: A representative raw voltage traces recorded from a local neuron before, during, and after a 4-second odor pulse are shown. Note that the local neurons in the locust antennal lobe do not fire full-blown sodium spikes but only fire small calcium spikelets. On the right: A representative raw voltage trace recorded from a representative projection neuron is shown for comparison. Clear sodium spikes are clearly visible during spontaneous and odor-evoked periods. The gray bar represents 4 seconds of odor pulse. The vertical black bar represents the 40mV.

      The presented model suggests labeled lines in the antennal lobe output of locusts. Could the presented model also explain a shift in behavior from aversion to attraction - such as seen in locusts when they switch from a solitarious to a gregarious state? The authors might want to discuss other possible scenarios, such as that odor evaluation and decision-making take place in higher brain regions, or that other neuromodulators might affect behavioral output. Serotonin injections could affect behavior via modulation of other cell types than antennal lobe neurons. This should also be discussed - the same is true for potential PNs - serotonin might not directly affect this cell type, but might rather shut down local inhibitory neurons.

      There are multiple questions here. First, regarding solitary vs. gregarious states, we are currently repeating these experiments on solitary locusts. Our preliminary results (not included in the manuscript) indicate that the solitary animals have increased olfactory arousal and respond with a higher POR but are less selective and respond similarly to multiple odorants. We are examining the physiology to determine whether the model for mapping neural responses onto behavior could also explain observations in solitary animals.

      Second, this reviewer makes the point raised by Reviewer 1. We agree that odor evaluation and decisionmaking might take place in higher brain regions. All we could conclude based on our data is that a segregation of neural activity based on behavioral relevance might provide the simplest approach to map non-specific increase in stimulus-evoked neural responses onto odor-specific changes in behavioral outcome. Furthermore, our results indicate that hexanol and linalool, two odorants that had an increase and decrease in PORs after serotonin injection, had only minimal neural response overlap in the antennal lobe. These results suggest that the formatting of neural activity to support varying behavioral outcomes might already begin in the antennal lobe. We have added this to our discussion.

      Third, regarding serotonin impacting PNs, we performed a new set of current-clamp experiments to examine this issue (Author response image 1). Our results clearly show that projection neuron activity in response to current injections (that should not incorporate feedback inhibition through local neurons) was altered after serotonin injection. Therefore, the observed changes in the odor-evoked neural ensemble activity should incorporate modulation at both individual PN level and at the network level. We have added this to our discussion as well.

      Finally, the authors claim that serotonin injection can mimic the starved state behavioral response. However, this is only shown for one of the four odors that are tested for behavior (HEX), thus the data does not support this claim.

      We note that Hex is the only appetitive odorant in the panel. But, as reviewer 1 has also brought up a similar point, we have toned down our claims and will investigate this carefully in a future study.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      • Was the POR of the locusts towards linalool and ammonium higher than towards a blank odor cartridge? I ask because the locusts appear to be less likely to respond to these odors and so I am concerned that this assay is not relevant to the ecological context of these odors. In other words, perhaps serotonin did not enhance the responses to these odors in this assay, because this is not a context in which locusts would normally respond to these odors.

      The POR response to linalool and ammonium is lower and comparable to that of paraffin oil. Serotonin does not increase POR responses to paraffin oil but does increase response to hexanol (an appetitive odorant). We have clarified this using new data (Author response image 5).

      • It seems to me that Figure 5C is the crux for understanding the potential impact of 5-HT on odor coding, but it is somewhat confusing and underutilized. Is the implication that 5-HT decorrelates spontaneous activity such that when an odor stimulus arrives, the odor-evoked activity deviates to a greater degree? The authors make claims about this figure that require the reader to guess as to the aspect of the figure to which they are referring.

      The reviewer makes an astute observation. Yes, the spontaneous activity in the antennal lobe network before serotonin introduction is not correlated with the ensemble spontaneous activity after serotonin bath application. Remarkably, the odor-evoked responses were highly similar, both in the reduced PCA space and when assayed using high-dimensional ensemble neural activity vectors. Whether the changes in network spontaneous activity have a function in odor detection and recognition is not fully understood and cannot be convincingly answered using our data. But this is something that we had pondered.

      • The modeling component summarized in Figure 6 needs clarification and more detail. Perhaps example traces associated with positive weighting within neural ensemble 1 relative to neural ensemble 2? I struggled to understand conceptually how the model resolved the theoretical discrepancy between physiology and behavior.

      As recommended, here is a plot showing the responses of four PNs that had positive weights to hexanol and linalool. As can be expected, each PN in this group had higher responses to hexanol and no response to linalool. Further, the four PNs that received negative weights had response only to linalool.

      Author response image 5.

      Odor-evoked responses of four PNs that received positive weights in the model (top panel), and four PNs that were assigned negative weights in the model (bottom).

      • Was there a significant difference between the PORs of hungry vs. fed locusts? The authors state that they differ and provide statistics for the comparisons to locusts injected with 5-HT, but then don't provide any statistical analyses of hungry vs. fed animals.

      The POR responses to HEX (an appetitive odorant) were significantly different between the hungry and starved locusts.

      Author response image 6.

      A bar plot summarizing PORs to all four odors for satiated locust (highlighted with stripes), before (dark shade), and after 5HT injection (lighter shade). To allow comparison before 5HT injection for starved locust plotted as well (without stripes). The significance was determined using a one-tailed paired-sample ttest(*p<0.05).

      • Were any of the effects of 5-HT on odor-evoked PN responses significant? No statistics are provided.

      We examined the distribution of odor-evoked responses in PNs before and after 5HT introduction. We found that the overall distribution was not significantly different between the two (one-tailed pairedsample t-test; p = 0.93).

      Author response image 7.

      Comparison of the distribution of odor-evoked PN responses before (green) and after (purple) 5HT introduction. One-tailed paired sample t-test was used to compare the two distributions.

      • The authors interchangeably use "serotonin", "5HT" and "5-HT" throughout the manuscript, but this should be consistent.

      This has been fixed in the revised manuscript.

      • On page 2 the authors provide an ecological relevance for linalool as being an additive in pesticides, however, linalool is a common floral volatile chemical. Is the implication that locusts have learned to associate linalool with pesticides?

      Linalool is a terpenoid alcohol that has a floral odor but has also been used as a pesticide and insect repellent [Beier et al., 2014]. As shown in Author response image 2, it evoked the least POR responses amongst a diverse panel of 22 odorants that were tested. We have clarified how we chose odorants based on the prior dataset in the Methods section.

      • In Figure 1, there should be a legend in the figure itself indicating that the black box indicates the absence of POR and the white box indicates presence, rather than just having it in the legend text.

      Done.

      • In Figure 2, the raw data from each animal can be moved to the supplements. The way it is presented is overwhelming and the order of comparisons is difficult to follow.

      Done.

      • For the induction of bursting in PNs by the application of 5-HT, were there any other metrics observed such as period, duration of bursts, or peak burst frequency? The authors rely on ISI, but there are other bursting metrics that could also be included to understand the nature of this observation. In particular, whether the bursts are likely due to changes in intrinsic biophysical properties of the PNs or polysynaptic effects.

      We could use other metrics as the reviewer suggests. Our main point is that the spontaneous activity of individual PNs changed. We have added a new current-injection experiments to show that the PNs output to square pulses of current becomes different after serotonin application (Author response image 1)

      • Were 4-vinyl anisole, 1-nonanol, and octanoic acid selected as additional odors because they had particular ecological relevance, or was it for the diversity of chemical structure?

      These odorants were selected based on both, chemical structure and ecological relevance. The logic behind this was to have a very diverse odor panel that consisted of food odorant – Hexanol, aggregation pheromone – 4-vinyl anisole, sex pheromone – benzaldehyde, acid – octanoic acid, base – ammonium, and alcohol – 1-nonanol. Additionally, we selected these odors based on previous neural and behavioral data on these odorants (Chandak and Raman, 2023, Traner and Raman, 2023, Nizampatnam et al, 2022 & 2018; Saha et al., 2017 & 2013).

      Reviewer #2 (Recommendations For The Authors):

      The electrophysiology dataset combines all performed experiments across all tested different PN-odor pairs. How many odors have been tested in a single PN and how many PNs have been tested for a single odor? This information is not present in the current manuscript. Can the authors exclude that there are odor-specific modulations?

      In total, our dataset includes recordings from 19 PNs. Seven PNs were tested on a panel of seven odorants (4-vinyl anisole, 1-nonanol, octanoic acid, Hex, Bza, Lool, and Amn), and the remaining twelve were tested with the four main odorants used in the study (Hex, Bza, Lool, and Amn). This information has been added to the Methods section

      How did the authors choose the concentrations of serotonin injections and bath applications - is this a naturalistic amount?

      The serotonin concentration for ephys experiments was chosen based on trial-error experiments:

      0.01mM was the highest concentration that did not cause cell death. For the behavioral experiments, we increased the concentration (0.1 M) due to the presence of anatomical structures in the locust's head such as air sacks, sheath as well as hemolymph which causes some degree of dilution that we cannot control.

      Behavior experiments were performed 3 hours after injection - ephys experiments 5-10 minutes following bath application. Can the authors exclude that serotonin affects neural processing differently on these different timescales?

      We cannot exclude this possibility. We did ePhys experiments 5-10 minutes after bath application as it would be extremely hard to hold cells for that long.

      A longer delay was required for our behavioral experiments as the locusts tended to be a bit more agitated with larger spontaneous movements of palps as well as exhibited unprompted vomiting. A 3hour period allowed the locust to regain its baseline level movements after 5HT introduction. [This information has been added to the methods section of the revised manuscript]

      Concerning the analysis of electrophysiological data. The authors should correct for changes in the baseline before performing PCA analysis. And how much of the variance is explained by PC1 and PC2?

      We did not correct for baseline changes or subtract baseline as we wanted to show that the odor-evoked neural responses still robustly encoded information about the identity of the odorant.

      The authors should perform dye injections after recordings to visualize the cell type they recorded from. Serotonin might affect also other cell types in the antennal lobe.

      As mentioned above, in the locust antennal lobe only PNs fire full-blown sodium spikes, and LNs only fire calcium spikelets (Author response image 4). Since these signals are small, they will be buried under the noise floor when using extracellular recording electrodes for monitoring responses in the AL antennal lobe.

      Hence we are pretty certain what type of cells we are recording from.

      There were several typos in the manuscript, please check again.

      We have fixed many of the grammatical errors and typos in the revised version.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      Summary:

      The Notch signaling pathway plays an important role in many developmental and disease processes. Although well-studied there remain many puzzling aspects. One is the fact that as well as activating the receptor through trans-activation, the transmembrane ligands can interact with receptors present in the same cell. These cis-interactions are usually inhibitory, but in some cases, as in the assays used here, they may also be activating. With a total of 6 ligands and 4 receptors, there is potentially a wide array of possible outcomes when different combinations are co-expressed in vivo. Here the authors set out to make a systematic analysis of the qualitative and quantitative differences in the signaling output from different receptor-ligand combinations, generating sets of "signaling" (ligand expressing) and "receiving" (receptor +/- ligand expressing cells).

      The readout of pathway activity is transcriptional, relying on the fusion of GAL4 in the intracellular part of the receptor. Positive ligand interactions result in the proteolytic release of Gal4 that turns on the expression of H2B-citrine. As an indicator of ligand and receptor expression levels, they are linked via TA to H2B mCherry and H2B mTurq expression respectively. The authors also manipulate the expression of the glycosyltransferase Lunatic-Fringe (LFng) that modifies the EGF repeats in the extracellular domains impacting their interactions. The testing of multiple ligand-receptor combinations at varying expression levels is a tour de force, with over 50 stable cell lines generated, and yields valuable insights although as a whole, the results are quite complex.

      Strengths:

      Taking a reductionist approach to testing systematically differences in the signaling strength, binding strength, and cis-interactions from the different ligands in the context of the Notch1 and Notch 2 receptors (they justify well the choice of players to test via this approach) produces a baseline understanding of the different properties and leads to some unexpected and interesting findings. Notably:

      -                Jag1 ligand expressing cells failed to activate Notch1 receptor although were capable of activating Notch2. Conversely, Jag2 cells elicited the strongest activation of both receptors. The results with

      Jag1 are surprising also because it exhibits some of the strongest binding to plate-bound ligands. The failure to activate Notch1 has major functional significance and it will be important in the future to understand the mechanistic basis.

      -                Jagged ligands have the strongest cis-inhibitory effects and the receptors differ in their sensitivity to cis-inhibition by Dll ligands. These observations are in keeping with earlier in vivo and cell culture studies. More referencing of those would better place the work in context but it nicely supports and extends previous studies that were conducted in different ways.

      -                Responses to most trans-activating ligands showed a degree of ultrasensitivity but this was not the case for cis-interactions where effects were more linear. This has implications for the way the two mechanisms operate and for how the signaling levels will be impacted by ligand expression levels.

      -                Qualitatively similar results are obtained in a second cell line, suggesting they reflect fundamental properties of the ligands/receptors.

      We appreciate the positive and constructive feedback.

      Weaknesses:

      One weakness is that the methods used to quantify the expression of ligands and receptors rely on the co-translation of tagged nuclear H2B proteins. These may not accurately capture surface levels/correctly modified transmembrane proteins. In general, the multiple conditions tested partly compensate for the concerns - for example, as Jag1 cells do activate Notch2 even if they do not activate Notch1 some Jag1 must be getting to the surface. But even with Notch2, Jag1 activities are on the lower side, making it important to clarify, especially given the different outcomes with the plated ligands. Similarly, is the fact that all ligands "signalled strongest to Notch2" an inherent property or due to differences in surface levels of Notch 2 compared to Notch1? The results would be considerably strengthened by calibration of the ligand/receptor levels (and ideally their sub-cellular localizations). Assessing the membrane protein levels would be relatively straightforward to perform on some of the basic conditions because their ligand constructs contain Flag tags, making it plausible to relate surface protein to H2B, and there are antibodies available for Notch1 and Notch2.

      We agree that mCherry fluorescence does not provide a direct readout of active surface ligand levels. As the reviewer points out, the ability of Jag1 to activate Notch2 demonstrates that expressed Jag1 is competent for signaling. Further, in some cases, Jag1-Notch2 activation can be comparable to Dll1-Notch2 activation (Figure 2A). Following the reviewer’s suggestion, we performed a Western blot for multiple expression levels for each of three surface ligands (Dll1, Dll4, Jag1) (Figure 2—figure supplement 2). This blot revealed a signal for surface expression of Jag1. Interpretation is complicated by the expected dependence of the efficiency of surface protein purification on the number of primary amines in the protein, which varies among these ligands, and qualitatively correlates with the staining intensity. While this makes quantitative interpretation difficult, this result further supports the notion that Jag1 is present on the cell surface. Finally, we note that high signaling activity need not, in general, directly correlate with surface expression levels. In fact, one study showed an example in which increased ligand activity occurred with decreased basal ligand surface levels (Antfolk et al., 2017). While one would ideally like to know all parameters of the system, including surface protein levels, rates of recycling, etc. the perspective taken here is that the net effect of these many post-translational processing steps can be subsumed into the overall relationship between the expression of the protein (which, in our case, is read out by the co-translational reporter) and its activity, which is relevant for the behavior of developmental circuits, among other systems. To address this comment, we now explicitly mention the limitation of mCherry as a proxy for surface protein, and add a reference to previous work highlighting the relationship between surface levels and ligand activity.

      In terms of the dependence of signaling on Notch levels, the metric of signaling activity used here is explicitly normalized by the mTurquoise co-translational reporter of Notch expression to account for differences in receptor expression across receiver clones. We have added a new figure to show the variation in expression (Figure 1—figure supplement 1A) and to demonstrate this normalization (Figure 1—figure supplement 5). Having said that, as the reviewer correctly points out, we cannot directly address the dependence on surface receptor levels with mTurquoise alone. To address this comment, we have added a figure that shows cotranslational and surface receptor expression for a subset of our receiver clones (Figure 1—figure supplement 1B). Although antibody binding strengths may vary, it appears unlikely that higher surface levels could explain most ligands’ preferential activation of Notch2 over Notch1, since Notch2 levels were lower than Notch1 levels in both surface expression and cotranslational expression.

      Cis-activation as a mode of signaling has only emerged from these synthetic cell culture assays raising questions about its physiological relevance. Cis-activation is only seen at the higher ligand (Dll1, Dll4) levels, how physiological are the expression levels of the ligands/receptors in these assays? Is it likely that this would make a major contribution in vivo? Is it possible that the cells convert themselves into "signaling" and "receiving" sub-populations within the culture by post-translational mechanism? Again some analysis of the ligand/receptors in the cultures would be a valuable addition to show whether or not there are major heterogeneities.

      The cis-activation results in this paper are, as the reviewer points out, conducted in synthetic cell culture assays. Cis-activation is observed across a large dynamic range of ligand expression, possibly including non-physiologically high levels. However, our previous work (Nandagopal et al, eLife 2019) showed that cis-activation does not require over-expression, as it occurred in unmodified Caco-2 and NMuMG cells with their endogenous ligand and receptor expression levels. As shown here in Figure 4B, cis-activation for Notch2 increases monotonically and is substantial even at intermediate ligand concentrations. In other cases, cis-activation is maximal at intermediate concentrations. We agree that the in vivo role remains unclear, and is difficult to determine due to the typical close contacts among cells in tissues. Therefore, these assays do not speak to in vivo relevance. Note that we can, however, rule out the possibility of trans signaling between well-mixed cell populations at these densities (Figure 4A).

      It is hard to appreciate how much cell-to-cell variability in the "output" there is. For example, low "outputs" could arise from fewer cells becoming activated or from all cells being activated less. As presented, only the latter is considered. That may be already evident in their data, but not easy for the reader to distinguish from the way they are presented. For example, in many of the graphs, data have been processed through multiple steps of normalization. Some discussion/consideration of this point is needed.

      We agree that in different experiments changes in a mean response can reflect changes in fraction of activated cells, or level of activation or some combination of both. In this work, most assays were conducted by flow cytometry, which provides a full distribution of cellular responses. We provided distributions for some experiments in the supplementary figures (i.e., Figure 4—figure supplement 1, and Figure 5—figure supplement 4). The sheer number of experiments and samples prevents us from displaying all underlying histograms. Therefore, we have provided all flow data sets in an extensive archive that is publicly available on data.caltech.edu (https://doi.org/10.22002/gjjkn-wrj28).

      Impact:

      Overall, cataloging the outcomes from the different ligand-receptor combinations, both in cis and trans, yields a valuable baseline for those investigating their functional roles in different contexts. There is still a long way to go before it will be possible to make a predictive model for outcomes based on expression levels, but this work gives an idea about the landscape and the complexities. This is especially important now that signaling relationships are frequently hypothesized based on single-cell transcriptomic data. The results presented here demonstrate that the relationships are not straightforward when multiple players are involved.

      We appreciate this concise impact summary, and agree with its conclusions.

      Reviewer #2 (Public Review):

      Summary:

      In this manuscript, the authors extend their previous studies on trans-activation, cis-inhibition (PMID: 25255098), and cis-activation (PMID: 30628888) of the Notch pathway. Here they create a large number of cell lines using CHO-K1 and C2C12 cells expressing either Notch1-Gal4 or Notch2-Gal4 receptors which express a fluorescent protein upon receptor activation (receiver cells). For cis-inhibition and cis-activation assays, these cells were engineered to express one of the four canonical Notch ligands (Dll1, Dll4, Jag1, Jag2) under tetracycline control. Some of the receiver cells were also transfected with a Lunatic fringe (Lfng) plasmid to produce cells with a range of Lfng expression levels. Sender cells expressing all of the canonical ligands were also produced. Cells were mixed in a variety of co-culture assays to highlight trans-activation, cis-activation, and cis-inhibition. All four ligands were able to trans-activate Notch1 and Notch 2, except Jag1 did not transactivate Notch1. Lfng enhanced trans-activation of both Notch receptors by Dll1 and Dll2, and inhibited Notch1 activation by Jag2 and Notch2 activation by both Jag 1 and Jag2. Cis-expression of all four ligands was predominantly inhibitory, but Dll1 and Dll4 showed strong cis-activation of Notch2. Interestingly, cis-ligands preferentially inhibited trans-activation by the same ligand, with varying effects on other trans-ligands.

      Strengths:

      This represents the most comprehensive and rigorous analysis of the effects of canonical ligands on cis- and trans-activation, and cis-inhibition, of Notch1 and Notch2 in the presence or absence of Lfng so far. Studying cis-inhibition and cis-activation is difficult in vivo due to the presence of multiple Notch ligands and receptors (and Fringes) that often occur in single cells. The methods described here are a step towards generating cells expressing more complex arrays of ligands, receptors, and Fringes to better mimic in vivo effects on Notch function.

      In addition, the fact that their transactivation results with most ligands on Notch1 and 2 in the presence or absence of Lfng were largely consistent with previous publications provides confidence that the author's assays are working properly.

      We appreciate the thoughtful comments and feedback.

      Weaknesses:

      It was unusual that the engineered CHO cells expressing Notch1-Gal4 were not activated at all by co-culture with Jag1-expressing CHO cells. Many previous reports have shown that Jag1 can activate Notch1 in co-culture assays, including when Notch1 was expressed in CHO cells. Interestingly, when the authors used Jag1-Fc in a plate coating assay, it did activate Notch1 and could be inhibited by the expression of Lfng.

      In our assays, we do in fact also see some signaling of Jag1 to Notch1, especially when dLfng is coexpressed (Figure 2—figure supplement 4, formerly Figure 2—figure supplement 3). While these levels are lower than those observed for other ligand-receptor combinations, they are significantly elevated compared to baseline. In specific natural contexts, it will be important to determine whether the weak but non-zero Jag1-Notch1 signaling acts negatively to suppress signaling from other ligands, or provides weak but potentially functionally important levels of signaling. Evidence for both modes exists in the literature. To address this, we have expanded the discussion of Jag1-Notch1 signaling and added references to other work on Jag1-Notch1 signaling to the Discussion section.

      The cell surface level of the ligands was determined by flow cytometry of a co-translated fluorescent protein. Some calibration of the actual cell surface levels with the fluorescent protein would strengthen the results.

      This issue was also raised by Reviewers #1 and #3. Please see responses to Reviewer #1, above.

      Reviewer #3 (Public Review):

      Summary:

      This manuscript reports a comprehensive analysis of Notch-Delta/Jagged signaling inclusive of the human Notch1 and Notch2 receptors and DLL1, DLL4, JAG1, and JAG2 ligands. Measurements

      encompassed signaling activity for ligand trans-activation, cis-activation, cis-inhibition, and activity modulation by Lfng. The most striking observations of the study are that JAG1 has no detectable activity as a Notch1 ligand when presented on a cell (though it does have activity when immobilized on a surface), even though it is an effective cis-inhibitor of Notch1 signaling by other ligands, and that DLL1 and DLL4 exhibit cis-activating activity for Notch1 and especially for Notch2. Notwithstanding the artificiality of the system and some of its shortcomings, the results should nevertheless be a valuable resource for the Notch signaling community.

      Strengths:

      (1)  The work is systematic and comprehensive, addressing questions that are of importance to the community of researchers investigating mammalian Notch proteins, their activation by ligands, and the modulation of ligand activity by LFng.

      (2)  A quantitative and thorough analysis of the data is presented.

      Weaknesses:

      (1) The manuscript is primarily descriptive and does not delve into the underlying, mechanistic origin or source of the different ligand activities.

      We agree that the goals of this paper were largely to discover the range of signaling modes that occur. A mechanistic analysis would be beyond the scope of this work, but we agree it is an important next step.

      (2) The amount of ligand or receptor expressed is inferred from the flow cytometry signal of a co-translated fluorescent protein-histone fusion, and is not directly measured. The work would be more compelling if the amount of ligand present on the cell surface were directly measured with anti-ligand antibodies, rather than inferred from measurements of the fluorescent protein-histone fusion.

      This issue was also raised by Reviewers #1 and #2. Please see responses to Reviewer #1, above.

      (3) It would be helpful to see plots of the raw activity data before transformation and normalization, because the plots present data after several processing steps, and it is not clear how the processed data relate to the original values determined in each measurement.

      We included examples showing how raw data is processed in Figure 4—figure supplement 1 and Figure 5—figure supplement 4. The sheer number of experiments precludes including similar figures for all data sets. However, all raw and processed data and data analysis code is publicly available at (https://doi.org/10.22002/gjjkn-wrj28).

      (4) The authors use sparse plating of engineered cells with parental (no ligand or receptor-expressing cell to measure cis activation). However, the cells divide within the cultured period of 22-24 h and can potentially trans-activate each other.

      If measured cis-activation signal arises solely from trans-activation, then the measured cis-activation signal per cell should increase with cell density, since trans-activation per cell does depend on cell density (Figure 4A). However, for the strongest cis-activators (Dll1- and Dll4-Notch2), signaling magnitude is similar when these cells are cultured sparsely or at confluence, which would otherwise allow efficient trans signaling (Figure 5A). Thus, for Dll1- and Dll4-Notch2 receivers, total signaling strength per cell depends little or not at all on the opportunity to signal intercellularly. Moreover, cis-activation signal for the Dll1- and Dll4-Notch2 combinations exceeded the maximum trans-signaling levels we could achieve for the same receivers when cis-ligand was suppressed (Figure 4B). These results argue that cis interactions dominate signaling in this context. However, we have not ruled out the possibility that trans-signaling between sister cells after division contributes to the comparatively weak cis-activation observed for Notch1 receivers.

      Reviewer #1 (Recommendations For The Authors):

      As outlined in the public review, there is a question of whether the nuclear H2B accurately reflects the surface levels of the transmembrane proteins (ligand and receptor). Clearly, it would not be feasible to check levels in all of the experimental conditions, but some baseline conditions should be analyzed.

      We addressed this above.

      Reviewer #2 (Recommendations For The Authors):

      (1)  As mentioned above, it was unusual that Jag1 did not activate Notch1 in co-culture assays, but did activate Notch1 in plate-coating assays. The authors should add some text to the Discussion to explain why they think this is happening in their engineered cells. One possibility is that the CHO cells express Manic fringe (Mfng) which is known to reduce Jag1-Notch1 activation. Data for Mfng levels in CHO cells were not included in Supplemental Table 2. Knocking down all three Fringes in CHO cells might increase Jag1-Notch1 activation.

      This is already addressed in a sentence in the results: “Strikingly, while Jag1 sender cells failed to activate Notch1 receivers above background (Figure 2D), plate-bound Jag1-ext-Fc activated Notch1 only ~3-fold less efficiently than it activated Notch2 (Figure 3B-D). This suggests that the natural endocytic activation mechanism, or potential differences in tertiary structure between the expressed and recombinant Jag1 extracellular domains, could play roles in preventing Jag1-Notch1 signaling in coculture.” Regarding the point about Mfng, we added a note to Supplementary Table about other CHO-K1 expression data.

      (2) Figure 1-supplemental figure 1: Both the Notch1-Jag1 and Notch1-Jag2 cells show high expression of Jag1 in low 4epi, but any higher concentration reduces to control levels. How much of a problem is this for interpreting your data?

      This was not the ideal behavior, but by binning cells by co-translational reporters for ligand expression, we were able to obtain enough cells in intermediate bins. (Note: Figure 1—figure supplement 1 is now Figure 1—figure supplement 2.)

      (3)  Figure 1C legend: Are these stably-expressing cells or Tet-off cells? Please state in legend.

      The figure legend has been updated.

      (4)  Figure 1E: How long is the knockdown of Rfng and Lfng effective? Does it affect the expression of Lfng later?

      siRNA effects generally last for at least 72-96 hours, so we do not anticipate this being an issue.

      (5) Page 9: "Lfng significantly decreased trans-activation of both receptors by Jag1 (>2.5-fold)". If there is no Jag1-Notch1 activation, how can Lfng decrease trans-activation?

      We added a note in the main text to clarify that while Jag1-Notch1 signaling is relatively low, it can still be detectably decreased.

      (6) Figure 4A legend: Please define what "2.5k ea senders and Rec" means. In the text, it says "To focus on cis-interactions alone, we then cultured receiver cells at low density, amid an excess of wildtype CHO-K1 cells" (page 14).

      This was clarified in the text.

      (7)  Page 14: "By contrast, Notch2 was cis-activated by both Dll1 and Dll4, to levels exceeding those produced by trans-activation by high-Dll1 senders (Figure 4B, lower left)." Where is the trans-activation data? 4B, lower right?

      We updated this reference in the main text.

      (8)  Page 16: "For Notch2-Dll1 and Notch2-Dll4, single cell reporter activities correlated with cis-ligand expression, regardless of whether cells were pre-induced at a high or low culture density (Figure 4D)." It appears that Notch2-Dll1 has lower Notch activation at sparse culture than confluent.

      We agree that the level signaling is lower in sparse compared to confluent on average. This is explained by the sensitivity of the Tet-OFF promoter to culture density (Figure 4—figure supplement 2). However, the key point of this experiment is the positive correlation, which is consistent with cis-activation, and inconsistent with the pre-generation of NEXT hypothesis diagrammed in Figure 4C, which would not be expected to produce such a correlation.

      (9a) For the creation of the C2C12-Nkd cells: Has genomic sequencing been done to confirm editing of Notch2 and Jag1 loci?

      We confirmed the knockdown but did not do genomic sequencing.

      (9b) The gel in Figure 7-Supplement 1C is not adequate for showing loss of Jag1. It should be repeated.

      In this case, we have only the single gel. We added a note in figure legend that no duplicate was performed.

      (10) Figure 7A: Which Fringes are expressed in C2C12 cells? You should provide a rationale for knocking down just Rfng.

      Figure 7—figure supplement 1A shows the levels of expression in C2C12. Note that Mfng is not highlighted because its levels were undetectable.

      (11) Figure 7-Supplement 1D: This is confusing. Notch2 levels are not reduced in the left panel, and Notch1 and Notch2 levels are not reduced in the right panel?

      C2C12-Nkd cells exhibit reduced levels of Notch1 and Notch3. This can be seen in Figure 7—figure supplement 1A. Panel D presents the results of additional siRNA knockdown, performed to prevent subsequent up-regulation of Notch1 and Notch3 during the assay. These knockdown results were variable, as shown. The Notch2 siRNA knockdown was not essential for these experiments, but performed despite very low levels of Notch2 to begin with. In the revision, we have added this note to the Methods.

      Reviewer #3 (Recommendations For The Authors):

      (1) The results section of the manuscript is very dense and difficult to follow, as are the figure legends.

      We appreciate the criticism, and regret that it is not easier to read in its current form.

      (2) The authors could emphasize areas of concordance with published results (where available) to place their artificial, engineered system into a better biological context. Are there any examples of studies in whole organisms where cis-activation plays a role?

      We are not aware of examples of cis-activation in whole organisms at this point.

      (3) How do the authors rationalize the different responses of Notch1 to cell-presented Jag1 as opposed to immobilized Jag1, where its signal strength is second in rank order on a molar basis?

      This comment was addressed above in response to the first recommendation from Reviewer #2.

      It is also difficult to understand Figure 2_—_figure Supplement 3B, in which it appears that Jag1 induces a Notch1 reporter response when LFng is knocked down (dLfng), and how those data relate to the inactive response to Jag1 shown in the main figures.

      The issue here is a difference of normalization. Figure 2A in the main text is normalized to the sender expression level, i.e. relative signaling strength. By contrast, Figure 2—figure supplement 4B (previously Figure 2—figure supplement 3B) shows absolute signaling activity, which can appear higher because it does not normalize for ligand expression. For Jag1-Notch1 signaling in particular, substantial signaling required very high levels of Jag1. We have added a new figure to demonstrate these two types of normalization (Figure 2—figure supplement 1A).

      See the Authr response image 1 below for a direct comparison of these two normalization modes using data from both Figure 2A and Figure 2—figure supplement 4B. Note how the Jag1-Notch1 signaling activities that are nonzero in the top plot go to zero in the bottom plot as a result of normalizing the values to ligand expression.

      Author response image 1. Comparison of normalization modes in Figure 2A and Figure 2—figure supplement 4B (formerly 3B). Normalized trans-activation signaling activities for different ligand-receptor combinations (with dLfng only), either with further normalization to ligand expression (bottom row) or without further normalization (top row). Normalized signaling activity is defined as reporter activity (mCitrine, A.U.) divided by cotranslational receptor expression (mTurq2, A.U.), normalized to the strongest biological replicate-averaged signaling activity across all ligand-receptor-Lfng combinations in this experiment. Saturated data points, defined here as those with normalized signaling activity over 0.75 in both dLfng and Lfng conditions, were excluded. Colors indicate the identity of the trans-ligand expressed by cocultured sender cells. Error bars denote bootstrapped 95% confidence intervals (Methods), in this case sampled from the number of biological replicates given in the legend—n1 (for Notch1) or n2 (for Notch2). See Methods and Figure 2A caption for more details. Note that the only difference between this figure and the new Figure 2—figure supplement 1A is that this figure additionally includes the Jag1-high data from Figure 2—figure supplement 4B.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:  

      Reviewer #1 (Public Review): 

      Summary: 

      In their manuscript entitled 'The domesticated transposon protein L1TD1 associates with its ancestor L1 ORF1p to promote LINE-1 retrotransposition', Kavaklıoğlu and colleagues delve into the role of L1TD1, an RNA binding protein (RBP) derived from a LINE1 transposon. L1TD1 proves crucial for maintaining pluripotency in embryonic stem cells and is linked to cancer progression in germ cell tumors, yet its precise molecular function remains elusive. Here, the authors uncover an intriguing interaction between L1TD1 and its ancestral LINE-1 retrotransposon. 

      The authors delete the DNA methyltransferase DNMT1 in a haploid human cell line (HAP1), inducing widespread DNA hypo-methylation. This hypomethylation prompts abnormal expression of L1TD1. To scrutinize L1TD1's function in a DNMT1 knock-out setting, the authors create DNMT1/L1TD1 double knock-out cell lines (DKO). Curiously, while the loss of global DNA methylation doesn't impede proliferation, additional depletion of L1TD1 leads to DNA damage and apoptosis.  

      To unravel the molecular mechanism underpinning L1TD1's protective role in the absence of DNA methylation, the authors dissect L1TD1 complexes in terms of protein and RNA composition. They unveil an association with the LINE-1 transposon protein L1-ORF1 and LINE-1 transcripts, among others.  

      Surprisingly, the authors note fewer LINE-1 retro-transposition events in DKO cells than in DNMT1 KO alone.  

      Strengths: 

      The authors present compelling data suggesting the interplay of a transposon-derived human RNA binding protein with its ancestral transposable element. Their findings spur interesting questions for cancer types, where LINE1 and L1TD1 are aberrantly expressed.  

      Weaknesses: 

      Suggestions for refinement:  

      The initial experiment, inducing global hypo-methylation by eliminating DNMT1 in HAP1 cells, is intriguing and warrants a more detailed description. How many genes experience misregulation or aberrant expression? What phenotypic changes occur in these cells? 

      This is an excellent suggestion. We have gene expression data on WT versus DNMT1 KO HAP1 cells and have included them now as Suppl. Figure S1. The  transcriptome analysis of DNMT1 KO cells showed hundreds of deregulated genes upon DNMT1 ablation. As expected, the majority were up-regulated and gene ontology analysis revealed that among the strongest up-regulated genes were gene clusters with functions in “regulation of transcription from RNA polymerase II promoter” and “cell differentiation” and genes encoding proteins with KRAB domains. In addition, the de novo methyltransferases DNMT3A and DNMT3B were up-regulated in DNMT1 KO cells suggesting the set-up of compensatory mechanisms in these cells. 

      Why did the authors focus on L1TD1? Providing some of this data would be helpful to understand the rationale behind the thorough analysis of L1TD1. 

      We have previously discovered that conditional deletion of the maintenance DNA methyltransferase DNMT1 in the murine epidermis results not only in the up-regulation of mobile elements, such as IAPs but also the induced expression of L1TD1 ([1], Suppl. Table 1 and Author response image 1). Similary, L1TD1 expression was induced by treatment of primary human keratinocytes or squamous cell carcinoma cells with the DNMT inhibitor azadeoxycytidine (Author response images 2 and 3). These findings are in accordance with the observation  that inhibition of DNA methyltransferase activity by aza-deoxycytidine in human non-small cell lung cancer cells (NSCLCs) results in up-regulation of L1TD1 [2]. Our interest in L1TD1 was further fueled by reports on a potential function of L1TD1 as prognostic tumor marker. We have included this information in the last paragraph of the Introduction in the revised manuscript.

      Author response image 1. RT-qPCR of L1TD1 expression in cultured murine control and Dnmt1 Δ/Δker keratinocytes. mRNA levels of L1td1 were analyzed in keratinocytes isolated at P5 from conditional Dnmt1 knockout mice [1]. Hprt expression was used for normalization of mRNA levels and wildtype control was set to 1. Data represent means ±s.d. with n=4. **P < 0.01 (paired t-test). 

      Author response image 2. RT-qPCR analysis of L1TD1 expression in primary human keratinocytes. Cells were treated with 5-aza-2-deoxycidine for 24 hours or 48 hours, with PBS for 48 hours or were left untreated. 18S rRNA expression was used for normalization of mRNA levels and PBS control was set to 1. Data represent means ±s.d. with n=3. **P < 0.01 (paired t-test).

      Author response image 3. Induced L1TD1 expression upon DNMT inhibition in squamous cell carcinoma cell lines SCC9 and SCCO12. Cells were treated with 5-aza-2-deoxycidine for 24 hours, 48 hours or 6 days. (A) Western blot analysis of L1TD1 protein levels using beta-actin as loading control. (B) Indirect immunofluorescence microscopy analysis of L1TD1 expression in SCC9 cells. Nuclear DNA was stained with DAPI. Scale bar: 10 µm. (C)  RT-qPCR analysis of L1TD1 expression in primary human keratinocytes. Cells were treated with 5-aza-2deoxycidine for 24 hours or 48 hours, with PBS for 48 hours or were left untreated. 18S rRNA expression was used for normalization of mRNA levels and PBS control was set to 1. Data represent means ±s.d. with n=3. *P < 0.05, **P < 0.01 (paired t-test).

      The finding that L1TD1/DNMT1 DKO cells exhibit increased apoptosis and DNA damage but decreased L1 retro-transposition is unexpected. Considering the DNA damage associated with retro-transposition and the DNA damage and apoptosis observed in L1TD1/DNMT1 DKO cells, one would anticipate the opposite outcome. Could it be that the observation of fewer transposition-positive colonies stems from the demise of the most transposition-positive colonies? Further exploration of this phenomenon would be intriguing. 

      This is an important point and we were aware of this potential problem. Therefore, we calibrated the retrotransposition assay by transfection with a blasticidin resistance gene vector to take into account potential differences in cell viability and blasticidin sensitivity. Thus, the observed reduction in L1 retrotransposition efficiency is not an indirect effect of reduced cell viability. We have added a corresponding clarification in the Results section on page 8, last paragraph. 

      Based on previous studies with hESCs and germ cell tumors [3], it is likely that, in addition to its role in retrotransposition, L1TD1 has further functions in the regulation of cell proliferation and differentiation. L1TD1 might therefore attenuate the effect of DNMT1 loss in KO cells generating an intermediate phenotype (as pointed out by Reviewer 2) and simultaneous loss of both L1TD1 and DNMT1 results in more pronounced effects on cell viability. This is in agreement with the observation that a subset of L1TD1 associated transcripts encode proteins involved in the control of cell division and cell cycle. It is possible that subtle changes in the expression of these protein that were not detected in our mass spectrometry approach contribute to the antiproliferative effect of L1TD1 depletion as discussed in the Discussion section of the revised manuscript. 

      Reviewer #2 (Public Review):           

      In this study, Kavaklıoğlu et al. investigated and presented evidence for the role of domesticated transposon protein L1TD1 in enabling its ancestral relative, L1 ORF1p, to retrotranspose in HAP1 human tumor cells. The authors provided insight into the molecular function of L1TD1 and shed some clarifying light on previous studies that showed somewhat contradictory outcomes surrounding L1TD1 expression. Here, L1TD1 expression was correlated with L1 activation in a hypomethylation-dependent manner, due to DNMT1 deletion in the HAP1 cell line. The authors then identified L1TD1-associated RNAs using RIP-Seq, which displays a disconnect between transcript and protein abundance (via Tandem Mass Tag multiplex mass spectrometry analysis). The one exception was for L1TD1 itself, which is consistent with a model in which the RNA transcripts associated with L1TD1 are not directly regulated at the translation level. Instead, the authors found the L1TD1 protein associated with L1-RNPs, and this interaction is associated with increased L1 retrotransposition, at least in the contexts of HAP1 cells. Overall, these results support a model in which L1TD1 is restrained by DNA methylation, but in the absence of this repressive mark, L1TD1 is expressed and collaborates with L1 ORF1p (either directly or through interaction with L1 RNA, which remains unclear based on current results), leads to enhances L1 retrotransposition. These results establish the feasibility of this relationship existing in vivo in either development, disease, or both.   

      Recommendations for the authors:

      Reviewer #2 (Recommendations For The Authors):        

      Major 

      (1) The study only used one knockout (KO) cell line generated by CRISPR/Cas9. Considering the possibility of an off-target effect, I suggest the authors attempt one or both of these suggestions. 

      A) Generate or acquire a similar DMNT1 deletion that uses distinct sgRNAs, so that the likelihood of off-targets is negligible. A few simple experiments such as qRT-PCR would be sufficient to suggest the same phenotype.  

      B) Confirm the DNMT1 depletion also by siRNA/ASO KD to phenocopy the KO effect.  (2) In addition to the strategies to demonstrate reproducibility, a rescue experiment restoring DNMT1 to the KO or KD cells would be more convincing. (Partial rescue would suffice in this case, as exact endogenous expression levels may be hard to replicate). 

      We have undertook several approaches to study the effect of DNMT1 loss or inactivation: As described above, we have generated a conditional KO mouse with ablation of DNMT1 in the epidermis. DNMT1-deficient keratinocytes isolated from these mice show a significant increase in L1TD1 expression.  In addition, treatment of primary human keratinocytes and two squamous cell carcinoma cell lines with the DNMT inhibitor aza-deoxycytidine led to upregulation of L1TD1 expression. Thus, the derepression of L1TD1 upon loss of DNMT1 expression or activity is not a clonal effect. Also, the spectrum of RNAs identified in RIP experiments as L1TD1-associated transcripts in HAP1 DNMT1 KO cells showed a strong overlap with the RNAs isolated by a related yet different method in human embryonic stem cells. When it comes to the effect of L1TD1 on L1-1 retrotranspostion, a recent study has reported a similar effect of L1TD1 upon overexpression in HeLa cells [4].  

      All of these points together help to convince us that our findings with HAP1 DNMT KO are in agreement with results obtained in various other cell systems and are therefore not due to off-target effects. With that in mind, we would pursue the suggestion of Reviewer 1 to analyze the effects of DNA hypomethylation upon DNMT1 ablation.

      (3) As stated in the introduction, L1TD1 and ORF1p share "sequence resemblance" (Martin 2006). Is the L1TD1 antibody specific or do we see L1 ORF1p if Fig 1C were uncropped?  (6) Is it possible the L1TD1 antibody binds L1 ORF1p? This could make Figure 2D somewhat difficult to interpret. Some validation of the specificity of the L1TD1 antibody would remove this concern (see minor concern below).  

      This is a relevant question. We are convinced that the L1TD1 antibody does not crossreact with L1 ORF1p for the following reasons: Firstly, the antibody does not recognize L1 ORF1p (40 kDa) in the  uncropped Western blot for Figure 1C (Author response image 4A). Secondly, the L1TD1 antibody gives only background signals in DKO cells in the  indirect immunofluorescence experiment shown in Figure 1E of the manuscript. 

      Thirdly, the immunogene sequence of L1TD1 that determines the specificity of the antibody was checked in the antibody data sheet from Sigma Aldrich. The corresponding epitope is not present in the L1 ORF1p sequence. Finally, we have shown that the ORF1p antibody does not cross-react with L1TD1 (Author response image 4B).

      Author response image 4. (A) Uncropped L1TD1 Western blot shown in Figure 1C. An unspecific band is indicated by an asterisk. (B) Westernblot analysis of WT, KO and DKO cells with L1 ORF1p antibody.

      (4) In abstract (P2), the authors mentioned that L1TD1 works as an RNA chaperone, but in the result section (P13), they showed that L1TD1 associates with L1 ORF1p in an RNAindependent manner. Those conclusions appear contradictory. Clarification or revision is required. 

      Our findings that both proteins bind L1 RNA, and that L1TD1 interacts with ORF1p are compatible with a scenario where L1TD1/ORF1p heteromultimers bind to L1 RNA. The additional presence of L1TD1 might thereby enhance the RNA chaperone function of ORF1p. This model is visualized now in Suppl. Figure S7C. 

      (5) Figure 2C fold enrichment for L1TD1 and ARMC1 is a bit difficult to fully appreciate. A 100 to 200-fold enrichment does not seem physiological. This appears to be a "divide by zero" type of result, as the CT for these genes was likely near 40 or undetectable. Another qRT-PCRbased approach (absolute quantification) would be a more revealing experiment. 

      This is the validation of the RIP experiments and the presentation mode is specifically developed for quantification of RIP assays (Sigma Aldrich RIP-qRT-PCR: Data Analysis Calculation Shell). The unspecific binding of the transcript in the absence of L1TD1 in DNMT1/L1TD1 DKO cells is set to 1 and the value in KO cells represents the specific binding relative the unspecific binding. The calculation also corrects for potential differences in the abundance of the respective transcript in the two cell lines. This is not a physiological value but the quantification of specific binding of transcripts to L1TD1. GAPDH as negative control shows no enrichment, whereas specifically associated transcripts show strong enrichement. We have explained the details of RIPqRT-PCR evaluation in Materials and Methods (page 14) and the legend of Figure 2C in the revised manuscript.       

      (6) Is it possible the L1TD1 antibody binds L1 ORF1p? This could make Figure 2D somewhat difficult to interpret. Some validation of the specificity of the L1TD1 antibody would remove this concern (see minor concern below).            

      See response to (3).  

      (7) Figure S4A and S4B: There appear to be a few unusual aspects of these figures that should be pointed out and addressed. First, there doesn't seem to be any ORF1p in the Input (if there is, the exposure is too low). Second, there might be some L1TD1 in the DKO (lane 2) and lane 3. This could be non-specific, but the size is concerning. Overexposure would help see this.

      The ORF1p IP gives rise to strong ORF1p signals in the immunoprecipitated complexes even after short exposure. Under these contions ORF1p is hardly detectable in the input. Regarding the faint band in DKO HAP1 cells, this might be due to a technical problem during Western blot loading. Therefore, the input samples were loaded again on a Western blot and analyzed for the presence of ORF1p, L1TD1 and beta-actin (as loading control) and shown as separate panel in Suppl. Figure S4A. 

      (8) Figure S4C: This is related to our previous concerns involving antibody cross-reactivity. Figure 3E partially addresses this, where it looks like the L1TD1 "speckles" outnumber the ORF1p puncta, but overlap with all of them. This might be consistent with the antibody crossreacting. The western blot (Figure 3C) suggests an upregulation of ORF1p by at least 2-3x in the DKO, but the IF image in 3E is hard to tell if this is the case (slightly more signal, but fewer foci). Can you return to the images and confirm the contrast are comparable? Can you massively overexpose the red channel in 3E to see if there is residual overlap? 

      In Figure 3E the L1TD1 antibody gives no signal in DNMT1/L1TD1 DKO cells confirming that it does not recognize ORF1p. In agreement with the Western blot in Figure 3C the L1 ORF1p signal in Figure 3E is stronger in DKO cells. In DNMT1 KO cells the L1 ORF1p antibody does not recognize all L1TD1 speckles. This result is in agreement with the Western blot shown above in Figure R4B and indicates that the L1 ORF1p antibody does not recognize the L1TD1 protein. The contrast is comparable and after overexposure there are still L1TD1 specific speckles. This might be due to differences in abundance of the two proteins.

      (9) The choice of ARMC1 and YY2 is unclear. What are the criteria for the selection?

      ARMC1 was one of the top hits in a pilot RIP-seq experiment (IP versus input and IP versus  IgG IP). In the actual RIP-seq experiment with DKO HAP1 cells instead of IgG IP as a negative control, we found ARMC1 as an enriched hit, although it was not among the top 5 hits. The results from the 2nd RIP-seq further confirmed the validity of ARMC1 as an L1TD1-interacting transcript. YY2 was of potential biological relevance as an L1TD1 target due to the fact that it is a processed pseudogene originating from YY1 mRNA as a result of retrotransposition. This is mentioned on page 6 of the revised manuscript.

      (10) (P16) L1 is the only protein-coding transposon that is active in humans. This is perhaps too generalized of a statement as written. Other examples are readily found in the literature. Please clarify.  

      We will tone down this statement in the revised manuscript. 

      (11) In both the abstract and last sentence in the discussion section (P17), embryogenesis is mentioned, but this is not addressed at all in the manuscript. Please refrain from implying normal biological functions based on the results of this study unless appropriate samples are used to support them.

      Much of the published data on L1TD1 function are related to embryonic stem cells [3-7]. Therefore, it is important to discuss our findings in the context of previous reports.

      (12) Figure 3E: The format of Figures 1A and 3E are internally inconsistent. Please present similar data/images in a cohesive way throughout the manuscript.  

      We show now consistent IF Figures in the revised manuscript.

      Minor: 

      (1) Intro:           

      - Is L1Td1 in mice and Humans? How "conserved" is it and does this suggest function?  

      Murine and human L1TD1 proteins share 44% identity on the amino acid level and it was suggested that the corresponding genes were under positive selection during evolution with functions in transposon control and maintenance of pluripotency [8].  

      - Why HAP1? (Haploid?) The importance of this cell line is not clear.          

      HAP1 is a nearly haploid human cancer cell line derived from the KBM-7 chronic myelogenous leukemia (CML) cell line [9, 10]. Due to its haploidy is perfectly suited and widely used for loss-of-function screens and gene editing. After gene editing  cells can be used in the nearly haploid or in the diploid state. We usually perform all experiments with diploid HAP1 cell lines.  Importantly, in contrast to other human tumor cell lines, this cell line tolerates ablation of DNMT1. We have included a corresponding explanation in the revised manuscript on page 5, first paragraph.

      - Global methylation status in DNMT1 KO? (Methylations near L1 insertions, for example?) 

      The HAP1 DNMT1 KO cell line with a 20 bp deletion in exon 4 used in our study was validated in the study by Smits et al. [11]. The authors report a significant reduction in overall DNA methylation. However, we are not aware of a DNA methylome study on this cell line. We show now data on the methylation of L1 elements in HAP1 cells and upon DNMT1 deletion in the revised manuscript in Suppl. Figure S1B.

      (2) Figure 1:  

      - Figure 1C. Why is LMNB used instead of Actin (Fig1D)?  

      We show now beta-actin as loading control in the revised manuscript.  

      - Figure 1G shows increased Caspase 3 in KO, while the matching sentence in the result section skips over this. It might be more accurate to mention this and suggest that the single KO has perhaps an intermediate phenotype (Figure 1F shows a slight but not significant trend). 

      We fully agree with the reviewer and have changed the sentence on page 6, 2nd paragraph accordingly.  

      - Would 96 hrs trend closer to significance? An interpretation is that L1TD1 loss could speed up this negative consequence. 

      We thank the reviewer for the suggestion. We have performed a time course experiment with 6 biological replicas for each time point up to 96 hours and found significant changes in the viability upon loss of DNMT1 and again significant reduction in viability upon additional loss of L1TD1 (shown in Figure 1F). These data suggest that as expexted loss of DNMT1 leads to significant reduction viability and that additional ablation of L1TD1 further enhances this effect.

      - What are the "stringent conditions" used to remove non-specific binders and artifacts (negative control subtraction?) 

      Yes, we considered only hits from both analyses, L1TD1 IP in KO versus input and L1TD1 IP in KO versus L1TD1 IP in DKO. This is now explained in more detail in the revised manuscript on page 6, 3rd paragraph.  

      (3) Figure 2:  

      - Figure 2A is a bit too small to read when printed. 

      We have changed this in the revised manuscript.

      - Since WT and DKO lack detectable L1TD1, would you expect any difference in RIP-Seq results between these two?

      Due to the lack of DNMT1 and the resulting DNA hypomethylation, DKO cells are more similar to KO cells than WT cells with respect to the expressed transcripts.

      - Legend says selected dots are in green (it appears blue to me). 

      We have changed this in the revised manuscript.           

      - Would you recover L1 ORF1p and its binding partners in the KO? (Is the antibody specific in the absence of L1TD1 or can it recognize L1?) I noticed an increase in ORF1p in the KO in Figure 3C.  

      Thank you for the suggestion. Yes, L1 ORF1p shows slightly increased expression in the proteome analysis and we have marked the corresponding dot in the Volcano plot (Figure 3A).

      - Should the figure panel reference near the (Rosspopoff & Trono) reference instead be Sup S1C as well? Otherwise, I don't think S1C is mentioned at all. 

      - What are the red vs. green dots in 2D? Can you highlight ERV and ALU with different colors? 

      We added the reference to Suppl. Figure S1C (now S3C) in the revised manuscript. In Figure 2D L1 elements are highlighted in green, ERV elements in yellow, and other associated transposon transcripts in red.     

      - Which L1 subfamily from Figure 2D is represented in the qRT-PCR in 2E "LINE-1"? Do the primers match a specific L1 subfamily? If so, which? 

      We used primers specific for the human L1.2 subfamily. 

      - Pulling down SINE element transcripts makes some sense, as many insertions "borrow" L1 sequences for non-autonomous retro transposition, but can you speculate as to why ERVs are recovered? There should be essentially no overlap in sequence. 

      In the L1TD1 evolution paper [8], a potential link between L1TD1 and ERV elements was discussed: 

      "Alternatively, L1TD1 in sigmodonts could play a role in genome defense against another element active in these genomes. Indeed, the sigmodontine rodents have a highly active family of ERVs, the mysTR elements [46]. Expansion of this family preceded the death of L1s, but these elements are very active, with 3500 to 7000 species-specific insertions in the L1-extinct species examined [47]. This recent ERV amplification in Sigmodontinae contrasts with the megabats (where L1TD1 has been lost in many species); there are apparently no highly active DNA or RNA elements in megabats [48]. If L1TD1 can suppress retroelements other than L1s, this could explain why the gene is retained in sigmodontine rodents but not in megabats." 

      Furthermore, Jin et al. report the binding of L1TD1 to repetitive sequences in transcripts [12]. It is possible that some of these sequences are also present in ERV RNAs.

      - Is S2B a screenshot? (the red underline). 

      No, it is a Powerpoint figure, and we have removed the red underline.

      (4) Figure 3: 

      - Text refers to Figure 3B as a western blot. Figure 3B shows a volcano plot. This is likely 3C but would still be out of order (3A>3C>3B referencing). I think this error is repeated in the last result section. 

      - Figure and legends fail to mention what gene was used for ddCT method (actin, gapdh, etc.). 

      - In general, the supplemental legends feel underwritten and could benefit from additional explanations. (Main figures are appropriate but please double-check that all statistical tests have been mentioned correctly).

      Thank you for pointing this out. We have corrected these errors in the revised manuscript.

      (5) Discussion: 

      -Aluy connection is interesting. Is there an "Alu retrotransposition reporter assay" to test whether L1TD1 enhances this as well? 

      Thank you for the suggestion. There is indeed an Alu retrotransposition reporter assay reported be Dewannieux et al. [13]. The assay is based on a Neo selection marker. We have previously tested a Neo selection-based L1 retrotransposition reporter assay, but this system failed to properly work in HAP1 cells, therefore we switched to a blasticidinbased L1 retrotransposition reporter assay. A corresponding blasticidin-based Alu retrotransposition reporter assay might be interesting for future studies (mentioned in the Discussion, page 11 paragraph 4 of the revised manuscript.

      (6) Material and Methods       : 

      - The number of typos in the materials and methods is too numerous to list. Instead, please refer to the next section that broadly describes the issues seen throughout the manuscript. 

      Writing style  

      (1) Keep a consistent style throughout the manuscript: for example, L1 or LINE-1 (also L1 ORF1p or LINE-1 ORF1p); per or "/"; knockout or knock-out; min or minute; 3 times or three times; media or medium. Additionally, as TE naming conventions are not uniform, it is important to maintain internal consistency so as to not accidentally establish an imprecise version. 

      (2) There's a period between "et al" and the comma, and "et al." should be italic. 

      (3) The authors should explain what the key jargon is when it is first used in the manuscript, such as "retrotransposon" and "retrotransposition".    

      (4) The authors should show the full spelling of some acronyms when they use it for the first time, such as RNA Immunoprecipitation (RIP).  

      (5) Use a space between numbers and alphabets, such as 5 µg.  

      (6) 2.0 × 105 cells, that's not an "x".  

      (7) Numbers in the reference section are lacking (hard to parse).  

      (8) In general, there are a significant number of typos in this draft which at times becomes distracting. For example, (P3) Introduction: Yet, co-option of TEs thorough (not thorough, it should be through) evolution has created so-called domesticated genes beneficial to the gene network in a wide range of organisms. Please carefully revise the entire manuscript for these minor issues that collectively erode the quality of this submission.  

      Thank you for pointing out these mistakes. We have corrected them in the revised manuscript. A native speaker from our research group has carefully checked the paper. In summary, we have added Supplementary Figure S7C and have changed Figures 1C, 1E, 1F, 2A, 2D, 3A, 4B, S3A-D, S4B and S6A based on these comments. 

      REFERENCES

      (1) Beck, M.A., et al., DNA hypomethylation leads to cGAS-induced autoinflammation in the epidermis. EMBO J, 2021. 40(22): p. e108234.

      (2) Altenberger, C., et al., SPAG6 and L1TD1 are transcriptionally regulated by DNA methylation in non-small cell lung cancers. Mol Cancer, 2017. 16(1): p. 1.

      (3) Narva, E., et al., RNA-binding protein L1TD1 interacts with LIN28 via RNA and is required for human embryonic stem cell self-renewal and cancer cell proliferation. Stem Cells, 2012. 30(3): p. 452-60.

      (4) Jin, S.W., et al., Dissolution of ribonucleoprotein condensates by the embryonic stem cell protein L1TD1. Nucleic Acids Res, 2024. 52(6): p. 3310-3326.

      (5) Emani, M.R., et al., The L1TD1 protein interactome reveals the importance of posttranscriptional regulation in human pluripotency. Stem Cell Reports, 2015. 4(3): p. 519-28.

      (6) Santos, M.C., et al., Embryonic Stem Cell-Related Protein L1TD1 Is Required for Cell Viability, Neurosphere Formation, and Chemoresistance in Medulloblastoma. Stem Cells Dev, 2015. 24(22): p. 2700-8.

      (7) Wong, R.C., et al., L1TD1 is a marker for undifferentiated human embryonic stem cells. PLoS One, 2011. 6(4): p. e19355.

      (8) McLaughlin, R.N., Jr., et al., Positive selection and multiple losses of the LINE-1-derived L1TD1 gene in mammals suggest a dual role in genome defense and pluripotency. PLoS Genet, 2014. 10(9): p. e1004531.

      (9) Andersson, B.S., et al., Ph-positive chronic myeloid leukemia with near-haploid conversion in vivo and establishment of a continuously growing cell line with similar cytogenetic pattern. Cancer Genet Cytogenet, 1987. 24(2): p. 335-43.

      (10) Carette, J.E., et al., Ebola virus entry requires the cholesterol transporter Niemann-Pick C1. Nature, 2011. 477(7364): p. 340-3.

      (11) Smits, A.H., et al., Biological plasticity rescues target activity in CRISPR knock outs. Nat Methods, 2019. 16(11): p. 1087-1093.

      (12) Jin, S.W., et al., Dissolution of ribonucleoprotein condensates by the embryonic stem cell protein L1TD1. Nucleic Acids Res, 2024.

      (13) Dewannieux, M., C. Esnault, and T. Heidmann, LINE-mediated retrotransposition of marked Alu sequences. Nat Genet, 2003. 35(1): p. 41-8.

    1. Brandt he made a statement that yesterday's breakthrough is today's graduate seminar is tomorrow's off-the-shelf home entertainment would that that were true but in fact yesterday's breakthrough is the thing that is most often forgotten it's not today's graduate seminar and it's definitely not tomorrow's home entertainment because what usually happens in the the grand tradition of Hollywood producers sitting around a table looking at a script and saying hey we've got ideas too too often people it's not a question of not invented here it's a question if I want to invent this myself and the if you look at the micro computers that are being sold today you'll see hardly anything that approximates the kind of total system design that the link had I think we all can realize that they are not sold as complete packages they're not sold as Honda's most of the things that you need can't even be plugged into them there are millions of wires to worry about and so forth but what is that may not be too surprising because after all that was a garage culture perhaps less forgivable

      we're not doing any better a computer out of the box doesn't do anything today without a whole set of payed software and subscriptions..

    1. Author Response:

      The following is the authors' response to the original reviews.

      Reviewer #1 (Public Review):

      The authors investigated state-dependent changes in evoked brain activity, using electrical stimulation combined with multisite neural activity across wakefulness and anesthesia. The approach is novel, and the results are compelling. The study benefits from an in-depth sophisticated analysis of neural signals. The effects of behavioral state on brain responses to stimulation are generally convincing.

      It is possible that the authors' use of "an average reference montage that removed signals common to all EEG electrodes" could also remove useful components of the signal, which are common across EEG electrodes, especially during deep anesthesia. For example, it is possible (in fact from my experience I would be surprised if it is not the case) that under isoflurane anesthesia, electrical stimulation induces a generalized slow wave or a burst of activity across the brain. Subtracting the average signal will simply remove that from all channels. This does not only result in signals under anesthesia being affected more by the referencing procedure than during waking but also will have different effects on different channels, e.g. depending on how strong the response is in a specific channel.

      We thank the reviewer for the positive comments and for raising this point. We do not believe that the average reference montage is obscuring an evoked slow wave in the isoflurane-anesthetized mice. Electrical stimulation did elicit a brief activation in nearby neurons that was followed by roughly 200 ms of quiescence, but no significant changes in firing in the other regions we recorded from (Author response image 1).

      Author response image 1

      ERP and evoked population activity during isoflurane anesthesia do not show evidence of global responses. (Top). ERP (-0.2 to +0.8 s around stimulus onset) with all EEG electrode traces superimposed. Data represented is the same: red traces have been processed with the average reference montage, black traces have not. (Bottom) Population mean firing rates from the areas of interest from the same experiment as above.

      We are familiar with the work from Dasilva et al. (2021), a study similar to ours because they also performed cortical electrical stimulation in mice anesthetized with isoflurane. They show widespread evoked multi-unit activity (derived from LFP) in isoflurane-anesthetized mice in response to electrical stimulation, but critical experimental differences may underlie the conflicting results presented in our study. Both works use similar levels of isoflurane to maintain anesthesia (we use a level roughly equivalent to their “deep” level). However, our experiments use only isoflurane, whereas Dasilva et al. induced anesthesia with ketamine and medetomidine followed by isoflurane. It has been shown that isoflurane and ketamine have different effects on neural dynamics (Sorrenti et al., 2021). Typically, isoflurane causes reduced spontaneous firing rates and decreased evoked response amplitudes compared to wakefulness, whereas ketamine has been shown to increase firing rates and evoked response amplitudes (Aasebø et al., 2017; Michelson & Kozai, 2018). Perhaps a more relevant difference are the electrical stimulation parameters used to perturb the brain. Dasilva et al. used 1 ms pulses of 500 μA, which would have a much larger effect than the stimulation used in this work, 0.2 ms pulses of 10-100 μA.

      Additionally, we would like to clarify that the average reference montage is not impacting the main findings of this work. As the reviewer correctly pointed out, the average reference montage does change the appearance of the ERP in the butterfly plots (Top panel in Author response image 1). However, all the quantitative analyses of the EEG-ERPs are performed on the global field power, computed by taking the standard deviation across all EEG channels, which is not affected by the average reference montage.

      Reviewer #2 (Public Review):

      […] The conclusions regarding the thalamic contributions to the ERP components are strongly supported by the data.

      The spatiotemporal complexity is almost a side point compared to what seems to be the most important point of the paper: showing the contribution of thalamic activity to some components of the cortical ERP. Scalp ERPs have long been regarded as purely cortical phenomena, just like most EEGs, and this study shows convincing evidence to the contrary.

      The data presented seemingly contradicts the results presented by Histed et al. (2009), who assert that cortical microstimulation only affects passing fibers near the tip of the electrodes, and results in distant, sparse, and somewhat random neural activation. In this study, it is clear that the maximum effect happens near the electrodes, decays with distance, and is not sparse at all, suggesting that not only passing fibers are activated but that also neuronal elements might be activated by antidromic propagation from the axonal hillock. This appears to offer proof that microstimulation might be much more effective than it was thought after the publication of Histed 2009, as the uber-successful use of DBS to treat Parkinson's disease has also shown.

      We thank the reviewer for their positive comments and thoughtful suggestions. We appreciate and agree with the reviewer’s perspective that the thalamic contribution to the cortical ERP is one of the key points of this study. We also thank the reviewer for their comment on the apparently contradictory results reported by Histed et al. (2009). This gives us the opportunity to further highlight the important contribution of our study to the field.

      First, we would like to highlight some key experimental differences between the two studies. In our study we used single pulse stimulation with currents between 10 and 100 μA, whereas Histed et al. used trains of pulses (100 ms in duration at 250 Hz) with lower current intensities (between 2 and 50 μA). We varied the depth of stimulation, targeting superficial and deep cortical layers; Histed et al. exclusively stimulated superficial cortical layers. In addition, the two studies used recording methods that are orthogonal in nature. We used Neuropixels probes that record from neurons that span all cortical layers depth-wise while Histed et al. used two-photon calcium imaging to record from a horizontal plane of neurons (again, in the superficial cortical layers).

      Because of these important methodological differences, it is more appropriate to compare the Histed et al. results to our results from superficial stimulation at comparable current intensities. In this case, we believe the two studies show similar results: stimulation activated a small fraction of neurons even hundreds of microns away from the stimulating electrode (see Figure 4A from our manuscript). However, our study adds an important observation pointing to the critical role of the depth of the stimulating electrode. We observe significant excitation of local cortical neurons (Figure 4D) and trans-synaptic activation of the thalamus only when we delivered deep stimulation (Figure5A). This effect is likely mediated by activation of large, myelinated cortico-thalamic fibers, which are thought to be more excitable that non-myelinated horizontal fibers (Tehovnik & Slocum, 2013).

      To summarize, Histed et al. (2009) concluded that microstimulation causes a sparse activation of a distributed set of neurons with little evidence of synaptically driven activation. Instead, we showed that microstimulation can robustly activate local neurons and trans-synaptically activate distant neurons when stronger stimuli are directed to deep cortical layers. Based on this, we conclude that electrical stimulation is indeed highly effective, and is a valid tool that can be used to probe and characterize the cortico-thalamo-cortical network of any behavioral state.

      ----------

      Reviewer #1 (Recommendations for the authors):

      1. I am not clear how "putative pyramidal" or RS and "putative inhibitory" fast-spiking neurons were identified. Please provide some further details on that, including average spike wave shapes, and distribution of firing rates, and it would be interesting to know the proportion of "putative" RS and FS neurons in your recorded population. Obviously, caution is warranted here because, without further work, you cannot be sure that those are indeed pyramidal cells or interneurons! Is this subdivision necessary at all?

      We added details regarding the cell-type classification to the Results (lines 136-140) and the Methods section. This classification is common practice in cortical extracellular electrophysiology recordings given that cell-type specific analyses can reveal important differences between the two putative populations (Barthó et al., 2004; Bortone et al., 2014; Bruno & Simons, 2002; Jia et al., 2016; Niell & Stryker, 2008; Sirota et al., 2008). Based on our findings that the two populations respond to electrical stimulation in similar ways (excitation followed by a period of quiescence and rebound excitation), we agree the subdivision is not necessary to support our conclusions. However, we believe that some readers will appreciate seeing the two putative populations presented separately.

      2. I wonder how the authors know whether the animals were awake, specifically when they were not running. Did you observe animals falling asleep when head-fixed? Providing some analyses of spontaneous EEG/LFP signals in each state could add some reassurance that only wakefulness was included, as intended.

      While we cannot conclusively rule out that mice were asleep during the “quiet wakefulness” periods we analyzed, we believe they are likely to be awake for two main reasons: 1) all the experiments are performed during the dark phase of the light/dark cycle, when the mice are less likely to enter a sleep state (Franken et al., 1999); 2) the animals are not undergoing specific training to promote drowsiness or sleep. Indeed, many sleep-focused studies in head-fixed mice are performed during the light phase of the animal’s cycle to maximize the likelihood of capturing sleep states (Kobayashi et al., 2023; Turner et al., 2020; Yüzgeç et al., 2018; Zhang et al., 2022). We have added this note to the Discussion section (lines 402-406).

      Because we do not specifically record during sleep states and our recording does not include electromyography, which is commonly used in conjunction with EEG to classify sleep stages, we cannot accurately perform spectral comparison between “quiet wakefulness” and sleep states in our recordings.

      3. I was unsure about the meaning of some of the terminology, specifically "rebound", "rebound spiking", "rebound excitation" etc. Why do you call it "rebound"?

      “Rebound” is a term often used to describe a period of enhanced spiking following a period of prolonged silence or inhibition (Guido & Weyand, 1995; Roux et al., 2014). Grenier et al. list “postinhibitory rebound excitation” as an intrinsic property of cortical and thalamic neurons (1998). We added this description to the text (lines 79-80).

      Reviewer #2 (Recommendations For The Authors):

      Regarding analysis, I would make three main points:

      Regarding the CSD analysis, I think the authors have done a good job of circumventing several of the known issues of this technique, especially by using ERPs rather than ongoing activity. However, although I do not immediately have access to the literature to back up this claim, I've heard that many assumptions behind CSD require a laminar structure with electrodes positioned perpendicular to these layers. In Figure 1B it seems like the neuropixels probe is not really perpendicular to the cortical layers, and I wonder if this might be an issue. I am also wondering how to interpret the thalamic CSD, as this structure is not laminar, lacks the mass of neatly stacked neuronal dipoles present in the cortex, and does not have an orderly array of synaptic inputs and outputs. I understand that CSD analysis helps minimize the contributions of volume conduction, but in this case, I also wonder if the thalamic CSD is even necessary to back up the paper's claims.

      One-dimensional CSD is computed assuming that the electrode is inserted perpendicular to cortex. This is mainly important for the interpretation of sinks and sources, since CSD can be also computed on radial voltages (e.g., EEG [Tenke & Kayser, 2012]). In general, our Neuropixels probes do not significantly deviate from perpendicular (mean deviation from perpendicular 15.3 degrees, minimum 5.2 degrees, and maximum 36.6 degrees). The probe represented in Figure 1B deviates from perpendicular by 31.2 degrees, which is an outlier compared to the rest of the insertions. Any deviation from perpendicular would result in the “effective” cortical thickness being larger by a factor of 1/cos(angle deviation from perpendicular) and thus would not affect the relative location of sources and sinks. We have added a statement to clarify this in the text (lines 126 and 454-456).

      We agree with the statement regarding CSD analysis in the thalamus. We originally included the CSD for the thalamus in Figure 2F for completeness. As the reviewer pointed out, thalamic CSD was not used to perform any subsequent analysis and is, therefore, not necessary to back up any claims. As such, we have removed CSD plot from Figure 2F to avoid any confusion and made a comment to this effect in the legend (lines 1175-1177).

      On the merits of using the z-score normalization for spike rates vs. other strategies like standardizing to maximum firing, I am aware that both procedures have limitations, but the z-score changes the range of the firing rate from [0, +Inf] to [-Inf, +Inf]. This does not seem correct considering that negative spiking rates do not exist. The standardization to maximum rate keeps the range within [0, 1], not creating negative rates. Another point that it will be worth discussing is the reported values of the z-scored values. For example, what does it mean to be 54 standard deviations away from the mean? 6 standard deviations is already a big distance from the mean.

      For Figure 2, we chose to represent the neural firing rates as z-scores because we found it important to report the magnitude of both the increase and decrease of the evoked firing rates in the post-stimulus period relative to the pre-stimulus rate. The normalization we used helps to visualize the magnitude of the effects of electrical stimulation in neuronal activity for both directions, which is an important result of the study. Despite the differences between the two normalization methods, the normalization based on the maximum firing does not significantly change the qualitative interpretation of Figure 2 in the manuscript (Author response image 2).

      Author response image 2

      Evoked firing rates for neurons in the areas of interest in response to deep stimulation in MO during the awake state. (Left) Firing rates of all neurons normalized by the average, pre-stimulus firing rate. (Right) Firing rates of all neurons normalized by the maximum post-stimulus firing rate.

      Regarding Figure 3 and the associated text, we would like to clarify that the magnitude metric is not simply a z-score value (with units of s.d.) but rather it is the integrated area under the z-scored response over the response window (with units of s.d.∙seconds). This can help explain why we see values of ~50 s.d.∙s. We chose to z-score firing rates, LFP, and CSD to normalize across the different signals and magnitudes of the evoked responses. We often observed the largest responses in the LFP (see Figure 3A), which may be partly due to the signal naturally having a larger dynamic range than the measured neural firing rates. Then we integrated the z-score response time series to capture the dynamic of the signal over the response window, rather than a static value such as the mean or maximum z-score. After performing a thorough literature search, we found no other ways to capture and compare the magnitudes of the different signals. We have added language to clarify the magnitude metric (lines 155-156) and added the appropriate units.

      In reporting the p-values, I recommend increasing the number of significant digits to four because the p-value seems to be the same for different tests in several places (e.g.: lines 207 to 218), which seems odd. I also wonder whether this could be an artifact of the z-scoring procedure. In the figures, I would like to advise the use of 1 asterisk to denote "weak evidence to reject the null hypothesis (0.05 > p > 0.01)" and two asterisks to denote "strong evidence to reject the null hypothesis (0.01 > p)", and make a note of it accordingly in the manuscript and/or figure legends.

      According to the reviewer’s suggestion, we have changed the statistics language to “* weak evidence to reject null hypothesis (0.05 > p > 0.01), ** strong evidence to reject null hypothesis (0.01 > p > 0.001), *** very strong evidence to reject null hypothesis (0.001 > p)” throughout the manuscript.

      We have also increased the number of significant digits to four throughout the manuscript. It is true that some of the p-values reported for Figure 3 (lines 169-180) are the same for different tests. This is not an artifact of the z-scoring, but rather a consequence of performing the Wilcoxon signed-rank test (an ordinal statistical test) with small sample numbers. Because the p-value depends only on the relative ordering, not the continuous distribution of values, the small sample size (N=6-14) increases the likelihood of obtaining the exact same p-value if the relative ordering of samples is the same.

      Line 202: If the magnitude corresponds to z-score data, please add "s.d." after the number, as z-scored values are expressed in standard deviation units. Please update this throughout the paper.

      As stated above the magnitude metric is the integrated area under the z-scored response over the response window (with units of s.d.∙seconds). We have added the correct units in all places.

      Line 214: Please report how the multiple comparisons correction was performed

      We have added the test used for multiple comparisons in line 169 (formerly line 214) and in the Methods section (line 770).

      Line 462: please replace "Neuropixels activity" with "LFP and single-unit activity".

      We changed the wording to specify “LFP, and single neuron responses…” (now line 337).

      Line 475: a short explanation of the bi-stability phenomena will be helpful for the reader.

      We added the following description: “a state characterized by spontaneous alternation between bouts of activity and periods of silence” (lines 350-351).

      Line 601: It is asserted that "Electrical stimulation directly activates local cells and axons that run near the stimulation site via activation of the axon initial segment" and the paper by Histed et al. 2009 is cited. This does not seem like an appropriate citation, as Histed et al. explicitly state that electrical microstimulation does not activate local neuronal bodies near the electrode tip. See my comment above.

      Upon further reading, we believe we are seeing evidence of direct axonal activation and subsequent antidromic activation of local cell bodies, as you suggested in your above comment and has been proposed by many including Histed et al. (2009) and Nowak and Bullier (1998). We edited our sentence accordingly, kept the Histed et al. citation, and added other relevant citations (lines 487-490).

      References

      • Aasebø, I. E. J., Lepperød, M. E., Stavrinou, M., Nøkkevangen, S., Einevoll, G., Hafting, T., & Fyhn, M. (2017). Temporal Processing in the Visual Cortex of the Awake and Anesthetized Rat. ENeuro, 4(4), 59–76. https://doi.org/10.1523/ENEURO.0059-17.2017

      • Barthó, P., Hirase, H., Monconduit, L., Zugaro, M., Harris, K. D., & Buzsáki, G. (2004). Characterization of Neocortical Principal Cells and Interneurons by Network Interactions and Extracellular Features. Journal of Neurophysiology, 92(1), 600–608. https://doi.org/10.1152/jn.01170.2003

      • Bortone, D. S., Olsen, S. R., & Scanziani, M. (2014). Translaminar Inhibitory Cells Recruited by Layer 6 Corticothalamic Neurons Suppress Visual Cortex. Neuron, 82, 474–485. https://doi.org/10.1016/j.neuron.2014.02.021

      • Bruno, R. M., & Simons, D. J. (2002). Feedforward Mechanisms of Excitatory and Inhibitory Cortical Receptive Fields. The Journal of Neuroscience, 22(24), 10966–10975. https://doi.org/10.1523/JNEUROSCI.22-24-10966.2002

      • Dasilva, M., Camassa, A., Navarro-Guzman, A., Pazienti, A., Perez-Mendez, L., Zamora-López, G., Mattia, M., & Sanchez-Vives, M. V. (2021). Modulation of cortical slow oscillations and complexity across anesthesia levels. NeuroImage, 224, 117415. https://doi.org/10.1016/j.neuroimage.2020.117415

      • Franken, P., Malafosse, A., & Tafti, M. (1999). Genetics of sleep regulation in mice-Franken et al Genetic Determinants of Sleep Regulation in Inbred Mice. SLEEP, 22(2). https://academic.oup.com/sleep/article/22/2/155/2731698

      • Grenier, F., Timofeev, I., & Steriade, M. (1998). Leading role of thalamic over cortical neurons during postinhibitory rebound excitation. Proceedings of the National Academy of Sciences of the United States of America, 95(23), 13929–13934. https://doi.org/10.1073/pnas.95.23.13929

      • Guido, W., & Weyand, T. (1995). Burst responses in thalamic relay cells of the awake behaving cat. Journal of Neurophysiology, 74(4), 1782–1786. https://doi.org/10.1152/JN.1995.74.4.1782

      • Histed, M. H., Bonin, V., & Reid, R. C. (2009). Direct Activation of Sparse, Distributed Populations of Cortical Neurons by Electrical Microstimulation. Neuron, 63(4), 508–522. https://doi.org/10.1016/j.neuron.2009.07.016

      • Jia, X., Siegle, J., Bennett, C., Gale, S., Denman, D. R., Koch, C., & Olsen, S. (2016). High-density extracellular probes reveal dendritic backpropagation and facilitate neuron classification 1 2. Journal of Neurophysiology, 121(5), 1831–1847. https://doi.org/10.1101/376863

      • Kobayashi, G., Tanaka, K. F., & Takata, N. (2023). Pupil Dynamics-derived Sleep Stage Classification of a Head-fixed Mouse Using a Recurrent Neural Network. The Keio Journal of Medicine, 2022-0020-OA. https://doi.org/10.2302/KJM.2022-0020-OA

      • Michelson, N. J., & Kozai, T. D. Y. (2018). Isoflurane and ketamine differentially influence spontaneous and evoked laminar electrophysiology in mouse V1. Journal of Neurophysiology, 120(5), 2232. https://doi.org/10.1152/JN.00299.2018

      • Niell, C. M., & Stryker, M. P. (2008). Highly selective receptive fields in mouse visual cortex. Journal of Neuroscience, 28(30), 7520–7536. https://doi.org/10.1523/JNEUROSCI.0623-08.2008

      • Nowak, L. G., & Bullier, J. (1998). Axons, but not cell bodies, are activated by electrical stimulation in cortical gray matter. II. Evidence from selective inactivation of cell bodies and axon initial segments. Experimental Brain Research, 118(4), 489–500. https://doi.org/10.1007/S002210050305/METRICS

      • Roux, L., Stark, E., Sjulson, L., & Buzsáki, G. (2014). In vivo optogenetic identification and manipulation of GABAergic interneuron subtypes. Current Opinion in Neurobiology, 26, 88–95. https://doi.org/10.1016/j.conb.2013.12.013

      • Sirota, A., Montgomery, S., Fujisawa, S., Isomura, Y., Zugaro, M., & Buzsáki, G. (2008). Entrainment of Neocortical Neurons and Gamma Oscillations by the Hippocampal Theta Rhythm. Neuron, 60(4), 683–697. https://doi.org/10.1016/j.neuron.2008.09.014

      • Sorrenti, V., Cecchetto, C., Maschietto, M., Fortinguerra, S., Buriani, A., & Vassanelli, S. (2021). Understanding the Effects of Anesthesia on Cortical Electrophysiological Recordings: A Scoping Review. International Journal of Molecular Sciences, 22(3), 1286. https://doi.org/10.3390/IJMS22031286

      • Tehovnik, E. J., & Slocum, W. M. (2013). Two-photon imaging and the activation of cortical neurons. Neuroscience, 245(March), 12–25. https://doi.org/10.1016/j.neuroscience.2013.04.022

      • Tenke, C. E., & Kayser, J. (2012). Generator localization by current source density (CSD): Implications of volume conduction and field closure at intracranial and scalp resolutions. Clinical Neurophysiology, 123(12), 2328–2345. https://doi.org/10.1016/J.CLINPH.2012.06.005

      • Turner, K. L., Gheres, K. W., Proctor, E. A., & Drew, P. J. (2020). Neurovascular coupling and bilateral connectivity during nrem and rem sleep. ELife, 9, 1. https://doi.org/10.7554/ELIFE.62071

      • Yüzgeç, Ö., Prsa, M., Zimmermann, R., & Huber, D. (2018). Pupil Size Coupling to Cortical States Protects the Stability of Deep Sleep via Parasympathetic Modulation. Current Biology, 28(3), 392. https://doi.org/10.1016/J.CUB.2017.12.049

      • Zhang, X., Landsness, E. C., Chen, W., Miao, H., Tang, M., Brier, L. M., Culver, J. P., Lee, J. M., & Anastasio, M. A. (2022). Automated sleep state classification of wide-field calcium imaging data via multiplex visibility graphs and deep learning. Journal of Neuroscience Methods, 366, 109421. https://doi.org/10.1016/J.JNEUMETH.2021.109421

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife Assessment

      This valuable study investigates how the neural representation of individual finger movements changes during the early period of sequence learning. By combining a new method for extracting features from human magnetoencephalography data and decoding analyses, the authors provide incomplete evidence of an early, swift change in the brain regions correlated with sequence learning, including a set of previously unreported frontal cortical regions. The addition of more control analyses to rule out that head movement artefacts influence the findings, and to further explain the proposal of offline contextualization during short rest periods as the basis for improvement performance would strengthen the manuscript.

      We appreciate the Editorial assessment on our paper’s strengths and novelty. We have implemented additional control analyses to show that neither task-related eye movements nor increasing overlap of finger movements during learning account for our findings, which are that contextualized neural representations in a network of bilateral frontoparietal brain regions actively contribute to skill learning. Importantly, we carried out additional analyses showing that contextualization develops predominantly during rest intervals.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      This study addresses the issue of rapid skill learning and whether individual sequence elements (here: finger presses) are differentially represented in human MEG data. The authors use a decoding approach to classify individual finger elements and accomplish an accuracy of around 94%. A relevant finding is that the neural representations of individual finger elements dynamically change over the course of learning. This would be highly relevant for any attempts to develop better brain machine interfaces - one now can decode individual elements within a sequence with high precision, but these representations are not static but develop over the course of learning.

      Strengths:

      The work follows a large body of work from the same group on the behavioural and neural foundations of sequence learning. The behavioural task is well established and neatly designed to allow for tracking learning and how individual sequence elements contribute. The inclusion of short offline rest periods between learning epochs has been influential because it has revealed that a lot, if not most of the gains in behaviour (ie speed of finger movements) occur in these socalled micro-offline rest periods. The authors use a range of new decoding techniques, and exhaustively interrogate their data in different ways, using different decoding approaches. Regardless of the approach, impressively high decoding accuracies are observed, but when using a hybrid approach that combines the MEG data in different ways, the authors observe decoding accuracies of individual sequence elements from the MEG data of up to 94%.

      We have previously showed that neural replay of MEG activity representing the practiced skill was prominent during rest intervals of early learning, and that the replay density correlated with micro-offline gains (Buch et al., 2021). These findings are consistent with recent reports (from two different research groups) that hippocampal ripple density increases during these inter-practice rest periods, and predict offline learning gains (Chen et al., 2024; Sjøgård et al., 2024). However, decoder performance in our earlier work (Buch et al., 2021) left room for improvement. Here, we reported a strategy to improve decoding accuracy that could benefit future studies of neural replay or BCI using MEG.

      Weaknesses:

      There are a few concerns which the authors may well be able to resolve. These are not weaknesses as such, but factors that would be helpful to address as these concern potential contributions to the results that one would like to rule out. Regarding the decoding results shown in Figure 2 etc, a concern is that within individual frequency bands, the highest accuracy seems to be within frequencies that match the rate of keypresses. This is a general concern when relating movement to brain activity, so is not specific to decoding as done here. As far as reported, there was no specific restraint to the arm or shoulder, and even then it is conceivable that small head movements would correlate highly with the vigor of individual finger movements. This concern is supported by the highest contribution in decoding accuracy being in middle frontal regions - midline structures that would be specifically sensitive to movement artefacts and don't seem to come to mind as key structures for very simple sequential keypress tasks such as this - and the overall pattern is remarkably symmetrical (despite being a unimanual finger task) and spatially broad. This issue may well be matching the time course of learning, as the vigor and speed of finger presses will also influence the degree to which the arm/shoulder and head move. This is not to say that useful information is contained within either of the frequencies or broadband data. But it raises the question of whether a lot is dominated by movement "artefacts" and one may get a more specific answer if removing any such contributions.

      Reviewer #1 expresses concern that the combination of the low-frequency narrow-band decoder results, and the bilateral middle frontal regions displaying the highest average intra-parcel decoding performance across subjects is suggestive that the decoding results could be driven by head movement or other artefacts.

      Head movement artefacts are highly unlikely to contribute meaningfully to our results for the following reasons. First, in addition to ICA denoising, all “recordings were visually inspected and marked to denoise segments containing other large amplitude artifacts due to movements” (see Methods). Second, the response pad was positioned in a manner that minimized wrist, arm or more proximal body movements during the task. Third, while online monitoring of head position was not performed for this study, it was assessed at the beginning and at the end of each recording. The head was restrained with an inflatable air bladder, and head movement between the beginning and end of each scan did not exceed 5mm for all participants included in the study.

      The Reviewer states a concern that “it is conceivable that small head movements would correlate highly with the vigor of individual finger movements”. We agree that despite the steps taken above, it is possible that minor head movements could still contribute to some remaining variance in the MEG data in our study. However, such correlations between small head movements and finger movements could only meaningfully contribute to decoding performance if: (A) they were consistent and pervasive throughout the recording (which might not be the case if the head movements were related to movement vigor and vigor changed over time); and (B) they systematically varied between different finger movements, and also between the same finger movement performed at different sequence locations (see 5-class decoding performance in Figure 4B). The possibility of any head movement artefacts meeting all these conditions is unlikely. Alternatively, for this task design a much more likely confound could be the contribution of eye movement artefacts to the decoder performance (an issue raised by Reviewer #3 in the comments below).

      Remember from Figure 1A in the manuscript that an asterisk marks the current position in the sequence and is updated at each keypress. Since participants make very few performance errors, the position of the asterisk on the display is highly correlated with the keypress being made in the sequence. Thus, it is possible that if participants are attending to the visual feedback provided on the display, they may generate eye movements that are systematically related to the task. Since we did record eye movements simultaneously with the MEG recordings (EyeLink 1000 Plus; Fs = 600 Hz), we were able to perform a control analysis to address this question. For each keypress event during trials in which no errors occurred (which is the same time-point that the asterisk position is updated), we extracted three features related to eye movements: 1) the gaze position at the time of asterisk position update (triggered by a KeyDown event), 2) the gaze position 150ms later, and 3) the peak velocity of the eye movement between the two positions. We then constructed a classifier from these features with the aim of predicting the location of the asterisk (ordinal positions 1-5) on the display. As shown in the confusion matrix below (Author response image 1), the classifier failed to perform above chance levels (overall cross-validated accuracy = 0.21817):

      Author response image 1.

      Confusion matrix showing that three eye movement features fail to predict asterisk position on the task display above chance levels (Fold 1 test accuracy = 0.21718; Fold 2 test accuracy = 0.22023; Fold 3 test accuracy = 0.21859; Fold 4 test accuracy = 0.22113; Fold 5 test accuracy = 0.21373; Overall cross-validated accuracy = 0.2181). Since the ordinal position of the asterisk on the display is highly correlated with the ordinal position of individual keypresses in the sequence, this analysis provides strong evidence that keypress decoding performance from MEG features is not explained by systematic relationships between finger movement behavior and eye movements (i.e. – behavioral artefacts) (end of figure legend).

      Remember that the task display does not provide explicit feedback related to performance, only information about the present position in the sequence. Thus, it is possible that participants did not actively attend to the feedback. In fact, inspection of the eye position data revealed that on majority of trials, participants displayed random-walk-like gaze patterns around a central fixation point located near the center of the screen. Thus, participants did not attend to the asterisk position on the display, but instead intrinsically generated the action sequence. A similar realworld example would be manually inputting a long password into a secure online application. In this case, one intrinsically generates the sequence from memory and receives similar feedback about the password sequence position (also provided as asterisks) as provided in the study task – feedback which is typically ignored by the user.

      The minimal participant engagement with the visual task display observed in this study highlights another important point – that the behavior in explicit sequence learning motor tasks is highly generative in nature rather than reactive to stimulus cues as in the serial reaction time task (SRTT). This is a crucial difference that must be carefully considered when designing investigations and comparing findings across studies.

      We observed that initial keypress decoding accuracy was predominantly driven by contralateral primary sensorimotor cortex in the initial practice trials before transitioning to bilateral frontoparietal regions by trials 11 or 12 as performance gains plateaued. The contribution of contralateral primary sensorimotor areas to early skill learning has been extensively reported in humans and non-human animals.(Buch et al., 2021; Classen et al., 1998; Karni et al., 1995; Kleim et al., 1998) Similarly, the increased involvement of bilateral frontal and parietal regions to decoding during early skill learning in the non-dominant hand is well known. Enhanced bilateral activation in both frontal and parietal cortex during skill learning has been extensively reported (Doyon et al., 2002; Grafton et al., 1992; Hardwick et al., 2013; Kennerley et al., 2004; Shadmehr & Holcomb, 1997; Toni, Ramnani, et al., 2001), and appears to be even more prominent during early fine motor skill learning in the non-dominant hand (Lee et al., 2019; Sawamura et al., 2019). The frontal regions identified in these studies are known to play crucial roles in executive control (Battaglia-Mayer & Caminiti, 2019), motor planning (Toni, Thoenissen, et al., 2001), and working memory (Andersen & Buneo, 2002; Buneo & Andersen, 2006; Shadmehr & Holcomb, 1997; Toni, Ramnani, et al., 2001; Wolpert et al., 1998) processes, while the same parietal regions are known to integrate multimodal sensory feedback and support visuomotor transformations (Andersen & Buneo, 2002; Buneo & Andersen, 2006; Shadmehr & Holcomb, 1997; Toni, Ramnani, et al., 2001; Wolpert et al., 1998), in addition to working memory (Grover et al., 2022). Thus, it is not surprising that these regions increasingly contribute to decoding as subjects internalize the sequential task. We now include a statement reflecting these considerations in the revised Discussion.

      A somewhat related point is this: when combining voxel and parcel space, a concern is whether a degree of circularity may have contributed to the improved accuracy of the combined data, because it seems to use the same MEG signals twice - the voxels most contributing are also those contributing most to a parcel being identified as relevant, as parcels reflect the average of voxels within a boundary. In this context, I struggled to understand the explanation given, ie that the improved accuracy of the hybrid model may be due to "lower spatially resolved whole-brain and higher spatially resolved regional activity patterns".

      We disagree with the Reviewer’s assertion that the construction of the hybrid-space decoder is circular for the following reasons. First, the base feature set for the hybrid-space decoder constructed for all participants includes whole-brain spatial patterns of MEG source activity averaged within parcels. As stated in the manuscript, these 148 inter-parcel features reflect “lower spatially resolved whole-brain activity patterns” or global brain dynamics. We then independently test how well spatial patterns of MEG source activity for all voxels distributed within individual parcels can decode keypress actions. Again, the testing of these intra-parcel spatial patterns, intended to capture “higher spatially resolved regional brain activity patterns”, is completely independent from one another and independent from the weighting of individual inter-parcel features. These intra-parcel features could, for example, provide additional information about muscle activation patterns or the task environment. These approximately 1150 intra-parcel voxels (on average, within the total number varying between subjects) are then combined with the 148 inter-parcel features to construct the final hybrid-space decoder. In fact, this varied spatial filter approach shares some similarities to the construction of convolutional neural networks (CNNs) used to perform object recognition in image classification applications (Srinivas et al., 2016). One could also view this hybrid-space decoding approach as a spatial analogue to common timefrequency based analyses such as theta-gamma phase amplitude coupling (θ/γ PAC), which assess interactions between two or more narrow-band spectral features derived from the same time-series data (Lisman & Jensen, 2013).

      We directly tested this hypothesis – that spatially overlapping intra- and inter-parcel features portray different information – by constructing an alternative hybrid-space decoder (Hybrid<sub>Alt</sub>) that excluded average inter-parcel features which spatially overlapped with intra-parcel voxel features, and comparing the performance to the decoder used in the manuscript (Hybrid<sub>Orig</sub>). The prediction was that if the overlapping parcel contained similar information to the more spatially resolved voxel patterns, then removing the parcel features (n=8) from the decoding analysis should not impact performance. In fact, despite making up less than 1% of the overall input feature space, removing those parcels resulted in a significant drop in overall performance greater than 2% (78.15% ± 7.03% SD for Hybrid<sub>Orig</sub> vs. 75.49% ± 7.17% for Hybrid<sub>Alt</sub>; Wilcoxon signed rank test, z = 3.7410, p = 1.8326e-04; Author response image 2).

      Author response image 2.

      Comparison of decoding performances with two different hybrid approaches. Hybrid<sub>Alt</sub>: Intra-parcel voxel-space features of top ranked parcels and inter-parcel features of remaining parcels. Hybrid<sub>Orig</sub>: Voxel-space features of top ranked parcels and whole-brain parcel-space features (i.e. – the version used in the manuscript). Dots represent decoding accuracy for individual subjects. Dashed lines indicate the trend in performance change across participants. Note, that Hybrid<sub>Orig</sub> (the approach used in our manuscript) significantly outperforms the Hybrid<sub>Alt</sub> approach, indicating that the excluded parcel features provide unique information compared to the spatially overlapping intra-parcel voxel patterns (end of figure legend).

      Firstly, there will be a relatively high degree of spatial contiguity among voxels because of the nature of the signal measured, i.e. nearby individual voxels are unlikely to be independent. Secondly, the voxel data gives a somewhat misleading sense of precision; the inversion can be set up to give an estimate for each voxel, but there will not just be dependence among adjacent voxels, but also substantial variation in the sensitivity and confidence with which activity can be projected to different parts of the brain. Midline and deeper structures come to mind, where the inversion will be more problematic than for regions along the dorsal convexity of the brain, and a concern is that in those midline structures, the highest decoding accuracy is seen.

      We agree with the Reviewer that some inter-parcel features representing neighboring (or spatially contiguous) voxels are likely to be correlated, an important confound in connectivity analyses (Colclough et al., 2015; Colclough et al., 2016), not performed in our investigation.

      In our study, correlations between adjacent voxels effectively reduce the dimensionality of the input feature space. However, as long as there are multiple groups of correlated voxels within each parcel (i.e. – the rank is greater than 1), the intra-parcel spatial patterns could meaningfully contribute to the decoder performance, as shown by the following results:

      First, we obtained higher decoding accuracy with voxel-space features (74.51% ± 7.34% SD) compared to parcel space features (68.77% ± 7.6%; Figure 3B), indicating individual voxels carry more information in decoding the keypresses than the averaged voxel-space features or parcel space features. Second, individual voxels within a parcel showed varying feature importance scores in decoding keypresses (Author response image 3). This finding shows that correlated voxels form mini subclusters that are much smaller spatially than the parcel they reside within.

      Author response image 3.:

      Feature importance score of individual voxels in decoding keypresses: MRMR was used to rank the individual voxel space features in decoding keypresses and the min-max normalized MRMR score was mapped to a structural brain surface. Note that individual voxels within a parcel showed different contribution to decoding (end of figure legend).

      Some of these concerns could be addressed by recording head movement (with enough precision) to regress out these contributions. The authors state that head movement was monitored with 3 fiducials, and their time courses ought to provide a way to deal with this issue. The ICA procedure may not have sufficiently dealt with removing movement-related problems, but one could eg relate individual components that were identified to the keypresses as another means for checking. An alternative could be to focus on frequency ranges above the movement frequencies. The accuracy for those still seems impressive and may provide a slightly more biologically plausible assessment.

      We have already addressed the issue of movement related artefacts in the first response above. With respect to a focus on frequency ranges above movement frequencies, the Reviewer states the “accuracy for those still seems impressive and may provide a slightly more biologically plausible assessment”. First, it is important to note that cortical delta-band oscillations measured with local field potentials (LFPs) in macaques is known to contain important information related to end-effector kinematics (Bansal et al., 2011; Mollazadeh et al., 2011) muscle activation patterns (Flint et al., 2012) and temporal sequencing (Churchland et al., 2012) during skilled reaching and grasping actions. Thus, there is a substantial body of evidence that low-frequency neural oscillatory activity in this range contains important information about the skill learning behavior investigated in the present study. Second, our own data shows (which the Reviewer also points out) that significant information related to the skill learning behavior is also present in higher frequency bands (see Figure 2A and Figure 3—figure supplement 1). As we pointed out in our earlier response to questions about the hybrid space decoder architecture (see above), it is likely that different, yet complimentary, information is encoded across different temporal frequencies (just as it is encoded across different spatial frequencies) (Heusser et al., 2016). Again, this interpretation is supported by our data as the highest performing classifiers in all cases (when holding all parameters constant) were always constructed from broadband input MEG data (Figure 2A and Figure 3—figure supplement 1).

      One question concerns the interpretation of the results shown in Figure 4. They imply that during the course of learning, entirely different brain networks underpin the behaviour. Not only that, but they also include regions that would seem rather unexpected to be key nodes for learning and expressing relatively simple finger sequences, such as here. What then is the biological plausibility of these results? The authors seem to circumnavigate this issue by moving into a distance metric that captures the (neural network) changes over the course of learning, but the discussion seems detached from which regions are actually involved; or they offer a rather broad discussion of the anatomical regions identified here, eg in the context of LFOs, where they merely refer to "frontoparietal regions".

      The Reviewer notes the shift in brain networks driving keypress decoding performance between trials 1, 11 and 36 as shown in Figure 4A. The Reviewer questions whether these shifts in brain network states underpinning the skill are biologically plausible, as well as the likelihood that bilateral superior and middle frontal and parietal cortex are important nodes within these networks.

      First, previous fMRI work in humans assessed changes in functional connectivity patterns while participants performed a similar sequence learning task to our present study (Bassett et al., 2011). Using a dynamic network analysis approach, Bassett et al. showed that flexibility in the composition of individual network modules (i.e. – changes in functional brain region membership of orthogonal brain networks) is up-regulated in novel learning environments and explains differences in learning rates across individuals. Thus, consistent with our findings, it is likely that functional brain networks rapidly reconfigure during early learning of novel sequential motor skills.

      Second, frontoparietal network activity is known to support motor memory encoding during early learning (Albouy et al., 2013; Albouy et al., 2012). For example, reactivation events in the posterior parietal (Qin et al., 1997) and medial prefrontal (Euston et al., 2007; Molle & Born, 2009) cortex (MPFC) have been temporally linked to hippocampal replay, and are posited to support memory consolidation across several memory domains (Frankland & Bontempi, 2005), including motor sequence learning (Albouy et al., 2015; Buch et al., 2021; F. Jacobacci et al., 2020). Further, synchronized interactions between MPFC and hippocampus are more prominent during early as opposed to later learning stages (Albouy et al., 2013; Gais et al., 2007; Sterpenich et al., 2009), perhaps reflecting “redistribution of hippocampal memories to MPFC” (Albouy et al., 2013). MPFC contributes to very early memory formation by learning association between contexts, locations, events and adaptive responses during rapid learning (Euston et al., 2012). Consistently, coupling between hippocampus and MPFC has been shown during initial memory encoding and during subsequent rest (van Kesteren et al., 2010; van Kesteren et al., 2012). Importantly, MPFC activity during initial memory encoding predicts subsequent recall (Wagner et al., 1998). Thus, the spatial map required to encode a motor sequence memory may be “built under the supervision of the prefrontal cortex” (Albouy et al., 2012), also engaged in the development of an abstract representation of the sequence (Ashe et al., 2006). In more abstract terms, the prefrontal, premotor and parietal cortices support novice performance “by deploying attentional and control processes” (Doyon et al., 2009; Hikosaka et al., 2002; Penhune & Steele, 2012) required during early learning (Doyon et al., 2009; Hikosaka et al., 2002; Penhune & Steele, 2012). The dorsolateral prefrontal cortex DLPFC specifically is thought to engage in goal selection and sequence monitoring during early skill practice (Schendan et al., 2003), all consistent with the schema model of declarative memory in which prefrontal cortices play an important role in encoding (Morris, 2006; Tse et al., 2007). Thus, several prefrontal and frontoparietal regions contributing to long term learning (Berlot et al., 2020) are also engaged in early stages of encoding. Altogether, there is strong biological support for the involvement of bilateral prefrontal and frontoparietal regions to decoding during early skill learning. We now address this issue in the revised manuscript.

      If I understand correctly, the offline neural representation analysis is in essence the comparison of the last keypress vs the first keypress of the next sequence. In that sense, the activity during offline rest periods is actually not considered. This makes the nomenclature somewhat confusing. While it matches the behavioural analysis, having only key presses one can't do it in any other way, but here the authors actually do have recordings of brain activity during offline rest. So at the very least calling it offline neural representation is misleading to this reviewer because what is compared is activity during the last and during the next keypress, not activity during offline periods. But it also seems a missed opportunity - the authors argue that most of the relevant learning occurs during offline rest periods, yet there is no attempt to actually test whether activity during this period can be useful for the questions at hand here.

      We agree with the Reviewer that our previous “offline neural representation” nomenclature could be misinterpreted. In the revised manuscript we refer to this difference as the “offline neural representational change”. Please, note that our previous work did link offline neural activity (i.e. – 16-22 Hz beta power (Bonstrup et al., 2019) and neural replay density (Buch et al., 2021) during inter-practice rest periods) to observed micro-offline gains.

      Reviewer #2 (Public review):

      Summary

      Dash et al. asked whether and how the neural representation of individual finger movements is "contextualized" within a trained sequence during the very early period of sequential skill learning by using decoding of MEG signal. Specifically, they assessed whether/how the same finger presses (pressing index finger) embedded in the different ordinal positions of a practiced sequence (4-1-3-2-4; here, the numbers 1 through 4 correspond to the little through the index fingers of the non-dominant left hand) change their representation (MEG feature). They did this by computing either the decoding accuracy of the index finger at the ordinal positions 1 vs. 5 (index_OP1 vs index_OP5) or pattern distance between index_OP1 vs. index_OP5 at each training trial and found that both the decoding accuracy and the pattern distance progressively increase over the course of learning trials. More interestingly, they also computed the pattern distance for index_OP5 for the last execution of a practice trial vs. index_OP1 for the first execution in the next practice trial (i.e., across the rest period). This "off-line" distance was significantly larger than the "on-line" distance, which was computed within practice trials and predicted micro-offline skill gain. Based on these results, the authors conclude that the differentiation of representation for the identical movement embedded in different positions of a sequential skill ("contextualization") primarily occurs during early skill learning, especially during rest, consistent with the recent theory of the "micro-offline learning" proposed by the authors' group. I think this is an important and timely topic for the field of motor learning and beyond.

      Strengths

      The specific strengths of the current work are as follows. First, the use of temporally rich neural information (MEG signal) has a large advantage over previous studies testing sequential representations using fMRI. This allowed the authors to examine the earliest period (= the first few minutes of training) of skill learning with finer temporal resolution. Second, through the optimization of MEG feature extraction, the current study achieved extremely high decoding accuracy (approx. 94%) compared to previous works. As claimed by the authors, this is one of the strengths of the paper (but see my comments). Third, although some potential refinement might be needed, comparing "online" and "offline" pattern distance is a neat idea.

      Weaknesses

      Along with the strengths I raised above, the paper has some weaknesses. First, the pursuit of high decoding accuracy, especially the choice of time points and window length (i.e., 200 msec window starting from 0 msec from key press onset), casts a shadow on the interpretation of the main result. Currently, it is unclear whether the decoding results simply reflect behavioral change or true underlying neural change. As shown in the behavioral data, the key press speed reached 3~4 presses per second already at around the end of the early learning period (11th trial), which means inter-press intervals become as short as 250-330 msec. Thus, in almost more than 60% of training period data, the time window for MEG feature extraction (200 msec) spans around 60% of the inter-press intervals. Considering that the preparation/cueing of subsequent presses starts ahead of the actual press (e.g., Kornysheva et al., 2019) and/or potential online planning (e.g., Ariani and Diedrichsen, 2019), the decoder likely has captured these future press information as well as the signal related to the current key press, independent of the formation of genuine sequential representation (e.g., "contextualization" of individual press). This may also explain the gradual increase in decoding accuracy or pattern distance between index_OP1 vs. index_OP5 (Figure 4C and 5A), which co-occurred with performance improvement, as shorter inter-press intervals are more favorable for the dissociating the two index finger presses followed by different finger presses. The compromised decoding accuracies for the control sequences can be explained in similar logic. Therefore, more careful consideration and elaborated discussion seem necessary when trying to both achieve high-performance decoding and assess early skill learning, as it can impact all the subsequent analyses.

      The Reviewer raises the possibility that (given the windowing parameters used in the present study) an increase in “contextualization” with learning could simply reflect faster typing speeds as opposed to an actual change in the underlying neural representation.

      We now include a new control analysis that addresses this issue as well as additional re-examination of previously reported results with respect to this issue – all of which are inconsistent with this alternative explanation that “contextualization” reflects a change in mixing of keypress related MEG features as opposed to a change in the underlying representations themselves. As correct sequences are generated at higher and higher speeds over training, MEG activity patterns related to the planning, execution, evaluation and memory of individual keypresses overlap more in time. Thus, increased overlap between the “4” and “1” keypresses (at the start of the sequence) and “2” and “4” keypresses (at the end of the sequence) could artefactually increase contextualization distances even if the underlying neural representations for the individual keypresses remain unchanged. One must also keep in mind that since participants repeat the sequence multiple times within the same trial, a majority of the index finger keypresses are performed adjacent to one another (i.e. - the “4-4” transition marking the end of one sequence and the beginning of the next). Thus, increased overlap between consecutive index finger keypresses as typing speed increased should increase their similarity and mask contextualization related changes to the underlying neural representations.

      We addressed this question by conducting a new multivariate regression analysis to directly assess whether the neural representation distance score could be predicted by the 4-1, 2-4 and 4-4 keypress transition times observed for each complete correct sequence (both predictor and response variables were z-score normalized within-subject). The results of this analysis also affirmed that the possible alternative explanation that contextualization effects are simple reflections of increased mixing is not supported by the data (Adjusted R<sup>2</sup> = 0.00431; F = 5.62). We now include this new negative control analysis in the revised manuscript.

      We also re-examined our previously reported classification results with respect to this issue. We reasoned that if mixing effects reflecting the ordinal sequence structure is an important driver of the contextualization finding, these effects should be observable in the distribution of decoder misclassifications. For example, “4” keypresses would be more likely to be misclassified as “1” or “2” keypresses (or vice versa) than as “3” keypresses. The confusion matrices presented in Figures 3C and 4B and Figure 3—figure supplement 3A display a distribution of misclassifications that is inconsistent with an alternative mixing effect explanation of contextualization.

      Based upon the increased overlap between adjacent index finger keypresses (i.e. – “4-4” transition), we also reasoned that the decoder tasked with separating individual index finger keypresses into two distinct classes based upon sequence position, should show decreased performance as typing speed increases. However, Figure 4C in our manuscript shows that this is not the case. The 2-class hybrid classifier actually displays improved classification performance over early practice trials despite greater temporal overlap. Again, this is inconsistent with the idea that the contextualization effect simply reflects increased mixing of individual keypress features.

      In summary, both re-examination of previously reported data and new control analyses all converged on the idea that the proximity between keypresses does not explain contextualization.

      We do agree with the Reviewer that the naturalistic, generative, self-paced task employed in the present study results in overlapping brain processes related to planning, execution, evaluation and memory of the action sequence. We also agree that there are several tradeoffs to consider in the construction of the classifiers depending on the study aim. Given our aim of optimizing keypress decoder accuracy in the present study, the set of trade-offs resulted in representations reflecting more the latter three processes, and less so the planning component. Whether separate decoders can be constructed to tease apart the representations or networks supporting these overlapping processes is an important future direction of research in this area. For example, work presently underway in our lab constrains the selection of windowing parameters in a manner that allows individual classifiers to be temporally linked to specific planning, execution, evaluation or memory-related processes to discern which brain networks are involved and how they adaptively reorganize with learning. Results from the present study (Figure 4—figure supplement 2) showing hybrid-space decoder prediction accuracies exceeding 74% for temporal windows spanning as little as 25ms and located up to 100ms prior to the KeyDown event strongly support the feasibility of such an approach.

      Related to the above point, testing only one particular sequence (4-1-3-2-4), aside from the control ones, limits the generalizability of the finding. This also may have contributed to the extremely high decoding accuracy reported in the current study.

      The Reviewer raises a question about the generalizability of the decoder accuracy reported in our study. Fortunately, a comparison between decoder performances on Day 1 and Day 2 datasets does provide insight into this issue. As the Reviewer points out, the classifiers in this study were trained and tested on keypresses performed while practicing a specific sequence (4-1-3-2-4). The study was designed this way as to avoid the impact of interference effects on learning dynamics. The cross-validated performance of classifiers on MEG data collected within the same session was 90.47% overall accuracy (4-class; Figure 3C). We then tested classifier performance on data collected during a separate MEG session conducted approximately 24 hours later (Day 2; see Figure 3 — figure supplement 3). We observed a reduction in overall accuracy rate to 87.11% when tested on MEG data recorded while participants performed the same learned sequence, and 79.44% when they performed several previously unpracticed sequences. Both changes in accuracy are important with regards to the generalizability of our findings. First, 87.11% performance accuracy for the trained sequence data on Day 2 (a reduction of only 3.36%) indicates that the hybrid-space decoder performance is robust over multiple MEG sessions, and thus, robust to variations in SNR across the MEG sensor array caused by small differences in head position between scans. This indicates a substantial advantage over sensor-space decoding approaches. Furthermore, when tested on data from unpracticed sequences, overall performance dropped an additional 7.67%. This difference reflects the performance bias of the classifier for the trained sequence, possibly caused by high-order sequence structure being incorporated into the feature weights. In the future, it will be important to understand in more detail how random or repeated keypress sequence training data impacts overall decoder performance and generalization. We strongly agree with the Reviewer that the issue of generalizability is extremely important and have added a new paragraph to the Discussion in the revised manuscript highlighting the strengths and weaknesses of our study with respect to this issue.

      In terms of clinical BCI, one of the potential relevance of the study, as claimed by the authors, it is not clear that the specific time window chosen in the current study (up to 200 msec since key press onset) is really useful. In most cases, clinical BCI would target neural signals with no overt movement execution due to patients' inability to move (e.g., Hochberg et al., 2012). Given the time window, the surprisingly high performance of the current decoder may result from sensory feedback and/or planning of subsequent movement, which may not always be available in the clinical BCI context. Of course, the decoding accuracy is still much higher than chance even when using signal before the key press (as shown in Figure 4 Supplement 2), but it is not immediately clear to me that the authors relate their high decoding accuracy based on post-movement signal to clinical BCI settings.

      The Reviewer questions the relevance of the specific window parameters used in the present study for clinical BCI applications, particularly for paretic patients who are unable to produce finger movements or for whom afferent sensory feedback is no longer intact. We strongly agree with the Reviewer that any intended clinical application must carefully consider the specific input feature constraints dictated by the clinical cohort, and in turn impose appropriate and complimentary constraints on classifier parameters that may differ from the ones used in the present study. We now highlight this issue in the Discussion of the revised manuscript and relate our present findings to published clinical BCI work within this context.

      One of the important and fascinating claims of the current study is that the "contextualization" of individual finger movements in a trained sequence specifically occurs during short rest periods in very early skill learning, echoing the recent theory of micro-offline learning proposed by the authors' group. Here, I think two points need to be clarified. First, the concept of "contextualization" is kept somewhat blurry throughout the text. It is only at the later part of the Discussion (around line #330 on page 13) that some potential mechanism for the "contextualization" is provided as "what-and-where" binding. Still, it is unclear what "contextualization" actually is in the current data, as the MEG signal analyzed is extracted from 0-200 msec after the keypress. If one thinks something is contextualizing an action, that contextualization should come earlier than the action itself.

      The Reviewer requests that we: 1) more clearly define our use of the term “contextualization” and 2) provide the rationale for assessing it over a 200ms window aligned to the KeyDown event. This choice of window parameters means that the MEG activity used in our analysis was coincident with, rather than preceding, the actual keypresses. We define contextualization as the differentiation of representation for the identical movement embedded in different positions of a sequential skill. That is, representations of individual action elements progressively incorporate information about their relationship to the overall sequence structure as the skill is learned. We agree with the Reviewer that this can be appropriately interpreted as “what-and-where” binding. We now incorporate this definition in the Introduction of the revised manuscript as requested.

      The window parameters for optimizing accurate decoding individual finger movements were determined using a grid search of the parameter space (a sliding window of variable width between 25-350 ms with 25 ms increments variably aligned from 0 to +100ms with 10ms increments relative to the KeyDown event). This approach generated 140 different temporal windows for each keypress for each participant, with the final parameter selection determined through comparison of the resulting performance between each decoder. Importantly, the decision to optimize for decoding accuracy placed an emphasis on keypress representations characterized by the most consistent and robust features shared across subjects, which in turn maximize statistical power in detecting common learning-related changes. In this case, the optimal window encompassed a 200ms epoch aligned to the KeyDown event (t<sub>0</sub> = 0 ms). We then asked if the representations (i.e. – spatial patterns of combined parcel- and voxel-space activity) of the same digit at two different sequence positions changed with practice within this optimal decoding window. Of course, our findings do not rule out the possibility that contextualization can also be found before or even after this time window, as we did not directly address this issue in the present study. Future work in our lab, as pointed out above, are investigating contextualization within different time windows tailored specifically for assessing sequence skill action planning, execution, evaluation and memory processes.

      The second point is that the result provided by the authors is not yet convincing enough to support the claim that "contextualization" occurs during rest. In the original analysis, the authors presented the statistical significance regarding the correlation between the "offline" pattern differentiation and micro-offline skill gain (Figure 5. Supplement 1), as well as the larger "offline" distance than "online" distance (Figure 5B). However, this analysis looks like regressing two variables (monotonically) increasing as a function of the trial. Although some information in this analysis, such as what the independent/dependent variables were or how individual subjects were treated, was missing in the Methods, getting a statistically significant slope seems unsurprising in such a situation. Also, curiously, the same quantitative evidence was not provided for its "online" counterpart, and the authors only briefly mentioned in the text that there was no significant correlation between them. It may be true looking at the data in Figure 5A as the online representation distance looks less monotonically changing, but the classification accuracy presented in Figure 4C, which should reflect similar representational distance, shows a more monotonic increase up to the 11th trial. Further, the ways the "online" and "offline" representation distance was estimated seem to make them not directly comparable. While the "online" distance was computed using all the correct press data within each 10 sec of execution, the "offline" distance is basically computed by only two presses (i.e., the last index_OP5 vs. the first index_OP1 separated by 10 sec of rest). Theoretically, the distance between the neural activity patterns for temporally closer events tends to be closer than that between the patterns for temporally far-apart events. It would be fairer to use the distance between the first index_OP1 vs. the last index_OP5 within an execution period for "online" distance, as well.

      The Reviewer suggests that the current data is not enough to show that contextualization occurs during rest and raises two important concerns: 1) the relationship between online contextualization and micro-online gains is not shown, and 2) the online distance was calculated differently from its offline counterpart (i.e. - instead of calculating the distance between last Index<sub>OP5</sub> and first Index<sub>OP1</sub> from a single trial, the distance was calculated for each sequence within a trial and then averaged).

      We addressed the first concern by performing individual subject correlations between 1) contextualization changes during rest intervals and micro-offline gains; 2) contextualization changes during practice trials and micro-online gains, and 3) contextualization changes during practice trials and micro-offline gains (Figure 5 – figure supplement 4). We then statistically compared the resulting correlation coefficient distributions and found that within-subject correlations for contextualization changes during rest intervals and micro-offline gains were significantly higher than online contextualization and micro-online gains (t = 3.2827, p = 0.0015) and online contextualization and micro-offline gains (t = 3.7021, p = 5.3013e-04). These results are consistent with our interpretation that micro-offline gains are supported by contextualization changes during the inter-practice rest periods.

      With respect to the second concern, we agree with the Reviewer that one limitation of the analysis comparing online versus offline changes in contextualization as presented in the original manuscript, is that it does not eliminate the possibility that any differences could simply be explained by the passage of time (which is smaller for the online analysis compared to the offline analysis). The Reviewer suggests an approach that addresses this issue, which we have now carried out. When quantifying online changes in contextualization from the first Index<sub>OP1</sub> the last Index<sub>OP5</sub> keypress in the same trial we observed no learning-related trend (Figure 5 – figure supplement 5, right panel). Importantly, offline distances were significantly larger than online distances regardless of the measurement approach and neither predicted online learning (Figure 5 – figure supplement 6).

      A related concern regarding the control analysis, where individual values for max speed and the degree of online contextualization were compared (Figure 5 Supplement 3), is whether the individual difference is meaningful. If I understood correctly, the optimization of the decoding process (temporal window, feature inclusion/reduction, decoder, etc.) was performed for individual participants, and the same feature extraction was also employed for the analysis of representation distance (i.e., contextualization). If this is the case, the distances are individually differently calculated and they may need to be normalized relative to some stable reference (e.g., 1 vs. 4 or average distance within the control sequence presses) before comparison across the individuals.

      The Reviewer makes a good point here. We have now implemented the suggested normalization procedure in the analysis provided in the revised manuscript.

      Reviewer #3 (Public review):

      Summary:

      One goal of this paper is to introduce a new approach for highly accurate decoding of finger movements from human magnetoencephalography data via dimension reduction of a "multiscale, hybrid" feature space. Following this decoding approach, the authors aim to show that early skill learning involves "contextualization" of the neural coding of individual movements, relative to their position in a sequence of consecutive movements. Furthermore, they aim to show that this "contextualization" develops primarily during short rest periods interspersed with skill training and correlates with a performance metric which the authors interpret as an indicator of offline learning.

      Strengths:

      A clear strength of the paper is the innovative decoding approach, which achieves impressive decoding accuracies via dimension reduction of a "multi-scale, hybrid space". This hybrid-space approach follows the neurobiologically plausible idea of the concurrent distribution of neural coding across local circuits as well as large-scale networks. A further strength of the study is the large number of tested dimension reduction techniques and classifiers (though the manuscript reveals little about the comparison of the latter).

      We appreciate the Reviewer’s comments regarding the paper’s strengths.

      A simple control analysis based on shuffled class labels could lend further support to this complex decoding approach. As a control analysis that completely rules out any source of overfitting, the authors could test the decoder after shuffling class labels. Following such shuffling, decoding accuracies should drop to chance level for all decoding approaches, including the optimized decoder. This would also provide an estimate of actual chance-level performance (which is informative over and beyond the theoretical chance level). Furthermore, currently, the manuscript does not explain the huge drop in decoding accuracies for the voxel-space decoding (Figure 3B). Finally, the authors' approach to cortical parcellation raises questions regarding the information carried by varying dipole orientations within a parcel (which currently seems to be ignored?) and the implementation of the mean-flipping method (given that there are two dimensions - space and time - what do the authors refer to when they talk about the sign of the "average source", line 477?).

      The Reviewer recommends that we: 1) conduct an additional control analysis on classifier performance using shuffled class labels, 2) provide a more detailed explanation regarding the drop in decoding accuracies for the voxel-space decoding following LDA dimensionality reduction (see Fig 3B), and 3) provide additional details on how problems related to dipole solution orientations were addressed in the present study.

      In relation to the first point, we have now implemented a random shuffling approach as a control for the classification analyses. The results of this analysis indicated that the chance level accuracy was 22.12% (± SD 9.1%) for individual keypress decoding (4-class classification), and 18.41% (± SD 7.4%) for individual sequence item decoding (5-class classification), irrespective of the input feature set or the type of decoder used. Thus, the decoding accuracy observed with the final model was substantially higher than these chance levels.

      Second, please note that the dimensionality of the voxel-space feature set is very high (i.e. – 15684). LDA attempts to map the input features onto a much smaller dimensional space (number of classes – 1; e.g. – 3 dimensions, for 4-class keypress decoding). Given the very high dimension of the voxel-space input features in this case, the resulting mapping exhibits reduced accuracy. Despite this general consideration, please refer to Figure 3—figure supplement 3, where we observe improvement in voxel-space decoder performance when utilizing alternative dimensionality reduction techniques.

      The decoders constructed in the present study assess the average spatial patterns across time (as defined by the windowing procedure) in the input feature space. We now provide additional details in the Methods of the revised manuscript pertaining to the parcellation procedure and how the sign ambiguity problem was addressed in our analysis.

      Weaknesses:

      A clear weakness of the paper lies in the authors' conclusions regarding "contextualization". Several potential confounds, described below, question the neurobiological implications proposed by the authors and provide a simpler explanation of the results. Furthermore, the paper follows the assumption that short breaks result in offline skill learning, while recent evidence, described below, casts doubt on this assumption.

      We thank the Reviewer for giving us the opportunity to address these issues in detail (see below).

      The authors interpret the ordinal position information captured by their decoding approach as a reflection of neural coding dedicated to the local context of a movement (Figure 4). One way to dissociate ordinal position information from information about the moving effectors is to train a classifier on one sequence and test the classifier on other sequences that require the same movements, but in different positions (Kornysheva et al., 2019). In the present study, however, participants trained to repeat a single sequence (4-1-3-2-4). As a result, ordinal position information is potentially confounded by the fixed finger transitions around each of the two critical positions (first and fifth press). Across consecutive correct sequences, the first keypress in a given sequence was always preceded by a movement of the index finger (=last movement of the preceding sequence), and followed by a little finger movement. The last keypress, on the other hand, was always preceded by a ring finger movement, and followed by an index finger movement (=first movement of the next sequence). Figure 4 - Supplement 2 shows that finger identity can be decoded with high accuracy (>70%) across a large time window around the time of the key press, up to at least +/-100 ms (and likely beyond, given that decoding accuracy is still high at the boundaries of the window depicted in that figure). This time window approaches the keypress transition times in this study. Given that distinct finger transitions characterized the first and fifth keypress, the classifier could thus rely on persistent (or "lingering") information from the preceding finger movement, and/or "preparatory" information about the subsequent finger movement, in order to dissociate the first and fifth keypress. Currently, the manuscript provides no evidence that the context information captured by the decoding approach is more than a by-product of temporally extended, and therefore overlapping, but independent neural representations of consecutive keypresses that are executed in close temporal proximity - rather than a neural representation dedicated to context.

      Such temporal overlap of consecutive, independent finger representations may also account for the dynamics of "ordinal coding"/"contextualization", i.e., the increase in 2-class decoding accuracy, across Day 1 (Figure 4C). As learning progresses, both tapping speed and the consistency of keypress transition times increase (Figure 1), i.e., consecutive keypresses are closer in time, and more consistently so. As a result, information related to a given keypress is increasingly overlapping in time with information related to the preceding and subsequent keypresses. The authors seem to argue that their regression analysis in Figure 5 - Figure Supplement 3 speaks against any influence of tapping speed on "ordinal coding" (even though that argument is not made explicitly in the manuscript). However, Figure 5 - Figure Supplement 3 shows inter-individual differences in a between-subject analysis (across trials, as in panel A, or separately for each trial, as in panel B), and, therefore, says little about the within-subject dynamics of "ordinal coding" across the experiment. A regression of trial-by-trial "ordinal coding" on trial-by-trial tapping speed (either within-subject or at a group-level, after averaging across subjects) could address this issue. Given the highly similar dynamics of "ordinal coding" on the one hand (Figure 4C), and tapping speed on the other hand (Figure 1B), I would expect a strong relationship between the two in the suggested within-subject (or group-level) regression. Furthermore, learning should increase the number of (consecutively) correct sequences, and, thus, the consistency of finger transitions. Therefore, the increase in 2-class decoding accuracy may simply reflect an increasing overlap in time of increasingly consistent information from consecutive keypresses, which allows the classifier to dissociate the first and fifth keypress more reliably as learning progresses, simply based on the characteristic finger transitions associated with each. In other words, given that the physical context of a given keypress changes as learning progresses - keypresses move closer together in time and are more consistently correct - it seems problematic to conclude that the mental representation of that context changes. To draw that conclusion, the physical context should remain stable (or any changes to the physical context should be controlled for).

      The issues raised by Reviewer #3 here are similar to two issues raised by Reviewer #2 above. We agree they must both be carefully considered in any evaluation of our findings.

      As both Reviewers pointed out, the classifiers in this study were trained and tested on keypresses performed while practicing a specific sequence (4-1-3-2-4). The study was designed this way as to avoid the impact of interference effects on learning dynamics. The cross-validated performance of classifiers on MEG data collected within the same session was 90.47% overall accuracy (4class; Figure 3C). We then tested classifier performance on data collected during a separate MEG session conducted approximately 24 hours later (Day 2; see Figure 3—supplement 3). We observed a reduction in overall accuracy rate to 87.11% when tested on MEG data recorded while participants performed the same learned sequence, and 79.44% when they performed several previously unpracticed sequences. This classification performance difference of 7.67% when tested on the Day 2 data could reflect the performance bias of the classifier for the trained sequence, possibly caused by mixed information from temporally close keypresses being incorporated into the feature weights.

      Along these same lines, both Reviewers also raise the possibility that an increase in “ordinal coding/contextualization” with learning could simply reflect an increase in this mixing effect caused by faster typing speeds as opposed to an actual change in the underlying neural representation. The basic idea is that as correct sequences are generated at higher and higher speeds over training, MEG activity patterns related to the planning, execution, evaluation and memory of individual keypresses overlap more in time. Thus, increased overlap between the “4” and “1” keypresses (at the start of the sequence) and “2” and “4” keypresses (at the end of the sequence) could artefactually increase contextualization distances even if the underlying neural representations for the individual keypresses remain unchanged (assuming this mixing of representations is used by the classifier to differentially tag each index finger press). If this were the case, it follows that such mixing effects reflecting the ordinal sequence structure would also be observable in the distribution of decoder misclassifications. For example, “4” keypresses would be more likely to be misclassified as “1” or “2” keypresses (or vice versa) than as “3” keypresses. The confusion matrices presented in Figures 3C and 4B and Figure 3—figure supplement 3A in the previously submitted manuscript do not show this trend in the distribution of misclassifications across the four fingers.

      Following this logic, it’s also possible that if the ordinal coding is largely driven by this mixing effect, the increased overlap between consecutive index finger keypresses during the 4-4 transition marking the end of one sequence and the beginning of the next one could actually mask contextualization-related changes to the underlying neural representations and make them harder to detect. In this case, a decoder tasked with separating individual index finger keypresses into two distinct classes based upon sequence position might show decreased performance with learning as adjacent keypresses overlapped in time with each other to an increasing extent. However, Figure 4C in our previously submitted manuscript does not support this possibility, as the 2-class hybrid classifier displays improved classification performance over early practice trials despite greater temporal overlap.

      As noted in the above reply to Reviewer #2, we also conducted a new multivariate regression analysis to directly assess whether the neural representation distance score could be predicted by the 4-1, 2-4 and 4-4 keypress transition times observed for each complete correct sequence (both predictor and response variables were z-score normalized within-subject). The results of this analysis affirmed that the possible alternative explanation put forward by the Reviewer is not supported by our data (Adjusted R<sup>2</sup> = 0.00431; F = 5.62). We now include this new negative control analysis result in the revised manuscript.

      Finally, the Reviewer hints that one way to address this issue would be to compare MEG responses before and after learning for sequences typed at a fixed speed. However, given that the speed-accuracy trade-off should improve with learning, a comparison between unlearned and learned skill states would dictate that the skill be evaluated at a very low fixed speed. Essentially, such a design presents the problem that the post-training test is evaluating the representation in the unlearned behavioral state that is not representative of the acquired skill. Thus, this approach would miss most learning effects on a task in which speed is the main learning metrics.

      A similar difference in physical context may explain why neural representation distances ("differentiation") differ between rest and practice (Figure 5). The authors define "offline differentiation" by comparing the hybrid space features of the last index finger movement of a trial (ordinal position 5) and the first index finger movement of the next trial (ordinal position 1). However, the latter is not only the first movement in the sequence but also the very first movement in that trial (at least in trials that started with a correct sequence), i.e., not preceded by any recent movement. In contrast, the last index finger of the last correct sequence in the preceding trial includes the characteristic finger transition from the fourth to the fifth movement. Thus, there is more overlapping information arising from the consistent, neighbouring keypresses for the last index finger movement, compared to the first index finger movement of the next trial. A strong difference (larger neural representation distance) between these two movements is, therefore, not surprising, given the task design, and this difference is also expected to increase with learning, given the increase in tapping speed, and the consequent stronger overlap in representations for consecutive keypresses. Furthermore, initiating a new sequence involves pre-planning, while ongoing practice relies on online planning (Ariani et al., eNeuro 2021), i.e., two mental operations that are dissociable at the level of neural representation (Ariani et al., bioRxiv 2023).

      The Reviewer argues that the comparison of last finger movement of a trial and the first in the next trial are performed in different circumstances and contexts. This is an important point and one we tend to agree with. For this task, the first sequence in a practice trial is pre-planned before the first keypress is performed. This occurs in a somewhat different context from the sequence iterations that follow, which involve temporally overlapping planning, execution and evaluation processes. The Reviewer is concerned about a difference in the temporal mixing effect issue raised above between the first and last keypresses performed in a trial. Please, note that since neural representations of individual actions are competitively queued during the pre-planning period in a manner that reflects the ordinal structure of the learned sequence (Kornysheva et al., 2019), mixing effects are most likely present also for the first keypress in a trial.

      Separately, the Reviewer suggests that contextualization during early learning may reflect preplanning or online planning. This is an interesting proposal. Given the decoding time-window used in this investigation, we cannot dissect separate contributions of planning, memory and sensory feedback to contextualization. Taking advantage of the superior temporal resolution of MEG relative to fMRI tools, work under way in our lab is investigating decoding time-windows more appropriate to address each of these questions.

      Given these differences in the physical context and associated mental processes, it is not surprising that "offline differentiation", as defined here, is more pronounced than "online differentiation". For the latter, the authors compared movements that were better matched regarding the presence of consistent preceding and subsequent keypresses (online differentiation was defined as the mean difference between all first vs. last index finger movements during practice). It is unclear why the authors did not follow a similar definition for "online differentiation" as for "micro-online gains" (and, indeed, a definition that is more consistent with their definition of "offline differentiation"), i.e., the difference between the first index finger movement of the first correct sequence during practice, and the last index finger of the last correct sequence. While these two movements are, again, not matched for the presence of neighbouring keypresses (see the argument above), this mismatch would at least be the same across "offline differentiation" and "online differentiation", so they would be more comparable.

      This is the same point made earlier by Reviewer #2, and we agree with this assessment. As stated in the response to Reviewer #2 above, we have now carried out quantification of online contextualization using this approach and included it in the revised manuscript. We thank the Reviewer for this suggestion.

      A further complication in interpreting the results regarding "contextualization" stems from the visual feedback that participants received during the task. Each keypress generated an asterisk shown above the string on the screen, irrespective of whether the keypress was correct or incorrect. As a result, incorrect (e.g., additional, or missing) keypresses could shift the phase of the visual feedback string (of asterisks) relative to the ordinal position of the current movement in the sequence (e.g., the fifth movement in the sequence could coincide with the presentation of any asterisk in the string, from the first to the fifth). Given that more incorrect keypresses are expected at the start of the experiment, compared to later stages, the consistency in visual feedback position, relative to the ordinal position of the movement in the sequence, increased across the experiment. A better differentiation between the first and the fifth movement with learning could, therefore, simply reflect better decoding of the more consistent visual feedback, based either on the feedback-induced brain response, or feedback-induced eye movements (the study did not include eye tracking). It is not clear why the authors introduced this complicated visual feedback in their task, besides consistency with their previous studies.

      We strongly agree with the Reviewer that eye movements related to task engagement are important to rule out as a potential driver of the decoding accuracy or contextualizaton effect. We address this issue above in response to a question raised by Reviewer #1 about the impact of movement related artefacts on our findings.

      First, the assumption the Reviewer makes here about the distribution of errors in this task is incorrect. On average across subjects, 2.32% ± 1.48% (mean ± SD) of all keypresses performed were errors, which were evenly distributed across the four possible keypress responses. While errors increased progressively over practice trials, they did so in proportion to the increase in correct keypresses, so that the overall ratio of correct-to-incorrect keypresses remained stable over the training session. Thus, the Reviewer’s assumptions that there is a higher relative frequency of errors in early trials, and a resulting systematic trend phase shift differences between the visual display updates (i.e. – a change in asterisk position above the displayed sequence) and the keypress performed is not substantiated by the data. To the contrary, the asterisk position on the display and the keypress being executed remained highly correlated over the entire training session. We now include a statement about the frequency and distribution of errors in the revised manuscript.

      Given this high correlation, we firmly agree with the Reviewer that the issue of eye movement related artefacts is still an important one to address. Fortunately, we did collect eye movement data during the MEG recordings so were able to investigate this. As detailed in the response to Reviewer #1 above, we found that gaze positions and eye-movement velocity time-locked to visual display updates (i.e. – a change in asterisk position above the displayed sequence) did not reflect the asterisk location above chance levels (Overall cross-validated accuracy = 0.21817; see Author response image 1). Furthermore, an inspection of the eye position data revealed that most participants on most trials displayed random walk gaze patterns around a center fixation point, indicating that participants did not attend to the asterisk position on the display. This is consistent with intrinsic generation of the action sequence, and congruent with the fact that the display does not provide explicit feedback related to performance. As pointed out above, a similar real-world example would be manually inputting a long password into a secure online application. In this case, one intrinsically generates the sequence from memory and receives similar feedback about the password sequence position (also provided as asterisks), which is typically ignored by the user.

      The minimal participant engagement with the visual display in this explicit sequence learning motor task (which is highly generative in nature) contrasts markedly with behavior observed when reactive responses to stimulus cues are needed in the serial reaction time task (SRTT). This is a crucial difference that must be carefully considered when comparing findings across studies using the two sequence learning tasks.

      The authors report a significant correlation between "offline differentiation" and cumulative microoffline gains. However, it would be more informative to correlate trial-by-trial changes in each of the two variables. This would address the question of whether there is a trial-by-trial relation between the degree of "contextualization" and the amount of micro-offline gains - are performance changes (micro-offline gains) less pronounced across rest periods for which the change in "contextualization" is relatively low? Furthermore, is the relationship between micro-offline gains and "offline differentiation" significantly stronger than the relationship between micro-offline gains and "online differentiation"?

      In response to a similar issue raised above by Reviewer #2, we now include new analyses comparing correlation magnitudes between (1) “online differentiation” vs micro-online gains, (2) “online differentiation” vs micro-offline gains and (3) “offline differentiation” and micro-offline gains (see Figure 5 – figure supplement  4, 5 and 6). These new analyses and results have been added to the revised manuscript. Once again, we thank both Reviewers for this suggestion.

      The authors follow the assumption that micro-offline gains reflect offline learning.

      We disagree with this statement. The original (Bonstrup et al., 2019) paper clearly states that micro-offline gains do not necessarily reflect offline learning in some cases and must be carefully interpreted based upon the behavioral context within which they are observed. Further, the paper lays out the conditions under which one can have confidence that micro-offline gains reflect offline learning. In fact, the excellent meta-analysis of (Pan & Rickard, 2015), which re-interprets the benefits of sleep in overnight skill consolidation from a “reactive inhibition” perspective, was a crucial resource in the experimental design of our initial study (Bonstrup et al., 2019), as well as in all our subsequent work. Pan & Rickard state:

      “Empirically, reactive inhibition refers to performance worsening that can accumulate during a period of continuous training (Hull, 1943 . It tends to dissipate, at least in part, when brief breaks are inserted between blocks of training. If there are multiple performance-break cycles over a training session, as in the motor sequence literature, performance can exhibit a scalloped effect, worsening during each uninterrupted performance block but improving across blocks(Brawn et al., 2010; Rickard et al., 2008 . Rickard, Cai, Rieth, Jones, and Ard (2008 and Brawn, Fenn, Nusbaum, and Margoliash (2010 (Brawn et al., 2010; Rickard et al., 2008 demonstrated highly robust scalloped reactive inhibition effects using the commonly employed 30 s–30 s performance break cycle, as shown for Rickard et al.’s (2008 massed practice sleep group in Figure 2. The scalloped effect is evident for that group after the first few 30 s blocks of each session. The absence of the scalloped effect during the first few blocks of training in the massed group suggests that rapid learning during that period masks any reactive inhibition effect.”

      Crucially, Pan & Rickard make several concrete recommendations for reducing the impact of the reactive inhibition confound on offline learning studies. One of these recommendations was to reduce practice times to 10s (most prior sequence learning studies up until that point had employed 30s long practice trials). They state:

      “The traditional design involving 30 s-30 s performance break cycles should be abandoned given the evidence that it results in a reactive inhibition confound, and alternative designs with reduced performance duration per block used instead (Pan & Rickard, 2015 . One promising possibility is to switch to 10 s performance durations for each performance-break cycle Instead (Pan & Rickard, 2015 . That design appears sufficient to eliminate at least the majority of the reactive inhibition effect (Brawn et al., 2010; Rickard et al., 2008 .”

      We mindfully incorporated recommendations from (Pan & Rickard, 2015) into our own study designs including 1) utilizing 10s practice trials and 2) constraining our analysis of micro-offline gains to early learning trials (where performance monotonically increases and 95% of overall performance gains occur), which are prior to the emergence of the “scalloped” performance dynamics that are strongly linked to reactive inhibition effects.

      However, there is no direct evidence in the literature that micro-offline gains really result from offline learning, i.e., an improvement in skill level.

      We strongly disagree with the Reviewer’s assertion that “there is no direct evidence in the literature that micro-offline gains really result from offline learning, i.e., an improvement in skill level.” The initial (Bonstrup et al., 2019) report was followed up by a large online crowd-sourcing study (Bonstrup et al., 2020). This second (and much larger) study provided several additional important findings supporting our interpretation of micro-offline gains in cases where the important behavioral conditions clarified above were met (see Author response image 4 below for further details on these conditions).

      Author response image 4.

      This Figure shows that micro-offline gains o ser ed in learning and nonlearning contexts are attri uted to different underl ing causes. Micro-offline and online changes relative to overall trial-by-trial learning. This figure is based on data from (Bonstrup et al., 2019). During early learning, micro-offline gains (red bars) closely track trial-by-trial performance gains (green line with open circle markers), with minimal contribution from micro-online gains (blue bars). The stated conclusion in Bönstrup et al. (2019) is that micro-offline gains only during this Early Learning stage reflect rapid memory consolidation (see also (Bonstrup et al., 2020)). After early learning, about practice trial 11, skill plateaus. This plateau skill period is characterized by a striking emergence of coupled (and relatively stable) micro-online drops and micro-offline increases. Bönstrup et al. (2019) as well as others in the literature (Brooks et al., 2024; Gupta & Rickard, 2022; Florencia Jacobacci et al., 2020), argue that micro-offline gains during the plateau period likely reflect recovery from inhibitory performance factors such as reactive inhibition or fatigue, and thus must be excluded from analyses relating micro-offline gains to skill learning. The Non-repeating groups in Experiments 3 and 4 from Das et al. (2024) suffer from a lack of consideration of these known confounds (end of Fig legend).

      Evidence documented in that paper (Bonstrup et al., 2020) showed that micro-offline gains during early skill learning were: 1) replicable and generalized to subjects learning the task in their daily living environment (n=389); 2) equivalent when significantly shortening practice period duration, thus confirming that they are not a result of recovery from performance fatigue (n=118); 3) reduced (along with learning rates) by retroactive interference applied immediately after each practice period relative to interference applied after passage of time (n=373), indicating stabilization of the motor memory at a microscale of several seconds consistent with rapid consolidation; and 4) not modified by random termination of the practice periods, ruling out a contribution of predictive motor slowing (N = 71) (Bonstrup et al., 2020). Altogether, our findings were strongly consistent with the interpretation that micro-offline gains reflect memory consolidation supporting early skill learning. This is precisely the portion of the learning curve (Pan & Rickard, 2015) refer to when they state “…rapid learning during that period masks any reactive inhibition effect”.

      This interpretation is further supported by brain imaging evidence linking known memory-related networks and consolidation mechanisms to micro-offline gains. First, we reported that the density of fast hippocampo-neocortical skill memory replay events increases approximately three-fold during early learning inter-practice rest periods with the density explaining differences in the magnitude of micro-offline gains across subjects (Buch et al., 2021). Second, Jacobacci et al. (2020) independently reproduced our original behavioral findings and reported BOLD fMRI changes in the hippocampus and precuneus (regions also identified in our MEG study (Buch et al., 2021)) linked to micro-offline gains during early skill learning. These functional changes were coupled with rapid alterations in brain microstructure in the order of minutes, suggesting that the same network that operates during rest periods of early learning undergoes structural plasticity over several minutes following practice (Deleglise et al., 2023). Crucial to this point, Chen et al. (2024) and Sjøgård et al (2024) provided direct evidence from intracranial EEG in humans linking sharp-wave ripple density during rest periods (which are known markers for neural replay (Buzsaki, 2015)) in the human hippocampus (80-120 Hz) to micro-offline gains during early skill learning.

      Thus, there is now substantial converging evidence in humans across different indirect noninvasive and direct invasive recording techniques linking hippocampal activity, neural replay dynamics and offline performance gains in skill learning.

      On the contrary, recent evidence questions this interpretation (Gupta & Rickard, npj Sci Learn 2022; Gupta & Rickard, Sci Rep 2024; Das et al., bioRxiv 2024). Instead, there is evidence that micro-offline gains are transient performance benefits that emerge when participants train with breaks, compared to participants who train without breaks, however, these benefits vanish within seconds after training if both groups of participants perform under comparable conditions (Das et al., bioRxiv 2024).

      The recent work of (Gupta & Rickard, 2022, 2024) does not present any data that directly opposes our finding that early skill learning (Bonstrup et al., 2019) is expressed as micro-offline gains during rest breaks. These studies are an extension of the Rickard et al (2008) paper that employed a massed (30s practice followed by 30s breaks) vs spaced (10s practice followed by 10s breaks) experimental design to assess if recovery from reactive inhibition effects could account for performance gains measured after several minutes or hours. Gupta & Rickard (2022) added two additional groups (30s practice/10s break and 10s practice/10s break as used in the work from our group). The primary aim of the study was to assess whether it was more likely that changes in performance when retested 5 minutes after skill training (consisting of 12 practice trials for the massed groups and 36 practice trials for the spaced groups) had ended reflected memory consolidation effects or recovery from reactive inhibition effects. The Gupta & Rickard (2024) follow-up paper employed a similar design with the primary difference being that participants performed a fixed number of sequences on each trial as opposed to trials lasting a fixed duration. This was done to facilitate the fitting of a quantitative statistical model to the data.

      To reiterate, neither study included any analysis of micro-online or micro-offline gains and did not include any comparison focused on skill gains during early learning trials (only at retest 5 min later). Instead, Gupta & Rickard (2022), reported evidence for reactive inhibition effects for all groups over much longer training periods than early learning. In fact, we reported the same findings for trials following the early learning period in our original 2019 paper (Bonstrup et al., 2019) (Author response image 4). Please, note that we also reported that cumulative microoffline gains over early learning did not correlate with overnight offline consolidation measured 24 hours later (Bonstrup et al., 2019) (see the Results section and further elaboration in the Discussion). We interpreted these findings as indicative that the mechanisms underlying offline gains over the micro-scale of seconds during early skill learning versus over minutes or hours very likely differ.

      In the recent preprint from (Das et al., 2024), the authors make the strong claim that “micro-offline gains during early learning do not reflect offline learning” which is not supported by their own data. The authors hypothesize that if “micro-offline gains represent offline learning, participants should reach higher skill levels when training with breaks, compared to training without breaks”. The study utilizes a spaced vs. massed practice groups between-subjects design inspired by the reactive inhibition work from Rickard and others to test this hypothesis.

      Crucially, their design incorporates only a small fraction of the training used in other investigations to evaluate early skill learning (Bonstrup et al., 2020; Bonstrup et al., 2019; Brooks et al., 2024; Buch et al., 2021; Deleglise et al., 2023; F. Jacobacci et al., 2020; Mylonas et al., 2024). A direct comparison between the practice schedule designs for the spaced and massed groups in Das et al., and the training schedule all participants experienced in the original Bönstrup et al. (2019) paper highlights this issue as well as several others (Author response image 5):

      Author response image 5.

      This figure shows (A) Comparison of Das et al. Spaced & Massed group training session designs, and the training session design from the original (Bonstrup et al., 2019) paper. Similar to the approach taken by Das et al., all practice is visualized as 10-second practice trials with a variable number (either 0, 1 or 30) of 10-second-long inter-practice rest intervals to allow for direct comparisons between designs. The two key takeaways from this comparison are that (1) the intervention differences (i.e. – practice schedules) between the Massed and Spaced groups from the Das et al. report are extremely small (less than 12% of the overall session schedule) (gaps in the red shaded area) and (2) the overall amount of practice is much less than compared to the design from the original Bönstrup report (Bonstrup et al., 2019) (which has been utilized in several subsequent studies). (B) Group-level learning curve data from Bönstrup et al. (2019) (Bonstrup et al., 2019) is used to estimate the performance range accounted for by the equivalent periods covering Test 1, Training 1 and Test 2 from Das et al (2024). Note that the intervention in the Das et al. study is limited to a period covering less than 50% of the overall learning range (end of figure legend).

      Participants in the original (Bonstrup et al., 2019) experienced 157.14% more practice time and 46.97% less inter-practice rest time than the Spaced group in the Das et al. study (Author response image 5). Thus, the overall amount of practice and rest differ substantially between studies, with much more limited training occurring for participants in Das et al.

      In addition, the training interventions (i.e. – the practice schedule differences between the Spaced and Massed groups) were designed in a manner that minimized any chance of effectively testing their hypothesis. First, the interventions were applied over an extremely short period relative to the length of the total training session (5% and 12% of the total training session for Massed and Spaced groups, respectively; see gaps in the red shaded area in Author response image 5). Second, the intervention was applied during a period in which only half of the known total learning occurs. Specifically, we know from Bönstrup et al. (2019) that only 46.57% of the total performance gains occur in the practice interval covered by Das et al Training 1 intervention. Thus, early skill learning as evaluated by multiple groups (Bonstrup et al., 2020; Bonstrup et al., 2019; Brooks et al., 2024; Buch et al., 2021; Deleglise et al., 2023; F. Jacobacci et al., 2020; Mylonas et al., 2024), is in the Das et al experiment amputated to about half.

      Furthermore, a substantial amount of learning takes place during Das et al’s Test 1 and Test 2 periods (32.49% of total gains combined). The fact that substantial learning is known to occur over both the Test 1 (18.06%) and Test 2 (14.43%) intervals presents a fundamental problem described by Pan and Rickard (Pan & Rickard, 2015). They reported that averaging over intervals where substantial performance gains occur (i.e. – performance is not stable) inject crucial artefacts into analyses of skill learning:

      “A large amount of averaging has the advantage of yielding more precise estimates of each subject’s pretest and posttest scores and hence more statistical power to detect a performance gain. However, calculation of gain scores using that strategy runs the risk that learning that occurs during the pretest and (or posttest periods (i.e., online learning is incorporated into the gain score (Rickard et al., 2008; Robertson et al., 2004 .”

      The above statement indicates that the Test 1 and Test 2 performance scores from Das et al. (2024) are substantially contaminated by the learning rate within these intervals. This is particularly problematic if the intervention design results in different Test 2 learning rates between the two groups. This in fact, is apparent in their data (Figure 1C,E of the Das et al., 2024 preprint) as the Test 2 learning rate for the Spaced group is negative (indicating a unique interference effect observable only for this group). Specifically, the Massed group continues to show an increase in performance during Test 2 and 4 relative to the last 10 seconds of practice during Training 1 and 2, respectively, while the Spaced group displays a marked decrease. This post-training performance decrease for the Spaced group is in stark contrast to the monotonic performance increases observed for both groups at all other time-points. One possible cause could be related to the structure of the Test intervals, which include 20 seconds of uninterrupted practice. For the Spaced group, this effectively is a switch to a Massed practice environment (i.e., two 10-secondlong practice trials merged into one long trial), which interferes with greater Training 1 interval gains observed for the Space group. Interestingly, when statistical comparisons between the groups are made at the time-points when the intervention is present (Figure 1E) then the stated hypothesis, “If micro-offline gains represent offline learning, participants should reach higher skill levels when training with breaks, compared to training without breaks”, is confirmed.

      In summary, the experimental design and analyses used by Das et al does not contradict the view that early skill learning is expressed as micro-offline gains during rest breaks. The data presented by Gupta and Rickard (2022, 2024) and Das et al. (2024) is in many ways more confirmatory of the constraints employed by our group and others with respect to experimental design, analysis and interpretation of study findings, rather than contradictory. Still, it does highlight a limitation of the current micro-online/offline framework, which was originally only intended to be applied to early skill learning over spaced practice schedules when reactive inhibition effects are minimized (Bonstrup et al., 2019; Pan & Rickard, 2015). Extrapolation of this current framework to postplateau performance periods, longer timespans, or non-learning situations (e.g. – the Nonrepeating groups from Das et al. (2024)), when reactive inhibition plays a more substantive role, is not warranted. Ultimately, it will be important to develop new paradigms allowing one to independently estimate the different coincident or antagonistic features (e.g. - memory consolidation, planning, working memory and reactive inhibition) contributing to micro-online and micro-offline gains during and after early skill learning within a unifying framework.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      (1) I found Figure 2B too small to be useful, as the actual elements of the cells are very hard to read.

      We have removed the grid colormap panel (top-right) from Figure 2B. All of this colormap data is actually a subset of data presented in Figure 2 – figure supplement 1, so can still be found there.

      Reviewer #2 (Recommendations for the authors):

      (1) Related to the first point in my concerns, I would suggest the authors compare decoding accuracy between correct presses followed by correct vs. incorrect presses. This would clarify if the decoder is actually taking the MEG signal for subsequent press into account. I would also suggest the authors use pre-movement MEG features and post-movement features with shorter windows and compare each result with the results for the original post-movement MEG feature with a longer window.

      The present study does not contain enough errors to perform the analysis proposed by the Reviewer. As noted above, we did re-examine our data and now report a new control regression analysis, all of which indicate that the proximity between keypresses does not explain contextualization effects.

      (2) I was several times confused by the author's use of "neural representation of an action" or "sequence action representations" in understanding whether these terms refer to representation on the level of whole-brain, region (as defined by the specific parcellation used), or voxels. In fact, what is submitted to the decoder is some complicated whole-brain MEG feature (i.e., the "neural representation"), which is a hybrid of voxel and parcel features that is further dimension-reduced and not immediately interpretable. Clarifying this point early in the text and possibly using some more sensible terms, such as adding "brain-wise" before the "sequence action representation", would be the most helpful for the readers.

      We now clarified this terminology in the revised manuscript.

      (3) Although comparing many different ways in feature selection/reduction, time window selection, and decoder types is undoubtedly a meticulous work, the current version of the manuscript seems still lacking some explanation about the details of these methodological choices, like which decoding method was actually used to report the accuracy, whether or not different decoding methods were chosen for individual participants' data, how training data was selected (is it all of the correct presses in Day 1 data?), whether the frequency power or signal amplitude was used, and so on. I would highly appreciate these additional details in the Methods section.

      The reported accuracies were based on linear discriminant analysis classifier. A comparison of different decoders (Figure 3 – figure supplement 4) shows LDA was the optimal choice.

      Whether or not different decoding methods were chosen for individual participants' data

      We selected the same decoder (LDA) performance to report the final accuracy.

      How training data was selected (is it all of the correct presses in Day 1 data?),

      Decoder training was conducted as a randomized split of the data (all correct keypresses of Day 1) into training (90%) and test (10%) samples for 8 iterations.

      Whether the frequency power or signal amplitude was used

      Signal amplitude was used for feature calculation.

      (4) In terms of the Methods, please consider adding some references about the 'F1 score', the 'feature importance score,' and the 'MRMR-based feature ranking,' as the main readers of the current paper would not be from the machine learning community. Also, why did the LDA dimensionality reduction reduce accuracy specifically for the voxel feature?

      We have now added the following statements to the Methods section that provide more detailed descriptions and references for these metrics:

      “The F1 score, defined as the harmonic mean of the precision (percentage of true predictions that are actually true positive) and recall (percentage of true positives that were correctly predicted as true) scores, was used as a comprehensive metric for all one-versus-all keypress state decoders to assess class-wise performance that accounts for both false-positive and false-negative prediction tendencies [REF]. A weighted mean F1 score was then computed across all classes to assess the overall prediction performance of the multi-class model.”

      and

      “Feature Importance Scores

      The relative contribution of source-space voxels and parcels to decoding performance (i.e. – feature importance score) was calculated using minimum redundant maximum relevance (MRMR) and highlighted in topography plots. MRMR, an approach that combines both relevance and redundancy metrics, ranked individual features based upon their significance to the target variable (i.e. – keypress state identity) prediction accuracy and their non-redundancy with other features.”

      As stated in the Reviewer responses above, the dimensionality of the voxel-space feature set is very high (i.e. – 15684). LDA attempts to map the input features onto a much smaller dimensional space (number of classes-1; e.g. – 3 dimensions for 4-class keypress decoding). It is likely that the reduction in accuracy observed only for the voxel-space feature was due to the loss of relevant information during the mapping process that resulted in reduced accuracy. This reduction in accuracy for voxel-space decoding was specific to LDA. Figure 3—figure supplement 3 shows that voxel-space decoder performance actually improved when utilizing alternative dimensionality reduction techniques.

      (5) Paragraph 9, lines #139-142: "Notably, decoding associated with index finger keypresses (executed at two different ordinal positions in the sequence) exhibited the highest number of misclassifications of all digits (N = 141 or 47.5% of all decoding errors; Figure 3C), raising the hypothesis that the same action could be differentially represented when executed at different learning state or sequence context locations."

      This does not seem to be a fair comparison, as the index finger appears twice as many as the other fingers do in the sequence. To claim this, proper statistical analysis needs to be done taking this difference into account.

      We thank the Reviewer for bringing this issue to our attention. We have now corrected this comparison to evaluate relative false negative and false positive rates between individual keypress state decoders, and have revised this statement in the manuscript as follows:

      “Notably, decoding of index finger keypresses (executed at two different ordinal positions in the sequence) exhibited the highest false negative (0.116 per keypress) and false positive (0.043 per keypress) misclassification rates compared with all other digits (false negative rate range = [0.067 0.114]; false positive rate range = [0.020 0.037]; Figure 3C), raising the hypothesis that the same action could be differentially represented when executed within different contexts (i.e. - different learning states or sequence locations).”

      (6) Finally, the authors could consider acknowledging in the Discussion that the contribution of micro-offline learning to genuine skill learning is still under debate (e.g., Gupta and Rickard, 2023; 2024; Das et al., bioRxiv, 2024).

      We have added a paragraph in the Discussion that addresses this point.

      Reviewer #3 (Recommendations for the authors):

      In addition to the additional analyses suggested in the public review, I have the following suggestions/questions:

      (1) Given that the authors introduce a new decoding approach, it would be very helpful for readers to see a distribution of window sizes and window onsets eventually used across individuals, at least for the optimized decoder.

      We have now included a new supplemental figure (Figure 4 – figure Supplement 2) that provides this information.

      (2) Please explain in detail how you arrived at the (interpolated?) group-level plot shown in Figure 1B, starting from the discrete single-trial keypress transition times. Also, please specify what the shading shows.

      Instantaneous correct sequence speed (skill measure) was quantified as the inverse of time (in seconds) required to complete a single iteration of a correctly generated full 5-item sequence. Individual keypress responses were labeled as members of correct sequences if they occurred within a 5-item response pattern matching any possible circular shifts of the 5-item sequence displayed on the monitor (41324). This approach allowed us to quantify a measure of skill within each practice trial at the resolution of individual keypresses. The dark line indicates the group mean performance dynamics for each trial. The shaded region indicates the 95% confidence limit of the mean (see Methods).

      (3) Similarly, please explain how you arrived at the group-level plot shown in Figure 1C. What are the different colored lines (rows) within each trial? How exactly did the authors reach the conclusion that KTT variability stabilizes by trial 6?

      Figure 1C provides additional information to the correct sequence speed measure above, as it also tracks individual transition speed composition over learning. Figure 1C, thus, represents both changes in overall correct sequence speed dynamics (indicated by the overall narrowing of the horizontal speed lines moving from top to bottom) and the underlying composition of the individual transition patterns within and across trials. The coloring of the lines is a shading convention used to discriminate between different keypress transitions. These curves were sampled with 1ms resolution, as in Figure 1B. Addressing the underlying keypress transition patterns requires within-subject normalization before averaging across subjects. The distribution of KTTs was normalized to the median correct sequence time for each participant and centered on the mid-point for each full sequence iteration during early learning.

      (4) Maybe I missed it, but it was not clear to me which of the tested classifiers was eventually used. Or was that individualized as well? More generally, a comparison of the different classifiers would be helpful, similar to the comparison of dimension reduction techniques.

      We have now included a new supplemental figure that provides this information.

      (5) Please add df and effect sizes to all statistics.

      Done.

      (6) Please explain in more detail your power calculation.

      The study was powered to determine the minimum sample size needed to detect a significant change in skill performance following training using a one-sample t-test (two-sided; alpha = 0.05; 95% statistical power; Cohen’s D effect size = 0.8115 calculated from previously acquired data in our lab). The calculated minimum sample size was 22. The included study sample size (n = 27) exceeded this minimum.

      This information is now included in the revised manuscript.

      (7) The cut-off for the high-pass filter is unusually high and seems risky in terms of potential signal distortions (de Cheveigne, Neuron 2019). Why did the authors choose such a high cut-off?

      The 1Hz high-pass cut-off frequency for the 1-150Hz band-pass filter applied to the continuous raw MEG data during preprocessing has been used in multiple previous MEG publications (Barratt et al., 2018; Brookes et al., 2012; Higgins et al., 2021; Seedat et al., 2020; Vidaurre et al., 2018).

      (8) "Furthermore, the magnitude of offline contextualization predicted skill gains while online contextualization did not", lines 336/337 - where is that analysis?

      Additional details pertaining to this analysis are now provided in the Results section (Figure 5 – figure supplement 4).

      (9) How were feature importance scores computed?

      We have now added a new subheading in the Methods section with a more detailed description of how feature importance scores were computed.

      (10)  Please add x and y ticks plus tick labels to Figure 5 - Figure Supplement 3, panel A

      Done

      (11) Line 369, what does "comparable" mean in this context?

      The sentence in the “Study Participants” part of the Methods section referred to here has now been revised for clarity.

      (12) In lines 496/497, please specify what t=0 means (KeyDown event, I guess?).

      Yes, the KeyDown event occurs at t = 0. This has now been clarified in the revised manuscript.

      (13) Please specify consistent boundaries between alpha- and beta-bands (they are currently not consistent in the Results vs. Methods (14/15 Hz or 15/16 Hz)).

      We thank the Reviewer for alerting us to this discrepancy caused by a typographic error in the Methods. We have now corrected this so that the alpha (8-14 Hz) and beta-band (15-24 Hz) frequency limits are described consistently throughout the revised manuscript.

      References

      Albouy, G., Fogel, S., King, B. R., Laventure, S., Benali, H., Karni, A., Carrier, J., Robertson, E. M., & Doyon, J. (2015). Maintaining vs. enhancing motor sequence memories: respective roles of striatal and hippocampal systems. Neuroimage, 108, 423-434. https://doi.org/10.1016/j.neuroimage.2014.12.049

      Albouy, G., King, B. R., Maquet, P., & Doyon, J. (2013). Hippocampus and striatum: dynamics and interaction during acquisition and sleep-related motor sequence memory consolidation. Hippocampus, 23(11), 985-1004. https://doi.org/10.1002/hipo.22183 Albouy, G., Sterpenich, V., Vandewalle, G., Darsaud, A., Gais, S., Rauchs, G., Desseilles, M., Boly, M., Dang-Vu, T., Balteau, E., Degueldre, C., Phillips, C., Luxen, A., & Maquet, P. (2012). Neural correlates of performance variability during motor sequence acquisition. NeuroImage, 60(1), 324-331. https://doi.org/10.1016/j.neuroimage.2011.12.049

      Andersen, R. A., & Buneo, C. A. (2002). Intentional maps in posterior parietal cortex. Annu Rev Neurosci, 25, 189-220. https://doi.org/10.1146/annurev.neuro.25.112701.142922 112701.142922 [pii]

      Ashe, J., Lungu, O. V., Basford, A. T., & Lu, X. (2006). Cortical control of motor sequences. Curr Opin Neurobiol, 16(2), 213-221. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citati on&list_uids=16563734

      Bansal, A. K., Vargas-Irwin, C. E., Truccolo, W., & Donoghue, J. P. (2011). Relationships among low-frequency local field potentials, spiking activity, and three-dimensional reach and grasp kinematics in primary motor and ventral premotor cortices. J Neurophysiol, 105(4), 1603-1619. https://doi.org/10.1152/jn.00532.2010

      Barratt, E. L., Francis, S. T., Morris, P. G., & Brookes, M. J. (2018). Mapping the topological organisation of beta oscillations in motor cortex using MEG. NeuroImage, 181, 831-844. https://doi.org/10.1016/j.neuroimage.2018.06.041

      Bassett, D. S., Wymbs, N. F., Porter, M. A., Mucha, P. J., Carlson, J. M., & Grafton, S. T. (2011). Dynamic reconfiguration of human brain networks during learning. Proc Natl Acad Sci U S A, 108(18), 7641-7646. https://doi.org/10.1073/pnas.1018985108

      Battaglia-Mayer, A., & Caminiti, R. (2019). Corticocortical Systems Underlying High-Order Motor Control. J Neurosci, 39(23), 4404-4421. https://doi.org/10.1523/JNEUROSCI.2094-18.2019

      Berlot, E., Popp, N. J., & Diedrichsen, J. (2020). A critical re-evaluation of fMRI signatures of motor sequence learning. Elife, 9. https://doi.org/10.7554/eLife.55241

      Bonstrup, M., Iturrate, I., Hebart, M. N., Censor, N., & Cohen, L. G. (2020). Mechanisms of offline motor learning at a microscale of seconds in large-scale crowdsourced data. NPJ Sci Learn, 5, 7. https://doi.org/10.1038/s41539-020-0066-9

      Bonstrup, M., Iturrate, I., Thompson, R., Cruciani, G., Censor, N., & Cohen, L. G. (2019). A Rapid Form of Offline Consolidation in Skill Learning. Curr Biol, 29(8), 1346-1351 e1344. https://doi.org/10.1016/j.cub.2019.02.049

      Brawn, T. P., Fenn, K. M., Nusbaum, H. C., & Margoliash, D. (2010). Consolidating the effects of waking and sleep on motor-sequence learning. J Neurosci, 30(42), 13977-13982. https://doi.org/10.1523/JNEUROSCI.3295-10.2010

      Brookes, M. J., Woolrich, M. W., & Barnes, G. R. (2012). Measuring functional connectivity in MEG: a multivariate approach insensitive to linear source leakage. NeuroImage, 63(2), 910-920. https://doi.org/10.1016/j.neuroimage.2012.03.048

      Brooks, E., Wallis, S., Hendrikse, J., & Coxon, J. (2024). Micro-consolidation occurs when learning an implicit motor sequence, but is not influenced by HIIT exercise. NPJ Sci Learn, 9(1), 23. https://doi.org/10.1038/s41539-024-00238-6

      Buch, E. R., Claudino, L., Quentin, R., Bonstrup, M., & Cohen, L. G. (2021). Consolidation of human skill linked to waking hippocampo-neocortical replay. Cell Rep, 35(10), 109193. https://doi.org/10.1016/j.celrep.2021.109193

      Buneo, C. A., & Andersen, R. A. (2006). The posterior parietal cortex: sensorimotor interface for the planning and online control of visually guided movements. Neuropsychologia, 44(13), 2594-2606. https://doi.org/10.1016/j.neuropsychologia.2005.10.011

      Buzsaki, G. (2015). Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and planning. Hippocampus, 25(10), 1073-1188. https://doi.org/10.1002/hipo.22488

      Chen, P.-C., Stritzelberger, J., Walther, K., Hamer, H., & Staresina, B. P. (2024). Hippocampal ripples during offline periods predict human motor sequence learning. bioRxiv, 2024.2010.2006.614680. https://doi.org/10.1101/2024.10.06.614680

      Churchland, M. M., Cunningham, J. P., Kaufman, M. T., Foster, J. D., Nuyujukian, P., Ryu, S. I., & Shenoy, K. V. (2012). Neural population dynamics during reaching. Nature, 487(7405), 51-56. https://doi.org/10.1038/nature11129

      Classen, J., Liepert, J., Wise, S. P., Hallett, M., & Cohen, L. G. (1998). Rapid plasticity of human cortical movement representation induced by practice. J Neurophysiol, 79(2), 1117-1123. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citati on&list_uids=9463469

      Colclough, G. L., Brookes, M. J., Smith, S. M., & Woolrich, M. W. (2015). A symmetric multivariate leakage correction for MEG connectomes. NeuroImage, 117, 439-448. https://doi.org/10.1016/j.neuroimage.2015.03.071

      Colclough, G. L., Woolrich, M. W., Tewarie, P. K., Brookes, M. J., Quinn, A. J., & Smith, S. M. (2016). How reliable are MEG resting-state connectivity metrics? NeuroImage, 138, 284-293. https://doi.org/10.1016/j.neuroimage.2016.05.070

      Das, A., Karagiorgis, A., Diedrichsen, J., Stenner, M.-P., & Azanon, E. (2024). “Micro-offline gains” convey no benefit for motor skill learning. bioRxiv, 2024.2007.2011.602795. https://doi.org/10.1101/2024.07.11.602795

      Deleglise, A., Donnelly-Kehoe, P. A., Yeffal, A., Jacobacci, F., Jovicich, J., Amaro, E., Jr., Armony, J. L., Doyon, J., & Della-Maggiore, V. (2023). Human motor sequence learning drives transient changes in network topology and hippocampal connectivity early during memory consolidation. Cereb Cortex, 33(10), 6120-6131. https://doi.org/10.1093/cercor/bhac489

      Doyon, J., Bellec, P., Amsel, R., Penhune, V., Monchi, O., Carrier, J., Lehéricy, S., & Benali, H. (2009). Contributions of the basal ganglia and functionally related brain structures to motor learning. [Review]. Behavioural brain research, 199(1), 61-75. https://doi.org/10.1016/j.bbr.2008.11.012

      Doyon, J., Song, A. W., Karni, A., Lalonde, F., Adams, M. M., & Ungerleider, L. G. (2002). Experience-dependent changes in cerebellar contributions to motor sequence learning. Proc Natl Acad Sci U S A, 99(2), 1017-1022. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citati on&list_uids=11805340

      Euston, D. R., Gruber, A. J., & McNaughton, B. L. (2012). The role of medial prefrontal cortex in memory and decision making. Neuron, 76(6), 1057-1070. https://doi.org/10.1016/j.neuron.2012.12.002

      Euston, D. R., Tatsuno, M., & McNaughton, B. L. (2007). Fast-forward playback of recent memory sequences in prefrontal cortex during sleep. Science, 318(5853), 1147-1150. https://doi.org/10.1126/science.1148979

      Flint, R. D., Ethier, C., Oby, E. R., Miller, L. E., & Slutzky, M. W. (2012). Local field potentials allow accurate decoding of muscle activity. J Neurophysiol, 108(1), 18-24. https://doi.org/10.1152/jn.00832.2011

      Frankland, P. W., & Bontempi, B. (2005). The organization of recent and remote memories. Nat Rev Neurosci, 6(2), 119-130. https://doi.org/10.1038/nrn1607

      Gais, S., Albouy, G., Boly, M., Dang-Vu, T. T., Darsaud, A., Desseilles, M., Rauchs, G., Schabus, M., Sterpenich, V., Vandewalle, G., Maquet, P., & Peigneux, P. (2007). Sleep transforms the cerebral trace of declarative memories. Proc Natl Acad Sci U S A, 104(47), 1877818783. https://doi.org/10.1073/pnas.0705454104

      Grafton, S. T., Mazziotta, J. C., Presty, S., Friston, K. J., Frackowiak, R. S., & Phelps, M. E. (1992). Functional anatomy of human procedural learning determined with regional cerebral blood flow and PET. J Neurosci, 12(7), 2542-2548.

      Grover, S., Wen, W., Viswanathan, V., Gill, C. T., & Reinhart, R. M. G. (2022). Long-lasting, dissociable improvements in working memory and long-term memory in older adults with repetitive neuromodulation. Nat Neurosci, 25(9), 1237-1246. https://doi.org/10.1038/s41593-022-01132-3

      Gupta, M. W., & Rickard, T. C. (2022). Dissipation of reactive inhibition is sufficient to explain post-rest improvements in motor sequence learning. NPJ Sci Learn, 7(1), 25. https://doi.org/10.1038/s41539-022-00140-z

      Gupta, M. W., & Rickard, T. C. (2024). Comparison of online, offline, and hybrid hypotheses of motor sequence learning using a quantitative model that incorporate reactive inhibition. Sci Rep, 14(1), 4661. https://doi.org/10.1038/s41598-024-52726-9

      Hardwick, R. M., Rottschy, C., Miall, R. C., & Eickhoff, S. B. (2013). A quantitative metaanalysis and review of motor learning in the human brain. NeuroImage, 67, 283-297. https://doi.org/10.1016/j.neuroimage.2012.11.020

      Heusser, A. C., Poeppel, D., Ezzyat, Y., & Davachi, L. (2016). Episodic sequence memory is supported by a theta-gamma phase code. Nat Neurosci, 19(10), 1374-1380. https://doi.org/10.1038/nn.4374

      Higgins, C., Liu, Y., Vidaurre, D., Kurth-Nelson, Z., Dolan, R., Behrens, T., & Woolrich, M. (2021). Replay bursts in humans coincide with activation of the default mode and parietal alpha networks. Neuron, 109(5), 882-893 e887. https://doi.org/10.1016/j.neuron.2020.12.007

      Hikosaka, O., Nakamura, K., Sakai, K., & Nakahara, H. (2002). Central mechanisms of motor skill learning. Curr Opin Neurobiol, 12(2), 217-222. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citati on&list_uids=12015240

      Jacobacci, F., Armony, J. L., Yeffal, A., Lerner, G., Amaro, E., Jr., Jovicich, J., Doyon, J., & Della-Maggiore, V. (2020). Rapid hippocampal plasticity supports motor sequence learning. Proc Natl Acad Sci U S A, 117(38), 23898-23903. https://doi.org/10.1073/pnas.2009576117

      Jacobacci, F., Armony, J. L., Yeffal, A., Lerner, G., Amaro Jr, E., Jovicich, J., Doyon, J., & DellaMaggiore, V. (2020). Rapid hippocampal plasticity supports motor sequence learning.

      Proceedings of the National Academy of Sciences, 117(38), 23898-23903. Karni, A., Meyer, G., Jezzard, P., Adams, M. M., Turner, R., & Ungerleider, L. G. (1995). Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature, 377(6545), 155-158. https://doi.org/10.1038/377155a0

      Kennerley, S. W., Sakai, K., & Rushworth, M. F. (2004). Organization of action sequences and the role of the pre-SMA. J Neurophysiol, 91(2), 978-993. https://doi.org/10.1152/jn.00651.2003 00651.2003 [pii]

      Kleim, J. A., Barbay, S., & Nudo, R. J. (1998). Functional reorganization of the rat motor cortex following motor skill learning. J Neurophysiol, 80, 3321-3325.

      Kornysheva, K., Bush, D., Meyer, S. S., Sadnicka, A., Barnes, G., & Burgess, N. (2019). Neural Competitive Queuing of Ordinal Structure Underlies Skilled Sequential Action. Neuron, 101(6), 1166-1180 e1163. https://doi.org/10.1016/j.neuron.2019.01.018

      Lee, S. H., Jin, S. H., & An, J. (2019). The difference in cortical activation pattern for complex motor skills: A functional near- infrared spectroscopy study. Sci Rep, 9(1), 14066. https://doi.org/10.1038/s41598-019-50644-9

      Lisman, J. E., & Jensen, O. (2013). The theta-gamma neural code. Neuron, 77(6), 1002-1016. https://doi.org/10.1016/j.neuron.2013.03.007

      Mollazadeh, M., Aggarwal, V., Davidson, A. G., Law, A. J., Thakor, N. V., & Schieber, M. H. (2011). Spatiotemporal variation of multiple neurophysiological signals in the primary motor cortex during dexterous reach-to-grasp movements. J Neurosci, 31(43), 15531-15543. https://doi.org/10.1523/JNEUROSCI.2999-11.2011

      Molle, M., & Born, J. (2009). Hippocampus whispering in deep sleep to prefrontal cortex--for good memories? Neuron, 61(4), 496-498. https://doi.org/10.1016/j.neuron.2009.02.002

      Morris, R. G. M. (2006). Elements of a neurobiological theory of hippocampal function: the role of synaptic plasticity, synaptic tagging and schemas. [Review]. The European journal of neuroscience, 23(11), 2829-2846. https://doi.org/10.1111/j.1460-9568.2006.04888.x

      Mylonas, D., Schapiro, A. C., Verfaellie, M., Baxter, B., Vangel, M., Stickgold, R., & Manoach, D. S. (2024). Maintenance of Procedural Motor Memory across Brief Rest Periods Requires the Hippocampus. J Neurosci, 44(14). https://doi.org/10.1523/JNEUROSCI.1839-23.2024

      Pan, S. C., & Rickard, T. C. (2015). Sleep and motor learning: Is there room for consolidation? Psychol Bull, 141(4), 812-834. https://doi.org/10.1037/bul0000009

      Penhune, V. B., & Steele, C. J. (2012). Parallel contributions of cerebellar, striatal and M1 mechanisms to motor sequence learning. Behav. Brain Res., 226(2), 579-591. https://doi.org/10.1016/j.bbr.2011.09.044

      Qin, Y. L., McNaughton, B. L., Skaggs, W. E., & Barnes, C. A. (1997). Memory reprocessing in corticocortical and hippocampocortical neuronal ensembles. Philos Trans R Soc Lond B Biol Sci, 352(1360), 1525-1533. https://doi.org/10.1098/rstb.1997.0139

      Rickard, T. C., Cai, D. J., Rieth, C. A., Jones, J., & Ard, M. C. (2008). Sleep does not enhance motor sequence learning. J Exp Psychol Learn Mem Cogn, 34(4), 834-842. https://doi.org/10.1037/0278-7393.34.4.834

      Robertson, E. M., Pascual-Leone, A., & Miall, R. C. (2004). Current concepts in procedural consolidation. Nat Rev Neurosci, 5(7), 576-582. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citati on&list_uids=15208699

      Sawamura, D., Sakuraba, S., Suzuki, Y., Asano, M., Yoshida, S., Honke, T., Kimura, M., Iwase, Y., Horimoto, Y., Yoshida, K., & Sakai, S. (2019). Acquisition of chopstick-operation skills with the non-dominant hand and concomitant changes in brain activity. Sci Rep, 9(1), 20397. https://doi.org/10.1038/s41598-019-56956-0

      Schendan, H. E., Searl, M. M., Melrose, R. J., & Stern, C. E. (2003). An FMRI study of the role of the medial temporal lobe in implicit and explicit sequence learning. Neuron, 37(6), 1013-1025. https://doi.org/10.1016/s0896-6273(03)00123-5

      Seedat, Z. A., Quinn, A. J., Vidaurre, D., Liuzzi, L., Gascoyne, L. E., Hunt, B. A. E., O'Neill, G. C., Pakenham, D. O., Mullinger, K. J., Morris, P. G., Woolrich, M. W., & Brookes, M. J. (2020). The role of transient spectral 'bursts' in functional connectivity: A magnetoencephalography study. NeuroImage, 209, 116537. https://doi.org/10.1016/j.neuroimage.2020.116537

      Shadmehr, R., & Holcomb, H. H. (1997). Neural correlates of motor memory consolidation. Science, 277, 821-824.

      Sjøgård, M., Baxter, B., Mylonas, D., Driscoll, B., Kwok, K., Tolosa, A., Thompson, M., Stickgold, R., Vangel, M., Chu, C., & Manoach, D. S. (2024). Hippocampal ripples mediate motor learning during brief rest breaks in humans. bioRxiv. https://doi.org/10.1101/2024.05.02.592200

      Srinivas, S., Sarvadevabhatla, R. K., Mopuri, K. R., Prabhu, N., Kruthiventi, S. S. S., & Babu, R. V. (2016). A Taxonomy of Deep Convolutional Neural Nets for Computer Vision [Technology Report]. Frontiers in Robotics and AI, 2. https://doi.org/10.3389/frobt.2015.00036

      Sterpenich, V., Albouy, G., Darsaud, A., Schmidt, C., Vandewalle, G., Dang Vu, T. T., Desseilles, M., Phillips, C., Degueldre, C., Balteau, E., Collette, F., Luxen, A., & Maquet, P. (2009). Sleep promotes the neural reorganization of remote emotional memory. J Neurosci, 29(16), 5143-5152. https://doi.org/10.1523/JNEUROSCI.0561-09.2009

      Toni, I., Ramnani, N., Josephs, O., Ashburner, J., & Passingham, R. E. (2001). Learning arbitrary visuomotor associations: temporal dynamic of brain activity. Neuroimage, 14(5), 10481057. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citati on&list_uids=11697936

      Toni, I., Thoenissen, D., & Zilles, K. (2001). Movement preparation and motor intention. NeuroImage, 14(1 Pt 2), S110-117. https://doi.org/10.1006/nimg.2001.0841

      Tse, D., Langston, R. F., Kakeyama, M., Bethus, I., Spooner, P. A., Wood, E. R., Witter, M. P., & Morris, R. G. (2007). Schemas and memory consolidation. Science, 316(5821), 76-82. https://doi.org/10.1126/science.1135935

      van Kesteren, M. T., Fernandez, G., Norris, D. G., & Hermans, E. J. (2010). Persistent schemadependent hippocampal-neocortical connectivity during memory encoding and postencoding rest in humans. Proc Natl Acad Sci U S A, 107(16), 7550-7555. https://doi.org/10.1073/pnas.0914892107

      van Kesteren, M. T., Ruiter, D. J., Fernandez, G., & Henson, R. N. (2012). How schema and novelty augment memory formation. Trends Neurosci, 35(4), 211-219. https://doi.org/10.1016/j.tins.2012.02.001

      Vidaurre, D., Hunt, L. T., Quinn, A. J., Hunt, B. A. E., Brookes, M. J., Nobre, A. C., & Woolrich, M. W. (2018). Spontaneous cortical activity transiently organises into frequency specific phase-coupling networks. Nat Commun, 9(1), 2987. https://doi.org/10.1038/s41467-01805316-z

      Wagner, A. D., Schacter, D. L., Rotte, M., Koutstaal, W., Maril, A., Dale, A. M., Rosen, B. R., & Buckner, R. L. (1998). Building memories: remembering and forgetting of verbal experiences as predicted by brain activity. [Comment]. Science (New York, N.Y.), 281(5380), 1188-1191. http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=9712582 &retmode=ref&cmd=prlinks

      Wolpert, D. M., Goodbody, S. J., & Husain, M. (1998). Maintaining internal representations: the role of the human superior parietal lobe. Nat Neurosci, 1(6), 529-533. https://doi.org/10.1038/2245

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Based on previous publications suggesting a potential role for miR-26b in the pathogenesis of metabolic dysfunction-associated steatohepatitis (MASH), the researchers aim to clarify its function in hepatic health and explore the therapeutical potential of lipid nanoparticles (LNPs) to treat this condition. First, they employed both whole-body and myeloid cell-specific miR-26b KO mice and observed elevated hepatic steatosis features in these mice compared to WT controls when subjected to WTD. Moreover, livers from whole-body miR-26b KO mice also displayed increased levels of inflammation and fibrosis markers. Kinase activity profiling analyses revealed distinct alterations, particularly in kinases associated with inflammatory pathways, in these samples. Treatment with LNPs containing miR-26b mimics restored lipid metabolism and kinase activity in these animals. Finally, similar anti-inflammatory effects were observed in the livers of individuals with cirrhosis, whereas elevated miR-26b levels were found in the plasma of these patients in comparison with healthy control. Overall, the authors conclude that miR-26b plays a protective role in MASH and that its delivery via LNPs efficiently mitigates MASH development.

      The study has some strengths, most notably, its employ of a combination of animal models, analyses of potential underlying mechanisms, as well as innovative treatment delivery methods with significant promise. However, it also presents numerous weaknesses that leave the research work somewhat incomplete. The precise role of miR-26b in a human context remains elusive, hindering direct translation to clinical practice. Additionally, the evaluation of the kinase activity, although innovative, does not provide a clear molecular mechanisms-based explanation behind the protective role of this miRNA.

      Therefore, to fortify the solidity of their conclusions, these concerns require careful attention and resolution. Once these issues are comprehensively addressed, the study stands to make a significant impact on the field.

      We would like the reviewer for his/her careful evaluation of our manuscript and appreciate his/her appraisal for the strengths of our study. Regarding the weaknesses, we have addressed these as good as possible during the revision of our manuscript.

      We can already state that miR-26b has clear anti-inflammatory effects on human liver slices, which is in line with our results demonstrating that miR-26b plays a protective role in MASH development in mice. The notion that patients with liver cirrhosis have increasing plasma levels of miR-26b, seems contradictory at first glance. However, we believe that this increased miR-26b expression is a compensatory mechanism to counteract the MASH/cirrhotic effects. However, the exact source of this miR-26b remains to be elucidated in future studies.

      The performed kinase activity analysis revealed that miR-26b affects kinases that particularly play an important role in inflammation and angiogenesis. Strikingly and supporting these data, these effects could be inverted again by LNP treatment. Combined, these results already provide strong mechanistic insights on molecular and intracellular signalling level. Although the exact target of miR-26b remains elusive and its identification is probably beyond the scope of the current manuscript due to its complexity, we believe that the kinase activity results already provide a solid mechanistic basis.

      Reviewer #1 (Recommendations For The Authors):

      A list of recommendations for the authors is presented below:

      (1) The title should emphasize that the majority of experiments were conducted in mice to accurately reflect the scope of the study.

      As suggested we have updated our title to include the statement that we primarily used a murine model:

      “MicroRNA-26b protects against MASH development in mice and can be efficiently targeted with lipid nanoparticles.”

      (2) It would be useful to know more about miR-26b function, including its target genes, tissue-specific expression, and tissue vs. circulating levels. Is it expected that the two strains of the miRNA (i.e., -3p and -5p) act this similarly? Also, miR-26b expression in the liver of individuals with cirrhosis should be determined.

      The function of miR-26b is still rather elusive, making functional studies using this miR very interesting. In a previous study, describing our used mouse model (Van der Vorst et al. BMC Genom Data, 2021) we have eluded several functions of miR-26b that are already investigated. This was particularly already described in carcinogenesis and the neurological field.

      Target gene wise, there are already several targets described in miRbase. However, for our experiments we feel that determination of the specific target genes is beyond the scope of the current manuscript and rather a focus of follow-up projects.

      Regarding the expression of miR-26b, the liver and blood have rather high and similar expressions of both miR-26b-3p and miR-26b-5p as shown in Author response image 1.

      Author response image 1.

      Expression of miR-26b-3p and -5p. Expression of miR-26b-3p (left) and miR-26b-5p (right), generated by using the miRNATissueAtlas 2025 (Rishik et al. Nucleic Acids Research, 2024). Unfortunately, due to restrictions in tissue availability and the lack of stored RNA samples, we are unable to measure miR-26b expression in the human livers. However, based on the potency of the miR-26b mimic loaded LNPs in the mice (Revised Supplemental Figure 2A-B), we are confident that these LNPs also resulted in a overexpression of miR-26b in the human livers.

      (3) Please explain the rationale behind primarily using whole-body miR-26b KO mice rather than the myeloid cell-specific KO model for the studies.

      The main goal of our study is the elucidation of the general role of miR-26b in MASH formation. Therefore, we decided to primarily focus on the whole-body KO model. While we used the myeloid cell-specific KO model to highlight that myeloid cells play an important role in the observed phenotypes, we believe the whole-body KO model is more appropriate as main focus, particularly also in light of the used LNP targeting that also provides a whole-body approach. Furthermore, this focus on the whole-body model also reflects a more therapeutically relevant approach.

      (4) The authors claim that treatment with LNPs containing miR-26b "replenish the miR-26b level in the whole-body deficient mouse" but the results of this observation are not presented.

      This is indeed a valid point that we have now addressed. We have measured the mir26b-3p and mir26b-5p expression levels in livers from mice after 4-week WTD with simultaneous injection with either empty LNPs as vehicle control (eLNP) or LNPs containing miR-26b mimics (mLNP) every 3 days. As shown in Revised Supplemental Figure 2A-B, mLNP treatment clearly results in an overexpression of the mir26b in the livers of these mice. We have rephrased the text accordingly by stating that mLNP results in an “overexpression” rather than “replenishment”.

      (5) The number of 3 human donors for the precision-cut liver slices is clearly insufficient and clinical parameters need to be shown. Additionally, inconsistencies in individual values in Figures 8B-E need clarification.

      Unfortunately, due to restrictions in tissue availability, we are unable to increase our n-number for these experiments. Clinical parameters are not available, but the liver slices were from healthy tissue.

      We have performed these experiments in duplicates for each individual donor. We have now specified this also in the figure legend to explain the individual values in the graphs:

      “…(3 individual donors, cultured in duplicates).”

      (6) Figure 2D: Please include representative images.

      As suggested we have included representative images in our revised manuscript.

      (7) Address discrepancies in the findings across different experimental settings. For example, the expression levels of the lipid metabolism-related genes are not significantly modulated in whole-body miR-26b KO mice (except for Sra), but they are in the myeloid cell-specific model (but not Sra), and none of them are restored after LNPs injections.

      Although Cd36 is not significantly increased in the whole-body miR-26b KO mice, there is a clear tendency towards increased expression, which is now also validated on protein level (Revised Figure 1K-L). In the myeloid cell-specific model we see a similar tendency, although the gene expression difference of Sra is not significantly changed. This could be due to the difference in the model, since only myeloid cells are affected, suggesting that the effects on Sra are to a large extend driven by non-myeloid cells. This would also fit to the tendency to decreased Sra expression in the mimic-LNP treated mice. Due to the larger variation, this difference did not reach significance, which is rather a statistical issue due to relatively small n-numbers. At this moment, we cannot exclude that these receptors are differentially regulated by different cell-types. For this, future studies are needed focussing on cell-specific targeting of miR-26b in somatic cells, like hepatocytes.

      (8) Figure 4A the images are not representative of the quantification.

      We have selected another representative image that is exactly reflecting the average Sirius red positive area, to reflect the quantification appropriately.

      (9) Figures 5 and 7: Are there not significantly decreased/increased kinases? A deeper analysis of these kinase alterations is necessary to understand how miR-26b exerts its role. A comparison analysis of these two datasets might clarify this regard.

      We indeed very often see in these kinome analysis that the general tendency of kinase activity is unidirectional. We believe that this is caused by the highly interconnected nature of kinases. Activation of one signalling cascade will also results in the activation of many other cascades. However, it is interesting to see which pathways are affected in our study and we find it particularly interesting to see that the tendencies is exactly opposite between both comparisons as KO vs. WT shows increase kinase activities, while KO-LNP vs. KO shows a decrease again. Further showing that the method is reflecting a true biological effect that is mediated by miR26b.

      (10) Determinations of the effect of LNPs containing miR-26b in the KO mice are limited to only a few observations (that are not only significant). More extensive findings are needed to conclusively demonstrate the effectiveness of this treatment method. Similar to the experiments with human liver samples (Figures 8A-E).

      We have now elaborated our observations in the mouse model using LNPs by also analysing the effects on inflammation and fibrosis. However, it seems that the treatment time was not long enough to see pronounced changes on these later stages of disease development. Interestingly, the expression of Tgfb was significantly reduced, suggesting at least that the LNPs on genetic levels have an effect already on fibrotic processes. Thereby, it can be suggested that longer mLNP treatment may result in more effects on protein level as well, which remains to be determined in future studies.

      Unfortunately, due to restrictions in tissue availability, we are unable to increase our n-number or read-outs for these experiments at this moment.

      (11) In Figures 8F-H, the observed increase in circulating miR-26b levels in the plasma of cirrhotic individuals seems contradictory to its proposed protective role. This discrepancy requires clarification.

      In the revised discussion (second to last paragraph), we have now elaborated more on the findings in the plasma of cirrhotic individuals in comparison to our murine in-vivo results, to highlight and discuss this discrepancy.

      (12) Figures 8F-H legend mentions using 8-11 patients per group, but the methods section lacks corresponding information about these individuals.

      These patients, together with inclusion/exclusion criteria and definition of cirrhosis are described in the method section 2.14.

      (13) Figure 8G has 7 data points in the cirrhosis group, instead of 8. Any data exclusion should be justified in the methods section.

      As defined in method section 2.15, we have identified outliers using the ROUT = 1 method, which is the reason why Figure 8G only has 7 data points instead of 8.

      Reviewer #2 (Public Review):

      Summary:

      This manuscript by Peters, Rakateli, et al. aims to characterize the contribution of miR-26b in a mouse model of metabolic dysfunction-associated steatohepatitis (MASH) generated by a Western-type diet on the background of Apoe knock-out. In addition, the authors provide a rescue of the miR-26b using lipid nanoparticles (LNPs), with potential therapeutic implications. In addition, the authors provide useful insights into the role of macrophages and some validation of the effect of miR-26b LNPs on human liver samples.

      Strengths:

      The authors provide a well-designed mouse model, that aims to characterize the role of miR-26b in a mouse model of metabolic dysfunction-associated steatohepatitis (MASH) generated by a Western-type diet on the background of Apoe knock-out. The rescue of the phenotypes associated with the model used using miR-26b using lipid nanoparticles (LNPs) provides an interesting avenue to novel potential therapeutic avenues.

      Weaknesses:

      Although the authors provide a new and interesting avenue to understand the role of miR-26b in MASH, the study needs some additional validations and mechanistic insights in order to strengthen the author's conclusions.

      (1) Analysis of the expression of miRNAs based on miRNA-seq of human samples (see https://ccb-compute.cs.uni-saarland.de/isomirdb/mirnas) suggests that miR-26b-5p is highly abundant both on liver and blood. It seems hard to reconcile that despite miRNA abundance being similar in both tissues, the physiological effects claimed by the authors in Figure 2 come exclusively from the myeloid (macrophages).

      We agree with the reviewer that the effects observed in the whole-body KO model are most likely a combination of cellular effects, particularly since miR-26b is also highly expressed in the liver. However, with the LysM-model we merely want to demonstrate that the myeloid cells at least play an important, though not exclusive, role in the phenotype. In the discussion, we also further elaborate on the fact that the observed changes in the liver can me mediated by hepatic changes.

      To stress this, we have adjusted the conclusion of Figure 2:

      “Interestingly, mice that have a myeloid-specific lack of miR-26b also show increased hepatic cholesterol levels and lipid accumulation demonstrated by Oil-red-O staining, coinciding with an increased hepatic Cd36 expression (Figure 2), demonstrating that myeloid miR-26b plays a major, but not exclusive, role in the observed steatosis.”

      (2) Similarly, the miRNA-seq expression from isomirdb suggests also that expression of miR-26a-5p is indeed 4-fold higher than miR-26b-5p both in the liver and blood. Since both miRNAs share the same seed sequence, and most of the supplemental regions (only 2 nt difference), their endogenous targets must be highly overlapped. It would be interesting to know whether deletion of miR-26b is somehow compensated by increased expression of miR-26a-5p loci. That would suggest that the model is rather a depletion of miR-26.

      UUCAAGUAAUUCAGGAUAGGU mmu-miR-26b-5p mature miRNA

      UUCAAGUAAUCCAGGAUAGGCU mmu-miR-26a-5p mature miRNA

      This is a very valid point raised by the reviewer, which we actually already explored in a previous study, describing our used mouse model (Van der Vorst et al. BMC Genom Data, 2021). In this manuscript, we could show that miR-26a is not affected by the deficiency of miR-26b (Figure 1G in: Van der Vorst et al. BMC Genom Data, 2021).

      (3) Similarly, the miRNA-seq expression from isomirdb suggests also that expression of miR-26b-5p is indeed 50-fold higher than miR-26b-3p in the liver and blood. This difference in abundance of the two strands is usually regarded as one of them being the guide strand (in this case the 5p) and the other being the passenger (in this case the 3p). In some cases, passenger strands can be a byproduct of miRNA biogenesis, thus the rescue experiments using LNPs with both strands in equimolar amounts would not reflect the physiological abundance miR-26b-3p. The non-physiological overabundance of miR-26b-3p would constitute a source of undesired off-targets.

      We agree with the reviewer on this aspect and this is something we had to consider while generating the mimic LNPs. However, we believe that we do not observe and undesired off-target effects, as the effects of the mimic LNPs at least on functional outcomes are relatively mild and only restricted to the expected effects on lipids. Furthermore, the effects on the kinase profile due to the mimic LNP treatment are in line with our expectations. Combined these results suggest at least that potential off-target effects are minor.

      (4) It would also be valuable to check the miRNA levels on the liver upon LNP treatment, or at least the signatures of miR-26b-3p and miR-26b-5p activity using RNA-seq on the RNA samples already collected.

      This is indeed a valid point that we have now addressed. We have measured the mir26b-3p and mir26b-5p expression levels in livers from mice after 4-week WTD with simultaneous injection with either empty LNPs as vehicle control (eLNP) or LNPs containing miR-26b mimics (mLNP) every 3 days. As shown in Supplemental Figure 2A-B, mLNP treatment clearly results in an overexpression of the mir26b in the livers of these mice. We have rephrased the text accordingly by stating that mLNP results in an “overexpression” rather than “replenishment”.

      (5) Some of the phenotypes described, such as the increase in cholesterol, overlap with the previous publication by van der Vorst et al. BMC Genom Data (2021), despite in this case the authors are doing their model in Apoe knock-out and Western-type diet. I would encourage the authors to investigate more or discuss why the initial phenotypes don't become more obvious despite the stressors added in the current manuscript.

      In our previous publication (BMC Genom Data; 2021), we actually did not see any changes in circulating lipid levels. However, in that study we did not evaluate the livers of the mice, so we do not have any information about the hepatic lipid levels.

      As mentioned by the reviewer, we believe that we see much more pronounced phenotypes in the current model because we use the combined stressor of Apoe-/- and Western-type diet, which cannot be compared to the wildtype and chow-fed mice used in the BMC Genom Data manuscript.

      (6) The authors have focused part of their analysis on a few gene makers that show relatively modest changes. Deeper characterization using RNA-seq might reveal other genes that are more profoundly impacted by miR-26 depletion. It would strengthen the conclusions proposed if the authors validated that changes in mRNA abundance (Sra, Cd36) do impact the protein abundance. These relatively small changes or trends in mRNA expression, might not translate into changes in protein abundance.

      As suggested by the reviewer we have now also confirmed that the protein expression of CD36 and SRA is significantly increased upon miR-26b depletion, visualized as Figure 1K-L in the revised manuscript. Unfortunately, we do not have enough material left to perform similar analysis for the LysM-model or the LNP-model, although based on the whole-body effects we are confident that at least for CD36/SRA in this case the gene expression matches effects observed on protein level.

      (7) In Figures 5 and 7, the authors run a phosphorylation array (STK) to analyze the changes in the activity of the kinome. It seems that a relatively large number of signaling pathways are being altered, I think that should be strengthened by further validations by Western blot on the collected tissue samples. For quite a few of the kinases, there might be antibodies that recognise phosphorylation. The two figures lack a mechanistic connection to the rest of the manuscript.<br /> On this point we respectfully have to disagree with the reviewer. We have used a kinase activity profiling approach (PamGene) to analyse the real-time activity of kinases in our lysates. This approach is different than the classical Western blot approach in which only the presence or absence of a specific phosphorylation is detected. Thereby, Western blot analysis does not analyse phosphorylation in real-time, but rather determines whether there has been phosphorylation in the past. Our approach actually determines the real-time, current activity of the kinases, which we believe is a different and perhaps even more reliable read-out measurement. Therefore, validation by Western blot would not strengthen these observations.

      We have particularly tried to connect these observations to the rest of the manuscript by highlighting the observed signalling cascades that are affected, highlighting a role in inflammation and angiogenesis, thereby providing some mechanistic insights.

      Reviewer #2 (Recommendations For The Authors):

      I would encourage the authors to follow-up on some of the more miRNA focused comments made above, which would strengthen the mechanistic part of the work presented.

      I suggest the authors tone down some of some of the claims made (eg. "clearly increased expression", "exacerbated hepatic fibrosis"), given that some of it might need further validation.

      Wherever needed we have tuned down the tone of some claims, although we believe that most claims are already written carefully enough and in line with the observed results.

      Some of the panels that are supposed to have the same amount of animals have variable N, despite they come from the same exact number of RNA samples or tissue lysates (eg. 1G and 1H, vs 1I and 1J).

      This is indeed correct and caused by the fact that some analysis resulted in statistical outliers as identified using the ROUT = 1 method, as also specified in section 2.15 of the method section.

      It would be nice to have representative images of oil-red-o in all the figures where it is quantified (or at least in the supplementary figures).

      As suggested by the reviewer, we have now included representative images for the LysM-model (Revised Figure 2D) and the LNP-model (Revised Figure 6D) as well.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):  

      Summary:

      In this manuscript, Shao et al. investigate the contribution of different cortical areas to working memory maintenance and control processes, an important topic involving different ideas about how the human brain represents and uses information when it is no longer available to sensory systems. In two fMRI experiments, they demonstrate that the human frontal cortex (area sPCS) represents stimulus (orientation) information both during typical maintenance, but even more so when a categorical response demand is present. That is, when participants have to apply an added level of decision control to the WM stimulus, sPCS areas encode stimulus information more than conditions without this added demand. These effects are then expanded upon using multi-area neural network models, recapitulating the empirical gradient of memory vs control effects from visual to parietal and frontal cortices. In general, the experiments and analyses provide solid support for the authors' conclusions, and control experiments and analyses are provided to help interpret and isolate the frontal cortex effect of interest. However, I suggest some alternative explanations and important additional analyses that would help ensure an even stronger level of support for these results and interpretations.

      Strengths:

      -  The authors use an interesting and clever task design across two fMRI experiments that is able to parse out contributions of WM maintenance alone along with categorical, rule-based decisions. Importantly, the second experiment only uses one fixed rule, providing both an internal replication of Experiment 1's effects and extending them to a different situation when rule-switching effects are not involved across mini-blocks.

      - The reported analyses using both inverted encoding models (IEM) and decoders (SVM) demonstrate the stimulus reconstruction effects across different methods, which may be sensitive to different aspects of the relationship between patterns of brain activity and the experimental stimuli.

      - Linking the multivariate activity patterns to memory behavior is critical in thinking about the potential differential roles of cortical areas in sub-serving successful working memory. Figure 3 nicely shows a similar interaction to that of Figure 2 in the role of sPCS in the categorization vs. maintenance tasks.

      - The cross-decoding analysis in Figure 4 is a clever and interesting way to parse out how stimulus and rule/category information may be intertwined, which would have been one of the foremost potential questions or analyses requested by careful readers. However, I think more additional text in the Methods and Results to lay out the exact logic of this abstract category metric will help readers bet0ter interpret the potential importance of this analysis and result.

      We thank the reviewer for the positive assessment of our manuscript. Please see lines 366-372, 885-894 in the revised manuscript for a detailed description of the abstract category index, and see below for a detailed point-by-point response.

      Weaknesses:

      - Selection and presentation of regions of interest: I appreciate the authors' care in separating the sPCS region as "frontal cortex", which is not necessarily part of the prefrontal cortex, on which many ideas of working memory maintenance activity are based. However, to help myself and readers interpret these findings, at a minimum the boundaries of each ROI should be provided as part of the main text or extended data figures. Relatedly, the authors use a probabilistic visual atlas to define ROIs in the visual, parietal, and frontal cortices. But other regions of both lateral frontal and parietal cortices show retinotopic responses (Mackey and Curtis, eLife, 2017: https://elifesciences.org/articles/22974) and are perhaps worth considering. Do the inferior PCS regions or inferior frontal sulcus show a similar pattern of effects across tasks? And what about the middle frontal gyrus areas of the prefrontal cortex, which are most analogous to the findings in NHP studies that the authors mention in their discussion, but do not show retinotopic responses? Reporting the effects (or lack thereof) in other areas of the frontal cortex will be critical for readers to interpret the role of the frontal cortex in guiding WM behavior and supporting the strongly worded conclusions of broad frontal cortex functioning in the paper. For example, to what extent can sPCS results be explained by visual retinotopic responses? (Mackey and Curtis, eLife, 2017: https://elifesciences.org/articles/22974).

      We thank the reviewer for the suggestions. We have added a Supplemental Figure 1 to better illustrate the anatomical locations of ROIs.  

      Following the reviewer’s suggestion, we defined three additional subregions in the frontal cortex based on the HCP atlas [1], including the inferior precentral sulcus (iPCS, generated by merging 6v, 6r, and PEF), inferior frontal sulcus (IFS, generated by merging IFJp, IFJa, IFSp, IFSa, and p47r), and middle frontal gyrus (MFG, generated by merging 9-46d, 46, a9-46v, and p9-46v). We then performed the same analyses as in the main text using both mixed-model and within-condition IEMs. Overall, we found that none of the ROIs demonstrated significant orientation representation in Experiment 1, for either IEM analysis (Author response image 1A and 1C). In Experiment 2, however, the IFS and MFG (but not iPCS) demonstrated a similar pattern to sPCS for orientation representation, though these results did not persist in the within-condition IEM with lower SNR (Author response image 1B and 1D). Moreover, when we performed the abstract category decoding analysis in the three ROIs, only the MFG in Experiment 2 showed significant abstract category decoding results, with no significant difference between experiments (Author response image 1E). To summarize, the orientation and category results observed in sPCS in the original manuscript were largely absent in other frontal regions. There was some indication that the MFG might share some results for orientation representation and category decoding, although this pattern was weaker and was only observed in some analyses in Experiment 2. Therefore, although we did not perform retinotopic mapping and cannot obtain a direct measure of retinotopic responses in the frontal cortex, these results suggest that our findings are unlikely to be explained by visual retinotopic responses: the iPCS, which is another retinotopic region, did not show the observed pattern in any of the analyses. Notably, the iPCS results are consistent with our previous work demonstrating that orientation information cannot be decoded from iPCS during working memory delay [2]. We have included these results on lines 395-403, 563-572 in the revised manuscript to provide a more comprehensive understanding of the current findings. 

      Author response image 1.

      Orientation reconstruction and abstract category decoding results in iPCS, IFS, and MFG.

      - When looking at the time course of effects in Figure 2, for example, the sPCS maintenance vs categorization effects occur very late into the WM delay period. More information is needed to help separate this potential effect from that of the response period and potential premotor/motor-related influences. For example, are the timecourses shifted to account for hemodynamic lag, and if so, by how much? Do the sPCS effects blend into the response period? This is critical, too, for a task that does not use a jittered delay period, and potential response timing and planning can be conducted by participants near the end of the WM delay. For example, the authors say that " significant stimulus representation in EVC even when memoranda had been transformed into a motor format (24)". But, I *think* this paper shows the exact opposite interpretation - EVC stimulus information is only detectable when a motor response *cannot* be planned (https://elifesciences.org/articles/75688). Regardless, parsing out the timing and relationship to response planning is important, and an ROI for M1 or premotor cortex could also help as a control comparison point, as in reference (24).

      We thank the reviewer for raising this point. We agree that examining the contribution of response-related activity in our study is crucial, as we detail below:

      First, the time course results in the manuscript are presented without time shifting. The difference in orientation representation in Figure 2 emerged at around 7 s after task cue onset and 1 s before probe onset. Considering a 4-6 s hemodynamic response lag, the difference should occur around 1-3 s after task cue onset and 5-7 s prior to probe onset. This suggests that a substantial portion of the effect likely occurred during the delay rather than response period.

      Second, our experimental design makes it unlikely that response planning would have influenced our results, as participants were unable to plan their motor responses in advance due to randomized response mapping at the probe stage on a trial-by-trial basis. Moreover, even if response planning had impacted the results in sPCS, it would have affected both conditions similarly, which again, would not explain the observed differences between conditions.

      Third, following the reviewer’s suggestion, we defined an additional ROI (the primary motor cortex, M1) using the HCP atlas and repeated the IEM analysis. No significant orientation representation was observed in either condition in M1, even during the response period (Figure S3), further suggesting that our results are unlikely to be explained by motor responses or motor planning.

      Based on the evidence above, we believe motor responses or planning are unlikely to account for our current findings. We have included these results on lines 264-267 to further clarify this issue.

      Lastly, upon re-reading the Henderson et al. paper [3], we confirmed that stimulus information was still decodable in EVC when a motor response could be planned (Figure 2 of Henderson et al.). In fact, the authors also discussed this result in paragraph 5 of their discussion. This finding, together with our results in EVC, indicates that EVC maintains stimulus information in working memory even when the information is no longer task-relevant, the functional relevance of which warrants further investigation in future research.

      - Interpreting effect sizes of IEM and decoding analysis in different ROIs. Here, the authors are interested in the interaction effects across maintenance and categorization tasks (bar plots in Figure 2), but the effect sizes in even the categorization task (y-axes) are always larger in EVC and IPS than in the sPCS region... To what extent do the authors think this representational fidelity result can or cannot be compared across regions? For example, a reader may wonder how much the sPCS representation matters for the task, perhaps, if memory access is always there in EVC and IPS? Or perhaps late sPCS representations are borrowing/accessing these earlier representations? Giving the reader some more intuition for the effect sizes of representational fidelity will be important. Even in Figure 3 for the behavior, all effects are also seen in IPS as well. More detail or context at minimum is needed about the representational fidelity metric, which is cited in ref (35) but not given in detail. These considerations are important given the claims of the frontal cortex serving such an important for flexible control, here.

      We thank the reviewer for raising this point. We agree that the effect sizes are always larger in EVC and IPS. This is because the specific decoding method we adopted, IEM, is based on the concept of population-level feature-selective responses, and decoding results would be most robust in regions with strong feature-tuning responses, such as EVC and parts of IPS. Therefore, to minimize the impact of effect size on our results, we avoided direct comparisons of representational strength across ROIs, focusing instead on differences in representational strength between conditions within the same ROI. With this approach, we found that EVC and IPS showed high representational fidelity throughout the trial, but only in sPCS did we observe significant higher fidelity in categorization condition, where orientation was actually not a behavioral goal but was manipulated in working memory to achieve the goal. Moreover, although representational fidelity in the EVC was the highest, its behavioral predictability decreased during the delay period, unlike sPCS. These results suggest that the magnitude of fidelity alone is not the determining factor for the observed categorization vs. maintenance effect or for behavioral performance. We have included further discussion on this issue on lines 208-211 of the revised manuscript.

      The reviewer also raised a good point that IPS showed similar behavioral correlation results as sPCS. In the original manuscript, we discussed the functional similarities and distinctions between IPS and sPCS in the discussion. We have expanded on this point on lines 610-627 in the revised manuscript:

      “While many previous WM studies have focused on the functional distinction between sensory and frontoparietal cortex, it has remained less clear how frontal and parietal cortex might differ in terms of WM functions. Some studies have reported stimulus representations with similar functionality in frontal and parietal cortex [4, 5], while others have observed differential patterns [6-8]. We interpret the differential patterns as reflecting a difference in the potential origin of the corresponding cognitive functions. For example, in our study, sPCS demonstrated the most prominent effect for enhanced stimulus representation during categorization as well as the tradeoff between stimulus difference and category representation, suggesting that sPCS might serve as the source region for such effects. On the other hand, IPS did show visually similar patterns to sPCS in some analyses. For instance, stimulus representation in IPS was visually but not statistically higher in the categorization task. Additionally, stimulus representation in IPS also predicted behavioral performance in the categorization task. These results together support the view that our findings in sPCS do not occur in isolation, but rather reflect a dynamic reconfiguration of functional gradients along the cortical hierarchy from early visual to parietal and then to frontal cortex.”

      Lastly, following the reviewer’s suggestion, we have included more details on the representational fidelity metric on lines 201-206, 856-863 in the revised manuscript for clarity.

      Recommendations:

      Figure 3 layout - this result is very interesting and compelling, but I think could be presented to have the effect demonstrated more simply for readers. The scatter plots in the second and third rows take up a lot of space, and perhaps having a barplot as in Figure 2 showing the effects of brain-behavior correlations collapsed across the WM delay period timing would make the effect stand out more.

      We thank the reviewer for the suggestion. We have added a subplot (C) to Figure 3 to demonstrate the brain-behavior correlation collapsed across the late task epoch.

      When discussing the link between sPCS representations and behavior, I think this paper should likely be cited ([https://www.jneurosci.org/content/24/16/3944](https://www.jneurosci.org/content/24/ 16/3944)), which shows univariate relationships between sPCS delay activity and memory-guided saccade performance.

      We thank the reviewer for the suggestion and have included this citation on lines 278-279 in the revised manuscript.

      Interpretation of "control" versus categorization - the authors interpret that "It would be of interest to further investigate whether this active control in the frontal cortex could be generalized to tasks that require other types of WM control such as mental rotation." I think more discussion on the relationship between categorization and "control" is needed, especially given the claim of "flexible control" throughout. Is stimulus categorization a form of cognitive control, and if so, how?  

      We thank the reviewer for raising this point. Cognitive control is generally defined as the process by which behavior is flexibly adapted based on task context and goals, and most theories agree that this process occurs within working memory [9, 10]. With this definition, we consider stimulus categorization to be a form of cognitive control, because participants needed to adapt the stimulus based on the categorization rule in working memory for subsequent category judgements. With two categorization rules, the flexibility in cognitive control increased, because participants need to switch between the two rules multiple times throughout the experiment, instead of being fixed on one rule. We now clarify these two types of controls on lines 112-116 in the introduction.

      However, we agree that the latter form of control could be more related to rule switching that might not be specific to categorization per se. For instance, if participants perform rule switching in another type of WM task that requires WM control such as mental rotation, it remains to be tested whether similar results would be observed and/or whether same brain regions would be recruited. We have included further information on this issue on lines 572-575 in the revised manuscript.

      Reviewer #2 (Public Review):

      Summary:

      The authors provide evidence that helps resolve long-standing questions about the differential involvement of the frontal and posterior cortex in working memory. They show that whereas the early visual cortex shows stronger decoding of memory content in a memorization task vs a more complex categorization task, the frontal cortex shows stronger decoding during categorization tasks than memorization tasks. They find that task-optimized RNNs trained to reproduce the memorized orientations show some similarities in neural decoding to people. Together, this paper presents interesting evidence for differential responsibilities of brain areas in working memory.

      Strengths:

      This paper was strong overall. It had a well-designed task, best-practice decoding methods, and careful control analyses. The neural network modelling adds additional insight into the potential computational roles of different regions.

      We thank the reviewer for the positive assessment of our manuscript.

      Weaknesses:

      While the RNN model matches some of the properties of the task and decoding, its ability to reproduce the detailed findings of the paper was limited. Overall, the RRN model was not as well-motivated as the fMRI analyses.

      We are grateful for the reviewer’s suggestions on improving our RNN results. Please see below for a detailed point-by-point response.

      Recommendations:

      Overall, I thought that this paper was excellent. I have some conceptual concerns about the RNN model, and minor recommendations for visualization.

      (1) I think that the RNN modelling was certainly interesting and well-executed. However, it was not clear how much it contributed to the results. On the one hand, it wasn't clear why reproducing the stimulus was a critical objective of the task (ie could be more strongly motivated on biological grounds). On the other hand, the agreement between the model and the fMRI results is not that strong. The model does not reproduce stronger decoding in 'EVC' for maintenance vs categorization. Also, the pattern of abstract decoding is very different from the fMRI (eg the RNN has stronger categorical encoding in 'EVC' than 'PFC' and larger differences between fixed and flexible rules in earlier areas than is evident in the fMRI). Together, the RNN modelling comes across as a little ad hoc, without really nailing the performance.

      We thank the reviewer for prompting us to further elaborate on the rationale for our RNN analysis. In our fMRI results, we observed a tradeoff between maintaining stimulus information in more flexible tasks (Experiment 1) and maintaining abstract category information in less flexible tasks (Experiment 2). This led to the hypothesis that participants might have employed different coding strategies in the two experiments. Specifically, in flexible environments, stimulus information might be preserved in its original identity in the higher-order cortex, potentially reducing processing demands in each task and thereby facilitating efficiency and flexibility; whereas in less flexible tasks, participants might generate more abstract category representations based on task rules to facilitate learning. To directly test this idea, we examined whether explicitly placing a demand for the RNN to preserve stimulus representation would recapitulate our fMRI findings in frontal cortex by having stimulus information as an output, in comparison to a model that did not specify such a demand. Meanwhile, we totally agree with the reviewer that there are alternative ways to implement this objective in the model. For instance, changing the network encoding weights (lazy vs. rich regime) to make feedforward neural networks either produce high-dimensional stimulus or low-dimensional category representations [11]. However, we feel that exploring these alternatives may fall outside the scope of the current study.

      Regarding the alignment between the fMRI and RNN results: for the stimulus decoding results in EVC, we found that with an alternative decoding method (IEM), a similar maintenance > categorization pattern was observed in EVC-equivalent module, suggesting that our RNN was capable of reproducing EVC results, albeit in a weaker manner (please see our response to the reviewer’s next point). For the category decoding results, we would like to clarify that the category decoding results in EVC was not necessarily better than those in sPCS. Although category decoding accuracy was numerically higher in EVC, it was more variable compared to IPS and sPCS. To illustrate this point, we calculated the Bayes factor for the category decoding results of RNN2 in Figure 6C, and found that the amount of evidence for category decoding as well as for the decoding difference between RNNs in IPS and sPCS modules was high, whereas the evidence in the EVC was insufficient (Response Table 1).

      Author response table 1.

      Bayes factors for category decoding and decoding differences in Figure 6C lower panel.

      Nevertheless, we agree with the reviewer that all three modules demonstrated the category decoding difference between experiments, which differs from our fMRI results. This discrepancy may be partially due to differences in signal sensitivity. RNN signals typically have a higher SNR compared to fMRI signals, as fMRI aggregates signals from multiple neurons and single-neuron tuning effects can be reduced. We have acknowledged this point on lines 633-636 in the revised manuscript. Nonetheless, the current RNNs effectively captured our key fMRI findings, including increased stimulus representation in frontal cortex as well as the tradeoff in category representation with varying levels of flexible control. We believe the RNN results remain valuable in this regard.

      Honestly, I think the paper would have a very similar impact without the modelling results, but I appreciate that you put a lot of work into the modeling, and this is an interesting direction for future research. I have a few suggestions, but nothing that I feel too strongly about.

      - It might be informative to use IEM to better understand the RNN representations (and how similar they are to fMRI). For example, this could show whether any of the modules just encode categorical information. 

      - You could try providing the task and/or retro cue directly to the PFC units. This is a little unrealistic, but may encourage a stronger role for PFC.

      - You might adjust the ratio of feedforward/feedback connections, if you can find good anatomical guidance on what these should be.

      Obviously, I don't have much - it's a tricky problem!

      We thank the reviewer for the suggestions. To better align the fMRI and RNN results, we first performed the same IEM analyses used in the fMRI analyses on the RNN data. We found that with IEM, the orientation representation in the EVC module demonstrated a pattern similar to that in the fMRI data, showing a negative trend for the difference between categorization and maintenance, although the trend did not reach statistical significance (Author response image 2A). Meanwhile, the difference between categorization and maintenance remained a positive trend in the sPCS module.

      Second, following the reviewer’s suggestion, we adjusted the ratio of feedforward/feedback connections between modules to 1:2, such that between Modules 1 and 2 and between Modules 2 and 3, there were always more feedback than feedforward connections, consistent with recent theoretical proposals [12]. We found that, this change preserved the positive trend for orientation differences in the sPCS module, but in the meantime also made the orientation difference in the EVC and IPS modules more positive (Author response image 2B).

      To summarize, we found that the positive difference between categorization and maintenance in the sPCS module was robust across difference RNNs and analytical approaches, further supporting that RNNs with stimulus outputs can replicate our key fMRI findings in the frontal cortex. By contrast, the negative difference between categorization and maintenance in EVC was much weaker. It was weakly present using some analytical methods (i.e., the IEM) but not others (i.e., SVMs), and increasing the feedback ratio of the entire network further weakened this difference. We believe that this could be due to that the positive difference was mainly caused by top-down, feedback modulations from higher cortex during categorization, such that increasing the feedback connection strengthens this pattern across modules. We speculate that enhancing the negative difference in the EVC module might require additional modules or inputs to strengthen fine-grained stimulus representation in EVC, a mechanism that might be of interest to future research. We have added a paragraph to the discussion on the limitations of the RNN results on lines 629-644.

      Author response image 2.

      Stimulus difference across RNN modules.  (A). Results using IEM (p-values from Module 1 to 3: 0.10, 0.48, 0.01). (B). Results using modified RNN2 with changed connection ratio (p-values from Module 1 to 3: 0.12, 0.22, 0.08). All p-values remain uncorrected.

      (2) Can you rule out that during the categorization task, the orientation encoding in PFC isn't just category coding? You had good controls for category coding, but it would be nice to see something for orientation coding. e.g., fit your orientation encoding model after residualizing category encoding, or show that category encoding has worse CV prediction than orientation encoding.

      We thank the reviewer for raising this point. To decouple orientation and category representations, we performed representational similarity analysis (RSA) in combination with linear mixed-effects modeling (LMEM) on the fMRI data. Specifically, we constructed three hypothesized representational dissimilarity matrices (RDMs), one for graded stimulus (increasing distance between orientations as they move farther apart, corresponding to graded feature tuning responses), one for abstract category (0 for all orientations within the same category and 1 for different categories), and another for discrete stimulus (indicating equidistant orientation representations). We then fit the three model RDMs together using LMEM with subject as the random effect (Author response image 3A). This approach is intended to minimize the influence of collinearity between RDMs on the results [13].

      Overall, the LMEM results (Author response image 3B-D) replicated the decoding results in the main text, with significant stimulus but not category representation in sPCS in Experiment 1, and marginally significant category representation in the same brain region in Experiment 2. These results further support the validity of our main findings and emphasize the contribution of stimulus representation independent of category representation.

      Author response image 3.

      Delineating stimulus and category effects using LMEM.  (A) Schematic illustration of this method. (B) Results for late epoch in Experiment 1, showing the fit of each model RDM. (C) Results for early epoch in Experiment 2. (D) Results for late epoch in Experiment 2.

      (3) Is it possible that this region of PFC is involved in categorization in particular and not 'control-demanding working memory'? 

      We thank the reviewer for raising this possibility. Cognitive control is generally defined as the process by which behavior is flexibly adapted based on task context and goals, and most theories agree that this process occurs within working memory [9, 10]. With this definition, we consider stimulus categorization to be a form of cognitive control, because participants need to adapt the stimulus based on the categorization rule in working memory for subsequent category judgements.  However, in the current study we only used one type of control-demanding working memory task (categorization) to test our hypothesis, and therefore it remains unclear whether the current results in sPCS can generalize to other types of WM control tasks.

      We have included a discussion on this issue on lines 572-575 in the revised manuscript.

      (4) Some of the figures could be refined to make them more clear:

      a.  Figure 4 b/c should have informative titles and y-axis labels.

      b.  Figure 5, the flexible vs fixed rule isn't used a ton up to this point - it would help to (also include? Replace?) with something like exp1/exp2 in the legend. It would also help to show the true & orthogonal rule encoding in these different regions (in C, or in a separate panel), especially to the extent that this is a proxy for stimulus encoding.

      c.  Figure 6: B and C are very hard to parse right now. (i) The y-axis on B could use a better label. (ii) It would be useful to include an inset of the relevant data panel from fMRI that you are reproducing. (iii) Why aren't there fixed rules for RNN1?

      We thank the reviewer for the suggestions and have updated the figures accordingly as following:

      Overall I think this is excellent - my feedback is mostly on interpretation and presentation. I think the work itself is really well done, congrats!

      References

      (1) Glasser, M.F., et al., A multi-modal parcellation of human cerebral cortex. Nature, 2016. 536(7615): p. 171-178.

      (2) Yu, Q. and Shim, W.M., Occipital, parietal, and frontal cortices selectively maintain taskrelevant features of multi-feature objects in visual working memory. Neuroimage, 2017. 157: p. 97-107.

      (3) Henderson, M.M., Rademaker, R.L., and Serences, J.T., Flexible utilization of spatial- and motor-based codes for the storage of visuo-spatial information. Elife, 2022. 11.

      (4) Christophel, T.B., et al., Cortical specialization for attended versus unattended working memory. Nat Neurosci, 2018. 21(4): p. 494-496.

      (5) Yu, Q. and Shim, W.M., Temporal-Order-Based Attentional Priority Modulates Mnemonic Representations in Parietal and Frontal Cortices. Cereb Cortex, 2019. 29(7): p. 3182-3192.

      (6) Li, S., et al., Neural Representations in Visual and Parietal Cortex Differentiate between Imagined, Perceived, and Illusory Experiences. J Neurosci, 2023. 43(38): p. 6508-6524.

      (7) Hu, Y. and Yu, Q., Spatiotemporal dynamics of self-generated imagery reveal a reverse cortical hierarchy from cue-induced imagery. Cell Rep, 2023. 42(10): p. 113242.

      (8) Lee, S.H., Kravitz, D.J., and Baker, C.I., Goal-dependent dissociation of visual and prefrontal cortices during working memory. Nat Neurosci, 2013. 16(8): p. 997-9.

      (9) Miller, E.K. and Cohen, J.D., An integrative theory of prefrontal cortex function. Annu Rev Neurosci, 2001. 24: p. 167-202.

      (10) Badre, D., et al., The dimensionality of neural representations for control. Curr Opin Behav Sci, 2021. 38: p. 20-28.

      (11) Flesch, T., et al., Orthogonal representations for robust context-dependent task performance in brains and neural networks. Neuron, 2022. 110(7): p. 1258-1270 e11.

      (12) Wang, X.J., Theory of the Multiregional Neocortex: Large-Scale Neural Dynamics and Distributed Cognition. Annu Rev Neurosci, 2022. 45: p. 533-560.

      (13) Bellmund, J.L.S., et al., Mnemonic construction and representation of temporal structure in the hippocampal formation. Nat Commun, 2022. 13(1): p. 3395.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The manuscript co-authored by Pál Barzó et al is very clear and very well written, demonstrating the electrophysiological and morphological properties of human cortical layer 2/3 pyramidal cells across a wide age range, from age 1 month to 85 years using whole-cell patch clamp. To my knowledge, this is the first study that looks at the cross-age differences in biophysical and morphological properties of human cortical pyramidal cells. The community will also appreciate the significant effort involved in recording data from 485 cells, given the challenges associated with collecting data from human tissue. Understanding the electrophysiological properties of individual cells, which are essential for brain function, is crucial for comprehending human cortical circuits. I think this research enhances our knowledge of how biophysical properties change over time in the human cortex. I also think that by building models of human single cells at different ages using these data, we can develop more accurate representations of brain function. This, in turn, provides valuable insights into human cortical circuits and function and helps in predicting changes in biophysical properties in both health and disease.

      Strengths:

      The strength of this work lies in demonstrating how the electrophysiological and morphological features of human cortical layer 2/3 pyramidal cells change with age, offering crucial insights into brain function throughout life.

      Weaknesses:

      One potential weakness of the paper is that the methodology could be clearer, especially in how different cells were used for various electrophysiological measurements and the conditions under which the recordings were made. Clarifying these points would improve the study's rigor and make the results easier to interpret.

      Reviewer #2 (Public review):

      Summary:

      In this study, Barzo and colleagues aim to establish an appraisal for the development of basal electrophysiology of human layer 2/3 pyramidal cells across life and compare their morphological features at the same ages.

      Strengths:

      The authors have generated recordings from an impressive array of patient samples, allowing them to directly compare the same electrophysiological features as a function of age and other biological features. These data are extremely robust and well organised.

      Weaknesses:

      The use of spine density and shape characteristics is performed from an extremely limited sample (2 individuals). How reflective these data are of the population is not possible to interpret. Furthermore, these data assume that spines fall into discrete types - which is an increasingly controversial assumption.

      Many data are shown according to somewhat arbitrary age ranges. It would have been more informative to plot by absolute age, and then perform more rigourous statistics to test age-dependent effects.

      Overall, the authors achieve their aims by assessing the physiological and morphological properties of human L2/3 pyramidal neurons across life. Their findings have extremely important ramifications for our understanding of human life and implications for how different neuronal properties may influence neurological conditions.

      Reviewer #3 (Public review):

      Summary:

      To understand the specificity of age-dependent changes in the human neocortex, this paper investigated the electrophysiological and morphological characteristics of pyramidal cells in a wide age range from infants to the elderly.

      The results show that some electrophysiological characteristics change with age, particularly in early childhood. In contrast, the larger morphological structures, such as the spatial extent and branching frequency of dendrites, remained largely stable from infancy to old age. On the other hand, the shape of dendritic spines is considered immature in infancy, i.e., the proportion of mushroom-shaped spines increases with age.

      Strengths:

      Whole-cell recordings and intracellular staining of pyramidal cells in defined areas of the human neocortex allowed the authors to compare quantitative parameters of electrophysiological and morphological properties between finely divided age groups.

      They succeeded in finding symmetrical changes specific to both infants and the elderly, and asymmetrical changes specific to either infants or the elderly. The similarity of pyramidal cell characteristics between areas is unexpected.

      Weaknesses:

      Human L2/3 pyramidal cells are thought to be heterogeneous, as L2/3 has expanded to a high degree during the evolution from rodents to humans. However, the diversity (subtyping) is not revealed in this paper.

      Recommendations for the authors: 

      Reviewer #1 (Recommendations for the authors):

      The manuscript co-authored by Pál Barzó et al is very clear and very well written, demonstrating the electrophysiological and morphological properties of the human cortical layer 2/3 pyramidal cells across a wide age range, from age 1 month to 85 years using whole-cell patch clamp. To my knowledge, this is the first study that looks at the cross-age differences in morphological and electrophysiological properties of human cortical pyramidal cells. The community will also appreciate the significant effort involved in recording data from 485 cells, given the challenges associated with collecting data from human tissue. understanding the electrophysiological properties of individual cells, which are essential for brain function, is crucial for comprehending human cortical circuits. I think this research enhances our knowledge of how biophysical properties change over time in the human cortex. I also think that by building models of human single cells at different ages using these data, we can develop more accurate representations of brain function. This, in turn, provides valuable insights into human cortical circuits and function and helps in predicting changes in biophysical properties in both health and disease.

      We are grateful for the positive evaluation of our work. We also thank the reviewers for their comments and believe that our manuscript has improved significantly with their help. In addition to the reviewer’s suggestions for improvement, further cell reconstructions were performed to make the anatomical data more robust (n = 1,2,3,3,4,3,2 additional reconstruction in age groups infant, early childhood, late childhood, adolescence, young adulthood, middle adulthood and late adulthood, respectively; Σn = 18). Four additional cells were added to the spine analysis and the statistics associated with each additional dataset were updated.

      I have some comments, particularly regarding the methodology and data presentation, to improve the clarity of the paper

      (1) I assume the tissue is from the resected area adjacent to the tumor. Could you please clarify this in the Methods section?

      Thank you for this comment, it has been clarified in the Methods section with the following sentence: “We used human cortical tissue adjacent to the pathological lesion  that had to be surgically removed from patients (n = 63 female  n = 45 male) as part of the treatment for tumors, hydrocephalus, apoplexy, cysts, and arteriovenous malformation.”

      (2) Regarding the presentation of data in the Methods section, could you please clarify whether the authors used different cells for measuring the various electrophysiological properties? The number of recorded cells for calculating subthreshold properties (e.g., late adulthood: n = 113) differs from the number the cells used for calculating suprathreshold properties (e.g., late adulthood: n = 83). If this is the case, it may make it difficult to compare the electrophysiological properties. Could you please clarify this?

      The different element numbers are indeed due to the fact that different quality criteria were defined for the analysis of fast and slow signals. For the analysis of fast signals (e.g. AP half-width, AP upstroke velocity, AP amplitude), higher quality requirements were established therefore cells with high series resistance (> 30 MΩ) were excluded. We have updated and clarified the recording conditions in the text, figures, and methodology section accordingly.

      (3) Additionally, they mentioned that their recordings were done at zero holding current and at more than -50 pA. Could you clarify whether the data from these two sets of experiments were combined? If so, please provide an explanation in the methods section.

      Basically, we wanted to determine the parameters of the potential changes of the membrane at rest. However, for technical reasons related to the biological amplifier, in some of the experiments a certain continuous holding current may be present during the measurement (3.5% of all experiments). The holding currents were in the range of -50 pA to +60 pA. Within this range, previously checked on mouse neurons we have not found linear correlation between the electrophysiological properties and the holding current. This is reported in the Methods section.

      (4) This section needs revision. It is unclear why different series resistances (Rs) or different cells were used to compute various electrophysiological properties." To calculate passive membrane properties (resting membrane potential, input resistance, time constant, and sag) either cells with series resistance (Rs): 22.85 {plus minus} 9.04 MΩ (ranging between -4.55 MΩ and 56.76 MΩ) and 0 pA holding current (n = 154), or cells with holding current > -50 pA (-7.46 {plus minus} 28.56 pA, min: -49.89 pA, max: 59.68pA) and Rs < 30 MΩ (18.96 {plus minus} 6.48 MΩ) (n = 23) were used. For the analysis of high frequency action potential features (AP half-width, AP up-stroke velocity, AP amplitude and rheobase) cells with Rs < 30 MΩ (n = 331 cells with Rs 19.2 {plus minus} 6.6 MΩ) and holding current > -50pA (n = 308 with 0 pA holding current and Rs: 19.22 {plus minus} 6.59 MΩ, n = 23 withholding current: -7.46 {plus minus} 28.56 pA and Rs: 18.96 {plus minus} 6.48 MΩ) were used."

      To make the chapter clearer, we simplified the cell groups used to analyse the different electrophysical properties and revised the Method section as follows: “For the analysis of the electrophysiological recordings n = 457 recordings with a series resistance (Rs) of 24.93 ± 11.18 MΩ (max: 63.77 MΩ) were used. For the analysis of fast parameters related to the action potential (AP half-width, AP upstroke velocity, AP amplitude and rheobase), higher quality requirements were set and cells with Rs > 30 MΩ were excluded. This reduced the data set to n = 331 cells with Rs 19.42 ± 6.2 MΩ.”

      (5) The authors recorded the sag ratio using a -100 pA injected current. Is there a technical reason why they did not inject more than -100 PA?

      There is no particular technical reason, we use similar to others this current amplitude for voltage response recordings over the years to record electrophysiological traces.

      (6) In the abstract, the authors mentioned that data were recorded from ages 1 month to 85 years. However, in the results, they stated that data were recorded from ages 0 to 85 years. Could you please clarify this discrepancy?

      We corrected this discrepancy.

      (7) Additionally, the results mention that data were collected from 485 human cortical layer 2/3 (L2/3) pyramidal cells, but subthreshold membrane features such as resting membrane potential, input resistance, time constant (tau), and sag ratio were calculated in 475 cortical pyramidal cells from 99 patients. Could you please clarify these discrepancies? In the discussion "We recorded from n = 457 human cortical excitatory pyramidal cells from the supragranular layer from birth to 85 years"

      Thank you for pointing this out, we have corrected the error. Although our full data set contained 485 pyramidal cells, 28 recordings were excluded from the electrophysiological analysis and were used for morphological evaluation only, therefore 457 recordings were used for passive parameter measurements.

      (8) Regarding the distance from the pia to the border layer L1/L2, did the authors notice any differences across ages?

      To investigate whether the thickness of cortical layer 1 changes throughout life, we measured the L1 thickness and found no significant differences between age groups (P = 0.09, Kruskal-Wallis test) (Author response image 1).

      Author response image 1.

      Thickness of cortical layer 1 at different life stages. (A) Boxplot shows the thickness of layer 1. (B) Scatter plot shows the distribution of L1 thickness measured on the reconstructed cells. Age is shown in years on a logarithmic scale, dots are color-coded according to the corresponding age groups.

      (9) I am not sure why they referred to the data as layer 2/3 when most of the data, based on Figure 1E, were recorded from a distance of 0-200 µm from the L1/L2 border. Could it be that there is no significant depth-dependent variation in electrophysiological properties, as reported by Berg (2021), Kalmbach (2018), and Chameh (2021)?

      Although the vast majority of our data comes from a distance of less than 200 μm from the L1/L2 border, we cannot neglect the fact that our dataset also contains a small number of cells deeper than this, which are layer 3 cells. Apart from some differences shown in Supplementary Figures 7-9, we found no general difference between cells located at a distance of less than 200 μm and more than 200 μm from the L1 border.

      (10) In Figure 1, there is variability in resting membrane potential (RMP), tau, and input resistance (IR) within the infant age group. However, this trend is not observed in the sag ratio. Could you please discuss this finding?

      The large variance in the data is due to dramatic changes in these three parameters during the first year of life. Supplementary Figure 3 shows the comparisons of parameter distributions of patients between 0-6 months and 6-12 months. The sag amplitude in these cells is generally low therefore no such large changes could have occurred in them.

      (11) Did the authors use a K-Nearest Neighbors (KNN) test to assess the accuracy of the infant cluster in Figure 3F?

      Based on eight electrophysiological features of the cells (resting Vm, input resistance, tau, sag ratio, rheobase, AP half-width, AP up-stroke, and AP amplitude), the infant pyramidal cells on a UMAP form a distinct group (Author response image 2A) represented by cluster 4 on Author response image 2B. When calculating the sum of the Euclidean distances of cells within the cluster from the centroid, the isolated infant group (cluster 4) shows the smallest distance value from the centroid (cluster 1: 40.2, cluster 2: 36.21, cluster 3: 39.96, cluster 4: 5.72, cluster 5: 39.2, cluster 6: 55.74, cluster 7: 54.27), demonstrating that infant cells create a discrete cluster distinct from other age groups (Author response image 2B).

      Author response image 2.

      (A) Uniform Manifold Approximation and Projection (UMAP) of 8 selected electrophysiological properties (resting Vm, input resistance, tau, sag ratio, rheobase, AP half-width, AP up-stroke, and AP amplitude) with data points for 331 cortical L2/3 pyramidal cells, colored with the corresponding age groups. (B) UMAP colored by k-means clustering with 7 clusters, red crosses represent the centroids of the clusters.

      (12) Missing citation: 'Previous research has shown that the biophysical properties of human pyramidal cells show depth-related correlations throughout L2/3 (Berg et al., 2021).' Please include citations for Kalmbach (2018) and Chameh (2021).

      We thank for the additional references, these studies are now cited.

      (13) Have they noticed any morphological properties differences among the different cortical lobes (Parietal, Temporal, Frontal, and Occipital). It would be beneficial to present this data, especially since they have a sufficient sample size from each cortical lobe.

      The majority of our data set on the morphological properties of pyramidal cells comes from the parietal (n = 17 cells) and temporal lobe (n = 15). We found no significant differences in the morphological properties of cells from these two brain regions and no differences between age groups in the same cortical lobes.

      (14) Have the authors found differences in spine characteristics among different cortical areas, as reported previously by 10.1023/a:1024134312173).

      We found morphological differences in dendritic spines in the different brain regions, yet, our data are limited to draw definitive conclusions.

      Reviewer #2 (Recommendations for the authors):

      Major

      (1) I believe that these data presented in all main text figures would be more intuitive to be plotted on a log(age) scale, such as shown in supplementary Figure 13. The bounds of the ages used for different groups, as summarised in Figure 1 feel somewhat arbitrary.

      Recent neuroscientific studies on postnatal ageing mainly use the age-group comparison format (Kang 2011, Bethlehem 2022), which has been defined based on milestones in the cognitive, motor, social-emotional, and language/communications domains of observable behaviour (Zubler et al. 2022, for detailed definitions see Kang 2011). Since many parameters do not vary linearly but take a U-shape (or inverted U-shape), statistical quantification of these is not straightforward, so we would retain the age-group format for the main graphs. However, at the reviewer's suggestion, electrophysiological and morphological parameters are presented on a log(age) scale as supplementary figures (Supplementary Figures 2,4 and 6), also further statistical analysis was also carried out without grouping the data (see response 5).

      (2) The authors present a lot of data values in the text, which is also shown in the figures. This makes reading of the manuscript somewhat difficult in places. For brevity, it may be best to present this data as supplementary tables.

      Thank you for this suggestion. We have inserted these data as tables.

      (3) I am unclear why the authors excluded cells that fired doublets or triplets in Figure 4? Were these included in the passive and AP-specific analysis - but excluded from F-I plots? Please clarify the rationale and the relative abundance of these physiological types based on age - one might predict that more initial-burst firing types are associated with older neurons?

      Thank you for drawing attention to this anomaly. We have updated the figures and text by adding the cells with initial burst firing. These cells are also included in the analysis of passive and action potential properties. In our overall dataset, 6.78% of cells show burst firing; infant: 0%, early childhood: 3.57% (1 cell), late childhood: 0%, adolescence: 11.11% (6 cells), young adulthood: 10.11% (9), middle adulthood: 10.71% (6 cells), late adulthood: 7.96 (9 cells) of all cells including the age groups.

      (4) The statistical analyses performed in Figure 6 are not justified. From the authors' description of these data, they derive spine density measurements from 1 infant and 1 aged adult, then perform pseudoreplicated analysis in these individuals. These data would require greater replication from infant and aged groups - with the possible inclusion of a younger adult group also. It would be ideal to have n=3/age group to allow robust statistical analysis.

      Thank you for this point. Accordingly, we have expanded our data set to include n = 3 infant pyramidal cells (83 days old, from one patient) and n = 3 pyramidal cells from three late adulthood patients (64.3 ± 2.08 years old).

      (5) Given the high number of individuals and replicates throughout this manuscript, a more circumspect approach to statistics would be appreciated, e.g. a generalised linear mixed effects model - with age as a fixed effect and sex, patient, etc as random effects. This may reveal the greatest statistical power of these important and rich data.

      Of the generative models we used the Generalized Additive Mixed Model (GAMM) to describe the relationship between age and the various passive and active electrophysiological features. We defined age with cubic spline smoothing term as the fixed effect and gender, brain area, surgical procedure, and hemisphere as random effects. With GAMM we found that the age-dependent correlation of the examined parameters (resting membrane potential, input resistance, tau, sag ratio, rheobase current, AP half-width, AP up-stroke velocity, AP amplitude, first AP latency, adaptation) was significant, except for F-I slope, described by the model incorporating the four random effects.  We also observed correlation with gender, brain area, hemisphere, and surgical procedure in various intrinsic properties. The Author response table 1 below shows the statistical values of GAMM and the statistical tests used in the manuscript to compare.

      Author response table 1.

      Statistical significance of patient attributes *In the pairwise comparison, the age of cells in the two groups was significantly different: female (subthreshold: 37.36 ± 26.25 years old, suprathreshold: 38.3 ± 25.6 y.o.) - male (subthreshold: 24.86 ± 23.7 y.o., suprathreshold: 25.7 ± 23.93 y.o.), subthreshold: P = 1.96*10-6, suprathreshold: P = 3.25*10-5 Mann-Whitney test. **In the pairwise comparison, the age of cells in the two groups was significantly different: surgical procedure: tumor removal (subthreshold: 33.72 ± 24.33 y.o., suprathreshold: 36.43 ± 27.07 y.o.) - VP shunt (subthreshold: 27.38 ± 29.69 y.o., suprathreshold: 27.07 ± 29.37 y.o.) subthreshold: P = 3.68*10-3, suprathreshold: P = 1.64-10-3, Mann-Whitney test)

      (6) Regarding the morphological diversity of dendritic spines. There is some debate in the field as to whether the distinction of specific dendritic spine types - as conveyed in this manuscript - are true subtypes or reflect a continuum of diverse morphology (see Tønneson et al., 2014 Nature Neuroscience). It is appreciated that the approach taken by the authors is the dogma within the field - however, dogma should continue to be challenged. Given that the authors have used DAB labelling combined with light microscopy, the possibility of accurately measuring spine morphology required for determining this continuum is extremely limited (e.g. Li et al., (2023) ACS Chemical Neuroscience). I would suggest that alongside the inclusion of further replicates for their spine analysis, the authors tone down their discussion of spine subtypes given the absence of any synaptic data presented in this current study to support the maturation (or otherwise) of dendritic spine synapses.

      Many thanks to the reviewer for this comment. We agree with the drawbacks of our method for testing spine categorization. To increase the reliability of our results, we increased the number of pyramidal cells in the infant and late adult groups. We also revised the figure and as suggested by Reviewer#3 added photos of spines to each category in addition to schematic drawings to give an impression of the phenotype. In the discussion, we only address the differences between two readily separable mushroom and filopodial forms and highlight results that only confirm findings already known in the literature. Although the concerns are valid, we apply the sentence from the above Li et al. (2023) reference “...the most sophisticated equipment may not always be necessary for answering some research questions”. We believe that it is worth sharing our data and the somewhat subjective grouping, which we hope to report in more detail in the future.

      Minor

      (1) The order of the supplemental materials is out of order with their introduction in the text. These should be revised to reflect the order mentioned in the text.

      Thank you for your comment, we have corrected the order of the supplementary figures.

      (2) In Supplementary Figure 13, it would be informative to include some form of linear regression to confirm whether an age-dependent effect on neuronal morphology exists.

      We have added linear regression to the figure.

      (3) Figure 3D = should this be AP - not Ap?

      Thank you for drawing attention to this, we have corrected the incorrect typing on the figure.

      (4) For UMAP analysis in Figure 3, please provide a table of the features that were used for the 32 & 8-parameter UMAPs respectively.

      We have added a table to the Materials and methods section of all the electrophysiological features included in the UMAP.

      (5) For morphology, please include pia and L1/2 border for reconstructions shown for clarity.

      We indicated both the pia mater and the L1/2 border on the figure showing all the reconstructions (Supplementary Figure 10).

      Reviewer #3 (Recommendations for the authors):

      Major:

      (1) Data were obtained from different cortical areas of human patients of different ages. The electrophysiological characteristics were largely independent of other attributes such as disease, gender, and cortical areas (Supplementary Figure 2). To support the conclusion that age is one of the key attributes responsible for change, a similar morphological analysis would be necessary for gender.

      We updated the text and the supplementary section with Supplementary Figures 18-21. to determine if age-related differences in biophysical characteristics are affected by the patient's gender.

      (2) 'mushroom-shaped, thin, filopodial, branched, and stubby spines'

      Show photographs of individual typical spine types to make the classification easier to understand.

      To make the classification more understandable, we have updated the corresponding figure (Figure 6) with representative photos of the dendritic spine types.

      (3) Some electrophysiological parameters of the infant group showed higher deviations compared to other age groups. A UMAP (Supplementary Figure 2) shows that some infant neurons form a small cluster, while other infant neurons are scattered with neurons of other ages. Are there any differences between infant neurons in the small cluster and other infant neurons with respect to attributes other than age?

      For most of the electrophysiological parameters, the infant age group showed age-dependent variability, as illustrated in Supplementary Figures 3, 2,4 and 6 . The small group of infant cells is not clustered by gender, brain region, or medical condition, as shown in Supplementary Figure 5.

      (4) A recent paper (Benavides-Piccione et al. 2024, doi:10.1093/cercor/bhae180) reported that some morphological parameters of human layer 3 neurons differ between occipital and temporal regions. Area-dependent morphological differences have been also reported in non-human primates. Discussion of potential contradictions may therefore be requested.

      Most of the cells we reconstructed originated from the parietal and temporal regions (parietal: n = 20, temporal: n = 23, frontal: n = 15, occipital: n = 5). We found no differences in morphological features between these two regions, and we also found no significant differences when we compared the cells from the same brain regions by age group.

      (5) L2/3 cells of rodents are morphologically differentiated according to cortical depth. If individual L2/3 cells of humans are less differentiated than those of rodents, this point should be discussed.

      Depth-related morphological heterogeneity has already been reported previously (Berg 2021), however, our dataset on the morphological characteristics of pyramidal cells is from the upper L2/3 region, with their soma located at a distance of 117.85 ± 65.3 μm (between: 11.05 and 243.3 μm) from the L1/L2 border. Therefore, we cannot conclude from our data whether humans are less differentiated than rodents.

      Minor:

      (1) Cell body morphology may affect electrophysiological properties. However, morphological quantification of cell bodies has not been reported. It may be added.

      In our DAB-labeled samples, we could not perfectly measure the total volume of the cell body in the reconstructions, therefore our measurements regarding the soma morphology are not shown in the manuscript. When comparing the cell body area of the middle sections of the soma of the reconstructed cells between the age groups, we found no significant differences (P = 0.082, Kruskal–Wallis test).

      (2) 'The adaptation of the AP frequency response'

      Describe how this parameter was obtained.

      The adaptation of the AP frequency response or adaptation was calculated as the average adaptation of the interspike interval between consecutive APs.

      (3) 'we excluded cells showing initial duplet or triplet action potential bursts'

      Why were the burst cells excluded from the analysis?

      We have modified the figures and text to include cells with initial burst firing.

      (4) Electrophysiological characteristics to be analyzed:

      Spike thresholds and afterhyperpolarizations

      We found age-related differences in the amplitude of the afterhyperpolarization (P = 2.56*10<sup>-30</sup>, Kruskal-Wallis test) and in the threshold of the action potential (P = 5.24*10<sup>-12</sup>, Kruskal-Wallis test) (Author response image 3).

      Author response image 3.

      Age-dependence of afterhyperpolarization and AP threshold. (A-B) Boxplots show the differences in afterhyperpolarization (AHP) amplitude (A) and AP threshold (B) between age groups. Asterisks indicate statistical significance (* P < 0.05, ** P < 0.01, *** P < 0.001, Kruskal-Wallis test with post-hoc Dunn test). (C-D) Scatter plots show AHP amplitude (C) and AP threshold (D) across the lifespan. Age is shown on a logarithmic scale, dots are colored according to the corresponding age group.

      (5) 'We identified and labeled each spine on n = 2 fully 3D-reconstructed cells'

      To which cortical area do these cells belong?

      At what depths are they distributed?

      Is it possible to report the number of spines, in addition to the density per unit length?

      We increased the number of cells in which we analyzed dendritic spine density. The data shown in Figure 6. are from pyramidal cells from an infant patient (n = 3 from a single patient) and late adulthood patients (n = 3 from 3 patients) (Supplementary Figure 13). The infant cells are from the same patient, the sample is from the right parietal lobe, and the patient is 83 days old. The older cells are from three different patients (#1: 65 years old, right temporal lobe; #2: 66 years old, right parietal lobe; #3: 62 years old, right frontal lobe). Infant cells are located 144.43 ± 45.26 µm (#1: 109.3, #2: 128.49, #3: 195.5 µm), late adult cells 161.22 ± 66.22 µm (#1: 183.5, #2: 213.42, #3: 86.73 µm) from the L1/2 border. We provide the number of spines in an additional supplementary table (Supplementary table 2.).

    1. Author response:

      To Reviewer #1:

      Thank you for your thorough review and comments on our work, which you described as “the role of neuritin in T cell biology studied here is new and interesting.”.  We have summarized your comments into two categories: biology and investigation approach, experimental rigor, and data presentation.

      Biology and Investigation approach comments:

      (1) Questions regarding the T cell anergy model:

      Major point “(4) Figure 1E-H. The authors assume that this immunization protocol induces anergic cells, but they provide no experimental evidence for this. It would be useful to show that T cells are indeed anergic in this model, especially those that are OVA-specific. The lack of IL-2 production by Cltr cells could be explained by the presence of fewer OVA-specific cells, rather than by an anergic status.”

      T cell anergy is a well-established concept first described by Schwartz’s group. It refers to the hyporesponsive T cell functional state in antigen-experienced CD4 T cells (Chappert and Schwartz, 2010; Fathman and Lineberry, 2007; Jenkins and Schwartz, 1987; Quill and Schwartz, 1987).  Anergic T cells are characterized by their inability to expand and to produce IL2 upon subsequent antigen re-challenge. In this paper, we have borrowed the existing in vivo T cell anergy induction model used by Mueller’s group for T cell anergy induction (Vanasek et al., 2006).  Specifically, Thy1.1+ Ctrl or Nrn1-/- TCR transgenic OTII cells were co-transferred with the congenically marked Thy1.2+ WT polyclonal Treg cells into TCR-/- mice.  After anergy induction, the congenically marked TCR transgenic T cells were recovered by sorting based on Thy1.1+ congenic marker, and subsequently re-stimulation ex vivo with OVA323-339 peptide. We evaluated the T cell anergic state based on OTII cell expansion in vivo and IL2 production upon OVA323-339 restimulation ex vivo.  

      “The authors assume that this immunization protocol induces anergic cells, but they provide no experimental evidence for this.”

      Because the anergy model by Mueller's group is well established (Vanasek et al., 2006), we did not feel that additional effort was required to validate this model as the reviewer suggested. Moreover, the limited IL2 production among the control cells upon restimulation confirms the validity of this model.

      “The lack of IL-2 production by Cltr cells could be explained by the presence of fewer OVAspecific cells, rather than by an anergic status”.

      Cells from Ctrl and Nrn1-/- mice on a homogeneous TCR transgenic (OTII) background were used in these experiments. The possibility that substantial variability of TCR expression or different expression levels of the transgenic TCR could have impacted IL2 production rather than anergy induction is unlikely.

      Overall, we used this in vivo anergy model to evaluate the Nrn1-/- T cell functional state in comparison to Ctrl cells under the anergy induction condition following the evaluation of Nrn1 expression, particularly in anergic T cells.  Through studies using this anergy model, we observed a significant change in Treg induction among OTII cells. We decided to pursue the role of Nrn1 in Treg cell development and function rather than the biology of T cell anergy as evidenced by subsequent experiments.

      Minor points “(6) On which markers are anergic cells sorted for RNAseq analysis?”

      Cells were sorted out based on their congenic marker marking Ctrl or Nrn1-/- OTII cells transferred into the host mice.  We did not specifically isolate anergic cells for sequencing.

      (2) Question regarding the validity of iTreg differentiation model.

      Major point: “(5) Figure 2A-C and Figure 3. The use of iTregs to try to understand what is happening in vivo is problematic. iTregs are cells that have probably no equivalent in vivo, and so may have no physiological relevance. In any case, they are different from pTreg cells generated in vivo. Working with pTreg may be challenging, that is why I would suggest generating data with purified nTreg. Moreover, it was shown in the article of Gonzalez-Figueroa 2021 that Nrn1-/- nTreg retained a normal suppressive function, which would not be what is concluded by the authors of this manuscript. Moreover, we do not even know what the % of Foxp3 cells is in the iTreg used (after differentiation and 20h of re-stimulation) and whether this % is the same between Ctlr and Nrn1 KO cells.”.

      We thank Reviewer #1 for their feedback. While it is true that iTregs made in vitro and in vivo generated pTregs display several distinctions (e. g., differences in Foxp3 expression stability, for example), we strongly disagree with this statement by Revieweer#1 “The use of iTregs to try to understand what is happening in vivo is problematic. iTregs are cells that have probably no equivalent in vivo, and so may have no physiological relevance.” The induced Treg cell (iTreg) model was established over 20 years ago (Chen et al., 2003; Zheng et al., 2002), and the model is widely adopted with over 2000 citations. Further, it has been instrumental in understanding different aspects of regulatory T cell biology (Hurrell et al., 2022; John et al., 2022; Schmitt and Williams, 2013; Sugiura et al., 2022).   

      Because we have observed reduced pTreg generation in vivo, we choose to use the in vitro iTreg model system to understand the mechanistic changes involved in Treg cell differentiation and function, specifically, neuritin’s role in this process. We have made no claim that iTreg cell biology is identical to pTreg generated in vivo or nTreg cells. However, the iTreg culture system has proved to be a good in vitro system for deciphering molecular events involved in complex processes. As such, it remains a commonly used approach by many research groups in the Treg cell field (Hurrell et al., 2022; John et al., 2022; Sugiura et al., 2022). Moreover, applying the iTreg in vitro culture system has been instrumental in helping us identify the cell electrical state change in Nrn1-/- CD4 cells and revealed the biological link between Nrn1 and the ionotropic AMPA receptor (AMPAR), which we will discuss in the subsequent discussion. It is technically challenging to use nTreg cells for T cell electrical state studies due to their heterogeneous nature from development in an in vivo environment and the effect of manipulation during the nTreg cell isolation process, which can both affect the T cell electrical state.   

      “Moreover, it was shown in the article of Gonzalez-Figueroa 2021 that Nrn1-/- nTreg retained a normal suppressive function, which would not be what is concluded by the authors of this manuscript.” 

      We have also carried out nTreg studies in vitro in addition to iTreg cells. Similar to Gonzalez-Figueroa et al.'s findings, we did not observe differences in suppression function between Nrn1-/- and WT nTreg using the in vitro suppression assay. However, Nrn1-/- nTreg cells revealed reduced suppression function in vivo (Fig. 2D-L). In fact, Gonzalez-Figueroa et al. observed reduced plasma cell formation after OVA immunization in Treg-specific Nrn1-/- mice, implicating reduced suppression from Nrn1-/- follicular regulatory T (Tfr) cells. Thus, our observation of the reduced suppression function of Nrn1-/- nTreg toward effector T cell expansion, as presented in Fig. 2D-L, does not contradict the results from Gonzalez-Figueroa et al. Rather, the conclusions of these two studies agree that Nrn1 can play important roles in immune suppression observable in vivo that are not captured readily by the in vitro suppression assay.

      “Moreover, we do not even know what the % of Foxp3 cells is in the iTreg used (after differentiation and 20h of re-stimulation) and whether this % is the same between Ctlr and Nrn1 KO cells.”

      We have stated in the manuscript on page 7 line 208 that “Similar proportions of Foxp3+ cells were observed in Nrn1-/- and Ctrl cells under the iTreg culture condition, suggesting that Nrn1 deficiency does not significantly impact Foxp3+ cell differentiation”. In the revised manuscript, we will include the data on the proportion of Foxp3+ cells before iTreg restimulation.

      (3) Confirmation of transcriptomic data regarding amino acids or electrolytes transport change

      Minor point“(3) Would not it be possible to perform experiments showing the ability of cells to transport amino acids or electrolytes across the plasma membrane? This would be a more interesting demonstration than transcriptomic data.”

      We appreciate Review# 1’s suggestion regarding “perform experiments showing the ability of cells to transport amino acids or electrolytes across the plasma membrane”.  We have indeed already performed such experiments corroborating the transcriptomics data on differential amino acid and nutrient transporter expression. Specifically, we loaded either iTreg or Th0 cells with membrane potential (MP) dye and measured MP level change after adding the complete set of amino acids (complete AA).  Upon entry, the charge carried by AAs may transiently affect cell membrane potential. Different AA transporter expression patterns may show different MP change patterns upon AA entry, as we showed in Author response image 1. We observed reduced MP change in Nrn1-/- iTreg compared to the Ctrl, whereas in the context of Th0 cells, Nrn1-/- showed enhanced MP change than the Ctrl. We can certainly include these data in the revised manuscript.

      Author response image 1.

      Membrane potential change induced by amino acids entry. a. Nrn1-/- or WT iTreg cells loaded with MP dye and MP change was measured upon the addition of a complete set of AAs. b. Nrn1-/- or WT Th0 cells loaded with MP dye and MP change was measured upon the addition of a complete set of AAs.

      (4) EAE experiment data assessment

      Minor point ”(5) Figure 5F. How are cells re-stimulated? If polyclonal stimulation is used, the experiment is not interesting because the analysis is done with lymph node cells. This analysis should either be performed with cells from the CNS or with MOG restimulation with lymph node cells.”

      In the EAE study, the Nrn1-/- mice exhibit similar disease onset but a protracted non-resolving disease phenotype compared to the WT control mice.  Several reasons may contribute to this phenotype: 1. Enhanced T effector cell infiltration/persistence in the central nervous system (CNS); 2. Reduced Treg cell-mediated suppression to the T effector cells in the CNS; 3. Protracted non-resolving inflammation at the immunization site has the potential to continue sending T effector cells into CNS, contributing to persistent inflammation. Based on this reasoning, we examined the infiltrating T effector cell number and Treg cell proportion in the CNS.  We also restimulated cells from draining lymph nodes close to the inflammation site, looking for evidence of persistent inflammation.  When mice were harvested around day 16 after immunization, the inflammation at the local draining lymph node should be at the contraction stage.  We stimulated cells with PMA and ionomycin intended to observe all potential T effector cells involved in the draining lymph node rather than only MOG antigen-specific cells.  We disagree with Reviewer #1’s assumption that “This analysis should either be performed with cells from the CNS or with MOG restimulation with lymph node cells.”. We think the experimental approach we have taken has been appropriately tailored to the biological questions we intended to answer.

      Experimental rigor and data presentation.

      (1) Data labeling and additional supporting data

      Major points (2) The authors use Nrn1+/+ and Nrn1+/- cells indiscriminately as control cells on the basis of similar biology between Nrn1+/+ and Nrn1+/- cells at homeostasis. However, it is quite possible that the Nrn1+/- cells have a phenotype in situations of in vitro activation or in vivo inflammation (cancer, EAE). It would be important to discriminate Nrn1+/- and Nrn1+/+ cells in the data or to show that both cell types have the same phenotype in these conditions too.

      (3) Figure 1A-D. Since the authors are using the Nrp1 KO mice, it would be important to confirm the specificity of the anti-Nrn1 mAb by FACS. Once verified, it would be important to add FACS results with this mAb in Figures 1A-C to have single-cell and quantitative data as well.

      Minor points  

      (1) Line 119, 120 of the text. It is said that one of the most up-regulated genes in anergic cells is Nrn1 but the data is not shown.

      (2) For all figures showing %, the titles of the Y axes are written in an odd way. For example, it is written "Foxp3% CD4". It would be more conventional and clearer to write "% Foxp3+ / CD4+" or "% Foxp3+ among CD4+".

      (4) For certain staining (Figure 3E, H) it would be important to show the raw data, in addition to MFI or % values.

      We can adapt the labeling and provide additional data, including Nrn1 staining on Treg cells and flow graphs for pmTOR and pS6 staining (Fig. 3H), as requested by Reviewer #1.

      (2) Experimental rigor:

      General comments:

      “However, it is disappointing that reading this manuscript leaves an impression of incomplete work done too quickly.”

      We were discouraged to receive the comment, “this manuscript leaves an impression of incomplete work done too quickly.” Our study of this novel molecule began without any existing biological tools such as antibodies, knockout mice, etc.  Over the past several years, we have established our own antibodies for Nrn1 detection, obtained and characterized Nrn1 knockout mice, and utilized multiple approaches to identify the molecular mechanism of Nrn1 function. Through the use of the in vitro iTreg system described in this manuscript, we identified the association of Nrn1 deficiency with cell electrical state change, potentially connected to AMPAR function. We have further corroborated our findings by generating Nrn1 and AMPAR T cell specific double knockout mice and confirmed that T cell specific AMPAR deletion could abrogate the phenotype caused by the Nrn1 deficiency (see Author response image 2).  We did not include the double knockout data in the current manuscript because AMPAR function has not yet been studied thoroughly in T cell biology, and we feel this topic warrants examination in its own right.  However, the unpublished data support the finding that Nrn1 modulates the T cell electrical state and, consequently, metabolism, ultimately influencing tolerance and immunity.  In its current form, the manuscript represents the first characterization of the novel molecule Nrn1 in anergic cells, Tregs, and effector T cells. While this work has led to several exciting additional questions, we disagree that the novel characterization we have presented Is incomplete. We feel that our present data set, which squarely highlights Nrn1’s role as an important immune regulator while shedding unprecedented light on the molecular events involved, will be of considerable interest to a broad field of researchers.

      “Multiple models have been used, but none has been studied thoroughly enough to provide really conclusive and unambiguous data. For example, 5 different models were used to study T cells in vivo. It would have been preferable to use fewer, but to go further in the study of mechanisms.”

      We have indeed used multiple in vivo models to reveal Nrn1's function in Treg differentiation, Treg suppression function, T effector cell differentiation and function, and the overall impact on autoimmune disease. Because the impact of ion channel function is often context-dependent, we examined the biological outcome of Nrn1 deficiency in several in vivo contexts.  We would appreciate it if Reviewer#1 would provide a specific example, given the Nrn1 phenotype, of how to proceed deeper to investigate the electrical change in the in vivo models.

      “Major points (1) A real weakness of this work is the fact that in most of the results shown, there are few biological replicates with differences that are often small between Ctrl and Nrn1 -/-. The systematic use of student's t-test may lead to thinking that the differences are significant, which is often misleading given the small number of samples, which makes it impossible to know whether the distributions are Gaussian and whether a parametric test can be used. RNAseq bulk data are based on biological duplicates, which is open to criticism.”

      We respectfully disagree with Reviewer #1 on the question of statistical power and significance to our work. We have used 5-8 mice/group for each in vivo model and 3-4 technical replicates for the in vitro studies, with a minimum of 2-3 replicate experiments. These group sizes and replication numbers are in line with those seen in high-impact publications. While some differences between Ctrl and Nrn1-/- appear small, they have significant biological consequences, as evidenced by the various Nrn1-/- in vivo phenotypes. Furthermore, we believe we have subjected our data to the appropriate statistical tests to ensure rigorous analysis and representation of our findings.

      To Reviewer #2.

      We thank Reviewer #2 for the careful review of the manuscript. We especially appreciate the comments that “The characterizations of T cell Nrn1 expression both in vitro and in vivo are comprehensive and convincing. The in vivo functional studies of anergy development, Treg suppression, and EAE development are also well done to strengthen the notion that Nrn1 is an important regulator of CD4 responsiveness.”

      “The major weakness of this study stems from a lack of a clear molecular mechanism involving Nrn1. “  

      We fully understand this comment from Reviewer #2. The main mechanism we identified contributing to the functional defect of Nrn1-/- T cells involves novel effects on the electric and metabolic state of the cells. Although we referenced neuronal studies that indicate Nrn1 is the auxiliary protein for the ionotropic AMPA-type glutamate receptor (AMPAR) and may affect AMPAR function, we did not provide any evidence in this manuscript as the topic requires further in-depth study.   

      For the benefit of this discussion, we include our preliminary Nrn1 and AMPAR double knockout data (Author response image 2), which indicates that abrogating AMPAR expression can compensate for the defect caused by Nrn1 deficiency in vitro and in vivo. This preliminary data supports the notion that Nrn1 modulates AMPAR function, which causes changes in T cell electric and metabolic state, influencing T cell differentiation and function.  

      Author response image 2.

      Deletion of AMPAR expression in T cells compensates for the defect caused by Nrn1 deficiency. Nrn1-/- mice were crossed with T cell-specific AMPAR knockout mice (AMPARfl/flCD4Cre+) mice. The following mice were generated and used in the experiment: T cell specific AMPAR-knockout and Nrn1 knockout mice (AKONKO), Nrn1 knockout mice (AWTNKO), Ctrl mice (AWTNWT). a. Deletion of AMPAR compensates for the iTreg cell defect observed in Nrn1-/- CD4 cells. iTreg live cell proportion, cell number, and Ki67 expression among Foxp3+ cells 3 days after aCD3 restimulation. b. Deletion of AMPAR in T cells abrogates the enhanced autoimmune response in Nrn1-/- Mouse in the EAE disease model. Mouse relative weight change and disease score progression after EAE disease induction.  

      Ion channels can influence cell metabolism through multiple means (Vaeth and Feske, 2018; Wang et al., 2020). First, ion channels are involved in maintaining cell resting membrane potential. This electrical potential difference across the cell membrane is essential for various cellular processes, including metabolism (Abdul Kadir et al., 2018; Blackiston et al., 2009; Nagy et al., 2018; Yu et al., 2022). Second, ion channels facilitate the movement of ions across cell membranes. These ions are essential for various metabolic processes. For example, ions like calcium (Ca2+), potassium (K+), and sodium (Na+) play crucial roles in signaling pathways that regulate metabolism (Kahlfuss et al., 2020). Third, ion channel activity can influence cellular energy balance due to ATP consumption associated with ion transport to maintain ion balances (Erecińska and Dagani, 1990; Gerkau et al., 2019). This, in turn, can impact processes like ATP production, which is central to cellular metabolism. Thus, ion channel expression and function determine the cell’s bioelectric state and contribute to cell metabolism (Levin, 2021).

      Because the AMPAR function has not been thoroughly studied using a genetic approach in T cells, we do not intend to include the double knockout data in this manuscript before fully characterizing the T cell-specific AMPAR knockout mice.  

      “Although the biochemical and informatics studies are well-performed, it is my opinion that these results are inconclusive in part due to the absence of key "naive" control groups. This limits my ability to understand the significance of these data.

      Specifically, studies of the electrical and metabolic state of Nrn1-/- inducible Treg cells (iTregs) would benefit from similar data collected from wild-type and Nrn1-/- naive CD4 T cells.”

      We appreciate the reviewer’s comments. This comment reflects two concerns in data interpretation:

      (1) Are Nrn1-/- naïve T cells fundamentally different from WT cells? Does this fundamental difference contribute to the observed electrical and metabolic phenotype in iTreg or Th0 cells? This is a very good question we will perform the experiments as the reviewer suggested. While Nrn1 is expressed at a basal (low) level in naïve T cells, deletion of Nrn1 may cause changes in naïve T cell phenotype.   

      (2) Is the Nrn1-/- phenotype caused by Nrn1 functional deficiency or due to the secondary effect of Nrn1 deletion, such as non-physiological cell membrane structure changes?

      We have done the following experiment to address this concern.  We have cultured WT T cells in the presence of Nrn1 antibody and compared the outcome with Nrn1-/- iTreg cells (Author response image 3). WT iTreg cells under antibody blockade exhibited similar changes as Nrn1-/- iTreg cells, confirming the physiological relevance of the Nrn1-/- phenotype.

      Author response image 3.

      Nrn1 antibody blockade in WT iTreg cell culture caused similar phenotypic change as in Nrn1-/- iTreg cells. Nrn1-/- and WT CD4 cells were differentiated under iTreg condition in the presence of anti-Nrn1 (aNrn1) antibody or isotype control for 3 days. Cells were restimulated with anti-CD3 and in the presence of aNrn1 or isotype. a. MP measured 18hr after anti-CD3 restimulation. b. live CD4 cell number and proportion of Ki67 expression among live cells three days after restimulation. c. The proportion of Foxp3+ cells among live cells three days after restimulation.  

      Reference:

      Abdul Kadir, L., M. Stacey, and R. Barrett-Jolley. 2018. Emerging Roles of the Membrane Potential: Action Beyond the Action Potential. Front Physiol 9:1661.

      Blackiston, D.J., K.A. McLaughlin, and M. Levin. 2009. Bioelectric controls of cell proliferation: ion channels, membrane voltage and the cell cycle. Cell Cycle 8:3527-3536.

      Chappert, P., and R.H. Schwartz. 2010. Induction of T cell anergy: integration of environmental cues and infectious tolerance. Current opinion in immunology 22:552-559.

      Chen, W., W. Jin, N. Hardegen, K.J. Lei, L. Li, N. Marinos, G. McGrady, and S.M. Wahl. 2003. Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. The Journal of experimental medicine 198:1875-1886.

      Erecińska, M., and F. Dagani. 1990. Relationships between the neuronal sodium/potassium pump and energy metabolism. Effects of K+, Na+, and adenosine triphosphate in isolated brain synaptosomes. J Gen Physiol 95:591-616.

      Fathman, C.G., and N.B. Lineberry. 2007. Molecular mechanisms of CD4+ T-cell anergy. Nat Rev Immunol 7:599-609.

      Gerkau, N.J., R. Lerchundi, J.S.E. Nelson, M. Lantermann, J. Meyer, J. Hirrlinger, and C.R. Rose. 2019. Relation between activity-induced intracellular sodium transients and ATP dynamics in mouse hippocampal neurons. The Journal of physiology 597:5687-5705.

      Hurrell, B.P., D.G. Helou, E. Howard, J.D. Painter, P. Shafiei-Jahani, A.H. Sharpe, and O. Akbari. 2022. PD-L2 controls peripherally induced regulatory T cells by maintaining metabolic activity and Foxp3 stability. Nature communications 13:5118.

      Jenkins, M.K., and R.H. Schwartz. 1987. Antigen presentation by chemically modified splenocytes induces antigen-specific T cell unresponsiveness in vitro and in vivo. The Journal of experimental medicine 165:302-319.

      John, P., M.C. Pulanco, P.M. Galbo, Jr., Y. Wei, K.C. Ohaegbulam, D. Zheng, and X. Zang. 2022. The immune checkpoint B7x expands tumor-infiltrating Tregs and promotes resistance to anti-CTLA-4 therapy. Nature communications 13:2506.

      Kahlfuss, S., U. Kaufmann, A.R. Concepcion, L. Noyer, D. Raphael, M. Vaeth, J. Yang, P. Pancholi, M. Maus, J. Muller, L. Kozhaya, A. Khodadadi-Jamayran, Z. Sun, P. Shaw, D. Unutmaz, P.B. Stathopulos, C. Feist, S.B. Cameron, S.E. Turvey, and S. Feske. 2020. STIM1-mediated calcium influx controls antifungal immunity and the metabolic function of nonpathogenic Th17 cells. EMBO molecular medicine 12:e11592.

      Levin, M. 2021. Bioelectric signaling: Reprogrammable circuits underlying embryogenesis, regeneration, and cancer. Cell 184:1971-1989.

      Nagy, E., G. Mocsar, V. Sebestyen, J. Volko, F. Papp, K. Toth, S. Damjanovich, G. Panyi, T.A. Waldmann, A. Bodnar, and G. Vamosi. 2018. Membrane Potential Distinctly Modulates Mobility and Signaling of IL-2 and IL-15 Receptors in T Cells. Biophys J 114:2473-2482.

      Quill, H., and R.H. Schwartz. 1987. Stimulation of normal inducer T cell clones with antigen presented by purified Ia molecules in planar lipid membranes: specific induction of a long-lived state of proliferative nonresponsiveness. Journal of immunology (Baltimore, Md. : 1950) 138:3704-3712.

      Schmitt, E.G., and C.B. Williams. 2013. Generation and function of induced regulatory T cells. Frontiers in immunology 4:152.

      Sugiura, A., G. Andrejeva, K. Voss, D.R. Heintzman, X. Xu, M.Z. Madden, X. Ye, K.L. Beier, N.U. Chowdhury, M.M. Wolf, A.C. Young, D.L. Greenwood, A.E. Sewell, S.K. Shahi, S.N. Freedman, A.M. Cameron, P. Foerch, T. Bourne, J.C. Garcia-Canaveras, J. Karijolich, D.C. Newcomb, A.K. Mangalam, J.D. Rabinowitz, and J.C. Rathmell. 2022. MTHFD2 is a metabolic checkpoint controlling effector and regulatory T cell fate and function. Immunity 55:65-81.e69.

      Vaeth, M., and S. Feske. 2018. Ion channelopathies of the immune system. Current opinion in immunology 52:39-50.

      Vanasek, T.L., S.L. Nandiwada, M.K. Jenkins, and D.L. Mueller. 2006. CD25+Foxp3+ regulatory T cells facilitate CD4+ T cell clonal anergy induction during the recovery from lymphopenia. Journal of immunology (Baltimore, Md. :1950) 176:5880-5889.

      Wang, Y., A. Tao, M. Vaeth, and S. Feske. 2020. Calcium regulation of T cell metabolism. Current opinion in physiology 17:207-223.

      Yu, W., Z. Wang, X. Yu, Y. Zhao, Z. Xie, K. Zhang, Z. Chi, S. Chen, T. Xu, D. Jiang, X. Guo, M. Li, J. Zhang, H. Fang, D. Yang, Y. Guo, X. Yang, X. Zhang, Y. Wu, W. Yang, and D. Wang. 2022. Kir2.1-mediated membrane potential promotes nutrient acquisition and inflammation through regulation of nutrient transporters. Nature communications 13:3544.

      Zheng, S.G., J.D. Gray, K. Ohtsuka, S. Yamagiwa, and D.A. Horwitz. 2002. Generation ex vivo of TGF-beta-producing regulatory T cells from CD4+CD25- precursors. Journal of immunology (Baltimore, Md. : 1950) 169:4183-4189.

    1. Author response:

      Reviewer #1 (Public Review):

      Summary:

      Li et al investigated how adjuvants such as MPLA and CpG influence antigen presentation at the level of the Antigen-presenting cell and MHCII : peptide interaction. They found that the use of MPLA or CpG influences the exogenous peptide repertoire presented by MHC II molecules. Additionally, their observations included the finding that peptides with low-stability peptide:MHC interactions yielded more robust CD4+ T cell responses in mice. These phenomena were illustrated specifically for 2 pattern recognition receptor activating adjuvants. This work represents a step forward for how adjuvants program CD4+ Th responses and provides further evidence regarding the expected mechanisms of PRR adjuvants in enhancing CD4+ T cell responses in the setting of vaccination.

      Strengths:

      The authors use a variety of systems to analyze this question. Initial observations were collected in an H pylori model of vaccination with a demonstration of immunodominance differences simply by adjuvant type, followed by analysis of MHC:peptide as well as proteomic analysis with comparison by adjuvant group. Their analysis returns to peptide immunization and analysis of strength of relative CD4+ T cell responses, through calculation of IC:50 values and strength of binding. This is a comprehensive work. The logical sequence of experiments makes sense and follows an unexpected observation through to trying to understand that process further with peptide immunization and its impact on Th responses. This work will premise further studies into the mechanisms of adjuvants on T cells.

      Weaknesses:

      Comment 1. While MDP has a different manner of interaction as an adjuvant compared to CpG and MPLA, it is unclear why MDP has a different impact on peptide presentation and it should be further investigated, or at minimum highlighted in the discussion as an area that requires further investigation.

      Thank you for the suggestion. We investigated the reasons for the different effects of MDP on peptide presentation compared with those of CpG and MPLA. We found that the expression of some proteins involved in antigen processing and presentation, such as CTSS, H2-DM, Ifi30, and CD74, was substantially lower in the MDP-treated group than in the CpG- and MPLA-treated groups. To further confirm whether these proteins play a key role during adjuvant modification of peptide presentation, we knocked down them using shRNA and then performed immunopeptidomics. The original mass spectra and peptide spectrum matches have been deposited in the public proteomics repository iProX (https://www.iprox.cn/page/home.html) under accession number IPX0007611000. Unfortunately, the expected results for peptide presentation repertoires were not observed. Thus, we hypothesized that the different effects of MDP on peptide presentation might not result from differences in protein expression. We cannot exclude the possibility that some other proteins that may be important in this process were overlooked. We are still working on the mechanisms and do not have an exact conclusion. Thus, we did not present related data in this manuscript.

      The related statements were added in the Discussion section on page 13, lines 292–299: “In this study, we found that the peptide repertoires presented by APCs were significantly affected by the adjuvants CpG and MPLA, but not MDP. All three adjuvants belong to the PRR ligand adjuvant family. CpG and MPLA bind to TLRs and MDP is recognized by NOD2. Although the receptors are different, many common molecules are involved both in TLR and NLD pathway activation. Unfortunately, we did not demonstrate why the MDP had different impacts on peptide presentation compared with other adjuvants. Further investigation is required to clarify the mechanism by which MPLA, CpG, and MDP adjuvants modulate the presentation of peptides with different stabilities.”

      Comment 2. It is alluded by the authors that TLR activating adjuvants mediate selective, low affinity, exogenous peptide binding onto MHC class II molecules. However, this was not demonstrated to be related specifically to TLR binding. I wonder if some work with TLR deficient mice (TLR 4KO for example) could evaluate this phenomenon more specifically.

      Thank you for the suggestion. This is an important point that was overlooked in this study. Based on published research on the mechanisms of PRR adjuvants, CpG and MPLA, we believe that the effect of CpG and MPLA on APCs-selective epitope presentation needs to be bound to the corresponding receptor, although we did not give a definitive conclusion in the manuscript.

      To confirm the TLR-activating adjuvants affecting peptides presented on MHC molecules specifically through TLR binding, we have used CRISPR-cas9 to knock out TLR4 and TLR9 of A20 cells and repeated the experiments, as suggested. We chose TLR4- and TLR9- knockout A20 cell lines instead of TLR-deficient mice because a large number of APCs are required for immunopeptidomics. Moreover, the data observed in this study were based on the A20 cell line. However, these experiments are time-consuming. Unfortunately, we were unable to provide timely data. In addition, we believe that elucidating the downstream molecular mechanisms of TLR activation is necessary, as mentioned in comment 1. All these data will be combined and reported in our upcoming publications.

      Comment 3. It is unclear to me if this observation is H pylori model/antigen-specific. It may have been nice to characterize the phenomenon with a different set of antigens as supplemental. Lastly, it is unclear if the peptide immunization experiment reveals a clear pattern related to high and low-stability peptides among the peptides analyzed.

      Q1: It is unclear to me if this observation is H. pylori model/antigen-specific. It may have been nice to characterize the phenomenon with a different set of antigens as supplemental.

      Thank you for the comment. To confirm the effect of the adjuvant on the exogenous peptide repertoire presented by MHC II molecules, a set of antigens from another bacterium, Pseudomonas aeruginosa, was used, and the experiments were repeated. The A20 cells were treated with CpG and pulsed with Pseudomonas aeruginosa antigens. Twelve hours later, MHC-II–peptide complexes were immunoprecipitated, and immunopeptidomics were performed. The data are shown below (Author response image 1). Information on the MHC-peptides from Pseudomonas aeruginosa is given in the Supplementary Table named “Table S3 Response to comment3”. A total of 713 and 205 bacterial peptides were identified in the PBS and CpG groups (Author response image 1A). The number of exogenous peptides in the CpG-treated group was significantly lower than that in the PBS-treated control group (Author response image 1B). A total of 568 bacterial peptides were presented only in the PBS group; 60 bacterial peptides were presented in the CpG-treated group, and 145 bacterial peptides were presented in both groups (Author response image 1C). We then analyzed the MHC-binding stability of the peptides present in the adjuvant-treated group and that of the peptide-deficient after adjuvant stimulation using the IEDB website. We found that the IC50 of the peptides in the adjuvant-treated group were much higher than those of the deficient peptides, which indicated that the peptides presented in the CpG-treated groups have lower binding stability for MHC-II (Author response image 1D). These results indicate that CpG adjuvant affects the presentation of exogenous peptides with high binding stability, which is consistent with the data reported in our manuscript. Using another set of antigens, we confirmed that our observations were not H. pylori model- or antigen-specific.

      Author response image 1.

      MHC-II peptidome measurements in adjuvant-treated APCs pulsed with Pseudomonas aeruginosa antigens. (A) Total number of bacterial peptides identified in the PBS- and CpG-treated groups. (B) The number and length distribution of bacterial peptides in different groups were compared. (C) Venn diagrams showing the distribution of bacterial peptides in different groups. (D) IC50 of the presented, deficient, and co-presented peptides post-adjuvant stimulation from immunopeptidome binding to H2-IA and H2-IE were predicted using the IEDB website. High IC50 means low binding stability. *p<0.05, **p<0.01.

      Q2: Lastly, it is unclear if the peptide immunization experiment reveals a clear pattern related to high and low-stability peptides among the peptides analyzed.

      In this study, we used a peptide immunization experiment to evaluate the responses induced by the screened peptides with different stabilities. In addition to this method, tetramer staining and ELISA have been used to assess epitope-specific T-cell proliferation and cytokine secretion. Among these, tetramer staining is often used in studies involving model antigens. However, as many peptides were screened in our study, synthesizing a sufficient number of tetramers was difficult. However, we believe that the experimental data obtained in this study support the conclusion. Nevertheless, we agree that more methods applied will make the pattern more clearly.

      Reviewer #2 (Public Review):

      Adjuvants boost antigen-specific immune responses to vaccines. However, whether adjuvants modulate the epitope immunodominance and the mechanisms involved in adjuvant's effect on antigen processing and presentation are not fully characterized. In this manuscript, Li et al report that immunodominant epitopes recognized by antigen-specific T cells are altered by adjuvants.

      Using MPLA, CpG, and MDP adjuvants and H. pylori antigens, the authors screened the dominant epitopes of Th1 responses in mice post-vaccination with different adjuvants and found that adjuvants altered antigen-specific CD4+ T cell immunodominant epitope hierarchy. They show that adjuvants, MPLA and CpG especially, modulate the peptide repertoires presented on the surface of APCs. Surprisingly, adjuvant favored the presentation of low-stability peptides rather than high-stability peptides by APCs. As a result, the low stability peptide presented in adjuvant groups elicits T cell response effectively.

      Thanks a lot for your comments.

      Reviewer #1 (Recommendations For The Authors):

      Recommendation 1. Figure 6: The peptides considered low affinity- it would be helpful to specify from which adjuvant they were collected from. When they are pooled it is unclear if we are analyzing peptides collected from adjuvanting with any of the three adjuvants studied.

      Thank you for the suggestion. The related description in Figure 6 has been modified in the revised manuscript. Data for the peptides identified from the adjuvants MPLA- and CpG-treated groups are shown separately.

      Recommendation 2. It is unclear to me why the A20 cell line is less preferred to the J774 line for the immunopeptidome analysis - can the authors expand on this?

      We apologize for not clearly explaining this in the original manuscript. In fact, the A20 cell line is better than J774A.1 cell line for immunopeptidomics experiments. Compared to J774A.1 cells, more MHC-II peptides were obtained from a smaller number of A20 cells using immunopeptidomics. At the beginning of this study, we chose the J774A.1 cell line as it is a macrophage cell line. J774A.1 cells (up to 5×108) were pulsed with the antigens, and MHC-II–peptide complexes were eluted from the cell surface for immunopeptidomics. Unfortunately, only a few hundred peptides from the host were detected and no exogenous peptides were detected. Next, we tested the A20 cell line. In total, 108 A20 cells were used in this study. More than 3500 host peptides and approximately 50 exogenous peptides have been identified. These data indicate that the A20 cell line was better.

      To investigate the reasons for this, we detected MHC-II expression on cell surfaces using FACS. Our purpose was to elute peptides from MHC–peptide complexes present on the cell surface. Low MHC expression resulted in the elution of a few peptides. We found the MFI of MHC-II molecules on J774A.1 cell is about 500; however, the MFI of MHC-II molecules on A20 cells is more than 300,000. These data indicate that MHC-II expression on A20 cells was much higher than that on J774A.1 cells. J774A.1 cell is a macrophage cell line. Macrophages have excellent antigen phagocytic capabilities; however, their ability to present antigens is relatively weak. MHC molecules on the macrophage cell surface can be upregulated in the stimulation of some cytokines, for example, IFN-γ. In this study, we used adjuvants as stimulators and did not want to use additional cytokine stimulators. Thus, J774A.1 cells were not used in the present study.

      The related statements are reflected on page 6 lines 120–128 “We also selected another H-2d cell J774A.1, a macrophage cell line, for immunopeptidome analysis in this study. Briefly, 5×108 J774A.1 cells were used for immunopeptidomics. Moreover, fewer than 350 peptides were observed at a peptide spectrum match (PSM) level of < 1.0% false discovery rate (FDR). However, more than 5500 peptides were detected in 108 A20 cells at FDR < 1.0% (Figure S2A). CD86 and MHC-II molecule expression on J774A.1 cells was substantially lower than that on A20 cells (Figure S2B). Low MHC-II expression on J774A.1 cells could be the reason for the lack of peptides identified by LC–MS/MS. Thus, A20 cells instead of J774A.1 cells were used for the subsequent experiments.”

      Recommendation 3. Lines 172-177, can more details be provided about the whole proteome analysis? The plots are shown for relative representation of protein expression to PBS, but it is unclear to me what examples of these proteins are (IFN pathway, Ubiquitination pathway). Could these be confirmed by protein expression analyses in supplemental?

      Thank you for the suggestion. In this study, we conducted whole proteome analysis to investigate changes in protein expression across different pathways in the adjuvant groups. Through KEGG enrichment analysis, we compared the differential expression of MHC presentation pathway proteins (such as H2-M, Ifi30, CD74, CTSS, proteasome, and peptidase subunits) between the PBS- and adjuvant-treated groups using our proteome data. In addition, we focused on IFN and ubiquitination pathways that play crucial roles in antigen presentation modification and immune response. The proteins and their relative expression in these pathways are shown in Figure S4B. Details regarding the protein names and expressions are provided in Supplemental Table S2 of the revised manuscript.

      The original statements in the results “Then, we analyzed the whole proteome data to determine whether the proteins involved in antigen presentation and processing were altered. We found that proteins involved in antigen processing, peptidase function, ubiquitination pathway, and interferon (IFN) signaling were altered post adjuvants treatment, especially in MPLA and CpG groups (Figure 5C; Figure S4B and S4C). These data suggest that adjuvants MPLA and CpG may affect the antigen processing of APCs, resulting in fewer peptides presentation.” This has been revised on page 8 lines 172–182 as “We then investigated whole-proteome data to determine the evidence of adjuvant modification of antigen presentation. We focused on the proteins involved in antigen processing, peptidase function, ubiquitination pathway, and IFN signaling. The ubiquitination pathway and IFN signaling play crucial roles in the modification of antigen presentation and immune responses. Through KEGG enrichment analysis, we found that many proteins involved in antigen processing, peptidase function, ubiquitination pathways, and IFN signaling were altered after adjuvant treatment, particularly in the MPLA- and CpG-treated groups (Figure 5C; Figure S4B). The expression of each protein is shown in Figure S4C and Supplementary Table 2. These data suggest that MPLA and CpG adjuvants may affect the antigen processing of APCs, resulting in fewer peptide presentations.”

      Recommendation 4. Lines 212-218: I think there needs to be more discussion of interpretation here. Only one of the low-stability peptides required low concentrations for CD4+ T cell responses in vitro. What about the other peptides in the analysis? Perhaps if the data is taken together there is not a clear pattern?

      Thank you for the comment. In this study, epitope-specific CD4+ T-cells were expanded in vitro from the spleens of peptide-pool-immunized mice. T-cell responses to individual peptides were detected using ICS and FACS. Only one peptide, recA #23, with low binding stability, and one high-stability peptide, ureA #2, induced effective T-cell responses. Peptide ureA #3 with high stability induces low Th1 responses. The other peptides cannot induce CD4+ T-cell secreting IFN-γ (Data are shown in Author response image 2). Thus, we compared the strength of IFN-γ responses induced by these three peptides at a set of low concentrations. Data for other peptides without any response could not be taken together.

      Author response image 2.

      The expanded CD4+T cells from peptides immunized mice were screened for their response to the peptides in an ICS assay.

      In this study, we used a peptide pool containing four low-stability peptides to vaccinate mice; however, only one peptide induced an effective CD4+ T-cell response. We speculate that the possible reasons are as follows. First, the number of peptides used for vaccination is too small. Only four low-stability peptides were synthesized and used to immunize mice. Three of these could not induce an effective T-cell response, possibly because of their low immunogenicity. If more peptides are synthesized and used, more peptides that induce T-cell responses may be observed. Second, epitope-specific T-cell responses are variable. Responses to the subdominant peptides can be inhibited by the dominant peptide. The subdominant peptide can become dominant by changing the peptide dose or in the absence of the dominant peptide. Thus, we believe that responses to the other three peptides may be detected if mice are immunized with a peptide pool that does not contain a response epitope.

      The corresponding statements have been added to the Discussion section on page 13 lines 287–291 as “Unfortunately, only one peptide, recA #23, with low binding stability and induced significant Th1 responses, was identified in this study. To further confirm that low-stability peptides can induce stronger and higher TCR-affinity antigen-specific T-cell clonotype responses than high-stability peptides, further studies should monitor more peptides with different stabilities.”

      Recommendation 5. There are some areas where additional editing to text would be beneficial due to grammar (eg lines 122-126; line 116, etc).

      The manuscript has been edited by a professional language editing company.

      Reviewer #2 (Recommendations For The Authors):

      Recommendation 1. It is interesting that there was no difference in IFNg responses induced by different adjuvants.

      Thank you for the comment. Possible reasons for the lack of difference in IFN-γ responses could be as follows. First, all adjuvants used in this study have been confirmed to effectively induce Th1 responses. Second, in this study, IFN-γ responses were examined using expanded antigen-specific T cells in vitro. The in vitro cell expansion efficiency may have affected these results.

      Recommendation 2. The data to support the claim that changes in exogenous peptide presentation among adjuvant groups were not due to differences in antigen phagocytosis is insufficient.

      Thank you for the comment. In this study, proteomics of A20 cells pulsed with antigens in different adjuvant-treated groups were used to determine exogenous antigens phagocytosed by cells. In addition, we used fluorescein isothiocyanate (FITC)-labeled OVA to pulse APCs and detected antigen phagocytosis by APCs after treatment with different adjuvants. The MFI of FITC was detected by FACS at different time points. The data are shown below (Author response image 3). No obvious differences in FITC MFI were detected after adjuvant stimulation, indicating that antigen phagocytosis among the adjuvant groups was almost the same.

      A20 cells, used as APCs, are the B-cell line. Antigen recognition and phagocytosis by B-cells depends on the B-cell receptor (BCR) on the cell surface. The ability of BCRs to bind to different antigens varies, leading to significant differences in the phagocytosis of different antigens by B-cells. Therefore, detecting the phagocytosis of a single antigen may not reflect the overall phagocytic state of the B-cells. Thus, in this study, we used proteomics to detect exogenous proteins in B-cells pulsed with H. pylori antigens, which contain thousands of components, to evaluate their overall phagocytic capacity. Only the proteomic data are presented in our manuscript.

      Author response image 3.

      Antigen phagocytosis of A20 cells were measured using FITC-labeled OVA. (A) A20 cells were pulsed with FITC-labeled OVA. MFI of FITC was measured after 1 h. (B) MFI of FITC was examined post the stimulation of adjuvants at different time points.

      Recommendation 3. It is not clear how MPLA, CpG, and MDP adjuvants modulate the presentation of low vs high stability peptides.

      Thank you for pointing this out. We acknowledge that we did not clarify the mechanisms by which adjuvants affect the stability of the peptide presentations of APCs.

      We performed experiments to detect the expression of proteins involved in antigen processing and presentation in the different adjuvant-treated groups. Furthermore, shRNAs were used to knock down the expression of key molecules. Immunopeptidomics was used to detect peptide presentation. Unfortunately, the expected results for peptide presentation repertoires were not observed. We are still working on the mechanisms.

      Please also see our response to comment 1 of reviewer 1

      The related statements were added in the Discussion section on page 13, lines 292–299: “In this study, we found that the peptide repertoires presented by APCs were significantly affected by the adjuvants CpG and MPLA, but not MDP. All three adjuvants belong to the PRR ligand adjuvant family. CpG and MPLA bind to TLRs and MDP is recognized by NOD2. Although the receptors are different, many common molecules are involved both in TLR and NLD pathway activation.  Unfortunately, we did not demonstrate why the MDP had different impacts on peptide presentation compared with other adjuvants. Further investigation is required to clarify the mechanism by which MPLA, CpG, and MDP adjuvants modulate the presentation of peptides with different stabilities.”

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Reviewer #1 (Public Review): 

      The reviewer retained most of their comments from the previous reviewing round. In order to meet these comments and to further examine the dynamic nature of threat omission-related fMRI responses, we now re-analyzed our fMRI results using the single trial estimates. The results of these additional analyses are added below in our response to the recommendations for the authors of reviewer 1. However, we do want to reiterate that there was a factually incorrect statement concerning our design in the reviewer’s initial comments. Specifically, the reviewer wrote that “25% of shocks are omitted, regardless of whether subjects are told that the probability is 100%, 75%, 50%, 25%, or 0%.” We want to repeat that this is not what we did. 100% trials were always reinforced (100% reinforcement rate); 0% trials were never reinforced (0% reinforcement rate). For all other instructed probability levels (25%, 50%, 75%), the stimulation was delivered in 25% of the trials (25% reinforcement rate). We have elaborated on this misconception in our previous letter and have added this information more explicitly in the previous revision of the manuscript (e.g., lines 125-129; 223-224; 486-492).   

      Reviewer #1 (Recommendations For The Authors): 

      I do not have any further recommendations, although I believe an analysis of learning-related changes is still possible with the trial-wise estimates from unreinforced trials. The authors' response does not clarify whether they tested for interactions with run, and thus the fact that there are main effects does not preclude learning. I kept my original comments regarding limitations, with the exception of the suggestion to modify the title. 

      We thank the reviewer for this recommendation. In line with their suggestion, we have now reanalyzed our main ROI results using the trial-by-trial estimates we obtained from the firstlevel omission>baseline contrasts. Specifically, we extracted beta-estimates from each ROI and entered them into the same Probability x Intensity x Run LMM we used for the relief and SCR analyses. Results from these analyses (in the full sample) were similar to our main results. For the VTA/SN model, we found main effects of Probability (F = 3.12, p = .04), and Intensity (F = 7.15, p < .001) (in the model where influential outliers were rescored to 2SD from mean). There was no main effect of Run (F = 0.92, p = .43) and no Probability x Run interaction (F = 1.24, p = .28). If the experienced contingency would have interfered with the instructions, there should have been a Probability x Run interaction (with the effect of Probability only being present in the first runs). Since we did not observe such an interaction, our results indicate that even though some learning might still have taken place, the main effect of Probability remained present throughout the task.  

      There is an important side note regarding these analyses: For the first level GLM estimation, we concatenated the functional runs and accounted for baseline differences between runs by adding run-specific intercepts as regressors of no-interest. Hence, any potential main effect of run was likely modeled out at first level. This might explain why, in contrast to the rating and SCR results (see Supplemental Figure 5), we found no main effect of Run. Nevertheless, interaction effects should not be affected by including these run-specific intercepts.

      Note that when we ran the single-trial analysis for the ventral putamen ROI, the effect of intensity became significant (F = 3.89, p = .02). Results neither changed for the NAc, nor the vmPFC ROIs.  

      Reviewer #2 (Public Review): 

      Comments on revised version: 

      I want to thank the authors for their thorough and comprehensive work in revising this manuscript. I agree with the authors that learning paradigms might not be a necessity when it comes to study the PE signals, but I don't particularly agree with some of the responses in the rebuttal letter ("Furthermore, conditioning paradigms generally only include one level of aversive outcome: the electrical stimulation is either delivered or omitted."). This is of course correct description for the conditioning paradigm, but the same can be said for an instructed design: the aversive outcome was either delivered or not. That being said, adopting the instructed design itself is legitimate in my opinion. 

      We thank the reviewer for this comment. We have now modified the phrasing of this argument to clarify our reasoning (see lines 102-104: “First, these only included one level of aversive outcome: the electrical stimulation was either delivered at a fixed intensity, or omitted; but the intensity of the stimulation was never experimentally manipulated within the same task.”).  

      The reason why we mentioned that “the aversive outcome is either delivered or omitted” is because in most contemporary conditioning paradigms only one level of aversive US is used. In these cases, it is therefore not possible to investigate the effect of US Intensity. In our paradigm, we included multiple levels of aversive US, allowing us to assess how the level of aversiveness influences threat omission responding. It is indeed true that each level was delivered or not. However, our data clearly (and robustly across experiments, see Willems & Vervliet, 2021) demonstrate that the effects of the instructed and perceived unpleasantness of the US (as operationalized by the mean reported US unpleasantness during the task) on the reported relief and the omission fMRI responses are stronger than the effect of instructed probability.  

      My main concern, which the authors spent quite some length in the rebuttal letter to address, still remains about the validity for different instructed probabilities. Although subjects were told that the trials were independent, the big difference between 75% and 25% would more than likely confuse the subjects, especially given that most of us would fall prey to the Gambler's fallacy (or the law of small numbers) to some degree. When the instruction and subjective experience collides, some form of inference or learning must have occurred, making the otherwise straightforward analysis more complex. Therefore, I believe that a more rigorous/quantitative learning modeling work can dramatically improve the validity of the results. Of course, I also realize how much extra work is needed to append the computational part but without it there is always a theoretical loophole in the current experimental design. 

      We agree with the reviewer that some learning may have occurred in our task. However, we believe the most important question in relation to our study is: to what extent did this learning influence our manipulations of interest?  

      In our reply to reviewer 1, we already showed that a re-analysis of the fMRI results using the trial-by-trial estimates of the omission contrasts revealed no Probability x Run interaction, suggesting that – overall – the probability effect remained stable over the course of the experiment. However, inspired by the alternative explanation that was proposed by this reviewer, we now also assessed the role of the Gambler’s fallacy in a separate set of analyses. Indeed, it is possible that participants start to expect a stimulation more after more time has passed since the last stimulation was experienced. To test this alternative hypothesis, we specified two new regressors that calculated for each trial of each participant how many trials had passed since the last stimulation (or since the beginning of the experiment) either overall (across all trials of all probability types; hence called the overall-lag regressor) or per probability level (across trials of each probability type separately; hence called the lag-per-probability regressor). For both regressors a value of 0 indicates that the previous trial was either a stimulation trial or the start of experiment, a value of 1 means that the last stimulation trial was 2 trials ago, etc.  

      The results of these additional analyses are added in a supplemental note (see supplemental note 6), and referred to in the main text (see lines 231-236: “Likewise, a post-hoc trial-by-trial analysis of the omission-related fMRI activations confirmed that the Probability effect for the VTA/SN activations was stable over the course of the experiment (no Probability x Run interaction) and remained present when accounting for the Gambler’s fallacy (i.e., the possibility that participants start to expect a stimulation more when more time has passed since the last stimulation was experienced) (see supplemental note 6). Overall, these post-hoc analyses further confirm the PE-profile of omission-related VTA/SN responses”.  

      Addition to supplemental material (pages 16-18)

      Supplemental Note 6: The effect of Run and the Gambler’s Fallacy 

      A question that was raised by the reviewers was whether omission-related responses could be influenced by dynamical learning or the Gambler’s Fallacy, which might have affected the effectiveness of the Probability manipulation.  

      Inspired by this question, we exploratorily assessed the role of the Gambler’s Fallacy and the effects of Run in a separate set of analyses. Indeed, it is possible that participants start to expect a stimulation more when more time has passed since the last stimulation was experienced. To test this alternative hypothesis, we specified two new regressors that calculated for each trial of each participant how many trials had passed since the last stimulation (or since the beginning of the experiment) either overall (across all trials of all probability types; hence called the overall-lag regressor) or per probability level (across trials of each probability type separately; hence called the lag-per-probability regressor). For both regressors a value of 0 indicates that the previous trial was either a stimulation trial or the start of experiment, a value of 1 means that the last stimulation trial was 2 trials ago, etc.  

      The new models including these regressors for each omission response type (i.e., omission-related activations for each ROI, relief, and omission-SCR) were specified as follows:   

      (1) For the overall lag:

      Omission response ~ Probability * Intensity * Run + US-unpleasantness + Overall-lag + (1|Subject).  

      (2) For the lag per probability level:

      Omission response ~ Probability * Intensity * Run + US-unpleasantness + Lag-perprobability : Probability + (1|Subject).  

      Where US-unpleasantness scores were mean-centered across participants; “*” represents main effects and interactions, and “:” represents an interaction (without main effect). Note that we only included an interaction for the lag-per-probability model to estimate separate lag-parameters for each probability level.  

      The results of these analyses are presented in the tables below. Overall, we found that adding these lag-regressors to the model did not alter our main results. That is: for the VTA/SN, relief and omission-SCR, the main effects of Probability and Intensity remained. Interestingly, the overall-lag-effect itself was significant for VTA/SN activations and omission SCR, indicating that VTA/SN activations were larger when more time had passed since the last stimulation (beta = 0.19), whereas SCR were smaller when more time had passed (beta = -0.03). This pattern is reminiscent of the Perruchet effect, namely that the explicit expectancy of a US increases over a run of non-reinforced trials (in line with the gambler’s fallacy effect) whereas the conditioned physiological response to the conditional stimulus declines (in line with an extinction effect, Perruchet, 1985; McAndrew, Jones, McLaren, & McLaren, 2012). Thus, the observed dissociation between the VTA/SN activations and omission SCR might similarly point to two distinctive processes where VTA/SN activations are more dependent on a consciously controlled process that is subjected to the gambler’s fallacy, whereas the strength of the omission SCR responses is more dependent on an automatic associative process that is subjected to extinction. Importantly, however, even though the temporal distance to the last stimulation had these opposing effects on VTA/SN activations and omission SCRs, the main effects of the probability manipulation remained significant for both outcome variables. This means that the core results of our study still hold.   

      Next to the overall-lag effect, the lag-per-probability regressor was only significant for the vmPFC. A follow-up of the beta estimates of the lag-per-probability regressors for each probability level revealed that vmPFC activations increased with increasing temporal distance from the stimulation, but only for the 50% trials (beta = 0.47, t = 2.75, p < .01), and not the 25% (beta = 0.25, t = 1.49, p = .14) or the 75% trials (beta = 0.28, t = 1.62, p = .10).

      Author response table 1.

      F-statistics and corresponding p-values from the overall lag model. (*) F-test and p-values were based on the model where outliers were rescored to 2SD from the mean. Note that when retaining the influential outliers for this model, the p-value of the probability effect was p = .06. For all other outcome variables, rescoring the outliers did not change the results. Significant effects are indicated in bold.

      Author response table 2.

      F-statistics and corresponding p-values from the lag per probability level model. (*) F-test and p-values were based on the model where outliers were rescored to 2SD from the mean. Note that when retaining the influential outliers for this model, the p-value of the Intensity x Run interaction was p = .05. For all other outcome variables, rescoring the outliers did not change the results. Significant effects are indicated in bold.

      As the authors mentioned in the rebuttal letter, "selecting participants only if their anticipatory SCR monotonically increased with each increase in instructed probability 0% < 25% < 50% < 75% < 100%, N = 11 participants", only ~1/3 of the subjects actually showed strong evidence for the validity of the instructions. This further raises the question of whether the instructed design, due to the interference of false instruction and the dynamic learning among trials, is solid enough to test the hypothesis .  

      We agree with the reviewer that a monotonic increase in anticipatory SCR with increasing probability instructions would provide the strongest evidence that the manipulation worked. However, it is well known that SCR is a noisy measure, and so the chances to see this monotonic increase are rather small, even if the underlying threat anticipation increases monotonically. Furthermore, between-subject variation is substantial in physiological measures, and it is not uncommon to observe, e.g., differential fear conditioning in one measure, but not in another (Lonsdorf & Merz, 2017). It is therefore not so surprising that ‘only’ 1/3 of our participants showed the perfect pattern of monotonically increasing SCR with increasing probability instructions. That being said, it is also important to note that not all participants were considered for these follow-up analyses because valid SCR data was not always available.

      Specifically, N = 4 participants were identified as anticipation non-responders (i.e. participant with smaller average SCR to the clock on 100% than on 0% trials; pre-registered criterium) and were excluded from the SCR-related analyses, and N = 1 participant had missing data due to technical difficulties. This means that only 26 (and not 31) participants were considered for the post hoc analyses. Taking this information into account, this means that 21 out of 26 participants (approximately 80%) showed stronger anticipatory SCR following 75% instructions compared to 25% instructions and that  11 out of 26 participants (approximately 40%) even showed the monotonical increase in their anticipatory SCR (see supplemental figure 4). Furthermore, although anticipatory SCR gradually decreased over the course of the experiment, there was no Run x Probability interaction, indicating that the instructions remained stable throughout the task (see supplemental figure 3).  

      Reviewer #2 (Recommendations For The Authors):

      A more operational approach might be to break the trials into different sections along the timeline and examine how much the results might have been affected across time. I expect the manipulation checks would hold for the first one or two runs and the authors then would have good reasons to focus on the behavioral and imaging results for those runs. 

      This recommendation resembles the recommendation by reviewer 1. In our reply to reviewer 1, we showed the results of a re-analysis of the fMRI data using the trial-by-trial estimates of the omission contrasts, which revealed no Probability x Run interaction, suggesting that – overall - the probability effect remained (more or less) stable over the course of the experiment.  For a more in depth discussion of the results of this additional analysis, we refer to our answer to reviewer 1.  

      Reviewer #3 (Public Review): 

      Comments on revised version: 

      The authors were extremely responsive to the comments and provided a comprehensive rebuttal letter with a lot of detail to address the comments. The authors clarified their methodology, and rationale for their task design, which required some more explanation (at least for me) to understand. Some of the design elements were not clear to me in the original paper. 

      The initial framing for their study is still in the domain of learning. The paper starts off with a description of extinction as the prime example of when threat is omitted. This could lead a reader to think the paper would speak to the role of prediction errors in extinction learning processes. But this is not their goal, as they emphasize repeatedly in their rebuttal letter. The revision also now details how using a conditioning/extinction framework doesn't suit their experimental needs. 

      We thank the reviewer for pointing out this potential cause of confusion. We have now rewritten the starting paragraph of the introduction to more closely focus on prediction errors, and only discuss fear extinction as a potential paradigm that has been used to study the role of threat omission PE for fear extinction learning (see lines 40-55). We hope that these adaptations are sufficient to prevent any false expectations. However, as we have mentioned in our previous response letter, not talking about fear extinction at all would also not make sense in our opinion, since most of the knowledge we have gained about threat omission prediction errors to date is based on studies that employed these paradigms.  

      Adaptation in the revised manuscript (lines 40-55):  

      “We experience pleasurable relief when an expected threat stays away1. This relief indicates that the outcome we experienced (“nothing”) was better than we expected it to be (“threat”). Such a mismatch between expectation and outcome is generally regarded as the trigger for new learning, and is typically formalized as the prediction error (PE) that determines how much there can be learned in any given situation2. Over the last two decades, the PE elicited by the absence of expected threat (threat omission PE) has received increasing scientific interest, because it is thought to play a central role in learning of safety. Impaired safety learning is one of the core features of clinical anxiety4. A better understanding of how the threat omission PE is processed in the brain may therefore be key to optimizing therapeutic efforts to boost safety learning. Yet, despite its theoretical and clinical importance, research on how the threat omission PE is computed in the brain is only emerging.  

      To date, the threat omission PE has mainly been studied using fear extinction paradigms that mimic safety learning by repeatedly confronting a human or animal with a threat predicting cue (conditional stimulus, CS; e.g. a tone) in the absence of a previously associated aversive event (unconditional stimulus, US; e.g., an electrical stimulation). These (primarily non-human) studies have revealed that there are striking similarities between the PE elicited by unexpected threat omission and the PE elicited by unexpected reward.”

      It is reasonable to develop a new task to answer their experimental questions. By no means is there a requirement to use a conditioning/extinction paradigm to address their questions. As they say, "it is not necessary to adopt a learning paradigm to study omission responses", which I agree with.  But the authors seem to want to have it both ways: they frame their paper around how important prediction errors are to extinction processes, but then go out of their way to say how they can't test their hypotheses with a learning paradigm.

      Part of their argument that they needed to develop their own task "outside of a learning context" goes as follows: 

      (1) "...conditioning paradigms generally only include one level of aversive outcome: the electrical stimulation is either delivered or omitted. As a result, the magnitude-related axiom cannot be tested." 

      (2) "....in conditioning tasks people generally learn fast, rendering relatively few trials on which the prediction is violated. As a result, there is generally little intra-individual variability in the PE responses" 

      (3) "...because of the relatively low signal to noise ratio in fMRI measures, fear extinction studies often pool across trials to compare omission-related activity between early and late extinction, which further reduces the necessary variability to properly evaluate the probability axiom" 

      These points seem to hinge on how tasks are "generally" constructed. However, there are many adaptations to learning tasks:

      (1) There is no rule that conditioning can't include different levels of aversive outcomes following different cues. In fact, their own design uses multiple cues that signal different intensities and probabilities. Saying that conditioning "generally only include one level of aversive outcome" is not an explanation for why "these paradigms are not tailored" for their research purposes. There are also several conditioning studies that have used different cues to signal different outcome probabilities. This is not uncommon, and in fact is what they use in their study, only with an instruction rather than through learning through experience, per se.

      (2) Conditioning/extinction doesn't have to occur fast. Just because people "generally learn fast" doesn't mean this has to be the case. Experiments can be designed to make learning more challenging or take longer (e.g., partial reinforcement). And there can be intra-individual differences in conditioning and extinction, especially if some cues have a lower probability of predicting the US than others. Again, because most conditioning tasks are usually constructed in a fairly simplistic manner doesn't negate the utility of learning paradigms to address PEaxioms.

      (3) Many studies have tracked trial-by-trial BOLD signal in learning studies (e.g., using parametric modulation). Again, just because other studies "often pool across trials" is not an explanation for these paradigms being ill-suited to study prediction errors. Indeed, most computational models used in fMRI are predicated on analyzing data at the trial level. 

      We thank the reviewer for these remarks. The “fear conditioning and extinction paradigms” that we were referring to in this paragraph were the ones that have been used to study threat omission PE responses in previous research (e.g., Raczka et al., 2011; Thiele et al. 2021; Lange et al. 2020; Esser et al., 2021; Papalini et al., 2021; Vervliet et al. 2017). These studies have mainly used differential/multiple-cue protocols where either one (or two) CS+  and one CS- are trained in an acquisition phase and extinguished in the next phase. Thus, in these paradigms: (1) only one level of aversive US is used; and (2) as safety learning develops over the course of extinction, there are relatively few omission trials during which “large” threat omission PEs can be observed (e.g. from the 24 CS+ trials that were used during extinction in Esser et al., the steepest decreases in expectancy – and thus the largest PE – were found in first 6 trials); and (3) there was never absolute certainty that the stimulation will no longer follow. Some of these studies have indeed estimated the threat omission PE during the extinction phase based on learning models, and have entered these estimates as parametric modulators to CS-offset regressors. This is very informative. However, the exact model that was used differed per study (e.g. Rescorla-Wagner in Raczka et al. and Thiele et al.; or a Rescorla- Wagner–Pearce- Hall hybrid model in Esser et al.). We wanted to analyze threat omission-responses without commitment to a particular learning model. Thus, in order to examine how threat omissionresponses vary as a function of probability-related expectations, a paradigm that has multiple probability levels is recommended (e.g. Rutledge et al., 2010; Ojala et al., 2022)

      The reviewer rightfully pointed out that conditioning paradigms (more generally) can be tailored to fit our purposes as well. Still, when doing so, the same adaptations as we outlined above need to be considered: i.e. include different levels of US intensity; different levels of probability; and conditions with full certainty about the US (non)occurrence. In our attempt to keep the experimental design as simple and straightforward as possible, we decided to rely on instructions for this purpose, rather than to train 3 (US levels) x 5 (reinforcement levels) = 15 different CSs. It is certainly possible to train multiple CSs of varying reinforcement rates (e.g. Grings et al. 1971, Ojala et al., 2022). However, given that US-expectation on each trial would primarily depend on the individual learning processes of the participants, using a conditioning task would make it more difficult to maintain experimental control over the level of USexpectation elicited by each CS. As a result, this would likely require more extensive training, and thus prolong the study procedure considerably. Furthermore, even though previous studies have trained different CSs for different reinforcement rates, most of these studies have only used one level of US. Thus, in order to not complexify our task to much, we decided to rely on instructions rather than to train CSs for multiple US levels (in addition to multiple reinforcement rates).

      We have tried to clarify our reasoning in the revised version of the manuscript (see introduction, lines 100-113):  

      “The previously discussed fear conditioning and extinction studies have been invaluable for clarifying the role of the threat omission PE within a learning context. However, these studies were not tailored to create the varying intensity and probability-related conditions that are required to systematically evaluate the threat omission PE in the light of the PE axioms. First, these only included one level of aversive outcome: the electrical stimulation was either delivered or omitted; but the intensity of the stimulation was never experimentally manipulated within the same task. As a result, the magnitude-related axiom could not be tested. Second, as safety learning progressively developed over the course of extinction learning, the most informative trials to evaluate the probability axiom (i.e. the trials with the largest PE) were restricted to the first few CS+ offsets of the extinction phase, and the exact number of these informative trials likely differed across participants as a result of individually varying learning rates. This limited the experimental control and necessary variability to systematically evaluate the probability axiom. Third, because CS-US contingencies changed over the course of the task (e.g. from acquisition to extinction), there was never complete certainty about whether the US would (not) follow. This precluded a direct comparison of fully predicted outcomes. Finally, within a learning context, it remains unclear whether brain responses to the threat omission are in fact responses to the violation of expectancy itself, or whether they are the result of subsequent expectancy updating.”

      Again, the authors are free to develop their own task design that they think is best suited to address their experimental questions. For instance, if they truly believe that omission-related responses should be studied independent of updating. The question I'm still left puzzling is why the paper is so strongly framed around extinction (the word appears several times in the main body of the paper), which is a learning process, and yet the authors go out of their way to say that they can only test their hypotheses outside of a learning paradigm. 

      As we have mentioned before, the reason why we refer to extinction studies is because most evidence on threat omission PE to date comes from fear extinction paradigms.  

      The authors did address other areas of concern, to varying extents. Some of these issues were somewhat glossed over in the rebuttal letter by noting them as limitations. For example, the issue with comparing 100% stimulation to 0% stimulation, when the shock contaminates the fMRI signal. This was noted as a limitation that should be addressed in future studies, bypassing the critical point. 

      It is unclear to us what the reviewer means with “bypassing the critical point”. We argued in the manuscript that the contrast we initially specified and preregistered to study axiom 3 (fully predicted outcomes elicit equivalent activation) could not be used for this purpose, as it was confounded by the delivery of the stimulation. Because 100% trials aways included the stimulation and 0% trials never included stimulation, there was no way to disentangle activations related to full predictability from activations related to the stimulation as such.   

      Reviewer #3 (Recommendations For The Authors): 

      I'm not sure the new paragraph explaining why they can't use a learning task to test their hypotheses is very convincing, as I noted in my review. Again, it is not a problem to develop a new task to address their questions. They can justify why they want to use their task without describing (incorrectly in my opinion) that other tasks "generally" are constructed in a way that doesn't suit their needs. 

      For an overview of the changes we made in response to this recommendation, we refer to our reply to the public review.   

      We look forward to your reply and are happy to provide answers to any further questions or comments you may have.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      The study describes a new computational method for unsupervised (i.e., non-artificial intelligence) segmentation of objects in grayscale images that contain substantial noise, to differentiate object, no object, and noise. Such a problem is essential in biology because they are commonly confronted in the analysis of microscope images of biological samples and recently have been resolved by artificial intelligence, especially by deep neural networks. However, training artificial intelligence for specific sample images is a difficult task and not every biological laboratory can handle it. Therefore, the proposed method is particularly appealing to laboratories with little computational background. The method was shown to achieve better performance than a threshold-based method for artificial and natural test images. To demonstrate the usability, the authors applied the method to high-power confocal images of the thalamus for the identification and quantification of immunostained potassium ion channel clusters formed in the proximity of large axons in the thalamic neuropil and verified the results in comparison to electron micrographs.

      Strengths:

      The authors claim that the proposed method has higher pixel-wise accuracy than the threshold-based method when applied to gray-scale images with substantial noises.

      Since the method does not use artificial intelligence, training and testing are not necessary, which would be appealing to biologists who are not familiar with machine learning technology.

      The method does not require extensive tuning of adjustable parameters (trying different values of "Moran's order") given that the size of the object in question can be estimated in advance.

      We appreciate the positive assessment of our approach.

      Weaknesses:

      It is understood that the strength of the method is that it does not depend on artificial intelligence and therefore the authors wanted to compare the performance with another non-AI method (i.e. the threshold-based method; TBM). However, the TBM used in this work seems too naive to be fairly compared to the expensive computation of "Moran's I" used for the proposed method. To provide convincing evidence that the proposed method advances object segmentation technology and can be used practically in various fields, it should be compared to other advanced methods, including AI-based ones, as well.

      Protein localization studies revealed that protein distributions are frequently inhomogeneous in a cell. This is very common in neurons which are highly polarized cell types with distinct axo-somato-dendritic functions. Moreover, due to the nature of the cell-to-cell interactions among neurons (e.g. electrical and chemical synapses) the cell membrane includes highly variable microdomains with unique protein assemblies (i.e. clusters). Protein clusters are defined as membrane segments with higher protein densities compared to neighboring membrane regions. However, protein density can continuously change between “clusters” and “non-clusters”. As a consequence, differentiating proteins involved vs not involved in clusters is a challenging task.  Indeed, our analysis showed that the boundaries of protein clusters varied remarkably when 23 human experts delineated them.

      Despite the fact the protein clusters can only be vaguely defined numerous studies have demonstrated the functional relevance of inhomogeneous protein distribution. Thus, there is a high relevance and need for an observer independent, “operative” segmentation method that can be accomplished and compared among different conditions and specimens. The strength of the Moran’s I analysis we propose here, as pointed out by our reviewers and editors, is that it can extract the relevant signals from an image generated in different, often noisy condition using a simple algorithm that allows quantitative characterization and identification of changes in many biological and non-biological samples.

      In AI based analysis the ground truth is known by an observer and using a large training set AI learns to extract the relevant information for image segmentation. As outlined above the “ground truth”, however, cannot be unequivocally defined for protein clusters. There is no doubt, that with sufficient resource investment there would be an AI based analysis of the same problem. In our view, however, in an average laboratory setting generating a training set using hundreds of images examined by many experts may not be plausible. Moreover, generalization of one training set to another set of cluster, resistance to noise or different levels of background could also not be guaranteed.

      This method was claimed to be better than the TBM when the noise level was high. Related to the above, TBMs can be used in association with various denoising methods as a preprocess. It is questionable whether the claim is still valid when compared to the methods with adequate complexity used together with denoising. Consider for example, Weigert et al. (2018) https://doi.org/10.1038/s41592-018-0216-7; or Lehtinen et al (2018) https://doi.org/10.48550/arXiv.1803.04189.

      In Weigert et al. AI was trained with high-quality images of the same object obtained with extreme photon exposure in confocal microscope. As delineated above without training AI systems cannot be used for such purposes. The Lehtinen paper is unfortunately no longer available at this doi.

      We must emphasize that in our work we did not intend to compare the image segmentation method based on local Moran’s I with all other available segmentation techniques. Rather we wanted to demonstrate a straightforward method of grouping pixels with similar intensities and in spatial proximity which does not require a priori knowledge of the objects. We used TBM to benchmark the method. We agree that with more advanced TBM methods the difference between Moran’s and TBM might have been smaller. The critical component here is, however, that even with most advanced TBM an artificial threshold is needed to be defined. The optimal threshold may change from sample to sample depending on the experimental conditions which makes quantification questionable. Moran’s method overcomes this problem and allows more objective segmentation of images even if the exact conditions (background labeling, noise, intensity etc) are not identical among the samples.

      The computational complexity of the method, determined by the convolution matrix size (Moran's order), linearly increases as the object size increases (Fig. S2b). Given that the convolution must be run separately for each pixel, the computation seems quite demanding for scale-up, e.g. when the method is applied for 3D image volumes. It will be helpful if the requirement for computer resources and time is provided.

      Here we provide the required data concerning the hardware and the computational time:

      Hardware used for performing the analysis:

      Intel(R) Xeon(R) Silver 4112 CPU @ 2.60GHz, 2594 Mhz, 4 kernel CPU, 64GB RAM, NVIDIA GeForce GTX 1080 graphic card.

      MATLAB R2021b software was used for implementation.

      Author response table 1.

      Computation times:

      Reviewer #2 (Public Review):

      Summary:

      The manuscript by David et al. describes a novel image segmentation method, implementing Local Moran's method, which determines whether the value of a datapoint or a pixel is randomly distributed among all values, in differentiating pixel clusters from the background noise. The study includes several proof-of-concept analyses to validate the power of the new approach, revealing that implementation of Local Moran's method in image segmentation is superior to threshold-based segmentation methods commonly used in analyzing confocal images in neuroanatomical studies.

      Strengths:

      Several proof-of-concept experiments are performed to confirm the sensitivity and validity of the proposed method. Using composed images with varying levels of background noise and analyzing them in parallel with the Local Moran's or a Threshold-Based Method (TBM), the study is able to compare these approaches directly and reveal their relative power in isolating clustered pixels.     

      Similarly, dual immuno-electron microscopy was used to test the biological relevance of a colocalization that was revealed by Local Moran's segmentation approach on dual-fluorescent labeled tissue using immuno-markers of the axon terminal and a membrane-protein (Figure 5). The EM revealed that the two markers were present in terminals and their post-synaptic partners, respectively. This is a strong approach to verify the validity of the new approach for determining object-based colocalization in fluorescent microscopy. 

      The methods section is clear in explaining the rationale and the steps of the new method (however, see the weaknesses section). Figures are appropriate and effective in illustrating the methods and the results of the study. The writing is clear; the references are appropriate and useful.

      We are grateful for the constructive assessment of our results.

      Weaknesses:

      While the steps of the mathematical calculations to implement Local Moran's principles for analyzing high-resolution images are clearly written, the manuscript currently does not provide a computation tool that could facilitate easy implementation of the method by other researchers. Without a user-friendly tool, such as an ImageJ plugin or a code, the use of the method developed by David et al by other investigators may remain limited.

      The code for the analysis is now available online as a user-friendly MATLAB script at: https://github.com/dcsabaCD225/Moran_Matlab/blob/main/moran_local.m

      Recommendations for the authors:

      Summary of reviews:

      Both reviewers acknowledge the potential significance and practicality of the newly proposed image segmentation method. This method uses Local Moran's principles, offering an advantage over traditional intensity thresholding approaches by providing more sensitivity, particularly in reducing background noise and preserving biologically relevant pixels.

      Strengths Highlighted:

      • The proposed method can provide more accurate results, especially for grayscale images with significant noise.

      • The method is not dependent on artificial intelligence, making it appealing for researchers with minimal computational background.    

      • The approach can operate without the need for extensive tuning, given that the size of the object is known.

      • Several proof-of-concept experiments were carried out, revealing the effectiveness of the method in comparison with the threshold-based segmentation methods.

      • The manuscript is clear in terms of methodology, and the results are supported by effective illustrations and references.

      Weaknesses Noted:

      • The study lacked a comparative analysis with advanced segmentation methods, especially those that employ artificial intelligence.

      See our response above to the same question of Reviewer 1.

      • There are concerns about computational complexity, especially when dealing with larger data sets or 3D image volumes.

      See our response about the calculations of computation times above to the similar question of Reviewer 1.

      • Both reviewers noted the absence of a data/code availability statement in the manuscript, which might restrict the method's adoption by other researchers.

      The code availability is provided now.

      • Reviewer 2 suggested that some results, particularly related to Kv4.2 in the thalamus, might be better presented in a separate study due to their significance.

      We thank our reviewers for this suggestion. We carefully evaluated the pros and cons of publishing the Kv4.2 data separately. We finally decided to keep the segmentation and experimental data together due to the following reason. We believe that the ultrastructural localization provides strong experimental proof for the relevance of our novel segmentation method. In order to make the potassium channel data more visible we added a subsentence to the title. In this manner we think scientist interested in the imaging method as well as the neurobiology will be both find and cite the paper. The novel title reads now:

      “An image segmentation method based on the spatial correlation coefficient of Local Moran’s I - identification of A-type potassium channel clusters in the thalamus.”

      Reviewer Recommendations:

      (1) Provide details about the data and program code availability.

      See our response above

      (2) Offer practical recommendations and provide clarity on software packages and coding for the proposed method to enhance its adoption.

      Done.

      (3) Consider presenting the findings about Kv4.2 in the thalamus separately as they hold significant importance on their own.

      See our response above

      Given the reviews, the proposed image segmentation method presents a promising advancement in the domain of image analysis. The technique offers tangible benefits, especially for researchers dealing with biological microscopy data. However, for this method to see a broader application, it's imperative to provide clearer practical guidance and make data or code easily accessible. Additionally, while the findings regarding Kv4.2 in the thalamus are intriguing, they might achieve more impact if detailed in a dedicated paper.

      Reviewer #1 (Recommendations For The Authors):

      The availability of data or program code was not stated in the manuscript.

      Reviewer #2 (Recommendations For The Authors):

      (1) While the principles of the method are explained clearly in a step-by-step fashion in the Methods section, the practical aspects of running sequential computations over a large matrix of pixel values are not well described. It would be very useful if the authors could provide recommendations on how to set the data structure and clarify which software and programming package for Local Moran's analysis they used. In addition, providing the code for the sequential implementation described in the Methods section would facilitate the adoption of the method by other researchers, and thus, the impact of the study. Currently, there is no data or code availability statement included in the manuscript.

      See our response above.

      (2) Figure 4 illustrates an experiment in which transmission electron microscopy and freeze-fracture replica labeling approaches were used to demonstrate that a potassium channel marker, Kv4.2 was selective to synapses forming on larger caliber dendrites in the thalamus. As impressive as the EM approaches utilized in this figure are, the results of this experiment have a somewhat tangential bearing on the segmentation method that is the focus of this study. In fact, the experiments illustrated in Figure 5, dual immuno-EM, are more than sufficient to confirm what the dual-confocal imaging coupled with Local Moran's segmentation analysis reveals. Furthermore, the author's findings about the localization and selectivity of Kv4.2 in the thalamus are too important and exciting to bury in a paper focusing on the methodology. Those results may have a wider impact if they are presented and discussed in a separate experimental paper.

      See our response above

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #3 (Public Review):

      The iron manipulation experiments are in the whole animal and it is likely that this affects general feeding behaviour, which is known to affect NB exit from quiescence and proliferative capacity. The loss of ferritin in the gut and iron chelators enhancing the NB phenotype are used as evidence that glia provide iron to NB to support their number and proliferation. Since the loss of NB is a phenotype that could result from many possible underlying causes (including low nutrition), this specific conclusion is one of many possibilities.

      We have investigated the feeding behavior of fly by Brilliant Blue (sigma, 861146)[1]. Our result showed that the amount of dye in the fly body were similar between control group and BPS group, suggesting that BPS almost did not affect the feeding behavior (Figure 3—figure supplement 1A).

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      There was a gap between the Pros nuclear localization and downstream targets of ferritin, particularly NADH dehydrogenase and biosynthesis. Could overexpression of Ndi1 restore Pros localization in NBs?

      Ferritin defect downregulates iron level, which leads to cell cycle arrest of NBs via ATP shortage. And cell cycle arrest of NBs probably results in NB differentiation[2, 3]. We have added the experiment in Figure 5—figure supplement 2. This result showed that overexpression of Ndi1 could significantly restore Pros localization in NBs.

      The abstract requires revision to cover the major findings of the manuscript, particularly the second half.

      We revised the abstract to add more major findings of the manuscript in the second half as follows:

      “Abstract

      Stem cell niche is critical for regulating the behavior of stem cells. Drosophila neural stem cells (Neuroblasts, NBs) are encased by glial niche cells closely, but it still remains unclear whether glial niche cells can regulate the self-renewal and differentiation of NBs. Here we show that ferritin produced by glia, cooperates with Zip13 to transport iron into NBs for the energy production, which is essential to the self-renewal and proliferation of NBs. The knockdown of glial ferritin encoding genes causes energy shortage in NBs via downregulating aconitase activity and NAD+ level, which leads to the low proliferation and premature differentiation of NBs mediated by Prospero entering nuclei. More importantly, ferritin is a potential target for tumor suppression. In addition, the level of glial ferritin production is affected by the status of NBs, establishing a bicellular iron homeostasis. In this study, we demonstrate that glial cells are indispensable to maintain the self-renewal of NBs, unveiling a novel role of the NB glial niche during brain development.”

      In Figure 2B Mira appeared to be nuclear in NBs, which is inconsistent with its normal localization. Was it Dpn by mistake?

      In Figure 2B, we confirmed that it is Mira. Moreover, we also provide a magnified picture in Figure 2B’, showing that the Mira mainly localizes to the cortex or in the cytoplasm as previously reported.

      Figure 2C, Fer1HCH-GFP/mCherry localization was non-uniform in the NBs revealing 1-2 regions devoid of protein localization potentially corresponding to the nucleus and Mira crescent enrichment. It is important to co-label the nucleus in these cells and discuss the intracellular localization pattern of Ferritin.

      We have revised the picture with nuclear marker DAPI in Figure 2C. The result showed that Fer1HCH-GFP/Fer2LCH-mCherry was not co-localized with DAPI, which indicated that Drosophila ferritin predominantly distributes in the cytosol[4, 5]. As for the concern mentioned by this reviewer, GFP/mCherry signal in NBs was from glial overexpressed ferritin, which probably resulted in non-uniform signal.

      In Figure 3-figure supplement 3F, glial cells in Fer1HCH RNAi appeared to be smaller in size. This should be quantified. Given the significance of ferritin in cortex glial cells, examining the morphology of cortex glial cells is essential.

      In Figure 3—figure supplement 3F, we did not label single glial cells so it was difficult to determine whether the size was changed. However, it seems that the chamber formed by the cellular processes of glial cells becomes smaller in Fer1HCH RNAi. The glial chamber will undergo remodeling during neurogenesis, which responses to NB signal to enclose the NB and its progeny[6]. Thus, the size of glial chamber is regulated by NB lineage size. In our study, ferritin defect leads to the low proliferation, inducing the smaller lineage of each NB, which likely makes the chamber smaller.

      Since the authors showed that the reduced NB number was not due to apoptosis, a time-course experiment for glial ferritin KD is recommended to identify the earliest stage when the phenotype in NB number /proliferation manifests during larval brain development.

      We observed brains at different larval stages upon glial ferritin KD. The result showed that NB proliferation decreased significantly, but NB number declined slightly at the second-instar larval stage (Figure 5—figure supplement 1E and F), suggesting that brain defect of glial ferritin KD manifests at the second-instar larval stage.

      Transcriptome analysis on ferritin glial KD identified genes in mitochondrial functions, while the in vivo EM data suggested no defects in mitochondria morphology. A short discussion on the inconsistency is required.

      For the observation of mitochondria morphology via the in vivo EM data, we focused on visible cristae in mitochondria, which was used to determine whether the ferroptosis happens[7]. It is possible that other details of mitochondria morphology were changed, but we did not focus on that. To describe this result more accurately, we replaced “However, our observation revealed no discernible defects in the mitochondria of NBs after glial ferritin knockdown” with the “However, our result showed that the mitochondrial double membrane and cristae were clearly visible whether in the control group or glial ferritin knockdown group, which suggested that ferroptosis was not the main cause of NB loss upon glial ferritin knockdown” in line 207-209.

      The statement “we found no obvious defects of brain at the first-instar larval stage (0-4 hours after larval hatching) when knocking down glial ferritin (Figure 5-figure supplement 1C).” lacks quantification of NB number and proliferation, making it challenging to conclude.

      We have provided the quantification of NB number and proliferation rate of the first-instar larval stage in Figure 5—figure supplement 1C and D. The data showed that there is no significant change in NB number and proliferation rate when knocking down ferritin, suggesting that no brain defect manifests at the first-instar larval stage.

      A wild-type control is necessary for Figure 6A-C as a reference for normal brain sizes.

      We have added Insc>mCherry RNAi as a reference in Figure 6A-D, which showed that the brain size of tumor model is larger than normal brain. Moreover, we removed brat RNAi data from Figure 6A-D to Figure 6—figure supplement 1A-D for the better layout.

      In Figures 6B, D, “Tumor size” should be corrected to “Larval brain volume”.

      Here, we measured the brain area to assess the severity of the tumor via ImageJ instead of 3D data of the brain volume. So we think it would be more appropriate to use the “Larval brain size” than “Larval brain volume” here. Thus, we have corrected “Tumor size” to “Larval brain size” in Figure 6B and D to Figure 6—figure supplement 1B and D.

      Considering that asymmetric division defects in NBs may lead to premature differentiation, it is advisable to explore the potential involvement of ferritin in asymmetric division.

      aPKC is a classic marker to determine the asymmetric division defect of NB. We performed the aPKC staining and found it displayed a crescent at the apical cortex based on the daughter cell position whether in control or glial ferritin knockdown (Figure 5—figure supplement 3A). This result indicated that there was no obvious asymmetric defect after glial ferritin knockdown.

      In the statement "Secondly, we examined the apoptosis in glial cells via Caspase-3 or TUNEL staining, and found the apoptotic signal remained unchanged after glial ferritin knockdown (Figure 3-figure supplement 3A-D).", replace "the apoptosis in glial cells" with "the apoptosis in larval brain cells".

      We have replaced "the apoptosis in glial cells" with "the apoptosis in larval brain cells" in line 216.

      Include a discussion on the involvement of ferritin in mammalian brain development and address the limitations associated with considering ferritin as a potential target for tumor suppression.

      We have added the discussion about ferritin in mammalian brain development in line 428-430 and limitation of ferritin for suppressing tumor in line 441-444.

      Indicate Insc-GAL4 as BDSC#8751, even if obtained from another source. Additionally, provide information on the extensively used DeRed fly stock used in this study within the methods section.

      We provided the stock information of Insc-GAL4 and DsRed in line 673-674.

      Reviewer #2 (Recommendations For The Authors):

      Major points:

      The number of NBs differs a lot between experiments. For example, in Fig 1B and 1K controls present less than 100 NBs whereas in Figure 1 Supplementary 2B it can be seen that controls have more than 150. Then, depending on which control you compare the number of NBs in flies silencing Fer1HCH or Fer2LCH, the results might change. The authors should explain this.

      Figure 1 Supplementary 2B (Figure 1 Supplementary 3B in the revised version) shows NB number in VNC region while Fig 1B and 1K show NB number in CB region. At first, we described the general phenotype showing the NB number in CB and VNC respectively (Fig 1 and Fig 1-Supplementary 1 and 3 in the revised version). And the NB number is consistent in each region. After then, we focused on NB number in CB for the convenience.

      This reviewer encourages the authors to use better Gal4 lines to describe the expression patterns of ferritins and Zip13 in the developing brain. On the one hand, the authors do not state which lines they are using (including supplementary table). On the other hand, new Trojan GAL4 (or at least InSite GAL4) lines are a much better tool than classic enhancer trap lines. The authors should perform this experiment.

      All stock source and number were documented in Table 2. Ferritin GAL4 and Zip13 GAL4 in this study are InSite GAL4. In addition, we also used another Fer2LCH enhancer trapped GAL4 to verify our result (DGRC104255) and provided the result in Figure 2—figure supplement 1. Our data showed that DsRed driven by Fer2LCH-GAL4 was co-localized with the glia nuclear protein Repo, instead of the NB nuclear protein Dpn, which was consistent with the result of Fer1HCH/Fer2LCH GAL4. In addition, we will try to obtain the Trojan GAL4 (Fer1HCH/Fer2LCH GAL4 and Zip13 GAL4) and validate this result in the future.

      The authors exclude very rapidly the possibility of ferroptosis based only on some mitochondrial morphological features without analysing the other hallmarks of this iron-driven cell death. The authors should at least measure Lipid Peroxidation levels in their experimental scenario either by a kit to quantify by-products of lipid peroxidation such as Malonaldehide (MDA) or using an anti 4-HNE antibody.

      We combined multiple experiments to exclude the possibility of ferroptosis. Firstly, ferroptosis can be terminated by iron chelator. And we fed fly with iron chelator upon glial ferritin knockdown, but NB number and proliferation were not restored, which suggested that ferroptosis probably was not the cause of NB loss induced by glial ferritin knockdown (Figure 3B and C). Secondly, Zip13 transports iron into the secretary pathway and further out of the cells in Drosophila gut[8]. Our data showed that knocking down iron transporter Zip13 in glia resulted in the decline of NB number and proliferation, which was consistent with the phenotype upon glial ferritin knockdown (Figure 3E-G). More importantly, the knockdown of Zip13 and ferritin simultaneously aggravated the phenotype in NB number and proliferation (Figure 3E-G). These results suggested that the phenotype was induced by iron deficiency in NB, which excluded the possibility of iron overload or ferroptosis to be the main cause of NB loss upon glial ferritin knockdown. Finally, we observed mitochondrial morphology on double membrane and the cristae that are critical hallmarks of ferroptosis, but found no significant damage (Figure 3-figure supplement 2E and F).

      In addition, we have added the 4-HNE determination in Figure 3—figure supplement 2G and H. This result showed that 4-HNE level did not change significantly, suggesting that lipid peroxidation was stable, which supported to exclude the possibility that the ferroptosis led to the NB loss upon glial ferritin knockdown.

      All of the above results together indicate that ferroptosis is not the cause of NB loss after ferritin knockdown.

      A major flaw of the manuscript is related to the chapter Glial ferritin defects result in impaired Fe-S cluster activity and ATP production and the results displayed in Figure 4. The authors talk about the importance of FeS clusters for energy production in the mitochondria. Surprisingly, the authors do not analyse the genes involved in this process such as but they present the interaction with the cytosolic FeS machinery that has a role in some extramitochondrial proteins but no role in the synthesis of FeS clusters incorporated in the enzymes of the TCA cycle and the respiratory chain. The authors should repeat the experiments incorporating the genes NSF1 (CG12264), ISCU(CG9836), ISD11 (CG3717), and fh (CG8971) or remove (or at least rewrite) this entire section.

      Thanks for this constructive advice and we have revised this in Figure 4B and C. We repeated the experiment with blocking mitochondrial Fe-S cluster biosynthesis by knocking down Nfs1 (CG12264), ISCU(CG9836), ISD11 (CG3717), and fh (CG8971), respectively. Nfs1 knockdown in NB led to a low proliferation, which was consistent with CIA knockdown. However, we did not observe the obvious brain defect in ISCU(CG9836), ISD11 (CG3717), and fh (CG8971) knockdown in NB. Our interpretation of these results is that Nfs1 probably is a necessary core component in Fe-S cluster assembly while others are dispensable[9].

      The presence and aim of the mouse model Is unclear to this reviewer. On the one hand, It Is not used to corroborate the fly findings regarding iron needs from neuroblasts. On the other hand, and without further explanation, authors migrate from a fly tumor model based on modifying all neuroblasts to a mammalian model based exclusively on a glioma. The authors should clarify those issues.

      Although iron transporter probably is different in Drosophila and mammal, iron function is conserved as an essential nutrient for cell growth and proliferation from Drosophila to mammal. The data of fly suggested that iron is critical for brain tumor growth and thus we verified this in mammalian model. Glioma is the most common form of central nervous system neoplasm that originates from neuroglial stem or progenitor cells[10]. Therefore, we validated the effect of iron chelator DFP on glioma in mice and found that DFP could suppress the glioma growth and further prolong the survival of tumor-bearing mice.

      Minor points

      Although referred to adult flies, the authors did not include either in the introduction or in the discussion existing literature about expression of ferritins in glia or alterations of iron metabolism in fly glia cells (PMID: 21440626 and 25841783, respectively) or usage of the iron chelator DFP in drosophila (PMID: 23542074). The author should check these manuscripts and consider the possibility of incorporating them into their manuscript.

      Thanks for your remind. We have incorporated all recommended papers into our manuscript line 65-67 and 168.

      The number of experiments in each figure is missing.

      All experiments were repeated at least three times. And we revised this in Quantifications and Statistical Analysis of Materials and methods.

      If graphs are expressed as mean +/- sem, it is difficult to understand the significance stated by the authors in Figure 2E.

      We apologize for this mistake and have revised this in Quantifications and Statistical Analysis. All statistical results were presented as means ± SD.

      When authors measure aconitase activity, are they measuring all (cytosolic and mitochondrial) or only one of them? This is important to better understand the experiments done by the authors to describe any mitochondrial contribution (see above in major points).

      In this experiment, we were measuring the total aconitase activity. We also tried to determine mitochondrial aconitase but it failed, which was possibly ascribed to low biomass of tissue sample.

      In this line, why do controls in aconitase and atp lack an error bar? Are the statistical tests applied the correct ones? It is not the same to have paired or unpaired observations.

      It is the normalization. We repeated these experiments at least three times in different weeks respectively, because the whole process was time-consuming and energy-consuming including the collection of brains, protein determination and ATP or aconitase determination. And the efficiency of aconitase or ATP kit changed with time. We cannot control the experiment condition identically in different batches. Therefore, we performed normalization every time to present the more accurate result. The control group was normalized as 1 via dividing into itself and other groups were divided by the control. This normalized process was repeated three times. Therefore, there is no error bar in the control group. We think it is appropriate to apply ANOVA with a Bonferroni test in the three groups.

      In some cases, further rescue experiments would be appreciated. For example, expression of Ndi restores control NAD+ levels or number of NBs, it would be interesting to know if this is accompanied by restoring mitochondrial integrity and its ability to produce ATP.

      We have determined ATP production after overexpressing Ndi1 and provided this result in Figure 4—figure supplement 1B. The data showed that expression of Ndi1 could restore ATP production upon glial Fer2LCH knockdown, which was consistent with our conclusion.

      Lines 293-299 on page 7 are difficult to understand.

      According to our above results, the decrease of NB number and proliferation upon glial ferritin knockdown (KD) was caused by energy deficiency. As shown in the schematic diagram (Author response image 1), “T” represented the total energy which was used for NB maintenance and proliferation. “N” indicated the energy for maintaining NB number. “P” indicated the energy for NB proliferation. “T” is equal to “N” plus “P”. When ferritin was knocked down in glia, “T”, “N” and “P” declined in “Ferritin KD” compared to “wildtype (WT)”. Knockdown of pros can prevent the differentiation of NB, but it cannot supply the energy for NB, which probably results in the rescue of NB number but not proliferation. Specifically, NB number increased significantly in “Ferritin KD Pros KD” compared to “Ferritin KD”, which resulted in consuming more energy for NB maintenance in “Ferritin KD Pros KD”. As shown in the schematic diagram, “T” was not changed between “Ferritin KD Pros KD” and “Ferritin KD”, whereas ”N” was increased in “Ferritin KD Pros KD” compared to “Ferritin KD”. Thus, “P” was decreased, which suggested that less energy was remained for proliferation, leading to the failure of rescue in NB proliferation. It seemed that the level of proliferation in “Ferritin KD Pros KD” was even lower than “Ferritin KD”.

      Author response image 1.

      The schematic diagram of relationship between energy and NB function in different groups. “T” represents total energy for NB maintenance and proliferation. “N” represents the energy for NB maintenance. “P” represents the energy for NB proliferation. T=N+P 

      Line 601 should indicate that Tables 2 and 3 are part of the supplementary material.

      We have revised this in line 678.

      Figure 4-supplement 1. Only validation of 2 genes from a RNAseq seems too little.

      We dissected hundreds of brains for sorting NBs because of low biomass of fly brain. This is a difficult and energy-consuming work. Most NBs were used for RNA-seq, so we can only use a small amount of sample left for validation which is not enough for more genes.

      Figure 6E, the authors indicate that 10 mg/ml DFP injection could significantly prolong the survival time. Which increase in % is produced by DFP?

      We have provided the bar graph in Author response image 2. The increase is about 16.67% by DFP injection.

      Author response image 2.

      The bar graph of survival time of mice treated with DFP. (The unpaired two-sided Student’s t test was employed to assess statistical significance. Statistical results were presented as means ± SD. n=7,6; *: p<0.05)

      Reviewer #3 (Recommendations For The Authors):

      As I read the initial results that built the story (glia make ferritin>release it> NBs take them up>use it for TCA and ETC) I kept thinking about what it meant for NBs to be 'lost'. This led me to consider alternate possibilities that the results might point to, other than the ones the authors were suggesting. It was only in Figure 5 that the authors ruled out some of those possibilities. I would suggest that they first illustrate how NBs are lost upon glial ferritin loss of function before they delve into the mechanism. This would also be a place to similarly address that glial numbers and general morphology are unchanged upon ferritin loss.

      This recommendation provides a valuable guideline to build this story especially for researchers who are interested in neural stem cell studies. Actually, we tried this logic to present our study but found that there are several gaps in the middle of the manuscript, such as the relationship between glial ferritin and Pros localization in NB, so that the whole story cannot be fluently presented. Therefore, we decided to present this study in the current way.

      More details of the screen would be useful to know. How many lines did they screen, what was the assay? This is not mentioned anywhere in the text.

      We have added this in Screen of Materials and methods. We screened about 200 lines which are components of classical signaling pathways, highly expressed genes in glial cells or secretory protein encoding genes. UAS-RNAi lines were crossed with repo-Gal4, and then third-instar larvae of F1 were dissected. We got the brains from F1 larvae and performed immunostaining with Dpn and PH3. Finally, we observed the brain in Confocal Microscope.

      Many graphs seem to be repeated in the main figures and the supplementary data. This is unnecessary, or at least should be mentioned.

      We appreciate your kind reminder. However, we carefully went through all the figures and did not find the repeated graphs, though some of them look similar.

      The authors mention that they tested which glial subtypes ferritin is needed in, but don't show the data. Could they please show the data? Same with the other iron transport/storage/regulation. Also, in both this and later sections, the authors could mention which Gal4 was used to label what cell types. The assumption is that the reader will know this information.

      We have added the result of ferritin knockdown in glial subpopulations in Figure 1—figure supplement 2. However, considering that the quantity of iron-related genes, we did not take the picture, but we recorded this in Table 3.

      For all their images showing colocalisation, magnified, single-colour images shown in grayscale will be useful. For example, without the magnification, it is not possible to see the NB expression of the protein trap line in Figure 2B. A magnified crop of a few NBs (not a single one like in 2C) would be more useful.

      We have provided Figure 2A’, B’, D’ and Figure 3D’ as suggested.

      There are a lot of very specific assays used to detect ROS, NAD, aconitase activity, among others. It would be nice to have a brief but clear description of how they work in the main text. I found myself having to refer to other sources to understand them. (I believe SoNAR should be attributed to Zhao et al 206 and not Bonnay et al 2020.)

      We have added a brief description about ROS, aconitase activity, NAD in line 198-199, 229-231, and 269 as suggested.

      I did not understand the normalisation done with respect to SoNAR. Is this standard practice? Is the assumption that 'overall protein levels will be higher in slowly proliferating NBs' reasonable? This is why they state the need to normalise.

      The SoNAR normalization is not a standard practice. However, we think that our normalization of SoNar is reasonable. According to our results, the expression level of Dpn and Mira seemed higher in glial ferritin knockdown, so we speculated that some proteins accumulated in slowly proliferating NBs. Thus, we used Insc-GAL4 to drive DsRed for indicating the expression level of Insc and found that DsRed rose after glial ferritin knockdown, suggesting that Insc expression was increased indeed. Therefore, we have to normalize SoNar driven by Insc-GAL4 based on DsRed driven by Insc-Gal4, which eliminates the effect of increased Insc upon glial ferritin knockdown.

      FAC is mentioned as a chelator? But the authors seem to use it oppositely. Is there an error?

      FAC is a type of iron salt, which is used to supply iron. We have also indicated that in line 156 according to your advice. 

      The lack of any cell death in the L3 brain surprised me. There should be plenty of hemilineages that die, as do many NBs, particularly in the abdominal segments. Is the stain working? Related to this, P35 is not the best method for rescuing cell death. H99 might be a better way to go.

      We were also surprised to see this result and repeated this experiment for several times with both negative and positive controls. Moreover, we also used TUNEL to validate this result, which led to the same result. We will try to use H99 to rescue NB loss in the future, because it needs to be integrated and recombined with our current genetic tools.

      It would be nice to see the aconitase activity signal as opposed to just the quantification.

      This method can only determine the absorbance for indicating aconitase activity, so our result is just the quantification.

      Glia are born after NBs are specified. In fact, they arise from NBs (and glioblasts). So, it's unlikely that the knockdown of ferritin in glia can at all affect initial NB specification.

      We completely agree with this statement.

      The section on tumor suppression seems out of place. The fly data on which the authors base this as an angle to chase is weak. Dividing cells will be impaired if they have inadequate energy production. As a therapeutic, this will affect every cell in the body. I'm not sure that cancer therapeutics is pursuing such broadly acting lines of therapies anymore.

      Our data suggested that iron/ferritin is more critical for high proliferative cells. Tumor cells have a high expression of TfR (Transferrin Receptor)[11], which can bind to Transferrin and ferritin[12]. And ferritin specifically targets on the tumor cells[11]. Thus, we think iron/ferritin is extremely essential for tumor cells. If we can find the appropriate dose of iron/ferritin inhibitor, suppressing tumor growth but maintaining normal cell growth, iron/ferritin might be an effective target of tumor treatment.

      The feedback from NB to glial ferritin is also weak data. The increased cell numbers (of unknown identity) could well be contributing to the increase in ferritin. I would omit the last two sections from the MS.

      In brat RNAi and numb RNAi, increased cells are NB-like cells, which cannot undergo further differentiation and are not expected to produce ferritin. More importantly, we used Repo (glia marker) as the reference and quantified the ratio of ferritin level to Repo level, which can exclude the possibility that increased glial cells lead to the increase in ferritin.

      References

      (1) Tanimura T, Isono K, Takamura T, et al. Genetic Dimorphism in the Taste Sensitivity to Trehalose in Drosophila-Melanogaster. J Comp Physiol, 1982,147(4):433-7

      (2) Myster DL, Duronio RJ. Cell cycle: To differentiate or not to differentiate? Current Biology, 2000,10(8):R302-R4

      (3) Dalton S. Linking the Cell Cycle to Cell Fate Decisions. Trends in Cell Biology, 2015,25(10):592-600

      (4) Nichol H, Law JH, Winzerling JJ. Iron metabolism in insects. Annu Rev Entomol, 2002,47:535-59

      (5) Pham DQ, Winzerling JJ. Insect ferritins: Typical or atypical? Biochim Biophys Acta, 2010,1800(8):824-33

      (6) Speder P, Brand AH. Systemic and local cues drive neural stem cell niche remodelling during neurogenesis in Drosophila. Elife, 2018,7

      (7) Mumbauer S, Pascual J, Kolotuev I, et al. Ferritin heavy chain protects the developing wing from reactive oxygen species and ferroptosis. PLoS Genet, 2019,15(9):e1008396

      (8) Xiao G, Wan Z, Fan Q, et al. The metal transporter ZIP13 supplies iron into the secretory pathway in Drosophila melanogaster. Elife, 2014,3:e03191

      (9) Marelja Z, Leimkühler S, Missirlis F. Iron Sulfur and Molybdenum Cofactor Enzymes Regulate the  Life Cycle by Controlling Cell Metabolism. Front Physiol, 2018,9

      (10) Morgan LL. The epidemiology of glioma in adults: a "state of the science" review. Neuro-Oncology, 2015,17(4):623-4

      (11) Fan K, Cao C, Pan Y, et al. Magnetoferritin nanoparticles for targeting and visualizing tumour tissues. Nat Nanotechnol, 2012,7(7):459-64

      (12) Li L, Fang CJ, Ryan JC, et al. Binding and uptake of H-ferritin are mediated by human transferrin receptor-1. Proc Natl Acad Sci U S A, 2010,107(8):3505-10

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      This paper presents a compelling and comprehensive study of decision-making under uncertainty. It addresses a fundamental distinction between belief-based (cognitive neuroscience) formulations of choice behaviour with reward-based (behavioural psychology) accounts. Specifically, it asks whether active inference provides a better account of planning and decision-making, relative to reinforcement learning. To do this, the authors use a simple but elegant paradigm that includes choices about whether to seek both information and rewards. They then assess the evidence for active inference and reinforcement learning models of choice behaviour, respectively. After demonstrating that active inference provides a better explanation of behavioural responses, the neuronal correlates of epistemic and instrumental value (under an optimised active inference model) are characterised using EEG. Significant neuronal correlates of both kinds of value were found in sensor and source space. The source space correlates are then discussed sensibly, in relation to the existing literature on the functional anatomy of perceptual and instrumental decision-making under uncertainty.

      Strengths:

      The strengths of this work rest upon the theoretical underpinnings and careful deconstruction of the various determinants of choice behaviour using active inference. A particular strength here is that the experimental paradigm is designed carefully to elicit both information-seeking and reward-seeking behaviour; where the information-seeking is itself separated into resolving uncertainty about the context (i.e., latent states) and the contingencies (i.e., latent parameters), under which choices are made. In other words, the paradigm - and its subsequent modelling - addresses both inference and learning as necessary belief and knowledge-updating processes that underwrite decisions.

      The authors were then able to model belief updating using active inference and then look for the neuronal correlates of the implicit planning or policy selection. This speaks to a further strength of this study; it provides some construct validity for the modelling of belief updating and decision-making; in terms of the functional anatomy as revealed by EEG. Empirically, the source space analysis of the neuronal correlates licences some discussion of functional specialisation and integration at various stages in the choices and decision-making.

      In short, the strengths of this work rest upon a (first) principles account of decision-making under uncertainty in terms of belief updating that allows them to model or fit choice behaviour in terms of Bayesian belief updating - and then use relatively state-of-the-art source reconstruction to examine the neuronal correlates of the implicit cognitive processing.

      Response: We are deeply grateful for your careful review of our work and for the thoughtful feedback you have provided. Your dedication to ensuring the quality and clarity of the work is truly admirable. Your comments have been invaluable in guiding us towards improving the paper, and We appreciate your time and effort in not just offering suggestions but also providing specific revisions that I can implement. Your insights have helped us identify areas where I can strengthen the arguments and clarify the methodology.

      Comment 1:

      The main weaknesses of this report lies in the communication of the ideas and procedures. Although the language is generally excellent, there are some grammatical lapses that make the text difficult to read. More importantly, the authors are not consistent in their use of some terms; for example, uncertainty and information gain are sometimes conflated in a way that might confuse readers. Furthermore, the descriptions of the modelling and data analysis are incomplete. These shortcomings could be addressed in the following way.

      First, it would be useful to unpack the various interpretations of information and goal-seeking offered in the (active inference) framework examined in this study. For example, it will be good to include the following paragraph:

      "In contrast to behaviourist approaches to planning and decision-making, active inference formulates the requisite cognitive processing in terms of belief updating in which choices are made based upon their expected free energy. Expected free energy can be regarded as a universal objective function, specifying the relative likelihood of alternative choices. In brief, expected free energy can be regarded as the surprise expected following some action, where the expected surprise comes in two flavours. First, the expected surprise is uncertainty, which means that policies with a low expected free energy resolve uncertainty and promote information seeking. However, one can also minimise expected surprise by avoiding surprising, aversive outcomes. This leads to goal-seeking behaviour, where the goals can be regarded as prior preferences or rewarding outcomes.

      Technically, expected free energy can be expressed in terms of risk plus ambiguity - or rearranged to be expressed in terms of expected information gain plus expected value, where value corresponds to (log) prior preferences. We will refer to both decompositions in what follows; noting that both decompositions accommodate information and goal-seeking imperatives. That is, resolving ambiguity and maximising information gain have epistemic value, while minimising risk or maximising expected value have pragmatic or instrumental value. These two kinds of values are sometimes referred to in terms of intrinsic and extrinsic value, respectively [1-4]."

      Response 1: We deeply thank you for your comments and corresponding suggestions about our interpretations of active inference. In response to your identified weaknesses and suggestions, we have added corresponding paragraphs in the Methods section (The free energy principle and active inference, line 95-106):

      “Active inference formulates the necessary cognitive processing as a process of belief updating, where choices depend on agents' expected free energy. Expected free energy serves as a universal objective function, guiding both perception and action. In brief, expected free energy can be seen as the expected surprise following some policies. The expected surprise can be reduced by resolving uncertainty, and one can select policies with lower expected free energy which can encourage information-seeking and resolve uncertainty. Additionally, one can minimize expected surprise by avoiding surprising or aversive outcomes (oudeyer et al., 2007; Schmidhuber et al., 2010). This leads to goal-seeking behavior, where goals can be viewed as prior preferences or rewarding outcomes.

      Technically, expected free energy can also be expressed as expected information gain plus expected value, where the value corresponds to (log) prior preferences. We will refer to both formulations in what follows. Resolving ambiguity, minimizing risk, and maximizing information gain has epistemic value while maximizing expected value have pragmatic or instrumental value. These two types of values can be referred to in terms of intrinsic and extrinsic value, respectively (Barto et al., 2013; Schwartenbeck et al., 2019).”

      Oudeyer, P. Y., & Kaplan, F. (2007). What is intrinsic motivation? A typology of computational approaches. Frontiers in neurorobotics, 1, 108.

      Schmidhuber, J. (2010). Formal theory of creativity, fun, and intrinsic motivation (1990–2010). IEEE transactions on autonomous mental development, 2(3), 230-247.

      Barto, A., Mirolli, M., & Baldassarre, G. (2013). Novelty or surprise?. Frontiers in psychology, 4, 61898.

      Schwartenbeck, P., Passecker, J., Hauser, T. U., FitzGerald, T. H., Kronbichler, M., & Friston, K. J. (2019). Computational mechanisms of curiosity and goal-directed exploration. elife, 8, e41703.

      Comment 2:

      The description of the modelling of choice behaviour needs to be unpacked and motivated more carefully. Perhaps along the following lines:

      "To assess the evidence for active inference over reinforcement learning, we fit active inference and reinforcement learning models to the choice behaviour of each subject. Effectively, this involved optimising the free parameters of active inference and reinforcement learning models to maximise the likelihood of empirical choices. The resulting (marginal) likelihood was then used as the evidence for each model. The free parameters for the active inference model scaled the contribution of the three terms that constitute the expected free energy (in Equation 6). These coefficients can be regarded as precisions that characterise each subjects' prior beliefs about contingencies and rewards. For example, increasing the precision or the epistemic value associated with model parameters means the subject would update her beliefs about reward contingencies more quickly than a subject who has precise prior beliefs about reward distributions. Similarly, subjects with a high precision over prior preferences or extrinsic value can be read as having more precise beliefs that she will be rewarded. The free parameters for the reinforcement learning model included..."

      Response 2: We deeply thank you for your comments and corresponding suggestions about our description of the behavioral modelling. In response to your identified weaknesses and suggestions, we have added corresponding content in the Results section (Behavioral results, line 279-293):

      “To assess the evidence for active inference over reinforcement learning, we fit active inference (Eq.9), model-free reinforcement learning, and model-based reinforcement learning models to the behavioral data of each participant. This involved optimizing the free parameters of active inference and reinforcement learning models. The resulting likelihood was used to calculate the Bayesian Information Criterion (BIC) (Vrieze 2012) as the evidence for each model. The free parameters for the active inference model (AL, AI, EX, prior, and α) scaled the contribution of the three terms that constitute the expected free energy in Eq.9. These coefficients can be regarded as precisions that characterize each participant's prior beliefs about contingencies and rewards. For example, increasing α means participants would update their beliefs about reward contingencies more quickly, increasing AL means participants would like to reduce ambiguity more, and increasing AI means participants would like to learn the hidden state of the environment and avoid risk more. The free parameters for the model-free reinforcement learning model are the learning rate α and the temperature parameter γ and the free parameters for the model-based are the learning rate α, the temperature parameter γ and prior (the details for the model-free reinforcement learning model can be seen in Eq.S1-11 and the details for the model-based reinforcement learning model can be seen Eq.S12-23 in the Supplementary Method). The parameter fitting for these three models was conducted using the `BayesianOptimization' package in Python (Frazire 2018), first randomly sampling 1000 times and then iterating for an additional 1000 times.”

      Vrieze, S. I. (2012). Model selection and psychological theory: a discussion of the differences between the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Psychological methods, 17(2), 228.

      Frazier, P. I. (2018). A tutorial on Bayesian optimization. arXiv preprint arXiv:1807.02811.

      Comment 3:

      In terms of the time-dependent correlations with expected free energy - and its constituent terms - I think the report would benefit from overviewing these analyses with something like the following:

      "In the final analysis of the neuronal correlates of belief updating - as quantified by the epistemic and intrinsic values of expected free energy - we present a series of analyses in source space. These analyses tested for correlations between constituent terms in expected free energy and neuronal responses in source space. These correlations were over trials (and subjects). Because we were dealing with two-second timeseries, we were able to identify the periods of time during decision-making when the correlates were expressed.

      In these analyses, we focused on the induced power of neuronal activity at each point in time, at each brain source. To illustrate the functional specialisation of these neuronal correlates, we present whole-brain maps of correlation coefficients and pick out the most significant correlation for reporting fluctuations in selected correlations over two-second periods. These analyses are presented in a descriptive fashion to highlight the nature and variety of the neuronal correlates, which we unpack in relation to the existing EEG literature in the discussion. Note that we did not attempt to correct for multiple comparisons; largely, because the correlations observed were sustained over considerable time periods, which would be almost impossible under the null hypothesis of no correlations."

      Response 3: We deeply thank you for your comments and corresponding suggestions about our description of the regression analysis in the source space. In response to your suggestions, we have added corresponding content in the Results section (EEG results at source level, line 331-347):

      “In the final analysis of the neural correlates of the decision-making process, as quantified by the epistemic and intrinsic values of expected free energy, we presented a series of linear regressions in source space. These analyses tested for correlations over trials between constituent terms in expected free energy (the value of avoiding risk, the value of reducing ambiguity, extrinsic value, and expected free energy itself) and neural responses in source space. Additionally, we also investigated the neural correlate of (the degree of) risk, (the degree of) ambiguity, and prediction error. Because we were dealing with a two-second time series, we were able to identify the periods of time during decision-making when the correlates were expressed. The linear regression was run by the "mne.stats.linear regression" function in the MNE package (Activity ~ Regressor + Intercept). Activity is the activity amplitude of the EEG signal in the source space and regressor is one of the regressors that we mentioned (e.g., expected free energy, the value of reducing ambiguity, etc.).

      In these analyses, we focused on the induced power of neural activity at each time point, in the brain source space. To illustrate the functional specialization of these neural correlates, we presented whole-brain maps of correlation coefficients and picked out the brain region with the most significant correlation for reporting fluctuations in selected correlations over two-second periods. These analyses were presented in a descriptive fashion to highlight the nature and variety of the neural correlates, which we unpacked in relation to the existing EEG literature in the discussion. Note that we did not attempt to correct for multiple comparisons; largely, because the correlations observed were sustained over considerable time periods, which would be almost impossible under the null hypothesis of no correlations.”

      Comment 4:

      There was a slight misdirection in the discussion of priors in the active inference framework. The notion that active inference requires a pre-specification of priors is a common misconception. Furthermore, it misses the point that the utility of Bayesian modelling is to identify the priors that each subject brings to the table. This could be easily addressed with something like the following in the discussion:

      "It is a common misconception that Bayesian approaches to choice behaviour (including active inference) are limited by a particular choice of priors. As illustrated in our fitting of choice behaviour above, priors are a strength of Bayesian approaches in the following sense: under the complete class theorem [5, 6], any pair of choice behaviours and reward functions can be described in terms of ideal Bayesian decision-making with particular priors. In other words, there always exists a description of choice behaviour in terms of some priors. This means that one can, in principle, characterise any given behaviour in terms of the priors that explain that behaviour. In our example, these were effectively priors over the precision of various preferences or beliefs about contingencies that underwrite expected free energy."

      Response 4: We deeply thank you for your comments and corresponding suggestions about the prior of Bayesian methods. In response to your suggestions, we have added corresponding content in the Discussion section (The strength of the active inference framework in decision-making, line 447-453):

      “However, it may be the opposite. As illustrated in our fitting results, priors can be a strength of Bayesian approaches. Under the complete class theorem (Wald 1947; Brown 1981), any pair of behavioral data and reward functions can be described in terms of ideal Bayesian decision-making with particular priors. In other words, there always exists a description of behavioral data in terms of some priors. This means that one can, in principle, characterize any given behavioral data in terms of the priors that explain that behavior. In our example, these were effectively priors over the precision of various preferences or beliefs about contingencies that underwrite expected free energy.”

      Wald, A. (1947). An essentially complete class of admissible decision functions. The Annals of Mathematical Statistics, 549-555.

      Brown, L. D. (1981). A complete class theorem for statistical problems with finite sample spaces. The Annals of Statistics, 1289-1300.

      Reviewer #2 (Public Review):

      Summary:

      Zhang and colleagues use a combination of behavioral, neural, and computational analyses to test an active inference model of exploration in a novel reinforcement learning task.

      Strengths:

      The paper addresses an important question (validation of active inference models of exploration). The combination of behavior, neuroimaging, and modeling is potentially powerful for answering this question.

      Response: We want to express our sincere gratitude for your thorough review of our work and for the valuable comments you have provided. Your attention to detail and dedication to improving the quality of the work are truly commendable. Your feedback has been invaluable in guiding us towards revisions that will strengthen the work. We have made targeted modifications based on most of the comments. However, due to factors such as time and energy constraints, we have not added corresponding analyses for several comments.

      Comment 1:

      The paper does not discuss relevant work on contextual bandits by Schulz, Collins, and others. It also does not mention the neuroimaging study of Tomov et al. (2020) using a risky/safe bandit task.

      Response 1:

      We deeply thank you for your suggestions about the relevant work. We now discussion and cite these representative papers in the Introduction section (line 42-55):

      “The decision-making process frequently involves grappling with varying forms of uncertainty, such as ambiguity - the kind of uncertainty that can be reduced through sampling, and risk - the inherent uncertainty (variance) presented by a stable environment. Studies have investigated these different forms of uncertainty in decision-making, focusing on their neural correlates (Daw et al., 2006; Badre et al., 2012; Cavanagh et al., 2012).

      These studies utilized different forms of multi-armed bandit tasks, e.g the restless multi-armed bandit tasks (Daw et al., 2006; Guha et al., 2010), risky/safe bandit tasks (Tomov et al., 2020; Fan et al., 2022; Payzan et al., 2013), contextual multi-armed bandit tasks (Schulz et al., 2015; Schulz et al., 2015; Molinaro et al., 2023). However, these tasks either separate risk from ambiguity in uncertainty, or separate action from state (perception). In our work, we develop a contextual multi-armed bandit task to enable participants to actively reduce ambiguity, avoid risk, and maximize rewards using various policies (see Section 2.2) and Figure 4(a)). Our task makes it possible to study whether the brain represents these different types of uncertainty distinctly (Levy et al., 2010) and whether the brain represents both the value of reducing uncertainty and the degree of uncertainty. The active inference framework presents a theoretical approach to investigate these questions. Within this framework, uncertainties can be reduced to ambiguity and risk. Ambiguity is represented by the uncertainty about model parameters associated with choosing a particular action, while risk is signified by the variance of the environment's hidden states. The value of reducing ambiguity, the value of avoiding risk, and extrinsic value together constitute expected free energy (see Section 2.1).”

      Daw, N. D., O'doherty, J. P., Dayan, P., Seymour, B., & Dolan, R. J. (2006). Cortical substrates for exploratory decisions in humans. Nature, 441(7095), 876-879.

      Badre, D., Doll, B. B., Long, N. M., & Frank, M. J. (2012). Rostrolateral prefrontal cortex and individual differences in uncertainty-driven exploration. Neuron, 73(3), 595-607.

      Cavanagh, J. F., Figueroa, C. M., Cohen, M. X., & Frank, M. J. (2012). Frontal theta reflects uncertainty and unexpectedness during exploration and exploitation. Cerebral cortex, 22(11), 2575-2586.

      Guha, S., Munagala, K., & Shi, P. (2010). Approximation algorithms for restless bandit problems. Journal of the ACM (JACM), 58(1), 1-50.

      Tomov, M. S., Truong, V. Q., Hundia, R. A., & Gershman, S. J. (2020). Dissociable neural correlates of uncertainty underlie different exploration strategies. Nature communications, 11(1), 2371.

      Fan, H., Gershman, S. J., & Phelps, E. A. (2023). Trait somatic anxiety is associated with reduced directed exploration and underestimation of uncertainty. Nature Human Behaviour, 7(1), 102-113.

      Payzan-LeNestour, E., Dunne, S., Bossaerts, P., & O’Doherty, J. P. (2013). The neural representation of unexpected uncertainty during value-based decision making. Neuron, 79(1), 191-201.

      Schulz, E., Konstantinidis, E., & Speekenbrink, M. (2015, April). Exploration-exploitation in a contextual multi-armed bandit task. In International conference on cognitive modeling (pp. 118-123).

      Schulz, E., Konstantinidis, E., & Speekenbrink, M. (2015, November). Learning and decisions in contextual multi-armed bandit tasks. In CogSci.

      Molinaro, G., & Collins, A. G. (2023). Intrinsic rewards explain context-sensitive valuation in reinforcement learning. PLoS Biology, 21(7), e3002201.

      Levy, I., Snell, J., Nelson, A. J., Rustichini, A., & Glimcher, P. W. (2010). Neural representation of subjective value under risk and ambiguity. Journal of neurophysiology, 103(2), 1036-1047.

      Comment 2:

      The statistical reporting is inadequate. In most cases, only p-values are reported, not the relevant statistics, degrees of freedom, etc. It was also not clear if any corrections for multiple comparisons were applied. Many of the EEG results are described as "strong" or "robust" with significance levels of p<0.05; I am skeptical in the absence of more details, particularly given the fact that the corresponding plots do not seem particularly strong to me.

      Response 2: We deeply thank you for your comments about our statistical reporting. We have optimized the fitting model and rerun all the statistical analyses. As can be seen (Figure 6, 7, 8, S3, S4, S5), the new regression results are significantly improved compared to the previous ones. Due to the limitation of space, we place the other relevant statistical results, including t-values, std err, etc., on our GitHub (https://github.com/andlab-um/FreeEnergyEEG). Currently, we have not conducted multiple comparison corrections based on Reviewer 1’s comments (Comments 3) “Note that we did not attempt to correct for multiple comparisons; largely, because the correlations observed were sustained over considerable time periods, which would be almost impossible under the null hypothesis of no correlations”.

      Author response image 1.

      Comment 3:

      The authors compare their active inference model to a "model-free RL" model. This model is not described anywhere, as far as I can tell. Thus, I have no idea how it was fit, how many parameters it has, etc. The active inference model fitting is also not described anywhere. Moreover, you cannot compare models based on log-likelihood, unless you are talking about held-out data. You need to penalize for model complexity. Finally, even if active inference outperforms a model-free RL model (doubtful given the error bars in Fig. 4c), I don't see how this is strong evidence for active inference per se. I would want to see a much more extensive model comparison, including model-based RL algorithms which are not based on active inference, as well as model recovery analyses confirming that the models can actually be distinguished on the basis of the experimental data.

      Response 3: We deeply thank you for your comments about the model comparison details. We previously omitted some information about the comparison model, as classical reinforcement learning is not the focus of our work, so we put the specific details in the supplementary materials. Now we have placed relevant information in the main text (see the part we have highlighted in yellow). We have now added the relevant information regarding the model comparison in the Results section (Behavioral results, line 279-293):

      “To assess the evidence for active inference over reinforcement learning, we fit active inference (Eq.9), model-free reinforcement learning, and model-based reinforcement learning models to the behavioral data of each participant. This involved optimizing the free parameters of active inference and reinforcement learning models. The resulting likelihood was used to calculate the Bayesian Information Criterion (BIC) as the evidence for each model. The free parameters for the active inference model (AL, AI, EX, prior, and α) scaled the contribution of the three terms that constitute the expected free energy in Eq.9. These coefficients can be regarded as precisions that characterize each participant's prior beliefs about contingencies and rewards. For example, increasing α means participants would update their beliefs about reward contingencies more quickly, increasing AL means participants would like to reduce ambiguity more, and increasing AI means participants would like to learn the hidden state of the environment and avoid risk more. The free parameters for the model-free reinforcement learning model are the learning rate α and the temperature parameter γ and the free parameters for the model-based are the learning rate α, the temperature parameter γ and prior (the details for the model-free reinforcement learning model can be found in Eq.S1-11 and the details for the model-based reinforcement learning model can be found in Eq.S12-23 in the Supplementary Method). The parameter fitting for these three models was conducted using the `BayesianOptimization' package in Python, first randomly sampling 1000 times and then iterating for an additional 1000 times.”

      We have now incorporated model-based reinforcement learning into our comparison models and placed the descriptions of both model-free and model-based reinforcement learning algorithms in the supplementary materials. We have also changed the criterion for model comparison to Bayesian Information Criterion. As indicated by the results, the performance of the active inference model significantly outperforms both comparison models.

      Sorry, we didn't do model recovery before, but now we have placed the relevant results in the supplementary materials. From the result figures, we can see that each model fits its own generated simulated data well:

      “To demonstrate how reliable our models are (the active inference model, model-free reinforcement learning model, and model-based reinforcement learning model), we run some simulation experiments for model recovery. We use these three models, with their own fitting parameters, to generate some simulated data. Then we will fit all three sets of data using these three models.

      The model recovery results are shown in Fig.S6. This is the confusion matrix of models: the percentage of all subjects simulated based on a certain model that is fitted best by a certain model. The goodness-of-fit was compared using the Bayesian Information Criterion. We can see that the result of model recovery is very good, and the simulated data generated by a model can be best explained by this model.”

      Author response image 2.

      Comment 4:

      Another aspect of the behavioral modeling that's missing is a direct descriptive comparison between model and human behavior, beyond just plotting log-likelihoods (which are a very impoverished measure of what's going on).

      Response 4: We deeply thank you for your comments about the comparison between the model and human behavior. Due to the slight differences between our simulation experiments and real behavioral experiments (the "you can ask" stage), we cannot directly compare the model and participants' behaviors. However, we can observe that in the main text's simulation experiment (Figure 3), the active inference agent's behavior is highly consistent with humans (Figure 4), exhibiting an effective exploration strategy and a desire to reduce uncertainty. Moreover, we have included two additional simulation experiments in the supplementary materials, which demonstrate that active inference may potentially fit a wide range of participants' behavioral strategies.

      Author response image 3.

      (An active inference agent with AL=AI=EX=0. It can accomplish tasks efficiently like a human being, reducing the uncertainty of the environment and maximizing the reward.)

      Author response image 4.

      (An active inference agent with AL=AI=0, EX=10. It will only pursue immediate rewards (not choosing the "Cue" option due to additional costs), but it can also gradually optimize its strategy due to random effects.)

      Author response image 5.

      (An active inference agent with EX=0, AI=AL=10. It will only pursue environmental information to reduce the uncertainty of the environment. Even in "Context 2" where immediate rewards are scarce, it will continue to explore.) (a) shows the decision-making of active inference agents in the Stay-Cue choice. Blue corresponds to agents choosing the "Cue" option and acquiring "Context 1"; orange corresponds to agents choosing the "Cue" option and acquiring "Context 2"; purple corresponds to agents choosing the "Stay" option and not knowing the information about the hidden state of the environment. The shaded areas below correspond to the probability of the agents making the respective choices. (b) shows the decision-making of active inference agents in the Stay-Cue choice. The shaded areas below correspond to the probability of the agents making the respective choices. (c) shows the rewards obtained by active inference agents. (d) shows the reward prediction errors of active inference agents. (e) shows the reward predictions of active inference agents for the "Risky" path in "Context 1" and "Context 2".

      Comment 5:

      The EEG results are intriguing, but it wasn't clear that these provide strong evidence specifically for the active inference model. No alternative models of the EEG data are evaluated.

      Overall, the central claim in the Discussion ("we demonstrated that the active inference model framework effectively describes real-world decision-making") remains unvalidated in my opinion.

      Response 5: We deeply thank you for your comments. We applied the active inference model to analyze EEG results because it best fit the participants' behavioral data among our models, including the new added results. Further, our EEG results serve only to verify that the active inference model can be used to analyze the neural mechanisms of decision-making in uncertain environments (if possible, we could certainly design a more excellent reinforcement learning model with a similar exploration strategy). We aim to emphasize the consistency between active inference and human decision-making in uncertain environments, as we have discussed in the article. Active inference emphasizes both perception and action, which is also what we wish to highlight: during the decision-making process, participants not only passively receive information, but also actively adopt different strategies to reduce uncertainty and maximize rewards.

      Reviewer #3 (Public Review):

      Summary:

      This paper aims to investigate how the human brain represents different forms of value and uncertainty that participate in active inference within a free-energy framework, in a two-stage decision task involving contextual information sampling, and choices between safe and risky rewards, which promotes a shift from exploration to exploitation. They examine neural correlates by recording EEG and comparing activity in the first vs second half of trials and between trials in which subjects did and did not sample contextual information, and perform a regression with free-energy-related regressors against data "mapped to source space." Their results show effects in various regions, which they take to indicate that the brain does perform this task through the theorised active inference scheme.

      Strengths:

      This is an interesting two-stage paradigm that incorporates several interesting processes of learning, exploration/exploitation, and information sampling. Although scalp/brain regions showing sensitivity to the active-inference-related quantities do not necessarily suggest what role they play, it can be illuminating and useful to search for such effects as candidates for further investigation. The aims are ambitious, and methodologically it is impressive to include extensive free-energy theory, behavioural modelling, and EEG source-level analysis in one paper.

      Response: We would like to express our heartfelt thanks to you for carefully reviewing our work and offering insightful feedback. Your attention to detail and commitment to enhancing the overall quality of our work are deeply admirable. Your input has been extremely helpful in guiding us through the necessary revisions to enhance the work. We have implemented focused changes based on a majority of your comments. Nevertheless, owing to limitations such as time and resources, we have not included corresponding analyses for a few comments.

      Comment 1:

      Though I could surmise the above general aims, I could not follow the important details of what quantities were being distinguished and sought in the EEG and why. Some of this is down to theoretical complexity - the dizzying array of constructs and terms with complex interrelationships, which may simply be part and parcel of free-energy-based theories of active inference - but much of it is down to missing or ambiguous details.

      Response 1: We deeply thank you for your comments about our work’s readability. We have significantly revised the descriptions of active inference, models, research questions, etc. Focusing on active inference and the free energy principle, we have added relevant basic descriptions and unified the terminology. We have added information related to model comparison in the main text and supplementary materials. We presented our regression results in clearer language. Our research focused on the brain's representation of decision-making in uncertain environments, including expected free energy, the value of reducing ambiguity, the value of avoiding risk, extrinsic value, ambiguity, and risk.

      Comment 2:

      In general, an insufficient effort has been made to make the paper accessible to readers not steeped in the free energy principle and active inference. There are critical inconsistencies in key terminology; for example, the introduction states that aim 1 is to distinguish the EEG correlates of three different types of uncertainty: ambiguity, risk, and unexpected uncertainty. But the abstract instead highlights distinctions in EEG correlates between "uncertainty... and... risk" and between "expected free energy .. and ... uncertainty." There are also inconsistencies in mathematical labelling (e.g. in one place 'p(s|o)' and 'q(s)' swap their meanings from one sentence to the very next).

      Response 2: We deeply thank you for your comments about the problem of inconsistent terminology. First, we have unified the symbols and letters (P, Q, s, o, etc.) that appeared in the article and described their respective meanings more clearly. We have also revised the relevant expressions of "uncertainty" throughout the text. In our work, uncertainty refers to ambiguity and risk. Ambiguity can be reduced through continuous sampling and is referred to as uncertainty about model parameters in our work. Risk, on the other hand, is the inherent variance of the environment and cannot be reduced through sampling, which is referred to as uncertainty about hidden states in our work. In the analysis of the results, we focused on how the brain encodes the value of reducing ambiguity (Figure 8), the value of avoiding risk (Figure 6), and (the degree of) ambiguity (Figure S5) during action selection. We also analyzed how the brain encodes reducing ambiguity and avoiding risk during belief update (Figure 7).

      Comment 3:

      Some basic but important task information is missing, and makes a huge difference to how decision quantities can be decoded from EEG. For example:

      - How do the subjects press the left/right buttons - with different hands or different fingers on the same hand?

      Response 3: We deeply thank you for your comments about the missing task information. We have added the relevant content in the Methods section (Contextual two-armed bandit task and Data collection, line 251-253):

      “Each stage was separated by a jitter ranging from 0.6 to 1.0 seconds. The entire experiment consists of a single block with a total of 120 trials. The participants are required to use any two fingers of one hand to press the buttons (left arrow and right arrow on the keyboard).”

      Comment 4:

      - Was the presentation of the Stay/cue and safe/risky options on the left/right sides counterbalanced? If not, decisions can be formed well in advance especially once a policy is in place.

      Response 4: The presentation of the Stay/cue and safe/risky options on the left/right sides was not counterbalanced. It is true that participants may have made decisions ahead of time. However, to better study the state of participants during decision-making, our choice stages consist of two parts. In the first two seconds, we ask participants to consider which option they would choose, and after these two seconds, participants are allowed to make their choice (by pressing the button).

      We also updated the figure of the experiment procedure as below (We circled the time that the participants spent on making decisions).

      Author response image 6.

      Comment 5:

      - What were the actual reward distributions ("magnitude X with probability p, magnitude y with probability 1-p") in the risky option?

      Response 5: We deeply thank you for your comments about the missing task information. We have placed the relevant content in the Methods section (Contextual two-armed bandit task and Data collection, line 188-191):

      “The actual reward distribution of the risky path in "Context 1" was [+12 (55%), +9 (25%), +6 (10%), +3 (5%), +0 (5%)] and the actual reward distribution of the risky path in "Context 2" was [+12 (5%), +9 (5%), +6 (10%), +3 (25%), +0 (55%)].”

      Comment 6:

      The EEG analysis is not sufficiently detailed and motivated.

      For example,

      - why the high lower-filter cutoff of 1 Hz, and shouldn't it be acknowledged that this removes from the EEG any sustained, iteratively updated representation that evolves with learning across trials?

      Response 6: We deeply thank you for your comments about our EEG analysis. The 1Hz high-pass filter may indeed filter out some useful information. We chose a 1Hz high-pass filter to filter out most of the noise and prevent the noise from affecting our results analysis. Additionally, there are also many decision-related works that have applied 1Hz high-pass filtering in EEG data preprocessing (Yau et al., 2021; Cortes et al., 2021; Wischnewski et al., 2022; Schutte et al., 2017; Mennella et al., 2020; Giustiniani et al., 2020).

      Yau, Y., Hinault, T., Taylor, M., Cisek, P., Fellows, L. K., & Dagher, A. (2021). Evidence and urgency related EEG signals during dynamic decision-making in humans. Journal of Neuroscience, 41(26), 5711-5722.

      Cortes, P. M., García-Hernández, J. P., Iribe-Burgos, F. A., Hernández-González, M., Sotelo-Tapia, C., & Guevara, M. A. (2021). Temporal division of the decision-making process: An EEG study. Brain Research, 1769, 147592.

      Wischnewski, M., & Compen, B. (2022). Effects of theta transcranial alternating current stimulation (tACS) on exploration and exploitation during uncertain decision-making. Behavioural Brain Research, 426, 113840.

      Schutte, I., Kenemans, J. L., & Schutter, D. J. (2017). Resting-state theta/beta EEG ratio is associated with reward-and punishment-related reversal learning. Cognitive, Affective, & Behavioral Neuroscience, 17, 754-763.

      Mennella, R., Vilarem, E., & Grèzes, J. (2020). Rapid approach-avoidance responses to emotional displays reflect value-based decisions: Neural evidence from an EEG study. NeuroImage, 222, 117253.

      Giustiniani, J., Nicolier, M., Teti Mayer, J., Chabin, T., Masse, C., Galmès, N., ... & Gabriel, D. (2020). Behavioral and neural arguments of motivational influence on decision making during uncertainty. Frontiers in Neuroscience, 14, 583.

      Comment 7:

      - Since the EEG analysis was done using an array of free-energy-related variables in a regression, was multicollinearity checked between these variables?

      Response 7: We deeply thank you for your comments about our regression. Indeed, we didn't specify our regression formula in the main text. We conducted regression on one variable each time, so there was no need for a multicollinearity check. We have now added the relevant content in the Results section (“EEG results at source level” section, line 337-340):

      “The linear regression was run by the "mne.stats.linear regression" function in the MNE package (Activity ~ Regressor + Intercept). Activity is the activity amplitude of the EEG signal in the source space and regressor is one of the regressors that we mentioned (e.g., expected free energy, the value of reducing ambiguity, etc.).”

      Comment 8:

      - In the initial comparison of the first/second half, why just 5 clusters of electrodes, and why these particular clusters?

      Response 8: We deeply thank you for your comments about our sensor-level analysis. These five clusters are relatively common scalp EEG regions to analyze (left frontal, right frontal, central, left parietal, and right parietal), and we referred previous work analyzed these five clusters of electrodes (Laufs et al., 2006; Ray et al., 1985; Cole et al., 1985). In addition, our work pays more attention to the analysis in source space, exploring the corresponding functions of specific brain regions based on active inference models.

      Laufs, H., Holt, J. L., Elfont, R., Krams, M., Paul, J. S., Krakow, K., & Kleinschmidt, A. (2006). Where the BOLD signal goes when alpha EEG leaves. Neuroimage, 31(4), 1408-1418.

      Ray, W. J., & Cole, H. W. (1985). EEG activity during cognitive processing: influence of attentional factors. International Journal of Psychophysiology, 3(1), 43-48.

      Cole, H. W., & Ray, W. J. (1985). EEG correlates of emotional tasks related to attentional demands. International Journal of Psychophysiology, 3(1), 33-41.

      Comment 9:

      How many different variables are systematically different in the first vs second half, and how do you rule out less interesting time-on-task effects such as engagement or alertness? In what time windows are these amplitudes being measured?

      Response 9 (and the Response for Weaknesses 11): There were no systematic differences between the first half and the second half of the trials, with the only difference being the participants' experience. In the second half, participants had a better understanding of the reward distribution of the task (less ambiguity). The simulation results can well describe these.

      Author response image 7.

      As shown in Figure (a), agents can only learn about the hidden state of the environment ("Context 1" (green) or "Context 2" (orange)) by choosing the "Cue" option. If agents choose the "Stay" option, they will not be able to know the hidden state of the environment (purple). The risk of agents is only related to wh

      ether they choose the "Cue" option, not the number of rounds. Figure (b) shows the Safe-Risky choices of agents, and Figure (e) is the reward prediction of agents for the "Risky" path in "Context 1" and "Context 2". We can see that agents update the expected reward and reduce ambiguity by sampling the "Risky" path. The ambiguity of agents is not related to the "Cue" option, but to the number of times they sample the "Risky" path (rounds).

      In our choosing stages, participants were required to think about their choices for the first two seconds (during which they could not press buttons). Then, they were asked to make their choices (press buttons) within the next two seconds. This setup effectively kept participants' attention focused on the task. And the two second during the “Second choice” stage when participants decide which option to choose (they cannot press buttons) are measured for the analysis of the sensor-level results.

      Comment 10:

      In the comparison of asked and not-asked trials, what trial stage and time window is being measured?

      Response 10: We have added relevant descriptions in the main text. The two second during the “Second choice” stage when participants decide which option to choose (they cannot press buttons) are measured for the analysis of the sensor-level results.

      Author response image 8.

      Comment 11:

      Again, how many different variables, of the many estimated per trial in the active inference model, are different in the asked and not-asked trials, and how can you know which of these differences is the one reflected in the EEG effects?

      Response 11: The difference between asked trials and not-asked trials lies only in whether participants know the specific context of the risky path (the level of risk for the participants). A simple comparison indeed cannot tell us which of these differences is reflected in the EEG effects. Therefore, we subsequently conducted model-based regression analysis in the source space.

      Comment 12:

      The authors choose to interpret that on not-asked trials the subjects are more uncertain because the cue doesn't give them the context, but you could equally argue that they don't ask because they are more certain of the possible hidden states.

      Response 12: Our task design involves randomly varying the context of the risky path. Only by choosing to inquire can participants learn about the context. Participants can only become increasingly certain about the reward distribution of different contexts of the risky path, but cannot determine which specific context it is. Here are the instructions for the task that we will tell the participants (line 226-231).

      "You are on a quest for apples in a forest, beginning with 5 apples. You encounter two paths: 1) The left path offers a fixed yield of 6 apples per excursion. 2) The right path offers a probabilistic reward of 0/3/6/9/12 apples, and it has two distinct contexts, labeled "Context 1" and "Context 2," each with a different reward distribution. Note that the context associated with the right path will randomly change in each trial. Before selecting a path, a ranger will provide information about the context of the right path ("Context 1" or "Context 2") in exchange for an apple. The more apples you collect, the greater your monetary reward will be."

      Comment 13:

      - The EEG regressors are not fully explained. For example, an "active learning" regressor is listed as one of the 4 at the beginning of section 3.3, but it is the first mention of this term in the paper and the term does not arise once in the methods.

      Response 13: We have accordingly revised the relevant content in the main text (as in Eq.8). Our regressors now include expected free energy, the value of reducing ambiguity, the value of avoiding risk, extrinsic value, prediction error, (the degree of) ambiguity, reducing ambiguity, and avoiding risk.

      Comment 14:

      - In general, it is not clear how one can know that the EEG results reflect that the brain is purposefully encoding these very parameters while implementing this very mechanism, and not other, possibly simpler, factors that correlate with them since there is no engagement with such potential confounds or alternative models. For example, a model-free reinforcement learning model is fit to behaviour for comparison. Why not the EEG?

      Response 14: We deeply thank you for your comments. Due to factors such as time and effort, and because the active inference model best fits the behavioral data of the participants, we did not use other models to analyze the EEG data. At both the sensor and source level, we observed the EEG signal and brain regions that can encode different levels of uncertainties (risk and ambiguity). The brain's uncertainty driven exploration mechanism cannot be explained solely by a simple model-free reinforcement learning approach.

      Recommendations for the authors:

      Response: We have made point-to-point revisions according to the reviewer's recommendations, and as these revisions are relatively minor, we have only responded to the longer recommendations here.

      Reviewer #1 (Recommendations For The Authors)

      I enjoyed reading this sophisticated study of decision-making. I thought your implementation of active inference and the subsequent fitting to choice behaviour - and study of the neuronal (EEG) correlates - was impressive. As noted in my comments on strengths and weaknesses, some parts of your manuscript with difficult to read because of slight collapses in grammar and an inconsistent use of terms when referring to the mathematical quantities. In addition to the paragraphs I have suggested, I would recommend the following minor revisions to your text. In addition, you will have to fill in some of the details that were missing from the current version of the manuscript. For example:

      Recommendation 1:

      Which RL model did you use to fit the behavioural data? What were its free parameters?

      Response 1: We have now added information related to the comparison models in the behavioral results and supplementary materials. We applied both simple model-free reinforcement learning and model-based reinforcement learning. The free parameters for the model-free reinforcement learning model are the learning rate α and the temperature parameter γ, while the free parameters for the model-based approach are the learning rate α, the temperature parameter γ, and the prior.

      Recommendation 2:

      When you talk about neuronal activity in the final analyses (of time-dependent correlations) what was used to measure the neuronal activity? Was this global power over frequencies? Was it at a particular frequency band? Was it the maximum amplitude within some small window et cetera? In other words, you need to provide the details of your analysis that would enable somebody to reproduce your study at a certain level of detail.

      Response 2: In the final analyses, we used the activity amplitude at each point in the source space for our analysis. Previously, we had planned to make our data and models available on GitHub to facilitate easier replication of our work.

      Reviewer #3 (Recommendations For The Authors)

      Recommendation 1:

      It might help to explain the complex concepts up front, to use the concrete example of the task itself - presumably, it was designed so that the crucial elements of the active inference framework come to the fore. One could use hypothetical choice patterns in this task to exemplify different factors such as expected free energy and unexpected uncertainty at work. It would also be illuminating to explain why behaviour on this task is fit better by the active inference model than a model-free reinforcement learning model.

      Response 1: Thank you for your suggestions. We have given clearer explanations to the three terms in the active inference formula: the value of reducing ambiguity, the value of avoiding risk, and the extrinsic value (Eq.8), which makes it easier for readers to understand active inference.

      In addition, we can simply view active inference as a computational model similar to model-based reinforcement learning, where the expected free energy represents a subjective value, without needing to understand its underlying computational principles or neurobiological background. In our discussion, we have argued why the active inference model fits the participants' behavior better than our reinforcement learning model, as the active inference model has an inherent exploration mechanism that is consistent with humans, who instinctively want to reduce environmental uncertainty (line 435-442).

      “Active inference offers a superior exploration mechanism compared with basic model-free reinforcement learning  (Figure 4 (c)). Since traditional reinforcement learning models determine their policies solely on the state, this setting leads to difficulty in extracting temporal information (Laskin et al., 2020) and increases the likelihood of entrapment within local minima. In contrast, the policies in active inference are determined by both time and state. This dependence on time (Wang et al., 2016) enables policies to adapt efficiently, such as emphasizing exploration in the initial stages and exploitation later on. Moreover, this mechanism prompts more exploratory behavior in instances of state ambiguity. A further advantage of active inference lies in its adaptability to different task environments (Friston et al., 2017). It can configure different generative models to address distinct tasks, and compute varied forms of free energy and expected free energy.”

      Laskin, M., Lee, K., Stooke, A., Pinto, L., Abbeel, P., & Srinivas, A. (2020). Reinforcement learning with augmented data. Advances in neural information processing systems, 33, 19884-19895.

      Wang, J. X., Kurth-Nelson, Z., Tirumala, D., Soyer, H., Leibo, J. Z., Munos, R., ... & Botvinick, M. (2016). Learning to reinforcement learn. arXiv preprint arXiv:1611.05763.

      Friston, K., FitzGerald, T., Rigoli, F., Schwartenbeck, P., & Pezzulo, G. (2017). Active inference: a process theory. Neural computation, 29(1), 1-49.

      Recommendation 2:

      Figure 1A provides a key example of the lack of effort to help the reader understand. It suggests the possibility of a concrete example but falls short of providing one. From the caption and text, applied to the figure, I gather that by choosing either to run or to raise one's arms, one can control whether it is daytime or nighttime. This is clearly wrong but it is what I am led to think by the paper.

      Response 2: Thank you for your suggestion, which we had not considered before. In this figure, we aim to illustrate that "the agent receives observations and optimizes his cognitive model by minimizing variational free energy → the agent makes the optimal action by minimizing expected free energy → the action changes the environment → the environment generates new observations for the agent." We have now modified the image to be simpler to prevent any possible confusion for readers. Correspondingly, we removed the figure of a person raising their hand and the shadowed house in Figure a.

      Author response image 9.

      Recommendation 3:

      I recommend an overhaul in the labelling and methodological explanations for consistency and full reporting. For example, line 73 says sensory input is 's' and the cognitive model is 'q(s),' and the cause of the sensory input is 'p(s|o)' but on the very next line, the cognitive model is 'p(s|o)' and the causes of sensory input are 'q(s).' How this sensory input s relates to 'observations' or 'o' is unclear, and meanwhile, capital S is the set of environmental states. P seems to refer to the generative distribution, but it also means probability.

      Response 3: Thank you for your advice. Now we have revised the corresponding labeling and methodological explanations in our work to make them consistent. However, we are not sure how to make a good modification to P here. In many works, P can refer to a certain probability distribution or some specific probabilities.

      Recommendation 4:

      Even the conception of a "policy" is unclear (Figure 2B). They list 4 possible policies, which are simply the 4 possible sequences of steps, stay-safe, cue-risky, etc, but with no contingencies in them. Surely a complete policy that lists 'cue' as the first step would entail a specification of how they would choose the safe or risky option BASED on the information in that cue

      Response 4: Thank you for your suggestion. In active inference, a policy actually corresponds to a sequence of actions. The policy of "first choosing 'Cue' and then making the next decision based on specific information" differs from the meaning of policy in active inference.

      Recommendation 5:

      I assume that the heavy high pass filtering of the EEG (1 Hz) is to avoid having to baseline-correct the epochs (of which there is no mention), but the authors should directly acknowledge that this eradicates any component of decision formation that may evolve in any way gradually within or across the stages of the trial. To take an extreme example, as Figure 3E shows, the expected rewards for the risky path evolve slowly over the course of 60 trials. The filter would eliminate this.

      Response 5: Thank you for your suggestion. The heavy high pass filtering of the EEG (1 Hz) is to minimize the noise in the EEG data as much as possible.

      Recommendation 6:

      There is no mention of the regression itself in the Methods section - the section is incomplete.

      Response 6: Thank you for your suggestion. We have now added the relevant content in the Results section (EEG results at source level, line 337-340):

      “The linear regression was run by the "mne.stats.linear regression" function in the MNE package (Activity ∼ Regressor + Intercept, Activity is the activity amplitude of the EEG signal in the source space and regressor is one of the regressors that we mentioned).”

      Recommendation 7:

      On Lines 260-270 the same results are given twice.

      Response 7: Thank you for your suggestion. We have now deleted redundant content.

      Recommendation 8:

      Frequency bands are displayed in Figure 5 but there is no mention of those in the Methods. In Figure 5b Theta in the 2nd half is compared to Delta in the 1st half- is this an error?

      Response 8: Thank you for your suggestion. It indeed was an error (they should all be Theta) and now we have corrected it.

      Author response image 10.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1:

      Summary:

      In this study, Nishi et al. claim that the ratio of long-term hematopoietic stem cell (LT-HSC) versus short-term HSC (ST-HSC) determines the lineage output of HSCs and reduced ratio of ST-HSC in aged mice causes myeloid-biased hematopoiesis. The authors used Hoxb5 reporter mice to isolate LT-HSC and ST-HSC and performed molecular analyses and transplantation assays to support their arguments. How the hematopoietic system becomes myeloid-biased upon aging is an important question with many implications in the disease context as well. However, their study is descriptive with remaining questions.

      Weaknesses:

      Comment #1-1: The authors may need conceptual re-framing of their main argument because whether the ST-HSCs used in this study are functionally indeed short-term "HSCs" is questionable. The data presented in this study and their immunophenotypic definition of ST-HSCs (Lineage negative/Sca-1+/c-Kit+/Flk2-/CD34-/CD150+/Hoxb5-) suggest that authors may find hematopoietic stem cell-like lymphoid progenitors as previously shown for megakaryocyte lineage (Haas et al., Cell stem cell. 2015) or, as the authors briefly mentioned in the discussion, Hoxb5- HSCs could be lymphoid-biased HSCs.

      The authors disputed the idea that Hoxb5- HSCs as lymphoid-biased HSCs based on their previous 4 weeks post-transplantation data (Chen et al., 2016). However, they overlooked the possibility of myeloid reprogramming of lymphoid-biased population during regenerative conditions (Pietras et al., Cell stem cell., 2015). In other words, early post-transplant STHSCs (Hoxb5- HSCs) can be seen as lacking the phenotypic lymphoid-biased HSCs.

      Thinking of their ST-HSCs as hematopoietic stem cell-like lymphoid progenitors or lymphoidbiased HSCs makes more sense conceptually as well.

      Response #1-1: We appreciate this important suggestion and recognize the significance of the debate on whether Hoxb5- HSCs are ST-HSCs or lymphoid-biased HSCs.

      HSCs are defined by their ability to retain hematopoietic potential after a secondary transplantation1-2. If Hoxb5- HSCs were indeed lymphoid-biased HSCs, they would exhibit predominantly lymphoid hematopoiesis even after secondary transplantation. However, functional experiments demonstrate that these cells lose their hematopoietic output after secondary transplantation3 (see Fig. 2 in this paper). Based on the established definition of HSCs in this filed, it is appropriate to classify Hoxb5- HSCs as ST-HSCs rather than lymphoid-biased HSCs.

      Additionally, it has been reported that myeloid reprogramming may occur in the early posttransplant period, around 2-4 weeks after transplantation, even in lymphoid-biased populations within the MPP fraction, due to high inflammatory conditions4. However, when considering the post-transplant hematopoiesis of Hoxb5- HSC fractions as ST-HSCs, they exhibit almost the same myeloid hematopoietic potential as LT-HSCs not only during the early 4 weeks after transplantation but also at 8 weeks post-transplantation3, when the acute inflammatory response has largely subsided. Therefore, it is difficult to attribute the myeloid production by ST-HSCs post-transplant solely to myeloid reprogramming.

      References

      (1) Morrison, S. J. & Weissman, I. L. The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity 1, 661–673 (1994).

      (2) Challen, G. A., Boles, N., Lin, K. K. Y. & Goodell, M. A. Mouse hematopoietic stem cell identification and analysis. Cytom. Part A 75, 14–24 (2009).

      (3) Chen, J. Y. et al. Hoxb5 marks long-term haematopoietic stem cells and reveals a homogenous perivascular niche. Nature 530, 223–227 (2016).

      (4) Pietras, E. M. et al. Functionally Distinct Subsets of Lineage-Biased Multipotent Progenitors Control Blood Production in Normal and Regenerative Conditions. Cell Stem Cell 17, 35–46 (2015).

      Comment #1-2: ST-HSCs come from LT-HSCs and further differentiate into lineage-biased multipotent progenitor (MPP) populations including myeloid-biased MPP2 and MPP3. Based on the authors' claim, LT-HSCs (Hoxb5- HSCs) have no lineage bias even in aged mice. Then these LT-HSCs make ST-HSCs, which produce mostly memory T cells. These memory T cell-producing ST-HSCs then produce MPPs including myeloid-biased MPP2 and MPP3.

      This differentiation trajectory is hard to accept. If we think Hoxb5- HSCs (ST-HSCs by authors) as a sub-population of immunophenotypic HSCs with lymphoid lineage bias or hematopoietic stem cell-like lymphoid progenitors, the differentiation trajectory has no flaw.

      Response #1-2: Thank you for this comment, and we apologize for the misunderstanding regarding the predominance of memory T cells in ST-HSCs after transplantation. 

      Our data show that ST-HSCs are not biased HSCs that predominantly produce memory T cells, but rather, ST-HSCs are multipotent hematopoietic cells. ST-HSCs lose their ability to self-renew within a short period, resulting in the cessation of ST-HSC-derived hematopoiesis. As a result, myeloid lineage with a short half-life disappears from the peripheral blood, and memory lymphocytes with a long half-life remain (see Figure 5 in this paper). 

      Comment #1-3: Authors' experimental designs have some caveats to support their claims. Authors claimed that aged LT-HSCs have no myeloid-biased clone expansion using transplantation assays. In these experiments, authors used 10 HSCs and young mice as recipients. Given the huge expansion of old HSC by number and known heterogeneity in immunophenotypically defined HSC populations, it is questionable how 10 out of so many old HSCs can faithfully represent the old HSC population. The Hoxb5+ old HSC primary and secondary recipient mice data (Figure 2C and D) support this concern. In addition, they only used young recipients. Considering the importance of the inflammatory aged niche in the myeloid-biased lineage output, transplanting young vs old LT-HSCs into aged mice will complete the whole picture.

      Response #1-3: We appreciate the reviewer for the comments. We acknowledge that using ten HSCs may not capture the heterogeneity of aging HSCs.

      However, although most of our experiments have used a small number of transplanted cells (e.g., 10 cells), we have conducted functional experiments across Figures 2, 3, 5, 6, S3, and S6, totaling n = 126, equivalent to over 1260 cells. Previous studies have reported that myeloid-biased HSCs constitute more than 50% of the aged HSC population1-2. If myeloidbiased HSCs increase with age, they should be detectable in our experiments. Our functional experiments have consistently shown that Hoxb5+ HSCs exhibit unchanged lineage output throughout life. In contrast, the data presented in this paper indicate that changes in the ratio of LT-HSCs and ST-HSCs may contribute to myeloid-biased hematopoiesis.

      We believe that transplanting aged HSCs into aged recipient mice is crucial to analyzing not only the differentiation potential of aged HSCs but also the changes in their engraftment and self-renewal abilities. We aim to clarify further findings through these experiments in the future.

      References

      (1) Dykstra B, Olthof S, Schreuder J, Ritsema M, Haan G De. Clonal analysis reveals multiple functional defects of aged murine hematopoietic stem cells. J Exp Med. 2011 Dec 19;208(13):2691–703. 

      (2) Yamamoto R, Wilkinson AC, Ooehara J, Lan X, Lai CY, Nakauchi Y, et al. LargeScale Clonal Analysis Resolves Aging of the Mouse Hematopoietic Stem Cell Compartment. Cell Stem Cell [Internet]. 2018;22(4):600-607.e4. Available from: https://doi.org/10.1016/j.stem.2018.03.013

      Comment #1-4: The authors' molecular data analyses need more rigor with unbiased approaches. They claimed that neither aged LT-HSCs nor aged ST-HSCs exhibited myeloid or lymphoid gene set enrichment but aged bulk HSCs, which are just a sum of LT-HSCs and ST-HSCs by their gating scheme (Figure 4A), showed the "tendency" of enrichment of myeloid-related genes based on the selected gene set (Figure 4D). Although the proportion of ST-HSCs is reduced in bulk HSCs upon aging, since ST-HSCs do not exhibit lymphoid gene set enrichment based on their data, it is hard to understand how aged bulk HSCs have more myeloid gene set enrichment compared to young bulk HSCs. This bulk HSC data rather suggests that there could be a trend toward certain lineage bias (although not significant) in aged LT-HSCs or ST-HSCs. The authors need to verify the molecular lineage priming of LT-HSCs and ST-HSCs using another comprehensive dataset.

      Response #1-4: Thank you for pointing out that neither aged LT-HSCs nor aged ST-HSCs exhibited myeloid

      or lymphoid gene set enrichment, although aged bulk HSCs showed a tendency towards enrichment of myeloid-related genes.

      The actual GSEA result had an FDR > 0.05. Therefore, we cannot claim that bulk HSCs showed significant enrichment of myeloid-related genes with age. Consequently, we have revised the following sentences:

      [P11, L251] Neither aged LT-HSCs nor aged ST-HSCs exhibited myeloid/lymphoid gene set enrichment, while shared myeloid-related genes tended to be enriched in aged bulk-HSCs, although this enrichment was not statistically significant (Fig. 4, F and G).

      In addition to the above, we also found that the GSEA results differ among myeloid gene sets (Fig. 4, D-F; Fig. 4S, C-D). These findings suggest that discussing lineage bias in HSCs using GSEA is challenging. We believe that functional experimental data is crucial. From our functional experiments, when the ratio of LT-HSC to ST-HSC was reconstituted to match the ratio in young Bulk-HSCs (LT= 2:8) or aged bulk-HSCs (LT= 5:5), myeloid-biased hematopoiesis was observed with the aged bulk-HSC ratio. Based on this data, the authors concluded that age-related changes in the ratio between LT-HSCs and ST-HSCs in bulkHSCs cause myeloid-biased hematopoiesis rather than an increase in myeloid gene expression in the aged bulk-HSCs.

      Comment #1-5: Some data are too weak to fully support their claims. The authors claimed that age-associated extramedullary changes are the main driver of myeloid-biased hematopoiesis based on no major differences in progenitor populations upon transplantation of 10 young HSCs into young or old recipient mice (Figure 7F) and relatively low donor-derived cells in thymus and spleen in aged recipient mice (Figure 7G-J). However, they used selected mice to calculate the progenitor populations in recipient mice (8 out of 17 from young recipients denoted by * and 8 out of 10 from aged recipients denoted by * in Figure 7C). In addition, they calculated the progenitor populations as frequency in c-kit positive cells. Given that they transplanted 10 LT-HSCs into "sub-lethally" irradiated mice and 8.7 Gy irradiation can have different effects on bone marrow clearance in young vs old mice, it is not clear whether this data is reliable enough to support their claims. The same concern applies to the data Figure 7G-J. Authors need to provide alternative data to support their claims.

      Response #1-5: Thank you for useful comments. Our claim regarding Fig. 7 is that age-associated extramedullary changes are merely additional drivers for myeloid-biased hematopoiesis are not the main drivers. But we will address the issues pointed out.

      Regarding the reason for analyzing the asterisk mice

      We performed two independent experiments for Fig. 7. In the first experiment, we planned to analyze the BM of recipients 16 weeks after transplantation. However, as shown in Fig. 7B, many of the aged mice died before 16 weeks. Therefore, we decided to examine the BM of the recipient mice at 12 weeks in the second experiment. Below are the peripheral blood results 11-12 weeks after transplantation for the mice used in the second experiment.

      Author response image 1.

      For the second experiment, we analyzed the BM of all eight all eight aged recipients. Then, we selected the same number of young recipients for analysis to ensure that the donor myeloid output would be comparable to that of the entire young group. Indeed, the donor myeloid lineage output of the selected mice was 28.1 ± 22.9%, closely matching the 23.5 ± 23.3% (p = 0.68) observed in the entire young recipient population. 

      That being said, as the reviewer pointed out, it is considerable that the BM, thymus, and spleen of all mice were not analyzed. Hence, we have added the following sentences:

      [P14, L327] We performed BM analysis for the mice denoted by † in Figure 7C because many of the aged mice had died before the analysis.

      [P15, L338] The thymus and spleen analyses were also performed on the mice denoted by † in Figure 7C.

      Regarding the reason for 8.7 Gy.

      Thank you for your question about whether 8.7 Gy is myeloablative. In our previous report1, we demonstrated that none of the mice subjected to pre-treatment with 8.7 Gy could survive when non-LKS cells were transplanted, suggesting that 8.7 Gy is enough to be myeloablative with the radiation equipment at our facility.

      Author response image 2.

      Reference

      (1)  Nishi K, Sakamaki T, Sadaoka K, Fujii M, Takaori-Kondo A, Chen JY, et al. Identification of the minimum requirements for successful haematopoietic stem cell transplantation. Br J Haematol. 2022;196(3):711–23. 

      Regarding the normalization of c-Kit in Figure 7F.  

      Firstly, as shown in Supplemental Figures S1B and S1C, we analyze the upstream (HSC, MPP, Flk2+) and downstream (CLP, MEP, CMP, GMP) fractions in different panels. Therefore, normalization is required to assess the differentiation of HSCs from upstream to downstream. Additionally, the reason for normalizing by c-Kit+ is that the bone marrow analysis was performed after enrichment using the Anti-c-Kit antibody for both upstream and downstream fractions. Based on this, we calculated the progenitor populations as a frequency within the c-Kit positive cells.

      Next, the results of normalizing the whole bone marrow cells (live cells) are shown below. 

      Author response image 3.

      Similar to the results of normalizing c-Kit+ cells, myeloid progenitors remained unchanged, including a statistically significant decrease in CMP in aged mice. Additionally, there were no significant differences in CLP. In conclusion, we obtained similar results between the normalization with c-Kit and the normalization with whole bone marrow cells (live cells).

      However, as the reviewer pointed out, it is necessary to explain the reason for normalization with c-Kit. Therefore, we will add the following description.

      [P21, L502] For the combined analysis of the upstream (HSC, MPP, Flk2+) and downstream (CLP, MEP, CMP, GMP) fractions in Figures 1B and 7F, we normalized by c-Kit+ cells because we performed a c-Kit enrichment for the bone marrow analysis.

      Reviewer #2:

      Summary:  

      Nishi et al, investigate the well-known and previously described phenomenon of ageassociated myeloid-biased hematopoiesis. Using a previously established HoxB5mCherry mouse model, they used HoxB5+ and HoxB5- HSCs to discriminate cells with long-term (LTHSCs) and short-term (ST-HSCs) reconstitution potential and compared these populations to immunophenotypically defined 'bulk HSCs' that consists of a mixture of LT-HSC and STHSCs. They then isolated these HSC populations from young and aged mice to test their function and myeloid bias in non-competitive and competitive transplants into young and aged recipients. Based on quantification of hematopoietic cell frequencies in the bone marrow, peripheral blood, and in some experiments the spleen and thymus, the authors argue against the currently held belief that myeloid-biased HSCs expand with age. 

      Comment #2-1: While aspects of their work are fascinating and might have merit, several issues weaken the overall strength of the arguments and interpretation. Multiple experiments were done with a very low number of recipient mice, showed very large standard deviations, and had no statistically detectable difference between experimental groups. While the authors conclude that these experimental groups are not different, the displayed results seem too variable to conclude anything with certainty. The sensitivity of the performed experiments (e.g. Figure 3; Figure 6C, D) is too low to detect even reasonably strong differences between experimental groups and is thus inadequate to support the author's claims. This weakness of the study is not acknowledged in the text and is also not discussed. To support their conclusions the authors need to provide higher n-numbers and provide a detailed power analysis of the transplants in the methods section.

      Response #2-1: Thank you for your important remarks. The power analysis for this experiment shows that power = 0.319, suggesting that more number may be needed. On the other hand, our method for determining the sample size in Figure 3 is as follows:

      (1) First, we checked whether myeloid biased change is detected in the bulk-HSC fraction (Figure S3). The results showed that the difference in myeloid output at 16 weeks after transplantation was statistically significant (young vs. aged = 7.2 ± 8.9 vs. 42.1 ± 35.5%, p = 0.01), even though n = 10.

      (2) Next, myeloid biased HSCs have been reported to be a fraction with high self-renewal ability (2004, Blood). If myeloid biased HSCs increase with aging, the increase in myeloid biased HSCs in LT-HSC fraction would be detected with higher sensitivity than in the bulk-HSC fraction used in Figure S3.

      (3) However, there was no difference not only in p-values but also in the mean itself, young vs aged = 51.4±31.5% vs 47.4±39.0%, p = 0.82, even though n = 8 in Figure 3. Since there was no difference in the mean itself, it is highly likely that no difference will be detected even if n is further increased.

      Regarding Figure 6, we obtained a statistically significant difference and consider the sample size to be sufficient. 

      In addition, we have performed various functional experiments (Figures 2, 5, 6 and S6), and have obtained consistent results that expansion of myeloid biased HSCs does not occur with aging in Hoxb5+HSCs fraction. Based on the above, we conclude that the LT-HSC fraction does not differ in myeloid differentiation potential with aging.

      Comment #2-2: As the authors attempt to challenge the current model of the age-associated expansion of myeloid-biased HSCs (which has been observed and reproduced by many different groups), ideally additional strong evidence in the form of single-cell transplants is provided.

      Response #2-2: Thank you for the comments. As the reviewer pointed out, we hope we could reconfirm our results using single-cell level technology in the future.

      On the other hand, we have reported that the ratio of myeloid to lymphoid cells in the peripheral blood changes when the number of HSCs transplanted, or the number of supporting cells transplanted with HSCs, is varied1-2. Therefore, single-cell transplant data need to be interpreted very carefully to determine differentiation potential.

      From this viewpoint, future experiments will combine the Hoxb5 reporter system with a lineage tracing system that can track HSCs at the single-cell level over time. This approach will investigate changes in the self-renewal capacity of individual HSCs and their subsequent differentiation into progenitor cells and peripheral blood cells. We have reflected this comment by adding the following sentences in the manuscript.

      [P19, L451] In contrast, our findings should be considered in light of some limitations. In this report, we primarily performed ten to twenty cell transplantation assays. Therefore, the current theory should be revalidated using single-cell technology with lineage tracing system3-4. This approach will investigate changes in the self-renewal capacity of individual HSCs and their subsequent differentiation into progenitor cells and peripheral blood cells. 

      References

      (1) Nishi K, Sakamaki T, Sadaoka K, Fujii M, Takaori-Kondo A, Chen JY, et al. Identification of the minimum requirements for successful haematopoietic stem cell transplantation. Br J Haematol. 2022;196(3):711–23. 

      (2) Sakamaki T, Kao KS, Nishi K, Chen JY, Sadaoka K, Fujii M, et al. Hoxb5 defines the heterogeneity of self-renewal capacity in the hematopoietic stem cell compartment. Biochem Biophys Res Commun [Internet]. 2021;539:34–41. Available from: https://doi.org/10.1016/j.bbrc.2020.12.077

      (3) Yamamoto R, Wilkinson AC, Ooehara J, Lan X, Lai CY, Nakauchi Y, et al. LargeScale Clonal Analysis Resolves Aging of the Mouse Hematopoietic Stem Cell Compartment. Cell Stem Cell [Internet]. 2018;22(4):600-607.e4. Available from: https://doi.org/10.1016/j.stem.2018.03.013

      (4) Rodriguez-Fraticelli AE, Weinreb C, Wang SW, Migueles RP, Jankovic M, Usart M, et al. Single-cell lineage tracing unveils a role for TCF15 in haematopoiesis. Nature [Internet]. 2020;583(7817):585–9. Available from: http://dx.doi.org/10.1038/s41586-020-2503-6

      Comment #2-3: It is also unclear why the authors believe that the observed reduction of ST-HSCs relative to LT-HSCs explains the myeloid-biased phenotype observed in the peripheral blood. This point seems counterintuitive and requires further explanation.

      Response #2-3: Thank you for your comment. We apologize for the insufficient explanation. Our data, as shown in Figures 3 and 4, demonstrate that the differentiation potential of LT-HSCs remains unchanged with age. Therefore, rather than suggesting that an increase in LT-HSCs with a consistent differentiation capacity leads to myeloid-biased hematopoiesis, it seems more accurate to highlight that the relative decrease in the proportion of ST-HSCs, which remain in peripheral blood as lymphocytes, leads to a relative increase in myeloid cells in peripheral blood and thus causes myeloid-biased hematopoiesis.

      However, if we focus on the increase in the ratio of LT-HSCs, it is also plausible to explain that “with aging, the proportion of LT-HSCs capable of long-term myeloid hematopoiesis increases. As a result, from 16 weeks after transplantation, the influence of LT-HSCs maintaining the long-term ability to produce myeloid cells becomes relatively more significant, leading to an increase in the ratio of myeloid cells in the peripheral blood and causing myeloid-biased hematopoiesis.”

      Comment #2-4: Based on my understanding of the presented data, the authors argue that myeloid-biased HSCs do not exist, as<br /> a) they detect no difference between young/aged HSCs after transplant (mind low n-numbers and large std!); b) myeloid progenitors downstream of HSCs only show minor or no changes in frequency and c) aged LT-HSCs do not outperform young LT-HSC in myeloid output LT-HScs in competitive transplants (mind low n-numbers and large std!).

      Response #2-4: We appreciate the comments. As mentioned above, we will correct the manuscript regarding the sample size.

      Regarding the interpreting of the lack of increase in the percentage of myeloid progenitor cells in the bone marrow with age, it is instead possible that various confounding factors, such as differentiation shortcuts or changes in the microenviroment, are involved.

      However, even when aged LT-HSCs and young LT-HSCs are transplanted into the same recipient mice, the timing of the appearance of different cell fractions in peripheral blood is similar (Figure 3 of this paper). Therefore, we have not obtained data suggesting that clear shortcuts exist in the differentiation process of aged HSCs into neutrophils or monocytes. Additionally, it is currently consensually accepted that myeloid cells, including neutrophils and monocytes, differentiate from GMPs1. Since there is no changes in the proportion of GMPs in the bone marrow with age, we concluded that the differentiation potential into myeloid cells remains consistent with aging.

      Reference

      (1) Akashi K and others, ‘A Clonogenic Common Myeloid Progenitor That Gives Rise to All Myeloid Lineages’, Nature, 404.6774 (2000), 193–97.

      Strengths: 

      The authors present an interesting observation and offer an alternative explanation of the origins of aged-associated myeloid-biased hematopoiesis. Their data regarding the role of the microenvironment in the spleen and thymus appears to be convincing. 

      Weaknesses: 

      Comment #2-5: "Then, we found that the myeloid lineage proportions from young and aged LT-HSCs were nearly comparable during the observation period after transplantation (Figure 3, B and C)."<br /> Given the large standard deviation and low n-numbers, the power of the analysis to detect differences between experimental groups is very low. Experimental groups with too large standard deviations (as displayed here) are difficult to interpret and might be inconclusive. The absence of clearly detectable differences between young and aged transplanted HSCs could thus simply be a false-negative result. The shown experimental results hence do not provide strong evidence for the author's interpretation of the data. The authors should add additional transplants and include a detailed power analysis to be able to detect differences between experimental groups with reasonable sensitivity.

      Response #2-5: Thank you for providing these insights. Regarding the sample size, we have addressed this in Response #2-1.

      Comment #2-6: Line 293: "Based on these findings, we concluded that myeloid-biased hematopoiesis observed following transplantation of aged HSCs was caused by a relative decrease in ST-HSC in the bulk-HSC compartment in aged mice rather than the selective expansion of myeloid-biased HSC clones."<br /> Couldn't that also be explained by an increase in myeloid-biased HSCs, as repeatedly reported and seen in the expansion of CD150+ HSCs? It is not intuitively clear why a reduction of ST-HSCs clones would lead to a myeloid bias. The author should try to explain more clearly where they believe the increased number of myeloid cells comes from. What is the source of myeloid cells if the authors believe they are not derived from the expanded population of myeloid-biased HSCs?

      Response #2-6: Thank you for pointing this out. We apologize for the insufficient explanation. We will explain using Figure 8 from the paper.

      First, our data show that LT-HSCs maintain their differentiation capacity with age, while ST-HSCs lose their self-renewal capacity earlier, so that only long-lived memory lymphocytes remain in the peripheral blood after the loss of self-renewal capacity in ST-HSCs (Figure 8, upper panel). In mouse bone marrow, the proportion of LT-HSCs increases with age, while the proportion of STHSCs relatively decreases (Figure 8, lower panel and Figure S5). 

      Our data show that merely reproducing the ratio of LT-HSCs to ST-HSCs observed in aged mice using young LT-HSCs and ST-HSCs can replicate myeloid-biased hematopoiesis. This suggests that the increase in LT-HSC and the relative decrease in ST-HSC within the HSC compartment with aging are likely to contribute to myeloid-biased hematopoiesis.

      As mentioned earlier, since the differentiation capacity of LT-HSCs remain unchaged with age, it seems more accurate to describe that the relative decrease in the proportion of STHSCs, which retain long-lived memory lymphocytes in peripheral blood, leads to a relative increase in myeloid cells in peripheral blood and thus causes myeloid-biased hematopoiesis.

      However, focusing on the increase in the proportion of LT-HSCs, it is also possible to explain that “with aging, the proportion of LT-HSCs capable of long-term myeloid hematopoiesis increases. As a result, from 16 weeks after transplantation, the influence of LT-HSCs maintaining the long-term ability to produce myeloid cells becomes relatively more significant, leading to an increase in the ratio of myeloid cells in the peripheral blood and causing myeloid-biased hematopoiesis.”

      Reviewer #3:

      Summary:

      In this manuscript, Nishi et al. propose a new model to explain the previously reported myeloid-biased hematopoiesis associated with aging. Traditionally, this phenotype has been explained by the expansion of myeloid-biased hematopoietic stem cell (HSC) clones during aging. Here, the authors question this idea and show how their Hoxb5 reporter model can discriminate long-term (LT) and short-term (ST) HSC and characterized their lineage output after transplant. From these analyses, the authors conclude that changes during aging in the LT/ST HSC proportion explain the myeloid bias observed. 

      Although the topic is appropriate and the new model provides a new way to think about lineage-biased output observed in multiple hematopoietic contexts, some of the experimental design choices, as well as some of the conclusions drawn from the results could be substantially improved. Also, they do not propose any potential mechanism to explain this process, which reduces the potential impact and novelty of the study. Specific concerns are outlined below. 

      Major 

      Comment #3-1: As a general comment, there are experimental details that are either missing or not clear. The main one is related to transplantation assays. What is the irradiation dose? The Methods sections indicates "recipient mice were lethally irradiated with single doses of 8.7 or 9.1 Gy". The only experimental schematic indicating the irradiation dose is Figure 7A, which uses 8.7 Gy. Also, although there is not a "standard", 11 Gy split in two doses is typically considered lethal irradiation, while 9.5 Gy is considered sublethal.

      Response #3-1: We agree with reviewer’s assessment about whether 8.7 Gy is myeloablative. To confirm this, it would typically be necessary to irradiate mice with different dose and observe if they do not survive. However, such an experiment is not ethically permissible at our facility. Instead, in our previous report1, we demonstrated that none of the mice subjected to pretreatment with 8.7 Gy could survive when non-LKS cells were transplanted, suggesting that

      8.7 Gy is enough to be myeloablative with the radiation equipment at our facility.

      Reference

      (1) Nishi K, Sakamaki T, Sadaoka K, Fujii M, Takaori-Kondo A, Chen JY, et al. Identification of the minimum requirements for successful haematopoietic stem cell transplantation. Br J Haematol. 2022;196(3):711–23. 

      Comment #3-2:  Is there any reason for these lower doses? Same question for giving a single dose and for performing irradiation a day before transplant. 

      Response #3-2: We appreciate the reviewer for these important comments. Although the 8.7 Gy dose used at our facility is lower than in other reports, we selected this dose to maintain consistency with our previous experiments. For the same reason, we used a single irradiation, not split.  Regarding the timing of irradiation, the method section specifies that irradiation timing is 12-24 hours prior to transplantation. In most experiments, irradiation is performed at 12 hours. However, due to experimental progress, there were occasional instances where nearly 24 hours elapsed between irradiation and transplantation. We provide this information to ensure accuracy.

      Comment #3-3: The manuscript would benefit from the inclusion of references to recent studies discussing hematopoietic biases and differentiation dynamics at a single-cell level (e.g., Yamamoto et. al 2018; Rodriguez-Fraticelli et al., 2020). Also, when discussing the discrepancy between studies claiming different biases within the HSC pool, the authors mentioned that Montecino-Rodriguez et al. 2019 showed preserved lymphoid potential with age. It would be good to acknowledge that this study used busulfan as the conditioning method instead of irradiation.

      Response #3-3: We agree with this comment and have incorporated this suggestion into the manuscript

      [P19, L451] In contrast, our findings should be considered in light of some limitations. In this report, we primarily performed ten to twenty cell transplantation assays. Therefore, the current theory should be revalidated using single-cell technology with lineage tracing system1-2. This approach will investigate changes in the self-renewal capacity of individual HSCs and their subsequent differentiation into progenitor cells and peripheral blood cells. Additionally, in this report we purified LT-HSCs by Hoxb5 reporter system. In contrast, various LT-HSC markers have been previously reported2-3.  Therefore, it is ideal to validate our findings using other LT-HSC makers.

      [P16, L368] Other studies suggest that blockage of lymphoid hematopoiesis in aged mice results in myeloid-skewed hematopoiesis through alternative mechanisms. However, this result should be interpreted carefully, since Busulfan was used for myeloablative treatment in this study4.   

      References

      (1) Yamamoto R, Wilkinson AC, Ooehara J, Lan X, Lai CY, Nakauchi Y, et al. LargeScale Clonal Analysis Resolves Aging of the Mouse Hematopoietic Stem Cell Compartment. Cell Stem Cell [Internet]. 2018;22(4):600-607.e4. Available from: https://doi.org/10.1016/j.stem.2018.03.013

      (2) Rodriguez-Fraticelli AE, Weinreb C, Wang SW, Migueles RP, Jankovic M, Usart M, et al. Single-cell lineage tracing unveils a role for TCF15 in haematopoiesis. Nature [Internet]. 2020;583(7817):585–9. Available from: http://dx.doi.org/10.1038/s41586-020-2503-6

      (3) Sanjuan-Pla A, Macaulay IC, Jensen CT, Woll PS, Luis TC, Mead A, et al. Plateletbiased stem cells reside at the apex of the haematopoietic stem-cell hierarchy. Nature. 2013;502(7470):232–6. 

      (4) Montecino-Rodriguez E, Kong Y, Casero D, Rouault A, Dorshkind K, Pioli PD. Lymphoid-Biased Hematopoietic Stem Cells Are Maintained with Age and Efficiently Generate Lymphoid Progeny. Stem Cell Reports. 2019 Mar 5;12(3):584–96. 

      Comment #3-4: When representing the contribution to PB from transplanted cells, the authors show the % of each lineage within the donor-derived cells (Figures 3B-C, 5B, 6B-D, 7C-E, and S3 B-C). To have a better picture of total donor contribution, total PB and BM chimerism should be included for each transplantation assay. Also, for Figures 2C-D and Figures S2A-B, do the graphs represent 100% of the PB cells? Are there any radioresistant cells?

      Response #3-4: Thank you for highlighting this point. Indeed, donor contribution to total peripheral blood (PB) is important information. We have included the donor contribution data for each figure above mentioned.

      Author response image 4.

      In Figure 2C-D and Figure S2A-B, the percentage of donor chimerism in PB was defined as the percentage of CD45.1-CD45.2+ cells among total CD45.1-CD45.2+ and CD45.1+CD45.2+ cells as described in method section.

      Comment #3-5: For BM progenitor frequencies, the authors present the data as the frequency of cKit+ cells. This normalization might be misleading as changes in the proportion of cKit+ between the different experimental conditions could mask differences in these BM subpopulations. Representing this data as the frequency of BM single cells or as absolute numbers (e.g., per femur) would be valuable.

      Response #3-5: We appreciate the reviewer's comment on this point. 

      Firstly, as shown in Supplemental Figures S1B and S1C, we analyze the upstream (HSC, MPP, Flk2+) and downstream (CLP, MEP, CMP, GMP) fractions in different panels. Therefore, normalization is required to assess the differentiation of HSCs from upstream to downstream. Additionally, the reason for normalizing by c-Kit+ is that the bone marrow analysis was performed after enrichment using the Anti-c-Kit antibody for both upstream and downstream fractions. Based on this, we calculated the progenitor populations as a frequency within the c-Kit positive cells. Next, the results of normalizing the whole bone marrow cells (live cells) are shown in Author response image 2. 

      Similar to the results of normalizing c-Kit+ cells, myeloid progenitors remained unchanged, including a statistically significant decrease in CMP in aged mice. Additionally, there were no significant differences in CLP. In conclusion, similar results were obtained between the normalization with c-Kit and the normalization with whole bone marrow cells (live cells).

      However, as the reviewer pointed out, it is necessary to explain the reason for normalization with c-Kit. Therefore, we will add the following description.

      [P21, L502] For the combined analysis of the upstream (HSC, MPP, Flk2+) and downstream (CLP, MEP, CMP, GMP) fractions in Figures 1B and 7F, we normalized by c-Kit+ cells because we performed a c-Kit enrichment for the bone marrow analysis.

      Comment #3-6: Regarding Figure 1B, the authors argue that if myeloid-biased HSC clones increase with age, they should see increased frequency of all components of the myeloid differentiation pathway (CMP, GMP, MEP). This would imply that their results (no changes or reduction in these myeloid subpopulations) suggest the absence of myeloid-biased HSC clones expansion with age. This reviewer believes that differentiation dynamics within the hematopoietic hierarchy can be more complex than a cascade of sequential and compartmentalized events (e.g., accelerated differentiation at the CMP level could cause exhaustion of this compartment and explain its reduction with age and why GMP and MEP are unchanged) and these conclusions should be considered more carefully.

      Response #3-6: We wish to thank the reviewer for this comment. We agree with that the differentiation pathway may not be a cascade of sequential events but could be influenced by various factors such as extrinsic factors.

      In Figure 1B, we hypothesized that there may be other mechanisms causing myeloidbiased hematopoiesis besides the age-related increase in myeloid-biased HSCs, given that the percentage of myeloid progenitor cells in the bone marrow did not change with age. However, we do not discuss the presence or absence of myeloid-biased HSCs based on the data in Figure 1B. 

      Our newly proposed theories—that the differentiation capacity of LT-HSCs remains unchanged with age and that age-related myeloid-biased hematopoiesis is due to changes in the ratio of LT-HSCs to ST-HSCs—are based on functional experiment results. As the reviewer pointed out, to discuss the presence or absence of myeloid-biased HSCs based on the data in Figure 1B, it is necessary to apply a system that can track HSC differentiation at single-cell level. The technology would clarify changes in the self-renewal capacity of individual HSCs and their differentiation into progenitor cells and peripheral blood cells. The authors believe that those single-cell technologies will be beneficial in understanding the differentiation of HSCs. Based on the above, the following statement has been added to the text.

      [P19, L451] In contrast, our findings should be considered in light of some limitations. In this report, we primarily performed ten to twenty cell transplantation assays. Therefore, the current theory should be revalidated using single-cell technology with lineage tracing system1-2. This approach will investigate changes in the self-renewal capacity of individual HSCs and their subsequent differentiation into progenitor cells and peripheral blood cells. 

      References

      (1) Yamamoto R, Wilkinson AC, Ooehara J, Lan X, Lai CY, Nakauchi Y, et al. LargeScale Clonal Analysis Resolves Aging of the Mouse Hematopoietic Stem Cell Compartment. Cell Stem Cell [Internet]. 2018;22(4):600-607.e4. Available from: https://doi.org/10.1016/j.stem.2018.03.013

      (2) Rodriguez-Fraticelli AE, Weinreb C, Wang SW, Migueles RP, Jankovic M, Usart M, et al. Single-cell lineage tracing unveils a role for TCF15 in haematopoiesis. Nature [Internet]. 2020;583(7817):585–9. Available from: http://dx.doi.org/10.1038/s41586-020-2503-6

      Comment #3-7: Within the few recipients showing good donor engraftment in Figure 2C, there is a big proportion of T cells that are "amplified" upon secondary transplantation (Figure 2D). Is this expected?

      Response #3-7: We wish to express our deep appreciation to the reviewer for insightful comment on this point. As the reviewers pointed out, in Figure 2D, a few recipients show a very high percentage of T cells. The authors had the same question and considered this phenomenon as follows:

      (1) One reason for the very high percentage of T cells is that we used 1 x 107 whole bone marrow cells in the secondary transplantation. Consequently, the donor cells in the secondary transplantation contained more T-cell progenitor cells, leading to a greater increase in T cells compared to the primary transplantation.

      (2) We also consider that this phenomenon may be influenced by the reduced selfrenewal capacity of aged LT-HSCs, resulting in decreased sustained production of myeloid cells in the secondary recipient mice. As a result, long-lived memory-type lymphocytes may preferentially remain in the peripheral blood, increasing the percentage of T cells in the secondary recipient mice.

      We have discussed our hypothesis regarding this interesting phenomenon. To further clarify the characteristics of the increased T-cell count in the secondary recipient mice, we will analyze TCR clonality and diversity in the future.

      Comment #3-8: Do the authors have any explanation for the high level of variability within the recipients of Hoxb5+ cells in Figure 2C?

      Response #3-8: We appreciate the reviewer's comment on this point. As noted in our previous report, transplantation of a sufficient number of HSCs results in stable donor chimerism, whereas a small number of HSCs leads to increased variability in donor chimerism1. Additionally, other studies have observed high variability when fewer than 10 HSCs are transplanted2-3. Based on this evidence, we consider that the transplantation of a small number of cells (10 cells) is the primary cause of the high level of variability observed.

      References

      (1) Nishi K, Sakamaki T, Sadaoka K, Fujii M, Takaori-Kondo A, Chen JY, et al. Identification of the minimum requirements for successful haematopoietic stem cell transplantation. Br J Haematol. 2022;196(3):711–23. 

      (2) Dykstra B, Olthof S, Schreuder J, Ritsema M, Haan G De. Clonal analysis reveals multiple functional defects of aged murine hematopoietic stem cells. J Exp Med. 2011 Dec 19;208(13):2691–703. 

      (3) Yamamoto R, Wilkinson AC, Ooehara J, Lan X, Lai CY, Nakauchi Y, et al. LargeScale Clonal Analysis Resolves Aging of the Mouse Hematopoietic Stem Cell Compartment. Cell Stem Cell [Internet]. 2018;22(4):600-607.e4. Available from: https://doi.org/10.1016/j.stem.2018.03.013

      Comment #3-9: Can the results from Figure 2E be interpreted as Hoxb5+ cells having a myeloid bias? (differences are more obvious/significant in neutrophils and monocytes).

      Response #3-9: Thank you for your insightful comments. Firstly, we have not obtained any data indicating that young LT-HSCs are myeloid biased HSCs so far. Therefore, we classify young LT-HSCs as balanced HSCs1. Secondly, our current data demonstrate no significant difference in differentiation capacity between young and aged LT-HSCs (see Figure 3 in this paper). Based on these findings, we interpret that aged LT-HSCs are balanced HSCs, similar to young LT-HSCs.

      Reference

      (1)  Chen JY, Miyanishi M, Wang SK, Yamazaki S, Sinha R, Kao KS, et al. Hoxb5 marks long-term haematopoietic stem cells and reveals a homogenous perivascular niche. Nature. 2016 Feb 10;530(7589):223–7. 

      Comment #3-10: Is Figure 2G considering all primary recipients or only the ones that were used for secondary transplants? The second option would be a fairer comparison.

      Response #3-10: We appreciate the reviewer's comment on this point. We considered all primary recipients in Figure 2G to ensure a fair comparison, given the influence of various factors such as the radiosensitivity of individual recipient mice1. Comparing only the primary recipients used in the secondary transplantation would result in n = 3 (primary recipient) vs. n = 12 (secondary recipient). Including all primary recipients yields n = 11 vs. n = 12, providing a more balanced comparison. Therefore, we analyzed all primary recipient mice to ensure the reliability of our results.

      Reference

      (1) Duran-Struuck R, Dysko RC. Principles of bone marrow transplantation (BMT): providing optimal veterinary and husbandry care to irradiated mice in BMT studies. J Am Assoc Lab Anim Sci. 2009; 48:11–22

      Comment #3-11: When discussing the transcriptional profile of young and aged HSCs, the authors claim that genes linked to myeloid differentiation remain unchanged in the LT-HSC fraction while there are significant changes in the ST-HSCs. However, 2 out of the 4 genes shown in Figure S4B show ratios higher than 1 in LT-HSCs.

      Response #3-11: Thank you for highlighting this important point. As the reviewer pointed out, when we analyze the expression of myeloid-related genes, some genes are elevated in aged LT-HSCs compared to young LT-HSCs. However, the GSEA analysis using myeloid-related gene sets, which include several hundred genes, shows no significant difference between young and aged LT-HSCs (see Figure S4C in this paper). Furthermore, functional experiments using the co-transplantation system show no difference in differentiation capacity between young and aged LT-HSCs (see Figure 3 in this paper). Based on these results, we conclude that LT-HSCs do not exhibit any change in differentiation capacity with aging.

      Comment #3-12: When determining the lymphoid bias in ST-HSCs, the authors focus on the T-cell subtype, not considering any other any other lymphoid population. Could the authors explain this?

      Response #3-12: We thank the reviewer for this comment. We conducted the experiments in Figure 5 to demonstrate that the hematopoiesis observed 16 weeks post-transplantation—when STHSCs are believed to lose their self-renewal capacity—is not due to de novo production of T cells from ST-HSCs. Instead, it is attributed to long-lived memory cells which can persistently remain in the peripheral blood.

      As noted by the reviewer, various memory cell types are present in peripheral blood. Our analysis focused on memory T cells due to the broad consensus on memory T cell markers1. 

      Our findings show that transplanted Hoxb5- HSCs do not continuously produce lymphoid cells, unlike lymphoid-biased HSCs. Rather, the loss of self-renewal capacity in Hoxb5- HSCs makes the presence of long-lived memory cells in the peripheral blood more apparent.

      Reference

      (1)  Yenyuwadee S, Sanchez-Trincado Lopez JL, Shah R, Rosato PC, Boussiotis VA. The evolving role of tissue-resident memory T cells in infections and cancer. Sci Adv. 2022;8(33). 

      Comment #3-13: Based on the reduced frequency of donor cells in the spleen and thymus, the authors conclude "the process of lymphoid lineage differentiation was impaired in the spleens and thymi of aged mice compared to young mice". An alternative explanation could be that differentiated cells do not successfully migrate from the bone marrow to these secondary lymphoid organs. Please consider this possibility when discussing the data.

      Response #3-13: We strongly appreciate the reviewer's comment on this point. In accordance with the reviewer's comment, we have incorporated this suggestion into our manuscript.

      [P15, L343] These results indicate that the process of lymphoid lineage differentiation is impaired in the spleens and thymi of aged mice compared to young mice, or that differentiating cells in the bone marrow do not successfully migrate into these secondary lymphoid organs. These factors contribute to the enhanced myeloid-biased hematopoiesis in peripheral blood due to a decrease in de novo lymphocyte production.

      Recommendations for the authors:

      Reviewer #2 (Recommendations For The Authors):

      Recommendation #2-1: To support their conclusions the authors need to provide higher n-numbers and provide a detailed power analysis of the transplants in the methods section.

      Response to Recommendation #2-1: Thank you for your important remarks. The power analysis for this experiment shows that power = 0.319, suggesting that more number may be needed. On the other hand, our method for determining the sample size in Figure 3 is as follows:

      (1) First, we checked whether myeloid biased change is detected in the bulk-HSC fraction (Figure S3). The results showed that the difference in myeloid output at 16 weeks after transplantation was statistically significant (young vs. aged = 7.2 ± 8.9 vs. 42.1 ± 35.5%, p = 0.01), even though n = 10.

      (2) Next, myeloid biased HSCs have been reported to be a fraction with high self-renewal ability (2004, Blood). If myeloid biased HSCs increase with aging, the increase in myeloid biased HSCs in LT-HSC fraction would be detected with higher sensitivity than in the bulk-HSC fraction used in Figure S3.

      (3) However, there was no difference not only in p-values but also in the mean itself, young vs aged = 51.4±31.5% vs 47.4±39.0%, p = 0.82, even though n = 8 in Figure 3. Since there was no difference in the mean itself, it is highly likely that no difference will be detected even if n is further increased.

      Regarding Figure S3, 5, 6, S6 and 7, we obtained a statistically significant difference and consider the sample size to be sufficient. 

      Recommendation #2-2: As the authors attempt to challenge the current model of the age-associated expansion of myeloid-biased HSCs (which has been observed and reproduced by many different groups), ideally additional strong evidence in the form of single-cell transplants is provided.

      Response to Recommendation #2-2: Thank you for the comments. As the reviewer pointed out, we hope we could reconfirm our results using single-cell level technology in the future.

      On the other hand, we have reported that the ratio of myeloid to lymphoid cells in the peripheral blood changes when the number of HSCs transplanted, or the number of supporting cells transplanted with HSCs, is varied1-2. Therefore, single-cell transplant data need to be interpreted very carefully to determine differentiation potential.

      From this viewpoint, future experiments will combine the Hoxb5 reporter system with a lineage tracing system that can track HSCs at the single-cell level over time. This approach will investigate changes in the self-renewal capacity of individual HSCs and their subsequent differentiation into progenitor cells and peripheral blood cells. We have reflected this comment by adding the following sentences in the manuscript.

      [P19, L451] In contrast, our findings should be considered in light of some limitations. In this report, we primarily performed ten to twenty transplantation assays. Therefore, the current theory should be revalidated using single-cell technology. This approach will investigate changes in the self-renewal capacity of individual HSCs and their subsequent differentiation into progenitor cells and peripheral blood cells.

      References

      (1) Nishi K, Sakamaki T, Sadaoka K, Fujii M, Takaori-Kondo A, Chen JY, et al. Identification of the minimum requirements for successful haematopoietic stem cell transplantation. Br J Haematol. 2022;196(3):711–23. 

      (2) Sakamaki T, Kao KS, Nishi K, Chen JY, Sadaoka K, Fujii M, et al. Hoxb5 defines the heterogeneity of self-renewal capacity in the hematopoietic stem cell compartment. Biochem Biophys Res Commun [Internet]. 2021;539:34–41. Available from: https://doi.org/10.1016/j.bbrc.2020.12.077

      Minor points:

      Recommendation #2-3: Figure 1: "Comprehensive analysis of hematopoietic alternations with age shows a discrepancy of age-associated changes between peripheral blood and bone marrow"

      [Comment to the authors]: For clarity, the nature of the discrepancy should be stated clearly.

      Response to Recommendation #2-3: Thank you for this important comment. Following the reviewer’s recommendation, we have revised the manuscript as follows

      [P7, L139] Our analysis of hematopoietic alternations with age revealed that age-associated transition patterns of immunophenotypically defined HSC and CMP in BM were not paralleled with myeloid cell in PB (Fig. 1 C).

      Recommendation #2-4: Figure 1B "(B) Average frequency of immunophenotypically defined HSC and progenitor cells in BM of 2-3-month mice (n = 6), 6-month mice (n = 6), 12-13-month mice (n = 6), {greater than or equal to} 23-month mice (n = 7).

      [Comment to the authors]: It should be stated in the figure and legend that the values are normalized to the 2-3-month-old mice.

      Response to Recommendation #2-4: Thank you for this comment. Figure 1B presents the actual measured values of each fraction in c-Kit positive cells in the bone marrow, without any normalization.

      Recommendation #2-5: "We 127 found that the frequency of immunophenotypically defined HSC in BM rapidly increased 128 up to the age of 12 months. After the age, they remained plateaued throughout the 129 observation period (Fig. 1 B)."

      [Comment to the authors]: The evidence for a 'plateau', where HSC numbers don't change after 12 months is weak. It appears that the numbers increase continuously (although less steep) after 12 months. I thus recommend adjusting the wording to better reflect the data.

      Response to Recommendation #2-5: We thank the reviewer for the comments above and have incorporated these suggestions in our revision as follows. 

      [P6, L126] We found that the frequency of immunophenotypically defined HSC in BM rapidly increased up to the age of 12 months. After the age, the rate of increase in their frequency appeared to slow down.

      Recommendation #2-6: Figure 2G: [Comment to the authors]: Please add the required statistics, please check carefully all figures for missing statistical tests.

      Response to Recommendation #2-6: Thank you for these important comments. In response, we have added the results of the significance tests for Figures 1A, 1C, 4C, and S5.

      Recommendation #2-7: "If bulk-HSCs isolated from aged mice are already enriched by myeloid-biased HSC clones, we should see more myeloid-biased phenotypes 16 weeks after primary and the secondary transplantation. However, we found that kinetics of the proportion of myeloid cells in PB were similar across primary and the secondary transplantation and that the proportion of myeloid cells gradually decreased over time (Fig. 2 G). These results suggest the following two possibilities: either myeloid-biased HSCs do not expand in the LT-HSC fraction, or the expansion of myeloid-biased clones in 2-year-old mice has already peaked."

      [Comment to the authors]: Other possible explanations include that the observed reduction in myeloid reconstitution over 16 weeks reflects the time required to return to homeostasis. In other words, it takes time until the blood system approaches a balanced output.

      Response to Recommendation #2-7: We agree with the reviewer's comment. As the reviewer pointed out, the gradual decrease in the proportion of myeloid cells over time is not related to our two hypotheses in this part of the manuscript but rather to the hematopoietic system's process of returning to a homeostatic state after transplantation. Therefore, the original sentence could be misleading, as it is part of the section discussing whether age-associated expansion of myeloid-biased HSCs is observed. Based on the above, we have revised the sentence as follows.

      [P8, L179] However, we found that kinetics of the proportion of myeloid cells in PB were similar across the primary and the secondary transplantation (Fig. 2 G). These results suggest the following two possibilities: either myeloid-biased HSCs do not expand in the LTHSC fraction, or the expansion of myeloid-biased clones in 2-year-old mice has already peaked.

      Recommendation #2-8: It is also important to consider that the transplant results are highly variable (see large standard deviation), therefore the sensitivity to detect smaller but relevant changes is low in the shown experiments. As the statistical analysis of these experiments is missing and the power seems low these results should be interpreted with caution. For instance, it appears that the secondary transplants on average produce more myeloid cells as expected and predicted by the classical clonal expansion model.

      Regarding "expansion of myeloid-biased clones in 2-year-old mice has already peaked". This is what the author suggested above. It might thus not be surprising that HSCs from 2-year-old mice show little to no increased myeloid expansion.

      Response to Recommendation #2-8: Thank you for providing these insights. The primary findings of our study are based on functional experiments presented in Figures 2, 3, 5, 6, and 7. In Figure 3, there was no significant difference between young and aged LT-HSCs, with mean values of 51.4±31.5% and 47.4±39.0%, respectively (p = 0.82). Given the lack of difference in the mean values, it is unlikely that increasing the sample size would reveal a significant change. For ethical reasons, to minimize the use of additional animals, we conclude that LT-HSCs exhibit no change in lineage output throughout life based on the data in Figure 3. Statistically significant differences observed in Figures 2, 5, 6, and 7 further support our conclusions.

      Additionally, because whole bone marrow cells were transplanted in the secondary transplantation, there may be various confounding factors beyond the differentiation potential of HSCs. Therefore, we consider that caution is necessary when evaluating the differentiation capacity of HSCs in the context of the second transplantation.

      Recommendation #2-9: Figure 7C: [Comment to the authors]: The star * indicates with analyzed BM. As stars are typically used as indicators of significance, this can be confusing for the reader. I thus suggest using another symbol.

      Response to Recommendation #2-9: We appreciate the reviewer for this comment and have incorporated the suggestion in the revised manuscript. We have decided to use † instead of the star*.

      Reviewer #3 (Recommendations For The Authors):

      Recommendation #3.1: In Figure 1A, the authors show the frequency of PB lineages (lymphoid vs myeloid) in mice of different ages. It would be great if they could show the same data for each subpopulation including these two main categories individually (granulocytes, monocytes, B cells, T cells...).

      Response to Recommendation #3-1: We thank for this suggestion. We provide the frequency of PB lineages (granulocytes, monocytes, B cells, T cells, and NK cells) in mice of different ages.

      Author response image 5.

      Average frequency of neutrophils, monocytes, B cells, T cells, and NK cells in PB analyzed in Figure 1A. Dots show all individual mice. *P < 0.05. **P < 0.01. Data and error bars represent means ± standard deviation. 

      Recommendation #3.2: It would be great if data from young mice could be shown in parallel to the graphs in Figure 2A.

      Response to Recommendation #3-2: We thank the reviewer for the comments above and have incorporated these suggestions in Figure 2A. 

      [P34, L916] (A) Hoxb5 reporter expression in bulk-HSC, MPP, Flk2+, and Lin-Sca1-c-Kit+ populations in the 2-year-old Hoxb5-tri-mCherry mice (Upper panel) and 3-month-old Hoxb5_tri-mCherry mice (Lower panel). Values indicate the percentage of mCherry+ cells ± standard deviation in each fraction (_n = 3). 

      Recommendation #3.3: Do the authors have any explanation for the high level of variability within the recipients of Hoxb5+ cells in Figure 2C?

      Response to Recommendation #3-3: Thank you for providing these insights. As noted in our previous report, transplantation of a sufficient number of HSCs results in stable donor chimerism, whereas a small number of HSCs leads to increased variability in donor chimerism1. Additionally, other studies have observed high variability when fewer than 10 HSCs are transplanted2-3. Based on this evidence, we consider that the transplantation of a small number of cells (10 cells) is the primary cause of the high level of variability observed.

      References

      (1) Nishi K, Sakamaki T, Sadaoka K, Fujii M, Takaori-Kondo A, Chen JY, et al. Identification of the minimum requirements for successful haematopoietic stem cell transplantation. Br J Haematol. 2022;196(3):711–23. 

      (2) Dykstra B, Olthof S, Schreuder J, Ritsema M, Haan G De. Clonal analysis reveals multiple functional defects of aged murine hematopoietic stem cells. J Exp Med. 2011 Dec 19;208(13):2691–703. 

      (3) Yamamoto R, Wilkinson AC, Ooehara J, Lan X, Lai CY, Nakauchi Y, et al. LargeScale Clonal Analysis Resolves Aging of the Mouse Hematopoietic Stem Cell Compartment. Cell Stem Cell [Internet]. 2018;22(4):600-607.e4. Available from: https://doi.org/10.1016/j.stem.2018.03.013

      Recommendation #3.4: Are the differences in Figure 3D statistically significant? If yes, please add statistics. Same for Figure 4C.

      Response to Recommendation #3-4: Thank you for providing these insights. For Figure 3D, we performed an ANOVA analysis for each fraction; however, the results were not statistically significant. In contrast, for Figure 4C, we have added the results of significance tests for comparisons between Young LT-HSC vs. Young Bulk-HSC.

      Recommendation #3.5: As a general comment, although the results in this study are interesting, the use of a Hoxb5 lineage tracing mouse model would be more valuable for this purpose than the Hoxb5 reporter used here. The lineage tracing model would allow for the assessment of lineage bias without the caveats introduced by the transplantation assays.

      Response to Recommendation #3-5: We appreciate the reviewer for the important comments. Following the reviewer’s recommendation, we have revised the manuscript as follows

      [P19, L451] In contrast, our findings should be considered in light of some limitations. In this report, we primarily performed ten to twenty transplantation assays. Therefore, the current theory should be revalidated using single-cell technology with lineage tracing system1-2. This approach will investigate changes in the self-renewal capacity of individual HSCs and their subsequent differentiation into progenitor cells and peripheral blood cells. 

      References

      (1) Yamamoto R, Wilkinson AC, Ooehara J, Lan X, Lai CY, Nakauchi Y, et al. LargeScale Clonal Analysis Resolves Aging of the Mouse Hematopoietic Stem Cell Compartment. Cell Stem Cell [Internet]. 2018;22(4):600-607.e4. Available from: https://doi.org/10.1016/j.stem.2018.03.013

      (2) Rodriguez-Fraticelli AE, Weinreb C, Wang SW, Migueles RP, Jankovic M, Usart M, et al. Single-cell lineage tracing unveils a role for TCF15 in haematopoiesis. Nature [Internet]. 2020;583(7817):585–9. Available from: http://dx.doi.org/10.1038/s41586-020-2503-6

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer #1

      (1) In the "Introduction" section, an important aspect that requires attention pertains to the discussion surrounding the heterodimerization of CXCR4 and CCR5. Notably, the manuscript overlooks a recent study (https://doi.org/10.1038/s41467-023-42082-z) elucidating the mechanism underlying the formation of functional dimers within these G protein-coupled receptors (GPCRs)…The inclusion of this study within the manuscript would significantly enrich the contextual framework of the work, offering readers a comprehensive understanding of the current knowledge surrounding the structural dynamics and functional implications of CXCR4 and CCR5 heterodimerization.

      We thank the reviewer for his/her recommendation to enrich the contextual framework of our study. The Nature Communications paper by Di Marino et al. was published after we sent the first version of our manuscript to eLife, and therefore was not included in the discussion. As the reviewer rightly indicates, this paper elucidates the mechanism underlying the formation of functional dimers within CCR5 and CXCR4. Using metadynamics approaches, the authors emphasize the importance of distinct transmembrane regions for dimerization of the two receptors. In particular, CXCR4 shows two low energy dimer structures and the TMVI-TMVII helices are the preferred interfaces involved in the protomer interactions in both cases. Although the study uses in silico techniques, it also includes the molecular binding mechanism of CCR5 and CXCR4 in the membrane environment, as the authors generate a model in which the receptors are immersed in a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) phospholipid bilayer with 10% cholesterol. This is an important point in this study, as membrane lipids also interact with membrane proteins, and the lipid composition affects CXCR4 oligomerization (Gardeta S.R. et al. Front. Immunol. 2023). In particular, Di Marino et al. find a cholesterol molecule placed in-between the two CXCR4 protomers where it engages a series of hydrophobic interactions with residues including Leu132, Val214, Leu216 and Phe249. Then, the polar head of cholesterol forms an H-bond with Tyr135 that further stabilizes protomer binding. In our hands, the F249L mutation in CXCR4 reverted the antagonism of AGR1.137, suggesting that the compound binds, among others, this residue. We should, nonetheless, indicate that we analyzed receptor oligomerization and not CXCR4 dimerization, which was the main object of the Di Marino et al. study. It is therefore also plausible that other residues than those described as essential for CXCR4 dimerization might participate in receptor oligomerization. We can speculate that AGR1.137 might affect cholesterol binding to CXCR4 and, therefore, alter dimerization/oligomerization. Additionally, the CXCR4 x-ray structure with PDB code 3ODU (Wu B. et al. Science, 2010) experimentally shows the presence of two fatty acid molecules in contact with both TMV and TMVI. These molecules closely interact with hydrophobic residues in the protein, thereby stabilizing it in a hydrophobic environment. Although more experiments will be needed to clarify the mechanism involved, our results suggest that cholesterol and/or other lipids also play an important role in CXCR4 oligomerization and function, as seen for other GPCRs (Jakubik J. & ElFakahani E.E. Int J Mol Sci. 2021). However, we should also consider that other factors not included in the analysis by Di Marino et al. can also affect CXCR4 oligomerization; for instance, the co-expression of other chemokine receptors and/or other GPCRs that heterodimerize with CXCR4 might affect CXCR4 dynamics at the cell membrane, similar to other membrane proteins such as CD4, which also forms complexes with CXCR4 (Martinez-Muñoz L. et al. Mol. Cell 2018).

      The revised discussion contains references to the study by Di Marino et al. to enrich the contextual framework of our data.

      (2) In "various sections" of the manuscript, there appears to be confusion surrounding the terminology used to refer to antagonists. It is recommended to provide a clearer distinction between allosteric and orthosteric antagonists to enhance reader comprehension. An orthosteric antagonist typically binds to the same site as the endogenous ligand, directly blocking its interaction with the receptor. On the other hand, an allosteric antagonist binds to a site distinct from the orthosteric site, inducing a conformational change in the receptor that inhibits the binding of the endogenous ligand. By explicitly defining the terms "allosteric antagonist" and "orthosteric antagonist" within the manuscript, readers will be better equipped to discern the specific mechanisms discussed in the context of the study.

      The behavior of the compounds described in our manuscript (AGR1.35 and AGR1.137) fits with the definition of allosteric antagonists, as they bind on a site distinct from the orthosteric site, although they only block some ligand-mediated functions and not others. This would mean that they are not formally antagonists and should be not considered as allosteric compounds, as their binding on CXCR4 does not alter CXCL12 binding, although they might affect its affinity. In this sense, our compounds respond much better to the concept of negative allosteric modulators (Gao Z.-G. & Jacobson K.A. Drug Discov. Today Technol. 2013). They act by binding on a site distinct from the orthosteric site and selectively block some downstream signaling pathways but not others induced by the same endogenous agonist.

      To avoid confusion and to clarify the role of the compounds described in this study, we now refer to them as negative allosteric modulators along the manuscript.

      (3) In the Results section, the computational approach employed for "screening small compounds targeting CXCR4, particularly focusing on the inhibition of CXCL12-induced CXCR4 nanoclustering", requires clarification due to several points of incomprehension. The following recommendations aim to address these concerns and enhance the overall clarity of the section:

      (1) Computational Approach and Binding Mode Description: 

      -Explicitly describe the methodology for identifying the pocket/clef area in angstroms (Å) on the CXCR4 protein structure. Include details on how the volume of the cleft enclosed by TMV and TMVI was determined, as this information is not readily apparent in the provided reference (https://doi.org/10.1073/pnas.1601278113).

      The identification of the cleft was based on the observations by Wu et al. (Wu B. et al. Science 2010) who described the presence of bound lipids in the area formed by TMV and VI, and those of Wescott et al. (Wescott M.P. et al. Proc. Natl. Acad. Sci. 2016) on the importance of TMVI in the transmission of conformational changes promoted by CXCL12 on CXCR4 towards the cytoplasmic surface of the receptor to link the binding site with signaling activation. Collectively, these results, and our previous data on the critical role of the N-terminus region of TMVI for CXCR4 oligomerization (Martinez-Muñoz L. et al. Mol. Cell 2018), focused our in silico screening to this region. Once we detected that several compounds bound CXCR4 in this region, the cleavage properties were calculated by subtracting the compound structure. The resulting PDB was analyzed using the PDBsum server (Laskowski R.A. et. al. Protein Sci. 2018). Volume calculations were obtained using the server analyzing surface clefts by SURFNET (Laskowski R. A. J. Mol. Graph. 1995). The theoretical interaction surface between the selected compounds and CXCR4 and the atomic distances between the protein residues and the compounds was calculated using the PISA server (Krissinel E. & Henrick K. J. Mol. Biol. 2007) (Fig. I, only for review purposes). The analysis of the cleft occupied by AGR1.135 showed two independent cavities of 434 Å3 and 1,381 Å3 that were not connected to the orthosteric site. In the case of AGR1.137, the data revealed two distinct clefts of 790 Å3 and 580 Å3 (Fig. I, only for review purposes). These details have been included in the revised manuscript (New Fig. 1A, Supplementary Fig 8A, B).

      (4) Clarify the statement regarding the cleft being "surface exposed for interactions with the plasma membrane," particularly in the context of its embedding within the membrane.

      For GPCRs, transmembrane domains represent binding sites for bioactive lipids that play important functional and physiological roles (Huwiler A. & Zangemeister-Wittke U. Pharmacol. Ther. 2018). The channel between TMV and TMVI connects the orthosteric chemokine binding pocket to the lipid bilayer and is occupied by an oleic acid molecule, according to the CXCR4 structure published in 2010 (Wu B. et al. Science 2010). In addition, the target region contains residues involved in cholesterol (and perhaps other lipids) engagement (Di Marino et al. Nat. Commun. 2023). Taken together, these data support our statement that the cleft supports interactions between CXCR4 molecules and the plasma membrane. 

      Moreover, the data of Di Marino et al. also support that CCR5 and CXCR4 have a symmetric and an asymmetric binding mode. Therefore, either dimeric structure has the possibility to form trimers, tetramers, and even oligomers by using the free binding interface to complex with another protomer. This hypothesis suggests that the interaction of dimers to form oligomers should involve residues distinct from those included in the dimeric conformation.

      The sentence has been modified in the revised manuscript to clarify comprehension.

      (5) Discuss the rationale behind targeting the allosteric binding pocket instead of the orthosteric pocket, outlining potential advantages and disadvantages.

      The advantages and disadvantages of using negative allosteric modulators vs orthosteric antagonists have been now included in the revised discussion. 

      The majority of GPCR-targeted drugs function by binding to the orthosteric site of the receptor, and are agonists, partial agonists, antagonists or inverse agonists. These orthosteric compounds can have off-target effects and poor selectivity due to highly homologous receptor orthosteric sites and to abrogation of spatial and/or temporal endogenous signaling patterns. 

      The alternative is to use allosteric modulators, which can tune the functions associated with the receptors without affecting the orthosteric site. They can be positive, negative or neutral modulators, depending on their effect on the functionality of the receptor (Foster D.J. & Conn P.J. Neuron 2017). For example, the use of a negative allosteric modulator of a chemokine receptor to dampen pathological signaling events, while retaining full signaling for non-pathological activities might limit adverse effects (Kohout T.A.et al. J. Biol. Chem. 2004). In this case, the negative allosteric modulator 873140 blocks CCL3 binding on CCR5 but does not alter CCL5 binding (Watson C. et al. Mol. Pharmacol. 2005). In other cases, allosteric modulators can stabilize a particular receptor conformation and block others. The mechanism of action of the anti-HIV-1, FDAapproved, CCR5 allosteric modulator, maraviroc (Jin J. et al. Sci. Signal. 2018) is attributed to its ability to modulate CCR5 dimer populations and their subsequent subcellular trafficking and localization to the cell membrane (Jin J .et al. Sci. Signal. 2018). Two CCR5 dimeric conformations that are imperative for membrane localization were present in the absence of maraviroc; however, an additional CCR5 dimer conformation was discovered after the addition of maraviroc, and all homodimeric conformations were further stabilized. This finding is consistent with the observation that CCR5 dimers and oligomers inhibit HIV host-cell entry, likely by preventing the HIV-1 co-receptor formation.

      It is well known that GPCRs activate G proteins, but they also recruit additional proteins (e.g., β-arrestins) that induce signaling cascades which, in turn, can direct specific subsets of cellular responses independent of G protein activation (Eichel K. et al. Nature 2018) and are responsible for either therapeutic or adverse effects. Allosteric modulators can thus be used to block these adverse effects without influencing the therapeutic benefits. This was the case in the design of G protein-biased agonists for the kappa opioid receptor, which maintain the desirable antinociceptive and antipruritic effects and eliminate the sedative and dissociative effects in rodent models (Brust T.F. et al. Sci. Signal 2016).

      (6) Provide the PDB ID of the CXCR4 structure used as a template for modeling with SwissModel. Explain the decision to model the structure from the amino acid sequence and suggest an alternative approach, such as utilizing AlphaFold structures and performing classical molecular dynamics with subsequent clustering for the best representative structure.

      The PDB used as a template for modeling CXCR4 was 3ODU. This information was already included in the material and methods section. At the time we performed these analyses, there were several crystallographic structures of CXCR4 in complex with different molecules and peptides deposited at the PDB. None of them included a full construct containing the complete receptor sequence to provide a suitable sample for Xray structure resolution, as the N- and C-terminal ends of CXCR4 are very flexible loops. In addition, the CXCR4 constructs contained T4 lysozyme inserted between helices TMV and TMVI to increase the stability of the protein––a common strategy used to facilitate crystallogenesis of GPCRs (Zou Y. et al. PLoS One 2012). Therefore, we generated a CXCR4 homology model using the SWISS-MODEL server (Waterhouse A. et al. Nucleic Acids Res. 2018). This program reconstructed the loop between TMV and TMVI, a domain particularly important in this study that was not present in any of the crystal structure available in PDB. The model structure was, nonetheless, still incomplete, as it began at P27 and ended at S319 because the terminal ends were not resolved in the crystal structure used as a template. Nevertheless, we considered that these terminal ends were not involved in CXCR4 oligomerization. 

      As Alphafold was not available at the time we initiated this project, we didn’t use it. However, we have now updated our workflow to current methods and predicted the structure of the target using AlphaFold (Jumper J. et al. Nature 2021) and the sequence available under UniProt entry P61073. We prepared the ligands using OpenBabel (O’Boyle N.M. et al., J. Cheminformatics 2011), with a gasteiger charge assignment, and generated 10 conformers for each input ligand using the OpenBabel genetic algorithm. We then prepared the target structure with Openmm, removing all waters and possible heteroatoms, and adding all missing atoms. We next predicted the target binding pockets with fPocket (Le Guilloux V. et al. BMC Bioinformatics 2009), p2rank (Krivak R. & Hoksza, J. Cheminformatics 2018), and AutoDock autosite (Ravindranath P.A. & Sanner M.F. Bioinformatics 2016). We chose only those pockets between TMV and TMVI (see answer to point 3). We merged the results of the three programs into so-called consensus pockets, as two pockets are said to be sufficiently similar if at least 75% of their surfaces are shared (del Hoyo D. et al. J. Chem. Inform. Model. 2023). From the consensus pockets, there was one pocket that was significantly larger than the others and was therefore selected. We then docked the ligand conformers in this pocket using AutoDock GPU (Santos-Martins D. et al. J. Chem. Theory Comput. 2021), LeDock (Liu N & Xu Z., IOP Conf. Ser. Earth Environ. Sci. 2019), and Vina (Eberhardt J. et al. J. Chem. Inf. Model. 2021). The number of dockings varied from 210 to 287 poses. We scored each pose with the Vina score using ODDT (Wójcikowski M. et al. J. Cheminform. 2015). Then, we clustered the different solutions into groups whose maximum RMSD was 1Å. This resulted in 40 clusters, the representative of each cluster was the one with maximum Vina score and confirmed that the selected compounds bound this pocket (Author response image 1). When required, we calculated the binding affinity using Schrodinger’s MM-GBSA procedure (Greenidge P.A. et al. J. Chem. Inf. Model. 2013), in two ways: first, assuming that the ligand and target are fixed; second, with an energy minimization of all the atoms within a distance of 3Å from the ligand. This information has now been included in the revised version of the manuscript.

      Author response image 1.

      AGR1.135 docking in CXCR4 using the updated protocol for ligand docking. Cartoon representation colored in gray with TMV and TMVI shown in blue and pink, respectively. AGR1.135 is shown in stick representation with carbons in yellow, oxygens in red and nitrogens in blue.

      (7) Specify the meaning of "minimal interaction energy" and where (if present) the interaction scores are reported in the text.

      We refer to minimal interaction energy, the best docking score, that is, the best score obtained in our docking studies. These data were not included in the previous manuscript due to space restrictions but are now included in the reviewed manuscript.

      (8) You performed docking studies using GLIDE to identify potential binding sites for the small compounds on the CXCR4 protein. The top-scoring binders were then subjected to further refinement using PELE simulations. However, I realize that a detailed description of the specific binding modes of these compounds was not provided in the text. Please make the description of binding poses more detailed

      Firstly, to assess the reliability of this method, a PELE study was carried out for the control molecule IT1t, which is a small drug-like isothiourea derivative that has been crystallized in complex with CXCR4 (PDB code: 3ODU). IT1t is a CXCR4 antagonist that binds to the CXCL12 binding cavity and inhibits HIV-1 infection (Das D. Antimicrob. Agents Chemother. 2015; Dekkers S. et al. J. Med. Chem. 2023). From the best five trajectories, two of them had clearly better binding energies, and corresponded to almost the same predicted pose of the molecule. Although the predicted binding mode was not exactly the same as the one in the crystal structure, the approximation was very good, giving validation to the approach. Although PELE is a suitable technique to find potential binding sites, the predicted poses must be subsequently refined using docking programs.

      Analyzing the best trajectories for the remaining ligands, at least one of the best-scored poses was always located at the orthosteric binding site of CXCR4. Even though these poses showed good binding energies, they were discarded as the in vitro biological experiments indicated that the compounds were unable to block CXCL12 binding or CXCL12-mediated inhibition of cAMP release or CXCR4 internalization. Collectively, these data indicated that the selected compounds did not behave as orthosteric inhibitors of CXCR4. The CXCL12 binding pocket is the biggest cavity in CXCR4, and so PELE may tend to place the molecules near it. However, all the compounds presented other feasible binding sites with a comparable binding energy.

      AGR1.135 and AGR1.137 showed interesting poses between TMV and TMVI with very good binding energy (-51.4 and -37.2 kcal/mol, respectively). This was precisely the region we had previously selected for the in silico screening, as previously described (see response to point 3).

      AGR1.131 showed two poses with low binding energy that were placed between helices TMI and TMVII (-43.6 kcal/mol) and between helices TMV and TMVI (-39.8 kcal/mol). This compound was unable to affect CXCL12-mediated chemotaxis and was therefore used as an internal negative control as it was selected in the in silico screening with the same criteria as the other compounds but failed to alter any CXCL12-mediated functions. PELE studies nonetheless provided different binding sites for each molecule, which had to be further studied using docking to obtain a more accurate binding mode. In agreement with the previous commentary, we repeated the analysis using AlphaFold and the rest of the procedure described (see our response to point 6) and calculated the binding energies for all the compounds using Schrodinger’s MM-GBSA procedure (Greenidge P.A. et al. J. Chem. Inf. Model. 2013). Calculations were performed in two ways: first, assuming that the ligand and target are fixed; second, with an energy minimization of all the atoms within a distance of 3Å from the ligand. The results using the first method indicated that AGR1.135 and AGR1.137 showed poses between TMV and TMVI with - 56.4 and -62.4 kcal/mol, respectively and AGR1.131 had a pose between TMI and TMVII with -61.6kcal/mol.  In the second method AGR1.135 and AGR1.137 showed poses between TMV and TMVI with -57.9, and -67.6 kcal/mol, respectively, and AGR1.131 of -62.2 kcal/mol between TMI and TMVII.

      This information is now included in the text.

      (9) (2) Experimental Design:-Justify the choice of treating Jurkat cells with a concentration of 50 μM of the selected compound. Consider exploring different concentrations and provide a rationale for the selected dosage. Additionally, clearly identify the type of small compound used in the initial experiment.

      The revised version contains a new panel in Fig. 1B to show a more detailed kinetic analysis with different concentrations (1-100 µM) of the compounds in the Jurkat migration experiments. In all cases, 100 µM nearly completely abrogated cell migration, but in order to reduce the amount of DMSO added to the cells we selected 50 µM for further experiments, as it was the concentration that inhibits 50-75% of ligand-induced cell migration. Regarding the type of small compounds used in the initial experiments, they were compounds included in the library described in reference #24 (Sebastian-Pérez V. et al Med. Biol. Chem. 2017), which contains heterocyclic compounds. We would note that we do not consider AGR1.137 a final compound. We think that there is scope to develop AGR1.137-based second-generation compounds with greater solubility in water, greater specificity or affinity for CXCR4, and to evaluate delivery methods to hopefully increase activity.  

      (10) Avoid reporting details in rounded parentheses within the text; consider relocating such information to the Materials and Methods section or figure captions for improved readability.

      Most of the rounded parentheses within the text have been eliminated in the revised version of the manuscript to improve readability.

      (11) Elaborate on the virtual screening approach using GLIDE software, specifying the targeted site and methodology employed.

      For the virtual screening, we used the Glide module (SP and XP function scoring) included in the Schrödinger software package, utilizing the corresponding 3D target structure and our MBC library (Sebastián-Pérez V et al. J. Chem. Inf. Model. 2017).  The center of the catalytic pocket was selected as the centroid of the grid. In the grid generation, a scaling factor of 1.0 in van der Waals radius scaling and a partial charge cutoff of 0.25 were used. A rescoring of the SP poses of each compound was then performed with the XP scoring function of the Glide. The XP mode in Glide was used in the virtual screening, the ligand sampling was flexible, epik state penalties were added and an energy window of 2.5 kcal/mol was used for ring sampling. In the energy minimization step, the distance-dependent dielectric constant was 4.0 with a maximum number of minimization steps of 100,000. In the clustering, poses were considered as duplicates and discarded if both RMS deviation is less than 0.5 Å and maximum atomic displacement is less than 1.3 Å.

      (12) Provide clarity on the statement that AGR1.131 "theoretically" binds the same motif, explaining the docking procedure used for this determination.

      In the in silico screening, AGR1.131 was one of the 40 selected compounds that showed, according to the PELE analysis (see answer to point 8), a pose with low binding energy (-39.8 kcal/mol) between TMV and TMVI helices, which is the selected area for the screening. It, nonetheless, also showed a best pose placed between helices TM1 and TM7 (-43.7 kcal/mol) using the initial workflow. In conclusion, although AGR1.131 also faced to the TMV-TMVI, the most favorable pose was in the area between TMI and TMVII. In addition, the compound was included in the biological screening, where it did not affect CXCL12-mediated chemotaxis. We thus decided to use it as an internal negative control, as it has a skeleton very similar to AGR1.135 and AGR1.137 and can interact with the TM domains of CXCR4 without promoting biological effects. This statement has been clarified in the revised text.

      (13) Toxicity Testing:

      -Enhance the explanation of the approach to testing the toxicity of the compound in Jurkat cells. Consider incorporating positive controls to strengthen the assessment and clarify the experimental design.

      All the selected compounds in the in silico screening were initially tested for propidium iodide incorporation in treated cells in a toxicity assay, and some of them were discarded for further experiments (e.g., AGR1.103 and VSP3.1).

      Further evaluation of Jurkat cell viability was determined by cell cycle analysis using propidium iodide.  Supplementary Fig. 1B included the percentage of each cell cycle phase, and data indicated no significant differences between the treatments tested. Nevertheless, at the suggestion of the reviewer, and to clarify this issue, positive controls inducing Jurkat cell death (staurosporine and hydrogen peroxide) have also been included in the new Supplementary Fig. 2. The new figure also includes a table showing the percentage of cells in each cell-cycle phase.  

      (14) In the Results section concerning "AGR1.135 and AGR1.137 blocking CXCL12-mediated CXCR4 nanoclustering and dynamics", several points can be improved to enhance clarity and coherence: 1. Specificity of Low Molecular Weight Compounds:  

      -Clearly articulate how AGR1.135 and AGR1.137 specifically target homodimeric CXCR4 and provide an explanation for their lack of impact on heterodimeric CXCR4-CCR5 in that region.

      First of all, we should clarify that when we talk about receptor nanoclustering, oligomers refer to complexes including 3 or more receptors and, therefore, the residues involved in these interactions can differ from those involved in receptor dimerization. Moreover, our FRET experiments did not indicate that the compounds alter receptor dimerization (see new Supplementary Fig. 7). Of note, mutant receptors unable to oligomerize can still form dimers (Martínez-Muñoz L. et al. Mol. Cell 2018; García-Cuesta E.M .et al. Proc. Natl. Acad. Sci. USA 2022). Additionally, we believe that these oligomers can also include other chemokine receptors/proteins expressed at the cell membrane, which we are currently studying using different models and techniques.

      We have results supporting the existence of CCR5/CXCR4 heterodimers (Martínez-Muñoz L et al. Proc. Natl. Acad. Sci. USA 2014), in line with the data published by Di Marino et al. However, in the current study we have not evaluated the impact of the selected compounds on other CXCR4 complexes distinct from CXCR4 oligomers. Our Jurkat cells do not express CCR5 and, therefore, we cannot discuss whether AGR1.137 affects CCR5/CXCR4 heterodimers. The chemokine field is very complex and most receptors can form dimers (homo- and heterodimers) as well as oligomers (Martinez-Muñoz L., et al Pharmacol & Therap. 2011) when co-expressed. To evaluate different receptor combinations in the same experiment is a complex task, as the number of potential combinations between distinct expressed receptors makes the analysis very difficult. We started with CXCR4 as a model, to continue later with other possible CXCR4 complexes. In addition, for the analysis of CCR5/CXCR4 dynamics, it is much better to use dual-TIRF techniques, which allow the simultaneous detection of two distinct molecules coupled to different fluorochromes.

      Regarding the data of Di Marino et al., it is possible that the compounds might also affect heterodimeric conformations of CXCR4. This aspect has also been broached in the revised discussion. We would again note that we evaluated CXCR4 oligomers and not monomers or dimers; this is especially relevant when we compare the residues involved in these processes as they might differ depending on the receptor conformation considered. This issue was also hypothesized by Di Marino et al. (see our response to point 4).

      (15) When referring to "unstimulated" cells, provide a more detailed explanation to elucidate the experimental conditions and cellular state under consideration.

      Unstimulated cells refer to the cells in basal conditions, that is, cells in the absence of CXCL12. For TIRF-M experiments, transiently-transfected Jurkat cells were plated on glass-bottomed microwell dishes coated with fibronectin; these are the unstimulated cells. To observe the effect of the ligand, dishes were coated as above plus CXCL12 (stimulated cells). We have clarified this point in the material and methods section of the revised version.

      (16) 2. Paragraph Organization

      -Reorganize the second paragraph to eliminate redundancy and improve overall flow. A more concise and fluid presentation will facilitate reader comprehension and engagement.

      The second paragraph has been reorganized to improve overall flow.

      (17) Ensure that each paragraph contributes distinct information, avoiding repetition and redundancy.

      We have carefully revised each paragraph of the manuscript to avoid redundancy.

      (18) 3. Claim of Allosteric Antagonism:

      -Exercise caution when asserting that "AGR1.135 and AGR1.137 behave as allosteric antagonists of CXCR4" based on the presented results. Consider rephrasing to reflect that the observed effects suggest the potential allosteric nature of these compounds, acknowledging the need for further investigations and evidence.

      To avoid misinterpretations on the effect of the compounds on CXCR4, as we have commented in our response to point 2, we have substituted the term allosteric inhibitors with negative allosteric modulators, which refer to molecules that act by binding a site distinct from the orthosteric site, and selectively block some downstream signaling pathways, whereas others induced by the same endogenous or orthosteric agonist are unaffected (Gao Z.-G. & Jacobson K.A. Drug Discov. Today Technol. 2013). Our data indicate that the selected small compounds do not block ligand binding or G protein activation or receptor internalization, but inhibit receptor oligomerization and ligand-mediated directed cell migration.

      (19) In the Results section discussing the "incomplete abolition of CXCR4-mediated responses in Jurkat cells by AGR1.135 and AGR1.137", several points can be refined for better clarity and completeness:  1. Inclusion of Positive Controls: 

      -Consider incorporating positive controls in relevant experiments to provide a comparative benchmark for assessing the impact of AGR1.135 and AGR1.137. This addition will strengthen the interpretation of results and enhance the experimental rigor. 

      The in vivo experiments (Fig. 7E,F) used AMD3100, an orthosteric antagonist of CXCR4, as a positive control. We also included AMD3100, as a positive control of inhibition when evaluating the effect of the compounds on CXCL12 binding (Fig. 3, new Supplementary Fig. 3). The revised version of the manuscript also includes the effect of this inhibitor on other relevant CXCL12-mediated responses such as cell migration (Fig. 1B), receptor internalization (Fig. 3A), cAMP production (Fig. 3C), ERK1/2 and AKT phosphorylation (Supplementary Fig. 4), actin polymerization (Fig. 4A), cell polarization (Fig. 4B, C) and cell adhesion (Fig. 4D), to facilitate the interpretation of the results and improve the experimental rigor.

      (20) 2. Clarification of Terminology: 

      -Clarify the term "CXCR4 internalizes" by providing context, perhaps explaining the process of receptor internalization and its relevance to the study.

      We refer to CXCR4 internalization as a CXCL12-mediated endocytosis process that results in reduction of CXCR4 levels on the cell surface. We use CXCR4 internalization in this study with two purposes: First, for CXCR4 and other chemokine receptors, internalization processes are mediated by ligand-induced clathrin vesicles (Venkatesan et al 2003) a process that triggers CXCR4 aggregation in these vesicles. We have previously determined that the oligomers of receptors detected by TIRF-M remain unaltered in cells treated with inhibitors of clathrin vesicle formation and of internalization processes (Martinez-Muñoz L. et al. Mol. Cell 2018). Moreover, we have described a mutant CXCR4 that cannot form oligomers but internalizes normally in response to CXCL12 (Martinez-Muñoz L. et al. Mol. Cell 2018). The observation in this manuscript of normal CXCL12-mediated endocytosis in the presence of the negative allosteric inhibitors of CXCR4 that abrogate receptor oligomerization reinforces the idea that the oligomers detected by TIRF are not related to receptor aggregates involved in endocytosis; Second, receptor internalization is not affected by the allosteric compounds, indicating that they downregulate some CXCL12-mediated signaling events but not others (new Fig. 3).

      All these data have been included in the revised discussion of the manuscript.

      (21) Elaborate on the meaning of "CXCL12 triggers normal CXCR4mut internalization" to enhance reader understanding.

      We have previously described a triple-mutant CXCR4 (K239L/V242A/L246A; CXCR4mut). The mutant residues are located in the N-terminal region of TMVI, close to the cytoplasmic region, thus limiting the CXCR4 pocket described in this study (see our response to point 3). This mutant receptor dimerizes but neither oligomerizes in response to CXCL12 nor supports CXCL12-induced directed cell migration, although it can still trigger some Ca2+ flux and is internalized after ligand activation (Martinez-Muñoz L. et al. Mol. Cell 2018).  We use the behavior of this mutant (CXCR4mut) to show that the CXCR4 oligomers and the complexes involved in internalization processes are not the same and to explain why we evaluated CXCR4 endocytosis in the presence of the negative allosteric modulators.

      As we indicated in a previous answer to the reviewer, these issues have been re-elaborated in the revised version.

      (22) 3. Discrepancy in CXCL12 Concentration:

      -Address the apparent discrepancy between the text stating, "...were stimulated with CXCL12 (50 nM, 37{degree sign}C)," and the figure caption (Fig. 3A) reporting a concentration of 12.5 nM. Rectify this inconsistency and provide an accurate and clear explanation.

      We apologize for this error, which is now corrected in the revised manuscript. With the exception of the cell migration assays in Transwells, where the optimal concentration was established at 12.5 nM, in the remaining experiments the optimal concentration of CXCL12 employed was 50 nM. These concentrations were optimized in previous works of our laboratory using the same type of experiment. We should also remark that in the experiments using lipid bilayers or TIRF-M experiments, CXCL12 is used to coat the plates and therefore it is difficult to determine the real concentration of the ligand that is retained in the surface of the plates after the washing steps performed prior to adding the cells. In addition, we use 100 nM CXCL12 to create the gradient in the chambers used to perform the directed-cell migration experiments.

      (23) 4. Speculation on CXCL12 Binding:

      -Refrain from making speculative statements, such as "These data suggest that none of the antagonists alters CXCL12 binding to CXCR4," unless there is concrete evidence presented up to that point. Clearly outline the results that support this conclusion.

      Figure 3B and Supplementary Figure 3 show CXCL12-ATTO700 binding by flow cytometry in cells pretreated with the negative allosteric modulators. We have also included AMD3100, the orthosteric antagonist, as a control for inhibition. While these experiments showed no major effect of the compounds on CXCL12 binding, we cannot discard small changes in the affinity of the interaction between CXCL12 and CXCR4. In consequence we have re-written these statements.

      (24) 5. Corroboration of Data:

      -Specify where the corroborating data from immunostaining and confocal analysis are reported, ensuring readers can access the relevant information to support the conclusions drawn in this section.

      In agreement with the suggestion of the reviewer, the revised manuscript includes data from immunostaining and confocal analysis to complement Fig. 4B (new Fig. 4C). The revised version also includes some representative videos for the TIRF experiments showed in Figure 2 to clarify readability.

      (25) In the Results section concerning "AGR1.135 and AGR1.137 antagonists and their direct binding to CXCR4", several aspects need clarification and refinement for a more comprehensive and understandable presentation: 1. Workflow Clarification:

      -Clearly articulate the workflow used for assessing the binding of AGR1.135 and AGR1.137 to CXCR4. Address the apparent contradiction between the inability to detect a direct interaction and the utilization of Glide for docking in the TMV-TMVI cleft.

      To address the direct interaction of the compounds with CXCR4, we intentionally avoided the modification of the small compounds with different labels, which could affect their properties. We therefore attempted a fluorescence a spectroscopy strategy to formally prove the ability of the small compounds to bind CXCR4, but this failed because the AGR1.135 is yellow in color, which interfered with the determinations. We also tried a FRET strategy (see new Supplementary Fig. 7) and detected a significant increase in FRET efficiency of CXCR4 homodimers when AGR1.135 was evaluated, but again the yellow color interfered with FRET determinations. Moreover, AGR1.137 did not modify FRET efficiency of CXCR4 dimers. Therefore, we were unable to detect the interaction of the compounds with CXCR4.

      We elected to develop an indirect strategy; in silico, we evaluated the binding-site using docking and molecular dynamics to predict the most promising CXCR4 binding residues involved in the interaction with the selected compounds. Next, we generated point mutant receptors of the predicted residues and re-evaluated the behavior of the allosteric antagonists in a CXCL12-induced cell migration experiment. Obviously, we first discarded those CXCR4 mutants that were not expressed on the cell membrane as well as those that were not functional when activated with CXCL12. Using this strategy, we eliminated the interference due to the physical properties of the compounds and demonstrated that if the antagonism of a compound is reversed in a particular CXCR4 mutant it is because the mutated residue participates or interferes with the interaction between CXCR4 and the compound, thus assuming (albeit indirectly) that the compound binds CXCR4. 

      To select the specific mutations included in the analysis, our strategy was to generate point mutations in residues present in the TMV-TMVI pocket of CXCR4 that were not directly proposed as critical residues involved in chemokine engagement, signal initiation, signal propagation, or G protein-binding, based on the extensive mutational study published by Wescott MP et. al. (Wescott M.P. et. al. Proc. Natl. Acad. Sci. U S A. 2016).

      (26) Provide a cohesive explanation of the transition from docking evaluation to MD analysis, ensuring a transparent representation of the methodology.

      Based on the aim of this work, the workflow shown in Author response image 2, was proposed to predict the binding mode of the selected molecules. Firstly, a CXCR4 model was generated to reconstruct some unresolved parts of the protein structure; then a binding site search using PELE software was performed to identify the most promising binding sites; subsequently, docking studies were performed to refine the binding mode of the molecules; and finally, molecular dynamics simulations were run to determine the most stable poses and predict the residues that we should mutate to test that the compounds interact with CXCR4. 

      Author response image 2.

      Workflow followed to determine the binding mode of the  studied compounds.

      (27) 2. Choice of Software and Techniques:

      -Justify the use of "AMBER14" and the PELE approach, considering  their potential obsolescence.

      These experiments were performed five years ago when the project was initiated. As the reviewer indicates, AMBER14 and PELE approaches might perhaps be considered obsolescent. Thus, we have predicted the structure of the target using AlphaFold (Jumper J. et al, Nature 2021) and the sequence available under UniProt entry P61073. The complete analysis performed (see our response to point 4) confirmed that the compounds bound the selected pocket, as we had originally determined using PELE. These new analyses have been incorporated into the revised manuscript.

      (28)-Discuss the role of the membrane in the receptor-ligand interac7on. Elaborate on how the lipidic double layer may influence the binding of small compounds to GPCRs embedded in the membrane.

      Biological membranes are vital components of living organisms, providing a diffusion barrier that separates cells from the extracellular environment, and compartmentalizing specialized organelles within the cell. In order to maintain the diffusion barrier and to keep it electrochemically sealed, a close interaction of membrane proteins with the lipid bilayer is necessary. It is well known that this is important, as many membrane proteins undergo conformational changes that affect their transmembrane regions and that may regulate their activity, as seen with GPCRs (Daemen F.J. & Bonting S.L., Biophys. Struct. Mech. 1977; Gether U. et al. EMBO J. 1997). The lateral and rotational mobility of membrane lipids supports the sealing function while allowing for the structural rearrangement of membrane proteins, as they can adhere to the surface of integral membrane proteins and flexibly adjust to a changing microenvironment. In the case of the first atomistic structure of CXCR4 (Wu B. et al. Science 2010), it was indicated that for dimers, monomers interact only at the extracellular side of helices V and VI, leaving at least a 4-Å gap between the intracellular regions, which is presumably filled by lipids. In particular, they indicated that the channel between TMV and TMVI that connects the orthosteric chemokine binding pocket to the lipid bilayer is occupied by an oleic acid molecule. Recently, Di Marino et al., analyzing the dimeric structure of CXCR4, found a cholesterol molecule placed in between the two protomers, where it engages a series of hydrophobic interactions with residues located in the area between TMI and TMVI (Leu132, Val214, Leu216, Leu246, and Phe249). The polar head of cholesterol forms an H-bond with Tyr135 that further stabilizes its binding mode. This finding confirms that cholesterol might play an important role in mediating and stabilizing receptor dimerization, as seen in other GPCRs (Pluhackova, K., et al. PLoS Comput. Biol. 2016). In addition, we have previously observed that, independently of the structural changes on CXCR4 triggered by lipids, the local lipid environment also regulates CXCR4 organization, dynamics and function at the cell membrane and modulates chemokine-triggered directed cell migration. Prolonged treatment of T cells with bacterial sphingomyelinase promoted the complete and sustained breakdown of sphingomyelins and the accumulation of the corresponding ceramides, which altered both membrane fluidity and CXCR4 nanoclustering and dynamics. Under these conditions, CXCR4 retained some CXCL12-mediated signaling activity but failed to promote efficient directed cell migration (Gardeta S.R. et al. Front. Immunol. 2022). Collectively, these data demonstrate the key role that lipids play in the stabilization of CXCR4 conformations and in regulating its lateral mobility, influencing their associated functions. These considerations have been included in the revised version of the manuscript. 

      (29) 3. Stable Trajectories and Binding Mode Superimposi7on -Specify the criteria for defining "stable trajectories" to enhance reader understanding

      There could be several ways to describe the stability of a MD simulation, based on the convergence of energies, distances or ligand-target interactions, among others. In this work, we use the expression “stable trajectories” to refer to simulations in which the ligand trajectory converges and the ligand RMSD does not fluctuate more than 0.25Å. This definition is now included in the revised text.

      (30)  Clarify the meaning behind superimposing the two small compounds and ensure that the statement in the figure caption aligns with the information presented in the main text.

      We apologize for the error in the previous Fig. 5A and in its legend. The figure was created by superimposing the protein component of the poses for the two compounds, AGR1.135 and AGR1.137, rather than the compounds themselves. As panel 5A was confusing, we have modified all Fig. 5 in the revised manuscript to improve clarity.

      (31) 4. Volume Analysis and Distances:

      -Provide details on how the volume analysis was computed and how distances were accounted for. Consider adding a figure to illustrate these analyses, aiding reader comprehension.

      The cleft search and analysis were performed using the default settings of SURFNET (Laskowski R.A. J. Mol. Graph. 1995) included in the PDBsum server (Laskowski R.A. et. al. Trends Biochem. Sci. 1997). The first run of the input model for CXCR4 3ODU identified a promising cleft of 870 Å3 in the lower half of the region flanked by TMV and TMVI, highlighting this area as a possible small molecule binding site (Fig. I, only for review purposes). Analysis of the cleft occupied by AGR1.135 showed two independent cavities of 434 Å3 and 1381 Å3 that were not connected to the orthosteric site. The same procedure for AGR1.137 revealed two distinct clefts of 790 Å3 and 580 Å3, respectively (Fig. I, only for review purposes). Analysis of the atomic distances between the protein residues and the compounds was performed using the PISA server. Krissinel E. & Henrick K. J. Mol. Biol. 2007). (Please see our response to point 3 and the corresponding figure).

      (32) 5. Mutant Selection and Relevance:

      -Clarify the rationale behind selecting the CXCR4 mutants used in the study. Consider justifying the choice and exploring the possibility of performing an alanine (ALA) scan for a more comprehensive mutational analysis.  

      The selection of the residues to be mutated along the cleft was first based on their presence in the proposed cleft and the direct interaction of the compounds with them, either by hydrogen bonding or by hydrophobic interactions. Secondly, all mutated residues did not belong to any of the critical residues involved in transmitting the signal generated by the interaction of CXCL12 with the receptor. In any case, mutants producing a non-functional CXCR4 at the cell membrane were discarded after FACS analysis and chemotaxis experiments. Finally, the length and nature of the resulting mutations were designed mainly to occlude the cleft in case of the introduction of long residues such as lysines (I204K, L208K) or to alter hydrophobic interactions by changing the carbon side chain composition of the residues in the cleft. Indeed, we agree that the alanine scan mutation analysis would have been an alternative strategy to evaluate the residues involved in the interactions of the compounds. 

      (33) Reevaluate the statement regarding the relevance of the Y256F muta7on for the binding of AGR1.137. If there is a significant impact on migra7on in the mutant (Fig. 6B), elaborate on the significance in the context of AGR1.137 binding.

      In the revised discussion we provide more detail on the relevance of Y256F mutation for the binding of AGR1.137 as well as for the partial effect of G207I and R235L mutations. The predicted interactions for each compound are depicted in new Fig. 6 C, D after LigPlot+ analysis (Laskowski R.A. & Swindells M.B. J. Chem. Inf. Model. 2011), showing that AGR1.135 interacted directly with the receptor through a hydrogen bond with Y256. When this residue was mutated to F, one of the anchor points for the compound was lost, weakening the potential interaction in the region of the upper anchor point.

      It is not clear how the Y256F mutation will affect the binding of AGR1.137, but other potential contacts cannot be ruled out since that portion of the compound is identical in both AGR1.135 and AGR1.137. This is especially true for its neighboring residues in the alpha helix, F249, L208, as shown in 3ODU structure (Fig. 6D), which are shown to be directly implicated in the interaction of both compounds. Alternatively, we cannot discard that Y256 interacts with other TMs or lipids stabilizing the overall structure, which could reverse the effect of the mutant at a later stage (Author response image 3).

      Author response image 3.

      Cartoon representation of Y256 and its intramolecular interactions in the CXCR4 Xray solved structure 3ODU. TMV helix is colored in blue and TMVI in pink.

      (34) Address the apparent discrepancy in residue involvement between AGR1.135 and AGR1.137, particularly if they share the same binding mode in the same clef.

      AGR1.135 and AGR1.137 exhibit comparable yet distinct binding modes, engaging with CXCR4 within a molecular cavity formed by TMV and TMVI. AGR1.135 binds to CXCR4 through three hydrogen bonds, two on the apical side of the compound that interact with residues TMV-G207 and TMVI-Y256 and one on the basal side that interacts with TMVI-R235 (Fig. 5A). This results in a more extended and rigid conformation when sharing hydrogen bonds, with both TMs occupying a surface area of 400 Å2 and a length of 20 Å in the cleft between TMV and TMVI (Supplementary Fig. 8A). AGR1.137 exhibits a distinct binding profile, interacting with a more internal region of the receptor. This interaction involves the formation of a hydrogen bond with TMIIIV124, which induces a conformational shift in the TMVI helix towards an active conformation (Fig. 5B; Supplementary Fig. 13). Moreover, AGR1.137 may utilize the carboxyl group of V124 in TMIII and overlap with AGR1.135 binding in the cavity, interacting with the other 19 residues dispersed between TMV and VI to create an interaction surface of 370 Å2 along 20 Å (Supplementary Fig. 8B). This is illustrated in the new Fig. 5B. AGR1.137 lacks the phenyl ring present in AGR1.135, resulting in a shorter compound with greater difficulty in reaching the lower part of TMVI where R235 sits. 

      Author response image 4.

      AGR1.135 and AGR1.137 interaction with TMV and TMVI.  The model shows the location of the compounds within the TMV-VI cleft, illustrated by a ribbon and stick representation. The CXCR4 segments of TMV and TMVI are represented in blue and pink ribbons respectively, and side chains for some of the residues defining the cavity are shown in sticks. AGR1.135 and AGR1.137 are shown in stick representation with carbon in yellow, nitrogen in blue, oxygen in red, and fluorine in green. Hydrogen bonds are indicated by dashed black lines, while hydrophobic interactions are shown in green. The figure reproduces the panels A, B of Fig. 5 in the revised manuscript.

      (35) In the Results sec7on regarding "AGR1.137 treatment in a zebrafish xenograf model", the following points can be refined for clarity and completeness: 1. Cell Line Choice for Zebrafish Xenograft Model:

      -Explain the rationale behind the choice of HeLa cells for the zebrafish xenograft model when the previous experiments primarily focused on Jurkat cells. Address any specific biological or experimental considerations that influenced this decision.

      As far as we know, there are no available models of tumors in zebrafish using Jurkat cells. We looked for a tumoral cell system that expresses CXCR4 and could be transplanted into zebrafish. HeLa cells are derived from a human cervical tumor, express a functional CXCR4, and have been previously used for tumorigenesis analyses in zebrafish (Brown H.K. et al. Expert Opin. Drug Discover. 2017; You Y. et al Front. Pharmacol. 2020). These cells grow in the fish and disseminate through the ventral area and can be used to determine primary tumor growth and metastasis. Nonetheless, we first analyzed in vitro the expression of a functional CXCR4 in these cells (Supplementary Fig. 10A), whether AGR1.137 treatment specifically abrogated CXCL12-mediated direct cell migration (Fig. 7A, B), as whether it affected cell proliferation (Supplementary Fig. 10B). As HeLa cells reproduce the in vitro effects detected for the compounds in Jurkat cells, we used this model in zebrafish. These issues were already discussed in the first version of our manuscript. 

      (36) 2. Toxicity Assessment in Zebrafish Embryos: 

      -Clarify the basis for stating that AGR1.137 is not toxic to zebrafish embryos. Consider referencing the Zebrafish Embryo Acute Toxicity Test (ZFET) and provide relevant data on lethal concentration (LC50) and non-lethal toxic phenotypes such as pericardial edema, head and tail necrosis, malformation, brain hemorrhage, or yolk sac edema.

      Tumor growth and metastasis kinetics within the zebrafish model have been extensively evaluated in many publications (White R. et al. Nat. Rev. Cancer. 2013; Astell K.R. and Sieger D. Cold Spring Harb. Perspect. Med. 2020; Chen X. et al. Front. Cell Dev. Biol. 2021; Weiss JM. Et al. eLife 2022; Lindhal G. et al NPJ Precis. Oncol. 2024). Our previous experience using this model shows that tumors start having a more pronounced proliferation and lower degree of apoptosis from day 4 onwards, but we cannot keep the tumor-baring larvae for that long due to ethical reasons and also because we don’t see much scientific benefit of unnecessarily extending the experiments. Anti-proliferative or pro-apoptotic effects of drugs can still be observed within the three days, even if this is then commonly seen as larger reduction (instead of a smaller growth as it is commonly seen in for example mouse tumor models) compared to controls. Initially we characterized the evolution of implanted tumors in our system and how much they metastasize over time in the absence of treatment before to test the compounds (Author response image 5).

      The in vivo experiments were planned to validate efficacious concentrations of the investigated drugs rather than to derive in vivo IC50 or other values, which require testing of multiple doses. We have, however, included an additional concentration to show concentration-dependence and therefore on-target specificity of the drugs in the revised version of the manuscript (data also being elaborated in ongoing experiments). At this stage, we believe that adding the LC50 does not provide interesting new knowledge, and it is standard to only show results from the experimental endpoint (in our case 3 days post implantation). We agree that showing these new data points strengthens the manuscript and facilitates independent evaluation and conclusions to be drawn from the presented data. We have created new graphs where datapoints for each compound dose are shown.  

      Author response image 5.

      Evolution of the tumors and metastasis along the time in the absence of any treatment. HeLa cells were labeled with 8 µg/mL Fast-DiI™ oil and then implanted in the dorsal perivitelline space of 2-days old zebrafish embryos. Tumors were imaged within 2 hours of implantation and re-imaged each 24 h for three days. Changes in tumor size was evaluated as tumor area at day 1, 2 and 3 divided by tumor area at day 0, and metastasis was evaluated as the number of cells disseminated to the caudal hematopoietic plexus at day 1, 2 and 3 divided by the number of cells at day  3.

      Regarding the statement that AGR1.137 was not toxic, this was based on visual inspection of the zebrafish larvae at the end of the experiment, which also revealed a lack of drug-related mortality in these experiments. There are a number of differences in how our experiment was run compared with the standardized ZFET. ZFET evaluates toxicity from 0 hours post-fertilization to 1 or 2 days post-fertilization, whereas here we exposed zebrafish from 2 days post-fertilization to 5 days post-fertilization. The ZFET furthermore requires that the embryos are raised at 26ºC whereas kept the temperature as close as possible to a physiologically relevant temperature for the tumor cells (36ºC). In the ZFET, embryos are incubated in 96-well plates whereas for our studies we required larger wells to be able to manipulate the larvae and avoid well edge-related imaging artefacts, and we therefore used 24-well plates. As such, the ZFET was for various reasons not applicable to our experimental settings. As we were not interested in rigorously determining the LD50 or other toxicity-related measurements, as our focus was instead on efficacy and we found that the targeted dose was tolerated, we did not evaluate multiple doses, including lethal doses of the drug, and are therefore not able to determine an LD50/LC50. We also did not find drug-induced non-lethal toxic phenotypes in this study, and so we cannot elaborate further on such phenotypes other than to simply state that the drug is well tolerated at the given doses. Therefore, the reference to ZFET in the manuscript was eliminated.

      (37) If supplementary information is available, consider providing it for a comprehensive understanding of toxicity assessments. 

      The effective concentration used in the zebrafish study was derived from the in vitro experiments. That being said, and as elaborated in our response to comment 36, we have added data for one additional dose to show the dose-dependent regulation of tumor growth and metastasis. 

      (38) 3. Optimization and Development of AGR1.137: 

      -Justify the need for further optimization and development of AGR1.137 if it has a comparable effect to AMD3100. Explain the specific advantages or improvements that AGR1.137 may offer over AMD3100. 

      AGR1.137 is highly hydrophobic and is very difficult to handle, particularly in in vivo assays; thus, for the negative allosteric modulators to be used clinically, it would be very important to increase their solubility in water. Contrastingly, AMD3100 is a water-soluble compound. Before using the zebrafish model, we performed several experiments in mice using AGR1.137, but the inhibitory results were highly variable, probably due to its hydrophobicity. We also believe that it would be important to increase the affinity of AGR1.137 for CXCR4, as the use of lower concentrations of the negative allosteric modulator would limit potential in vivo side effects of the drug. On the other hand, we are also evaluating distinct administration alternatives, including encapsulation of the compounds in different vehicles. These alternatives may also require modifications of the compounds. 

      AMD3100 is an orthosteric inhibitor and therefore blocks all the signaling cascades triggered by CXCL12. For instance, we observed that AMD3100 treatment blocked CXCL12 binding, cAMP inhibition, calcium flux, cell adhesion and cell migration (Fig. 3, Fig. 4), whereas the effects of AGR1.137 were restricted to CXCL12-mediated directed cell migration. Although AMD3100 was well tolerated by healthy volunteers in a singledose study, it also promoted some mild and reversible events, including white blood cells count elevations and variations of urine calcium just beyond the reported normal range (Hendrix C.W. et al. Antimicrob. Agents Chemother. 2000). To treat viral infections, continuous daily dosing requirements of AMD3100 were impractical due to severe side effects including cardiac arrhythmias (De Clercq E. Front Immunol. 2015). For AMD3100 to be used clinically, it would be critical to control the timing of administration. In addition, side effects after long-term administration have potential problems. Shorter-term usage and lower doses would be fundamental keys to its success in clinical use (Liu T.Y. et al. Exp. Hematol. Oncol. 2016). The use of a negative allosteric modulator that block cell migration but do not affect other signaling pathways triggered by CXCL12 would be, at least in theory, more specific and produce less side effects. These ideas have been incorporated into the revised discussion to reflect potential advantages or improvements that AGR1.137 may offer over AMD3100.

      (39) 4. Discrepancy in AGR1.137 and AMD3100 Effects:

      -Discuss the observed discrepancy where AGR1.137 exhibits similar effects to AMD3100 but only after 48 hours. Provide insights into the temporal dynamics of their actions and potential implications for the experimental design.

      Images and data shown in Fig. 7E, F correspond to days 0 and 3 after HeLa cell implantation (tumorigenesis) and only to day 3 in the case of metastasis data. The revised version contains the effect of two distinct doses of the compounds (10 and 50 µM, for AGR1.135 and AGR1.137 and 1 and 10 µM for AMD3100). 

      (40) In the "Discussion" section, there are several points that require clarifica7on and refinement to enhance the overall coherence and depth of the analysis:  1. Reduction of Side-Effects: 

      -Provide a more detailed explanation of how the identified compounds, specifically AGR1.135 and AGR1.137, contribute to the reduction of side effects. Consider discussing specific mechanisms or characteristics that differentiate these compounds from existing antagonists.

      The sentence indicating that AGR1.135 and AGR1.137 contribute to reduce side effects is entirely speculative, as we have no experimental evidence to support it. We have therefore corrected this in the revised version. The origin of the sentence was that orthosteric antagonists typically bind to the same site as the endogenous ligand, thus blocking its interaction with the receptor. Therefore, orthosteric inhibitors (i.e. AMD3100) block all signaling cascades triggered by the ligand and therefore their functional consequences. However, the compounds described in this project are essentially negative allosteric modulators, that is, they bind to a site distinct from the orthosteric site, inducing a conformational change in the receptor that does not alter the binding of the endogenous ligand, and therefore block some specific receptor-associated functions without altering others. We observed that AGR1.137 blocked receptor oligomerization and directed cell migration whereas CXCL12 still bound CXCR4, triggered calcium mobilization, did not inhibit cAMP release or promoted receptor internalization. This is why we speculated on the limitation of side effects. The statements have been nonetheless revised in the new version of the manuscript.

      (41) 2. Binding Site Clarification:

      -Address the apparent discrepancy between docking the small compounds in a narrow cleft formed by TMV and TMVI helices and the statement that AGR1.131 binds elsewhere. Clarify the rationale behind this assertion

      After the in silico screening, a total of 40 compounds were selected.  These compounds showed distinct degrees of interaction with the cleft formed by TMV and TMVI and even with other potential interaction sites on CXCR4, with the exception of the ligand binding site according to the data described by Wescott et al. (PNAS 2016 113:9928-9933), as this possibility was discarded in the initial approach of the in silico screening. According to PELE analysis, AGR1.131 was one of the 40 selected compounds that showed a pose with low binding energy, -39.8 kcal/mol, between TMV and TMVI helices, that is, it might interact with CXCR4 through the selected area for the screening. It nonetheless also showed a best pose placed between helices TMI and TMVII, -43.7 kcal/mol. In any case, the compound was included in the biological screening, where it was unable to impact CXCL12-mediated chemotaxis (Fig. 1B). We then focused on AGR1.135 and AGR1.137, as showed a higher inhibitory effect on CXCL12-mediated migration, and on AGR1.131 as an internal negative control. AGR1.131 has a skeleton very similar to the other compounds (Fig. 1C) and can interact with the TM domains of CXCR4 without promoting effects. None of the three compounds affected CXCL12 binding, or CXCL12mediated inhibition of cAMP release, or receptor internalization. However, whereas AGR1.135 and AGR1.137, blocked CXCL12-mediated CXCR4 oligomerization and directed cell migration towards CXCL12 gradients, AGR1.131 had no effect in these experiments (Fig. 3, Fig.  4). 

      Next, we performed additional theoretical calculations (PELE, docking, MD) to inspect in detail the potential binding modes of active and inactive molecules. Based on these additional calculations, we identified that whereas AGR1.135 and AGR1.137 showed preferent binding on the molecular pocket between TMV and TMVI, the best pose for AGR1.131 was located between TMI and TMVII, as the initial experiments indicated.  These observations and data have been clarified in the revised discussion. 

      (42) 3. Impact of Chemical Modifications:

      -Discuss the consequences of the distinct chemical groups in AGR1.135, AGR1.137, and AGR1.131, specifically addressing how variations in amine length and chemical nature may influence binding affinity and biological activity. Provide insights into the potential effects of these modifications on cellular responses and the observed outcomes in zebrafish. 

      The main difference between AGR1.131 and the other two compounds is the higher flexibility of AGR1.131 due to the additional CH2 linker, together with the lack of a piperazine ring. The additional CH2 linking the phenyl ring increases the flexibility of AGR1.131 when compared with AGR1.135 and AGR1.137, and the absence of the piperazine ring might be responsible for its lack of activity, as it makes this compound able to bind to CXCR4 (Fig. 1C).

      AGR1.137 was chosen in a second round. The additional presence of the tertiary amine (in the piperazine ring) allows the formation of quaternary ammonium salts in the aqueous medium and its substituents to increase its solubility (Fig 1C). This characteristic might be related to the absence of toxic effects of the compound in the zebrafish model.

      (43) 4. Existence of Distinct CXCR4 Conformational States: 

      -Provide more detailed support for the statement suggesting the "existence of distinct CXCR4 conformational states" responsible for activating different signaling pathways. Consider referencing relevant studies or experiments that support this claim.

      Classical models of GPCR allostery and activation, which describe an equilibrium between a single inactive and a single signaling-competent active conformation, cannot account for the complex pharmacology of these receptors. The emerging view is that GPCRs are highly dynamic proteins, and ligands with varying pharmacological properties differentially modulate the balance between multiple conformations.

      Just as a single photograph from one angle cannot capture all aspects of an object in movement, no one biophysical method can visualize all aspects of GPCR activation. In general, there is a tradeoff between high-resolution information on the entire protein versus dynamic information on limited regions. In the former category, crystal and cryo-electron microscopy (cryoEM) structures have provided comprehensive, atomic-resolution snapshots of scores of GPCRs both in inactive and active conformations, revealing conserved conformational changes associated with activation. However, different GPCRs vary considerably in the magnitude and nature of the conformational changes in the orthosteric ligand-binding site following agonist binding (Venkatakrishnan A.J.V. et al. Nature 2016). Spectroscopic and computational approaches provide complementary information, highlighting the role of conformational dynamics in GPCR activation (Latorraca N.R.V. et al. Chem. Rev 2017). In the absence of agonists, the receptor population is typically dominated by conformations closely related to those observed in inactive-state crystal structures (Manglik A. et al. Cell 2015). While agonist binding drives the receptor population towards conformations similar to those in activestate structures, a mixture of inactive and active conformations remains, reflecting “loose” or incomplete allosteric coupling between the orthosteric and transducer pockets (Dror R.O. et al. Proc. Natl. Acad. Sci. USA 2011). Surprisingly, for some GPCRs, and under some experimental conditions, a substantial fraction of unliganded receptors already reside in an active-like conformation, which may be related to their level of basal or constitutive signaling (Staus D.P. et al. J. Biol. Chem. 2019);  Ye L. et al. Nature 2016).  In our case, the negative allosteric modulators, (Staus DP, et al. J. Biol. Chem 2019); Ye L. et al. Nature 2016) did not alter ligand binding and had only minor effects on specific CXCL12-mediated functions such as inhibition of cAMP release or receptor internalization, among others, but failed to regulate CXCL12-mediated actin dynamics and receptor oligomerization. Collectively, these data suggest that the described compounds alter the active conformation of CXCR4 and therefore support the presence of distinct receptor conformations that explain a partial activation of the signaling cascade.

      All these observations are now included in the revised discussion of the manuscript.

      (44) 5. Equilibrium Shift and Allosteric Ligands: 

      -Clarify the statement about "allosteric ligands shifting the equilibrium to favor a particular receptor conformation". Support this suggestion with references or experimental evidence

      In a previous answer (see our response to point 2), we explain why we define the compounds as negative allosteric modulators. These compounds do not bind the orthosteric binding site or a site distinct from the orthosteric site that alters the ligand-binding site. Their effect should be due to changes in the active conformation of CXCR4, which allow some signaling events whereas others are blocked. Our functional data thus support that through the same receptor the compounds separate distinct receptor-mediated signaling cascades, that is, our data suggest that CXCR4 has a conformational heterogeneity. It is known that GPCRs exhibit more than one “inactive” and “active” conformation, and the endogenous agonists stabilize a mixture of multiple conformations. Biased ligands or allosteric modulators can achieve their distinctive signaling profiles by modulating this distribution of receptor conformations. (Wingler L.M. & Lefkowitz R.J. Trends Cell Biol. 2020). For instance, some analogs of angiotensin II do not appreciably activate Gq signaling (e.g., increases in IP3 and Ca2+) but still induce receptor phosphorylation, internalization, and mitogen-activated protein kinase (MAPK) signaling (Wei H, et al. Proc. Natl. Acad. Sci. USA 2003). Some of these ligands activate Gi and G12 in bioluminescence resonance energy transfer (BRET) experiments (Namkung Y. et al. Sci. Signal. 2018). A similar observation was described in the case of CCR5, where some chemokine analogs promoted G protein subtype-specific signaling bias (Lorenzen E. et al. Sci. Signal 2018). Structural analysis of distinct GPCRs in the presence of different ligands vary considerably in the magnitude and nature of the conformational changes in the orthosteric ligand-binding site following agonist binding (Venkatakrishnan A.J.V. et al. Nature 2016). Yet, these changes modify conserved motifs in the interior of the receptor core and induce common conformational changes in the intracellular site involved in signal transduction. That is, these modifications might be considered distinct receptor conformations. 

      The revised discussion contains some of these interpretations to support our statement about the stabilization of a particular receptor conformation triggered by the negative allosteric modulators. 

      (45) 6. Refinement of Binding Mode: 

      -Clarify the workflow for obtaining the binding mode, particularly the role of GLIDE and PELE. Clearly explain how these software tools were used in tandem to refine the binding mode. 

      The computational sequential workflow applied in this project included, i) Protein model construction, ii) Virtual screening (Glide), iii) PELE, iv) Docking (AutoDock and Glide) and v) Molecular Dynamics (AMBER).

      Glide was applied for the structure-based virtual screening to explore which compounds could fit and interact with the previously selected binding site.

      After the identification of theoretically active compounds (modulators of CXCR4), additional calculations were done to identify a potential binding site. PELE was used in this sense, to study how the compounds could bind in the whole surface of the target (TMV-TMVI). By applying PELE, we avoided biasing the calculation, and we found that the trajectories with better interaction energies identified the cleft between TMV and TMVI as the binding site for AGR1.135 and AGR1.137, and not for AGR1.131. AGR1.131 showed a pose with low binding energy, -39.8 kcal/mol, between TMV and TMVI helices, that is, it might interact with CXCR4 in the selected area for the screening. But it also showed a better pose placed between helices TMI and TMVII, - 43.7 kcal/mol (see our response to point 41). These data have been now confirmed using Schrodinger’s MM-GBSA procedure (see our response to points 6 and 8). In any case, the compound was included in the biological screening, where it was unable to affect CXCL12-mediated chemotaxis (Fig. 1B). Docking and MD simulations were then performed to study and refine the specific binding mode in this cavity. These data were important to choose the mutations on CXCR4 required, to test whether the compounds reversed its behavior. In these experiments we also confirmed that AGR1.131 had a better pose on the TMI-TMVII region. 

      (46) 7. Impact of Compound Differences on CXCR4-F249L mutant: 

      -Provide visual aids, such as figures, and additional experiments to support the statement about differences in the behavior of AGR1.135 and AGR1.137 on cells expressing CXCR4-F249L mutant. Elaborate on the closer interaction suggested between the triazole group of AGR1.137 and the F249 residue

      At the reviewer’s suggestion, Fig. 5 has been modified to incorporate a closer view of the interactions identified and new panels in new Fig. 6 have been added to show in detail the effect of the mutations selected on the structure of the cleft between TMV and TMVI. The main difference between AGR1.135 and AGR1.137 is how the triazole group interacts with F249 and L216 (Author response image 6). In AGR1.137, the three groups are aligned in a parallel organization, which appears to be more effective: This might be due to a better adaptation of this compound to the cleft since there is only one hydrogen bond with V124. In AGR1.135, the compound interacts with the phenyl ring of F249 and has a stronger interaction at the apical edge to stabilize its position in the cleft. However, there is still an additional interaction present. When changing F249

      Author response image 6.

      Cartoon representation of the interaction of CXCR4 F249L mutant with AGR1.135 (A) and AGR1.137 (B). The two most probable conformations of Leucine rotamers are represented in cyan A and B conformations. Van der Waals interactions are depicted in blue cyan dashed lines, hydrogen bonds in black dashed lines. CXCR4 segments of TMV and TMVI are colored in blue and pink, respectively

      to L (Fig. VIIA, B, only for review purposes) and showing the two most likely rotamers resulting from the mutation, it is observed that rotamer B is in close proximity to the compound, which may cause the binding to either displace or adopt an alternative conformation that is easier to bind into the cleft. As previously mentioned, it is likely that AGR1.135 can displace the mutant rotamer and bind into the cleft more easily due to its higher affinity.

      (47) In the "Materials and Methods" section, the computational approach for the "discovery of CXCR4 modulators" requires significant revision and clarification. The following suggestions aim to address the identified issues: 1. Structural Modeling: 

      -Reconsider the use of SWISS-MODEL if there is an available PDB code for the entire CXCR4 structure. Clearly articulate the rationale for choosing one method over the other and explain any limitations associated with the selected approach. 

      The SWISS-model server allows for automated comparative modeling of 3D protein structures that was pioneered in the fields of automated modeling. At the time we started this project. it was the most accurate method to generate reliable 3D protein structure models.

      As explained above, we have now predicted the structure of the target using AlphaFold (Jumper J. et al, Nature 2021) and performed several additional experiments that confirm that the small compounds bind the selected pocket as the original strategy indicated (see our response to point 6). (Fig. II, only for review purposes).

      (48) 2. Parametriza7on of Small Compounds: 

      -Provide a detailed description of the parametrization process for the small compounds used in the study. Specify the force field and parameters employed, considering the obsolescence of AMBER14 and ff14SB. Consider adopting more contemporary force fields and parameterization strategies. 

      When we performed these experiments, some years ago, the force fields applied (ff14SB, AMBER14 used in MD or OPLS2004 in docking with Glide) were well accepted and were gold standards. It is, however, true that the force fields have evolved in the past few years, Moreover, in the case of the MD simulations, to consider the parameters of the ligands that are not contained within the force field, we performed an additional parameterization as a standard methodology. We then generated an Ab initio optimization of the ligand geometry, defining as basis sets B3LYP 6-311+g(d), using Gaussian 09, Revision A.02, and then a single point energy calculation of ESP charges, with HF 6311+g(d) on the optimized structure. As the last step of the parametrization, the antechamber module was used to adapt these charges and additional parameters for MD simulations.

      (49) 3. Treatment of Lipids and Membrane: 

      -Elaborate on how lipids were treated in the system. Clearly describe whether a membrane was included in the simulations and provide details on its composition and structure. Address the role of the membrane in the study and its relevance to the interactions between CXCR4 and small compounds 

      To stabilize CXCR4 and more accurately reproduce the real environment in the MD simulation, the system was embedded in a lipid bilayer using the Membrane Builder tool (Sunhwan J. et al. Biophys. J. 2009) from the CHARMM-GUI server. The membrane was composed of 175 molecules of the fatty acid 1-palmitoyl-2-oleoyl-sn-glycero-3phosphocholine (POPC) in each leaflet. The protein-membrane complex was solvated with TIP3 water molecules. Chloride ions were added up to a concentration of 0.15 M in water, and sodium ions were added to neutralize the system. This information was previously described in detail.

      (50) 4. Molecular Dynamics Protocol: 

      -Provide a more detailed and coherent explanation of the molecular dynamics protocol. Clarify the specific steps, parameters, and conditions used in the simulations. Ensure that the protocol aligns with established best practices in the field.

      Simulations were calculated on an Asus 1151 h170 LVX-GTX-980Ti workstation, with an Intel Core i7-6500 K Processor (12 M Cache, 3.40 GHz) and 16 GB DDR4 2133 MHz RAM, equipped with a Nvidia GeForce GTX 980Ti available for GPU (Graphics Processing Unit) computations. MD simulations were performed using AMBER14 (Case D.A. et al. AMBERT 14, Univ. of California, San Francisco, USA, 2014) with ff14SB (Maier J.A. et al. J. Chem. Theory Comput. 2015) and lipid14 (Dickson C. J. et al. J. Chem. Theory Comput. 2014) force fields in the NPT thermodynamic ensemble (constant pressure and temperature). Minimization was performed using 3500 Steepest Descent steps and 4500 Conjugate Gradient steps three times, firstly considering only hydrogens, next considering only water molecules and ions, and finally minimizing all atoms. Equilibration raises system temperature from 0 to 300 K at a constant volume fixing everything but ions and water molecules. After thermalization, several density equilibration phases were performed. In the production phase, 50 ns MD simulations without position restraints were calculated using a time step of 2 fs. Trajectories of the most interesting poses were extended to 150 ns. All bonds involving hydrogen atoms were constrained with the SHAKE algorithm (Lippert R.A. et al. J. Chem. Phys. 2007). A cutoff of 8 Å was used for the Lennard-Jones interaction and the short-range electrostatic interactions. Berendsen barostat (Berendsen H.J. et al. J. Chem. Phys.  1984) and Langevin thermostat were used to regulate the system pression and temperature, respectively. All trajectories were processed using CPPTRAJ (Roe D.R. & Cheatham III T.E. J. Chem. Theory Comput. 2013) and visualized with VMD (Visual Molecular Dynamics) (Humphrey W. et al. J. Mol. Graphics. 1996). To reduce the complexity of the data, Principal Component Analysis (PCA) was performed on the trajectories using CPPTRAJ.

      (51) Consider updating the molecular dynamics protocol to incorporate more contemporary methodologies, considering advancements in simulation techniques and software.

      In our answer to points 6 and 47, we describe why we use the technology based on Swiss-model and PELE analysis and how we have now used Alphafold and other more contemporary methodologies to confirm that the small compounds bind the selected pocket.

      (52) Figure 1A: 

      •  Consider switching to a cavity representation for CXCL12 to enhance clarity and emphasize the cleft.

      Fig. 1A has been modified to emphasize the cleft.

      (53) Explicitly show the TMV-TMVI cleft in the figure for a more comprehensive visualization. 

      In Fig. 1A we have added an insert to facilitate TMV-TMVI visualization.

      (54) Figure 1B: 

      •  Clearly explain the meaning of the second DMSO barplot to avoid confusion. 

      To clarify this panel, we have modified the figure and the figure legend. Panel B now includes a complete titration of the three compounds analyzed in the manuscript.  The first bar shows cell migration in the absence of both treatment with AMD3100 and stimulation with CXCL12.  The second bar shows migration in response to CXCL12 in the absence of AMD3100. The third bar shows the effect of AMD3100 on CXCL12-induced migration, as a known control of inhibition of migration.  We hope that this new representation of the data results is clearer.

      (55) Figure 1C: 

      •  Provide a clear legend explaining the significance of the green shading on the small compounds. 

      The legend for Fig. 1C has been modified accordingly to the reviewer’s suggestion.

      (56) Figure 2: 

      •  Elaborate on the role of fibronectin in the experiment and explain the specific contribution of CD86-AcGFP.

      The ideal situation for TIRF-M determinations is to employ cells on a physiological substrate complemented with or without chemokines. Fibronectin is a substrate widely used in different studies that allows cell adhesion, mimicking a physiological situation. Jurkat cells express alpha4beta1 and alpha5beta1 integrins that mediate adhesion to fibronectin (Seminario M.C. et al. J. Leuk. Biol. 1999).

      Regarding the use of CD86-AcGFP in TIRF-M experiments. We currently determine the number of receptors in individual trajectories of CXCR4 using, as a reference, the MSI value of CD86-AcGFP that strictly showed a single photobleaching step (Dorsch S. et al. Nat Methods 2009).

      We preferred to use CD86-AcGFP in cells instead of AcGFP on glass, to exclude any potential effect on the different photodynamics exhibited by AcGFP when bound directly to glass. In any case, this issue has been clarified in the revised version.

      (57) Figure 3D: 

      •  Include a plot for the respective band intensity to enhance data presentation 

      The plot showing the band intensity analysis of the experiments shown in Fig. 3D was already included in the original version (see old Supplementary Fig. 3). However, in the revised version, we include these plots in the same figure as panels 3E and 3F.  As a control of inhibition of CXCL12 stimulation, we have also included a new figure (Supplementary Fig. 4) showing the effect of AMD3100 on CXCL12-induced activation of Akt and ERK as analyzed by western blot.

      (58) Consider adding AMD3100 as a control for comparison. 

      In agreement with the reviewer’s suggestion, we have added the effect of AMD3100 in most of the functional experiments performed.

      (59) Figure 4: 

      •  Address the lack of positive controls in Figure 4 and consider their inclusion for a more comprehensive analysis. 

      DMSO bars correspond to the control of the experiment, as they represent the effect of CXCL12 in the absence of any allosteric modulator. As previously described in this point-by-point reply, DMSO bars correspond to the control performed with the solvent with which the small compounds, at maximum concentration, are diluted.  Therefore, they show the effect of the solvent on CXCL12 responses. In any case, and in order to facilitate the comprehension of the figure we have also added the controls in the absence of DMSO to demonstrate that the solvent does not affect CXCL12-mediated functions, together with the effect of the orthosteric inhibitor AMD3100. In addition, we have also included representative images of the effect of the different compounds on CXCL12-induced polarization (Fig. 4C).

      (60) In Figure 4A, carefully assess overlapping error bars and ensure accurate interpreta7on. If necessary, consider alternative representation. 

      We have tried alternative representations of data in Fig. 4A, but in all cases the figure was unclear. We believe that the way we represent the data in the original manuscript is the most clear and appropriate.  Nevertheless, we have now included significance values as a table annexed to the figure, as well as the effect of AMD3100, as a control of inhibition

      (61) Supplementary Figure 1A: 

      •  Improve the clarity of bar plots for better understanding. Consider reordering them from the most significant to the least. 

      This was a good idea, and therefore Supplementary Fig. 1A has been reorganized to improve clarity.

      (62) Supplementary Figure 1C: 

      •  Clarify the rationale behind choosing the 12.5 nM concentration and explain if different concentrations of CXCL12 were tested. 

      In old Supplementary Fig. 1C, we used untreated cells, that is, CXCL12 was not present in the assay.  These experiments were performed to test the potential toxicity of DMSO (solvent) or the negative allosteric modulators on Jurkat cells. The 12.5 nM concentration of CXCL12 mentioned in the figure legend applied only to panels A and B, as indicated in the figure legend. We previously optimized this concentration for Jurkat cells using different concentrations of CXCL12 between 5 and 100 nM.  Nevertheless, we have reorganized old supplementary fig. 1 and clarified the figure legend to avoid misinterpretations (see Supplementary Fig 1A, B and Supplementary Fig. 2A, B).

      (63) Explain the observed reduction in fluorescence intensity for AGR1.135. 

      The cell cycle analysis has been moved from Supplementary Fig. 1C to a new Supplementary Fig. 2.  It now includes the flow cytometry panels to show fluorescence intensity as a function of the number of cells analyzed (Panel 1A) as well as a table (panel B) with the percentage of cells in each phase of the cell cycle. We believe that the apparent reduction in fluorescence that the reviewer observes is mainly due to the number of events analyzed. However, we have changed the flow cytometry panels for others that are more representative and included a table with the mean of the different results. When we determined the percentage of cells in each cell cycle phase, we observed that it looks very similar in all the experimental conditions. That is, none of the compounds affected any of the cell cycle phases. We have also included the effect of H2O2 and staurosporine as control compounds inducing cell death and cell cycle alteration of Jurkat cells.

      (64) Supplementary Table 1: 

      •  Include a column specifying the scoring for each compound to provide a clear reference for readers. 

      To facilitate references to readers, we have now included the inhibitory effect of each compound on Jurkat cell migration in the revised version of this table. 

      (65) Minor Points 

      Page 2 - Abstract: Rephrase the first sentence of the abstract to enhance fluidity. 

      Although the entire manuscript was revised by a professional English editor, we appreciate the valuable comments of this reviewer and we have corrected these issues accordingly.

      (66) Page 2 - Abstract: Explicitly define "CXCR4" as "C-X-C chemokine receptor type 4" the first time it appears.

      We have not used C-X-C chemokine receptor type 4 the first time it appears in the abstract. CXCR4 is an acronym normally accepted to identify this chemokine receptor, and it is used as CXCR4 in many articles published in eLife. However, we introduce the complete name the first time it appears in the introduction.

      (67) Page 2 - Abstract: Explicitly define "CXCL12" as "C-X-C motif chemokine 12" the first time it is mentioned. 

      As we have discussed in the previous response, we have not used C-X-C motif chemokine 12 the first time CXCL12 appears in the abstract, as it is a general acronym normally accepted to identify this specific chemokine, even in eLife papers. However, we introduce the complete name the first time it appears in the introduction section.

      (68) Page 2 - Abstract: Explicitly define "TMV and TMVI" upon its first mention.

      The acronym TM has been defined as “Transmembrane” in the revised version

      (69) Page 2 - Abstract: Review the use of "in silico" in the sentence for accuracy and consider revising if necessary.

      With the term “in silico” we want to refer to those experiments performed on a computer or via computer simulation software. We have carefully reviewed its use in the new version of the manuscript.

      (70) Page 2 - Abstract: Add a comma after "compound" in the sentence, "We identified AGR1.137, a small compound that abolishes...".

      A comma after “compound” has been added in the revised sentence.

      (71) Page 2 - Significance Statement: Rephrase the first sentence of the "Significance Statement" to avoid duplication with the abstract.

      The first sentence of the Significance Statement has been revised to avoid duplication with the abstract. 

      (72) Page 2 - Significance Statement: Break down the lengthy sentence, "Here, we performed in silico analyses..." for better readability. 

      The sentence starting by “Here, we performed in silico analyses…” has been broken down in the revised manuscript.

      (73) Page 2 - Introduction: Replace "Murine studies" with a more specific term for clarity.

      The term “murine studies” is normally used to refer to experimental studies developed in mice. We have nonetheless rephrased the sentence.

      (74) Page 3 - Introduction: Rephrase the sentence for clarity: "Finally, using a zebrafish model, ..."

      The sentence has been now rephrased for clarity.

      (75) Results-AGR1.135 and AGR1.137 block CXCL12-mediated CXCR4 nanoclustering and dynamics: 

      Rephrase the sentence for clarity: "Retreatment with AGR1.135 and AGR1.137, but not with AGR1.131, substantially impaired CXCL12-mediated receptor nanoclustering.”

      The sentence has been rephrased for clarity.

      (76) Results - AGR1.135 and AGR1.137 incompletely abolish CXCR4-mediated responses in Jurkat cells: Clarify the sentence: "In contrast to the effect promoted by AMD3100, a binding-site antagonist of CXCR4..."

      The sentence has been modified for clarity.

      (77) Consider using "orthosteric" instead of "binding-site" antagonist.

      The term orthosteric is now used throughout to refer to a binding site antagonist.

      (78) Discussion: Use the term "in silico" only when necessary.

      We have carefully reviewed the use of “in silico” in the manuscript.

      (79) Discussion: Clarify the sentence: "...not affect neither CXCR2-mediated cell migration...". Confirm if "CXCL12" is intended.

      The sentence refers to the chemokine receptor CXCR2, which binds the chemokine CXCL2. To test the specificity of the compounds for the CXCL12/CXCR4 axis, we evaluated CXCL2-mediated cell migration.  The results indicated that CXCL2/CXCR2 axis was not affected by the negative allosteric modulators, whereas CXCL12-mediated cell migration was blocked.  The sentence has been clarified in the new version of the manuscript.

      (80) Figure 4B: Bold the "B" in the figure label for consistency.

      The “B” in Fig. 4B has been bolded.

      Reviewer #2

      (1) Fig 2. The SPT data is sub-optimal in its presentation as well as analysis. Example images should be shown. The analysis and visualization of the data should be reconsidered for improvements. Graphs with several hundreds, in some conditions over 1000 tracks, per condition are very hard to compare. The same (randomly selected representative set) number of data points should be shown for better visualization. Also, more thorough analyses like MSD or autocorrelation functions are lacking - they would allow enhanced overall representation of the data.

      In agreement with the reviewer’s commentary, we have modified the representation of Fig. 2. We have carefully read the paper published by Lord S.J. and col. (Lord S. J. et al., J. Cell Biol. 2020) and we apply their recommendations for these type of data. We have also included as supplementary material representative videos for the TIRF-M experiments performed to allow readers to visualize the original images. Regarding the MSD analyses, they were developed to determine all D1-4 values. According to the data published by Manzo & García-Parajo (Manzo C. & García-Parajo M.F. Rep.Prog. Phys. 2015) due to the finite trajectory length the MSD curve at large tlag has poor statistics and deviates from linearity. However, the estimation of the Diffusion Coefficient (D1-4) can be obtained by fitting of the short tlag region of the MSD plot giving a more accurate idea of the behavior of particles. In agreement we show D1-4 values and not MSD data. 

      Due to the space restrictions, it is very difficult to include all the figures generated, but, only for review purposes, we included in this point-by-point reply some representative plots of the MSD values as a function of the time from individual trajectories showing different types of motion obtained in our experiments (Author response image 7).

      Author response image 7.

      Representative MSD plots from individual trajectories of CXCR4-AcGFP showing different types of motion: A) confined, B) Brownian/Free, C) direct transport of CXCR4-AcGFP particles diffusing at the cell membrane detected by SPT-TIRF in resting JKCD4 cells.

      Further analysis, such as the classification based on particle motion, has not been included in this article. This classification uses the moment scaling spectrum (MSS), described by Ewers H. et al. 2005 PNAS, and requires particles with longer trajectories (>50 frames). Only for review purposes, we include a figure showing the percentage of the MSS-based particle motion classification for each condition. As expected, most of long particles are confined, with a slight increase in the percentage upon CXCL12 stimulation in all conditions, except in cell treated with AGR1.137 (Author response image 8).

      Author response image 8.

      Effects of the negative allosteric modulators on the Types of Motion of CXCR4. Percentage of single trajectories with different types of motion, classified by MSS (DMSO: 58 particles in 59 cells on FN; 314 in 63 cells on FN+CXCL12; AGR1.131: 102 particles in 71 cells on FN; 258in 69 cells on FN+CXCL12; AGR1.135: 86 particles in 70 cells on FN; 120 in 77 cells on FN+CXCL12; AGR1.137: 47 particles in 66 cells on FN; 74 in 64 cells on FN+CXCL12) n = 3.

      (2) Fig 3. The figure legends have inadequate information on concentrations and incubation times used, both for the compounds and other treatments like CXCL12 and forskolin. For the Western blot data, also the quantification should be added to the main figure. The compounds, particularly AGR1.137 seem to lead to augmented stimulation of pAKT and pERK. This should be discussed

      The Fig. 3 legend has been corrected in the revised manuscript. Fig. 3D now contains representative western blots and the densitometry evaluation of these experiments. As the reviewer indicates, we also detected in the western blot included, augmented stimulation of pAKT and pERK in cells treated with AGR1.137. However, as shown in the densitometry analysis, no significant differences were noted between the data obtained with each compound. As a control of inhibition of CXCL12 stimulation we have included a new Supplementary Fig. 4 showing the effect of AMD3100 on CXCL12-induced activation of Akt and ERK as analyzed by western blot.

      (3) Fig. 4 immunofluorescence data on polarization as well as the flow chamber data lack the representative images of the data. The information on the source of the T cells is missing. Not clear if this experiment was done on bilayers or on static surfaces.

      Representative images for the data shown in Figure 4B have been added in the revised figure (Fig. 4C). The experiments in Fig. 4B were performed on static surfaces. As indicated in the material and methods section, primary T cell blasts were added to fibronectin-coated glass slides and then were stimulated or not with CXCL12 (5 min at 37ºC) prior to fix permeabilize and stain them with Phalloidin. Primary T cell blasts were generated from PBMCs isolated from buffy coats that were activated in vitro with IL-2 and PHA as indicated in the material and methods section.

      (4) The data largely lacks titration of different concentrations of the compounds. How were the effective concentration and treatment times determined? What happens at higher concentrations? It is important to show, for instance, if the CXCR12 binding gets inhibited at higher concentrations. most experiments were performed with 50 uM, but HeLa cell data with 100 uM. Why and how was this determined? 

      The revised version contains a new panel in Fig. 1B to show a more detailed kinetic analysis with different concentrations (1-100 µM) of the compounds in the migration experiments using Jurkat cells. We choose 50 µM for further studies as it was the concentration that inhibits 50-75% of the ligand induced cell migration. 

      We have also included the effect of two doses of the compounds (10 and 50 µM) in the zebrafish model as well as AMD3100 (1 and 10 µM) as control (new Fig. 7D, E).  Tumors were imaged within 2 hours of implantation and tumor-baring embryos were treated with either vehicle (DMSO) alone, AGR1.131 or AGR1.137 at 10 and 50 µM or AMD3100 at 1 and 10 µM for three days, followed by re-imaging.

      Regarding the amount of CXCL12 used in these experiments, with the exception of cell migration assays in Transwells, where the optimal concentration was established at 12.5 nM, in all the other experiments the optimal concentration of CXCL12 employed was 50 nM. In the case of the directional cell migration assays, we use 100 nM to create the chemokine gradient in the device. These concentrations have been optimized in previous works of our laboratory using these types of experiments. It should also be noted that in the experiments using lipid bilayers or TIRF-M experiments, CXCL12 is used to coat the plates and therefore it is difficult to determine the real concentration that is retained in the surface after the washing steps performed prior adding the cells.

      (5) The authors state that they could not detect direct binding of the compounds and the CXCR14. It should be reported what approaches were tried and discussed why this was not possible. 

      We attempted a fluorescence spectroscopy strategy to formally prove the ability of AGR1.135 to bind CXCR4, but this strategy failed because the compound has a yellow color that interfered with the determinations. We also tried a FRET strategy (see supplementary Fig. 7) and detected a significant increase in FRET efficiency of CXCR4 homodimers in cells treated with AGR1.135; this effect was due to the yellow color of this compound that interferes with FRET determinations. In the same assays, AGR1.137 did not modify FRET efficiency for CXCR4 homodimers and therefore we cannot assume that AGR1.137 binds on CXCR4. All these data have been considered in the revised discussion.

      (6) The proliferation data in Supplementary Figure 1 lacks controls that affect proliferation and indication of different cell cycle stages. What is the conclusion of this data? More information on the effects of the drug to cell viability would be important.

      Toxicity in Jurkat cells was first determined by propidium iodide incorporation. Some compounds (i.e., AGR1.103 and VSP3.1) were discarded from further analysis as they were toxic for cells. In a deeper analysis of cell toxicity, even if these compounds did not kill the cells, we checked whether they could alter the cell cycle of the cells. New Supplementary Fig. 2 includes a table (panel B) with the percentage of cells in each cell cycle phase, and no differences between any of the treatments tested were detected. 

      Nevertheless, to clarify this issue the revised version of the figure also includes H2O2 and staurosporine stimuli to induce cell death and cell cycle alterations as controls of these assays.

      (7) The flow data in Supplementary Figure 2 should be statistically analysed. 

      Bar graphs corresponding to the old Supplementary Fig. 2 (new Supplementary Fig. 3) are shown in Fig. 3B. We have also incorporated the corresponding statistical analysis to this figure. 

      (8) In general, the authors should revise the figure legends to ensure that critical details are added. 

      We have carefully revised all the figure legends in the new version of the manuscript.

      (9) Bar plots are very poor in showing the heterogeneity of the data. Individual data points should be shown whenever feasible. Superplot-type of representation is strongly advised (https://doi.org/10.1083/jcb.202001064).

      We have carefully read the paper published by Lord S.J. and col. (Lord S. J. et al., J. Cell Biol. 2020) and we apply their recommendations for our TIRF-M data (see revised Fig.  2).

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      Work by Brosseau et. al. combines NMR, biochemical assays, and MD simulations to characterize the influence of the C-terminal tail of EmrE, a model multi-drug efflux pump, on proton leak. The authors compare the WT pump to a C-terminal tail deletion, delta_107, finding that the mutant has increased proton leak in proteoliposome assays, shifted pH dependence with a new titratable residue, faster-alternating access at high pH values, and reduced growth, consistent with proton leak of the PMF.

      Strengths:

      The work combines thorough experimental analysis of structural, dynamic, and electrochemical properties of the mutant relative to WT proteins. The computational work is well aligned in vision and analysis. Although all questions are not answered, the authors lay out a logical exploration of the possible explanations.

      Weaknesses:

      There are a few analyses that are missing and important data left out. For example, the relative rate of drug efflux of the mutant should be reported to justify the focus on proton leak. Additionally, the correlation between structural interactions should be directly analyzed and the mutant PMF also analyzed to justify the claims based on hydration alone. Some aspects of the increased dynamics at high pH due to a potential salt bridge are not clear.

      Reviewer #2 (Public review):

      Summary:

      This manuscript explores the role of the C-terminal tail of EmrE in controlling uncoupled proton flux. Leakage occurs in the wild-type transporter under certain conditions but is amplified in the C-terminal truncation mutant D107. The authors use an impressive combination of growth assays, transport assays, NMR on WT and mutants with and without key substrates, classical MD, and reactive MD to address this problem. Overall, I think that the claims are well supported by the data, but I am most concerned about the reproducibility of the MD data, initial structures used for simulations, and the stochasticity of the water wire formation. These can all be addressed in a revision with more simulations as I point out below. I want to point out that the discussion was very nicely written, and I enjoyed reading the summary of the data and the connection to other studies very much.

      Strengths:

      The Henzler-Wildman lab is at the forefront of using quantitative experiments to probe the peculiarities in transporter biophysics, and the MD work from the Voth lab complements the experiments quite well. The sheer number of different types of experimental and computational approaches performed here is impressive.

      Weaknesses:

      The primary weaknesses are related to the reproducibility of the MD results with regard to the formation of water wires in the WT and truncation mutant. This could be resolved with simulations starting from structures built using very different loops and C-terminal tails.

      The water wire gates identified in the MD should be tested experimentally with site-directed mutagenesis to determine if those residues do impact leak.

      We appreciate the reviewers thoughtful consideration of our manuscript, and their recognition of the variety of experimental and computational approaches we have brought to bear in probing the very challenging question of uncoupled proton leak through EmrE.

      We did record SSME measurements with MeTPP+, a small molecule substrate at two different protein:lipid ratios. These experiments report the rate of net flux when both proton-coupled substrate antiport and substrate-gated proton leak are possible. We will add this data to the revision, including data acquired with different lipid:protein ratio that confirms we are detecting transport rather than binding. In brief, this data shows that the net flux is highly dependent on both proton concentration (pH) and drug-substrate concentration, as predicted by our mechanistic model. This demonstrates that both types of transport contribute to net flux when small molecule substrates are present.

      In the absence of drug-substrate, proton leak is the only possible transport pathway. The pyranine assay directly assesses proton leak under these conditions and unambiguously shows faster proton entry into proteoliposomes through the ∆107-EmrE mutant than through WT EmrE, with the rate of proton entry into ∆107-EmrE proteoliposomes matching the rate of proton entry achieved by the protonophore CCCP. We have revised the text to more clearly emphasize how this directly measures proton leak independently of any other type of transport activity. The SSME experiments with a proton gradient only (no small molecule substrate present) provide additional data on shorter timescales that is consistent with the pyranine data. The consistency of the data across multiple LPRs and comparison of transport to proton leak in the SSME assays further strengthens the importance of the C-terminal tail in determining the rate of flux.

      None of the current structural models have good resolution (crystallography, EM) or sufficient restraints (NMR) to define the loop and tail conformations sufficiently for comparison with this work. We are in the process of refining an experimental structure of EmrE with better resolution of the loop and tail regions implicated in proton-entry and leak. Direct assessment of structural interactions via mutagenesis is complicated because of the antiparallel homodimer structure of EmrE. Any point mutation necessarily affects both subunits of the dimer, and mutations designed to probe the hydrophobic gate on the more open face of the transporter also have the potential to disrupt closure on the opposite face, particularly in the absence of sufficient resolution in the available structures. Thus, mutagenesis to test specific predicted structural features is deferred until our structure is complete so that we can appropriately interpret the results.

      In our simulation setup, the MD results can be considered representative and meaningful for two reasons. First, the C-terminal tail, not present in the prior structure and thus modeled by us, is only 4 residues long. We will show in the revision and detailed response that the system will lose memory of its previous conformation very quickly, such that velocity initialization alone is enough for a diverse starting point. Second, our simulation is more like simulated annealing, starting from a high free energy state to show that, given such random initialization, the tail conformation we get in the end is consistent with what we reported. It is also difficult to sample back-and-forth tail motion within a realistic MD timescale. Therefore, it can be unconclusive to causally infer the allosteric motions with unbiased MD of the wildtype alone. The best viable way is to look at the equilibrium statistics of the most stable states between WT- and ∆107-EmrE and compare the differences.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      The work is well done and well presented. In my opinion, the authors must address the following questions.

      (1) It is unclear to a non-SSME-expert, why the net charge translocated in delta_107 is larger than in WT. For such small pH gradients (0.5-1pH unit), it seems that only a few protons would leave the liposome before the internal pH is adjusted to be the same as the external. This number can be estimated given the size of the liposomes. What is it? Once the pH gradient is dissipated, no more net proton transport should be observed. So, why would more protons flow out of the mutant relative to WT?

      We appreciate the complexity of both the system and assay and have made revisions to both the main text and SI to address these points more clearly. While we can estimate liposomes size, we cannot easily quantify the number of liposomes on the sensor surface so cannot calculate the amount of charge movement as suggested by the reviewer. We have revised Fig. 3.2 and added additional data at low and high pH with different lipid to protein ratios to distinguish pre-steady state (proton release from the protein) and steady state processes (transport). An extended Fig. 3.2 caption and revised discussion in the main text clarify these points.

      We have also revised SI figure 3.2 to include an example of transport driven by an infinite drug gradient. Drug-proton antiport results in net charge build-up in the liposome since two protons will be driven out for every +1 drug transported in. This also creates a pH gradient is created (higher proton concentration outside). The negative inside potential inhibits further antiport of drug. However, both the negative-inside potential and proton gradient will drives protons back into the liposome if there is a leak pathway available. This is clearly visible with a reversal of current negative (antiport) to positive (proton backflow), and the magnitude of this back flow is larger for ∆107-EmrE which lacks the regulatory elements provided by the C-terminal tail. We have amended the main text and SI to include this discussion.

      (2) Given the estimated rate of transport, size of liposomes, and pH gradient, how quickly would the SSME liposomes reach pH balance?

      Since SSME measurements are due to capacitive coupling and will represent the net charge movement, including pre-steady state contributions, the current values will be incredibly sensitive to individual rates of alternating access, proton and drug on- and off-rates. Time to pH balance would, therefore, differ based on the construct, LPR, absolute pH or drug concentrations as well as the magnitude of the given gradients. For this reason, we necessarily use integrated currents (transported charge over time) when comparing mutants as it reflects kinetic differences inherent to the mutant without over-processing the data, for example, by normalizing to peak currents which would over emphasize certain properties that will differ across mutants. This process allows for qualitative comparisons by subjecting mutants to the same pH and substrate gradients when the same density of transporter construct is present, and care is given to not overstate the importance of the actual quantities of charges that are moving as they will be highly context dependent. This is clearly seen in Fig 3.2 where the current is not zero and the net transported charge is still changing at the end of 1 second. We have amended SI figure 3.2 and the main text to include this discussion.

      (3) Given that H110 and E14 would deprotonate when the external pH is elevated above 7 and that these protons would be released to external bulk, the external bulk pH would decrease twice as much for WT compared to delta107. This would decrease the pH gradient for WT relative to the mutant. Can these effects be quantified and accounted for? Would this ostensibly decrease the amount of charge that transfers into the liposomes for WT? How would this impact the current interpretation that the two systems are driven by the same gradient?

      The reviewer is correct that there will be differences in deprotonation of WT and ∆107 and the amount of proton release will also change with pH. We have amended Figure 3.2 to clarify this difference and its significance. For the proton gradient only conditions in Figure 3, each set of liposomes were equilibrated to the starting pH by repeated washings and incubation before measurement occurred. For example, for the pH 6.5 inside, pH 7 outside condition, both the inside and outside pH were equilibrated at 6.5, and both E14 residues will be predominantly protonated in WT and ∆107, and H110 will be predominantly protonated in WT-EmrE. Upon application of the external pH 7 solution, protons will be released from the E14 of either construct, with additional proton being released from H110 for WT-EmrE causing a large pre-steady state negative contribution to the signal (Fig. 3.2A). Under this pH condition, we the peak current correlates with the LPR, as this release of protons will depend on density of the transporter. However, we also see that the longer-time decay of the signal correlates with the construct (WT or ∆107) and is relatively independent of LPR, consistent with a transport process rather than a rapid pre-steady state release of protons. Therefore, when we look at the actual transported charge over time, despite the higher contribution of proton release to the WT-EmrE signal, the significant increase in uncoupled proton transport for the C-terminal deletion mutant dominates the signal.

      As a contrast, we apply this same analysis to the pH 8 inside, pH 8.5 outside condition where both sets of transports will be deprotonated from the start (Fig. 3.2B). Now the peak currents, decay rates, and transported charge over time are all consistent for a given construct (WT or ∆107). The two LPRs for an individual construct match within error, as the differences in overall charge movement and transported charge over time are independent of pre-steady-state proton release from the transporter at high pH.

      (4) A related question, how does the protonation of H110 influence the potential rate of proton transport between the two systems? Does the proton on H110 transfer to E14?

      The protonation of H110 will only influence the rate of transport of WT-EmrE as its protonation is required for formation of the hydrogen bonding network that coordinates gating. However, protonation of both E14s will influence the rate of proton transport of both systems as protonation state affects the rate of alternating access which is necessary for proton turnover. This is another reason we use the transported charge over time metric to compare mutants as it allows for a common metric for mutants with altered rates which are present in the same density and under the same gradient conditions. We do not have any evidence to support transfer of proton from H110 to E14, but there is also no evidence to exclude this possibility. We do not discuss this in the manuscript because it would be entirely speculative.

      (5) Is the pKa in the simulations (Figure 6B) consistent with the experiment?

      We calculated the pKa from this WT PMF and got a pKa of 7.1, which is in close proximity of the experimental value of 6.8

      (6) Why isn't the PMF for delta_107 compared to WT to corroborate the prediction that hydration sufficiently alters both the rate and pKa of E14?

      We appreciate the reviewer’s suggestion and agree that a direct comparison would be valuable. However, several factors limit the interpretability of such an analysis in this context:

      (a) Our data indicate that the primary difference in free energy barriers between WT and Δ107 lies in the hydration step rather than proton transport itself. To fully resolve this, a 2D PMF calculation via 2D umbrella sampling would be required which can be very expensive. Solely looking at the proton transport side of this PMF will not give much difference.

      (b) Given this, the aim for us to calculate this PMF is to support our conjecture that the bottleneck for such transport is the hydrophobic gate.

      (7) The authors suggest that A61 rotation 'controls the water wire formation' by measuring the distribution of water connectivity (water-water distances via logS) and average distances between A61 and I68/I67. Delta_107 has a larger inter-residue distance (Figure 6A) more probable small log S closer waters connecting E14 and two residues near the top of the protein (Figure 5A). However, it strikes me that looking at average distances and the distribution of log S is not the best way to do this. Why not quantify the correlation between log S and A61 orientation and/or A61-I68/I71 distances as well as their correlation to the proposed tail interactions (D84-R106 interactions) to directly verify the correlation (and suggest causation) of these interactions on the hydration in this region. Additionally, plotting the RMSD or probability of waters below I68 and I171 as a function of A61-I68 distances and/or numbers over time would support the log S analysis.

      The reviewer requested that we provide direct correlation analyses between A61 orientation, residue distances (A61-I68/I71), and water connectivity (logS) to better support the claim about water wire formation, rather than relying solely on average distances and distributions.

      We appreciate the reviewer’s suggestion to strengthen our analysis with direct correlations. However, due to the slow kinetics of hydration/dehydration events, unbiased simulation timescales do not permit sufficient sampling of multiple transitions to perform statistically robust dynamic correlation analyses. Instead, our approach focuses on equilibrium statistics, which reveal the dominant conformational states of WT- and Δ107-EmrE and provide meaningful insights into shifts in hydration patterns.

      (8) It looks like the D84-R106 salt bridge controls this A61-I68 opening. Could this also be quantifiably correlated?

      As discussed in response to the previous question, the unbiased simulation timescales do not permit sufficient sampling of multiple transitions to perform statistically robust dynamic correlation analyses.

      (9) The NMR results show that alternating access increases in frequency from ~4/s for WT at low and high pH to ~17/s for delta_107 only at high pH. They then go on to analyze potential titration changes in the delta_107 mutant, finding two residues with approximate pKa values of 5.6 and 7.1. The former is assigned to E14, consistent with WT. But the latter is suggested to be either D84, which salt bridges to R106, or the C-terminal carboxylate. If it is D84, why would deprotonation, which would be essential to form the salt bridge, increase the rate of alternating access relative to WT?

      We note that the faster alternating access rate was observed for TPP+-bound ∆107-EmrE, not the transporter in the absence of substrate. In the absence of substrate the relatively broad lines preclude quantitative determination of the alternating access rate by NMR making it difficult to judge the validity of the reviewers reasoning. Identification of which residue (D84 or H110) corresponds to the shifted pKa is ultimately of little consequence as this mutant does not reflect the native conditions of the transporter. It is far more important to acknowledge that both R106 and D84 are sensitive to this deprotonation as it indicates these residues are close in space and provides experimental support for the existence of the salt bridge identified in the MD simulations, as discussed in the manuscript.

      (10) In a more general sense, can the authors speculate why an efflux pump would evolve this type of secondary gate that can be thrown off by tight binding in the allosteric site such as that demonstrated by Harmane? What potential advantage is there to having a tail-regulated gate?

      This was likely a necessity to allow for better coupling as these transporters evolved to be more promiscuous. The C-terminal tail is absent in tightly coupled family members such as Gdx who are specific for a single substrate and have a better-defined transport stoichiometry. We have included this discussion in the main text and are currently investigating this phenomenon further. Those experiments are beyond the scope of the current manuscript.

      (11) It is hard to visualize the PT reaction coordinate. Is the e_PT unit vector defined for each window separately based on the initial steered MD pathway? If so, how reliant is the PT pathway on this initial approximate path? Also, how does this position for each window change if/when E14 rotates? This could be checked by plotting the x,y,z distributions for each window and quantifying the overlap between windows in cartesian space. These clouds of distributions could also be plotted in the protein following alignment so the reader can visualize the reaction coordinate. Does the CEC localization ever stray to different, disconnected regions of cartesian phase space that are hidden by the reaction coordinate definition?

      The unit vector e_PT is the same across all windows based on unbiased MD. Therefore, the reaction coordinate (a scalar) is the vector from the starting point to the CEC, projected on this unit vector. E14 rotation does not significantly change the window definition a lot unless the CEC is very close to E14, where we found this to be a better CV. For detailed discussions about this CV, especially a comparison between a curvilinear CV, please see J. Am. Chem. Soc. 2018, 140, 48, 16535–16543 “Simulations of the Proton Transport” and its SI Figure S1.In the Supplementary Information, we added figure 6.1 to show the average X, Y, Z coordinates of each umbrella window.

      (12) Lastly, perhaps I missed it, but it's unclear if the rate of substrate efflux is also increased in the delta_107 mutant. If this is also increased, then the overall rate of exchange is faster, including proton leak. This would be important to distinguish since the focus now is entirely on proton leaks. I.e., is it only leak or is it overall efflux and leak?

      We have amended SI figure 3.2 to include a gradient condition where an infinite drug gradient is created across the liposome. The infinite gradient allows for rapid transport of drug into the liposomes until charge build-up opposes further transport. This peak is at the same time for both LPRs of WT- and ∆107-EmrE suggesting the rate of substrate transport is similar. Differences in the peak heights across LPRs can be attributed to competition between drug and proton for the primary binding site such that more proton will be released for the higher density constructs as described above. This process does also create a proton gradient as drug moving in is coupled to two protons moving out so as charge build-up inhibits further drug movement, the building proton gradient will also begin to drive proton back in which is another example of uncoupled leak. Here, again we see that this back-flow of protons or leak is of greater magnitude for ∆107-EmrE proteoliposomes that for those with WT-EmrE. We have included this discussion in the SI and main text.

      Minor

      (1) Introduction - the authors describe EmrE as a model system for studying the molecular mechanism of proton-coupled transport. This is a rather broad categorization that could include a wide range of phenomena distal from drug transport across membranes or through efflux pumps. I suggest further specifying to not overgeneralize.

      We revised to note the context of multidrug efflux.

      Reviewer #2 (Recommendations for the authors):

      Simulations. The initial water wire analysis is based on 4 different 1 ms simulations presented in Figure 5. The 3 WT replicates show similar results for the tail-blocking water wire formation, but the details of the system build and loop/C-terminal tail placement are not clear. It does appear that a single C-terminal tail model was created for all WT replicates. Was there also modeling for any parts of the truncation mutant? Regardless, since these initial placements and uncertainties in the structures may impact the results and subsequent water wire formation, I would like a discussion of how these starting structures impacted the formation or not of wires. I think that another WT replicate should be run starting from a completely new build that places the tail in a different (but hopefully reasonable location). This could be built with any number of tools to generate reasonable starting structures. It's critical to ensure that multiple independent simulations across different initial builds show the same water wire behavior so that we know the results are robust and insensitive to the starting structure and stochastic variation.

      We thank Reviewer 2 for their suggestion regarding the discussion of the initial structure. In our simulations, the C-terminal tail was initially modeled in an extended conformation (solvent-exposed) to mimic its disordered state prior to folding. This approach resembles an annealing process, where the system evolves from a higher free-energy state toward equilibrium. Notably, across all three replicas, we observed consistent folding of the tail onto the protein surface, supporting the robustness of this conformational preference.

      For the Δ107 truncation mutant, minimal modeling was required, as most experimental structures resolve residues up to S105 or R106. To rigorously assess the influence of the starting configuration, we analyzed the tail’s dynamics using backbone dihedral angle auto- and cross-correlation functions (new Supplementary Figures 10.1 and 10.2). These analyses reveal rapid decay of correlations—consistent with the tail’s short length (5 residues) and high flexibility—indicating that the system "forgets" its initial configuration well within the simulation timescale. Thus, we conclude that our sampling is sufficient to capture equilibrium behavior, independent of the starting structure.

      What does the size of the barrier in the PMF (Figure 6B) imply about the rate of proton transfer/leak and can the pKa shift of the acidic residue be estimated with this energy value compared to bulk?

      We noticed this point aligns with a related concern raised by Reviewer 1. For a detailed discussion please refer to Point 5 in our response to Reviewer 1.

      Experimental validation. The hypotheses generated by this work would be better buttressed if there were some mutation work at the hydrophobic gate (61, 68, 71) to support it. I realize that this may be hard, but it would significantly improve the quality.

      Due to the small size of the transporter, any mutagenesis of EmrE should necessarily be accompanied by functional characterization to fully assess the effects of the mutation on rate-limiting steps. We have revised the manuscript to add a discussion of the challenges with analyzing simple point mutants and citing what is known from prior scanning mutagenesis studies of EmrE.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this manuscript, the authors present a novel CRISPR/Cas9-based genetic tool for the dopamine receptor dop1R2. Based on the known function of the receptor in learning and memory, they tested the efficacy of the genetic tool by knocking out the receptor specifically in mushroom body neurons. The data suggest that dop1R2 is necessary for longer-lasting memories through its action on ⍺/ß and ⍺'/ß' neurons but is dispensable for short-term memory and thus in ɣ neurons. The experiments impressively demonstrate the value of such a genetic tool and illustrate the specific function of the receptor in subpopulations of KCs for longer-term memories. The data presented in this manuscript are significant.

      Reviewer #2 (Public Review):

      Summary:

      This manuscript examines the role of the dopamine receptor, Dop1R2, in memory formation. This receptor has complex roles in supporting different stages of memory, and the neural mechanisms for these functions are poorly understood. The authors are able to localize Dop1R2 function to the vertical lobes of the mushroom body, revealing a role in later (presumably middle-term) aversive and appetitive memory. In general, the experimental design is rigorous, and statistics are appropriately applied. While the manuscript provides a useful tool, it would be strengthened further by additional mechanistic studies that build on the rich literature examining the roles of dopamine signaling in memory formation. The claim that Dop1R2 is involved in memory formation is strongly supported by the data presented, and this manuscript adds to a growing literature revealing that dopamine is a critical regulator of olfactory memory. However, the manuscript does not necessarily extend much beyond our understanding of Dop1R2 in memory formation, and future work will be needed to fully characterize this reagent and define the role of Dop1R2 in memory.

      Strengths:

      (1) The FRT lines generated provide a novel tool for temporal and spatially precise manipulation of Dop1R2 function. This tool will be valuable to study the role of Dop1R2 in memory and other behaviors potentially regulated by this gene.

      (2) Given the highly conserved role of Dop1R2 in memory and other processes, these findings have a high potential to translate to vertebrate species.

      Weaknesses:

      (1) The authors state Dop1R2 associates with two different G-proteins. It would be useful to know which one is mediating the loss of aversive and appetitive memory in Dop1R2 knockout flies.

      We thank you for the insightful comment. We agree that it would be very useful to know which G-proteins are transmitting Dop1R2 signaling. To that extent, we examined single-cell transcriptomics data to check the level of co-expression of Dop1R2 with G-proteins that are of interest to us. (Figure 1 S1)

      Lines 312-325

      “Some RNA binding proteins and Immediate early genes help maintain identities of Mushroom body cells and are regulators of local transcription and translation (de Queiroz et al., 2025; Raun et al., 2025). So, the availability of different G-proteins may change in different lobes and during different phases of memory. The G-protein via which GPCRs signal, may depend on the pool of available G-proteins in the cell/sub-cellular region (Hermans, 2003)., Therefore, Dop1R2 may signal via different G-proteins in different compartments of the Mushroom body and also different compartments of the neuron. We looked at Gαo and Gαq as they are known to have roles in learning and forgetting (Ferris et al., 2006; Himmelreich et al., 2017). We found that Dop1R2 co-expresses more frequently with Gαo than with Gαq (Figure 1 S1). While there is evidence for Dop1R2 to act via Gαq (Himmelreich et al., 2017). It is difficult to determine whether this interaction is exclusive, or if Dop1R2 can also be coupled to other G-proteins. It will be interesting to determine the breadth of G-proteins that are involved in Dop1R2 signaling.”

      (2) It would be interesting to examine 24hr aversive memory, in addition to 24hr appetitive memory.

      This is indeed an important point and we agree that it will complete the assessment of temporally distinct memory traces. We therefore performed the Aversive LTM experiments and include them in the results.

      Lines 208-228

      “24h memory is impaired by loss of Dop1R2

      Next, we wanted to see if later memory forms are also affected. One cycle of reward training is sufficient to create LTM (Krashes & Waddell, 2008), while for aversive memory, 5-6 cycles of electroshock-trainings are required to obtain robust long-term memory scores (Tully et al., 1994). So, we looked at both, 24h aversive and appetitive memory. For aversive LTM, the flies were tested on the Y-Maze apparatus as described in (Mohandasan et al., (2022).

      Flipping out Dop1R2 in the whole MB causes a reduced 24h memory performance (Figure 4A, E). No phenotype was observed when Ddop1R2 was flipped out in the γ-lobe (Figure 4B, F). However, similar to 2h memory, loss of Ddop1R2 in the α/β-lobes (Figure 4C, G) or the α’/β’-lobes (Figure 4D, H) causes a reduction in memory performance. Thus, Dop1R2 seems to be involved in aversive and appetitive LTM in the α/β-lobes and the α’/β’-lobes.

      Previous studies have shown mutation in the Dop1R2 receptor leads to improvement in LTM when a single shock training paradigm is used (Berry et al., 2012). As we found that it disrupts LTM, we wanted to verify if the absence of Dop1R2 outside the MB is what leads to an improvement in memory. To that extent, we tested panneuronal flip-out of Dop1R2 flies for 6hr and 24hr memory upon single shock using the elav-Gal4 driver. We found that it did not improve memory at both time points (Figure 4 S1). Confirming that flipping out Dop1R2 panneuronally does not improve LTM (Figure 4 S1C) and highlighting its irrelevance in memory outside the MB.”

      (3) The manuscript would be strengthened by added functional analysis. What are the DANs that signal through Dop1R. How do these knockouts impact MBONs?

      We thank you for this question. We indeed agree that it is a highly relevand and open question, how distinct DANs signal via distinct Dopamine receptors. Our work here uniquely focusses on Dop1R2 within the MB. We aim to investigate other DopRs and the connection between DANs in the future using similar approaches.

      (4) Also in Figure 2, the lobe-specific knockouts might be moved to supplemental since there is no effect. Instead, consider moving the control sensory tests into the main figure.

      We thank you for this suggestion and understand that in Figure 2 no significant difference is seen. However, we have emphasized in the text that the results from the supplementary figures are just to confirm that the modifications made at the Dop1R2 locus did not alter its normal function.

      Lines 156-162

      “We wanted to see if flipping out Dop1R2 in the MB affects memory acquisition and STM by using classical olfactory conditioning. In short, a group of flies is presented with an odor coupled to an electric shock (aversive) or sugar (appetitive) followed by a second odor without stimulus. For assessing their memory, flies can freely choose between the odors either directly after training (STM) or at a later timepoint.

      To ensure that the introduced genetic changes to the Dop1R2 locus do not interfere with behavior we first checked the sensory responses of that line”

      (5) Can the single-cell atlas data be used to narrow down the cell types in the vertical lobes that express Dop1R2? Is it all or just a subset?

      This is indeed an interesting question, and we thank you for mentioning it. To address this as best as we could, we analyzed the single cell transcriptomic data from (Davie et al., 2018) and presented it in Figure 1 S1.

      Reviewer #3 (Public Review):

      Summary:

      Kaldun et al. investigated the role of Dopamine Receptor Dop1R2 in different types and stages of olfactory associative memory in Drosophila melanogaster. Dop1R2 is a type 1 Dopamine receptor that can act both through Gs-cAMP and Gq-ERCa2+ pathways. The authors first developed a very useful tool, where tissue-specific knock-out mutants can be generated, using Crispr/Cas9 technology in combination with the powerful Gal4/UAS gene-expression toolkit, very common in fruit flies.

      They direct the K.O. mutation to intrinsic neurons of the main associative memory centre fly brain-the mushroom body (MB). There are three main types of MB-neurons, or Kenyon cells, according to their axonal projections: a/b; a'/b', and g neurons.

      Kaldun et al. found that flies lacking dop1R2 all over the MB displayed impaired appetitive middle-term (2h) and long-term (24h) memory, whereas appetitive short-term memory remained intact. Knocking-out dop1R2 in the three MB neuron subtypes also impaired middle-term, but not short-term, aversive memory.

      These memory defects were recapitulated when the loss of the dop1R2 gene was restricted to either a/b or a'/b', but not when the loss of the gene was restricted to g neurons, showcasing a compartmentalized role of Dop1R2 in specific neuronal subtypes of the main memory centre of the fly brain for the expression of middle and long-term memories.

      Strengths:

      (1) The conclusions of this paper are very well supported by the data, and the authors systematically addressed the requirement of a very interesting type of dopamine receptor in both appetitive and aversive memories. These findings are important for the fields of learning and memory and dopaminergic neuromodulation among others. The evidence in the literature so far was generated in different labs, each using different tools (mutants, RNAi knockdowns driven in different developmental stages...), different time points (short, middle, and long-term memory), different types of memories (Anesthesia resistant, which is a type of protein synthesis independent consolidated memory; anesthesia sensitive, which is a type of protein synthesis-dependent consolidated memory; aversive memory; appetitive memory...) and different behavioral paradigms. A study like this one allows for direct comparison of the results, and generalized observations.

      (2) Additionally, Kaldun and collaborators addressed the requirement of different types of Kenyon cells, that have been classically involved in different memory stages: g KCs for memory acquisition and a/b or a'/b' for later memory phases. This systematical approach has not been performed before.

      (3) Importantly, the authors of this paper produced a tool to generate tissue-specific knock-out mutants of dop1R2. Although this is not the first time that the requirement of this gene in different memory phases has been studied, the tools used here represent the most sophisticated genetic approach to induce a loss of function phenotypes exclusively in MB neurons.

      Weaknesses:

      (1) Although the paper does have important strengths, the main weakness of this work is that the advancement in the field could be considered incremental: the main findings of the manuscript had been reported before by several groups, using tissue-specific conditional knockdowns through interference RNAi. The requirement of Dop1R2 in MB for middle-term and long-term memories has been shown both for appetitive (Musso et al 2015, Sun et al 2020) and aversive associations (Plaçais et al 2017).

      Thank you for this comment. We believe that the main takeaway from the paper is the elegant tool we developed, to study the role of Dop1R2 in fruit flies by effectively flipping it out spatio-temporally. Additionally, we studied its role in all types of olfactory associative memory to establish it as a robust tool that can be used for further research in place of RNAi knockouts which are shown to be less efficient in insects as mentioned in the texts in line 394-398.

      “The genetic tool we generated here to study the role of the Dop1R2 dopamine receptor in cells of interest, is not only a good substitute for RNAi knockouts, which are known to be less efficient in insects (Joga et al., 2016), but also provides versatile possibilities as it can be used in combination with the powerful genetic tools of Drosophila.”

      (2) The approach used here to genetically modify memory neurons is not temporally restricted. Considering the role of dopamine in the correct development of the nervous system, one must consider the possible effects that this manipulation can have in the establishment of memory circuits. However, previous studies addressing this question restricted the manipulation of Dop1R2 expression to adulthood, leading to the same findings than the ones reported in this paper for both aversive and appetitive memories, which solidifies the findings of this paper.

      We thank you for this comment and we agree that it would be important to show a temporally restricted effect of Dop1R2 knockout. To assess this and rule out potential developmental defects we decided to restrict the knockout to the post-eclosion stage and to include these results.

      Lines 230-250

      “Developmental defects are ruled out in a temporally restricted Dop1R2 conditional knockout.

      To exclude developmental defects in the MB caused by flip-out of Dop1R2, we stained fly brains with a FasII antibody. Compared to genetic controls, flies lacking Dop1R2 in the mushroom body had unaltered lobes (Figure 4 S2C).

      Regardless, we wanted to control for developmental defects leading to memory loss in flip-out flies. So, we generated a Gal80ts-containing line, enabling the temporal control of Dop1R2 knockout in the entire mushroom body (MB). Given that the half-life of the receptor remains unknown, we assessed both aversive short-term memory (STM) and long-term memory (LTM) to determine whether post-eclosion ablation of Dop1R2 in the MB produced differences compared to our previously tested line, in which Dop1R2 was constitutively knocked out from fertilization. To achieve this, flies were maintained at 18°C until eclosion and subsequently shifted to 30°C for five to seven days. On the fifth day, training was conducted, followed by memory testing. Our results indicate that aversive STM was not significantly impaired in Dop1R2-deficient MBs compared to control flies (Figure 4 S3), consistent with our previous findings (Figure 2). However, aversive LTM was significantly impaired relative to control lines (Figure 4 S3), which also aligned with prior observations. These findings strongly indicate that memory loss caused by Dop1R2 flip-out is not due to developmental defects.”

      (3) The authors state that they aim to resolve disparities of findings in the field regarding the specific role of Dop1R2 in memory, offering a potent tool to generate mutants and addressing systematically their effects on different types of memory. Their results support the role of this receptor in the expression of long-term memories, however in the experiments performed here do not address temporal resolution of the genetic manipulations that could bring light into the mechanisms of action of Dop1R2 in memory. Several hypotheses have been proposed, from stabilization of memory, effects on forgetting, or integration of sequences of events (sensory experiences and dopamine release).

      We thank you for this comment. We agree that it would be interesting to dissect the memory stages by knocking out the receptor selectively in some of them (encoding, consolidation, retrieval). However, our tool irreversibly flips out Dop1R2 preventing us from investigating the receptor’s role in retrieval. Our results show that the receptor is dispensable for STM formation (Figure 2, Figure 4 Supplement 3), suggesting that it is not involved in encoding new information. On the other hand, it is instead involved in consolidation and/or retrieval of long-term and middle-term memories (Figure 3, Figure 4, Figure 5B).

      Overall, the authors generated a very useful tool to study dopamine neuromodulation in any given circuit when used in combination with the powerful genetic toolkit available in Drosophila. The reports in this paper confirmed a previously described role of Dop1R2 in the expression of aversive and appetitive LTM and mapped these effects to two specific types of memory neurons in the fly brain, previously implicated in the expression and consolidation of long-term associative memories.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) On the first view, the results shown here are different from studies published earlier, while in the same line with others (e.g. Sun et al, for appetitive 24h memories). For example, Berry et al showed that the loss of dop1R2 impairs immediate memory, while memory scores are enhanced 3h, 6h, and 24h after training. Further, they showed data that shock avoidance, at least for higher shock intensities, is reduced in mutant (damb) flies. All in all, this favors how important it is to improve the genetic tools for tissue-specific manipulation. Despite the authors nicely discussing their data with respect to the previous studies, I wondered whether it would be suitable to use the new tool and knock out dop1R2 panneuronally to see whether the obtained data match the results published by Berry et al.. Further, as stated in line 105ff: "As these studies used different learning assays - aversive and appetitive respectively as well as different methods, it is unclear if Dop1R2 has different functions for the different reinforcement stimulus" I wondered why the authors tested aversive and appetitive learning for STM and 2h memory, but only appetitive memory for 24h.

      Thank you for this comment. To that extent, as mentioned above in response to reviewer #2, we included in the results the aversive LTM experiment (Figure 4). Moreover, we performed experiments along the line of Berry et al. using our tool as shown in Figure 4 S1. Our results support that Dop1R2 is required for LTM, rather than to promote forgetting.

      (2) Line 165ff: I can´t find any of the supplementary data mentioned here. Please add the corresponding figures.

      Thank you for pointing this out. In that line we don’t refer to any supplementary data, but to the Figure 1F, showing the absence of the HA-tag in our MB knock-out line. We have clarified this in the text (lines 151-153)

      (3) I can't imagine that the scale bar in Figure 1D-F is correct. I would also like to suggest to show a more detailed analysis of the expression pattern. For example, both anterior and posterior views would be appropriate, perhaps including the VNC. This would allow the expression pattern obtained with this novel tool to be better compared with previously published results. Also, in relation to my comment above (1), it may help to understand the functional differences with previous studies, especially as the authors themselves state that the receptor is "mainly" expressed in the mushroom body (line 99). It would be interesting to see where else it is expressed (if so). This would also be interesting for the panneuronal knockdown experiment suggested under (1). If the receptor is indeed expressed outside the mushroom body, this may explain the differences to Berry et al.

      Thank you for noting this, there was indeed a mistake in the scale bar which we now fixed. Since with our HA-tag immunostaining we could not detect any noticeable signal outside of the MB, we decided to analyze previously existing single cell transcriptomics data that showed expression of the receptor in 7.99% of cells in the VNC and in 13.8% of cells outside the MB (lines 98-100) confirming its sparse expression in the nervous system. The lack of detection of these cells is likely due to the sparse and low expression of the protein. The HA-tag allows to detect the endogenous level of the locus (it is possible that a Gal4/UAS amplification of the signal might allow to detect these cells).

      Regarding the panneuronal knockout, we decided to try to replicate the experiment shown in Berry et al. in Figure 4 S1 and found that Dop1R2 is required for LTM.

      (4) Related to learning data shown in Figures 2-4, the authors should show statistical differences between all groups obtained in the ANOVA + PostHoc tests. Currently, only an asterisk is placed above the experimental group, which does not adequately reflect the statistical differences between the groups. In addition, I would like to suggest adding statistical tests to the chance level as it may be interesting to know whether, for example, scores of knockout flies in 3C and 3D are different from the chance level.

      Many thanks for this correction, we agree with the fact that the way significance scores were shown was not informative enough. We fixed the point by now showing significance between all the control groups and the experimental ones. We also inserted the chance level results in the figure legends.

      (5) Unfortunately, the manuscript has some typing errors, so I would like to ask the authors to check the manuscript again carefully.

      Some Examples:

      Line 31: the the

      Line 56: G-Protein

      Line 64: c-AMP

      Line 68: Dopamine

      Line 70: G-Protein (It alternates between G-protein and G-Protein)

      Line 76: References are formatted incorrectly

      Line 126: Ha-Tag (It alternates between Ha and HA)

      Line 248: missing space before the bracket...is often found

      Thank you for noticing these errors, we have now corrected the spelling throughout the manuscript.

      (6) In the figures the axes are labelled Preference Index (Pref"I"). In the methods, however, the calculation formula is defined as "PREF".

      We thank you for drawing attention to this. To avoid confusion, we changed the definition in the methods section so that it could be clear and coherent (“Memory tests” paragraph in the methods section).

      “PREF = ((N<sub>arm1</sub> - N<sub>arm2</sub>) 100) / N<sub>total</sub> the two preference indices were calculated from the two reciprocal experiments. The average of these two PREFs gives a learning index (LI). LI = (PREF<sub>1</sub> + PREF<sub>2</sub>) / 2.

      In case of all Long-term Aversive memory experiments, Y-Maze protocol was adapted to test flies 24 hours post training. Testing using the Y-Maze was done following the protocol as described in (Mohandasan et al., 2022) where flies were loaded at the bottom of 20-minutes odorized 3D-printed Y-Mazes from where they would climb up to a choice point and choose between the two odors. The learning index was then calculated after counting the flies in each odorized vial as follows: LI = ((N<sub>CS-</sub> - N<sub>CS+</sub>) 100) / N<sub>total</sub>. Where NCS- and NCS+ are the number of flies that were found trapped in the untrained and trained odor tube respectively.

      Reviewer #2 (Recommendations For The Authors):

      (1) In Figures 2 and 3, the legends running two different subfigures is confusing. Would be helpful to find a different way to present.

      Thank you for your suggestion. We modified how we present legends, placing them vertically so that it is clearer.

      (2) Use additional drivers to verify middle and long-term memory phenotypes.

      We agree that it would be interesting to see the role of Dop1R2 in other neurons. To that extent, we looked at long term aversive memory in flies where the receptor was panneuronaly flipped out, and did not find evidence that suggested involvement of Dop1R2 in memory processes outside the MB. (Figure 4 S1)

      (3) Additional discussion of genetic background for fly lines would be helpful.

      Thank you for your advice. We have mentioned the genetic background of flies in the key resources table of the methods sections. Additionally, we also included further explanation on how the lines were created and their genetic background (see “Fly Husbandry” paragraph in the methods section).

      “UAS-flp;;Dop1R2 cko flies and Gal4;Dop1R2<sup>cko</sup> flies were crossed back with ;;Dop<sup>cko</sup> flies to obtain appropriate genetic controls which were heterozygous for UAS and Gal4 but not Dop1R2<sup>cko</sup>.”

      Reviewer #3 (Recommendations For The Authors):

      Line 109 states that to resolve the problem a tool is developed to knock down Dop1R2 in s spatial and temporal specific manner- while I agree that this is within the potential of the tool, there is no temporal control of the flipase action in this study; at least I cannot find references to the use of target/gene switch to control stages of development or different memory phases. However the version available for download is missing supplementary information, so I did not have access to supplementary figures and tables.

      Thank you for the comment, as mentioned before it would be great to be able to dissect the memory phases. We show in lines 232 – 250 and Figure 4 S3 that the temporally restricted flip-out to the post-eclosion life stage gave us coherent results with the previous findings, ruling out potential developmental defects.

      In relation to my comment on the possible developmental effects of the loss of the gene, Figure 1F could showcase an underdeveloped g lobe when looking at the lobe profiles. I understand this is not within the scope of the figure, but maybe a different z projection can be provided to confirm there are no obvious anatomical alterations due to the loss of the receptor.

      We understand the doubt about the correct development of the MB and we thank you for your insightful comment. To that extent we decided to perform a FasII immunostaining that could show us the MB in the different lines (Figure 4 S2) and it appears that there are no notable differences in the lobes development in our knockout line.

      It seems that the obvious missing piece of the puzzle would be to address the effects of knocking out Dop1R2 in aversive LTM. The idea of systematically addressing different types of memory at different time points and in different KCs is the most attractive aspect of this study beyond the technical sophistication, and it feels that the aim of the study is not delivered without that component.

      We agree and we thank you for the clarification. As mentioned above in response to Reviewer #2, we decided to test aversive LTM as described in lines –208-228, Figure 4, Figure 4 S1.

      Some statements of the discussion seem too vague, and I think could benefit from editing:

      Line 284 "however other receptors could use Gq and mediate forgetting"- does this refer to other dopamine receptors? Other neuromodulators? Examples?

      Thank you for pointing this out. We Agree and therefore decided to omit this line.

      Line 289 "using a space training protocol and a Dop1R2 line" - this refers to RNAi lines, but it should be stated clearly.

      That is correct, we thank you for bringing attention to this and clarified it in the manuscript.

      –Lines 329-330

      “Interestingly, using a spaced training protocol and a Dop1R2 RNAi knockout line another study showed impaired LTM (Placais et al., 2017).”

      The paragraph starting in line 305 could be re-written to improve clarity and flow. Some statements seem disconnected and require specific citations. For example "In aversive memory formation, loss of Dop1R2 could lead to enhanced or impaired memory, depending on the activated signaling pathways and the internal state of the animal...". This is not accurate. Berry et al 2012 report enhanced LTM performance in dop1R2 mutants whereas Plaçais et al 2017 report LTM defects in Dop1R2 knock-downs, but these different findings do not seem to rely on different internal states or signaling pathways. Maybe further elaboration can help the reader understand this speculation.

      We agree and we thank you for this advice. We decided to add additional details and citations to validate our speculation

      Lines 350-353

      “In aversive memory formation, loss of Dop1R2 could lead to enhanced or impaired memory, depending on the activated signaling pathways. The signaling pathway that is activated further depends on the available pool of secondary messengers in the cell (Hermans, 2003) which may be regulated by the internal state of the animal.”

      "...for reward memory formation, loss of Dop1R2 seems to impair memory", this seems redundant at this point, as it has been discussed in detail, however, citations should be provided in any case (Musso 2015, Sun 2020)

      Thank you for noting this. We recognize the redundancy and decided to exclude the line.

      Finally, it would be useful to additionally refer to the anatomical terminology when introducing neuron names; for example MBON MVP2 (MBON-g1pedc>a/b), etc.

      Thank you for this suggestion. We understand the importance of anatomical terminologies for the neurons. Therefore, we included them when we introduce neurons in the paper.

      We thank you for your observations. We recognize their value, so we have made appropriate changes in the discussion to sound less vague and more comprehensive.

    1. Author response:

      We were delighted by the reviewers' general comments. We thank the reviewers for their thoughtful reviews, constructive criticism, and analysis suggestions. We have carefully addressed each of their points during the revision of the manuscript.

      Unfortunately, after the paper was submitted to eLife, the first author, who ran all the analyses, left academia. We now realized that we currently do not have sufficient resources to perform all additional analyses as requested by the reviewers.

      The following is the authors’ response to the original reviews:

      Public Reviews:

      Reviewer #1 (Public Review):

      This study uses MEG to test for a neural signature of the trial history effect known as 'serial dependence.' This is a behavioral phenomenon whereby stimuli are judged to be more similar than they really are, in feature space, to stimuli that were relevant in the recent past (i.e., the preceding trials). This attractive bias is prevalent across stimulus classes and modalities, but a neural source has been elusive. This topic has generated great interest in recent years, and I believe this study makes a unique contribution to the field. The paper is overall clear and compelling, and makes effective use of data visualizations to illustrate the findings. Below, I list several points where I believe further detail would be important to interpreting the results. I also make suggestions for additional analyses that I believe would enrich understanding but are inessential to the main conclusions.

      (1) In the introduction, I think the study motivation could be strengthened, to clarify the importance of identifying a neural signature here. It is clear that previous studies have focused mainly on behavior, and that the handful of neuroscience investigations have found only indirect signatures. But what would the type of signature being sought here tell us? How would it advance understanding of the underlying processes, the function of serial dependence, or the theoretical debates around the phenomenon?

      Thank you for pointing this out. Our MEG study was designed to address two questions: 1) we asked whether we could observe a direct neural signature of serial dependence, and 2) if so, whether this signature occurs at the encoding or post-encoding stage of stimulus processing in working memory. This second question directly concerns the current theoretical debate on serial dependence.

      Previous studies have found only indirect signatures of serial dependence such as reactivations of information from the previous trial or signatures of a repulsive bias, which were in contrast to the attractive bias in behavior. Thus, it remained unclear whether an attractive neural bias can be observed as a direct reflection of the behavioral bias. Moreover, previous studies observed the neuronal repulsion during early visual processes, leading to the proposal that neural signals become attracted only during later, post-encoding processes. However, these later processing stages were not directly accessible in previous studies. To address these two questions, we combined MEG recordings with an experimental paradigm with two items and a retro-cue. This design allowed to record neural signals during separable encoding and post-encoding task phases and so to pinpoint the task phase at which a direct neural signature of serial dependence occurred that mirrored the behavioral effect.

      We have slightly modified the Introduction to strengthen the study motivation.

      (1a) As one specific point of clarification, on p. 5, lines 91-92, a previous study (St. JohnSaaltink et al.) is described as part of the current study motivation, stating that "as the current and previous orientations were either identical or orthogonal to each other, it remained unclear whether this neural bias reflected an attraction or repulsion in relation to the past." I think this statement could be more explicit as to why/how these previous findings are ambiguous. The St. John-Saaltink study stands as one of very few that may be considered to show evidence of an early attractive effect in neural activity, so it would help to clarify what sort of advance the current study represents beyond that.

      Thank you for this comment. In the study by St. John-Saaltink et al. (2016), two gratings oriented at 45° and 135° were always presented to either the left or right side of a central fixation point in a trial (90° orientation difference). As only the left/right position of the 45° and 135° gratings varied across trials, the target stimulus in the current trial was either the same or differed by exactly 90° from the previous trial. In consequence, this study could not distinguish whether the observed bias was attractive or repulsive, which concerned both the behavioral effect and the V1 signal. Furthermore, the bias in the V1 signal was partially explained by the orientation that was presented at the same position in the previous trial, which could reflect a reactivation of the previous orientation rather than an actual altered orientation.

      We have changed the Introduction accordingly.

      References:

      St. John-Saaltink E, Kok P, Lau HC, de Lange FP (2016) Serial Dependence in Perceptual Decisions Is Reflected in Ac6vity Pa9erns in Primary Visual Cortex. Journal of Neuroscience 36: 6186–6192.

      (1b) The study motivation might also consider the findings of Ranieri et al (2022, J. Neurosci) Fornaciai, Togoli, & Bueti (2023, J. Neurosci), and Lou& Collins (2023, J. Neurosci) who all test various neural signatures of serial dependence.

      Thank you. As all listed findings showed neural signatures revealing a reactivation of the previous stimulus or a response during the current trial, we have added them to the paragraph in the Introduction referring to this class of evidence for the neural basis for serial dependence.

      (2) Regarding the methods and results, it would help if the initial description of the reconstruction approach, in the main text, gave more context about what data is going into reconstruction (e.g., which sensors), a more conceptual overview of what the 'reconstruction' entails, and what the fidelity metric indexes. To me, all of that is important to interpreting the figures and results. For instance, when I first read, it was unclear to me what it meant to "reconstruct the direction of S1 during the S2 epoch" (p. 10, line 199)? As in, I couldn't tell how the data/model knows which item it is reconstructing, as opposed to just reporting whatever directional information is present in the signal.

      (2a) Relatedly, what does "reconstruction strength" reflect in Figure 2a? Is this different than the fidelity metric? Does fidelity reflect the strength of the particular relevant direction, or does it just mean that there is a high level of any direction information in the signal? In the main text explain what reconstruction strength and what fidelity is?

      Thank you for pointing this out. We applied the inverted encoding model method to MEG data from all active sensors (271) within defined time-windows of 100 ms length. MEG data was recorded in two sessions on different days. Specifically, we constructed an encoding model with 18 motion direction-selective channels. Each channel was designed to show peak sensitivity to a specific motion direction, with gradually decreasing sensitivity to less similar directions. In a training step, the encoding model was fiCed to the MEG data of one session to obtain a weight matrix that indicates how well the sensor activity can be explained by the modeled direction. In the testing step, the weight matrix was inverted and applied to the MEG data of the other session, resulting in a response profile of ‘reconstruction strengths’, i.e., how strongly each motion direction was present in a trial. When a specific motion direction was present in the MEG signal, the reconstruction strengths peaked at that specific direction and decreased with increasing direction difference. If no information was present, reconstruction strengths were comparable across all modeled directions, i.e., the response profile was flat. To integrate response profiles across trials, single trial profiles were aligned to a common center direction (i.e., 180°) and then averaged.

      To quantify the accuracy of each IEM reconstruction, i.e., how well the response profile represents a specific motion direction relative to all other directions we computed the ‘reconstruction fidelity’. Fidelity was obtained by projecting the polar vector of the reconstruction at every direction angle (in steps of 1°) onto the common center (180°) and averaging across all direction angles (Rademaker et al 2019, Sprague, Ester & Serences, 2016). As such, ‘reconstruction fidelity’ is a summary metric with fidelity greater than zero indicating an accurate reconstruction.

      How does the model know which direction to reconstruct? Our modelling procedure was informed about the stimulus in question during both the training and the testing step. Specifically, we informed our model during the training step about e.g., the current S2. Then, we fit the model to training data from the S2 epoch and applied it to testing data from the S2 epoch. Crucially, during the testing step the motion direction in question, i.e., current S2, becomes relevant again. For example, when S2 was 120°, the reconstructions were shifted by 60° in order to align with the common center, i.e., 180°. In addition, we also tested whether we could reconstruct the motion direction of S1 during the S2 epoch. Here, we used again the MEG data from the S2 epoch but now for S1 training. i.e., the model was informed about S1 direction. Accordingly, the recentering step during testing was done with regard to the S1 direction. Similarly, we also reconstructed the motion direction of the previous target (i.e., the previous S1 or S2), e.g., during the S2 epoch.

      Together, the multi-variate pattern of MEG activity across all sensors during the S2 epoch could contain information about the currently presented direction of S2, the direction of the preceding S1 and the direction of the target stimulus from the previous trial (i.e., either previous S1 or previous S2) at the same time. An important exception from this regime was the cross-reconstruction analysis (Appendix 1—figure 2). Here we trained the encoding model on the currently relevant item (S1 during the S1 epoch, S2 during the S2 epoch and the cued item during the retro-cue epoch) of one MEG session and reconstructed the previous target on the other MEG session.

      Finally, to examine shifts of the neural representation, single-trial reconstructions were assigned to two groups, those with a previous target that was oriented clockwise (CW) in relation to the currently relevant item and those with a previous target that was oriented counter-clockwise (CCW). The CCW reconstructions were flipped along the direction space, hence, a negative deviation of the maximum of the reconstruction from 180° indicated an attraction toward the previous target, whereas a positive deviation indicated a repulsion. Those reconstructions were then first averaged within each possible motion direction and then across them to account for different presentation numbers of the directions, resulting in one reconstruction per participant, epoch and time point. To examine systematic shifts, we then tested if the maximum of the reconstruction was systematically different from the common center (180°). For display purposes, we subtracted the reconstructed maximum from 180° to compute the direction shifts. A positive shift thus reflected attraction and a negative shift reflected repulsion.

      We have updated the Results accordingly.

      References:

      Rademaker RL, Chunharas C, Serences JT (2019) Coexisting representations of sensory and mnemonic information in human visual cortex. Nature Neuroscience. 22: 1336-1344.

      Sprague TC, Ester EF, Serences JT (2016) Restoring Latent Visual Working Memory Representations in Human Cortex. Neuron. 91: 694-707

      (3) Then in the Methods, it would help to provide further detail still about the IEM training/testing procedure. For instance, it's not entirely clear to me whether all the analyses use the same model (i.e., all trained on stimulus encoding) or whether each epoch and timepoint is trained on the corresponding epoch and timepoint from the other session. This speaks to whether the reconstructions reflect a shared stimulus code across different conditions vs. that stimulus information about various previous and current trial items can be extracted if the model is tailored accordingly.

      As reported above, our modeling procedure was informed about same stimulus during both the training and the testing step, except for the cross-reconstruction analysis.

      Regarding the training and testing data, the model was always trained on data from one session and tested on data from the other session, so that each MEG session once served as the training data set and once as the test data set, hence, training and test data were independent. Importantly, training and testing was always performed in an epoch- and time point-specific way: For example, the model that was trained on the first 100-ms time bin from the S1 epoch of the first MEG session was tested on the first 100-ms time bin from the S1 epoch of the second MEG session.

      Specifically, when you say "aim of the reconstruction" (p. 31, line 699), does that simply mean the reconstruction was centered in that direction (that the same data would go into reconstructing S1 or S2 in a given epoch, and what would differentiate between them is whether the reconstruction was centered to the S1 or S2 direction value)?

      As reported above, during testing the reconstruction was centered at the currently relevant direction. The encoding model was trained with the direction labels of S1, S2 or the target item, corresponding to the currently relevant direction, i.e., S1 in S1 epochs, S2 in S2 epochs and target item (S1 or S2) in the retro-cue epoch. The only exception was the reconstruction of S1 during the S2 epoch. Here the encoding model was trained on the S1 direction, but with data from the S2 epoch and then applied to the S2 epoch data and recentered to the S1 direction. So here, S1 and S2 were indeed trained and tested separately for the same epoch.

      (4) I think training and testing were done separately for each epoch and timepoint, but this could have important implications for interpreting the results. Namely if the models are trained and tested on different time points, and reference directions, then some will be inherently noisier than others (e.g., delay period more so than encoding), and potentially more (or differently) susceptible to bias. For instance, the S1 and S2 epochs show no attractive bias, but they may also be based on more high-fidelity training sets (i.e., encoding), and therefore less susceptible to the bias that is evident in the retrocue epoch.

      Thanks for pointing this out. Training and testing were performed in an epoch- and time point-specific way. Thus, potential differences in the signal-to-noise ratio between different task phases could cause quality differences between the corresponding reconstructed MEG signals. However, we did not observe such differences. Instead, we found comparable time courses of the reconstruction fidelities and the averaged reconstruction strengths between epochs (Figure 2b and 2c, respectively). Fig. 2b, e.g., shows that reconstruction fidelity for motion direction stimuli built up slowly during the stimulus presentation, reaching its maximum only after stimulus offset. This observation may contrast to different stimulus materials with faster build-ups, like the orientation of a Gabor.

      We agree with the reviewer that, regardless of the comparable but not perfectly equal reconstruction fidelities, there are good arguments to assume that the neural representation of the stimulus during its encoding is typically less noisy than during its post-encoding processing and that this difference could be one of the reasons why serial dependence emerged in our study only during the retro-cue epoch. However, the argument could also be reversed: a biased representation, which represents a small and hard-to-detect neural effect, might be easier to observe for less noisy data. So, the fact that we found a significant bias only during the potentially “noisier” retro-cue epoch makes the effect even more noteworthy.

      We mentioned the limitation related to our stimulus material already at the end of the Discussion. We have now added a new paragraph to the Discussion to address the two opposing lines of reasoning.  

      (4) I believe the work would benefit from a further effort to reconcile these results with previous findings (i.e., those that showed repulsion, like Sheehan & Serences), potentially through additional analyses. The discussion attributes the difference in findings to the "combination of a retro-cue paradigm with the high temporal resolution of MEG," but it's unclear how that explains why various others observed repulsion (thought to happen quite early) that is not seen at any stage here. In my view, the temporal (as well as spatial) resolution of MEG could be further exploited here to better capture the early vs. late stages of processing. For instance, by separately examining earlier vs. later time points (instead of averaging across all of them), or by identifying and analyzing data in the sensors that might capture early vs. late stages of processing. Indeed, the S1 and S2 reconstructions show subtle repulsion, which might be magnified at earlier time points but then shift (toward attraction) at later time points, thereby counteracting any effect. Likewise, the S1 reconstruction becomes biased during the S2 epoch, consistent with previous observations that the SD effects grow across a WM delay. Maybe both S1 and S2 would show an attractive bias emerging during the later (delay) portion of their corresponding epoch? As is, the data nicely show that an attractive bias can be detected in the retrocue period activity, but they could still yield further specificity about when and where that bias emerges.

      We are grateful for this suggestion. Before going into detail, we would like to explain our motivation for choosing the present analysis approach that included averaging time points within an epoch of interest.

      Our aim was to detect a neuronal signature of serial dependence which is manifested as an attractive shift of about 3.5° degrees within the 360° direction space. To be able to detect such a small effect in the neural data and given the limited resolution of the reconstruction method and the noisy MEG signals, we needed to maximize the signal-to-noise ratio. A common method to obtain this is by averaging data points. In our study we asked subjects to perform 1022 trials, down-sampled the MEG data from the recorded sampling rate of 1200 Hz to 10 Hz (one data point per 100 ms) that we used for the estimation of reconstruction fidelity and calculated the final neural shift estimates by averaging time points that showed a robust reconstruction fidelity, thus representing interpretable data points.

      Our procedure to maximize the signal-to-noise ratio was successful as we were able to reliably reconstruct the presented and remembered motion direction in all epochs (Figure 1a and 1b in the manuscript). However, the reconstruction did not work equally well for all time points within each epoch. In particular, there were time points with a non-significant reconstruction fidelity. In consequence, for the much smaller neural shift effect we did not expect to observe reliable time-resolved results, i.e., when considering each time point separately. Instead, we used the reconstruction results to define the time window in order to calculate the neural shift, i.e., we averaged across all time points with a significant reconstruction fidelity.

      Author response image 1 depicts the neural shift separately for each time point during the retro-cue epoch. Importantly, the gray parts of the time courses indicate time points where the reconstruction of the presented or cued stimulus was not significant. This means that the reconstructed maxima at those time points were very variable/unreliable and therefore the neural shifts were hardly interpretable.

      Author response image 1.

      Time courses of the reconstruction shift reveal a tendency for an attractive bias during the retrocue phase. Time courses of the neural shift separately for each time point during the S1 (left panel), S2 (middle panel) and retro-cue epochs (right panel). Gray lines indicate time points with non-significant reconstruction fidelities and therefore very variable and non-interpretable neural reconstruction shifts. The colored parts of the lines correspond to the time periods of significant reconstruction fidelities with interpretable reconstruction shifts. Error bars indicate the middle 95% of the resampling distribution. Time points with less than 5% (equaling p < .05) of the resampling distribution below 0° are indicated by a colored circle. N = 10.

      First, the time courses in the Author response image 1 show that the neural bias varied considerably between subjects, as revealed by the resampling distributions, at given time points. In this resampling procedure, we drew 10 participants in 10.000 iterations with replacement and calculated the reconstruction shift based on the mean reconstruction of the resampled participants. The observed variability stresses the necessity to average the values across all time points that showed a significant reconstruction fidelity to increase the signal-to-noise ratio.

      Second, despite this high variability/low signal-to-noise ratio, Author response image 1 (right panel) shows that our choice for this procedure was sensible as it revealed a clear tendency of an attractive shift at almost all time points between 300 through 1500 ms after retro-cue onset with only a few individual time-points showing a significant effect (uncorrected for multiple comparisons). It is worth to mention that this time course did not overlap with the time course of previous target cross-reconstruction (Appendix 1—figure 2, right panel), as there was no significant target cross-reconstruction during the retro-cue epoch with an almost flat profile around zero. Also, there was no overlap with previous target decoding in the retro-cue epoch (Figure 5 in the manuscript). Here, the previous target was reactivated significantly only at early time points of 200 and 300 ms post cue onset (i.e., at time points with a non-significant reconstruction fidelity and therefore no interpretable neural shift), while the nominally highest values of the attractive neural shift were visible at later time points that also showed a significant reconstruction fidelity (Figure 2b in the manuscript).

      Third, Author response image 1 (left and middle panel) shows the time courses of the neural shift during the S1 and S2 epochs. While no neural shift could be observed for S1, during the S2 epoch the time-resolved analysis indicated an initial attractive shift followed by a (nonsignificant) tendency for a repulsive shift. After averaging neural shifts across time points with a significant reconstruction fidelity, there was no significant effect with an overall tendency for repulsion, as reported in the paper. The attractive part of the neural shift during the S2 epoch was nominally strongest at very early time points (at 100-300 ms after S2 onset) and overlapped perfectly with the reactivation of the previous target as shown by the cross-reconstruction analysis (Appendix 1—figure 2, middle panel). This overlap suggests that the neural attractive shift did not reflect an actual bias of the early S2 representation, but rather a consequence of the concurrent reactivation of the previous target in the same neural code as the current representation. Finally, this neural attractive shift during S2 presentation did not correlate with the behavioral error (single trial-wise correlation: no significant time points during S2 epoch) or the behavioral bias (subject-wise correlation). In contrast, for the retro-cue epoch, we observed a significant correlation between the neural attractive shift and behavior.

      Together, the time-resolved results show a clear tendency for an attractive neural bias during the retro-cue phase, thus supporting our interpretation that the attractive shift during the retro-cue phase reflects a direct neuronal signature of serial dependence. However, these additional analyses also demonstrated a large variability between participants and across time points, warranting a cautious interpretation. We conclude that our initial approach of averaging across time points was an appropriate way of reducing the high level of noise in the data and revealed the reported significant and robust attractive neural shift in the retrocue phase.

      (5) A few other potentially interesting (but inessential considerations): A benchmark property of serial dependence is its feature-specificity, in that the attractive bias occurs only between current and previous stimuli that are within a certain range of similarity to each other in feature space. I would be very curious to see if the neural reconstructions manifest this principle - for instance, if one were to plot the trialwise reconstruction deviation from 0, across the full space of current-previous trial distances, as in the behavioral data. Likewise, something that is not captured by the DoG fivng approach, but which this dataset may be in a position to inform, is the commonly observed (but little understood) repulsive effect that appears when current and previous stimuli are quite distinct from each other. As in, Figure 1b shows an attractive bias for direction differences around 30 degrees, but a repulsive one for differences around 170 degrees - is there a corresponding neural signature for this component of the behavior?

      We appreciate the reviewer's idea to split the data. However, given that our results strongly relied on the inclusion of all data points, i.e., including all distances in motion direction between the current S1, S2 or target and the previous target and requiring data averaging, we are concerned that our study was vastly underpowered to be able to inform whether the attractive bias occurs only within a certain range of inter-stimulus similarity. To address this important question, future studies would require neural measurements with much higher signal-to-noise-ratio than the present MEG recordings with two sessions per participant and 1022 trials in total.

      Reviewer #2 (Public Review):

      Summary:

      The study aims to probe the neural correlates of visual serial dependence - the phenomenon that estimates of a visual feature (here motion direction) are attracted towards the recent history of encoded and reported stimuli. The authors utilize an established retro-cue working memory task together with magnetoencephalography, which allows to probe neural representations of motion direction during encoding and retrieval (retro-cue) periods of each trial. The main finding is that neural representations of motion direction are not systematically biased during the encoding of motion stimuli, but are attracted towards the motion direction of the previous trial's target during the retrieval (retro-cue period), just prior to the behavioral response. By demonstrating a neural signature of attractive biases in working memory representations, which align with attractive behavioral biases, this study highlights the importance of post-encoding memory processes in visual serial dependence.

      Strengths:

      The main strength of the study is its elegant use of a retro-cue working memory task together with high temporal resolution MEG, enabling to probe neural representations related to stimulus encoding and working memory. The behavioral task elicits robust behavioral serial dependence and replicates previous behavioral findings by the same research group. The careful neural decoding analysis benefits from a large number of trials per participant, considering the slow-paced nature of the working memory paradigm. This is crucial in a paradigm with considerable trial-by-trial behavioral variability (serial dependence biases are typically small, relative to the overall variability in response errors). While the current study is broadly consistent with previous studies showing that attractive biases in neural responses are absent during stimulus encoding (previous studies reported repulsive biases), to my knowledge it is the first study showing attractive biases in current stimulus representations during working memory. The study also connects to previous literature showing reactivations of previous stimulus representations, although the link between reactivations and biases remains somewhat vague in the current manuscript. Together, the study reveals an interesting avenue for future studies investigating the neural basis of visual serial dependence.

      Weaknesses:

      (1) The main weakness of the current manuscript is that the authors could have done more analyses to address the concern that their neural decoding results are driven by signals related to eye movements. The authors show that participants' gaze position systematically depended on the current stimuli's motion directions, which together with previous studies on eye movement-related confounds in neural decoding justifies such a concern. The authors seek to rule out this confound by showing that the consistency of stimulus-dependent gaze position does not correlate with (a) the neural reconstruction fidelity and (b) the repulsive shift in reconstructed motion direction. However, both of these controls do not directly address the concern. If I understand correctly the metric quantifying the consistency of stimulus-dependent gaze position (Figure S3a) only considers gaze angle and not gaze amplitude. Furthermore, it does not consider gaze position as a function of continuous motion direction, but instead treats motion directions as categorical variables. Therefore, assuming an eye movement confound, it is unclear whether the gaze consistency metric should strongly correlate with neural reconstruction fidelity, or whether there are other features of eye movements (e.g., amplitude differences across participants, and tuning of gaze in the continuous space of motion directions) which would impact the relationship with neural decoding. Moreover, it is unclear whether the consistency metric, which does not consider history dependencies in eye movements, should correlate with attractive history biases in neural decoding. It would be more straightforward if the authors would attempt to (a) directly decode stimulus motion direction from x-y gaze coordinates and relate this decoding performance to neural reconstruction fidelity, and (b) investigate whether gaze coordinates themselves are history-dependent and are attracted to the average gaze position associated with the previous trials' target stimulus. If the authors could show that (b) is not the case, I would be much more convinced that their main finding is not driven by eye movement confounds.

      The reviewer is correct that our eye-movement analysis approach considered gaze angle (direction) and not gaze amplitude. We considered gaze direction to be the more important feature to control for when investigating the neural basis of serial dependence that manifests, given the stimulus material used in our study, as a shift/deviation of angle/direction of a representation towards the previous target motion direction. To directly relate gaze direction and MEG data to each other we equaled the temporal resolution of the eye tracking data to match that of the MEG data. Specifically, our analysis procedure of gaze direction provided a measure indicating to which extent the variance of the gaze directions was reduced compared with random gaze direction patterns, in relation to the specific stimulus direction within each 100 ms time bin. Importantly, this procedure was able to reveal not only systematic gaze directions that were in accordance with the stimulus direction or the opposite direction, but also picked up all stimulus-related gaze directions, even if the relation differed across participants or time.

      Our analysis approach was highly sensitive to detect stimulus-related gaze directions during all task phases (Appendix 1—figure 3). As expected, we found systematic gaze directions when S1 and S2 were presented on the screen, and they were reduced thereafter, indicating a clear relationship between stimulus presentation and eye movement. Systematic gaze directions were also present in the retro-cue phase where no motion direction was presented. Here they showed a clearly different temporal dynamic as compared to the S1 and S2 phases. They appeared at later time points and with a higher variability between participants, indicating that they coincided with retrieving the target motion direction from working memory.

      To relate gaze directions with MEG results, we calculated Spearman rank correlations. We found that there was no systematic relationship at any time point between the stimulus related reconstruction fidelity and the amount of stimulus-related gaze direction. Even more, the correlation varied strongly from time point to time point revealing its random nature. In addition to the lack of significant correlations, we observed clearly distinct temporal profiles for gaze direction (Appendix 1—figure 3a and Appendix 1—figure 3b) and the reconstruction fidelities (Figure 2b in the manuscript, Appendix 1—figure 3c), in particular in the critical retro-cue phase.

      We favored this analysis approach over one that directly decoded stimulus motion direction from x-y gaze coordinates, as we considered it hardly feasible to compute an inverted encoding model with only two eye-tracker channels as an input (in comparison to 271 MEG sensors), and to our knowledge, this has not been done before. Other decoding methods have previously been applied to x-y gaze coordinates. However, in contrast to the inverted encoding model, they did not provide a measure of the representation shift which would be crucial for our investigation of serial dependence.

      We appreciate the suggestion to conduct additional analyses on eye tracking data (including different temporal and spatial resolution and different features) and their relation to MEG data. However, the first author, who ran all the analyses, has in the meantime left academia. Unfortunately, we currently do not have sufficient resources to perform additional analyses.

      While the presented eye movement control analysis makes us confident that our MEG finding was not crucially driven by stimulus-related gaze directions, we agree with the reviewer that we cannot completely exclude that other eye movement-related features could have contributed to our MEG findings. However, we would like to stress that whatever that main source for the observed MEG effect was (shift of the neuronal stimulus representation, (other) features of gaze movement, or shift of the neuronal stimulus representation that leads to systematic gaze movement), our study still provided clear evidence that serial dependence emerged at a later post-encoding stage of object processing in working memory. This central finding of our study is hard to observe with behavioral measures alone and is not affected by the possible effects of eye movements.

      We have slightly modified our conclusion in the Results and Appendix 1. Please see also our response to comment 1 from reviewer 3.

      (2) I am not convinced by the across-participant correlation between attractive biases in neural representations and attractive behavioral biases in estimation reports. One would expect a correlation with the behavioral bias amplitude, which is not borne out. Instead, there is a correlation with behavioral bias width, but no explanation of how bias width should relate to the bias in neural representations. The authors could be more explicit in their arguments about how these metrics would be functionally related, and why there is no correlation with behavioral bias amplitude.

      We are grateful for this suggestion. We correlated the individual neuronal shift with the two individual parameter fits of the behavior shift, i.e., amplitude (a) and tuning width (w). We found a significant correlation between the individual neural bias and the w parameter (r = .70, p = .0246) but not with the a parameter (r = -.35, p = .3258) during the retro-cue period (Appendix 1—figure 1). This indicates that a broader tuning width of the individual bias (as reflected by a smaller w parameter) was associated with a stronger individual neural attraction.

      It is important to note that for the calculation of the neural shift, all trials entered the analysis to increase the signal-to-noise ratio, i.e., it included many trials where current and previous targets were separated by, e.g., 100° or more. These trials were unlikely to produce serial dependence. Subjects with a more broadly tuned serial dependence had more interitem differences that showed a behavioral attraction and therefore more trials affected by serial dependence that entered the calculation of the neural shift. In contrast, individual differences in the amplitude (a) parameter were most likely too small, and higher individual amplitude did not involve more trials as compared to smaller amplitude to affect the neural bias in a way to be observed in a significant correlation.

      We have added this explanation to Appendix 1.  

      (3) The sample size (n = 10) is definitely at the lower end of sample sizes in this field. The authors collected two sessions per participant, which partly alleviates the concern. However, given that serial dependencies can be very variable across participants, I believe that future studies should aim for larger sample sizes.

      We want to express our appreciation for raising this issue. We apologize that we did not explicitly explain and justifythe choice for the sample size used in our paper, in particular, as we had in fact performed a formal a-priori power analysis.

      At the time of the sample size calculation, there were no comparable EEG or MEG studies to inform our power calculation. Thus, we based our calculation merely on the behavioral effect reported in the literature and, in particular, observed in a behavioral study from our lab that included four different experiments with overall more than 100 participants with 1632 trials each (see Fischer et al., 2020), in which the behavioral serial dependence effect (target vs. nontarget) was very robust. Based on the contrast between target and non-target with an effect size of 1.359 in Experiment 1, a power analysis with 80% desired power led to a small, estimated sample size of 6 subjects.

      However, we expected that the detection of the neural signature of this effect would require more participants. Therefore, we based our power calculation on a much smaller behavioral effect, i.e. the modulation of serial dependence by the context-feature congruency that we observed in our previous study (Fischer et al., 2020). In particular, we focused on Experiment 1 of the previous study that used color as the feature for retro-cueing, as we planned to use exactly the same paradigm for the MEG study. In contrast to the serial dependence effect, its modulation by color resulted in a more conservative power estimate: Based on an effect size of 0.856 in that experiment, a sample size of n = 10 should yield a power of 80% with two MEG sessions per subject.

      At the time when we conducted our study, two other studies were published that investigated serial dependence on the neural level. Both studies included a smaller number of data points than our study: Sheehan & Serences (2022) recorded about 840 trials in each of 6 participants, resulting in fewer data points both on the participant and on the trial level. Hajonides et al. (2023) measured 20 participants with 400 trials each, again resulting in fewer datapoints than our study (10 participants with 1022 trials each). Taken together, our a-priori sample size estimation resulted in comparable if not higher power as compared to other similar studies, making us feel confident that the estimated sample was sufficient to yield reliable results.

      We have now included this description and the results of this power analysis in the Materials and Methods section.

      Despite this, we fully agree with the reviewer that our study would profit from higher power. With the knowledge of the results from this study, future projects should attempt to increase substantially the signal-to-noise-ratio by increasing the number of trials in particular, in order to observe, e.g., robust time-resolved effects (see our comments to review 1).

      References:

      Fischer C, Czoschke S, Peters B, Rahm B, Kaiser J, Bledowski C (2020) Context information supports serial dependence of multiple visual objects across memory episodes. Nature Communication 11: 1932.

      Sheehan TC, Serences JT (2022) Attractive serial dependence overcomes repulsive neuronal adaptation PLOS Biology 20: e3001711.

      Hajonides JE, Van Ede F, Stokes MG, Nobre AC, Myers NE (2023) Multiple and Dissociable Effects of Sensory History on Working-Memory Performance Journal of Neuroscience 43: 2730–2740.

      (4) It would have been great to see an analysis in source space. As the authors mention in their introduction, different brain areas, such as PPC, mPFC, and dlPFC have been implicated in serial biases. This begs the question of which brain areas contribute to the serial dependencies observed in the current study. For instance, it would be interesting to see whether attractive shifts in current representations and pre-stimulus reactivations of previous stimuli are evident in the same or different brain areas.

      We appreciate this suggestion. As mentioned above, we currently do not have sufficient resources to perform a MEG source analysis.

      Reviewer #3 (Public Review):

      Summary:

      This study identifies the neural source of serial dependence in visual working memory, i.e., the phenomenon that recall from visual working memory is biased towards recently remembered but currently irrelevant stimuli. Whether this bias has a perceptual or postperceptual origin has been debated for years - the distinction is important because of its implications for the neural mechanism and ecological purpose of serial dependence. However, this is the first study to provide solid evidence based on human neuroimaging that identifies a post-perceptual memory maintenance stage as the source of the bias. The authors used multivariate pattern analysis of magnetoencephalography (MEG) data while observers remembered the direction of two moving dot stimuli. After one of the two stimuli was cued for recall, decoding of the cued motion direction re-emerged, but with a bias towards the motion direction cued on the previous trial. By contrast, decoding of the stimuli during the perceptual stage was not biased.

      Strengths:

      The strengths of the paper are its design, which uses a retrospective cue to clearly distinguish the perceptual/encoding stage from the post-perceptual/maintenance stage, and the rigour of the careful and well-powered analysis. The study benefits from high within participant power through the use of sensitive MEG recordings (compared to the more common EEG), and the decoding and neural bias analysis are done with care and sophistication, with appropriate controls to rule out confounds.

      Weaknesses:

      A minor weakness of the study is the remaining (but slight) possibility of an eye movement confound. A control analysis shows that participants make systematic eye movements that are aligned with the remembered motion direction during both the encoding and maintenance phases of the task. The authors go some way to show that this eye gaze bias seems unrelated to the decoding of MEG data, but in my opinion do not rule it out conclusively. They merely show that the strengths of the gaze bias and the strength of MEGbased decoding/neural bias are uncorrelated across the 10 participants. Therefore, this argument seems to rest on a null result from an underpowered analysis.

      Our MEG as well eye-movement analysis showed that they were sensitive to pick up robustly stimulus-related effects, both for presented and remembered motion directions. When relating both signals to each other by correlating MEG reconstruction strength with gaze direction, we found a null effect, as pointed out by the reviewer. Importantly, there was also a null effect when the shift of the reconstruction (representing our main finding) was correlated with gaze direction. Furthermore, an examination of the individual time courses of gaze direction and individual MEG reconstruction strength revealed that the lack of a relationship between MEG and gaze data did not rest on a singular observation but was present across all time points. Even more, the temporal profile of the correlation varied strongly from time point to time point revealing its random nature and indicating that there was no hint of a pattern that just failed to reach significance. Taking these observations together, our MEG findings were unlikely to be explained by eye position.

      Nevertheless, we agree with the reviewer that there is general problem of interpreting a null effect with a limited number of observations (and an analysis approach that focused on one out of many possible features of the gaze movement). Thus, we admit that there is a (slight) possibility that eye movements contributed to the observed MEG effects. This possibility, however, did not affect our novel finding that serial dependence occurred during the postencoding stage of object processing in working memory.

      Please see also our response to point 1 from reviewer 2.

      Impact:

      This important study contributes to the debate on serial dependence with solid evidence that biased neural representations emerge only at a relatively late post-perceptual stage, in contrast to previous behavioural studies. This finding is of broad relevance to the study of working memory, perception, and decision-making by providing key experimental evidence favouring one class of computational models of how stimulus history affects the processing of the current environment.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      Minor concerns:

      The significance statement opens "Our perception is biased towards sensory input from the recent past." This is a semantic point, but it seems a somewhat odd statement, given there is so much debate about whether serial dependence is perceptual vs. decisional, and that the current work indeed claims that it emerges at a late, post-encoding stage.

      Thank you for this point. We agree. “Visual cognition is biased towards sensory input from the recent past.” would be a more appropriate statement. According to the Journal's guidelines, however, the paragraph with the Significant Statement will be not included in the final manuscript.

      It would be preferable for data and code to be available at review so that reviewers might verify some procedural points for clarity.

      Code and preprocessed data used for the presented analyses are now available on OSF via http://osf.io/yjc93/. Due to storage limitations, only the preprocessed MEG data for the main IEM analyses focusing on the current direction are uploaded. For access to additional data, please contact the authors.

      For instance, I could use some clarification on the trial sequence. The methods first say the direction was selected randomly, but then later say each direction occurred equally often, and there were restrictions on the relationships between current and previous trial items. So it seems it couldn't have truly been random direction selection - was the order selected randomly from a predetermined set of possibilities?

      For the S1/S2 stimuli in a trial the dots moved fully coherent in a direction randomly drawn from a pool of directions between 5° and 355° spaced 10° from one another, therefore avoiding cardinal directions. Across trials, there was a predetermined set of possible differences in motion direction between the current and the previous target. This set included 18 motion direction differences, ranging from -170° to 180°, in steps of 10°. Trial sequences were balanced in a way that each of these differences occurred equally often during a MEG session.

      I could also use some additional assurance the sample size (participants or data points) is sufficient for the analysis approach deployed here.

      We performed a formal a-priori power analysis to justify our choice for the sample size. Please see our response to reviewer 2, point 3, where we explained the procedure of the apriori power analysis in detail. We have now included this description and the results of this power analysis in the Materials and Methods.

      Did you consider a decoding approach, instead of reconstruction, to test what information predominates the signal, in an unbiased way?

      Thank you for this argument. With our analysis approach based on the inverted encoding model, we believe to be unbiased, since we first reconstructed whether the MEG signal contained information about the presented and remembered motion direction. Only in the next step, we tested whether this reconstructed signal showed an offset and if so, whether this offset was biased towards or away from the previous target. A decoding approach aims to answer classification questions and is not suitable to reveal the actual shifts of the neural information. In our study, we could decode, e.g., the current direction or the previous target, but this would not answer the question of whether and at which stage of object processing the current representation was biased towards the past. Moreover, in a decoding approach to reveal which information predominates in the signal, we would have to classify different options (e.g. current information vs previous), thereby biasing the possible set of results more than in our chosen analysis.

      I think the claim of a "direct" neural signature may come off as an overstatement when the spatial and temporal aspects of the attractive bias are still so coarsely specified here.

      Thank you for pointing this out. We agree that the term “direct neural signature” can be seen as an overstatement when it is interpreted to indicate a narrowly defined activity of a brain region (ideally via “direct” invasive recordings) that reflects serial dependence. Our definition of the term “direct” referred to the observation of an attractive shift in a neural representation of the current target motion direction item towards the previous target. This was in contrast to previous “indirect” evidence for the neural basis of serial dependence based on either repulsive shifts of neural representations that were opposite to the attractive bias in behavior or on a reactivation of previous information in the current trial without presenting evidence for the actual neural shift. With this definition in mind, we consider the title of our study a valid description of our findings.

      Reviewer #2 (Recommendations For The Authors):

      I was wondering why the authors chose a bootstrap test for their neural bias analysis instead of a permutation test, similar to the one they used for their behavioral analysis. As far as I know, bootstrap tests do not provide guaranteed type-1 error rate control. The procedure for the permutation test would be quite straightforward here, randomly permuting the sign of each participant's neural shift and recording the group-average shift in a permutation distribution. This test seems more adequate and more consistent with the behavioral analysis.

      Thank you for this comment. We adapted a resampling approach (bootstrapping) that was similar to that by Ester et al. (2020) who also investigated categorical biases and also applied a reconstruction method (Inverted Encoding Model) to assess significance of a bias of the reconstructed orientation against zero in a certain direction. The bootstrapping method relied on a) detecting an offset against zero and b) evaluating the robustness of the observed effect across participants. In contrast, a permutation approach, as suggested by the reviewer, assesses whether an empirical neural shift is more extreme than the permutation distribution. The permutation approach seems more suited to assess the magnitude of the shift which in our study was not a priority. Therefore, we reasoned that the bootstrapping for our inference statistics was better suited to assess the direction of the neural shift and its robustness across participants.

      We have added this additional information to the Materials and Methods:

      References:

      Ester EF, Sprague TC, Serences JT (2020) Categorical biases in human occipitoparietal cortex. Journal of Neuroscience 40:917–931.

      The manuscript could be improved by more clearly spelling how the training and testing data were labelled, particularly for the reactivation analyses. If I understood correctly, in the first reactivation analysis the authors train and test on current trial data, but label both training and testing data according to the previous trial's motion direction. In the second analysis, they label the training data according to the current motion direction, but label the testing data according to the previous motion direction. Is that correct?

      Yes, this is correct. Please see also our response to reviewer 1, point 2 and 3, for a detailed description.

      I was surprised to see that the shift in the reconstructed direction is about three times larger than the behavioral attraction bias. Would one not expect these to be comparable in magnitude? It would be helpful to address and discuss this in the discussion section.

      Thank you for pointing this out. We agree with the reviewer that as both measures provided an identical metric (angle degree), one would expect that their magnitudes should be directly comparable. However, we speculate that these magnitudes inform only about the direction of the bias and their significant difference from zero, thus they operate on different scales and are not directly comparable. For example, Hallenbeck et al. (2022) showed that fMRI-based reconstructed orientation bias and behavioral bias correlated on both individual and group level, despite strong magnitude differences. This is in line with our observation and supports the speculation that the magnitudes of neural and behavioral biases operate on different scales and, thus, are not directly comparable.

      We have updated to the Discussion accordingly.

      References:

      Hallenbeck GE, Sprague TC, Rahmati M, Sreenivasan KK, Curtis CE (2022) Working memory representations in visual cortex mediate distraction effects Nature Communications 12: 471.

      Reviewer #3 (Recommendations For The Authors):

      (1) It may be worth showing that the gaze bias towards the current/cued stimulus is not biased towards the previous target. One option might be to run the same analysis pipeline used for the MEG decoding but on the eye-tracking data. Another could be to remove all participants with significant gaze bias, but given the small sample size, this might not be feasible.

      We appreciate this suggestion. However, as mentioned above, we currently do not have sufficient resources to conduct additional analyses on the eye tracking data.

      (2) Minor typo: Figure 3c - bias should be 11.7º, not -11.7º.

      Corrected. Thank you!

      Note on data/code availability: The authors state that preprocessed data and analysis code will be made available on publication, but are not available yet.

      Code and preprocessed data used for the present analyses are now available on OSF via http://osf.io/yjc93/. Due to storage limitations, only the preprocessed MEG data for the main IEM analyses focusing on the current direction are uploaded. For access to additional data, please contact the authors.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      Participants in this study completed three visits. In the first, participants received experimental thermal stimulations which were calibrated to elicit three specific pain responses (30, 50, 70) on a 0-100 visual analogue scale (VAS). Experimental pressure stimulations were also calibrated at an intensity to the same three pain intensity responses. In the subsequent two visits, participants completed another pre-calibration check (Visit 2 of 3 only). Then, prior to the exercise NALOXONE or a SALINE placebo-control was administered intravenously. Participants then completed 1 of 4 blocks of HIGH (100%) or LOW (55%) intensity cycling which was tailored according to a functional threshold power (FTP) test completed in Visit 1. After each block of cycling lasting 10 minutes, participants entered an MRI scanner and were stimulated with the same thermal and pressure stimulations that corresponded to 30, 50, and 70 pain intensity ratings from the calibration stage. Therefore, this study ultimately sought to investigate whether aerobic exercise does indeed incur a hypoalgesia effect. More specifically, researchers tested the validity of the proposed endogenous pain modulation mechanism. Further investigation into whether the intensity of exercise had an effect on pain and the neurological activation of pain-related brain centres were also explored.

      Results show that in the experimental visits (Visit 2 and 3), when participants exercised at two distinct intensities as intended. Power output, heart rate, and perceived effort ratings were higher during the HIGH versus LOW-intensity cycling. In particular. HIGH intensity exercise was perceived as "hard" / ~15 on the Borg (1974, 1998) scale, whereas LOW intensity exercise was perceived as "very light" / ~9 on the same scale.

      The fMRI data from Figure 1 indicates that the anterior insula, dorsal posterior insula, and middle cingulate cortex show pronounced activation as stimulation intensity and subsequent pain responses increased, thus linking these brain regions with pain intensity and corroborating what many studies have shown before.

      Results also showed that participants rated a higher pain intensity in the NALOXONE condition at all three stimulation intensities compared to the SALINE condition. Therefore, the expected effect of NALOXONE in this study seemed to occur whereby opioid receptors were "blocked" and thus resulted in higher pain ratings compared to a SALINE condition where opioid receptors were "not blocked". When accounting for participant sex, NALOXONE had negligible effects at lower experimental nociceptive stimulations for females compared to males who showed a hyperalgesia effect to NALOXONE at all stimulation intensities (peak effect at 50 VAS). Females did show a hyperalgesia effect at stimulation intensities corresponding to 50 and 70 VAS pain ratings. The fMRI data showed that the periaqueductal gray (PAG) showed increased activation in the NALOXONE versus SALINE condition at higher thermal stimulation intensities. The PAG is well-linked to endogenous pain modulation.

      When assessing the effects of NALOXONE and SALINE after exercise, results showed no significant differences in subsequent pain intensity ratings.

      When assessing the effect of aerobic exercise intensity on subsequent pain intensity ratings, authors suggested that aerobic exercise in the form of a continuous cycling exercise tailored to an individual's FTP is not effective at eliciting an exercise-induced hypoalgesia response irrespective of exercise intensity. This is because results showed that pain responses did not differ significantly between HIGH and LOW intensity exercise with (NALOXONE) and without (SALINE) an opioid antagonist. Therefore, authors have also questioned the mechanisms (endogenous opioids) behind this effect.

      Strengths:

      Altogether, the paper is a great piece of work that has provided some truly useful insight into the neurological and perceptual mechanisms associated with pain and exercise-induced hypoalgesia. The authors have gone to great lengths to delve into their research question(s) and their methodological approach is relatively sound. The study has incorporated effective pseudo-randomisation and conducted a rigorous set of statistical analyses to account for as many confounds as possible. I will particularly credit the authors on their analysis which explores the impact of sex and female participants' stage of menses on the study outcomes. It would be particularly interesting for future work to pursue some of these lines of research which investigate the differences in the endogenous opioid mechanism between sexes and the added interaction of stage of menses or training status.

      There are certainly many other areas that this article contributes to the literature due to the depth of methods the research team has used. For example, the authors provide much insight into: the impact of exercise intensity on the exercise-induced hypoalgesia effect; the impact of sex on the endogenous opioid modulation mechanism; and the impact of exercise intensity on the neurological indices associated with endogenous pain modulation and pain processing. All of which, the researchers should be credited for due to the time and effort they have spent completing this study. Indeed, their in-depth analysis of many of these areas provides ample support for the claims they make in relation to these specific questions. As such, I consider their evidence concerning the fMRI data to be very convincing (and interesting).

      Weaknesses:

      Although the authors have their own view of their results, I do however, have a slightly different take on what the post-exercise pain ratings seem to show and its implications for judging whether an exercise-induced hypoalgesia effect is present or not. From what I have read, I cannot seem to find whether the authors have compared the post-exercise pain ratings against any data that was collected pre-exercise/at rest or as part of the calibration. Instead, I believe the authors have only compared post-exercise pain ratings against one another (i.e., HIGH versus LOW, NALOXONE versus SALINE). In doing so, I think the authors cannot fully assume that there is no exercise-induced hypoalgesia effect as there is no true control comparison (a no-exercise condition).

      In more detail, Figure 6A appears to show an average of all pain ratings combined per participant (is this correct?). As participants were exposed to stimulations expected to elicit a 30, 50, or 70 VAS rating based on pre-calibration values, therefore the average rating would be expected to be around 50. What Figure 6A shows is that in the SALINE condition, average pain ratings are in fact ~10-15 units lower (~35) and then in the NALOXONE condition, average pain ratings are ~5 units lower (~45) for both exercise intensities. From this, I would surmise the following:

      It appears there is an exercise-induced hypoalgesia effect as average pain ratings are ~30% lower than pre-calibrated/resting pain ratings within the SALINE condition at the same temperature of stimulation (it would also be interesting to see if this effect occurred for the pressure pain).

      It appears there is evidence for the endogenous opioid mechanism as the NALOXONE condition demonstrates a minimal hypoalgesia effect after exercise. I.e., NALOXONE indeed blocked the opioid receptors, and such inhibition prevented the endogenous opioid system from taking effect.

      It appears there is no effect of exercise intensity on the exercise-induced hypoalgesia effect.

      That is, participants can cycle at a moderate intensity (55% FTP) and incur the same hypoalgesia benefits as cycling at an intensity that demarcates the boundary between heavy and severe intensity exercise (100%FTP). This is a great finding in my mind as anyone wishing to reduce pain can do so without having to engage in exercise that is too effortful/intense and therefore aversive - great news! This likely has many applications within the field of public health.

      I will very slightly caveat my summaries with the fact that a more ideal comparison here would be a control condition whereby participants did the same experimental visit but without any exercise prior to entering the MRI scanner. I consider the overall strength of the evidence to be solid, with the answer to the primary research question still a little ambiguous.

      Reviewer #2 (Public review):

      Summary:

      This interesting study compared two different intensities of aerobic exercise (low-intensity, high-intensity) and their efficacy in inducing a hypoalgesic reaction (i.e. exercise-induced hypoalgesia; EIH). fMRI was used to identify signal changes in the brain, with the infusion of naloxone used to identify hypoalgesia mechanisms. No differences were found in postexercise pain perception between the high-intensity and low-intensity conditions, with naloxone infusion causing increased pain perception across both conditions which was mirrored by activation in the medial frontal cortex (identified by fMRI). However, the primary conclusion made in this manuscript (i.e. that aerobic exercise has no overall effect on pain in a mixed population sample) cannot be supported by this study design, because the methodology did not include a baseline (i.e. pain perception following no exercise) to compare high/low-intensity exercise against. Therefore, some of the statements/implications of the findings made in this manuscript need to be very carefully assessed.

      Strengths:

      (1) The use of fMRI and naloxone provides a strong approach by which to identify possible mechanisms of EIH.

      (2) The infusion of naloxone to maintain a stable concentration helps to ensure a consistent effect and that the time course of the protocol won't affect the consistency of changes in pain perception.

      (3) The manipulation checks (differences in intensity of exercise, appropriate pain induction) are approached in a systematic way.

      (4) Whilst the exploratory analyses relating to the interactions for fitness level and sex were not reported in the study pre-registation, they do provide some interesting findings which should be explored further.

      Weaknesses:

      (1) Given that there is no baseline/control condition, it cannot be concluded that aerobic exercise has no effect on pain modulation because that comparison has not been made (i.e. pain perception at 'baseline' has not been compared with pain perception after high/lowintensity exercise). Some of the primary findings/conclusions throughout the manuscript state that there is 'No overall effect of aerobic exercise on pain modulation', but this cannot be concluded.

      (2) Across the manuscript, a number of terms are used interchangeably (and applied, it seems, incorrectly) which makes the interpretation of the manuscript difficult (e.g. how the author's use the term 'exercise-induced pain').

      (3) There is a lack of clarity on the interventions used in the methods, for example, it is not exactly clear the time and order in which the exercise tasks were implemented.

      (4) The exercise test (functional threshold power) used to set the intensity of the low/high exercise bouts is not an accurate means of demarcating steady state and non-steady state exercise. As a result, at the intensity selected for the high-intensity exercise in this study, it is likely that the challenge presented for the high-intensity exercise would have been very different between participants (e.g. some would have been in the 'heavy' domain, whereas others would be in the 'severe' domain).

      (5) It is likely that participants did not properly understand how to use the 6-20 Borg scale to rate their perceived effort, and so caution must be taken in how this RPE data is used/interpreted.

      (6) Although interesting, the secondary analyses (relating to the interaction effects of fitness level and sex) were not included in the study pre-registration, and so the study was not designed to undertake this analysis. These findings should be taken with caution.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      Participants in this study completed three visits. In the first one, participants received experimental thermal stimulations which were calibrated to elicit three specific pain responses (30, 50, 70) on a visual analogue scale (VAS). Experimental pressure stimulations were also calibrated at an intensity to the same three pain intensity responses. In the subsequent two visits, participants completed another pre-calibration check (Visit 2 of 3 only). Then, prior to the exercise NALOXONE or a SALINE placebo-control was administered intravenously. Participants then completed 1 of 4 blocks of HIGH (100%) or LOW (55%) intensity cycling which was tailored according to a functional threshold power (FTP) test completed in Visit 1. After each block of cycling lasting 10 minutes, participants entered an MRI scanner and were stimulated with the same thermal and pressure stimulations that corresponded to 30, 50, and 70 pain intensity ratings from the calibration stage. Therefore, this study ultimately sought to investigate whether aerobic exercise does indeed incur a hypoalgesia effect. More specifically, researchers tested the validity of the proposed endogenous pain modulation mechanism.

      Further investigation into whether the intensity of exercise had an effect on pain and the neurological activation of pain-related brain centres was also explored.

      Results show that in the experimental visits (Visit 2 and 3) when participants exercised at two distinct intensities as intended. Power output, heart rate, and perceived effort ratings were higher during the HIGH versus LOW-intensity cycling. In particular, HIGH intensity exercise was perceived as "hard" / ~15 on the Borg (1974) scale, whereas LOW intensity exercise was perceived as "very light" / ~9 on the Borg (1974) scale.

      The fMRI data from Figure 1 indicates that the anterior insula, dorsal posterior insula, and middle cingulate cortex show pronounced activation as stimulation intensity and subsequent pain responses increase, thus linking these brain regions with the percept of pain intensity and corroborating what many studies have shown before.

      Results also showed that participants rated a higher pain intensity in the NALOXONE condition at all three stimulation intensities compared to the SALINE condition. Therefore, the expected effect of NALOXONE in this study seemed to occur whereby opioid receptors were "blocked" and thus resulted in higher pain ratings compared to a SALINE condition where opioid receptors were "not blocked". When accounting for participant sex, NALOXONE had negligible effects at lower experimental nociceptive stimulations for females compared to males who showed a hyperalgesia effect to NALOXONE at all stimulation intensities (peak effect at 50 VAS). Females did show a hyperalgesia effect at stimulation intensities corresponding to 50 and 70 VAS pain ratings. The fMRI data showed that the periaqueductal gray (PAG) showed increased activation in the NALOXONE versus SALINE condition at higher thermal stimulation intensities. The PAG is well-linked to endogenous pain modulation.

      When assessing the effects of NALOXONE and SALINE after exercise, results showed no significant differences in subsequent pain intensity ratings.

      When assessing the effect of aerobic exercise intensity on subsequent pain intensity ratings, authors suggested that aerobic exercise in the form of a continuous cycling exercise tailored to an individual's FTP is not effective at eliciting an exercise-induced hypoalgesia response irrespective of exercise intensity. This is because results showed that pain responses did not differ significantly between HIGH and LOW-intensity exercise with (NALOXONE) and without (SALINE) an opioid antagonist. Therefore, authors have also questioned the mechanisms (endogenous opioids) behind this effect.

      Altogether, the paper is a great piece of work that has provided some truly useful insight into the neurological and perceptual mechanisms associated with pain and exercise-induced hypoalgesia. The authors have gone to great lengths to delve into their research question(s) and their methodological approach is relatively sound. Although the authors have their own view of their results, I do however, have a slightly different take on what the post-exercise pain rating seems to show and its implications for judging whether an exercise-induced hypoalgesia effect is present or not. From what I have read, I cannot seem to find whether the authors have compared the post-exercise pain ratings against any data that was collected preexercise/at rest or as part of the calibration. Instead, I believe the authors have only compared post-exercise pain ratings against one another (i.e., HIGH versus LOW, NALOXONE versus SALINE). In doing so, I think the authors cannot fully question whether there is an exerciseinduced hypoalgesia effect as there is no true control comparison (a no-exercise condition). Nevertheless, there are certainly many other areas that this article contributes to the literature due to the depth of methods the research team has used. For example, the authors provide much insight into: the impact of exercise intensity on the exercise-induced hypoalgesia effect; the impact of sex on the endogenous opioid modulation mechanism; and the impact of exercise intensity on the neurological indices associated with endogenous pain modulation and pain processing. All of which, the researchers should be credited for due to the time and effort they have spent completing this study.

      I have provided some specific comments for the authors to consider. They are organised to correspond to each section as it is presented, and I have denoted the line I am referring to each time.

      To conclude, thank you to the authors for their work, and thank you to the editor for the opportunity to contribute to the review of this paper. I hope my comments are seen as useful and I look forward to seeing the authors' responses.

      We sincerely appreciate the reviewer's insightful comments, which highlight the strengths of our study. In response to the concerns raised, we have made several key revisions to the original manuscript to address the reviewers’ comments. As for the lack of a resting control condition, we acknowledge that our study was not designed to test the overall effect of exercise versus no exercise. However, our primary objective was to compare different exercise intensities, hypothesising that low-intensity (LI) exercise would induce less pain modulation as compared to high-intensity (HI) exercise. By exploring this, we aimed to enhance understanding of the dose-response relationship between exercise and pain modulation. To better reflect this focus, we have revised the misleading phrasing regarding the ‘overall’ effect of exercise to clearly emphasize our primary aim: comparing HI and LI exercise.

      This reviewer suggests an interesting interpretation of the data suggesting that exercise induced hypoalgesia might have occurred for both exercise intensities since the pain ratings provided were lower than the anticipated intensities as determined by the calibration. Given that this difference is lower in the naloxone (NLX) condition could provide evidence of opioidergic mechanisms underlying this effect. Unfortunately, the current study is not designed to comprehensively answer this question since there was no resting control condition. In particular, the lower pain ratings under SAL (Figure 6) could be due to exercise triggering the descending pain modulatory system (DPMS), but equally due to the default activation of the DPMS. Only an additional “no exercise” condition could disentangle this. Furthermore, habituation to noxious stimuli can influence pain ratings, resulting in lower pain ratings during the experiment as compared to the calibration. We have now provided a more detailed overview of the pain ratings at different stimulus intensities after HI and LI exercise in both drug treatment conditions for heat and pressure pain ratings. We elaborated on the specific comments raised in more detail in the following sections.

      Specific Comments

      (1) Abstract

      Line 25 - "we were unable to"... personal preference but this wording is a little 'weighted' in my view. I personally do not think researchers search to prove hypotheses correct, rather we search to prove hypotheses wrong, and therefore only through repeated attempts of falsification can we surmise that something holds true.

      We agree with the reviewer that the chosen wording can be perceived as weighted and have rephrased the sentence.

      Line 33 to 35 - the "...but individual factors... might play a role" is a crucial caveat to this sentence for me. Whilst I can understand that the results of the authors' study indicate that prior assumptions about exercise-induced hypoalgesia and its opioidergic mechanisms may be questioned, I think a little more evidence is needed to finally decide whether aerobic exercise has no overall effect on experimental pain responses. (see more in the Results comments below).

      We thank the reviewer for their comment. We agree that no claims can be made regarding the effect of aerobic exercise per se on pain modulation compared to no exercise based on the current data. Furthermore, we agree that more research is needed to further advance our understanding of (non-)opioidergic mechanisms in exercise-induced pain modulation. However, based on the data presented in this study we propose that the involvement of endogenous opioids in exercise-induced hypoalgesia could be influenced by sex and fitness levels since we could show differences in opioidergic involvement between males and females of different fitness levels. Future studies should account for the fitness levels and sex of the sample investigated.

      (2) Introduction

      Line 48 - please predefine anterior cingulate cortex here.

      We thank the reviewer for detecting this and have introduced the abbreviation for the anterior cingulate cortex in the referenced line.

      Line 49 - please predefine periaqueductal gray here instead of line 52.

      We have introduced the abbreviation for periaqueductal grey in the referenced line.

      Line 47 to 54 - when discussing the descending pain modulatory systems, authors seem to be relating specifically to the intensity/magnitude of pain experiences. However, the different brain regions that are mentioned may have varying "roles" according to which dimension of pain is of focus.

      Hofbauer et al. (2001) - https://doi.org/10.1152/jn.2001.86.1.402

      Rainville et al. (1997) - https://doi.org/10.1126/science.277.5328.968

      The two above studies provide some nice earlier findings on the brain regions - some of which are mentioned by the authors in this section - associated with the processing of pain quality in addition to the intensity of pain... simply attach here if they are of interest to the authors.

      The studies by Hofbauer et al. (2001) and Rainville et al. (1997) provide interesting findings on the effect of hypnotic suggestions on pain affect and the perceived intensity of a painful stimulus. However, these studies did not investigate exercise-induced changes in brain regions of the DPMS. The studies referenced in the relevant section of the manuscript are (one of the few) imaging studies that have indeed investigated brain structures of the DPMS in the context of exercise and pain modulation and, thus, were included in this paragraph to focus on the findings of these studies as well as emphasise the scarcity of imaging studies investigating exercise-induced pain modulation. Given these divergent research topics of the proposed studies, we suggest not including them in this paragraph to maintain a clearer line of argument and focus on exercise-induced pain modulation in brain regions of the DPMS.

      L59 to 61 - a minor comment about the phrasing within this sentence and a recommended change is provided below for the flow of the sentence/paragraph.

      "...there are instances where administration of µ-opioid antagonists has decreased exerciseinduced pain modulation (Droste et al. 1988; etc.) whereas in others there has been little effect (Droste et al. 1988; etc.).

      We have altered the sentence based on the reviewers' suggestions to improve the flow and coherence of the sentence.

      L56 to 72 - Whilst the current version of this paragraph scans well enough, I find that the narrative flits between the mechanisms being discussed and the rationale/shortcomings of current research. I think that the original content of this paragraph can be structured into:

      A- The endogenous opioid system is a likely candidate to explain how exercise elicits a hypoalgesia response.

      B- Citation(s) of the imaging studies (Boecker et al., 2008, etc.) and earlier literature which support A (e.g., Janal et al. 1984).

      C- Further support of this theory as µ-opioid antagonists like naloxone seem to counteract the endogenous opioid effect (Haier et al., 1981).

      D- Introduction of the caveats of previous research such as the studies that observed that µ-opioids did not impact the endogenous pain modulation system during exercise (e.g., Droste et al., 1991, etc.) and the range of different interventions and exercise modalities which make it difficult to draw clear conclusions of the pain modulation effect.

      To me, this structure would set out the details you have already put together in a more orderly and systematic way and also will lead nicely into your ensuing paragraph (Line 74 onwards).

      We appreciate the reviewers' constructive comments on structuring this paragraph. We agree that the proposed version eases the readability and comprehension of the paragraph and have, thus, adapted the restructured paragraph according to the reviewer’s suggestion.

      L75 - Why are single-arm pre-post measures and designs an issue? If you can elaborate a little more this would be very insightful for a reader.

      Single-arm pre-post measurement studies involve participants being assigned to a single experimental condition, with pain assessments conducted only once before and once following an intervention. This study design presents some limitations, particularly in the context of examining exercise-induced modulation of pain (Vaegter and Jones, 2020). Such designs are potentially confounded by the effects of habituation to noxious stimuli, as highlighted by Vaegter and Jones (2020). Incorporating randomised controlled trials with multiple measurement blocks not only mitigates these limitations but also provides a clearer understanding of how individual bouts of exercise influence pain perception. We have now added this to the paper.

      L80 - The reference for the functional threshold power assessment is provided as a number. Please could the authors change to reflect which study/studies they are referring to here (I presume it is the Borszcz and/or the McGrath studies?).

      We apologise for this oversight and have now updated the reference to be displayed correctly. The reviewer is correct in assuming that Borszcz et al. (2018) is the referenced study here.

      L88 - Did participants also receive pressure pain stimulations in addition to the thermal stimuli, as the figure suggests?

      Note Since read on to L102-104 and understood why pressure pain was included but not mentioned due to results. However, I would still recommend including pressure pain stimulations in this line, if possible, to be consistent with what Figure 1 shows and later text in the Methods section also shows.

      We thank the reviewer for their suggestion to mention pressure pain at the referenced line to increase the clarity and consistency of the experimental paradigm. Pressure and heat pain were applied in alternating fashion during scanning. Whilst the results of pressure pain are not included in this study we agree with the reviewer that it should be mentioned again as part of the methods and have added this.

      L94 - I really like Figure 1. Great job.

      Could the authors please define the inter-trial interval (ITI) in the legend? And please could the authors clarify what unit the 30, 50, and 70 figures in the "18 trials per block" section refer to.

      We thank the reviewer for their positive feedback. We have now included a definition of inter-trial-interval (ITI) in the figure legend. Furthermore, we adapted Figure 1 so that the units of the stimulus intensities (30, 50, 70) on the Visual Analog Scale (VAS) are included in the figure allowing for a clearer identification.

      (3) Results

      General comment for figures ... is there a specific reason the authors chose for error bars to be represented by an SE value as opposed to an SD value?

      The reason I ask is that participant responses seem to vary (See Figure 2A and 2E-G as an example). Error bars showing SD values would perhaps do justice to the variability in participant response(s), whereas the SE may be a better representation of the variability in responses due to the assessor's methods of collection. Whilst the SE error bars are narrow (great job on that!), the individual responses are clearly varied which I speculate could be because of the interventions that have been implemented (i.e., exercise intensity).

      The use of Standard Error (SE) is more common in the cognitive neuroscience literature.

      However, as this reviewer noted, we have also included individual data points alongside the SE, thereby providing a comprehensive view that allows for a thorough interpretation of the data distribution.

      L102 to 104 - In fact, it is interesting that exercise did not impact the pressure pain ratings whereas the same cannot be said for thermal pain. In line with some of my comments below about the impact of exercise on pain intensity responses, I would be intrigued to see the results of the pressure pain ratings in more detail.

      Another note on this... Whilst the results for the pressure pain may be beyond the scope of this paper and will be reported separately, knowing of this data is tantalising for a reader. I would suggest to: A) either mention the pressure pain and include the analysis of the data; or B) not mention the pressure pain altogether and save it for the subsequent paper. Either way, I look forward to seeing further discussion on this in future work.

      We have now summarised the behavioural results of exercise on pressure pain ratings below in Supplemental Figure S1.

      There was no hypoalgesic effect evident in the behavioural pain ratings comparing HI to LI exercise in the saline (SAL) condition (β = 0.57, CI [-1.73, 2.86], SE = 1.17, t(1354) = 0.48, P = 0.63; Supplemental Figure S1A, blue bars) as well as no interaction of drug treatment and exercise intensity on pressure pain ratings (β = -1.43, CI [-4.87, 2.01], SE = 1.75, t(2756.02) = -0.82, P = 0.42; Supplemental Figure S1). Post-hoc paired t-tests (Bonferroni-corrected) confirmed there to be no significant differences between the drug treatment conditions at LI (P = 0.18) or HI (P = 0.85) and no significant difference between the exercise intensities in the SAL (P = 0.65) and NLX (P = 0.48) conditions, confirming no significant differences in drug treatment between the exercise intensities.

      Furthermore, there was no significant effect of fitness level on differences in pain ratings (LI – HI exercise) in the SAL condition (β = 3.16, CI [-1.64, 7.97], SE = 2.37, t(38) = 1.34, P = 0.19; Supplemental Figure S1B) and no significant correlation between fitness level and difference pain ratings (r = 0.25, P = 0.13). Finally, there was no significant interaction of drug treatment, exercise intensity, and sex on difference pain ratings (β =-7.97, CI [-18.67, 2.73], SE = 5.51, t(190) = -1.45, P = 0.15; Supplemental Figure S1C-D).

      Exercise did not appear to affect pressure pain ratings and we have now added this to the discussion and in the methods section. However, we think that the figure should be part of the supplements.

      L112 to 113 - Fantastic work for including this analysis in your study. Great job.

      We appreciate the reviewers’ positive feedback on conducting these crucial analyses when investigating sex and gender differences in pain.

      L186 to 189 - It is fascinating that there appears to be no effect of NALOXONE on pain ratings within female participants at a VAS rating of 30 for thermal pain as well as a much diminished hyperalgesia effect at a VAS rating of 50 compared to males. Meanwhile, at higher intensity stimulations corresponding to a VAS rating of 70, females in fact demonstrate a more pronounced hyperalgesia effect compared to males. In addition, the hyperalgesia effect of NALOXONE for males seems to "peak" at a VAS rating of 50. The mechanisms behind these findings alone would be incredibly exciting to explore... but maybe in another study.

      We agree with the reviewer that the differences in males and females are fascinating results and concur that this may hint at varying degrees of opioidergic involvement at different stimulus intensities. This finding is intriguing and potentially clinically relevant, warranting further investigation in future research, although it lies beyond the scope of the current paper.

      L189 - To double check... Figures 4A and 4B refer to the entire cohort (male and female responses combined) whereas C-E are separated by sex?

      In addition, as there are no annotations to the top of Figures 4C-E were no significant differences observed between saline and naloxone conditions per each stimulus intensity? i.e., similar tests to what are shown in Table S6 but separated for each sex.

      Without getting too carried away, there may be something here that indicates a difference between sexes concerning the opioid-driven pain modulation response on a neurological level (i.e., brain region activation).

      The reviewer is correct in assuming that Figures 4A and 4B refer to the entire cohort whilst Fig. 4C – 4E are split for males and females. The full output of the analyses for Fig. 4A and 4B are reported in Supplemental Tables S5 – S7. Furthermore, the full output of the LMER analyses for Fig. 4E is reported in Supplemental Table S10. We agree with the reviewer that additional annotations in Fig. 4C – Fig. 4E ease interpretation and have, thus, added them to the respective figures, denoting the significance of the interaction term stimulus intensity and drug treatment for females (Fig. 4C) and males (Fig. 4D), respectively. For completeness, we now report the post-hoc paired samples t-tests for females and males in the Supplemental Tables S8 and S9, respectively.

      L254 to 258 - "we could not establish an overall hypoalgesia effect of exercise...". Do the results of the exercise intensity x drug treatment provide an answer for this exact hypothesis? After checking the methods section, I cannot seem to find whether the statistical analysis has involved a comparison of the pain ratings after the high (alone), low (alone), or high and low (combined) exercise compared to ratings during control or pre-calibration as part of precalibration (i.e., pain ratings in a rested state without any exercise yet completed).

      We concur with the reviewer's assessment that the study design and statistical analyses cannot address the ‘overall’ effect of exercise compared to no exercise. Please refer back to our general response before comment 1, where we have addressed this point.

      As it seems that the analysis assesses the differences between high and low-intensity exercise, to me, the results of the exercise intensity x drug treatment analysis do not assess whether there is an exercise-induced hypoalgesia effect or not. Instead, it seems to assess whether the intensity of exercise is a differentiating factor in the expected exercise-induced hypoalgesia effect to subsequent pain intensity ratings to experimental pain stimulation. For the authors to judge whether aerobic exercise does or does not have a hypoalgesia effect, then the exercise conditions (either combined or standalone) would have to be compared to a control condition or a data set that involved pain ratings from a pre-exercise timepoint.

      We thank the reviewer for their comment. We would like to point out the we concluded there to be no hypoalgesic effect between the LI and HI exercise based on the LMER model comparing the behavioural pain ratings between the exercise conditions in the SAL condition (β = 1.19, CI [-1.85, 4.22], SE = 1.55, t(1354) = 0.77, P = 0.44; Figure 6A, blue bars and Table S9). The statistical model investigating the interaction of exercise intensity and drug treatment served to show that NLX did not modulate pain differently between the LI and HI exercise conditions.

      Given that our experiment involved different exercise levels in a randomized order, a simple pre vs post analysis is not straightforward. Nevertheless, we have set up a model where we take into account the rating time point (pain ratings provided before each exercise block (prepain ratings) and following each exercise block (post-pain ratings)) at each stimulus intensity (VAS 30, 50, 70) and exercise intensity (LI and HI). The model also takes into account the exercise intensity performed in the previous block, the overall block number as well as the varying subject intercepts. The analysis was completed for heat (Author response image 1A) and pressure (Author response image 1B) pain ratings in the SAL condition to establish whether there was a significant effect of exercise intensity on the changes from pre to post-pain ratings. The model for heat pain yielded a significant main effect for stimulus intensity (β = 1.43, CI [1.34, 1.52], SE = 0.05, t(2054.95) = 31.61, P < 0.001) but no significant interaction of exercise intensity, rating time point, and stimulus intensity (P = 0.14). The model for pressure pain in the SAL condition yielded a significant main effect of stimulus intensity (β = 1.00, CI [0.92, 1.08], SE = 0.04, t(2054.99) = 24.68, P < 0.001) and block number (β = 1.14, CI [0.35, 1.94], SE = 0.41, t(2055.98) = 2.80, P = 0.005) but not interaction of exercise intensity, rating time point, and stimulus intensity (P = 0.38).

      Author response image 1.

      Heat (A) and Pressure (B) pain ratings in the saline (SAL) condition for pre (purple) and post (turquoise) exercise pain ratings at LI and HI exercise and all stimulus intensities (VAS 30, 50, 70). The bars depict the mean pain rating pre and post-exercise and the dots depict the subject-specific mean ratings. The error bars depict the SEM.

      Another point of consideration is that Figure 6A appears to show an average of all pain ratings combined per participant (is this correct?). As participants were exposed to stimulations expected to elicit a 30, 50, or 70 VAS rating based on pre-calibration values, therefore the average rating would be expected to be around 50. What Figure 6A shows is that in the SALINE condition, average pain ratings are in fact ~10-15 units lower (~35) and then in the NALOXONE condition, average pain ratings are ~5 units lower (~45) for both exercise intensities. From this, I would surmise the following:

      • It appears there is an exercise-induced hypoalgesia effect as average pain ratings are ~30% lower than pre-calibrated/resting pain ratings within the SALINE condition at the same temperature of stimulation (it would also be interesting to see if this effect occurred for the pressure pain).

      • It appears there is evidence for the endogenous opioid mechanism as the NALOXONE condition demonstrates a minimal hypoalgesia effect after exercise. I.e., NALOXONE indeed blocked the opioid receptors, and such inhibition prevented the endogenous opioid system from taking effect.

      • It appears there is no effect of exercise intensity on the exercise-induced hypoalgesia effect. That is, participants can cycle at a moderate intensity (55% FTP) and incur the same hypoalgesia benefits as cycling at an intensity that demarcates the boundary between heavy and severe intensity exercise (100%FTP). This is a winner in my mind. Anyone wishing to reduce pain can do so without having to engage in exercise that is too effortful and therefore aversive - great news!

      I will very slightly caveat my summaries with the fact that a more ideal comparison here would be a control condition whereby participants did the same experimental visit but without any exercise prior to entering the MRI scanner.

      As a result of this interpretation of your findings, I do not think that aerobic exercise as a means to cause subsequent hypoalgesia to experimental thermal nociception can be fully discounted. On the contrary, I think your results showed in Figure 6A are evidence for it.

      The reviewer is correct in assuming that Figure 6A shows the averaged pain ratings across all stimulus intensities (VAS 30, 50, and 70) for each subject. To provide more details, we have split Figure 6A by stimulus intensity, now depicting the pain ratings for LI and HI exercise and treatment condition (SAL and NLX) at VAS 30, 50, and 70 (Supplemental Fig. S8). The LMER was extended to include the stimulus intensity and yielded a significant main effect of stimulus intensity (β = 1.39, CI [1.31, 1.47], SE = 0.04, t(2753.12) = -34.082, P < 0.001) and a significant interaction of stimulus intensity and drug treatment (β = 0.12, CI [0.01, 0.24], SE = 0.06, t(2751) = 2.13, P = 0.03) but no significant interaction of exercise intensity, drug treatment, and stimulus intensity (β = -0.05, CI [-0.20, 0.11], SE = 0.08, t(2751) = -0.56, P = 0.58).

      The reviewer further suggests that the average pain ratings in the SAL condition are lower than the anticipated stimulus intensity, thus, indicating exercise-induced hypoalgesia. While this interpretation is one possibility, there is an alternative explanation: the lower pain ratings may stem from habituation to heat pain (Greffrath et al., 2007; Jepma et al., 2014; May et al., 2012). To support this perspective, we have visualised data from other studies in our lab that have been conducted with the same thermode head and device (TSA-2), using the same calibration procedure and aiming for the same stimulus intensities (VAS 30, 50, and 70). In both studies (Author response image 2A: Study 1: Behavioural sample; Author response image 2B: Study 2: fMRI sample; Author response image 2C: Original Exercise Study), participants did not engage in an exercise task and the pain ratings at VAS 30 and VAS 50 were lower than the anticipated intensities (VAS 30: 11.1/13.4; VAS 50: 35.0/35.9). Furthermore, in a previous study by (Wittkamp et al., 2024), the authors showed that, despite calibrating the heat stimuli at VAS 60, participants rated the pain stimuli with M = 48.58 (SD = 13.79).

      This discrepancy observed between calibrated intensities and ratings provided could be attributable to habituation effects, especially at low-intensity stimuli. Moreover, we would like to point the reviewer to the highest stimulus intensity at VAS 70 (Author response image 2C), where no habituation in all three data sets (including the current study) has taken place. This consistency suggests that exercise-induced hypoalgesia may not be present in our findings or potentially confounded by habituation effects.

      Author response image 2.

      Heat pain ratings at different intensities (30, 50, and 70 VAS) in different study samples. Bars depict the mean ratings in the saline (SAL) condition. Individual data points depict subject-specific mean pain ratings. Error bars depict the SEM.

      The reviewer further suggests that there is evidence for endogenous opioidergic modulation since the pain ratings in the NLX condition are lower than the anticipated intensities. We fully agree but, again, would argue that the DPMS can exert its effects on painful stimuli in a default manner, i.e. irrespective of any exercise effect.

      We concur with the reviewer’s interpretation that there is no effect of exercise intensity on exercise-induced hypoalgesia since the ratings between both exercise intensities are not significantly different.

      Finally, we agree that our data does not allow for the interpretation of an ‘overall’ effect of exercise-induced hypoalgesia and would like to point out that we did not aim to claim this. Rather, the data suggests there to be no effect of LI vs. HI aerobic exercise on pain modulation. We acknowledge, however, that the phrasing involving ‘overall’ can be misleading and have revised this to focus on the comparison between LI and HI exercise, thereby enhancing precision and clarity.

      Note This is also where it would be really interesting to see the pain pressure data if it were to be included. Mainly to see whether it coheres with what the thermal stimulation stuff shows.

      We have provided the ratings for the pressure pain ratings in the SAL condition below (Author response image 3).

      Author response image 3.

      Pressure pain ratings in the SAL condition at stimulus intensity (VAS 30, 50, and 70). Bars depict the mean ratings in the saline (SAL) condition. Individual data points depict subject-specific mean pain ratings. Error bars depict the SEM.

      L259 - As mentioned in the comment above. Could the authors distinguish what is being shown in Figure 6A? Are the data presented as the pooled mean for all stimulation intensities? If not, what data is displayed per bar/column?

      We thank the reviewer for their comment. The reviewer is correct in assuming that the bars in Figure 6A depict the pooled means across all stimulus intensities (VAS 30, 50, 70) for each drug treatment condition and exercise intensity. To allow for a more detailed comprehension of the data, we have split Figure 6A by stimulus intensity, now depicting the pain ratings for LI and HI exercise and treatment condition (SAL and NLX) at VAS 30, 50, and 70 (Supplemental Figure S8). The LMER was extended to include the stimulus intensity and yielded a significant main effect of stimulus intensity (β = 1.39, CI [1.31, 1.47], SE = 0.04, t(2753.12) = -34.082, P < 0.001) and a significant interaction of stimulus intensity and drug treatment (β = 0.12, CI [0.01, 0.24], SE = 0.06, t(2751) = 2.13, P = 0.03) but no significant interaction of exercise intensity, drug treatment, and stimulus intensity (β = -0.05, CI [-0.20, 0.11], SE = 0.08, t(2751) = -0.56, P = 0.58).

      L278 - Can the authors please provide a reference that explains how W.kg-1 at FTP is a measure of fitness level?

      We thank the reviewer for their comment. The obtained FTP value was corrected for the weight of each participant (Watt/kg), yielding a weight-corrected fitness measure that allows for better comparison between subjects. We denoted this in the figures as W*kg-1 which serves to be the equivalent term.

      L296 - Take the line away from Figure 7A... Does the individual data show a positive relation between pain rating changes and W.kg-1? Besides the three data points (1 on the far right of the figure and the two on the far left), I find it hard to see any real trend.

      We acknowledge the reviewers’ concern regarding the regression line and the visual clarity of the individual data points. However, it is important to note that the significant main effect of fitness level on differences in pain ratings in the SAL condition (β = 6.45, CI [1.25, 11.65], SE = 2.56, t(38) = 2.52, P = 0.02) supports the assertion that higher fitness levels are associated with greater hypoalgesia following HI exercise compared to LI exercise. While the trend may not be visible for all data points, the statistical analysis provides a robust basis for the observed relationship (r = 0.33, P = 0.038).

      We have conducted an additional LMER model where we have excluded the subjects with the highest and lowest FTP values (sub-28 with 3.19 W/kg and sub-06 with 0.76 W/kg, respectively.) The LMER still yields a significant main effect of fitness level (β = 6.82, CI [1.25, 11.65], SE = 3.18, t(34) = 2.14, P = 0.039; Author response image 4) and a positive correlation between the difference ratings and fitness level approaching significance (r = 0.32, P = 0.057).

      Author response image 4.

      Fitness level on difference pain ratings (LI-HI exercise) without subjects with highest and lowest FTP (N = 37). (A) Subject-specific differences in heat pain ratings (dots) between LI and HI exercise conditions (LI – HI exercise pain ratings) and corresponding regression line pooled across all stimulus intensities in the SAL condition. Fitness level (FTP) showed a significant positive relation to heat pain ratings with a significant main effect of FTP (P = 0.039) on difference ratings.

      (4) Discussion

      L356 to 358 - Exactly. What you write here, I agree with. Your testing allowed you to judge whether there is an effect of aerobic exercise intensity on pain modulation. However, I think this has been a little conflated with the idea that there is "no overall effect of aerobic exercise on pain modulation" in other areas of the article (L358-361, Results, and Abstract). As per my previous comment, I am not sure this (no overall effect) is true.

      We agree with the reviewer and have adapted the manuscript so that the misleading phrase including ‘overall’ is removed.

      L358 to 365 - One addition to this debate about whether this is a hypoalgesia effect of aerobic exercise. In 358 - 361 (particularly the end of 361) there is a strong conclusion that there is no direct involvement of the endogenous opioid system. Then glance onto L364 to 365 and there is then an almost conflicting summary that a hypoalgesia effect driven by opioidergic regions of the brain (and ergo endogenous opioids) is in effect. If there were no direct endogenous opioid involvement, then differences between NALOXONE (blockade of the opioid mechanism) and SALINE conditions would not exist.

      We thank the reviewer for their comment. The structure of this paragraph aimed to guide the reader towards a more nuanced understanding of the possible mechanisms and caveats in exercise-induced pain modulation. Whilst our data suggest an effect of NLX on pain ratings where we showed significantly higher pain ratings in the NLX condition compared to the SAL condition we could not identify an interaction between treatment and exercise intensity. This suggests that there is no significant difference in opioidergic involvement between HI and LI exercise. Our exploratory analyses, however, show an effect of endogenous opioids involved as an underlying mechanism dependant on sex and fitness level.

      My perspective is that an exercise-induced hypoalgesia effect has occurred (based on the data in Figure 6A) but that this effect is certainly caveated by the sex and fitness levels that this study has observed (and kudos for it).

      As mentioned above, based on the current data we cannot untangle whether the reduced pain ratings in the SAL condition are due to habituation to noxious stimuli or an actual hypoalgesic effect of exercise (or potentially a mix of both). However, we fully agree with the reviewer that exercise-induced pain modulation is influenced by fitness level and sex.

      L390 - "endogenous pain modulation through μ-opioid receptors increases with increasing pain intensity". Aside from the general discussion about whether aerobic exercise causes a post-exercise hypoalgesia effect. This finding is also interesting for the pain incurred during exercise in the form of naturally occurring muscle pain and may also be clinically relevant as it could be that the endogenous pain modulation "system" could be primed through repeated exercise as your results show that the fitness level (i.e., a close correlate of how much someone has engaged in exercise and therefore 'activated' the endogenous pain modulation system) is associated with a more pronounced post-exercise hypoalgesia effect.

      This is an interesting aspect. With regards to the pain induced by exercise itself (i.e. muscle pain) we did not gather any data on this type of pain and interpreting this would be mere speculation. However, it is an interesting hypothesis to investigate in future studies whether the pain induced by exercise is potentially influenced by the endogenous opioid system. We agree with the reviewers’ interpretation that repeated exercise might prime the endogenous opioid system, especially in fitter individuals who engage more frequently in exercise and, thus, ‘train’ the endogenous opioid system. We have included this line of interpretation in the original manuscript, where we suggest that the mFC, a brain region with high µ-opioid receptor density, might be ‘trained’ by repeated exercise and, therefore, shows increase activation in fitter individuals after short bouts of exercise.

      L404 to 405 - "a resting baseline does not control for unspecific factors such as attentional load or distraction (Brooks et al., 2017; Sprenger et al., 2012) through exercise." I am not sure I agree. A control condition allows one to truly deduce whether exercise causes a hypoalgesia effect or not. The attentional load may be a factor, but I would argue this is distinct from endogenous pain modulation - unless there is a study that shows cognitive load alone can elicit endogenous opioids like exercise. About distraction, this would be the case if the pain measures were taken during the exercise. However, as the pain measures taken in the MRI were post-exercise and there was no added distraction related to the exercise present anymore, then I do not think any added effect of distraction due to the exercise and its effect on postexercise pain measure is relevant any longer.

      We agree with the reviewer that a resting baseline condition in the context of exercise induced pain modulation would allow for the investigation of a potential hypoalgesic effect of exercise compared to no exercise. It is important to note that both studies (Brooks et al., 2017; Sprenger et al., 2012) have indeed shown that the effect of cognitive pain modulation is mediated by endogenous opioids.

      L406 - I do not think a low-intensity exercise is a true "control" condition. It certainly does allow the study to compare the dose-response relationship but as the individual is exercising (even at a moderate physiological intensity) then comparison of HIGH vs LOW does not tell us whether exercise does or does not cause hypoalgesia. In contrast, the results from Figure 6A seem to show that even LOW intensity exercise has a hypoalgesia effect and this is a good thing for those who cannot exercise at high intensities (e.g., chronic populations).

      Please refer back to our general response before comment 1, where we have addressed this point.

      L410 - A small digression in relation to the exercise intensities:

      The intensity domains (moderate - heavy - severe) are not truly controlled within this study (mainly for the LOW condition), and therefore some participants could have exercised within different exercise intensity domains than others. To explain, the exercise intensity domains are distinguishable by the physiological responses associated with the boundaries of each of these domains. The FTP is believed to be a demarcation point between heavy and severe intensity domains (though kinesiologists debate the validity of this). Other concepts similar to FTP are Critical Power or the Respiratory Compensation Point. Ultimately, the boundary between heavy and severe intensity domains is characterised by the highest possible intensity by which a steady-state in oxygen kinetics (V̇ O2) occurs (Burnley & Jones, 2018). If this is expressed as a power output (Watts) and then a percentage of this power output is used to prescribe exercise intensity, then the physiological response is not always as expected. The reason is that for some people the gaseous exchange threshold (the demarcation point between the moderate and heavy intensity domains) is not always the same percentage between resting and FTP/Critical Power/Respiratory Compensation Point for each person. As a result, some individuals who are prescribed an intensity of 55% FTP/Critical Power/Respiratory Compensation Point may subsequently exercise within the moderate intensity domain (most people did based on the heart rate and RPE responses) whilst some others might actually exercise more within the heavy intensity domain. A quick check of Figures 3B-C could indicate that this might have been the case for two or three participants, but that is inference and speculation as we cannot truly know unless gas parameters were taken (which is perfectly understandable that they have not been taken because this study has done so much else). However, the importance of this for this study is that if some participants did indeed exercise at a slightly higher physiological intensity, this undermines the LOW condition as a "control" as the physiological stimulus between conditions (Brownstein et al., 2023). It means that the proposed differences in endogenous opioids (Vaegter et al., 2015; 2019) between exercise intensities may not have been present and therefore summarising a lack of an exercise induced hypoalgesia effect is slightly confounded. This is one factor contributing to my scepticism about the conclusion that there is a lack of an exercise-induced hypoalgesia response.

      We thank the reviewer for their comment as it touches upon the challenges of estimating exercise intensities precisely. It is, indeed, crucial to consider the boundaries between moderate, heavy, and severe intensity domains, as delineated by physiological markers such as the Functional Threshold Power (FTP), Critical Power, and the Respiratory Compensation Point (VO2max) (Burnley & Jones, 2018). Previous research has shown that the FTP and FTP20 tests are reliable and convenient methods to estimate approximate measures of VO2max (Denham et al., 2020) and that the FTP test is a useful test for performance prediction in moderately trained cyclists (Sørensen et al., 2019).

      We acknowledge that without direct measurements of VO2max, it is challenging to determine the precise intensity domain in which each participant was operating. While the RPE and HR might suggest that some participants performed in the moderate intensity domain in the LI exercise condition, we could still ascertain there to be a significant difference in the relative power (%FTP), heart rate (HR), and rating of perceived exertion (RPE) between the LI and HI exercise conditions. In the overall sample, the consistency in relative power, heart rate, and RPE responses among participants suggests that the exercise doses were effectively communicated and adhered to; therefore, the validity of the LI exercise condition remains robust.

      While we did not include metabolic assessments in our protocol, our study focused on providing a comprehensive analysis of the exercise-induced hypoalgesia phenomenon across two distinct exercise intensities. Additionally, the rationale for selecting specific exercise intensities was grounded in the existing literature, which indicates significant differences in the hypoalgesic response between exercise intensity levels (Jones et al., 2019; Vaegter et al., 2014).

      According to the reviewer, the potential lack of difference between the exercise conditions might contribute to the fact that there was no difference in endogenous opioid release and, thus, no difference in pain ratings between the exercise conditions. However, our data still suggests that there is an influence of endogenous opioids in the HI exercise condition in males with higher fitness levels. Together with recent findings on the association of µ-opioid receptor activation and fitness levels in men (Saanijoki et al., 2022), as well as the difference in µ-opioid receptor availability between high and moderate aerobic exercise (Saanijoki et al., 2018), we would hypothesise that the release of endogenous opioids after short HI bouts of exercise depend on fitness levels (and potentially sex).

      Finally, we propose that discussing exercise intensity domains within the context of our study enriches the understanding of exercise-induced hypoalgesia without undermining the integrity of our findings. We have, therefore, included this in the discussion of the manuscript.

      L417 - For some reason I am doubting this value (r = 0.61). Could this be checked? I think it is higher in their study. r = 0.88?

      Also, as someone with a kinesiology background, I would argue this is a given anyway. The maximum power one can cycle for 20 minutes is related to the maximum power one can cycle for 60 minutes, this is expected. (That is no slight on the authors of this study, more a remark that readers could look and figure that for themselves if they needed to know).

      We thank the reviewer for their comment. We have carefully re-checked the correlation coefficient between the FTP20 and FTP60 tests in the study by Borsczc et al. (2018) and have corrected the correlation coefficient to r = 0.88. We thank the reviewer for detecting this. Whilst we agree that it seems somehow intuitive that the FTP20 and FTP60 should correlate highly, we wanted to provide the reader with a better understanding of where the FTP20 tests originated from and how it is suitable to assess aerobic fitness levels without having to maintain a steady power output for 60 minutes.

      L428 - Kudos to the authors for taking a standardised approach to this. Hopefully, my comment earlier might provide some extra food for thought about exercise intensity. I think there are several other ways future research could prescribe exercise without the need for expensive and cumbersome bits of equipment to know how hard people are exercising.

      We strongly agree with the reviewer and hope that our study can inspire future research to implement more convenient and inexpensive ways to establish aerobic (and anaerobic) fitness levels.

      L456 to 458 - Would it be possible to revisit this and check whether the pooled mean of all stimulation intensities for pain intensity ratings after pressure pain is lower than 50? If so, I think it can also be assumed that there is a slight hypoalgesia effect occurring for pressure pain too.

      We have revisited the pressure pain ratings pooled across all stimulus intensities (VAS 30,50, and 70). Indeed, the ratings are below 50 VAS (Supplemental Figure S1A) in the SAL and NLX conditions. As mentioned before lower pain ratings after LI exercise cannot be taken as evidence for exercise-induced analgesia.

      L495 to L499 - I find this fascinating. Great finding.

      We thank the reviewer for their positive feedback.

      (5) Methods

      L650 - "Watts"

      We have changed the sentence accordingly.

      L651 - beats per minute can also be represented as b.min-1 and cadence as revolutions.min-1.

      To allow for easier interpretation of the results in a broader readership we would like to propose to maintain the original abbreviations.

      L678 - Just to check what the authors mean by "on the second experimental day", they are actually referring to Visit 2 of 3 (first experimental visit of 2) as it is shown in Figure 1?

      We apologise for the lack of clarity. Indeed, the second experimental day refers to the third visit in the study. We have added this to the sentence to increase clarity.

      L708 - would change the end of the sentence to "and remained blinded throughout the study"

      We have changed the sentence accordingly.

      L742 - comma after "in one participant".

      We have added the missing comma.

      L746 - slight mistype... RPE in brackets instead of PRE

      We have changed the abbreviation to RPE.

      L747 - In case the authors are interested in affective measures in future studies... Hardy and Rejeski (1989) have a 9-point Likert scale rating affective valence which might be useful to check out.

      Thank you. The scale by Hary and Rejeski (1989) is a very relevant measure of affective valence during exercise, and we will consider this in future studies.

      L755 - Four squares for the thermode to be applied were drawn on the arm but through the methods I can only seem to see that the thermode was applied to the second square during calibration. During the MRI scan, did someone move the thermode to different squares for different stimulations?

      We appreciate the reviewers' question. Indeed, the heat calibration and recalibration on the first and second day, respectively, have always been completed on the same skin patch (patch 2) to allow for comparability of calibration across days. During the experimental sessions, the thermode head was repositioned in a randomised order across participants (i.e., skin patch 14-3-2) before each block. This was done manually before the MRI block commenced. The order of thermode head position was kept constant within participants across experimental days (day 2 and day 3).

      L764 - ITI predefined?

      We thank the reviewer for their comment and would like to point to line 130 in the revised manuscript where the abbreviation for inter-trial-interval (ITI) was first introduced.

      (6) Other Sections + Supplementary Materials

      L891 - I apologise in advance for this comment as it is the most trivial comment you will ever receive, but there is an extra "." On this line after J.N. initials for methodology.

      We have changed the punctuation accordingly.

      Table S1 - Strictly speaking, some of the intensity denominations in this table are not exactly an "intensity".

      Iannetta et al. (2020) - https://doi.org/10.1249/mss.0000000000002147 provides a commentary on intensity domains as well as Burnley and Jones (2018) - https://doi.org/10.1080/17461391.2016.1249524

      Likewise in this table - the term "without fatigue" in the description column is not strictly true as participants will naturally fatigue but authors are referring more to a "steady state".

      We have changed the name of the column to ‘Description’ to describe the test phase as proposed by Allen and Coggen (2012) and previously implemented by McGrath et al. (2019) and not the ‘intensity domains’ (as specified by Iannetta et al. (2020)). Further, we have refined the wording in Table S1 and replaced the term ‘without fatigue’ with ‘steady state’.

      Once again, thank you to the authors for their great work on this project and to the editor for the chance to review this paper.

      We would like to thank this reviewer for their very insightful and important comments and for pointing out the strengths of the manuscript. We believe the suggestions will help to improve the quality of the manuscript.

      Reviewer #2 (Recommendations for the authors):

      Summary:

      This interesting study compared two different intensities of aerobic exercise (low-intensity, high-intensity) and their efficacy in inducing a hypoalgesic reaction (i.e. exercise-induced hypoalgesia; EIH). fMRI was used to identify signal changes in the brain, with the infusion of naloxone used to identify hypoalgesia mechanisms. No differences were found in postexercise pain perception between the high-intensity and low-intensity conditions, with naloxone infusion causing increased pain perception across both conditions which was mirrored by activation in the medial frontal cortex (identified by fMRI). However, the primary conclusion made in this manuscript (i.e. that aerobic exercise has no overall effect on pain in a mixed population sample) cannot be supported by this study design, because the methodology did not include a baseline (i.e. pain perception following no exercise) to compare high/low-intensity exercise against. Therefore, some of the statements/implications of the findings made in this manuscript need to be very carefully assessed.

      Strengths:

      (1) The use of fMRI and naloxone provides a strong approach by which to identify possible mechanisms of EIH.

      (2) The infusion of naloxone to maintain a stable concentration helps to ensure a consistent effect and that the time course of the protocol won't affect the consistency of changes in pain perception.

      (3) The manipulation checks (differences in intensity of exercise, appropriate pain induction) are approached in a systematic way.

      (4) Whilst the exploratory analyses relating to the interactions for fitness level and sex were not reported in the study pre-registation, they do provide some interesting findings which should be explored further.

      Weaknesses:

      (1) Given that there is no baseline/control condition, it cannot be concluded that aerobic exercise has no effect on pain modulation because that comparison has not been made (i.e. pain perception at 'baseline' has not been compared with pain perception after high/low intensity exercise). Some of the primary findings/conclusions throughout the manuscript state that there is 'No overall effect of aerobic exercise on pain modulation', but this cannot be concluded.

      (2) Across the manuscript, a number of terms are used interchangeably (and applied, it seems, incorrectly) which makes the interpretation of the manuscript difficult (e.g. how the author's use the term 'exercise-induced pain').

      (3) There is a lack of clarity on the interventions used in the methods, for example, it is not exactly clear the time and order in which the exercise tasks were implemented.

      (4) The exercise test (functional threshold power) used to set the intensity of the low/high exercise bouts is not an accurate means of demarcating steady state and non-steady state exercise. As a result, at the intensity selected for the high-intensity exercise in this study, it is likely that the challenge presented for the high-intensity exercise would have been very different between participants (e.g. some would have been in the 'heavy' domain, whereas others would be in the 'severe' domain).

      (5) It is likely that participants did not properly understand how to use the 6-20 Borg scale to rate their perceived effort, and so caution must be taken in how this RPE data is used/interpreted.

      (6) Although interesting, the secondary analyses (relating to the interaction effects of fitness level and sex) were not included in the study pre-registration, and so the study was not designed to undertake this analysis. These findings should be taken with caution.

      We thank the reviewer for their insightful comments that contribute to improving the quality of the manuscript. In response to the identified weaknesses, we have made key revisions to enhance clarity and rigor. Regarding the lack of a resting control condition, we acknowledge that our study does not assess the overall effect of exercise versus no exercise. Our primary objective was to compare high- (HI) and low-intensity (LI) exercise on pain modulation, hypothesizing that lower intensities would have minimal effects. We revised the manuscript to eliminate misleading phrases about an "overall" effect, clearly emphasizing our aim to investigate the comparative effects of different exercise intensities. To address terminology inconsistencies, we have adopted "exercise-induced pain modulation," reflecting existing literature that recognizes both hypoalgesia and hyperalgesia associated with exercise (Vaegter and Jones, 2020). We clarified this terminology in the introduction and specified the pain modalities used in our study. We also improved methodological transparency by better describing the timing and order of exercise and drug treatment interventions. Concerning exercise intensity estimation, we acknowledge the complexities in classifying moderate, heavy, and severe domains. We added the study by Wong et al. (2023) to discuss the potential limitations of the FTP estimation protocol. Although direct measures of VO2max or blood lactate are absent in our study, our findings, including perceived exertion (RPE) scores and relative power data, support that participants were primarily in the heavy-intensity domain during HI exercise. To clarify RPE ratings, we adjusted the presentation to align with the Borg scale's intended anchor points, ensuring greater accuracy in reported exertion levels. Statistical analyses confirm significant differences in RPE between exercise intensities. These revisions aim to clarify our intent and methodologies, ultimately strengthening the contribution of our research to understanding exercise-induced pain modulation.

      (1) Lines 27-33 - please present some data and accompanying statistical output in the results section of the abstract.

      We thank the reviewer for their comment. In the results section of the abstract, we report whether the findings are (not) significant using the general threshold of P < 0.05. However, we prefer not to include more detailed data and statistical outputs here, as these are thoroughly presented in the results section and do not contribute to the abstract’s primary purpose of providing a concise summary.

      (2) Line 29 - please indicate how fitness level was quantified.

      The functional threshold power (FTP) adjusted for weight served as an indication of cardiovascular fitness level. We have now included this in the abstract.

      (3) Line 35 - please include a sentence detailing the implications of your findings.

      We have now included a sentence on the implications of our findings in the abstract.

      (4) Introduction general - I appreciate that it was an exploratory analysis, however, the introduction does not particularly lay the groundwork for this (e.g., the influence of fitness level, sex, etc) - please include some background within the introduction to establish the role level of fitness/exercise/training/physical activity on pain modulation.

      A paragraph detailing the role of fitness level and sex in the context of exercise-induced pain modulation and endogenous opioid release was part of the introduction of our manuscript but has been removed as per the reviewing editor’s request (as the inclusion of sex and fitness level was not part of the preregistration). We have now re-included a shortened version of this paragraph to provide some background on these potentially crucial factors in exercise-induced pain modulation.

      (5) Lines 40-41 - reference needed.

      We thank the reviewer for detecting this and have now included references concerning the release of endogenous opioids and the term exercise-induced hypoalgesia.

      (6) Lines 48-49 - please provide the full terms for ACC and PAG (PAG has been provided on line 52, but should be presented earlier).

      We thank the reviewer for detecting this. We now introduce the abbreviations for the periaqueductal grey (PAG) and anterior cingulate cortex (ACC) in the correct lines.

      (7) Line 49 - the term exercise-induced pain is often used interchangeably (incorrectly) with many different types of pain experienced during/after exercise (e.g. muscle burn/ache, DOMS, injury etc.). Please see O'Malley et al 2024 (doi: 10.1113/EP091687).

      We thank the reviewer for their comment. Despite the distinction between different types of pain induced by exercise being important, this is less relevant for the current study. We would like to point out that the full term used is exercise-induced pain modulation, referring to the modulation of (experimental) pain through exercise. We have deliberately chosen this term as it summarises exercise-induced hypoalgesia as well as hyperalgesia. Therefore, we did not refer to pain induced by exercise and would disagree that this term has been used interchangeably with different types of pain in the current manuscript.

      (8) Line 57 - neither of these studies looked at exercise-induced pain, rather they examined experimentally induced pain (e.g. cold pressor test) or chronic pain and how exercise might exacerbate it. This leads back to the previous comment - it is important to define what is meant by exercise-induced pain (EIP) from the offset, and then remain consistent in the reference to this.

      We agree with the reviewer and have cited the studies accordingly. We would like to point out that the current study does not investigate exercise-induced pain but the modulation of experimental pain through exercise and have used the term exercise-induced pain modulation consistently in the manuscript to describe this.

      (9) Line 61 - Droste et al and Olausson et al are missing from the reference list.

      We apologise for this oversight and have now updated the reference list to include the studies by Droste et al. (1991) and Olaussen et al. (1986).

      (10) Line 61 - Do you mean exercise-induced hypoalgesia, or modulation of exercise-induced pain - it is not clear? EIH is introduced in Line 40 and in consistent with what the Koltyn study explored. Conversely, Koltyn induced pain using heat and pressure, rather than exercise.

      In this manuscript, we have opted for the term ‘exercise-induced pain modulation’ since previous research has shown that exercise can elicit hypoalgesia as well as hyperalgesia (for review see Vaegter and Jones (2020)). Thus, the term refers to the modulation of pain through exercise. We have now included a sentence detailing the use of the term ‘exercise-induced pain modulation’ in the first passage of the introduction. Corresponding to Koltyn et al. (2014), we have used heat and pressure stimuli to induce pain and investigate the modulating effect of different exercise intensities on these pain modalities.

      (11) Line 62 and 64 - Both the Janal study and Haier study are missing from the reference list.

      We apologise for this oversight and have now updated the reference list to include the studies by Janal et al. (1984) and Haier et al. (1981).

      (12) Line 62 and 64 - define long/short distance/duration.

      We have revised the terminology from "short-duration" to "short-distance" to facilitate a more precise comparison of the exercise protocols employed in the studies by Janal et al. (1984) and Haier et al. (1981). Specifically, the long-distance run conducted by Janal et al. (1984) spanned 6.3 miles (10.3 km), while the short-distance run executed by Haier et al. (1981) covered 1 mile (1.6 km).

      (13) Line 62 - what type of pain?

      Janal et al. (1984) implemented thermal, ischemic, and cold pressor pain in their study and observed a hypoalgesic effect in response to thermal and ischemic pain that was reversed under NLX administration. We have now specified this in the text.

      (14) Line 67 - please place "i.e., the insula, ACC and prefrontal regions" in parentheses.

      Done.

      (15) Lines 67-69 - please provide clarity on the nature of the interventions being employed. For example, are you referring to interventions to reduce/overcome pain? Or are you referring to approaches to experimentally induce or increase pain during exercise? In either case, please be specific on the interventions employed, and why this variation in approach may make it challenging to draw a conclusion

      The interventions employed by several studies aimed to investigate the pharmacological underpinnings of the pain modulatory effect of exercise and were, thus, pharmacological interventions. The primary objective of these interventions is usually not to reduce/induce/decrease/increase pain but to block a specific receptor type to infer the involvement/role of these receptor types in pain modulation through exercise. In the context of exercise and pain specifically, the most frequently used pharmacological intervention consists of administering a µ-opioid receptor antagonist (naltrexone/naloxone (NLX)). Depending on which type of µ-opioid receptor antagonist is used, different administration protocols are employed (i.e., oral or intravenous administration, different doses, only bolus without constant injection). This variability in the administration protocols of these pharmacological interventions can account for different findings of the extent of opioidergic involvement in exercise-induced pain modulation. We have now refined the according section to increase the precision and clarity of the interventions used.

      (16) Line 69 - administration of what?

      This passage refers to the variability of administration of µ-opioid receptor antagonists such as naloxone (NLX) or naltrexone. We have now specified this in the according line.

      (17) Line 74 - EIH?

      As described above, we have chosen the term 'exercise-induced pain modulation' as an umbrella term for both exercise-induced hypoalgesia and hyperalgesia. However, the reviewer is correct that specifically studies investigating exercise-induced hypoalgesia have been criticised. Still, the proposed criticism also applies to studies detecting hyperalgesia and we would, thus, argue to retain the term ‘exercise-induced pain modulation’ here for the sake of consistency.

      (18) Line 75 - please define "single-arm pre-post measurements"

      We appreciate the reviewers' comment. Single-arm pre-post measurement studies involve participants being assigned to a single experimental condition, with pain assessments conducted only once prior to and once following the intervention. This study design presents several limitations, particularly in the context of examining exercise-induced modulation of pain (Vaegter and Jones, 2020). Such designs do not consider the effects of habituation to noxious stimuli, as highlighted by Vaegter and Jones (2020). Consequently, when measuring pain levels with only one pre- and one post-intervention assessment, there is a risk of misinterpreting the outcomes where a reduction in post-intervention pain ratings might erroneously be credited to the exercise intervention itself, rather than being a result of habituation to the noxious stimuli experienced. Incorporating randomised controlled trials with multiple measurement blocks not only mitigates these limitations but also provides a clearer understanding of how individual bouts of exercise influence pain perception.

      (19) Line 84 - is (40) a reference?

      We apologise for this oversight and have now updated the reference by Borszcz et al. (2018) to be displayed correctly.

      (20) Line 86 - is that 10 min per block (i.e. 40 min exercise time), or 10 min in total? If the former please include "per block" at the end of the sentence (Line 87).

      The reviewer is correct in assuming that we employed 10 min of cycling per block, resulting in a total of 40 minutes of cycling. We have updated the sentence now including ‘per block’ as suggested by the reviewer.

      (21) Line 89 - when you refer to "painfulness" are you referring to the intensity of pain experienced? If so, I think "pain intensity" would be more appropriate.

      In the current study, participants were asked about the ‘painfulness’ of each stimulus based on previous studies (Horing et al., 2019; Horing & Büchel, 2022; Tinnermann et al., 2022). The term ‘painfulness’ is a composite measure of ‘pain intensity’ (sensory dimension) and ‘pain unpleasantness’ (affective dimension) (Talbot et al., 2019). Since unpleasantness is also a definitional criterion of pain (‘Terminology | International Association for the Study of Pain’, n.d.) and previous research shows a high correlation between ‘pain unpleasantness’ and ‘pain intensity’ (Granot et al., 2008; Talbot et al., 2019) we have opted for the term ‘painfulness’ as a more comprehensive measure. Inherently, these two measures are highly correlated.

      (22) Line 91-93 - the way this is written could be suggestive of this being separate to the cycling blocks. Please rephrase to confirm that this was administered prior to the commencement of the cycling blocks.

      We have refined the sentence to make it clearer that the drug treatment was administered before the cycling block commenced on each of the experimental days. We would like to further specify, that whilst the bolus dose of the treatment was administered prior to the experiment, a constant intravenous supply of SAL/NLX was maintained throughout the experiment using an infusion pump.

      (23) Methods general - why only 10 min of exercise? It is likely that there is a 'dose effect' of exercise on EIH, whereby the intensity of exercise and the duration of the exercise are important. Short-duration but high-intensity exercise can induce EIH, as can moderate duration low-intensity exercise. But, for this protocol, was the intensity high enough or long enough to meet the 'dose' needed?

      We thank the reviewer for their question. Our decision to employ 10-minute exercise blocks was rooted in both scientific evidence on exercise-induced hypoalgesia and the (clinical) applicability of the findings. Research has shown that exercise durations ranging from 8 minutes to 2 hours of aerobic exercise can induce hypoalgesia (for review see Koltyn (2002)). Specifically, several studies induce hypoalgesia at 10-15 minutes of aerobic exercise (Gomolka et al., 2019; Gurevich et al., 1994; Haier et al., 1981; Jones et al., 2019; Sternberg et al., 2001; Vaegter et al., 2015). Furthermore, many prior studies have employed exercise durations that are tailored to professional or amateur athletes which may not be practical for healthy individuals with lower fitness levels who may find it challenging to engage in longer sessions, such as an hour of running. When considering applying these findings to the clinical chronic pain population it is crucial to assess the manageability of proposed exercise protocols. We believe that 10 minutes of exercise, whilst being a relatively brief exercise duration, may still be sufficient to elicit exercise-induced hypoalgesia.

      (24) Methods general - what was the time gap between each round (i.e. after the fMRI, how long before the participant started the next cycling block?).

      After each fMRI run the participants were taken out of the MR scanner. The HR and SPO2 were measured and participants were given the chance to go to the restroom before positioning them on the bike and starting the next block. All in all, the time following the fMRI scan and before the new block commenced ranged between 5-10 minutes. We have now included this specification in the methods section.

      (25) Methods general - there is some evidence to show that the EIH effect is less consistently shown when heat is used to induce pain - was there a reason heat was used as the pain induction method here?

      We thank the reviewer for their comment. Indeed, previous meta-analyses by Naugle et al. (2012) report larger effect sizes for pressure pain (Cohen’s d = 0.69) closely followed by heat pain (d = 0.59). In light of this evidence, we included both pain modalities in the current study. Notably, we found no significant differences in pressure pain responses between LI and HI exercise. It is important to emphasise that the term "pressure pain" predominantly encompasses studies employing handheld pressure algometry, whereas our investigation utilised a pressure cuff. This methodological variation raises the possibility that our findings—and corresponding effect sizes—may not be directly comparable to prior pressure pain studies.

      (26) Methods general - please be consistent in the use of terminology. In some areas, you use the phrase "cycling block" whereas in other areas it is referred to as a "cycling run".

      We have revised the methods section to be more precise with the terms ‘run’ and ‘block’.

      (27) Line 571-573 - Please detail how participants were excluded based on scores from STAI and BDI-II.

      We apologise for the misspelling, as it should be that one participant was excluded based on a BMI (body mass index) below 18. No participant had to be excluded based on the STAI or BDI-II score in the current study. We have corrected this in the manuscript.

      (28) Line 636-651 - the FTP20 test has been shown not to be a valid marker of the separation between the heavy and severe exercise intensity domains (see Wong et al 2023 - https://doi.org/10.1080/02640414.2023.2176045). Given that participants completed the high intensity cycle in 'zone 4' (91-106% of FTP), it is probable that participants could have completed this 10 min in either the heavy or the severe exercise intensity domains, with significant implications for the relative challenge this 10 min of exercise. Why was zone 4 used? What are the implications of this? Please discuss and include this as a limitation.

      We thank the reviewer for their comment as it touches upon the challenges of accurately estimating exercise intensities. It is indeed crucial to consider the boundaries between moderate, heavy, and severe intensity domains, as delineated by physiological markers.

      The study by Wong et al. (2023) is interesting; it assesses blood lactate and VO2 levels at FTP and FTP+15 Watts. Despite being highly relevant for the field some of the findings should be interpreted with caution due to the low sample size of 13 participants, consisting of 11 male and only 2 female cyclists, which may limit generalisability. Additionally, the testing protocol implemented in the study to determine participants' FTP consisted of a 5-minute self paced pedalling at 100 Watts followed by a 20-minute maximal, self-paced time trial. This differs from the FTP20 test as implemented in the current study (see Supplemental Table S1) or by other studies (McGrath et al., 2019). The finding in Wong et al. (2023) that participants were only able to sustain cycling at FTP for an average of 33 minutes suggests that the deviating protocol overestimates FTP. Mackey and Horner (2021) propose that the validity of the FTP20 test might rely on the warm-up used before FTP20 testing and the training status of athletes.

      However, we acknowledge that without direct measurements of VO2max or blood lactate levels, it is challenging to determine the precise intensity domain in which each participant was operating in the current study. Still, the RPE (low: M = 8.59, SD = 1.32; high: M = 14.92, SD = 1.98) suggests that participants operated in the heavy-intensity domain in the HI exercise condition. This is further supported by the relative power (%FTP) maintained in the HI (M = 105; SD = 0.05; Author response image 5, purple) and LI (M = 58; SD = 0.06; Author response image 5, green) exercise conditions (difference: t(37) = 44.58, P < 2.2e-16, d = 6.46) confirming the accuracy of the implemented FTP test as well as the maintained power throughout the cycling blocks. Thus, we would argue that participants in the current study predominantly exercised the heavy domain during the HI exercise condition. We have included the relative Power in Figure 3A, replacing the absolute Power.

      Finally, we propose that discussing exercise intensity domains within the context of our study enriches the understanding of exercise-induced hypoalgesia without undermining the integrity of our findings. We have now included a discussion of the validity of the FTP20 test as a demarcation point concerning the intensity domains.

      Author response image 5.

      Raincloud plot of relative power (%FTP) during low (green) and high (purple) intensity exercise. Individual data points depict subject-specific averages across blocks.

      (29) Line 676 - please provide further information on each cycling run/block. Did each participant complete a total of 4 runs (i.e., a total of 40 minutes of exercise), with 2 runs completed at a high intensity and 2 runs completed at a low intensity in a randomised order (e.g., for one participant this could be 10 minutes at low, followed by 10 minutes at high, followed by 10 minutes a low, followed by 10 minutes at high)? Figure 1 details this nicely, however, it would be helpful to read in-text.

      The reviewer is correct in assuming that there were a total of 4 blocks on each experimental day. Participants completed cycling in 2 blocks at HI and in 2 blocks at LI in a pseudorandomised order. This order was kept constant across experimental days (i.e. completing the same block order on Day 2 and Day 3). We have detailed this further in the Methods section.

      (30) Discussion general - it is possible that EIH could be induced via different mechanisms and that these mechanisms are at least in part due to exercise intensity. For example, EIH from higher-intensity exercise might have some contribution from CPM.

      We thank the reviewer for their comment. Previous research aimed to disentangle the two seemingly similar mechanisms of exercise-induced hypoalgesia (EIH) and conditioned pain modulation (CPM) (Ellingson et al., 2014; Rice et al., 2019; Samuelly-Leichtag et al., 2018; Vaegter et al., 2014). CPM is typically induced by applying a tonic noxious stimulus that decreases pain sensitivity to another noxious stimulus applied simultaneously or shortly after at a distant body part (Graven-Nielsen & Arendt-Nielsen, 2010). Despite EIH and CPM showing distinct mechanisms, it cannot be completely ruled out that there are at least partially overlapping mechanisms driving the two phenomena (Rice et al., 2019). Due to our study design, where the time difference between cycling blocks and the applied pain was on average five minutes, it is unlikely that CPM is the driving pain modulatory mechanism in our study setup.

      (31) Line 101 - as this was preregistered, should the study design be followed and then reported?

      We have conducted the study adhering to the preregistered study design and now report the results for pressure pain (Supplemental Figure S1). Some of the preregistered analyses (i.e. directly comparing heat and pressure pain) were beyond the scope of the current study and will be reported separately.

      (32) Line 110 - please provide some data on the fitness levels and how this is classified as high/low.

      The FTP (relative to body weight) was used as an estimate of cardiovascular and endurance fitness (Valenzuela et al., 2018). We refrained from classifying the fitness levels dichotomously as low or high since this is a subjective measure in a sample of healthy individuals of diverse fitness levels. Instead, we utilised the FTP as a more nuanced metric for comparison.

      (33) Lines 159-160 - in the context of the difference in intensity between the sessions. But, it is likely that the high-intensity exercise would have posed quite different relative challenge between participants.

      We thank the reviewer for their comment. As described above, we did not obtain direct measurements of VO2max or blood lactate levels making it challenging to determine the precise intensity domain in which each participant was operating in the current study. However, all participants received the same instructions to the BORG rating scale ensuring the comparability of RPE across participants to a certain extent.

      (34) Figure 3C - what instructions and familiarisation were given to participants regarding the 6-20 Borg scale? In Figure 3C it looks as though several participants rated the low exercise intensity at 6. This would/should be equivalent to sitting quietly, so it looks as though at least several participants did not understand how to use the RPE - please discuss.

      Indeed, three participants rated the LI exercise condition at 6 due to an error in the translation of the scale instruction. Participants were instructed that the lower anchor point of the scale (6) referred to ‘extremely light’ instead of ‘no exertion’. Thus, we have rescaled the RPE ratings where a rating of 6 now corresponds to a 7 (‘extremely light’) on the BORG scale and again calculated the paired t-test. There is still a significant difference in the RPE between exercise intensities (t(38) = 19.65, P < 2.2e-16, d = 3.69; Author response image 6). We have corrected this in the manuscript accordingly and updated Figure 3C.

      Author response image 6.

      Raincloud plot of rating of perceived exertion (RPE) on the BORG scale during low (green) and high (purple) intensity exercise. Individual data points depict subject-specific averages across blocks. A rating of 6 reflects ‘no exertion’ and 20 reflects ‘maximal exertion’.

      (35) Line 171 - is (37, 38) a reference?

      We apologise for this oversight and have now updated the references to be displayed correctly.

      (36) Line 176-18 - is this interaction sufficiently powered? Differences between sexes are not mentioned in the pre-registered study

      We have conducted an additional post-hoc power analysis for the interaction of drug, fitness level, and sex on differential heat pain ratings. We employed the power analysis for mixed models implemented in R (powerCurve) with 1000 simulations. This revealed that with a power of α = 0.8, a sample size of n = 27 would have been sufficient to detect this effect (Author response image 7). Despite not having preregistered the factor ‘sex’, we believe that the observed results provide valuable insights that contribute to a deeper understanding of the data. We have established these analyses to be exploratory, emphasising the need for caution in their interpretation. However, we feel it is essential to report these findings to inform future studies, ensuring that such factors are adequately considered.

      Author response image 7.

      Post-hoc power analysis for behavioural effects from the linear mixed effects (LMER) model with interaction drug, fitness level, and sex using the R package powerCurve with α = 0.8 and 1000 simulations.

      (37) Line 227 - this is not what this analysis shows. The comparison is low vs high-intensity exercise on pain modulation, not exercise vs. no exercise. You cannot conclude that aerobic exercise has no effect on pain modulation because you did not do that comparison (i.e. no baseline (without exercise) for pain).

      We agree with the reviewer and have rephrased the sub-headline accordingly to reflect that there is no difference in exercise-induced hypoalgesia between HI and LI aerobic exercise.

      (38) Methods General - why was a control condition not used, or at least a baseline pain response, so that low/high-intensity exercise could be compared to a baseline? Given this, I'm not sure I agree with the study conclusions (abstract: 'These results indicate that aerobic exercise has no overall effect on pain in a mixed population sample') because you have compared high vs low-intensity exercise, not exercise vs. no exercise.

      As for the lack of a resting control condition, we acknowledge that our study was not designed to test the overall effect of exercise versus no exercise. However, our primary objective was to compare different exercise intensities, hypothesising that low-intensity (LI) exercise would induce less pain modulation as compared to high-intensity (HI) exercise. By exploring this, we aimed to enhance understanding of the dose-response relationship between exercise and pain modulation. To better reflect this focus, we have revised the misleading phrasing regarding the ‘overall’ effect of exercise to clearly emphasize our primary aim: comparing HI and LI exercise. This reviewer suggests an interesting interpretation of the data suggesting that exercise-induced hypoalgesia might have occurred for both exercise intensities since the pain ratings provided were lower than the anticipated intensities as determined by the calibration. Given that this difference is lower in the naloxone (NLX) condition could provide evidence of opioidergic mechanisms underlying this effect.

      Unfortunately, the current study is not designed to comprehensively answer this question since there was no resting control condition. In particular, the lower pain ratings under SAL (Figure 6) could be due to exercise triggering the descending pain modulatory system (DPMS), but equally due to the default activation of the DPMS. Only an additional “no exercise” condition could disentangle this. Furthermore, habituation to noxious stimuli can influence pain ratings, resulting in lower pain ratings during the experiment as compared to the calibration.

      (39) Line 285 - or that better-trained individuals have a greater EIH response to higher intensity exercise, but both those of low and high fitness have established EIH after low intensity exercise. Given there isn't a 'no exercise' baseline, it is hard to make conclusions about EIH effect generally, only comparisons between high/low exercise intensity.

      We thank the reviewer for their comment. We agree that we cannot establish whether all participants showed a hypoalgesic response to the LI exercise with the current study design. However, our results show that participants with higher fitness levels showed increased hypoalgesia after HI exercise compared to those with lower fitness levels. We have refined the sentence accordingly.

      (40) Figure 7A - the regression line here is not that convincing.

      We acknowledge the reviewers’ concern regarding the regression line. However, it is important to note that the significant main effect of fitness level on differences in pain ratings in the SAL condition (β = 6.45, CI [1.25, 11.65], SE = 2.56, t(38) = 2.52, P = 0.02) supports the assertion that higher fitness levels are associated with greater hypoalgesia following HI exercise compared to LI exercise. While the trend may not be visible for all data points, the statistical analysis provides a robust basis for the observed relationship (r = 0.33, P = 0.038).

      (41) Line 354 - the NLX infusion was double-blind, but what are the implications of participants knowing that they completed high/low-intensity exercise - this cannot be blinded.

      The reviewer is correct that the exercise intensities cannot be blinded. To account for potential expectation effects of exercise on several psychological and physiological domains (including pain), participants completed a questionnaire on the calibration day where they had to indicate their expectations of to what extent acute exercise affects several domains (Lindheimer et al., 2019). They could rate each domain on a Likert scale ranging from ‘large decrease’ (-3) to ‘large increase’ (3) with 0 denoting ‘no effect’. This format was chosen to allow measuring the direction and magnitude of expectation effects and to avoid being directive or suggestive (Lindheimer et al., 2019). Despite including other psychological and physiological domains in the questionnaire (i.e., stress, anxiety, energy, memory) we focused on the specific pain domains (muscle pain, joint pain, and whole body pain) to establish participant’s expectations regarding the effect of acute exercise on pain. We tested whether the expectation ratings for each pain type were significantly different from 0 (no effect) using a one-sample t-test.

      There was no significant effect for muscle pain (t(38) = 1.78, P = 0.08, M = 0.39, SE = 0.12), joint pain (t(38) = -0.12, P = 0.90, M = -0.03, SE = 0.11), or ‘whole-body pain (t(38) = -1.05, P = 0.30, M = -0.21, SE = 0.12) suggesting there to be no expectation effect on these pain domains in the overall sample (Supplemental Figure S10A). Since there is variation in the data we calculated the correlation of the expectation ratings in the different pain domains with the difference score between the pain ratings in the SAL condition (LI – HI rating; Supplemental Figure S10B). This analysis yielded no significant correlation in either of the pain domains (joint pain: r = 0.11, P = 0.49; muscle pain: r = -0.07, P = 0.68; whole-body pain: r = 0.07, P = 0.68).

      Moreover, given that we have not been able to show a difference between the exercise intensities on pain modulation, expectation effects are likely not to contribute to this null effect.

      (42) Line 356-358 - and this comparison (and primary hypothesis) is not blinded.

      While we agree with the reviewer that this comparison is not – and potentially cannot be – blinded, we would like to reiterate our results from the previous paragraph that indicate that such expectation effects of exercise on pain were not present in the sample and, thus, did not seem to have influenced the results. It is noteworthy that the double-blind design of our study design specifically pertains to the pharmacological intervention employed.

      (43) Line 358-360 - this could be explained by both types of exercise inducing EIH via the same mechanism (which is disrupted by NLX).

      We thank the reviewer for their comment and would like to refer back to the reviewer's comment number 38 for a response to this.

      (44) Line 360-361 - this conclusion cannot be drawn, because you have only compared high vs low intensity exercise. So, the conclusion should be 'These results suggest that there is no difference between high and low aerobic exercise intensity on heat-induced pain'.

      We agree with the reviewer and have rephrased the sentence to reflect the claim accurately.

      (45) Line 396 - as previously discussed, this conclusion cannot be drawn through this study design.

      We agree with the reviewer and have rephrased the sub-headline accordingly to reflect that there is no difference in exercise-induced hypoalgesia between HI and LI aerobic exercise.

      (46) Line 399 - please expand on this point - it is critical to the hypothesis and should also be included in the introduction. What intensities/duration/dose of aerobic exercise is generally established to cause EIH?

      We thank the reviewer and agree that this is a crucial aspect that requires further specification. Below we have expanded on the duration/intensities shown to elicit exercise-induced hypoalgesia and included a concise version of this detailed paragraph in the manuscript introduction.

      For aerobic exercise, different methods have been employed to determine exercise intensity levels i.e., through the VO2max, age-predicted HRmax, or incremental intensities (Koltyn, 2002). Most studies using VO2max as a measure of exercise intensity (Koltyn et al., 1996; Micalos & Arendt-Nielsen, 2016; Vaegter et al., 2014) were able to induce hypoalgesia with HI levels ranging between 65%-75% VO2max. When using the HRmax as a measure of determining exercise intensities, HI exercise at 70%-75% of the HRmax has been shown to produce greater hypoalgesia compared to moderate intensity at 50% HRmax (Naugle et al., 2014; Vaegter et al., 2014). Furthermore, previous research has suggested that HI exercise produces greater hypoalgesia compared to LI exercise (60-70% HRmax vs. light activity: M. D. Jones et al., 2019; 70% vs. 50% HRmax: Naugle et al., 2014; 75% vs. 50% VO2max: Vaegter et al., 2014).

      Furthermore, different durations can be regarded as suitable with durations between 8 minutes to 2 hours of aerobic exercise having been shown to induce hypoalgesia (for review see Koltyn (2002)). Hoffman et al. (2004) showed a hypoalgesic response after 30 minutes but not after 10 minutes at 75% VO2max of cycling. In contrast, other studies were able to induce hypoalgesia at 10-15 minutes of HI aerobic exercise (75% VO2may: Gomolka et al., 2019; 63% VO2max: Gurevich et al., 1994; self-paced: Haier et al., 1981; 60-70% HRmax: Jones et al., 2019; 85% HRmax: Sternberg et al., 2001; 75% VO2max: Vaegter et al., 2015).

      (47) Line 400-401 - please define high intensity.

      We thank the reviewer for their comment. The referenced studies by Vaegter et al. (2014) and Jones et al. (2019) based the estimation of HI and LI exercise on an age-related target heart rate corresponding to VO2max and HRmax, respectively. In Vaegter et al. (2014), the HI condition corresponded to 75% VO2max, while the LI to 50% VO2max. In Jones et al. (2019), the HI exercise condition corresponded to 60% and 70% of HRmax, while the LI condition was defined as pedalling slowly against a light resistance of 0.5 kg of force to maintain a rating of perceived exertion (RPE) not above resting. We have included this clarification in the relevant section to elucidate the intensities of the chosen exercise conditions.

      (48) Line 403-405 - I'm not sure I follow (perhaps I have misunderstood) - pain induction was completed after exercise in the MRI scanner, so there was no distraction effect of exercise in either condition. A baseline could have been established in the same way and there would be exactly the same conditions, just without prior exercise.

      We agree with the reviewer that a resting baseline condition in the context of exercise induced pain modulation allows for the investigation of a potential hypoalgesic effect of exercise compared to no exercise. Nevertheless, it is important to note that previous studies (Brooks et al., 2017; Sprenger et al., 2012) have shown that cognitive pain modulation is mediated by endogenous opioids. Therefore, tasks with different attentional loads potentially influence post-task pain ratings. Although, we agree with the reviewer that the effect of distraction or attentional load would be minimal in the MR scanner, there still could be an effect of different cognitive loads from exercise vs. no exercise. Nevertheless, we focus the discussion on investigating the dose-response relationship between different exercise intensities where an ‘active’ control condition might contribute to a more nuanced understanding of exercise-induced pain modulation.

      (49) Line 403-411 - this is fine (although I do not agree that this was the best methodological decision), however, it does limit the conclusions that can be drawn (as previously mentioned). That is, you cannot conclude that no EIH occurred, only that there was no difference between low and high-intensity exercise in post-exercise pain response.

      We agree with the reviewer that the comparison of HI vs. LI exercise does not allow for an interpretation of the overall effect of exercise as opposed to no exercise on pain modulation. The comparison of HI and LI exercise allows the investigation of a dose-response relationship of these distinct exercise intensities. While LI exercise might not be a 'pure' control condition in the traditional sense, it is valuable for exploring the complexities of exercise and pain interaction.

      (50) Line 419-422 - sorry I do not follow - you say that moderate intensity exercise most reliably induces EIH but then select exercise intensities that are likely to be in the heavy or severe intensity domain? Please also include in this discussion the limitations of FTP20 as a threshold marker (see Wong et al) and the implications on the results/conclusions.

      We thank the reviewer for their comment. In the referenced sentence, we have defined the HI exercise as described in the reviews. Specifically, Wewege and Jones (2020) reported hypoalgesia to be greater after higher-intensity exercise, although the intensity was not further specified. Naugle et al. (2012) noted that HI exercise (i.e., 75% of VO2max) produced greater hypoalgesia, while Koltyn (2002) indicated that hypoalgesia occurs at intensities ranging from 60% to 75% of VO2max but more reliably at 75% VO2max or higher. Consequently, we have removed the term ‘moderate’, as it does not accurately reflect what has been reported in the reviews and could be misleading. Moreover, we have clarified the specific criteria for what is considered high (or higher) intensity exercise in the referenced reviews.

      We kindly ask the reviewers to refer back to the previous comment (reviewer comment number 28) regarding the discussion of the intensity domains and the FTP20 test as demarcation point for these intensity domains.

      (51) Line 422-425 - indeed, pacing is an important element of this test, which inexperienced cyclists have difficulty with when they are not provided with proper familiarisation.

      We agree with the reviewer that the FTP20 test has mainly been validated and employed in experienced cyclists and requires further validation in non-athletes of both sexes. However, since we have used an extensive warm-up period and several paced steps (intervals, 5-minute time-trial) as well as recovery periods (Supplemental Table S1) based on McGrath et al. (2019) we propose that participants were thoroughly familiarised with the elements of pacing before the estimation of the FTP in the 20-minutes took place. On average, participants showed a variation of M = 21.80 Watts (SE = 1.44 Watts) during the 20-minute paced FTP20 test (Supplemental Figure S11A). Interestingly, our data suggests that participants with a higher FTP showed higher variation of power output (Watts) during the 20-minute FTP test compared to individuals with lower fitness levels (Supplemental Figure S11B).

      (52) Line 425-427 - please remove this, the RPE difference between exercise bouts is not evidence that participants cycled at FTP.

      We thank the reviewer for their comment. However, we would propose to include the rating of perceived exertion (RPE) since it shows that the exercise intensities have been perceived as significantly different by the participants. This behavioural measure of exertion is potentially important for a broader audience to understand the exercise implementation beyond physiological markers.

      (53) Line 432 - high vs. low-intensity aerobic exercise

      We have changed the sentence accordingly to support the claim of the study that there was no difference in exercise-induced pain modulation between HI and LI aerobic exercise.

      (54) Line 447-449 - this seems contradictory to the first line of this paragraph (430-432) - i.e. that the heterogenous sample may have caused the null finding. Why deliberately select a participant sample that is likely to lead to a null effect?

      In the current study, we aimed to include participants of diverse fitness levels and both sexes to verify the findings on exercise-induced pain modulation in a broader population. We consider this important concerning translational aspects of EIH. Indeed, our heterogeneous sample may have ‘caused’ the observed null effect, but at the same time, it suggests that more homogenous (sometimes composed solely of male athletes) samples employed in many earlier studies might have skewed the understanding of exercise-induced pain modulation and thus unintentionally suggested a (non-existing) generalisation of this effect to the general population.

      (55) Line 532-456 - although Koltyn found electrical pain to have the greatest effect?

      The review by Naugle et al. (2012) reported effect sizes for heat (Cohens d = 0.59) and pressure pain intensity (d = 0.69) following aerobic exercise but did not provide effect sizes for electrical pain intensity. They noted that the effect size for electrical pain intensity after isometric exercise was d = 0.40, which is lower than that for heat and pressure pain. While Koltyn (2002) stated that electrical and pressure stimuli induce exercise-induced hypoalgesia more consistently than thermal pain, the study did not clarify whether this applies to pain threshold, intensity, or tolerance, nor did they provide effect sizes. Given that electrical, pressure, and heat pain are the most commonly used methods to induce quantifiable pain in the context of exercise studies (Vaegter and Jones, 2020), we based our decision to use heat and pressure pain primarily on Naugle et al.'s findings.

      (56) Line 468-469 - why leave out content that was pre-registered (i.e. difference between pressure and heat pain) but includes analysis that wasn't (i.e. sex differences)? If a study is going to be pre-registered, then isn't it important to follow that design?

      We thank the reviewer for this comment. We have conducted the study adhering to the preregistered study design and now report the results for pressure pain (Supplemental Figure S1). Some of the preregistered analyses (i.e. directly comparing heat and pressure pain) were beyond the scope of the current study and will be reported separately.

      (57) Line 532-525 - and how could this have been accounted for?

      We apologise for any confusion, as we are unsure about the specific reference the reviewer is making based on the provided line numbers. We believe the question relates to how the potential effects of endocannabinoids were considered in the current study design, and we've addressed that in our response. In human studies, it is not possible to centrally block endocannabinoids, which makes it difficult to directly estimate their role in exercise-induced pain modulation in humans. Measuring endocannabinoids in the blood might not adequately capture changes in endocannabinoid levels in the brain throughout the different exercise intensity conditions. Despite these limitations, exploring the role of endocannabinoids in exercise-induced pain modulation presents a promising avenue for future research that could enhance our understanding of pain mechanisms and improve pain management strategies.

      58) Limitations General - please include the other limitations discussed in this review.

      Done.

      (59)Line 530 - please amend this conclusion, in line with previous comments.

      Done.

      We would like to thank the reviewer for critically evaluating the manuscript and providing insightful comments. We appreciate the reviewer recognising the strengths of our work and believe that their suggestions will contribute to improving the quality of the manuscript.

    1. photography

      living over 80 years in the future photography is so normal we don't even consider it, but for a forward looking person he could see the implications.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Recommendations for the authors:

      Reviewing Editor Comments:

      The resubmitted version of the manuscript adequately addressed several initial comments made by reviewing editors, including a more detailed analysis of the results (such as those of bilayer thickness). This version was seen by 2 reviewers. Both reviewers recognize this work as being an important contribution to the field of BK and voltage-dependent ion channels in general. The long trajectories and the rigorous/novel analyses have revealed important insights into the mechanisms of voltage-sensing and electromechanical coupling in the context of a truncated variant of the BK channel. Many of these observations are consistent with structural and functional measurements of the channel, available thus far. The authors also identify a novel partially expanded state of the channel pore that is accessed after gating-charge displacement, which informs the sequence of structural events accompanying voltage-dependent opening of BK.

      However, there are key concerns regarding the use of the truncated channel in the simulations. While many gating features of BK are preserved in the truncated variant, studies have suggested that opening of the channel pore to voltage-sensing domain rearrangement is impaired upon gating-ring deletion. So the inferences made here might only represent a partial view of the mechanism of electromechanical coupling.

      It is also not entirely clear whether the partially expanded pore represents a functionally open, sub-conductance, or another closed state. Although the authors provide evidence that the inner pore is hydrated in this partially open state, in the absence of additional structural/functional restraints, a confident assignment of a functional state to this structure state is difficult. Functional measurements of the truncated channel seem to suggest that not only is their single channel conductance lower than full-length channels, but they also appear to have a voltage-independent step that causes the gates to open. It is unclear whether it is this voltage-independent step that remains to be captured in these MD trajectories. A clean cut resolution of this conundrum might not be feasible at this time, but it could help present the various possibilities to the readers.

      We appreciate the positive comments and agree that there will likely be important differences between the mechanistic details of voltage activation between the Core-MT and full-length constructs of BK channels. We also agree that the dilated pore observed in the simulation may not be the fully open state of Core-MT.

      Nonetheless, the notion that the simulation may not have captured the full pore opening transition or the contribution of the CTD should not render the current work “incomplete”, because a complete understanding of BK activation would be an unrealistic goal beyond the scope of this work. We respectfully emphasize that the main insights of the current simulations are the mechanisms of voltage sensing (e.g., the nature of VSD movements, contributions of various charged residues, how small charge movements allow voltage sensing, etc.) as well as the role of the S4-S5-S6 interface in VSD-pore coupling. As noted by the Editor and reviewers, these insights represent important steps towards establishing a more complete understanding of BK activation.

      Below are the specific comments of the two experts who have assessed the work and made specific suggestions to improve the manuscript.

      Reviewer #1 (Recommendations for the authors):

      (1) Although the successful simulation of V-dependent K+ conduction through the BK channel pore and analysis of associated state dependent VSD/pore interactions and coupling analysis is significant, there are two related questions that are relevant to the conclusions and of interest to the BK channel community which I think should be addressed or discussed.

      One key feature of BK channels is their extraordinarily large conductance compared to other K+ selective channels. Do the simulations of K+ conductance provide any insight into this difference? Is the predicted conductance of BK larger than that of other K+ channels studied by similar methods? Is there any difference in the conductance mechanism (e.g., the hard and soft knock-on effects mentioned for BK)?

      The molecular basis of the large conductance of BK channels is indeed an interesting and fundamental question. Unfortunately, this is beyond the scope of this work and the current simulation does not appear to provide any insight into the basis of large conductance. It is interesting to note, though, the conductance is apparently related to the level of pore dilation and the pore hydration level, as increasing hydration level from ~30 to ~40 waters in the pore increases the simulated conductance from ~1.5 to 6 pS (page 8). This is consistent with previous atomistic simulations (Gu and de Groot, Nature Communications 2023; ref. 33) showing that the pore hydration level is strongly correlated with observed conductance. As noted in the manuscript, the conductance mechanism through the filter appears highly similar to previous simulations of other K+ channels (Page 8). Given the limit conductance events observed in the current simulations, we will refrain from discussing possible basis of the large conductance in BK channels except commenting on the role of pore hydration (page 8; also see below in response to #5).

      The pore in the MD simulations does not open as wide as the Ca-bound open structure, which (as the authors note) may mean that full opening requires longer than 10 us. I think that is highly likely given that the two 750 mV simulations yielded different degrees of opening and that in BK channels opening is generally much slower than charge movement. Therefore, a question is - do any of the conclusions illustrated in Figures 6, S5, S6 differ if the Ca-bound structure is used as the open state? For example, I expect the interactions between S5 and S6 might at least change to some extent as S6 moves to its final position. In this case, would conclusions about which residues interact, and get stronger or weaker, be the same as in Figures S6 b,c? Providing a comparison may help indicate to what extent the conclusions are dependent on achieving a fully open conformation.

      We appreciate the reviewer’s suggestion and have further analyzed the information flow and coupling pathways using the simulation trajectory initiated from the Ca2+-bound cryo-EM structure (sim 7, Table S1). The new results are shown in two new SI Figures S7 and S8, and new discussion has been added to pages 14-15. Comparing Figures 5 and S7, we find that dynamic community, coupling pathways, and information flow are highly similar between simulation of the open and closed states, even though there are significant differences in S5 contacts in the simulated open state vs Ca2+-bound open state (Figure S8). Interestingly, there are significant differences in S4-S5 packing in the simulated and Ca2+-bound open states (Figure S8 top panel), which likely reflect important difference in VSD/pore interactions during voltage vs Ca2+ activation.

      (2) P4 Significance -"first, successful direct simulation of voltage-activation"

      This statement may need rewording. As noted above Carrasquel-Ursulaez et al.,2022 (reference 39) simulated voltage sensor activation under comparable conditions to the current manuscript (3.9 us simulation at +400 mV), and made some similar conclusions regarding R210, R213 movement, and electric field focusing within the VSD. However, they did not report what happens to the pore or simulate K+ movement. So do the authors here mean something like "first, successful direct simulation of voltage-dependent channel opening"?

      We agree with the reviewer and have revised the statement to “ … the first successful direct simulation of voltage-dependent activation of the big potassium (BK) channel, ..”

      (3) P5 "We compare the membrane thickness at 300 and 750 mV and the results reveal no significant difference in the membrane thickness (Figure S2)" The figure also shows membrane thickness at 0 mV and indicates it is 1.4 Angstroms less than that at 300 or 750 mV. Whether or not this difference is significant should be stated, as the question being addressed is whether the structure is perturbed owing to the use of non-physiological voltages (which would include both 300 and 750 mV).

      We have revised the Figure S2 caption to clarify that one-way ANOVA suggest the difference is not significant.

      (4) P7 "It should be noted that the full-length BK channel in the Ca2+ bound state has an even larger intracellular opening (Figure 2f, green trace), suggesting that additional dilation of the pore may occur at longer timescales."

      As noted above, I agree it is likely that additional pore dilation may occur at longer timescales. However, for completeness, I suppose an alternative hypothesis should be noted, e.g. "...suggesting that additional dilation of the pore may occur at longer timescales, or in response to Ca-binding to the full length channel."

      This is a great suggestion. Revised as suggested.

      (5) Since the authors raise the possibility that they are simulating a subconductance state, some more discussion on this point would be helpful, especially in relation to the hydrophobic gate concept. Although the Magleby group concluded that the cytoplasmic mouth of the (fully open) pore has little impact on single channel conductance, that doesn't rule out that it becomes limiting in a partially open conformation. The simulation in Figure 3A shows an initial hydration of the pore with ~15 waters with little conductance events, suggesting that hydration per se may not suffice to define a fully open state. Indeed, the authors indicate that the simulated open state (w/ ~30-40 waters) has 1/4th the simulated conductance of the open structure (w/ ~60 waters). So is it the degree of hydration that limits conductance? Or is there a threshold of hydration that permits conductance and then other factors that limit conductance until the pore widens further? Addressing these issues might also be relevant to understanding the extraordinarily large conductance of fully open BK compared to other K channels.

      We agree with the reviewer’s proposal that pore hydration seems to be a major factor that can affect conductance. This is also well in-line with the previous computational study by Gu and de Groot (2023). We have now added a brief discussion on page 8, stating “Besides the limitation of the current fixed charge force fields in quantitively predicting channel conductance, we note that the molecular basis for the large conductance of BK channels is actually poorly understood (78). It is noteworthy that the pore hydration level appears to be an important factor in determining the apparent conductance in the simulation, which has also been proposed in a previous atomistic simulation study of the Aplysia BK channel (33).”

      Minor points

      (1) P5 "the fully relaxed pore profile (red trace in Figure S1d, top row) shows substantial differences compared to that of the Ca2+-free Cryo-EM structure of the full-length channel." For clarity, I suggest indicating which is the Ca-free profile - "... Ca2+-free Cryo-EM structure of the full-length channel (black trace)."

      We greatly appreciate the thoughtful suggestion. Revised as suggested.

      (2) P8 "Consistent with previous simulations (78-80), the conductance follows a multi-ion mechanism, where there are at least two K+ ions inside the filter" For clarity, I suggest indicating these are not previous simulations of BK channels (e.g., "previous simulations of other K+ channels ...").

      Revised as suggested. Thank you.

      (3) Figure 2, S1 - grey traces representing individual subunits are very difficult to see (especially if printed). I wonder if they should be made slightly darker. Similar traces in Figure 3 are easier to see.

      The traces in Figure S1 are actually the same thickness in Figure 3 and they appear lighter due to the size of the figure. Figure 2 panels a-c have been updated to improve the resolution.

      (4) Figure 2 - suggest labeling S6 as "S6 313-324" (similar to S4 notation) to indicate it is not the entire segment.

      Figure 2 panel d) has been updated as suggested.

      (5) Figure 2 legend - "Voltage activation of Core-MT BK channels. a-d)..."

      It would be easier to find details corresponding to individual panels if they were referenced individually. For example:

      "a-d) results from a 10-μs simulation under 750 mV (sim2b in Table S1). Each data point represents the average of four subunits for a given snapshot (thin grey lines), and the colored thick lines plot the running average. a) z-displacement of key side chain charged groups from initial positions. The locations of charged groups were taken as those of guanidinium CZ atoms (for Arg) and sidechain carboxyl carbons (for Asp/Glu) b) z-displacement of centers-of-mass of VSD helices from initial positions, c) backbone RMSD of the pore-lining S6 (F307-L325) to the open state, and d) tilt angles of all TM helices. Only residues 313-324 of S6 were included inthe tilt angle calculation, and the values in the open and closed Cryo-EM structures are marked using purple dashed lines. "

      We appreciate the thoughtful suggestion and have revised the caption as suggested.

      (6) Figure S1 - column labels a,b,c, and d should be referenced in the legend.

      The references to column labels have been added to Figure S1 caption.

      (7) References need to be double-checked for duplicates and formatting.

      a) I noticed several duplicate references, but did not do a complete search: Budelli et al 2013 (#68, 100), Horrigan Aldrich 2002 (#22,97), Sun Horrigan 2022 (#40, 86), Jensen et al 2012 (#56,81).

      b) Reference #38 is incorrectly cited with the first name spelled out and the last name abbreviated.

      We appreciate the careful proofreading of the reviewer. The duplicated references were introduced by mistake due to the use of multiple reference libraries. We have gone through the manuscript and removed a total of 5 duplicated references.

      Reviewer #2 (Recommendations for the authors):

      This manuscript has been through a previous level of review. The authors have provided their responses to the previous reviewers, which appear to be satisfactory, and I have no additional comments, beyond the caveats concerning interpretations based on the truncated channel, which are noted above.

      We greatly appreciate the constructive comments and insightful advice. Please see above response to the Reviewing Editor’s comments for response and changes regarding the caveats concerning interpretations of the current simulations.

    1. Indeed it turns out the number of available job opportunities for translators and interpreters has actually been increasing. This is not to say that the technology isn’t good, I think it’s pretty close to as good as it can be at what it does. It’s also not to say that machine translation hasn’t changed the profession of translation: in the article linked above, Bridget Hylak, a representative from the American Translators Association, is quoted as saying “Since the advent of neural machine translation (NMT) around 2016, which marked a significant improvement over traditional machine translation like Google Translate, we [translators and interpreters] have been integrating AI into our workflows.” To explain this apparent contradiction, we need to understand what it is translators actually do because, like us programmers, they suffer from having the nature of their work consistently misunderstood by non-translators. The laity’s image of a translator is a walking dictionary and grammar reference, who substitutes words and and grammatical structures from one language to another with ease, the reality is that a translators’ and interpreters’ work is mostly about ensuring context, navigating ambiguity, and handling cultural sensitivity. This is what Google Translate cannot currently do.

      Shitty text being available in more languages may make people want more good text in their languages, too.

    1. Author response:

      The following is the authors’ response to the original reviews.

      We deeply appreciate the reviewer comments on our manuscript. We have proceeded with all the minor changes mentioned. We also want to emphasize three major points:

      (1) Reversine has been shown to have several off-targets effects. Including inducing apoptosis (Chen et al. J Bone Oncol. 2024).

      (2) Hypoxia varies from 2% to 6%. Our definition of hypoxia is 5% concentration of oxygen with 5% concentration of CO<sub>2</sub>, taking into consideration the standard levels of oxygen in the IVF clinics. Physiological oxygen in mouse varies from ~1.5% to 8%.

      (3) Natale et al. 2004 (Dev Bio) and Sozen et al. 2015 (Mech of Dev) described that inhibition of p38 deeply affect the development of pre-implantation embryos after the 8-cell stage. For this reason, comprehensible dissect the interaction between p53, HIF1A and p38 during aneuploid stress is challenging. We do not discard a double function of p38 during lineage specification and in response to DNA damage.

      Reviewer #2 (Recommendations for the authors):

      (1) Line 69: Please add the species used in your cited publications (murine).

      Fixed

      (2) Line 72: Consider changing "Because" to "As".

      Fixed

      (3) Line 88: "from the nuclei" - please refer to where the reader may find the example provided (Figure S1A).

      Fixed

      (4) Line 89: This should be Figure S1B as no quantification is presented in S1A. S1A only contains examples of micronuclei.

      Fixed

      (5) Line 91: Refer to Figure S1A.

      Fixed

      (6) Line 91-93: Are these numbers correct? The query arises from the numbers presented in Figure S1B. Please define how the median was calculated; is it micronuclei CREST+ plus micronuclei CREST-?

      Fixed. We did not differentiate in these percentage the presence of CREST.

      (7) Line 95: extra/missing bracket?

      Fixed

      (8) Line 88-91:

      [a] Regarding the number of cells with micronuclei in this text, please clarify your sample size and how the percentages were calculated as they currently do not align (e.g., are these the total number of embryos from a single experimental replicate?).

      Also, different numbers are found here and in the figure legend: (DMSO-22/256 cells from 32 embryos; Rev-82/144 cells from 18 embryos; AZ-182/304 cells from 38 embryos) vs. Fig S1 legend (DMSO-n=128 cells; Rev-72 cells; AZ-152 cells).

      [c] Is the median calculated using the numbers presented above? If yes, then the numbers do not tally, please check (DMSO-22/256 cells=8.6%; Rev-82/144 cells=56.9%; AZ-182/304 cells =59.9%) vs. Line 91-93: DMSO=12.5%, Rev=75%; AZ=62.5% blastomeres had micronuclei.

      The percentage represents the average of aneuploidy per embryo after normalization.

      See table for DMSO. This number represents the average of aneuploid cells each aneuploid embryo has. Notice that some embryos are fully diploid. Some have more that 12.5% -> 25%. Most of the aneuploid embryos have 12.5% of aneuploidy. It is not black and white as how many aneuploid cell there is in the sample but a full understanding of how aneuploid are the aneuploid embryos in each sample.

      Author response image 1.

      (9) Line 108:

      [a] "n=28 per treatment" please clarify whether this refers to the number of embryos or cells and also add how many independent replicate experiments this data is representative of. as the text only refers to Figure 1C you can remove the P-values for ** and *.

      Number of embryos. Fixed

      (10) Line 111: Suggest citing Figure 1C at the end of the sentence.

      Fixed

      (11) Line 118-119: the reference to figures require updating to ensure they refer to the appropriate figure; ...decidua (Figure S1C)...viable E9.5 embryos (Figure S1D).

      Fixed

      (12) Line 126: A description of the data in Figures 1D and 1E is missing. Also, consider describing the DNA damage observed in the DMSO control group. Visually, it appears that DNA damage reduces from the 8-cell to the morula stage (Figure 1E) but increases at the blastocyst stage (Figure S2A)? Point for discussion for a normal rate of DNA damage?

      Agree, there is some DNA damage in the TE in blastocyst

      (13) Line 134: 8 EPI and 4 PE cells in what group?

      Fixed: DMSO-treated embryos

      (14) Line 137: Could this also suggest that AZ and reversine induce DNA damage through a different mechanism/pathway, resulting in the differential impact observed? Despite both being inhibitors of Mps1.

      This is a possibility.

      (15) Line 153: the legend for Figure 2A says the Welch t-test was performed, but the Mann-Whitney U-test was stated here. Which is correct?

      Welch’s t-test

      (16) Line 155: ...at the blastocyst stage. Compared to what?

      DMSO-treated embryos

      (17) Line 160: Data in Figure 2B requires the definition of P-values for , , . Please add one for and remove the one for **.

      Fixed

      (18) Line 173-174: Data in Fig. 4 requires the definition of the P-values for ****. Please remove the others.

      Fixed

      (19) Line 180: Instead of jumping across figures, this section would benefit from stating the numbers directly to allow for an accurate comparison, e.g. 64 and 7 in Figure 2D vs. X and Y in Figure 1C.

      (20) Line 187: Hif1a should be italicised.

      Fixed

      (21) Line 197: Based on the description here, I believe you are missing a reference to Figure 1A.

      Fixed

      (22) Line 203: Instead of jumping across figures, this section would benefit from stating the numbers directly to allow for accurate comparison, "particularly in the TE and PE" (67 vs 54; and 11 vs 6, respectively).

      (23) Line 209-210:

      [a] "...lowered the number of yH2AX foci..." is this a visual observation as quantification was performed for yH2AX intensity, not quantification of foci?

      A description for PARP1 levels in morula stage embryos was presented ("...relatively low in morula), but not for yH2AX levels at this stage of development. Missing description?

      Fixed

      (24) Line 235: This sentence would benefit from being specific about the environmental conditions...eg "Under normoxia, DMSO/AZ3146-treated...",

      (25) Line 238: The sentence should reference Figure 4F not 4G.

      Fixed

      (26) Line 242-243:

      [a] "slightly increased... in the TE (49.06%) and PE (50%) but, strikingly, reduced... EPI (33.3%)" compared to what and in which figure?

      Assuming you are comparing normoxia (4F) to hypoxia (4G), the numbers change for the TE (46.75% to 49.06%, respectively), EPI (42.88% to 33.3%, respectively), and PE (28.57% to 50%, respectively); yet these data were described as "strikingly different" for EPI (9.58 decrease) but only "slightly increased" for PE (21.42 increase). Suggest using appropriate adjectives to describe the results.

      Fixed

      (27) Line 256: It is stated in line 255 that treatment was performed at the zygote stage, yet this sentence says reversine treatment occurred at the 2-cell stage? Which is correct? Please amend appropriately. Refer to the comment below regarding adding a schematic to aid readers

      Fixed

      (28) Line 259: "n>27 per treatment" please clarify whether this refers to the number of embryos or cells and also add how many independent replicate experiments this data is representative of. Data in Figures S5A-B requires a definition of P-values for , . Please remove for *, *.

      Fixed

      (29) Line 261: AZ3146/reversine stated here, the figure shows Reversine/AZ3146. Please consider being consistent.

      Fixed

      (30) Line 263: "... normal morphology and cavitation (Figure S5D); however the image presented for Rev/DMSO and Rev/AZ3146 chimeras appear smaller with a distorted/weird shape when compared to DMSO/AZ. I believe the description does not match the images presented.

      Fixed

      (31) Line 267: "...similar results as 8-cell stage derived chimeras"; however, there is only a reference to Fig S5E which depicts 2-cell/zygote stage (see comment above for line 256 regarding required clarification of stage of treatment) derived chimeras. There is also a missing reference to Figure 4B, D, and/or F?

      Fixed

      (32) Line 271: add a reference to Figure S5E.

      Fixed

      (33) Line 283: "AZ3146/reversine" should be "Reversine/AZ3146" to match the figure.

      Fixed

      (34) Line 284: Figures 5E-F show both morphology and cavitation; the text should reflect this.

      Fixed

      (35) Line 281-285: I think this text requires editing to improve clarity. It is difficult for this reader to understand the authors' interpretation of the results....inhibiting HIF1A reduces morphology and cavitation. That's correct. However, this also diminished the contribution of AZ3146-treated cells to all 3 cell lineages; this is not quite accurate. AZ3146-treated cells were significantly reduced in total cell numbers because TE was significantly reduced. It is not appropriate to generalise this result to all 3 lineages, as EPI and TE appear to increase AZ's contribution following IDF treatment, albeit non-statistically significant.

      Fixed

      (36) Line 320: citation? ....reversine-treated embryos. Is this referring to your previous publication...Bolton 2016?

      Fixed

      (37) Line 344: missing space between 7.5 and IU.

      Fixed

      (38) Line 358: animal ethics approval number/code missing.

      Fixed

      (39) Line 397: missing space between "...previously" and "(Bermejo...".

      Fixed

      (40) Line 417: missing space between "...control" and "(Gu et...".

      Fixed

      (41) Line 421: missing space between "protocol" and "(Eakin...".

      Fixed

      (42) Line 427-429: Medium-grade mosaic chimeras were referred to as DMSO:AZ:Rev (3:3:2) here; but Figure 4 and associated legend says otherwise. Please amend appropriately. Were all medium mosaics generated in this manner? As I could only find Rev/AZ chimeras; my understanding of the Rev/AZ chimeras is 1:1 Rev:AZ instead of 3:2:3 DMSO:Rev:AZ.

      Fixed

      (43) Line 428: "reversine-treaded: please correct spelling.

      Fixed

      (44) Line 593: "n=28 per treatment" Please clarify whether this refers to the number of embryos or cells and also add how many independent replicate experiments this data is representative of.

      Fixed

      (45) Line 597: "through morula stage" when compared to what group?

      DMSO-treated embryos

      (46) Line 598: Data in Figure S5A-B requires the definition of P-values for , , **. Please remove for . Please define the error bars. SEM/95% confidence interval?

      Fixed

      (47) Line 604-607: Regarding 2B, no statistical test is stated yet Mann-Whitney was stated in Line 160 of the results section. Please confirm which test was used and include it in both sections for consistency.

      Fixed

      (48) Line 608: "Chemical downregulation of HIF1A"... this is not described in the results/methods section or shown in the figure. Please amend all sections for accuracy.

      Fixed

      (49) Line 613: please change "effect in" to "effect on".

      Fixed

      (50) Line 614: Please clarify the number of embryos or cells and also add how many independent replicate experiments this data is representative of. Data in Figure 2 also requires a definition of P-value for ****.

      Fixed

      (51) Line 625: Please clarify the number of embryos or cells and also add how many independent replicate experiments this data is representative of. Data in Figure 3 also requires a definition of P-value for ****.

      Fixed

      (52) Line 627: description requires editing to improve accuracy "...is only slightly increased at the 8-cell stage after exposure to reversine and AZ3146". However, the results show significantly higher DNA damage with Reversine treatment, but not with AZ when compared to DMSO. Please amend accordingly.

      Fixed

      (53) Line 629: Please define the error bars. SEM/95% confidence interval?

      Fixed

      (54) Line 634-635: it is written here that chimeras were made from 1:1 DMSO/AZ3146 and Reversine/DMSO; but Figure 4A shows 1:1 DMSO(grey):AZ3146(blue), and Reversine(red):AZ3146(blue), which contradicts the legend + method section; see comments for Line 427-429. Please amend these sections accordingly.

      Fixed

      (55) Line 648: reversine/AZ3146 chimeras? Refer to comments above.

      Fixed

      (56) Line 649-650: ...AZ-treated blastomeres contribute similarly to reversine-blastomeres to the TE and EPI but significantly increase contribution to the EPI? Please add the appropriate comparison group.

      Fixed

      (57) Line 652: Please clarify the number of embryos or cells and also add how many independent replicate experiments this data is representative of.

      Fixed

      (58) Line 664: Please clarify the number of embryos or cells and also add how many independent replicate experiments this data is representative of.

      Fixed

      (59) Line 675-677: FigS1B legend requires a definition of P-value for * and ****, can omit **

      Fixed

      (60) Line 678-680: FigS1C and S1D legend: sample size and replicates? Only mentioned in Lines 117-120, which requires back calculation.

      Fixed

      (61) Line 682-694: (1) Fig. S2B legend: missing P-value description for *** and ***; statistical test not stated, please add. Also, Figure S2E, only requires the definition for , and can omit others.

      Fixed

      (62) Line 702: FigS3B: missing description for ****, omit others.

      Fixed

      (63) Line 704-705: missing description for Rev/AZ group and hypoxia vs. normoxia conditions.

      Fixed

      (64) Line 712-713: "n>27 per treatment" Please clarify whether this refers to the number of embryos or cells and also add how many independent replicate experiments this data is representative of. Data in Figure S5 requires the definition of P-values for , . Please remove for *, *.

      Fixed

      (65) Line 713-715: could benefit from a description of which were marked from mTmG; e.g. why is DMSO, Rev, Rev in Green for [D]; does this mean 2-cell stage chimeras were only made with embryos treated with DMSO and Reversine? Has it been tested if you did this with AZ3146, do the proportions remain the same? This would be interesting to know.

      DMSO and reversine are in green because they are the cells mark with green in the chimeras. We also did chimeras with AZ3146. Hope this clarifies.

      (66) Line 719-721: why is there a difference between the proportion of aneuploid cells for the different chimeras? AZ in D/AZ, and R/AZ groups; while only R in D/R group? Is this because you only count those that were marked with mTmG (e.g. based on [Fig S5D])? (67) Line 724: low- and medium-grade chimeras would indicate quality, recommend adding low/medium grade aneuploid/mosaic chimeras.

      Fixed

      (68) Line 725-729: it may be my mistake, but I think the results description is not found within the Results section, but only here in the legend? Please include this detail also in the Results section.

      Fixed

      (69) Line 729: which is AZ or Rev cells?

      (70) References - Page number missing for some references; abbreviated version vs. non abbreviated version of journal titles used. Please be consistent/meet journal requirements.

      Fixed

      (71) Figures

      Figure 1: [C] both AZ-NANOG and DMSO-SOX17 have mean/median(?) of 11 cells (described in results), yet in this figure (on the same axis) these groups are not level. Are the numbers correct? This is also the case for Rev-SOX17 which is described in the results as having 8 cells yet appears to be above the 8 mark in the graphs; AZ-CDX2, which has 64 cells yet appears to be below the 60 mark; AZ-total, which has 82 cells yet appears to be below the 80 mark. In [E] the label orientation, "ns" has both horizontal and vertical orientation. Please make appropriate changes throughout to reflect accuracy.

      Figure 3: [C] As for Figure 1, DMSO-NANOG, which is described in results as having 14 cells, yet appears to be below the 13 mark in the graph; DMSO-SOX17, which has 6 cells yet appears to be above the 7 mark.

      These is due to average

      Figure 4: [D and E] random numerals appear in the bars on the graph. 9,10 and 7, 14? Are these sample size numbers? If they are, they should appear in all bars/groups or in the legend.

      Yes, these are sample sizes

      Figure 5: [D and G] same comment as for Fig 4 above, random numbers in the graph.

      Yes, these are sample sizes

      (72) Supplementary figures. Figure S2 [A] No quantification? This is important to add as representative images are only a 2D plane, which can be easily misinterpreted. [E] Should the y-axis label be written as "Number of cells normalised to DMSO group", or similar? Or is there a figure missing to depict the ratio of cells in each cell lineage normalised to the DMSO group, which is the description written in the legend? But I don't see a figure showing the ratio, just the absolute number of cells. Is this a missing figure or a mislabelled axis?

      Quantification at the blastocyst stage is misleading due to high cellular heterogeneity.

      Reviewer #3 (Recommendations for the authors):

      (1) The statement in the abstract: "embryos with a low proportion of aneuploid cells have a similar likelihood of developing to term as fully euploid embryos" Line 48-50 Capalbo does not really answer as the biopsy may not be reflective of ICM.

      This is a great point. Trophectoderm biopsies may not reflect the real proportion of aneuploidy in the ICM. We emphasize this in discussion and Fig. S4.

      (2) Line 69/70, at least 50% Singla et al/Bolton. It would be helpful to elaborate a bit more on this study. How can this be assessed when analysis results in destruction?

      (3) Differences in the developmental potential of reversine versus AZ-treated embryos. It is not entirely clear why. The differences in non-dividing cells if any are small, and the -crest cells are rather minor also. Could these drugs have other effects that are not evaluated in the study?

      Yes, specifically, reversine has been shown to have several off-targets effects. Including inducing apoptosis (Chen et al 2024).

      (4) Lines 45-46 understanding of reduction of aneuploidy should mention/discuss the paper of attrition/selection, of the kind by the Brivanlou lab for instance, or others. As well as allocation to specific lineages, including the authors' work.

      Dr. Brinvanlou experiments in gastruloids do not represent the same developmental stage of pre-implantation embryos. Comparison between models is debatable.

      (5) Line 53: human experiments are more limited due to access to samples. What does 'not allowed' mean? By who, where?

      NIH does not allow to experiment with human embryos for ethical reasons.

      (6) The figure callouts to S1A in lines 93,97. What is a non-dividing nucleus? For how long is it observed?

      A non-dividing nucleus is an accumulation of DNA in a round form without define separation of the chromosomes and their specific kinetochores (CREST antibody). The presence of non-dividing nucleus during the 4 -to-8 cell stage can indicate activation of the spindle assembly checkpoint during prometaphase. Example of non-dividing nucleus can be observed in Fig S1.B.

      (7) Line 108 A relatively minor effect on cell number and quality of blastocysts is observed. It is not surprising that thereafter, developmental potential is also high. At that stage, what are the individual cell karyotypes?

      Due to technical limitations, we can’t determine the specific karyotypes of these cells.

      (8) Line 153. The p53 increase of 1.3 fold is not dramatic.

      The levels of p53 at the morula stage is 7-fold differences. In contrast, at the blastocyst stage, a change in 1.3-fold is indeed less dramatic. This can be a result of the elimination of aneuploid cells or mechanism to counter the activation of the p53 pathway, like overexpression of the Hif1a pathway.

      (9) Line 155. Is there a more direct way to test for p38 activation?

      Natale et al 2004 (Dev Biol) and Sozen et al 2015 (Mech of Dev) described that inhibition of p38 deeply affect the development of pre-implantation embryos after the 8-cell stage. For this reason, comprehensible dissect the interaction between p53, HIF1A and p38 during aneuploid stress is challenging. We do not discard a double function of p38 during lineage specification and in response to DNA damage.

      (10) Line 191/192 Low oxygen conditions, is this equal to hypoxia? What is the definition of hypoxia here? The next sentence says physiological. Is that the same or different?

      Low oxygen can be defined as hypoxia. This varies from 2% to 6%. Our definition of hypoxia is 5% concentration of oxygen with 5% concentration of CO<sub>2</sub>, taking into consideration the standard levels of oxygen in the IVF clinics. Physiological oxygen in mouse varies from ~1.5% to 8%.

      (11) The question is whether there is something specific about HIF1 and aneuploidy, or whether another added stress would have similar effects on the competitiveness of treated cells.

      That is a great follow up of our work.

      (12) Line 300. Is p21 unregulated at the protein level or mRNA level? Please indicate.

      mRNA level.

      (13) Figure 1D/E H2Ax intensity is cell cycle phase-dependent. It might be meaningful to count foci by the nucleus and show both ways of analysis.

      (14) Check the spelling of phalloidin.

      Fixed in text and figures!

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The study by Wu et al presents interesting data on bacterial cell organization, a field that is progressing now, mainly due to the advances in microscopy. Based mainly on fluorescence microscopy images, the authors aim to demonstrate that the two structures that account for bacterial motility, the chemotaxis complex and the flagella, colocalize to the same pole in Pseudomonas aeruginosa cells and to expose the regulation underlying their spatial organization and functioning.

      Strengths:

      The subject is of importance.

      Weaknesses:

      The conclusions are too strong for the presented data. The lack of statistical analysis makes this paper incomplete. The novelty of the findings is not clear.

      We have strengthened the data analysis by including appropriate statistical tests to support our conclusions more convincingly. Additionally, we have refined the description of the research background to better emphasize the novelty and significance of our findings. Please see the detailed responses below for further information.

      Major issues:

      (1) The novelty is in question since in the Abstract the authors highlight their main finding, which is that both the chemotaxis complex and the flagella localize to the same pole, as surprising. However, in the Introduction they state that "pathway-related receptors that mediate chemotaxis, as well as the flagellum are localized at the same cell pole17,18". I am not a pseudomonas researcher and from my short glance at these references, I could not tell whether they report colocalization of the two structures to the same pole. However, I trust the authors that they know the literature on the localization of the chemotaxis complex and flagella in their organism. See also major issue number 5 on the novelty regarding the involvement of c-di-GMP.

      We thank the reviewer for this valuable comment and appreciate the opportunity to clarify our statements.

      Kazunobu et al. (ref. 18) used scanning electron microscopy to preliminarily characterize the flagellation pattern of Pseudomonas aeruginosa during cell division, showing that existing flagella are located at the old pole. Zehra et al. (ref. 17), through fluorescence microscopy, observed that CheA and CheY proteins in dividing cells are typically also present at the old pole. Based on these observations, we inferred in the Introduction that the chemotaxis complex and flagellum may localize to the same cell pole.

      However, this inference is indirect and lacks direct live-cell evidence of colocalization, leaving its validity to be confirmed. This uncertainty was indeed the starting point and motivation for our study.

      In our work, we simultaneously visualized flagellar filaments and core chemoreceptor proteins at the single-cell level in P. aeruginosa. We characterized the assembly and spatial coordination of the chemotaxis network and flagellar motor throughout the cell cycle, providing direct evidence of their colocalization and coordinated assembly. This represents a significant advance beyond prior indirect observations and supports the novelty of our study.

      Accordingly, we have revised the relevant statements in lines 71-75 of the manuscript to better reflect the current state of the literature and emphasize the novelty of our direct observations.

      (2) Statistics for the microscopy images, on which most conclusions in this manuscript are based, are completely missing. Given that most micrographs present one or very few cells, together with the fact that almost all conclusions depend on whether certain macromolecules are at one or two poles and whether different complexes are in the same pole, proper statistics, based on hundreds of cells in several fields, are absolutely required. Without this information, the results are anecdotal and do not support the conclusions. Due to the importance of statistics for this manuscript, strict statistical tests should be used and reported. Moreover, representative large fields with many cells should be added as supportive information.

      We thank the reviewer for this important comment, which significantly improves the rigor and persuasiveness of our manuscript.

      For the colocalization analyses presented in Fig. 1D and Fig. 2B, we quantified 145 and 101 cells with fluorescently labeled flagella, respectively, and observed consistent colocalization of the chemoreceptor complexes and flagella in all examined cells (now added in the figure legends). Regarding the distribution patterns of chemoreceptors shown in Fig. 3A, we have now included comprehensive statistical analyses for both wild-type and mutant strains. For each strain, more than 300 cells were analyzed across at least three independent microscopic fields, providing robust statistical power (detailed data are presented in Fig. 3C).

      To further strengthen the evidence, statistical tests were applied to confirm the significance and reproducibility of our findings (Fig. 3C). In addition, representative large-field fluorescence images containing numerous cells have been added to the supplementary materials (Fig. S1 and Fig. S3).

      The problem is more pronounced when the authors make strong statements, as in lines 157-158: "The results revealed that the chemoreceptor arrays no longer grow robustly at the cell pole (Figure 2A)". Looking at the seven cells shown in Figure 2A, five of them show polar localization of the chemoreceptors. The question is then: what is the percentage of cells that show precise polar, near-polar, or mid cell localization (the three patterns shown here) in the mutant and in the wild type? Since I know that these three patterns can also be observed in WT cells, what counts is the difference, and whether it is statistically significant.

      We thank the reviewer for raising this important point. Following the reviewer's suggestion, we have now analyzed and categorized the distribution of the chemotaxis complex in both wild-type and flhF mutant strains into three patterns: precise-polar, near-polar, and mid-cell localization. For each strain, more than 200 cells across three independent fields of view were quantified.

      Our statistical analysis shows that in the wild-type strain, approximately 98% of cells exhibit precise polar localization of the chemotaxis complex. In contrast, the ΔflhF mutant displays a clear shift in distribution, with about 5% of cells showing mid-cell localization and 9.5% showing near-polar localization. These differences demonstrate a significant alteration in the spatial pattern upon flhF deletion.

      We have revised the relevant text in lines 166-170 accordingly and included the detailed statistical data in the newly added Fig. S4.

      Even for the graphs shown in Figures 3C and 3D, where the proportion of cells with obvious chemoreceptor arrays and absolute fluorescence brightness of the chemosensory array are shown, respectively, the questions that arise are: for how many individual cells these values hold and what is the significance of the difference between each two strains?

      The number of cells analyzed for each strain is indicated in the original manuscript: 372 wild-type cells (line 123), 221 ΔflhF cells (line 172), 234 ΔfliG cells (line 197), 323 ΔfliF cells (line 200), 672 ΔflhFΔfliF cells (line 202), and 242 ΔmotAΔmotCD cells (line 207). For each strain, data were collected from three independent fields of view. We have now also provided the number of cells in Fig. 3 legend.

      We have now performed statistical comparisons using t-tests between strains. Notably, the measured values in Fig. 3C exhibit a clear, monotonic decrease with successive gene knockouts, supporting the robustness of the observed trend.

      Regarding the absolute fluorescence intensity shown in the original Fig. 3D, the mutants did not display consistent directional changes compared to the wild type. Reliable comparison of absolute fluorescence intensity requires consistent fluorescent protein maturation levels across strains. Given the likely variability in maturation levels between strains, we concluded that this data may not accurately reflect true differences in protein concentrations. Therefore, we have removed the fluorescence intensity graph from the revised manuscript to avoid potential misinterpretation.

      (3) The authors conclude that "Motor structural integrity is a prerequisite for chemoreceptor self-assembly" based on the reduction in cells with chemoreceptor clusters in mutants deleted for flagellar genes, despite the proper polar localization of the chemotaxis protein CheY. They show that the level of CheY in the WT and the mutant strains is similar, based on Western blot, which in my opinion is over-exposed. "To ascertain whether it is motor integrity rather than functionality that influences the efficiency of chemosensory array assembly", they constructed a mutant deleted for the flagella stator and found that the motor is stalled while CheY behaves like in WT cells. The authors further "quantified the proportion of cells with receptor clusters and the absolute fluorescence intensity of individual clusters (Figures 3C-D)". While Figure 3DC suggests that, indeed, the flagella mutants show fewer cells with a chemotaxis complex, Figure 3D suggests that the differences in fluorescence intensity are not statistically significant. Since it is obvious that the regulation of both structures' production and localization is codependent, I think that it takes more than a Western blot to make such a decision.

      We thank the reviewer for the suggestions. To further clarify that the assembly of flagellar motors and chemoreceptor clusters occurs in an orderly manner rather than being merely codependent, we performed additional experiments. Specifically, we constructed a ΔcheA mutant strain, in which chemoreceptor clusters fail to assemble. Using in vivo fluorescent labeling of flagellar filaments, we observed that the proportion of cells with flagellar filaments in the ΔcheA strain was comparable to that of the wild type (Fig. S5).

      In contrast, mutants lacking complete motor structures, such as ΔfliF and ΔfliG, showed a significant reduction in the proportion of cells with obvious receptor clusters (Fig. 3C). Based on these results, we conclude that the structural integrity of the flagellar motor is, to a certain extent, a prerequisite for the self-assembly of chemoreceptor clusters.

      Accordingly, we have revised the relevant statement in lines 213-217 of the manuscript to reflect this clarification.

      (4) I wonder why the authors chose to label CheY, which is the only component of the chemotaxis complex that shuttles back and forth to the base of the flagella. In any case, I think that they should strengthen their results by repeating some key experiments with labeled CheW or CheA.

      We thank the reviewer for this valuable suggestion. In our study, we initially focused on the positional relationship between chemoreceptor clusters and flagella, then investigated factors influencing cluster distribution and assembly efficiency. The physiological significance of motor and cluster co-localization was ultimately proposed with CheY as the starting point.

      Previous work by Harwood's group demonstrated that both CheY-YFP and CheA-GFP localize to the old poles of dividing Pseudomonas aeruginosa cells. Since our physiological hypothesis centers on CheY, we chose to label CheY-EYFP in our experiments.

      To further strengthen our conclusions, we constructed a plasmid expressing CheA-CFP and introduced it into the cheY-eyfp strain via electroporation. Fluorescence imaging revealed a high degree of spatial overlap between CheA-CFP and CheY-EYFP (Fig. S2), confirming that CheY-EYFP accurately marks the location of the chemoreceptor complex.

      We have revised the manuscript accordingly (lines 119-123) and added these data as Fig. S2.

      (5) The last section of the results is very problematic, regarding the rationale, the conclusions, and the novelty. As far as the rationale is concerned, I do not understand why the authors assume that "a spatial separation between the chemoreceptors and flagellar motors should not significantly impact the temporal comparison in bacterial chemotaxis". Is there any proof for that?

      We apologize for the lack of clarity in our original explanation. The rationale behind the statement was initially supported by comparing the timescales of CheY-P diffusion and temporal comparison in chemotaxis. Specifically, the diffusion time for CheY-P to traverse the entire length of a bacterial cell is approximately 100 ms (refs 39&40), whereas the timescale for bacterial chemotaxis temporal comparison is on the order of seconds (ref 41).

      To clarify and strengthen this argument, we have expanded the discussion as follows:

      The diffusion coefficient of CheY in bacterial cells is about 10 µm2/s, which corresponds to an estimated end-to-end diffusion time on the order of 100 ms (refs 40&41). If the chemotaxis complexes were randomly distributed rather than localized, diffusion times would be even shorter. In contrast, the timescale for the chemotaxis temporal comparison is on the order of seconds (ref. 42). Additionally, a study by Fukuoka and colleagues reported that intracellular chemotaxis signal transduction requires approximately 240 ms beyond CheY or CheY-P diffusion time (ref. 41). Moreover, the intervals of counterclockwise (CCW) and clockwise (CW) rotation of the P. aeruginosa flagellar motor under normal conditions are 1-2 seconds, as determined by tethered cell or bead assays (refs. 30&43).

      Taken together, these indicate that for P. aeruginosa, which moves via a run-reverse mode, the potential 100 ms reduction in response time due to co-localization of the chemotaxis complex and motor has a limited effect on overall chemotaxis timing.

      We have revised the corresponding text accordingly (lines 238-245) to better explain this rationale.

      More surprising for me was to read that "The signal transduction pathways in E. coli are relatively simple, and the chemotaxis response regulator CheY-P affects only the regulation of motor switching". There are degrees of complexity among signal transduction pathways in E. coli, but the chemotaxis seems to be ranked at the top. CheY is part of the adaptation. Perfect adaptation, as many other issues related to the chemotaxis pathway, which include the wide dynamic range, the robustness, the sensitivity, and the signal amplification (gain), are still largely unexplained. Hence, such assumptions are not justified.

      We apologize for the confusion and imprecision in our original statements. Our intention was to convey that the chemotaxis pathway in E. coli is relatively simple compared to the more complex chemosensory systems in P. aeruginosa. We did not mean to generalize this simplicity to all signal transduction pathways in E. coli.

      We acknowledge that E. coli chemotaxis is a highly sophisticated system, involving processes such as perfect adaptation, wide dynamic range, robustness, sensitivity, and signal amplification, many aspects of which remain incompletely understood. CheY indeed plays a crucial role in adaptation and motor switching regulation.

      Accordingly, we have revised the original text (lines 249-255) to avoid any misunderstanding.

      More perplexing is the novelty of the authors' documentation of the effect of the chemotaxis proteins on the c-di-GMP level. In 2013, Kulasekara et al. published a paper in eLife entitled "c-di-GMP heterogeneity is generated by the chemotaxis machinery to regulate flagellar motility". In the same year, Kulasekara published a paper entitled "Insight into a Mechanism Generating Cyclic di-GMP Heterogeneity in Pseudomonas aeruginosa". The authors did not cite these works and I wonder why.

      We apologize for having been unaware of these important references and thank the reviewer for bringing them to our attention. We have now cited the eLife paper and the PhD thesis titled "Insight into a Mechanism Generating Cyclic di-GMP Heterogeneity in Pseudomonas aeruginosa" by Kulasekara et al.

      Regarding novelty, there are key differences between our findings and those reported by Kulasekara et al. While they proposed that CheA influences c-di-GMP heterogeneity through interaction with a specific phosphodiesterase (PDE), our results demonstrate that overexpression of CheY leads to an increase in intracellular c-di-GMP levels.

      We have revised the original text accordingly (lines 358-362) to clarify these distinctions.

      (6) Throughout the manuscript, the authors refer to foci of fluorescent CheY as "chemoreceptor arrays". If anything, these foci signify the chemotaxis complex, not the membrane-traversing chemoreceptors.

      We thank the reviewer for this clarification. We have revised the manuscript accordingly to refer to the fluorescent CheY foci as representing the chemotaxis complex rather than the chemoreceptor arrays.

      Conclusions:

      The manuscript addresses an interesting subject and contains interesting, but incomplete, data.

      Reviewer #2 (Public Review):

      Summary:

      Here, the authors studied the molecular mechanisms by which the chemoreceptor cluster and flagella motor of Pseudomonas aeruginosa (PA) are spatially organized in the cell. They argue that FlhF is involved in localizing the receptors-motor to the cell pole, and even without FlhF, the two are colocalized. FlhF is known to cause the motor to localize to the pole in a different bacterial species, Vibrio cholera, but it is not involved in receptor localization in that bacterium. Finally, the authors argue that the functional reason for this colocalization is to insulate chemotactic signaling from other signaling pathways, such as cyclic-di-GMP signaling.

      Strengths:

      The experiments and data look to be high-quality.

      Weaknesses:

      However, the interpretations and conclusions drawn from the experimental observations are not fully justified in my opinion.

      I see two main issues with the evidence provided for the authors' claims.

      (1) Assumptions about receptor localization:

      The authors rely on YFP-tagged CheY to identify the location of the receptor cluster, but CheY is a diffusible cytoplasmic protein. In E. coli, CheY has been shown to localize at the receptor cluster, but the evidence for this in PA is less strong. The authors refer to a paper by Guvener et al 2006, which showed that CheY localizes to a cell pole, and CheA (a receptor cluster protein) also localizes to a pole, but my understanding is that colocalization of CheY and CheA was not shown. My concern is that CheY could instead localize to the motor in PA, say by binding FliM. This "null model" would explain the authors' observations, without colocalization of the receptors and motor. Verifying that CheY and CheA are colocalized in PA would be a very helpful experiment to address this weakness.

      We thank the reviewer for this valuable suggestion. We agree that verifying the colocalization of CheY and CheA would strengthen our conclusions. To address this, we constructed a plasmid expressing CheA-CFP and introduced it into the CheY-EYFP strain by electroporation. Fluorescence imaging revealed a high degree of spatial overlap between CheA-CFP and CheY-EYFP signals, indicating that CheY-EYFP indeed marks the location of the chemoreceptor complex rather than the flagellar motor.

      We have revised the manuscript accordingly (lines 118-123) and included these results in the new Fig. S2.

      (2) Argument for the functional importance of receptor-motor colocalization at the pole:

      The authors argue that colocalization of the receptors and motors at the pole is important because it could keep phosphorylated CheY, CheY-p, restricted to a small region of the cell, preventing crosstalk with other signaling pathways. Their evidence for this is that overexpressing CheY leads to higher intracellular cdG levels and cell aggregation. Say that the receptors and motors are colocalized at the pole. In E. coli, CheY-p rapidly diffuses through the cell. What would prevent this from occurring in PA, even with colocalization?

      We appreciate the reviewer's insightful question. The colocalization of both the signaling source (the kinase) and sink (the phosphatase) at the chemoreceptor complex at the cell pole results in a rapid decay of CheY-P concentration within approximately 0.2 µm from the cell pole, leading to a nearly uniform distribution elsewhere in the cell, as demonstrated by Vaknin and Berg (ref. 46). This spatial arrangement effectively confines high CheY-P levels to the pole region. When the motor is also localized at the cell pole, this reduces the need for elevated CheY-P concentrations throughout the cytoplasm, thereby minimizing potential crosstalk with other signaling pathways.

      We have revised the manuscript accordingly (lines 280-286) to clarify this point.

      Elevating CheY concentration may increase the concentration of CheY-p in the cell, but might also stress the cells in other unexpected ways. It is not so clear from this experiment that elevated CheY-p throughout the cell is the reason that they aggregate, or that this outcome is avoided by colocalizing the receptors and motor at the same pole. If localization of the receptor array and motor at one pole were important for keeping CheY-p levels low at the opposite pole, then we should expect cells in which the receptors and motor are not at the pole to have higher CheY-p at the opposite pole. According to the authors' argument, it seems like this should cause elevated cdG levels and aggregation in the delta flhF mutants with wild-type levels of CheY. But it does not look like this happened. Instead of varying CheY expression, the authors could test their hypothesis that receptor-motor colocalization at the pole is important for preventing crosstalk by measuring cdG levels in the flhF mutant, in which the motor (and maybe the receptor cluster) are no longer localized in the cell pole.

      We thank the reviewer for raising the important point regarding potential cellular stress caused by elevated CheY concentrations, as well as for the suggestion to test the hypothesis using ΔflhF mutants.

      First, as noted above, CheY-P concentration rapidly decreases away from the receptor complex. While deletion of flhF alters the position of the receptor complex, thereby shifting the region of high CheY-P concentration, it does not increase CheY-P levels elsewhere in the cell. Importantly, in the ΔflhF strain, the receptor complex and the motor still colocalize, so this mutant may not effectively test the role of receptor-motor colocalization in preventing crosstalk as suggested.

      Regarding the possibility that elevated CheY levels stress the cells independently of CheY-P signaling, prior work in <i.E. coli by Cluzel et al. (ref. 11) showed that overexpressing CheY several-fold did not cause phenotypic changes, indicating that simple CheY overexpression alone may not be generally stressful. Furthermore, our data indicate that the increase in c-di-GMP levels and subsequent cell aggregation upon CheY overexpression is not an all-or-none switch but occurs progressively as CheY concentration rises.

      To further confirm that CheY overexpression promotes aggregation through increased c-di-GMP levels, we performed additional experiments co-overexpressing CheY and a phosphodiesterase (PDE) from E. coli to reduce intracellular c-di-GMP. These experiments showed that PDE expression mitigates cell aggregation caused by CheY overexpression (Fig. S8).

      We have revised the manuscript accordingly (lines 290-294) and added these new results in Fig. S8.

      Reviewer #3 (Public Review):

      Summary:

      The authors investigated the assembly and polar localization of the chemosensory cluster in P. aeruginosa. They discovered that a certain protein (FlhF) is required for the polar localization of the chemosensory cluster while a fully-assembled motor is necessary for the assembly of the cluster. They found that flagella and chemosensory clusters always co-localize in the cell; either at the cell pole in wild-type cells or randomly-located in the cell in FlhF mutant cells. They hypothesize that this co-localization is required to keep the level of another protein (CheY-P), which controls motor switching, at low levels as the presence of high levels of this protein (if the flagella and chemosensory clusters were not co-localized) is associated with high-levels of c-di-GMP and cell aggregations.

      Strengths:

      The manuscript is clearly written and straightforward. The authors applied multiple techniques to study the bacterial motility system including fluorescence light microscopy and gene editing. In general, the work enhances our understanding of the subtlety of interaction between the chemosensory cluster and the flagellar motor to regulate cell motility.

      Weaknesses:

      The major weakness in this paper is that the authors never discussed how the flagellar gene expression is controlled in P. aeruginosa. For example, in E. coli there is a transcriptional hierarchy for the flagellar genes (early, middle, and late genes, see Chilcott and Hughes, 2000). Similarly, Campylobacter and Helicobacter have a different regulatory cascade for their flagellar genes (See Lertsethtakarn, Ottemann, and Hendrixson, 2011). How does the expression of flagellar genes in P. aeruginosa compare to other species? How many classes are there for these genes? Is there a hierarchy in their expression and how does this affect the results of the FliF and FliG mutants? In other words, if FliF and FliG are in class I (as in E. coli) then their absence might affect the expression of other later flagellar genes in subsequent classes (i.e., chemosensory genes). Also, in both FliF and FliG mutants no assembly intermediates of the flagellar motor are present in the cell as FliG is required for the assembly of FliF (see Hiroyuki Terashima et al. 2020, Kaplan et al. 2019, Kaplan et al. 2022). It could be argued that when the motor is not assembled then this will affect the expression of the other genes (e.g., those of the chemosensory cluster) which might play a role in the decreased level of chemosensory clusters the authors find in these mutants.

      We thank the reviewer for the insightful comments. P. aeruginosa possesses a four-tiered transcriptional regulatory hierarchy controlling flagellar biogenesis. Within this system, fliF and fliG belong to class II genes and are regulated by the master regulator FleQ. In contrast, chemotaxis-related genes such as cheA and cheW are regulated by intracellular free FliA, and currently, there is no evidence that FliA activity is influenced by proteins like FliG.

      To verify that the expression of core chemotaxis proteins was not affected by deletion of fliG, we performed Western blot analyses to compare CheY levels in wild-type, ΔfliF, and ΔfliG strains. We observed no significant differences, indicating that the reduced presence of receptor clusters in these mutants is not due to altered expression of chemotaxis proteins.

      Accordingly, we have revised the manuscript (lines 341-348) and updated Fig. 3B to reflect these findings.

      Recommendations for the authors:

      Reviewing Editor (Recommendations For The Authors):

      The reviewers comment on several important aspects that should be addressed, namely: the lack of statistical analysis; the need for clarifications regarding assumptions made regarding receptor localization; the functional importance of receptor-motor colocalization; and the need for an elaborate discussion of flagellar gene expression. Also, two reviewers pointed out the need to prove the co-localization of CheY and CheA; This is important since CheY is dynamic, shuttling back and forth from the chemotaxis complex to the base of the flagella, whereas CheA (or cheW or, even better, the receptors) is considered less dynamic and an integral part of the chemotaxis complex.

      Reviewer #1 (Recommendations For The Authors):

      Minor points:

      Line 43: "ubiquitous" - I would choose another word.

      We changed "ubiquitous" to "widespread".

      Line 49: "order" - change to organize.

      We changed "order" to "organize".

      Line 52: "To grow and colonize within the host, bacteria have evolved a mechanism for migrating...". Motility "towards more favorable environments" is an important survival strategy of bacteria in various ecological niches, not only within the host.

      We revised it to "grow and colonize in various ecological niches".

      Line 72: Define F6 in "F6 pathway-related receptors".

      The proteins encoded by chemotaxis-related genes collectively constitute the F6 pathway, which we have now explained in the manuscript text.

      Line 72-73: Do references 17 &18 really report colocalization of the chemotaxis receptor and flagella to the same pole? If these or other reports document such colocalization, then the sentence in the Abstract "Surprisingly, we found that both are located at the same cell pole..." is not correct.

      Kazunobu et al. (ref. 18) used scanning electron microscopy to preliminarily characterize the flagellation pattern of Pseudomonas aeruginosa during cell division, showing that existing flagella are located at the old pole. Zehra et al. (ref. 17), through fluorescence microscopy, observed that CheA and CheY proteins in dividing cells are typically also present at the old pole. Based on these observations, we inferred in the Introduction that the chemotaxis complex and flagellum may localize to the same cell pole.

      However, this inference is indirect and lacks direct live-cell evidence of colocalization, leaving its validity to be confirmed. This uncertainty was indeed the starting point and motivation for our study.

      In our work, we simultaneously visualized flagellar filaments and core chemoreceptor proteins at the single-cell level in P. aeruginosa. We characterized the assembly and spatial coordination of the chemotaxis network and flagellar motor throughout the cell cycle, providing direct evidence of their colocalization and coordinated assembly. This represents a significant advance beyond prior indirect observations and supports the novelty of our study.

      Accordingly, we have revised the relevant statements in lines 71-75 of the manuscript to better reflect the current state of the literature and emphasize the novelty of our direct observations.

      Line 108: "CheY has been shown to colocalize with chemoreceptors". The authors rely here (reference 29) and in other places on findings in E. coli. However, in the Introduction, they describe the many differences between the motility systems of P. aeruginosa and E. coli, e.g., the number of chemosensory systems and their spatial distribution (E. coli is a peritrichous bacterium, as opposed to the monotrichous bacterium P. aeruginosa). There seem to be proofs for colocalization of the Che and MCP proteins in P. aeruginosa, which should be cited here.

      Thank you for pointing this out. Harwood's group reported that a cheY-YFP fusion strain exhibited bright fluorescent spots at the cell pole, which disappeared upon knockout of cheA or cheW-genes encoding structural proteins of the chemotaxis complex. This strongly suggests colocalization of CheY with MCP proteins in P. aeruginosa. We have now cited this study as reference 17 in the manuscript.

      Figure 1B: Please replace the order of the schematic presentations, so that the cheY-egfp fusion, which is described first in the text, is at the top.

      We have modified the order of related images in Fig. 1B.

      Line 127: "by introducing cysteine mutations". Replace either by "by introducing cysteines" or by "by substituting several residues with cysteines".

      We changed the relevant statement to "by introducing cysteines".

      Line 144-145: "Given that the physiological and physical environments of both cell poles are nearly identical.". I think that also the physical, but certainly the physiological environment of the two poles is not identical. First, one is an old pole, and the other a new pole. Second, many proteins and RNAs were detected mainly or only in one of the poles of rod-shaped Gram-negative bacteria that are regarded as symmetrically dividing. Although my intuition is that the authors are correct in assuming that "it is unlikely that the unipolar distribution of the chemoreceptor array can be attributed to passive regulatory factors", relating it to the (false) identity between the poles is incorrect.

      We thank the reviewer for this important correction. We agree that the physiological environments of the two poles are not identical, given that one is the old pole and the other the new pole, and that many proteins and RNAs show polar localization in rod-shaped Gram-negative bacteria. Accordingly, we have revised the original text (lines 150-152) to read:

      “Despite potential differences in the physical and especially physiological environments at the two cell poles, it is unlikely that the unipolar distribution of the chemotaxis complex can be attributed to passive regulatory factors.”

      Lines 151-154: "Considering the consistent colocalization pattern between chemosensory arrays and flagellar motors in P. aeruginosa". Does the word consistent relate to different reports on such colocalization or to the results in Figure 1D? In case it is the latter, then what is the word consistent based on? All together only 7 cells are presented in the 5 micrographs that compose Figure 1D (back to statistics...).

      We thank the reviewer for raising this point. To clarify, the word "consistent" refers to the observation of colocalization shown in Figure 1D & Figure S3. As noted in the revised figure legend for Figure 1D, a total of 145 cells with labeled flagella were analyzed, all exhibiting consistent colocalization between flagella and chemosensory arrays. Additionally, we have included a new image showing a large field of co-localization in the wild-type strain as Figure S3 to better illustrate this consistency.

      Figure 2A: Omit "Subcellular localization of" from the beginning of the caption.

      We removed the relevant expression from the caption.

      Reviewer #2 (Recommendations For The Authors):

      I strongly recommend checking that CheY localizes to the receptor cluster in PA. This could be done by tagging cheA with a different fluorophore and demonstrating their colocalization. It would also be helpful to check that they are colocalized in the delta flhF mutant.

      We thank the reviewer for this valuable suggestion. We constructed a plasmid expressing CheA-CFP and introduced it into the CheY-EYFP strain by electroporation. Fluorescence imaging revealed a high degree of spatial overlap between CheA-CFP and CheY-EYFP signals, indicating that CheY-EYFP indeed marks the location of the chemoreceptor complex.

      We have revised the manuscript accordingly (lines 118-123) and included these results in the new Fig. S2.

      The experiments under- and over-expressing CheY part seemed too unrelated to receptor-motor colocalization. I think the authors should think about a more direct way of testing whether colocalization of the motor and receptors is important for preventing signaling crosstalk. One way would be to measure cdG levels in WT and in delta flhF mutants and see if there is a significant difference.

      We thank the reviewer for raising the important point regarding potential cellular stress caused by elevated CheY concentrations, as well as for the suggestion to test the hypothesis using flhF mutants.

      First, as noted in the response to your 2nd comment in Public Review, CheY-P concentration rapidly decreases away from the receptor complex. While deletion of flhF alters the position of the receptor complex, thereby shifting the region of high CheY-P concentration, it does not increase CheY-P levels elsewhere in the cell. Importantly, in the ΔflhF strain, the receptor complex and the motor still colocalize, so this mutant may not effectively test the role of receptor-motor colocalization in preventing crosstalk as suggested.

      Regarding the possibility that elevated CheY levels stress the cells independently of CheY-P signaling, prior work in E. coli by Cluzel et al. (ref. 11) showed that overexpressing CheY several-fold did not cause phenotypic changes, indicating that simple CheY overexpression alone may not be generally stressful. Furthermore, our data indicate that the increase in c-di-GMP levels and subsequent cell aggregation upon CheY overexpression is not an all-or-none switch but occurs progressively as CheY concentration rises.

      To further confirm that CheY overexpression promotes aggregation through increased c-di-GMP levels, we performed additional experiments co-overexpressing CheY and a phosphodiesterase (PDE) from E. coli to reduce intracellular c-di-GMP. These experiments showed that PDE expression mitigates cell aggregation caused by CheY overexpression (Fig. S8).

      We have revised the manuscript accordingly (lines 290-294) and added these new results in Fig. S8.

      Reviewer #3 (Recommendations For The Authors):

      (1) Can the authors elaborate more on the hierarchy of flagellar gene expression in P. aeruginosa and how this relates to their work?

      We thank the reviewer for the suggestion. We have now described the hierarchy of flagellar gene expression in P. aeruginosa in lines 341-348.

      (2) I would suggest that the authors check other flagellar mutants (than FliF and FliG) where the motor is partially assembled (e.g., any of the rod proteins or the P-ring protein), together with FlhF mutant, to see how a partially assembled motor affects the assembly of the chemosensory cluster.

      We thank the reviewer for this valuable suggestion. The P ring, primarily composed of FlgI, acts as a bushing for the peptidoglycan layer, and its absence leads to partial motor assembly. We constructed a ΔflgI mutant and observed that the proportion of cells exhibiting distinct chemotactic complexes was similar to that of the wild-type strain, suggesting that the assembly of the receptor complex is likely influenced mainly by the C-ring and MS-ring structures rather than by the P ring. We have revised the original text accordingly (lines 217-220) and added the corresponding data as Figure S6.

      (3) I would suggest that the authors check the levels of CheY in cells induced with different concentrations of arabinose (i.e., using western blotting just like they did in Figure 3B).

      We have assessed the levels of CheY in cells induced with different concentrations of arabinose using western blotting, as suggested. The results have been incorporated into the manuscript (lines 274-275) and are presented in Figure S7.

      (4) To my eyes, most of the foci in FliF-FlhF mutant in Figure 3A are located at the pole (which is unlike the FlhF mutant in Figure 2). Is this correct? I would suggest that the authors also investigate this to see where the chemosensory cluster is located.

      We thank the reviewer for pointing this out. The distribution of the chemotaxis complex in the ΔflhFΔfliF strain was investigated and showed in Fig. S4. Indeed, most of the chemoreceptor foci in this mutant are located at the pole. This probably suggests that, in the absence of both FlhF and an assembled motor, the position of the receptor complex may be largely influenced by passive factors such as membrane curvature. This interesting possibility warrants further investigation in future studies.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary

      In this work, the authors recorded the dynamics of the 5-HT with fiber photometry from CA1 in one hemisphere and LFP from CA1 in the other hemisphere. They observed an ultra-slow oscillation in the 5-HT signal during both wake fulness and NREM sleep. The authors have studied different phases of the ultra-slow oscillation to examine the potential difference in the occurrence of some behavioral state-related physiological phenomena hippocampal ripples, EMG, and inter-area coherence).

      Strengths

      The relation between the falling/rising phase of the ultra-slow oscillation and the ripples is sufficiently shown. There are some minor concerns about the observed relations that should be addressed with some further analysis.

      Systematic observations have started to establish a strong relation between the dynamics of neural activity across the brain and measures of behavioral arousal. Such relations span a wide range of temporal scales that are heavily inter-related. Ultra-slow time-scales are specifically under-studied due to technical limitations and neuromodulatory systems are the strongest mechanistic candidates for controlling/modulating the neural dynamics at these time-scales. The hypothesis of the relation between a specific time-scale and one certain neuromodulator (5-HT in this manuscript) could have a significant impact on the understanding of the hierarchy in the temporal scales of neural activity.

      Weaknesses:

      One major caveat of the study is that different neuromodulators are strongly correlated across all time scales and related to this, the authors need to discuss this point further and provide more evidence from the literature (if any) that suggests similar ultra-slow oscillations are weaker or lack from similar signals recorded for other neuromodulators such as Ach and NA.

      The reviewer is correct to point out that the levels of different neuromodulators are often correlated. For example, most monoaminergic neurons, including serotonergic neurons of the raphe nuclei, show similar firing rates across behavioral states, firing most during wake behavior, less during NREM, and ceasing firing during ‘paradoxical sleep’ or REM (Eban-Rothschild et al 2018). Notably, other neuromodulators, such as acetylcholine (ACh), show the opposite pattern across states, with highest levels observed during REM, an intermediate level during wake behavior, and the lowest level during NREM (Vazquez et al. 2001). Despite these differences, ultraslow oscillations of both monoaminergic and non-monoaminergic neuromodulators, have been described, albeit only during NREM sleep (Zhang et al. 2021, Zhang et al. 2024, Osorio-Ferero et al. 2021, Kjaerby et al. 2022). How ultraslow oscillations of different neuromodulators are related has been only recently explored (Zhang et al. 2024). In this study, dual recording of oxytocin (Oxt) and ACh with GRAB sensors showed that the levels of the two neuromodulators were indeed correlated at ultraslow frequencies with a 2 s temporal shift. Furthermore, this shift could be explained by a hippocampal-to-lateral septum intermediate pathway, in which the level of ACh causally impacts hippocampal activity, which then in turn controls Oxt levels. Given the known temporal relationship between ripples, ACh and Oxt, and now with our work, between ripples and 5-HT, one could infer the relative timing of ultraslow oscillations of ACh, Oxt and 5-HT. While dual recordings of norepinephrine (NE) and 5-HT have not been performed, a similar correlation with temporal shift could be hypothesized given the parallel relationships between NE and spindles (OsorioFerero et al. 2021), and 5-HT and ripples, with the known temporal delay between ripples and spindles (Staresina et al. 2023). The fact that the locus coerulus receives particularly dense projections from the dorsal raphe nucleus (Kim et al. 2004) further suggests that 5-HT ultraslow oscillations could drive NE oscillations. How exactly ultraslow oscillations of serotonin are related to ultraslow oscillations of different neuromodulators in different brain regions remains to be studied.

      We have further addressed this question and how it relates to the issue of causality in the Discussion section of the manuscript (p. 13):

      “In addition to the difficulties involved with typical causal interventions already mentioned, the fact that the levels of different neuromodulators are interrelated and affected by ongoing brain activity makes it very hard to pinpoint ultraslow oscillations of one specific neuromodulator as controlling specific activity patterns, such as ripple timing. While a recent paper purported to show a causative effect of norepinephrine levels on ultraslow oscillations of sigma band power, the fact that optogenetic inhibition of locus coerulus (LC) cells, but also excitation, only caused a minor reduction of the ultraslow sigma power oscillation suggests that other factors also contribute (Osorio-Forero et al., 2021). Generally, it is thought that many neuromodulators together determine brain states in a combinatorial manner, and it is probable that the 5-HT oscillations we measure, like the similar oscillations in NE, are one factor among many.

      Nevertheless, given the known effects of 5-HT on neurons, it is not unlikely that the 5-HT fluctuations we describe have some impact on the timing of ripples, MAs, hippocampal-cortical coherence, or EMG signals that correlate with either the rising or descending phase. In fact, causal effects of 5-HT on ripple incidence (Wang et al. 2015, ul Haq et al. 2016 and Shiozaki et al. 2023), MA frequency (Thomas et al. 2022), sensory gating (Lee et al. 2020), which is subserved by inter-areal coherence (Fisher et al. 2020), and movement (Takahashi et al. 2000, Alvarez et al. 2022, Jacobs et al. 1991 and Luchetti et al. 2020) have all been shown. Our added findings that serotonin affects ripple incidence in hippocampal slices in a dose-dependent manner (Figure S1) further suggests that the relationship between ultraslow 5-HT oscillations and ripples we report may indeed result, at least in part, from a direct effect of serotonin on the hippocampal network.

      Whether these ‘causal’ relationships between 5-HT and the different activity measures we describe can be used to support a causal link between ultraslow 5-HT oscillations and the correlated activity we report remains an open question. To that point, some studies have described changes in ultraslow oscillations due to manipulation of serotonin signaling. Specifically, reduction of 5-HT1a receptors in the dentate gyrus was recently shown to reduce the power of ultraslow oscillations of calcium activity in the same region (Turi et al. 2024). Furthermore, psilocin, which largely acts on the 5-HT2a receptor, decreased NREM episode length from around 100 s to around 60 s, and increased the frequency of brief awakenings (Thomas et al. 2022). While ultraslow oscillations were not explicitly measured in this study, the change in the rhythmic pattern of NREM sleep episodes and brief awakenings, or microarousals, suggests an effect of psilocin on ultraslow oscillations during NREM. Although these studies do not necessarily point to an exclusive role for 5-HT in controlling ultraslow oscillations of different brain activity patterns, they show that changes in 5-HT can contribute to changes in brain activity at ultraslow frequencies.”

      A major question that has been left out from the study and discussion is how the same level of serotonin before and after the peak could be differentially related to the opposite observed phenomenon. What are the possible parallel mechanisms for distinguishing between the rising and falling phases? Any neurophysiological evidence for sensing the direction of change in serotonin concentration (or any other neuromodulator), and is there any physiological functionality for such mechanisms?

      We have added a paragraph in the discussion to address how this differentiation of the 5-HT signal may be carried out (Discussion, paragraph #3, p. 10):

      “In order for the ultraslow oscillation phase to segregate brain activity, as we have observed, the hippocampal network must somehow be able to sense the direction of change of serotonin levels. While single-cell mechanisms related to membrane potential dynamics are typically too fast to explain this calculation, a theoretical work has suggested that feedback circuits can enable such temporal differentiation, also on the slower timescales we observe (Tripp and Eliasmith, 2010). Beyond the direction of change in serotonin levels, temporal differentiation could also enable the hippocampal network to discern the steeper rising slope versus the flatter descending slope that we observe in the ultraslow 5-HT oscillations (Figure S2), which may also be functionally relevant (Cole and Voytek, 2017). The distinction between the rising and falling phase of ultraslow oscillations is furthermore clearly discernible at the level of unit responses, with many units showing preferences for either half of the ultraslow period (Figure S6). Another factor that could help distinguish the rising from the falling phase is the level of other neuromodulators, as it is likely the combination of many neuromodulators at any given time that defines a behavioral substate. Given the finding that ACh and Oxt exhibit ultraslow oscillations with a temporal shift (Zhang et al. 2024), one could posit that distinct combinations of different levels of neuromodulators could segregate the rising from the falling phase via differential effects of the combination of neuromodulators on the hippocampal network.”

      Functionally, the ability to distinguish between the rising and falling phases of an oscillatory cycle is a form of phase coding. A well-known example of this can be seen in hippocampal place cells, which fire relative to the ongoing theta oscillations. The key advantage of phase coding is that it introduces an additional dimension, i.e. phase of firing, beyond the simple rate of neural firing. This allows for the multiplexing of information (Panzeri et al., 2010), enabling the brain to encode more complex patterns of activity. Moreover, phase coding is metabolically more efficient than traditional spike-rate coding (Fries et al., 2007).

      Reviewer #2 (Public review):

      Summary:

      In their study, Cooper et al. investigated the spontaneous fluctuations in extracellular 5-HT release in the CA1 region of the hippocampus using GRAB5-HT3.0. Their findings revealed the presence of ultralow frequency (less than 0.05 Hz) oscillations in 5-HT levels during both NREM sleep and wakefulness. The phase of these 5-HT oscillations was found to be related to the timing of hippocampal ripples, microarousals, electromyogram (EMG) activity, and hippocampal-cortical coherence. In particular, ripples were observed to occur with greater frequency during the descending phase of 5-HT oscillations, and stronger ripples were noted to occur in proximity to the 5-HT peak during NREM. Microarousal and EMG peaks occurred with greater frequency during the ascending phase of 5-HT oscillations. Additionally, the strongest coherence between the hippocampus and cortex was observed during the ascending phase of 5-HT oscillations. These patterns were observed in both NREM sleep and the awake state, with a greater prevalence in NREM. The authors posit that 5-HT oscillations may temporally segregate internal processing (e.g., memory consolidation) and responsiveness to external stimuli in the brain.

      Strengths:

      The findings of this research are novel and intriguing. Slow brain oscillations lasting tens of seconds have been suggested to exist, but to my knowledge they have never been analyzed in such a clear way. Furthermore, although it is likely that ultra-slow neuromodulator oscillations exist, this is the first report of such oscillations, and the greatest strength of this study is that it has clarified this phenomenon both statistically and phenomenologically.

      Weaknesses:

      As with any paper, this one has some limitations. While there is no particular need to pursue them, I will describe ten of them below, including future directions:

      (1) Contralateral recordings: 5-HT levels and electrophysiological recordings were obtained from opposite hemispheres due to technical limitations. Ipsilateral simultaneous recordings may show more direct relationships.

      Although we argue that bilateral symmetry defines both the serotonin system and many hippocampal activity patterns (Methods: Dual fiber photometry and silicon probe recordings), we agree that ipsilateral recordings would be superior to describe the link between serotonin and electrophysiology in the hippocampus. In addition to noting that a recent study has adopted the same contralateral design (Zhang et al. 2024), we add a reference further supporting bilateral hippocampal synchrony, specifically of dentate spikes (Farrell et al. 2024). However, as functional lateralization has been recently proposed to underlie certain hippocampal functions in the rodent (Jordan 2020), future studies should ideally include both imaging and electrophysiology in a single hemisphere to guarantee local correlations rather than assuming inter-hemispheric synchrony. This could be accomplished using an integrated probe with attached optical fibers, as described in Markowitz et al. 2018, which is however technically more challenging and has, to our knowledge, not yet been implemented with fiber photometry recordings with GRAB sensors. Given the required separation of a few hundred micrometers between the probe shanks and the optical fiber cannula, it is important to consider whether the recordings are capturing the same neuronal populations. For example, there is a risk of recording electrical activity from dorsal hippocampal neurons while simultaneously measuring light signals from neurons in the intermediate hippocampus, which are functionally distinct populations (Fanselow and Dong 2009).

      (2) Sample size: The number of mice used in the experiments is relatively small (n=6). Validation with a larger sample size would be desirable.

      While larger sample sizes generally reduce the influence of random variability and minimize the impact of outliers on conclusions, our use of mixed-effects models mitigates these concerns by accounting for both inter-session and inter-mouse variability. With this approach, we explicitly model random effects, such as the variability between individual mice and sessions, alongside fixed effects (such as treatment), which ensures that our results are not driven by random fluctuations in a few individual mice or sessions. Furthermore, the inclusion of random intercepts and slopes in the models allows for the possibility that different animals and/or sessions have different baseline characteristics and respond to different degrees of magnitude to the treatment. In summary, while validating these findings with a larger sample size would certainly help detect more subtle effects, we are confident in the robustness of the conclusions presented.

      (3) Lack of causality: The observed associations show correlations, not direct causal relationships, between 5-HT oscillations and neural activity patterns.

      We agree that the data we present in this study is largely correlational and generally avoid claims of causality in the manuscript. In the Discussion section, we discuss barriers to interpreting typical causal interventions in vivo, such as optogenetic activation of raphe nuclei: “The two previously mentioned in vivo studies showing reduced ripple incidence…”(paragraph #10, pg. 12), as well as an added section on further causality considerations in the Discussion section of the manuscript (paragraph #12, pg. 13): “In addition to the difficulties involved with…”

      Due to these barriers, as a first step, we wanted to describe how physiological changes in serotonin levels are correlated to changes in the hippocampal activity. Equipped with a deeper understanding of physiological serotonin dynamics, future studies could explore interventions that modulate serotonin in keeping with the natural range of serotonin fluctuations for a given state. On that point, another challenge which we have not mentioned in the manuscript is that modulating serotonin, or any neuromodulator’s levels, has the potential, depending on the degree of modulation, to transition the brain to an entirely different behavioral state. This then complicates interpretation, as one is not sure whether effects observed are due to the changes in the neuromodulator itself, or secondary to changes in state. At the same time, 5-HT activity drives networks which in return can change the release of other neurotransmitters, leading to indirect effects.

      The results of our in vitro experiments suggest that a causal relationship between serotonin and ripples is possible (Figure S1). Though the hippocampal slice preparation is clearly an artificial model, it provides a controlled environment to isolate the effects of serotonin manipulation on the hippocampal formation, without the confounding influence of systemic 5-HT fluctuations in other brain regions. Notably, the dose-dependent effects of serotonin (5-HT) wash-in on ripple incidence observed in vitro closely mirror the inverted-U dose-response curve seen in our in vivo experiments across states, where small increases in serotonin lead to the highest ripple incidence, and both lower and higher levels correspond to reduced ripple activity. This parallel suggests that the gradual washing of serotonin in our in vitro system may mimic the tonic firing changes in serotonergic neurons that occur during state transitions in vivo. These findings underscore the importance of studying how different dynamics of serotonin modulation can differentially affect hippocampal network activity.

      (4) Limited behavioral states: The study focuses primarily on sleep and quiet wakefulness. Investigation of 5-HT oscillations during a wider range of behavioral states (e.g., exploratory behavior, learning tasks) may provide a more complete understanding.

      We agree that future studies should investigate a broader range of behavioral states. For this study, as we were focused on general sleep and wake patterns, our recordings were done in the home cage, and we limited ourselves to the basic behavioral states described in the paper. Future studies should be designed to investigate ultraslow 5-HT oscillations during different behaviors, such as continuous treadmill running. Specifically, a finer segregation of extended wake behaviors by level of arousal could greatly add to our understanding of the role of ultraslow serotonin oscillations.

      (5) Generalizability to other brain regions: The study focuses on the CA1 region of the hippocampus. It's unclear whether similar 5-HT oscillation patterns exist in other brain regions.

      Given the reported ultraslow oscillations of population activity in serotonergic neurons of the dorsal raphe nucleus (Kato et al. 2022) as well as the widespread projections of the serotonergic nuclei, we would expect a broad expression of ultraslow 5-HT oscillations throughout the brain. So far, ultraslow 5-HT oscillations have been described in the basal forebrain, as well as in the dentate gyrus, in addition to what we have shown in CA1 (Deng et al. 2024 and Turi et al. 2024). Furthermore, our results showing that hippocampal-cortical coherence changes according to the phase of hippocampal ultraslow 5-HT oscillations suggests that 5-HT can affect oscillatory activity either indirectly by modulating hippocampal cells projecting to the cortical network or directly by modulating the cortical postsynaptic targets. Given the heterogeneity in projection strength, as well as in pre- and postsynaptic serotonin receptor densities across brain regions (de Filippo & Schmitz, 2024), it would be interesting to see whether local ultraslow 5-HT oscillations are differentially modulated, e.g. in terms of oscillation power. Future studies investigating different brain regions via implantation of multiple optic fibers in different brain areas or using the mesoscopic imaging approach adopted in Deng et al. 2024, will be needed to examine the extent of spatial heterogeneity in this ultraslow oscillation.

      (6) Long-term effects not assessed: Long-term effects of ultra-low 5-HT oscillations (e.g., on memory consolidation or learning) were not assessed.

      While beyond the scope of our current study, we agree that an important next step would involve modulating the ultraslow serotonin oscillation after learning, and then examining potential effects on memory consolidation, presumably via changes in ripple dynamics, though many possibilities could explain potential effects. There, our results suggest it would be important to isolate effects due to the change in ultraslow oscillation features, rather than simply overall levels of 5-HT. To that end, it would be important to test different modulation dynamics, specifically modulating the oscillation strength, around a constant mean 5-HT level by carefully timed optogenetic stimulation/inhibition. Afterwards, showing a clear correlation between the strength of the 5-HT modulation and memory performance would be important to establishing the relationship, as done in Lecci et al 2017, where more prominent ultraslow oscillations of sigma power in the cortex during sleep, alongside a higher density of spindles, were correlated with better memory consolidation. Given the tight coupling of spindles and ripples during sleep, it is possible that a similar effect on memory consolidation would be observed following changes in ultraslow 5-HT oscillation power.

      (7) Possible species differences: It's uncertain whether the findings in mice apply to other mammals, including humans.

      We agree that the experiments should ultimately be replicated in humans. In the 2017 study by Lecci et al., the authors highlighted the shared functional requirements for sleep across species, despite apparent differences, such as variations in sleep volume. To explore these commonalities, the researchers conducted parallel experiments in both mice and humans, aiming to identify a universal organizing structure. They discovered that the ultraslow oscillation of sigma power serves this role, enabling both species to balance the competing demands of arousability and sleep imperviousness. Based on this finding, it is plausible that ultraslow oscillations of serotonin, which similarly modulate activity according to arousal levels, would serve a comparable function in humans.

      (8) Technical limitations: The temporal resolution and sensitivity of the GRAB5-HT3.0 sensor may not capture faster 5-HT dynamics.

      The kinetics of the GRAB5-HT3.0 sensor used in this study limit the range of serotonin dynamics we can observe. However, the ultraslow oscillations we measure reflect temporal changes on the scale of 20 s and greater, whereas the GRAB sensor we use has sub-second on kinetics and below 2 s off kinetics (Deng et al. 2024). Therefore, the sensor is capable of reporting much faster activity than the ultraslow oscillations we observe, indicating that the ultraslow 5-HT signal accurately reflects the dynamics on this time scale. Furthermore, the presence of ultraslow oscillations in spiking activity—observed in the hippocampal formation (Gonzalo Cogno et al., 2024; Aghajan et al., 2023; Penttonen et al., 1999) and in the dorsal raphe (Mlinar et al., 2016), which are not affected by the same temporal smoothing, suggests that the oscillations we record are not likely due to signal aliasing, but instead reflect genuine oscillatory activity. Of course, this does not preclude that other, faster serotonin dynamics are also present in our signal, some of which may be too fast to be observed. For instance, rapid serotonin signaling via the ionotropic 5-HT3a receptors could be missed in our recordings. Additionally, with the fiber photometry approach we adopted, we are limited to capturing spatially broad trends in serotonin levels, potentially overlooking more localized dynamics.

      (9) Interactions with other neuromodulators: The study does not explore interactions with other neuromodulators (e.g., norepinephrine, acetylcholine) or their potential ultraslow oscillations.

      We agree that the interaction between neuromodulators in the context of ultraslow oscillations is an important issue, which we have addressed in our response to reviewer #1 under ‘Weaknesses.’

      (10) Limited exploration of functional significance: While the study suggests a potential role for 5-HT oscillations in memory consolidation and arousal, direct tests of these functional implications are not included.

      We agree and reference our answer to (6) regarding memory consolidation. Regarding arousal, direct tests of arousability to different sensory stimuli during different phases of the ultraslow 5-HT oscillation during sleep would be beneficial, in addition to the indirect measures of arousal we examine in the current study, e.g. degree of movement (icEMG) and long range coherence. In line with what we have shown, Cazettes et al. (2021) has demonstrated a direct relationship between 5-HT levels and pupil size, an indicator of arousal level, which like our findings, is consistent across behavioral states.

      Reviewer #3 (Public review):

      Summary:

      The activity of serotonin (5-HT) releasing neurons as well as 5-HT levels in brain structures targeted by serotonergic axons are known to fluctuate substantially across the animal's sleep/wake cycle, with high 5-HT levels during wakefulness (WAKE), intermediate levels during non-REM sleep (NREM) and very low levels during REM sleep. Recent studies have shown that during NREM, the activity of 5HT neurons in raphe nuclei oscillates at very low frequencies (0.01 - 0.05 Hz) and this ultraslow oscillation is negatively coupled to broadband EEG power. However, how exactly this 5-HT oscillation affects neural activity in downstream structures is unclear.

      The present study addresses this gap by replicating the observation of the ultraslow oscillation in the 5-HT system, and further observing that hippocampal sharp wave-ripples (SWRs), biomarkers of offline memory processing, occur preferentially in barrages on the falling phase of the 5-HT oscillation during both wakefulness and NREM sleep. In contrast, the raising phase of the 5-HT oscillation is associated with microarousals during NREM and increased muscular activity during WAKE. Finally, the raising 5-HT phase was also found to be associated with increased synchrony between the hippocampus and neocortex. Overall, the study constitutes a valuable contribution to the field by reporting a close association between raising 5-HT and arousal, as well as between falling 5-HT and offline memory processes.

      Strengths:

      The study makes compelling use of the state-of-the-art methodology to address its aims: the genetically encoded 5-HT sensor used in the study is ideal for capturing the ultraslow 5-HT dynamics and the novel detection method for SWRs outperforms current state-of-the-art algorithms and will be useful to many scientists in the field. Explicit validation of both of these methods is a particular strength of this study.

      The analytical methods used in the article are appropriate and are convincingly applied, the use of a general linear mixed model for statistical analysis is a particularly welcome choice as it guards against pseudoreplication while preserving statistical power.

      Overall, the manuscript makes a strong case for distinct sub-states across WAKE and NREM, associated with different phases of the 5-HT oscillation.

      Weaknesses:

      All of the evidence presented in the study is correlational. While the study mostly avoids claims of causality, it would still benefit from establishing whether the 5-HT oscillation has a direct role in the modulation of SWR rate via e.g. optogenetic activation/inactivation of 5-HT axons. As it stands, the possibility that 5-HT levels and SWRs are modulated by the same upstream mechanism cannot be excluded.

      We agree that causality claims cannot be made with our data, and acknowledge the interest in exploring causal interactions between ultraslow serotonin oscillations and the correlated activity we measure. We address this point in depth in our answer to Reviewer #2, Weaknesses #3.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      One major question in the presented data is the nature of the asymmetrical shape of the targeted slow events. How much does it reflect the 5-HT concentration and how much is this shape affected by the dynamics of the designed 5-HT sensor? This needs to be addressed in more detail referencing the original paper for the used sensor.

      We have added a paragraph in the Results section of the manuscript to address the asymmetric waveform of the ultraslow 5-HT oscillations and whether it could be affected by the asymmetric kinetics of the GRAB sensor we use: “The waveform of these ultraslow 5-HT oscillations…” (Results, paragraph #4, pg. 5). We include an extended answer to the question here:

      Indeed, the GRAB5-HT3.0 sensor we use in the study shows activation response kinetics which are faster than their deactivation time, with time constants at 0.25 s and 1.39 s, respectively (Deng et al. 2024). Likewise, the slope of the rising phase of the ultraslow serotonin oscillation we measure is faster than the slope of the falling phase, and the ratio of time spent in the rising phase versus the falling phase is less than 1, indicating longer falling phases (Figure S2). Although we cannot completely rule out that the asymmetric shape of the ultraslow serotonin oscillations we record is affected by this asymmetry in the 5-HT sensor kinetics, we believe this is unlikely, as the 5-HT signal clearly contains reductions in 5-HT levels that are much faster than the descending phase of the ultraslow oscillation. Although it is difficult to directly compare the different-sized signals, the reported timescales of off kinetics, on the order of a few seconds (Deng et al. 2024), are far below the tens of seconds timescale of the ultraslow oscillation. Furthermore, the finding that some dorsal raphe neurons modulate their firing rate at ultraslow frequencies, and moreover that all examples of such ultraslow oscillations shown display clear asymmetry in rising time versus decay, suggests that the asymmetry we observe in our data could be due to neural activity rather than temporal smoothing by the sensor (Mlinar et al. 2016). In this same direction, another study found similar asymmetry in extracellular 5-HT levels measured with fast scan cyclic voltammetry (FSCV), a technique with greater temporal resolution (sampling rate of 10 Hz) than GRAB sensors, after single pulse stimulation (Bunin and Wightman 1998). In this study, 5-HT was shown to be released extrasynaptically, making the longer clearing time compared to the release time intuitive. Finally, the observation that the onsets and offsets of ripple clusters, recorded with a sampling rate of 20 kHz, are precisely aligned with the peaks and troughs of ultraslow serotonin oscillations (Figure 1, H1-2, columns 2-3) suggests that the duration of the falling phase is not artificially distorted by the temporal smoothing of the sensor dynamics.

      Regardless of the dynamics of the serotonin concentration, it should be noted that the elicited neuronal effect might have different dynamics compared to the 5-HT concentration that need to be more studied: to address this one can either examine the average of the broadband LFP (not high passfiltered by the amplifier) or the distribution of simultaneously recorded spiking activity around the peak of ultra-slow oscillations.

      We have added Figure S6, showing unit activity relative to the phase of ultraslow serotonin oscillations.

      From this analysis, we uncover three groups of units which are largely preserved across states (Figure S6, E vs. F), albeit with a slight temporal shift rightward from NREM to WAKE (Figure S6, C vs. D). Namely, some units spike preferentially during the rising phase, some during the falling phase, and a third group have no clear phase preference. Unit activity during the falling phase is unsurprising, as it is where ripples largely occur, which themselves are associated with spike bursts. During the rising phase, the unit activity we observe could correspond to firing of the hippocampal subpopulation known to be active during NREM interruption states (Jarosiewicz et al. 2002, Miyawaki et al. 2017). While the units’ phase preference was tested based on the category of rising vs. falling phase, as this division described most variation in the data, a few units in the ‘No preference’ group showed heightened activity near the oscillation peak. However, given the very small number of units with this preference, more unit data is needed to describe this group, ideally with high-density recordings. Overall, most units showed a falling vs. rising phase preference, indicating a phase coding of hippocampal activity by 5-HT ultraslow oscillations.

      Related to the previous point, it would be helpful to show the average cycle shape of these oscillations (relative to the phase 0 extracted in Figure 3) and do the shape comparison across sessions and also wake/NREM

      We agree, and to this end we have added Figure S2. From this waveform analysis, we show that the ultraslow serotonin oscillation is asymmetric, with the rising phase having a greater slope, but shorter length, than the falling phase. While this asymmetry is observed both in NREM and WAKE, the slope difference and length ratio difference in rising vs. falling phase is greater in NREM (Figure S2. B).

      In Figure 3D, there seem to be oscillatory rhythms with faster cycles on top of the targeted oscillations. That would make the phase estimation less accurate, e.g. in the left panel, in the second cycle, it is not clear if there are two faster cycles or it is one slow cycle as targeted, and if noted in the rising phase of the second fast cycle there are no ripples. This might suggest that regardless of specific oscillation frequency whenever 5-HT is started to get released, the ripples are suppressed and once the 5-HT is not synaptically effective anymore the ripples start to get generated while the photometry signal starts to wane with the serotonin being cleared. Still, if there is any rhythmicity between bouts of no ripple, it would suggest an ultra-slow regularity in the 5-HT release.

      The reviewer is correct to point out that some faster increases in serotonin, which occur on top of the ultraslow oscillations we measure, seem to be associated with decreased ripple incidence, as in the example referenced. The dominance of ultraslow frequencies in the power spectrum of the 5-HT signal suggests, however, that oscillations faster than the ultraslow oscillations we describe are far less prevalent in the data. While there may be some coupling of ripples and other measures to serotonin oscillations of different frequencies, this may be hard or impossible to detect with phase analysis based on their infrequent occurrence and nonstationary nature. In fact, we show in Figure S3 that the strongest phase modulation of ripples by ultraslow serotonin oscillations is observed in the frequencies we use (0.01-0.06 Hz). Methodologically, phase analysis indeed assumes stationary signals, which are rare if not absent in physiological data (Lo et al. 2009), however generally the narrower the frequency band, the better the phase estimation. The narrow frequency band we use provides phase estimates that are largely robust and unaffected by the presence of faster oscillations, as can be seen in the example phase traces shown in Figure 4.

      The hypothesis that the rising phase burst of synaptic serotonin is what silences ripples, and that with the clearing of serotonin from the synapses, ripples recover, is a possible explanation of our findings. However, if this were the case, one could expect the ripple rate to increase over the course of the falling phase of ultraslow 5-HT oscillations, as 5-HT decreases, and peak at the trough. This is at odds with what we observe, namely a fairly uniform distribution of ripples along the falling phase (Figure 3F2,F4). Furthermore, the Mlinar et al. 2016 study describes a subpopulation of raphe neurons whose firing rates themselves oscillate at ultraslow frequencies, rather than on-off bursting at ultraslow frequencies, which would argue against this hypothesis. However, as this study looks at a small number of neurons in slices, further in vivo experiments examining firing rates of median raphe neurons are required to understand how the ultraslow oscillation of extracellular serotonin that we measure is generated as well as how it is related to ripple rates.

      In Figure 3B, it is not clear why IRI is z-scored. It would be informative to have the actual value of IRI. What is the z relative to? Is it the mean value of IRI in each recording session? Is this to reduce the variability across sessions?

      We have now included in Figure 3D a box plot displaying the IRI distributions across different states and sessions. To minimize inter-session variability, data were z-scored within each session for visualization purposes. However, all general linear models were based on raw data, and as a result, the raw differences in IRI are shown in Figure 3C.

      Figure 3E, panel labels don't match with the caption

      We are grateful to the reviewer for pointing out this mistake, which we have corrected in the updated version of the manuscript.

      In the text related to Figure 3E, the related analysis can be more clearly described. "phase preference of individual ripples" does not immediately suggest that the occurring phase of each ripple relative to the targeted oscillation is extracted. I suggest performing this analysis individually for each session and summarizing the results across the sessions.

      We have reworded the sentence in Results: 5-HT and ripples to better reflect the analysis performed: “Next, we calculated the ultraslow 5-HT phases at which individual ripples occurred during both NREM and WAKE (3E-F) ...”. Regarding session-level data, we have added Figure S3, which shows session level mean phase vectors, as well as the grand mean across sessions for both NREM and WAKE. Included in this figure are session level means for frequency bands outside of the ultraslow band we used in our study, intended to show that ripples are most strongly timed by the ultraslow band (0.01-0.06 Hz), reflected by the greater amplitude of the mean phase vector for this band.

      Figure 3E2, based on the result of ripple-triggered 5-HT in left panels of 2H1-2, one would expect to see a preferred phase closer to 180 (toward the end of the falling phase), it would be helpful to compare and discuss the results of these two analyses.

      The reviewer is correct to point out the apparent discrepancy in where the mean ripple falls with respect to the ongoing serotonin oscillation between the two figures mentioned. We have addressed this point in Results: 5-HT and ripples, paragraph #4: “This result appear to be at odds with…”.

      Regarding the analysis in 3F, please also compare the power distribution of ripples between NREM and wake. This will help to better understand the potential difference behind the observed difference: how much the strong ripples are comparable between wake and NREM. It is also necessary to report the ripple detection failure rate across ripples with different strengths.

      We have added a figure showing analysis done on a subset of the data in which ripples were manually curated in order to evaluate the performance of the ripple detection model (Figure S7) and explanatory text in Methods: Model performance: ‘To ensure that our model …’. In summary, while missed ripples did tend to have lower power than correctly detected ripples, including them did not change the distribution of ripples by the phase of the ultraslow serotonin oscillation (Figure S7C). We would also note that while the phase preference is noisier than what is presented in Figure 3F because this analysis was done with a small subset of all recorded ripples, the fact that ripples occur more clearly on the falling phase is visible for both detected ripples and detected + false negative ripples.

      The mixed-effects model examining the influence of 5-HT ultraslow oscillation phase on ripple power revealed no significant effect of state (p = 0.088). This indicates that whether the data were collected during NREM or wake periods did not significantly impact ripple power and that the lack of a significant effect (in Figure 3G,H) in WAKE is probably not due to a difference in the distribution of ripple power between states.

      4D, y label is z?

      We are grateful for the reviewer to point that out, yes, the y label should be ‘z-score’, as the two traces represent z-scored 5-HT (blue) and z-scored shuffled data (orange). Figure 4D2 and Figure 2H1-2, which show similar data, have been corrected to address this oversight.

      Relating to Figure 4, EMG comparison across phases of the oscillations is insightful. Two related and complementary analyses are to compare the theta and gamma power between the falling and rising phases.

      We have addressed this suggestion in Figure S5 A-C. While low gamma, high gamma and theta power are modulated identically in NREM, with higher power observed during the falling phase than the rising phase, during WAKE, different patterns can be seen. Specifically, low gamma power shows no phase preference, while high gamma shows a peak near the center of the ultraslow 5-HT oscillation. Theta power, as in NREM, is higher during the falling phase of ultraslow 5-HT oscillations. Increased power across many frequency bands was shown to coincide with decreases in DRN population activity during NREM, which matches with what we report here (Kato et al. 2022). In summary, while NREM patterns are consistent in all frequency bands tested, aligning with the pattern of ripple incidence, in WAKE low and high gamma power show different relationships to ultraslow 5-HT phase.

      In the manuscript, we have used the data in both Figure S5 and S6 (unit activity relative to ultraslow 5-HT oscillations), to argue against the idea that our coherence findings result from a lack of activity in the rising phase (see next question), which would have the effect of ‘artificially’ reducing coherence in the falling phase relative the rising phase. The text can be found in Results: 5-HT and hippocampal cortical coherence, paragraph #2.

      The results presented in Figure 5 could be puzzling and need to be further discussed: if the ripple band activity is weak during the rising phase, in what circumstances the coherence between cortex and CA1 is specifically very strong in this band?

      As mentioned in the previous answer, we have addressed this concern in Results: 5-HT and hippocampal-cortical coherence, paragraph #2. In summary, it is true that the higher coherence in rising phase than in the falling phase for the highest frequency band (termed ‘high frequency oscillation’ (HFO), 100-150 Hz) could be unexpected, given that ripples occur largely during the falling phase. A few points could help explain this finding. Firstly, it should be noted that power in the 100-150 Hz band can arise from physiological activity outside of ripples, such as filtered non-rhythmic spike bursts (Liu et al. 2022), whose coherent occurrence in the rising phase could explain the coherence findings. Secondly, coherence is a compound measure which is affected by both phase consistency and amplitude covariation (Srinath and Ray 2014), thus from only amplitude one cannot predict coherence. Furthermore, HFO power in the cortex is highest near the peak of ultraslow 5-HT oscillations (Figure S5D), as opposed to the falling phase peak in the hippocampus. This shows a lack of covariation in amplitude by phase between the hippocampus and cortex at this frequency band. An alternative explanation of our findings regarding coherence could be that in the rising phase, there is simply little to no activity, which is easier to ‘synchronize’ than bouts of high activity. Hippocampal unit activity in the rising phase (Figure S6) suggests however, that it is not likely to be the absence of activity supporting higher coherence in the rising phase across frequencies. Additional experiments using high density recordings should be conducted to examine 5-HT ultraslow oscillations and their role in gating activity across brain regions, though these results strongly suggest some role exists.

      Reviewer #2 (Recommendations for the authors):

      I would like to offer two comments. I believe that these are not unusual requests, and thus I would like the authors to respond.

      (1) It would be prudent to investigate the possibility that the observed correlation between ultraslow and hippocampal ripples/microarousals is merely superficial and that there are unidentified confounding factors at play. For example, it would be beneficial to provide evidence that administering a serotonin receptor inhibitor result in the disappearance of the slow oscillation of ripples and microarousals, or that the correlation with ultraslow is no longer present. Please note that the former experiments do not require GRAB5-HT3.0 imaging.

      We agree that causality claims cannot be made with our data and acknowledge the interest in exploring causal interactions between ultraslow serotonin oscillations and the correlated activity we measure. We address this point in depth in our answer to Reviewer #2, Weaknesses #3. We would further like to note that given the large number of serotonin receptors and the lack of selectivity of many serotonin receptor antagonists, a pharmacological approach would be difficult, though the results certainly useful. Finally, we highlight the psilocin study, which reported changes in the rhythmic occurrence of microarousals, and therefore likely ultraslow oscillations, after administering a 5-HT2a receptor agonist, suggesting a potential causal effect of 5-HT (via 5-HT2a receptor) on MA occurrence (Thomas et al. 2022).

      (2) The slow frequency appears to be associated with the default mode network as observed in fMRI signals. The neural basis of the default mode network remains unclear; therefore, a more detailed examination of this possibility would be beneficial.

      We agree that it would be interesting to investigate the role of 5-HT in the neural basis of the DMN.

      The DMN as described in humans (Raichle et al. 2001) and rodents (Lu et al. 2012) may indeed include some parts of the hippocampus and perhaps some of our neocortical recordings could also be considered part of the DMN. The fact that the activity across the inter-connected brain structures of the DMN is correlated at ultraslow time scales (Gutierrez-Barragan et al. 2019, Mantini et al. 2007), as well as serotonin’s ability to modulate the DMN is intriguing (Helmbold et al. 2016). Further studies simultaneously recording DMN activity via fMRI and electrical activity via silicon probes, as done in Logothetis et al. 2001, could elucidate further a potential link between ultraslow oscillations and the DMN, with serotonergic modulation as a means to understand any potential contribution of serotonin.

      Reviewer #3 (Recommendations for the authors):

      (1) The impact of the study would benefit from an experiment causally testing the effect of hippocampal 5-HT levels on hippocampal physiology, e.g. using optogenetic manipulations.

      We agree that causality claims cannot be made with our data and acknowledge the interest in exploring causal interactions between ultraslow serotonin oscillations and the correlated activity we measure. We address this point in depth in our answer to Reviewer #2, Weaknesses #3.

      (2) Data presentation: the figures are of poor resolution, making some diagram details and, more importantly, some example traces (e.g. Figure 1A, right) impossible to see. This should be corrected by either increasing figure resolution or making important figure elements large enough to be readable.

      We apologize for the poor resolution and have corrected it in the updated version of the manuscript.

      (3) Differences in some figure panels are not statistically assessed: Figure 1H (differences in spectrum peak power), Figure 3E1 & Figure 3E3 (directional bias of the circular distributions), Figure 4C (difference from 0 mean).

      We acknowledge this oversight and have added statistical tests for all three figures, as well as further information regarding the models used in Methods: Statistics.

      (4) Lines 279-280: the claim that the study shows "organization of activity by ultraslow oscillations of 5-HT" implies a causal role of 5-HT in organizing hippocampal activity. I suggest that this statement be toned down to reflect the correlational nature of the presented evidence.

      We have rephrased the sentence in question to the following: “In our study, including both NREM and WAKE periods allowed us to additionally show that the temporal organization of activity relative to ultraslow 5-HT oscillations operates according to the same principles in both states...”, which we believe better reflects the temporal correlation we describe.

      (5) While the study claims to use the EMG (i.e. electromyograph) signal, it does not describe any electrodes placed inside the muscle in the methods section. The SleepScoreMaster toolbox used in the study estimates the EMG using high-frequency activity correlated across recording channels, so I assume this is how this signal was obtained. While such activity may well reflect muscular noise to some degree, it is an indirect measure as the electrodes are not in the muscle. Since the EMG signal is central to the message of the manuscript, the method for calculating it should be described in the methods section and it should be explicitly labelled as an indirect measure in the main text, e.g. by referring to this signal as pseudo-EMG.

      We agree and have added explanatory text to the State Scoring subsection in Methods. Given that the EMG we refer to is derived from intracranial data, and not from traditional EMG probes, we now refer to the EMG as intracranial EMG, or icEMG for short, throughout the main text.

      (6) Is ripple frequency or ripple duration different across the rising and falling phases of the ultraslow oscillation?

      We have now investigated this suggestion in Figure S4, where we show that ripple frequency is higher in the falling phase than rising phase, while ripple duration appears to show no phase preference.

      (7) Lines 315-317: I am not sure why the manuscript refers to the coupling between EMG and 5-HT levels as 'puzzling' given that, as stated, the locomotion-inducing effects of 5-HT are well documented. While the fact that even non-locomotory motor activity may be associated with 5-HT rise is certainly interesting (although not sure if 'puzzling'), the manuscript does not directly compare the association of 5-HT levels with locomotory and non-locomotory EMG spikes. Thus, I think this discussion point is not fully warranted.

      We agree and have rephrased the discussion point in question to reflect that the EMG link to serotonin oscillations is not necessarily surprising, given both the literature linking 5-HT and spontaneous movement in the hippocampus, as well as the involvement of 5-HT in repetitive movements, where the role for a regularly-occurring oscillation is perhaps more intuitive.

      (8) Line 441: Reference #67 does not describe the use of fiber photometry.

      The reviewer is to correct to point out this typo, which has been now corrected. The reference in question should be 64, where fiber photometry experiments are described. For further clarity, we have changed our referencing scheme to include authors and years in in-text references.

      (9) In Figures 3E1-3, the phase has different bounds than in the other Figures in the manuscript (0:360 vs -180:180), this should be corrected for consistency.

      We agree and have made changes so that all figures have a phase range of -180 to 180°.

      References

      (1) Z. M Aghajan, G. Kreiman, I. Fried, Minute-scale periodicity of neuronal firing in the human entorhinal cortex. Cell Rep 42, 113271 (2023).

      (2) M.A. Bunin, R.M. Wightman (1998). Quantitative Evaluation of 5-Hydroxytryptamine (Serotonin) Neuronal Release and Uptake: An Investigation of Extrasynaptic Transmission. J. Neurosci. 18 (13) 4854-4860

      (3) F. Cazettes, D. Reato, J. P. Morais, A. Renart, Z. F. Mainen, Phasic Activation of Dorsal Raphe Serotonergic Neurons Increases Pupil Size. Curr Biol 31, 192-197.e4 (2021).

      (4) Cole SR, Voytek B. Brain Oscillations and the Importance of Waveform Shape. Trends Cogn Sci. 21(2):137-149 (2017).

      (5) F. Deng, et al., Improved green and red GRAB sensors for monitoring spatiotemporal serotonin release in vivo. Nat Methods 21, 692–702 (2024).

      (6) C. Dong, et al., Psychedelic-inspired drug discovery using an engineered biosensor. Cell 184, 2779-2792.e18 (2021).

      (7) A. Eban-Rothschild, L. Appelbaum, L. de Lecea, Neuronal Mechanisms for Sleep/Wake Regulation and Modulatory Drive. Neuropsychopharmacol. 43, 937–952 (2018).

      (8) M. S. Fanselow, H.-W. Dong, Are the dorsal and ventral hippocampus functionally distinct structures? Neuron 65, 7–19 (2010).

      (9) J. S. Farrell, E. Hwaun, B. Dudok, I. Soltesz, Neural and behavioural state switching during hippocampal dentate spikes. Nature 1–6 (2024). https://doi.org/10.1038/s41586-024-07192-8.

      (10) De Filippo, R., & Schmitz, D. (2024). Transcriptomic mapping of the 5-HT receptor landscape. Patterns (New York, N.Y.), 5(10), 101048.

      (11) M. J. Fisher, et al., Neural mechanisms of sensory gating: Insights from human and animal studies. NeuroImage 207, 116374 (2020).

      (12) P. Fries, D. Nikolić, W. Singer, The gamma cycle. Trends in Neurosciences 30, 309–316 (2007).

      (13) S. Gonzalo Cogno, et al., Minute-scale oscillatory sequences in medial entorhinal cortex. Nature 625, 338–344 (2024).

      (14) D. Gutierrez-Barragan, M. A. Basson, S. Panzeri, A. Gozzi, Infraslow State Fluctuations Govern Spontaneous fMRI Network Dynamics. Current Biology 29, 2295-2306.e5 (2019).

      (15) K. Helmbold, et al., Serotonergic modulation of resting state default mode network connectivity in healthy women. Amino Acids 48, 1109–1120 (2016).

      (16) B. Jarosiewicz, B. L. McNaughton, W. E. Skaggs, Hippocampal Population Activity during the Small-Amplitude Irregular Activity State in the Rat. J. Neurosci. 22, 1373–1384 (2002).

      (17) J. T. Jordan, The rodent hippocampus as a bilateral structure: A review of hemispheric lateralization. Hippocampus 30, 278–292 (2020).

      (18) T. Kato, et al., Oscillatory Population-Level Activity of Dorsal Raphe Serotonergic Neurons Is Inscribed in Sleep Structure. J. Neurosci. 42, 7244–7255 (2022).

      (19) M.A. Kim, H. S. Lee, B. Y. Lee, B. D. Waterhouse, Reciprocal connections between subdivisions of the dorsal raphe and the nuclear core of the locus coeruleus in the rat. Brain Research 1026, 56–67 (2004).

      (20) C. Kjaerby, et al., Memory-enhancing properties of sleep depend on the oscillatory amplitude of norepinephrine. Nat Neurosci 25, 1059–1070 (2022).

      (21) S. Lecci, et al., Coordinated infraslow neural and cardiac oscillations mark fragility and offline periods in mammalian sleep. Sci Adv 3, e1602026 (2017).

      (22) A. A. Liu, et al., A consensus statement on detection of hippocampal sharp wave ripples and differentiation from other fast oscillations. Nat Commun 13, 6000 (2022).

      (23) M.-T. Lo, P.-H. Tsai, P.-F. Lin, C. Lin, Y. L. Hsin, The nonlinear and nonstationary properties in eeg signals: probing the complex fluctuations by hilbert–huang transform. Adv. Adapt. Data Anal. 01, 461–482 (2009).

      (24) N. K. Logothetis, J. Pauls, M. Augath, T. Trinath, A. Oeltermann, Neurophysiological investigation of the basis of the fMRI signal. Nature 412, 150–157 (2001).

      (25) H. Lu, et al., Rat brains also have a default mode network. Proc Natl Acad Sci U S A 109, 3979–3984 (2012).

      (26) D. Mantini, M. G. Perrucci, C. Del Gratta, G. L. Romani, M. Corbetta, Electrophysiological signatures of resting state networks in the human brain. Proc Natl Acad Sci U S A 104, 13170– 13175 (2007).

      (27) J. E. Markowitz, et al., The striatum organizes 3D behavior via moment-to-moment action selection. Cell 174, 44-58.e17 (2018).

      (28) H. Miyawaki, Y. N. Billeh, K. Diba, Low Activity Microstates During Sleep. Sleep 40, zsx066 (2017).

      (29) B. Mlinar, A. Montalbano, L. Piszczek, C. Gross, R. Corradetti, Firing Properties of Genetically Identified Dorsal Raphe Serotonergic Neurons in Brain Slices. Front Cell Neurosci 10, 195 (2016).

      (30) A. Osorio-Forero, et al., Noradrenergic circuit control of non-REM sleep substates. Current Biology 31, 5009-5023.e7 (2021).

      (31) S. Panzeri, N. Brunel, N. K. Logothetis, C. Kayser, Sensory neural codes using multiplexed temporal scales. Trends in Neurosciences 33, 111–120 (2010).

      (32) M. E. Raichle, et al., A default mode of brain function. Proc Natl Acad Sci U S A 98, 676–682 (2001).

      (33) R. Srinath, S. Ray, Effect of amplitude correlations on coherence in the local field potential. J Neurophysiol 112, 741–751 (2014).

      (34) B. P. Staresina, J. Niediek, V. Borger, R. Surges, F. Mormann, How coupled slow oscillations, spindles and ripples coordinate neuronal processing and communication during human sleep. Nat Neurosci 26, 1429–1437 (2023).

      (35) C. W. Thomas, et al., Psilocin acutely alters sleep-wake architecture and cortical brain activity in laboratory mice. Transl Psychiatry 12, 77 (2022).

      (36) G. F. Turi, et al., Serotonin modulates infraslow oscillation in the dentate gyrus during Non-REM sleep. eLife 13 (2025).

      (37) J. Vazquez, H. A. Baghdoyan, Basal forebrain acetylcholine release during REM sleep is significantly greater than during waking. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 280, R598–R601 (2001).

      (38) J. Wan, et al., A genetically encoded sensor for measuring serotonin dynamics. Nat Neurosci 24, 746–752 (2021).

      (39) Y. Zhang, et al., Cholinergic suppression of hippocampal sharp-wave ripples impairs working memory. Proc. Natl. Acad. Sci. U.S.A. 118, e2016432118 (2021).

      (40) Y. Zhang, et al., Interaction of acetylcholine and oxytocin neuromodulation in the hippocampus. Neuron (2024).

    1. One play would probably seldom occupy more than an hour and a half; but often three plays were connected together in one grand whole called a trilogy, somewhat as the several parts of Shakespeare's historical plays are connected; and these were followed by a comic piece by the same poet, which might relieve the seriousness of so much tragedy. Each competitor, therefore, produced in these cases not one play, but a series of four, and several competitors followed one another throughout the day. Wearisome, dry, unimpassioned, all this may seem to us; but we must remember that to the Greek it meant religious service, literary culture, and the celebration of the national greatness. As he sat in the theatre, the gods of his country looked down approvingly from the Acropolis above, and his fellow-citizens, whom he loved with intense patriotism, were all about him. He might say of the assembly, what an old poet had said of the Ionians gathered for festival at Delos, that you would think them blessed with endless youth, so glorious they were and so blooming; and as the rocks under which he sat re-echoed to the applause of that great assembly, he must indeed have felt the thrill of sympathetic enthusiasm which Plato describes as produced by such occasions.

      The description of the trilogy in plays is alive even today in all forms of entertainment and I like how we can compare similarities to ages ago. Shakespear as an example is a good point of view. Instead of one play it was made into four while following up with competitors through the day. Greeks it was a religious service, literary culture and celebration of national greatness.

    2. All these facts—that the theatre was national, and religious, and rarely open—combined to make the audience on each occasion very numerous. It was a point of national pride, of religious duty, and of common prudence on the part of every citizen, not to miss the two great dramatic festivals of the year when their season came. Accordingly, we hear that thirty thousand people used to be present together; and we may infer from this, as well as from other indisputable evidence, the vast size of the theatre itself. The performance took place in the day-time, and lasted nearly all day, for several plays were presented in succession; and the theatre was open to the sky and to the fields, so that when a man looked away from the solemn half-mysterious representation of the legendary glories of his country, his eye would fall on the city itself, with its temples and its harbours, or on the rocky cliffs of Salamis and the sunny islands of the Ægean. Finally, the performance was musical, and so more like an opera than an ordinary play, though we shall see that even this resemblance is little more than superficial.

      Impressed on how the theatre became a national, religious outbreak of success while rarely open-combined. Like how it was prideful thing to do with a religious duty and yet a common prudence to show that no matter how big or small it was in a persons life at that time that it was no matter what apart of practically all their lives. Visualizing the size of the viewers to thirty thousand just to perform for them allows me to imagine the size of the theatre and the influence of power the theatre had at that time. Also to think people performed all day long just also adds to my view on the commitment these people in time took for this to be a big deal and a successful part of their lives and to others every day.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Reviewer 1:

      We would like to thank Reviewer 1 for recognising the importance of our findings on the heterogeneity in bacterial responses to tachyplesin.

      (1) A double deletion of acrA and tolC (two out of the three components of the major constitutive RND efflux pump) reduces the appearance of the low accumulator phenotype, but interestingly, the single deletions have no effect, and a well-characterised inhibitor of RND efflux pumps also has no effect. The authors identify a two-component system, qseCB, that appears necessary for the appearance of low accumulators, but this system has pleiotropic effects on many cellular systems, with only tenuous connections to efflux. The selected pharmacological agents that could prevent the appearance of low accumulators do not offer clear insight into the mechanism by which low accumulators arise, because they have diverse modes of action.

      We have added that “QseBC, was previously inferred to mediate resistance to a tachyplesin analogue by upregulating efflux genes based on transcriptomic analysis and hyper susceptibility of ΔqseBΔqseC mutants[113]”. However, we have also acknowledged that “it is conceivable that the deletion of QseBC has pleiotropic effects on other cellular mechanisms involved in tachyplesin accumulation.” and that “it is also conceivable that sertraline prevented the formation of the low accumulator phenotype via efflux independent mechanisms”

      These amendments are reported on lines 525-527, 532-534 and 539-541 of our revised manuscript.

      (2) The transcriptomics data collected for low and high accumulator sub-populations are interesting, but in my opinion, the conclusions that can be drawn from these data remain overstated. It is not possible to make any claims about the total amount of "protein synthesis, energy production, and gene expression" on the basis of RNA-Seq data. The reads from each sample are normalised, so there is no information about the total amount of transcript. Many elements of total cellular activity are post-transcriptionally regulated, so it is impossible to assess from transcriptomics alone. Finally, the transcriptomic data are analysed in aggregated clusters of genes that are enriched for biological processes, for example: "Cluster 2 included processes involved in protein synthesis, energy production, and gene expression that were downregulated to a greater extent in low accumulators than high accumulators". However, this obscures the fact that these clusters include genes that are generally inhibitory of the process named, as well as genes that facilitate the process.

      We have now acknowledged that “that our data do not take into account post-transcriptional modifications that represent a second control point to survive external stressors.”

      These amendments are reported on lines 534-535 of our revised manuscript.

      The raw transcript counts can be found in Figure 3 – Source Data, we had added these data in our previous manuscript as requested by this reviewer.

      We would also like to clarify that we have analysed our transcriptomic data via both clustering (i.e. Figure 3) and direct comparison of genes of interest (Table S1) and transcription factors (i.e. genes that are generally inhibitory of the process named, as well as genes that facilitate the process, Figure S12).

      Finally, we would like to point out that in our revised manuscript (both this and its previous version) we are stating “Cluster 2 included processes involved in protein synthesis, energy production, and gene expression that were downregulated to a greater extent in low accumulators than high accumulators”. We do not think this is an overstatement, we do not use these data to make conclusions on the total amount of "protein synthesis, energy production, and gene expression".

      (3) The authors have added an experiment to attempt to assess overall metabolic activity in the low accumulator and high accumulator populations, which is a welcome addition. They apply the redox dye resazurin and observe lower resorufin (reduced form) fluorescence in the low accumulator population, which they take to indicate a lower respiration rate. This seems possible, however, an important caveat is that they have shown the low accumulator population to retain substantially lower amounts of multiple different fluorescent molecules (tachyplesin-NBD, propidium iodide, ethidium bromide) intracellularly compared to the high accumulator population. It seems possible that the low accumulator population is also capable of removing resazurin or resorufin from the intracellular space, regardless of metabolic rate. Indeed, it has previously been shown that efflux by RND efflux pumps influences resazurin reduction to resorufin in both P. aeruginosa and E. coli. By measuring only the retained redox dye using flow cytometry, the results may be confounded by the demonstrated ability of the low accumulator population to remove various fluorescent dyes. More work is needed to strongly support broad conclusions about the physiological states of the low and high accumulator populations. The phenomenon of the emergence of low accumulators, which are phenotypically tolerant to the antimicrobial peptide tachyplesin, is interesting and important even if there is still work to be done to understand the mechanism by which it occurs.

      We have now clarified that these assays were performed in the presence of 50 μM CCCP and that “CCCP was included to minimise differences in efflux activity and preserve resorufin retention between low and high accumulators, though some variability in efflux may still persist.” We have now added this information on lines 401-406. This information was only present in the caption of Figure S16 of our previous version of this manuscript.

      We agree with the reviewers that more work needs to be done to fully understand this new phenomenon and we had already acknowledged in our previous version of this manuscript that other mechanisms could play a role in this new phenomenon, see lines 489-517 of the current manuscript.

      Reviewer 2:

      We would like to thank the reviewer for recognising that all their previous comments have now been satisfactorily addressed.

      (1) Some mechanistic questions regarding tachyplesin-accumulation and survival remain. One general shortcoming of the setup of the transcriptomics experiment is that the tachyplesin-NBD probe itself has antibiotic efficacy and induces phenotypes (and eventually cell death) in the ´high accumulator´ cells. As the authors state themselves, this makes it challenging to interpret whether any differences seen between the two groups are causative for the observed accumulation pattern of if they are a consequence of differential accumulation and downstream phenotypic effects.

      We agree with the reviewer and we had explicitly acknowledged this possibility on lines 281-285 (of the previous and current version of this manuscript).

      (2) The statement ´ Moreover, we found that the fluorescence of low accumulators decreased over time when bacteria were treated with 20 μg mL´ is, in my opinion, not supported by the data shown in Figure S4C. That figure shows that the abundance of ´low accumulator´ cells decreases over time. Following the rationale that protease K treatment may cleave surface associated/ extracellular tachyplesin-NDB, this should lead to a shift of ´low accumulator´ population to the left, indicating reduced fluorescence intensity per cell. This is not so case, but the population just disappears. However, after 120 min of treatment more cells appear in the ´high accumulator´ state. This result is somewhat puzzling.

      We agree with the reviewer that our previous discussion of this data could have been misleading. We have now reworded this part of the text as following: “We found that the fluorescence of high accumulators did not decrease over time when tachyplesin-NBD was removed from the extracellular environment and bacteria were treated with 20 μg mL<sup>-1</sup> (0.7 μM) proteinase K, a widely-occurring serine protease that can cleave the peptide bonds of AMPs [43–45] (Figure S4B and C). These data suggest that tachyplesin-NBD primarily accumulates intracellularly in high accumulators.”

      It is conceivable that extended exposure to proteinase K (i.e. we see a decrease in the abundance of low accumulators after 90 min treatment with proteinase K) increased the permeability to tachyplesin-NBD of low accumulators allowing tachyplesin-NBD to move from either the extracellular space or the membrane to the cell interior. However, we do not have data to prove this point.

      Therefore, we have now removed our claim that the data obtained using proteinase K suggest that tachyplesin-NBD accumulates primarily in the membranes of low accumulators. We believe that our two separate microscopy analyses provide more direct, stronger and less ambiguous evidence that tachyplesin-NBD accumulates primarily in the membranes of low accumulators.

      (3) The authors used the metabolic dye resazurin to measure the metabolic activity of low vs. high accumulators. I am not entirely convinced that the lower fluorescence resorufin fluorescence in tachyplesin-NBD accumulators really indicates lower metabolic activity, since a cell's fluorescence levels would also be affected by the cellular uptake and efflux. It appears plausible that the lower resorufin-fluorescence may result from reduced accumulation/increased efflux in the ‘low-tachyplesin NBD´ population.

      We have now clarified that these assays were performed in the presence of 50 μM CCCP and that “CCCP was included to minimise differences in efflux activity and preserve resorufin retention between low and high accumulators, though some variability in efflux may still persist.” We have now added this information on lines 401-406. This information was only present in the caption of Figure S16 of our previous version of this manuscript.

      (4) P8 line 343. The text should refer to Figure. 13B, instead of 14B

      We have now changed the text accordingly on line 337.

      Reviewer 3:

      We would like to thank the reviewer for recognising that we have done a very impressive job in taking care of their comments.

      (1) Despite these advances, the contribution of efflux may require more direct evidence to further dissect whether efflux is necessary, sufficient, or contributory. The facts that the key low efflux mutant still retains a small fraction of survivors and that the inhibitors used may cause other physiological changes leading to higher efflux are still unaccounted for. The lipidomic and vesicle findings, while intriguing, remain descriptive, and direct tests of their functional relevance would further solidify the mechanistic models.

      We agree with the reviewers that more work needs to be done to fully understand this new phenomenon and we had already acknowledged in our previous version of this manuscript that other mechanisms could play a role in this new phenomenon, see lines 489-517 of the current manuscript.

    1. Author response:

      Reviewer #1 (Public review):

      (1) Legionella effectors are often activated by binding to eukaryote-specific host factors, including actin. The authors should test the following: a) whether Lfat1 can fatty acylate small G-proteins in vitro; b) whether this activity is dependent on actin binding; and c) whether expression of the Y240A mutant in mammalian cells affects the fatty acylation of Rac3 (Figure 6B), or other small G-proteins.

      We were not able to express and purify the full-length recombinant Lfat1 to perform fatty acylation of small GTPases in vitro. However, in cellulo overexpression of the Y240A mutant still retained ability to fatty acylate Rac3 and another small GTPase RheB (see Author response image 1 below). We postulate that under infection conditions, actin-binding might be required to fatty acylate certain GTPases due to the small amount of effector proteins that secreted into the host cell.

      Author response image 1.

      (2) It should be demonstrated that lysine residues on small G-proteins are indeed targeted by Lfat1. Ideally, the functional consequences of these modifications should also be investigated. For example, does fatty acylation of G-proteins affect GTPase activity or binding to downstream effectors?

      We have mutated K178 on RheB and showed that this mutation abolished its fatty acylation by Lfat1 (see Author response image 2 below). We were not able to test if fatty acylation by Lfat1 affect downstream effector binding.

      Author response image 2.

      (3) Line 138: Can the authors clarify whether the Lfat1 ABD induces bundling of F-actin filaments or promotes actin oligomerization? Does the Lfat1 ABD form multimers that bring multiple filaments together? If Lfat1 induces actin oligomerization, this effect should be experimentally tested and reported. Additionally, the impact of Lfat1 binding on actin filament stability should be assessed. This is particularly important given the proposed use of the ABD as an actin probe.

      The ABD domain does not form oligomer as evidenced by gel filtration profile of the ABD domain. However, we do see F-actin bundling in our in vitro -F-actin polymerization experiment when both actin and ABD are in high concentration (data not shown). Under low concentration of ABD, there is not aggregation/bundling effect of F-actin.

      (4) Line 180: I think it's too premature to refer to the interaction as having "high specificity and affinity." We really don't know what else it's binding to.

      We have revised the text and reworded the sentence by removing "high specificity and affinity."

      (5) The authors should reconsider the color scheme used in the structural figures, particularly in Figures 2D and S4.

      Not sure the comments on the color scheme of the structure figures.

      (6) In Figure 3E, the WT curve fits the data poorly, possibly because the actin concentration exceeds the Kd of the interaction. It might fit better to a quadratic.

      We have performed quadratic fitting and replaced Figure 3E.

      (7) The authors propose that the individual helices of the Lfat1 ABD could be expressed on separate proteins and used to target multi-component biological complexes to F-actin by genetically fusing each component to a split alpha-helix. This is an intriguing idea, but it should be tested as a proof of concept to support its feasibility and potential utility.

      It is a good suggestion. We plan to thoroughly test the feasibility of this idea as one of our future directions.

      (7) The plot in Figure S2D appears cropped on the X-axis or was generated from a ~2× binned map rather than the deposited one (pixel size ~0.83 Å, plot suggests ~1.6 Å). The reported pixel size is inconsistent between the Methods and Table 1-please clarify whether 0.83 Å refers to super-resolution.

      Yes, 0.83 Å is super-resolution. We have updated in the cryoEM table

      Reviewer #2 (Public review):

      Weaknesses:

      (1) The authors should use biochemical reactions to analyze the KFAT of Llfat1 on one or two small GTPases shown to be modified by this effector in cellulo. Such reactions may allow them to determine the role of actin binding in its biochemical activity. This notion is particularly relevant in light of recent studies that actin is a co-factor for the activity of LnaB and Ceg14 (PMID: 39009586; PMID: 38776962; PMID: 40394005). In addition, the study should be discussed in the context of these recent findings on the role of actin in the activity of L. pneumophila effectors.

      We have new data showed that Actin binding does not affect Lfat1 enzymatic activity. (see figure; response to Reviewer #1). We have added this new data as Figure S7 to the paper. Accordingly, we also revised the discussion by adding the following paragraph.

      “The discovery of Lfat1 as an F-actin–binding lysine fatty acyl transferase raised the intriguing question of whether its enzymatic activity depends on F-actin binding. Recent studies have shown that other Legionella effectors, such as LnaB and Ceg14, use actin as a co-factor to regulate their activities. For instance, LnaB binds monomeric G-actin to enhance its phosphoryl-AMPylase activity toward phosphorylated residues, resulting in unique ADPylation modifications in host proteins (Fu et al, 2024; Wang et al, 2024). Similarly, Ceg14 is activated by host actin to convert ATP and dATP into adenosine and deoxyadenosine monophosphate, thereby modulating ATP levels in L. pneumophila–infected cells (He et al, 2025). However, this does not appear to be the case for Lfat1. We found that Lfat1 mutants defective in F-actin binding retained the ability to modify host small GTPases when expressed in cells (Figure S7). These findings suggest that, rather than serving as a co-factor, F-actin may serve to localize Lfat1 via its actin-binding domain (ABD), thereby confining its activity to regions enriched in F-actin and enabling spatial specificity in the modification of host targets.”

      (2) The development of the ABD domain of Llfat1 as an F-actin domain is a nice extension of the biochemical and structural experiments. The authors need to compare the new probe to those currently commonly used ones, such as Lifeact, in labeling of the actin cytoskeleton structure.

      We fully agree with the reviewer’s insightful suggestion. However, a direct comparison of the Lfat1 ABD domain with commonly used actin probes such as Lifeact, as well as evaluation of the split α-helix probe (as suggested by Reviewer #1), would require extensive and technically demanding experiments. These are important directions that we plan to pursue in future studies.

    1. Author response:

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      In this interesting and original paper, the authors examine the effect that heat stress can have on the ability of bacterial cells to evade infection by lytic bacteriophages. Briefly, the authors show that heat stress increases the tolerance of Klebsiella pneumoniae to infection by the lytic phage Kp11. They also argue that this increased tolerance facilitates the evolution of genetically encoded resistance to the phage. In addition, they show that heat can reduce the efficacy of phage therapy. Moreover, they define a likely mechanistic reason for both tolerance and genetically encoded resistance. Both lead to a reorganization of the bacterial cell envelope, which reduces the likelihood that phage can successfully inject their DNA.

      Strengths:

      I found large parts of this paper well-written and clearly presented. I also found many of the experiments simple yet compelling. For example, the experiments described in Figure 3 clearly show that prior heat exposure can affect the efficacy of phage therapy. In addition, the experiments shown in Figures 4 and 6 clearly demonstrate the likely mechanistic cause of this effect. The conceptual Figure 7 is clear and illustrates the main ideas well. I think this paper would work even without its central claim, namely that tolerance facilitates the evolution of resistance. The reason is that the effect of environmental stressors on stress tolerance has to my knowledge so far only been shown for drug tolerance, not for tolerance to an antagonistic species.

      Weaknesses:

      I did not detect any weaknesses that would require a major reorganization of the paper, or that may require crucial new experiments. However, the paper needs some work in clarifying specific and central conclusions that the authors draw. More specifically, it needs to improve the connection between what is shown in some figures, how these figures are described in the caption, and how they are discussed in the main text. This is especially glaring with respect to the central claim of the paper from the title, namely that tolerance facilitates the evolution of resistance. I am sympathetic to that claim, especially because this has been shown elsewhere, not for phage resistance but for antibiotic resistance. However, in the description of the results, this is perhaps the weakest aspect of the paper, so I'm a bit mystified as to why the authors focus on this claim. As I mentioned above, the paper could stand on its own even without this claim.

      Thank you for your feedback. We understand your concern regarding the central claim that tolerance facilitates the evolution of resistance, while the paper can stand on its own without this claim, we think it provides an important layer to the interpretation of our findings. Considering your comments, we plan to revise the title and adjust to “Heat Stress Induces Phage Tolerance in Bacteria”.

      More specific examples where clarification is needed:

      (1) A key figure of the paper seems to be Figure 2D, yet it was one of the most confusing figures. This results from a mismatch between the accompanying text starting on line 92 and the figure itself. The first thing that the reader notices in the figure itself is the huge discrepancy between the number of viable colonies in the absence of phage infection at the two-hour time point. Yet this observation is not even mentioned in the main text. The exclusive focus of the main text seems to be on the right-hand side of the figure, labeled "+Phage". It is from this right-hand panel that the authors seem to conclude that heat stress facilitates the evolution of resistance. I find this confusing, because there is no difference between the heat-treated and non-treated cells in survivorship, and it is not clear from this data that survivorship is caused by resistance, not by tolerance/persistence. (The difference between tolerance and resistance has only been shown in the independent experiments of Figure 1B.)

      Thank you for your helpful comment. Figure 2d presents colony counts from a plating assay following the phage killing experiment in Figure 2c. Bacteria collected after 0 and 2 hours of phage exposure were plated on both phage-free (−phage) and phage-containing (+phage) plates. The “−phage” condition reflects total survivors, while the “+phage” condition indicates the resistant subset.

      As seen in Figure 2d (left part), heat-treated bacteria showed markedly higher survival on phage-free plates than untreated cells, which were largely eliminated by phage. However, resistant colony counts on phage-containing plates were similar between two groups (as shown in figure 2d right part), suggesting that heat stress increased survival but did not promote resistance.

      To clarify, we have revised the labels in Figure 2d as follows: “Total” will replace “-phage” to indicate the total survivors from the phage killing assay, and “Resisters” will replace “+phage” to indicate the resistant survivors, which are detected on phage-containing plates. This adjustment should eliminate any confusion and better reflect the experimental design.

      Figure 2F supports the resistance claim, but it is not one of the strongest experiments of the paper, because the author simply only used "turbidity" as an indicator of resistance. In addition, the authors performed the experiments described therein at small population sizes to avoid the presence of resistance mutations. But how do we know that the turbidity they describe does not result from persisters?

      I see three possibilities to address these issues. First, perhaps this is all a matter of explaining and motivating this particular experiment better. Second, the central claim of the paper may require additional experiments. For example, is it possible to block heat induced tolerance through specific mutations, and show that phage resistance does not evolve as rapidly if tolerance is blocked? A third possibility is to tone down the claim of the paper and make it about heat tolerance rather than the evolution of heat resistance.

      Thank you for your thoughtful comment. We appreciate the opportunity to clarify the interpretation of Figure 2f and the rationale behind the experimental design. We agree that turbidity alone cannot fully distinguish resistance from persistence. However, our earlier experiments (Figures 2d and 2e) demonstrated that heat-treated survivors remained largely susceptible to phage, indicating that heat stress does not directly induce resistance. This led us to hypothesize that heat enhances phage tolerance, which in turn increases the likelihood of resistance emergence during subsequent infection.

      To test this, we used a low initial bacterial population (~10³ CFU per well) to minimize the chance of pre-existing resistance. Bacteria were exposed to phages at MOIs of 1, 10, and 100 and incubated for 24 hours in 100 µL volumes. This setup ensured:

      (1) The low initial population minimizes the presence of pre-existing resistant mutants, ensuring that any phage-resistant bacteria observed arise during the infection process.

      (2) The high MOI (≥ 1) ensures that each bacterial cell has a high probability of infection by at least one phage.

      (3) The small volume (100 µL per well) maximizes the interaction between bacteria and phages, ensuring rapid infection of susceptible bacteria, which leads to clear wells. If resistant mutants arise, they will grow and cause turbidity.

      Thus, the turbidity observed in heat-treated samples reflects de novo emergence and outgrowth of resistant mutants from a tolerant population. This assay supports the idea that heat-induced tolerance increases the probability of resistance evolution, rather than directly causing resistance.

      We have revised the text to better explain this experimental logic and adjust the framing of our conclusions accordingly.

      A minor but general point here is that in Figure 2D and in other figures, the labels "-phage" and "+phage" do not facilitate understanding, because they suggest that cells in the "-phage" treatment have not been exposed to phage at all, but that is not the case. They have survived previous phage treatment and are then replated on media lacking phage.

      Thank you for your valuable comment. To clarify, we have revised the labels in Figure 2d as follows: “Total” will replace “-phage” to indicate the total survivors from the phage killing assay, and “Resisters” will replace “+phage” to indicate the resistant survivors, which are detected on phage-containing plates.

      (2) Another figure with a mismatch between text and visual materials is Figure 5, specifically Figures 5B-F. The figure is about two different mutants, and it is not even mentioned in the text how these mutants were identified, for example in different or the same replicate populations. What is more, the two mutants are not discussed at all in the main text. That is, the text, starting on line 221 discusses these experiments as if there was only one mutant. This is especially striking as the two mutants behave very differently, as, for example, in Figure 5C. Implicitly, the text talks about the mutant ending in "...C2", and not the one ending in "...C1". To add to the confusion, the text states that the (C2) mutant shows a change in the pspA gene, but in Figure 5f, it is the other (undiscussed) mutant that has a mutation in this gene. Only pspA is discussed further, so what about the other mutants? More generally, it is hard to believe that these were the only mutants that occurred in the genome during experimental evolution. It would be useful to give the reader a 2-3 sentence summary of the genetic diversity that experimental evolution generated.

      Thank you for your thoughtful comment. In our heat treatment evolutionary experiment, we isolated six distinct bacterial clones, of which two are highlighted in the manuscript as representative examples. One clone, BC2G11C1, acquired both heat tolerance and phage resistance, while another clone, BC3G11C2, became heat-tolerant but did not develop resistance to phage infection. This variation highlights the inherent diversity in evolutionary responses when exposed to selective pressures. It demonstrates that not all evolutionary pathways lead to the same outcome, even under similar stress conditions. This variability is a key observation in our study, illustrating that different genetic adaptations may arise depending on the specific mutations or genetic context, and not every strain will evolve phage resistance in parallel with heat tolerance. We have updated the manuscript to better reflect this diversity in the evolutionary trajectories observed.

      Reviewer #2 (Public review):

      Summary:

      An initial screening of pretreatment with different stress treatments of K. pneumoniae allowed the identification of heat stress as a protection factor against the infection of the lytic phage Kp11. Then experiments prove that this is mediated not by an increase of phage-resistant bacteria but due to an increase in phage transient tolerant population, which the authors identified as bacteriophage persistence in analogy to antibiotic persistence. Then they proved that phage persistence mediated by heat shock enhanced the evolution of bacterial resistance against the phage. The same trait was observed using other lytic phages, their combinations, and two clinical strains, as well as E. coli and two T phages, hence the phenomenon may be widespread in enterobacteria.

      Next, the elucidation of heat-induced phage persistence was done, determining that phage adsorption was not affected but phage DNA internalization was impaired by the heat pretreatment, likely due to alterations in the bacterial envelope, including the downregulation of envelope proteins and of LPS; furthermore, heat treated bacteria were less sensitive to polymyxins due to the decrease in LPS.

      Finally, cyclic exposure to heat stress allowed the isolation of a mutant that was both resistant to heat treatment, polymyxins, and lytic phage, that mutant had alterations in PspA protein that allowed a gain of function and that promoted the reduction of capsule production and loss of its structure; nevertheless this mutant was severely impaired in immune evasion as it was easily cleared from mice blood, evidencing the tradeoffs between phage/heat and antibiotic resistance and the ability to counteract the immune response.

      Strengths:

      The experimental design and the sequence in which they are presented are ideal for the understanding of their study and the conclusions are supported by the findings, also the discussion points out the relevance of their work particularly in the effectiveness of phage therapy and allows the design of strategies to improve their effectiveness.

      Weaknesses:

      In its present form, it lacks the incorporation of some relevant previous work that explored the role of heat stress in phage susceptibility, antibiotic susceptibility, tradeoffs between phage resistance and resistance against other kinds of stress, virulence, etc., and the fact that exposure to lytic phages induces antibiotic persistence.

      Thank you for your insightful comments. I appreciate your suggestion regarding the inclusion of relevant previous works. I have now incorporated additional citations to discuss these points, including studies on the relationship between heat stress and antibiotic resistance, as well as the tradeoffs between phage resistance and other stress factors.

      Reviewer #3 (Public review):

      PspA, a key regulator in the phage shock protein system, functions as part of the envelope stress response system in bacteria, preventing membrane depolarization and ensuring the envelope stability. This protein has been associated in the Quorum Sensing network and biofilm formation. (Moscoso M., Garcia E., Lopez R. 2006. Biofilm formation by Streptococcus pneumoniae: role of choline, extracellular DNA, and capsular polysaccharide in microbial accretion. J. Bacteriol. 188:7785-7795; Vidal JE, Ludewick HP, Kunkel RM, Zähner D, Klugman KP. The LuxS-dependent quorum-sensing system regulates early biofilm formation by Streptococcus pneumoniae strain D39. Infect Immun. 2011 Oct;79(10):4050-60.)

      It is interesting and very well-developed.

      (1) Could the authors develop experiments about the relationship between Quorum Sensing and this protein?

      (2) It would be interesting to analyze the link to phage infection and heat stress in relation to Quorum. The authors could study QS regulators or AI2 molecules.

      Thank you for your insightful comments and for bringing up the role of PspA in quorum sensing and biofilm formation. However, we would like to clarify a potential misunderstanding: the PspA discussed in our manuscript refers to phage-shock protein A, a key regulator in the bacterial envelope stress response system. This is distinct from the pneumococcal surface protein A, which has been associated with quorum sensing and biofilm formation in Streptococcus pneumoniae (as referenced in your comment).

      To avoid any confusion for readers, we will ensure that our manuscript explicitly states “phage-shock protein A (PspA)” at its first mention. We appreciate your feedback and hope this clarification addresses your concern.

      (3) Include the proteins or genes in a table or figure from lytic phage Kp11 (GenBank: ON148528.1).

      Thank you for your helpful suggestion. We have now included a figure, as appropriate summarizing the proteins of the lytic phage Kp11 (GenBank: ON148528.1) in supplementary Figure S1.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      Issues unrelated to those discussed in the public review

      (1) Figure 4a and its caption describe an evolution experiment, but they do not mention how many cycles of high-temperature treatment and growth this experiment lasted. I assume it lasted for more than one cycle, because the methods section mentions "cycles", but the number is not provided.

      Thank you for pointing this out. The evolutionary experiment shown in Figure 5a involved 11 cycles of high-temperature treatment and growth. We have now explicitly stated this in the figure legend to ensure clarity: BC: Batch culture, G: Evolution cycle number, C: Colony. BC2G11C1 refers to the first colony from batvh culture 2 after 11 rounds of heat treatment.

      (2) It is not clear what Figure 5F is supposed to show. What are the gray boxes? The caption claims that the figure shows non-synonymous mutations, but the only information it contains is about genes that seem to be affected by mutation. Judging from the mismatch between the main text and the figure, the mutants with these mutations may actually be mislabeled.

      Thank you for your careful review. Figure 5f highlights the non-synonymous mutations identified in the evolved strains. The gray boxes represent the ancestral strain’s whole genome without mutations, serving as a control. The corresponding labels indicate the specific mutations found in each evolved strain. We have clarified this in the figure caption to improve clarity. Additionally, we have carefully reviewed the labeling to ensure accuracy and consistency between the figure, main text, and sequencing data.

      (3) I think that the acronym NC, which is used in just about every figure, is explained nowhere in the paper. Spell out all acronyms at first use.

      Thank you for pointing this out. We have rivewed ensure that NC is clearly defined at its first mention in the text and figure legends to improve clarity. Additionally, we have reviewed the manuscript to ensure that all acronyms are properly introduced when first used.

      (4) The same holds for the acronym N.D. This is an especially important oversight because N.D. could mean "not determined" or "not detectable", which would lead to very different interpretations of the same figure.

      Thank you for your careful review. We have clarified the meaning of N.D., which stands for non-detectable, at its first use to avoid ambiguity and ensure accurate interpretation in the figure legend. Additionally, we have reviewed the manuscript to ensure that all acronyms are clearly defined.

      (5) The panel labels (a,b, etc.) in all figure captions are very difficult to distinguish from the rest of the text, and should be better highlighted, for example by using a bold font. However, this is a matter of journal style and will probably be fixed during typesetting.

      Thank you for your suggestion. We have adjusted the figure captions to better distinguish panel labels, such as using bold font, to improve readability and final formatting will follow the journal’s style during typesetting.

      (6) Line 224: enhanced insusceptibility -> reduced susceptibility.

      Thank you for your suggestion. We have revised “enhanced insusceptibility” to “reduced susceptibility” for clarity and precision.

      (7) Line 259: mice -> mouse.

      Thank you for catching this. We have corrected “mice” to “mouse”.

      Reviewer #2 (Recommendations for the authors):

      I have no concerns about the experimental design and conclusions of your work; however, I strongly recommend incorporating several relevant pieces of the literature related to your work, in the discussion of your manuscript, specifically:

      (1) Previous studies about the role of heat stress in phage infections, see:

      Greenrod STE, Cazares D, Johnson S, Hector TE, Stevens EJ, MacLean RC, King KC. Warming alters life-history traits and competition in a phage community. Appl Environ Microbiol. 2024 May 21;90(5):e0028624. doi: 10.1128/aem.00286-24. Epub 2024 Apr 16. PMID: 38624196; PMCID: PMC11107170.

      Thank you for your thoughtful comment. We have ensured to incorporate the study by Greenrod et al. (2024) into the discussion to enrich the context of our findings. As this article pointed out, a temperature of 42°C can indeed limit phage infection in bacteria, acting as a barrier from the phage’s perspective. Our study builds on this by demonstrating that bacteria pre-treated with high temperatures exhibit tolerance to phage infection. These findings, together with the work you referenced, underscore the importance of heat stress or elevated temperature in host-phage interactions, with 42°C being particularly relevant in the context of fever. We will make sure to clarify this connection in our revised manuscript.

      (2) The effect of heat stress and the tolerance/resistance against other antibiotics besides polymyxins, see:

      Lv B, Huang X, Lijia C, Ma Y, Bian M, Li Z, Duan J, Zhou F, Yang B, Qie X, Song Y, Wood TK, Fu X. Heat shock potentiates aminoglycosides against gram-negative bacteria by enhancing antibiotic uptake, protein aggregation, and ROS. Proc Natl Acad Sci U S A. 2023 Mar 21;120(12):e2217254120. doi: 10.1073/pnas.2217254120. Epub 2023 Mar 14. PMID: 36917671; PMCID: PMC10041086.

      Thank you for bringing this study to our attention. We have incorporated the findings from Lv et al. (2023) into the discussion of our manuscript, highlighting how sublethal temperatures may facilitate the killing of bacteria by antibiotics like kanamycin. This is consistent with our data showing enhanced susceptibility of heat-shocked bacteria to kanamycin. The study also provides insights into the potential role of PMF, which is relevant to our work on PspA, and strengthens the broader context of heat stress influencing both antibiotic resistance and tolerance.

      (3) Perhaps the most relevant overlooked fact was that recently it was demonstrated for E. coli, Klebsiella and Pseudomonas that pretreatment with lytic phages induced antibiotic persistence! Please discuss this finding and its implications for your work, see:

      Fernández-García L, Kirigo J, Huelgas-Méndez D, Benedik MJ, Tomás M, García-Contreras R, Wood TK. Phages produce persisters. Microb Biotechnol. 2024 Aug;17(8):e14543. doi: 10.1111/1751-7915.14543. PMID: 39096350; PMCID: PMC11297538.

      Sanchez-Torres V, Kirigo J, Wood TK. Implications of lytic phage infections inducing persistence. Curr Opin Microbiol. 2024 Jun;79:102482. doi: 10.1016/j.mib.2024.102482. Epub 2024 May 6. PMID: 38714140.

      Thank you for suggesting this important reference. We agree that the phenomenon of phage-induced bacterial persistence is highly relevant to our study. While our manuscript focuses on the role of heat stress in bacterial tolerance and resistance, we acknowledge that bacterial persistence against phages is an established concept. We have incorporated this finding into our discussion, emphasizing how persistence and tolerance can overlap in their effects on bacterial survival, especially under stress conditions like heat treatment. This will provide a more comprehensive understanding of how phage interactions with bacteria can lead to both persistence and resistance.

      (4) Finally, you observed a tradeoff pf the pspA* mutant increased phage/heat/polymyxin resistance and decreased immune evasion (perhaps by being unable to counteract phagocytosis), those tradeoffs between gaining phage resistance but losing resistance to the immune system, virulence impairment and resistance against some antibiotics had been extensively documented, see:

      Majkowska-Skrobek G, Markwitz P, Sosnowska E, Lood C, Lavigne R, Drulis-Kawa Z. The evolutionary trade-offs in phage-resistant Klebsiella pneumoniae entail cross-phage sensitization and loss of multidrug resistance. Environ Microbiol. 2021 Dec;23(12):7723-7740. doi: 10.1111/1462-2920.15476. Epub 2021 Mar 27. PMID: 33754440.

      Gordillo Altamirano F, Forsyth JH, Patwa R, Kostoulias X, Trim M, Subedi D, Archer SK, Morris FC, Oliveira C, Kielty L, Korneev D, O'Bryan MK, Lithgow TJ, Peleg AY, Barr JJ. Bacteriophage-resistant Acinetobacter baumannii are resensitized to antimicrobials. Nat Microbiol. 2021 Feb;6(2):157-161. doi: 10.1038/s41564-020-00830-7. Epub 2021 Jan 11. PMID: 33432151.

      García-Cruz JC, Rebollar-Juarez X, Limones-Martinez A, Santos-Lopez CS, Toya S, Maeda T, Ceapă CD, Blasco L, Tomás M, Díaz-Velásquez CE, Vaca-Paniagua F, Díaz-Guerrero M, Cazares D, Cazares A, Hernández-Durán M, López-Jácome LE, Franco-Cendejas R, Husain FM, Khan A, Arshad M, Morales-Espinosa R, Fernández-Presas AM, Cadet F, Wood TK, García-Contreras R. Resistance against two lytic phage variants attenuates virulence and antibiotic resistance in Pseudomonas aeruginosa. Front Cell Infect Microbiol. 2024 Jan 17;13:1280265. doi: 10.3389/fcimb.2023.1280265. Erratum in: Front Cell Infect Microbiol. 2024 Mar 06;14:1391783. doi: 10.3389/fcimb.2024.1391783. PMID: 38298921; PMCID: PMC10828002.

      Thank you for highlighting these important studies. We have incorporated the work by Majkowska-Skrobek et al. (2021), Gordillo Altamirano et al. (2021), and García-Cruz et al. (2024) into the discussion to provide further context to the evolutionary trade-offs observed in our study. The findings in these studies, which describe the cross-sensitization to antimicrobials and the loss of multidrug resistance in phage-resistant bacteria, align with our observations of trade-offs in the pspA mutant. Specifically, our results show that while the pspA mutant exhibits increased resistance to phage, heat, and polymyxins, it also experiences a decrease in immune evasion and potential virulence. These trade-offs are significant in understanding the broader consequences of developing resistance to phages and other stressors.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      Structural colors (SC) are based on nanostructures reflecting and scattering light and producing optical wave interference. All kinds of living organisms exhibit SC. However, understanding the molecular mechanisms and genes involved may be complicated due to the complexity of these organisms. Hence, bacteria that exhibit SC in colonies, such as Flavobacterium IR1, can be good models.

      Based on previous genomic mining and co-occurrence with SC in flavobacterial strains, this article focuses on the role of a specific gene, moeA, in SC of Flavobacterium IR1 strain colonies on an agar plate. moeA is involved in the synthesis of the molybdenum cofactor, which is necessary for the activity of key metabolic enzymes in diverse pathways.

      The authors clearly showed that the absence of moeA shifts SC properties in a way that depends on the nutritional conditions. They further bring evidence that this effect was related to several properties of the colony, all impacted by the moeA mutant: cell-cell organization, cell motility and colony spreading, and metabolism of complex carbohydrates. Hence, by linking SC to a single gene in appearance, this work points to cellular organization (as a result of cell-cell arrangement and motility) and metabolism of polysaccharides as key factors for SC in a gliding bacterium. This may prove useful for designing molecular strategies to control SC in bacterial-based biomaterials.

      Strengths:

      The topic is very interesting from a fundamental viewpoint and has great potential in the field of biomaterials.

      Thank you for this.

      The article is easy to read. It builds on previous studies with already established tools to characterize SC at the level of the flavobacterial colony. Experiments are well described and well executed. In addition, the SIBR-Cas method for chromosome engineering in Flavobacteria is the most recent and is a leap forward for future studies in this model, even beyond SC.

      We appreciate these comments.

      Weaknesses:

      The paper appears a bit too descriptive and could be better organized. Some of the results, in particular the proteomic comparison, are not well exploited (not explored experimentally). In my opinion, the problem originates from the difficulty in explaining the link between the absence of moeA and the alterations observed at the level of colony spreading and polysaccharide utilization, and the variation in proteomic content.

      We have looked at the organisation of the manuscript carefully in this revision, as suggested. In terms of the proteomics, there are a large number of proteins affected by the moeA deletion and not all could be followed up. We chose spreading, structural colour formation and starch degradation to follow up phenotypically, as the most likely to be relevant. For example, (L615-617) we discuss the downregulation of GldL (which is known to be involved Flavobacterial gliding motility [Shrivastava et al., 2013]) in the moeA KO as a possible explanation for the reduced colony spreading of this mutant. Changes in polysaccharide (starch) utilization were seen on solid medium, as well as in the proteomic profile where we observed the upregulation of carbohydrate metabolism proteins linked to PUL (polysaccharide utilisation locus) operons (Terrapon et al., 2015), such as PAM95095-90 (Figure 8), and other carbohydrate metabolism-related proteins, including a pectate lyase (Table S7) which is involved in starch degradation (Aspeborg et al., 2012). And as noted in L555-566 and Figure 9, alterations in starch metabolism were investigated experimentally.

      First, the effect of moeA deletion on molybdenum cofactor synthesis should be addressed.

      MoeA is the last enzyme in the MoCo synthesis pathway, thus if only MoeA is absent the cell would accumulate MPT-AMP (molybdopterin-adenosine monophosphatase) (Iobbi-Nivol & Leimkühler, 2013), and the expressed molybdoenzymes would not be functional. In L582-585, we commented how the lack of molybdenum cofactor may affect the synthesis of molybdoenzymes. However, if you meant to analyse the presence of the small molecules, i.e. the cofactors involved in these pathways, that was an assay we were not able to perform. However, in L585-587, we addressed how the deletion of moeA affected the proteins encoded by the rest of genes in the operon which is relevant to the question.

      Second, as I was reading the entire manuscript, I kept asking myself if moeA (and by extension molybdenum cofactor) was really involved in SC or it was an indirect effect. For example, what if the absence of moeA alters the cell envelope because the synthesis of its building blocks is perturbed, then subsequently perturbates all related processes, including gliding motility and protein secretion? It would help to know if the effects on colony spreading and polysaccharide metabolism can be uncoupled. I don't think the authors discussed that clearly.

      The message of the paper is that the moeA gene, as predicted from a previous genomics analysis, is important in SC. This is based on the representation of the moeA gene in genomes of bacteria that display SC. This analysis does not predict the mechanism. When knocked out, a significant change in structural colour occurred, supporting this hypothesis. Whether this effect is direct or indirect is difficult to assess, as this referee rightly suggests. In order to follow up this central result, we performed proteomics (both intra- and extracellular). As we observed, the deletion of a single gene generated many changes in the proteomic profile, thus in the biological processes. Based on the known functions of molybdenum cofactor, we could only hypothesize that pterin metabolism is important for SC, not exactly how.

      We have discussed the links between gliding/spreading and polysaccharide metabolism more clearly, with reference to the literature, as quite a bit is known here including possible links to SC.

      “Polysaccharide metabolism in IR1 has been linked to changes in colony color and motility through the study of fucoidan metabolism (van de Kerkhof et al., 2022). Polysaccharide degradation and gliding motility are coupled to the same mechanism: the phylum-specific type IX secretion system, used for the secretion of enzymes and proteins involved in both functions (McKee et al., 2021).” [L622-626]

      Reviewer #2 (Public review):

      Summary:

      The authors constructed an in-frame deletion of moeA gene, which is involved in molybdopterin cofactor (MoCo) biosynthesis, and investigated its role in structural colors in Flavobacterium IR1. The deletion of moeA shifted colony color from green to blue, reduced colony spreading, and increased starch degradation, which was attributed to the upregulation of various proteins in polysaccharide utilization loci. This study lays the ground for developing new colorants by modifying genes involved in structural colors.

      Major strengths and weaknesses:

      The authors conducted well-designed experiments with appropriate controls and the results in the paper are presented in a logical manner, which supports their conclusions.

      We appreciate these comments.

      Using statistical tests to compare the differences between the wild type and moeA mutant, and adding a significance bar in Figure 4B, would strengthen their claims on differences in cell motility regarding differences in cell motility.

      Thank you. Figure 4B contains the significance bars that represent the standard deviation of the mean value of the three replicates, but we have modified it to make them more clear.

      Additionally, in the result section (Figure 6), the authors suggest that the shift in blue color is "caused by cells which are still highly ordered but narrower", which to my knowledge is not backed up by any experimental evidence.

      Thanks. We mentioned that the mutant cells are narrower than the wild type based on the estimated periodicity resulting from the goniometry analysis (L427-430). We will now say “likely to be narrower based on the estimated periodicity from the optical analysis” rather than just “narrower”.

      “This optical analysis aligns with visual observations, confirming the blue shift in ΔmoeA, and suggests that this change in SC is caused by cells which are likely to be narrower based on the estimated periodicity from the optical analysis.” [L409-411]

      Overall, this is a well-written paper in which the authors effectively address their research questions through proper experimentation. This work will help us understand the genetic basis of structural colors in Flavobacterium and open new avenues to study the roles of additional genes and proteins in structural colors.

      Much appreciated.

      Recommendations for the authors:

      Reviewing Editor Comments:

      As you will see, the reviewers were rather positive about the paper but suggested a number of points to improve it, including a discussion of the direct role of moeA as well as specific editorial comments.

      Reviewer #1 (Recommendations for the authors):

      More specific comments to the authors:

      (1( Line 300, Paragraph on bioinformatic analysis of molybdopterin operon : As written, it is not clear whether this operon is crucial for pterin cofactor synthesis or only some genes are involved. And what is the contribution of moeA?

      Based on the bioinformatic analysis done in Zomer et al., 2024, we know the score of which genes of the molybdopterin cofactor synthesis operon may be more relevant to the display of SC, in addition to moeA. We chose moeA to KO as it had the highest score, being careful to delete the coding sequence and not any upstream promoter. The other genes in the predicted operon are moaE, moaC2, and moaA. Then in the proteomic analysis (L435-442), we analysed how the encoded proteins from this operon were upregulated (MoaA, MoaC2, and MobA), indicating also the unaltered proteins (MoeZ and MoaE) and the undetected proteins (MoaD and SumT). Nevertheless, the operon is crucial for pterin cofactor synthesis because it contains all the genes involved in the pathway, and moeA encoded the enzyme for the last reaction of the pathway, being the the molecule produced in the mutated pathway the adenylated molybdopterin (MPT-AMP) instead of molybdenum cofactor (MoCo).

      (2) Paragraph line 342 on moeA mutant phenotyping :

      Is the reduction in colony spreading caused by a defect in single-cell gliding motility or is the cause more complex? This can be quantified.

      We believe the cause is more complex. As mentioned above, for example, in (L615-617) we discuss the downregulation of GldL (which is known to be involved Flavobacterial gliding motility [Shrivastava et al., 2013]) in the moeA KO as a possible explanation for the reduced colony spreading of this mutant. This cannot be explained simply by spreading, but must (from the optical analysis) indicate changes in cell organisation/dimensions.

      (3) During the description of the moeA mutant phenotype (associated with Figures 2 and 4) and throughout the article, the optical properties are « functions » of colony spreading and moeA-dependent metabolism. However it is not quite clear if these two effects are independent or if one may be a consequence of the other.

      As noted above, colony spreading alone does not explain the blue-shift in SC observed. Given the function of MoeA (molybdate insertion into MPT-AMP [adenylated molybdopterin], MoMPT [molybdenum-molybdopterin] formation) for the synthesis of MoCo (molybdenum cofactor), the primary effect seems to be on metabolism but as we are dealing with an influential enzymatic cofactor a number of secondary effects are likely, and indeed the proteomics supports this. It is likely that the effect on spreading is secondary as seen with the downregulation of GldL (see above), but we cannot be sure.

      (4) Paragraph starting line 381 and Figure 5 on gliding motility:

      Gliding motility has to be tested at the level of single cells, allowing a more thorough characterization of the spreading defects. In addition, since gliding is entangled with Type IX-dependent secretion in Flavobacteria, the authors should test if Type IXdependent was perturbed in the absence of moeA.

      Based on the intracellular and extracellular proteomic analyses, the regulated T9SS proteins in the absence of moeA are the downregulation of GldL and SprT, and the upregulation of PorU. It shows the log2 FC (moeA/WT) of each these extracellular proteins:

      Author response table 1.

      <-1: downregulated in moeA KO, -1<X<1: no significant regulation, >1: upregulated in moeA KO, -: not detected

      (5) L401: In my opinion, the section "Quantification of the optical responses of IR1 WT and ΔmoeA colonies" should be moved up, before the characterization of motility.

      We have done this, as suggested. The section was moved from L401-423 to L388-411.

      (6) L475: Proteome comparison: « Of the total known proteins in IR1, 27.5% (1,504 proteins) extracellular proteins were identified » Are some of these proteins also found in the cell fraction? Wouldn't it be more accurate to write that « 1504 proteins were found in the extracellular fraction"?

      We have done this, as suggested.

      “Of the total known proteins in IR1, 27.5% (1,504 proteins) proteins were detected in the extracellular fraction, 60.4% (909) were statistically significant (p<0.01), with 20.5% (186) considered downregulated, and 20% (182) upregulated in ΔmoeA (Figure 7B).” [L484-486]

      How can the authors exclude contamination of the extracellular fraction? This could easily explain the number of proteins lacking secretion signals: "29.6% (55) were likely secreted through a non-classical way, lacking typical secretion sequence motifs in their N-terminus."

      Based on the results from SecretomeP and SignalP, we excluded contamination, reducing the significant downregulated proteins from 186 (L476) to 69 (L486), and the upregulated ones from 182 (L477) to 111 (L500).

      (7) L490: if the protein misannotated flagellin is highly downregulated, why not push the analysis a bit further and ask what true function may be perturbed? In addition, it should not be classified as a motility protein in Table S6 and considered as a motility protein in the article.

      We reconsidered the information given by this and decided to remove it because after checking the homology of the polypeptide by Blast searching, we feel it is probably due to a missannotation.

      As is, the whole proteomic section is not that useful. Too many functions are evoked and the reader is not directed toward any particular conclusion. The most convincing hits from the proteomic analysis should be confirmed using another method. Transcriptional regulation could be easily probed by RT-qPCR. Or, since genetics is possible, proteins could be tagged and levels compared by western blot maybe? Do knock-out of the encoding genes generate any phenotype on SC? This would bring weight to the proteomic analysis.

      We have revised the proteomics section and removed functions that are not directly relevant to our conclusion.

      We feel the most important observation suggested by proteomics was the possible link between moeA and starch metabolism, because the metabolism of complex polysaccharides is important in the Flavobacteriia and known to be linked to SC (van de Kerkhof et al., 2022). It was not possible to follow up every pathway suggested by the proteomics, but the study is appropriately performed with the correct statistics.

      (8) Figure 9 : Does the absence of moeA affect the spreading of ASWS? Were colony sizes similar during the starch degradation assay? How can the authors rule out the idea that starch degradation is impacted by the difference in spreading rather than an independent function of moeA in starch metabolism? Slower spreading could lead to the accumulation of amylases, hence stronger activity. Why does starch degradation only accumulate at the center of the colony in the WT case?

      The colonies of the WT and moeA had similar size during the starch degradation assay (2 days). However, after day 3, only WT colonies kept expanding on diameter.

      Starch degradation is logically in the centre of the colony as it is where the greatest concentration of cells exists, secreting degradative enzymes, for the longest time. Presumably starch degradation at the colony edge is not yet seen as the action of extracellular enzymes is low and has not had time to degrade the starch to the point that there is no iodine staining.

      “In contrast to other media where ΔmoeA colony expansion was less than WT, the ΔmoeA showed similar colony spreading and stronger starch degradation, supporting a role of moeA in complex polysaccharides metabolism.” [L562-565]

      (9) Finally, I am not quite sure what the authors mean by « a role of moeA in complex polysaccharides metabolism ». Are they referring to enzymes secreted in the medium to degrade starch? or to the incorporation and use of starch degradation products?

      We meant that the deletion of moeA showed an increase of extracellular starch degradation as seen in the iodine assay (Figure 9), as well as the upregulation of three different PUL operons (Figure 8).

      Reviewer #2 (Recommendations for the authors):

      The paper in general is well written with proper experimentation. However, here are a few recommendations for improving the writing and presentation, including minor corrections to the text and figures.

      Thank you.

      (1) It would be helpful for the readers if you could expand on "some metabolic pathways" in line 71. Please provide examples of metabolic pathways that are linked to SC.

      We have done this.

      “A recent bioinformatic study has shown the possible link of some metabolic pathways, such as carbohydrate, pterin, and acetolactate metabolism, to bacterial SC (Zomer et al., 2024).”[L70-72]

      (2) "Line 79 : a bioinformatics analysis", please mention what kind of bioinformatics analysis was done and by whom to provide clarity for the readers: Either mention bio info analysis or give more details on what kind of bio info analysis and study done by whom"

      We have clarified this, as suggested.

      “A large-scale, genomic-based analysis of 117 bacteria strains (87 with SC and 30 without) identified genes potentially involved in SC by comparing gene presence/absence, providing a SC-score (Zomer et al., 2024). By this method, pterin pathway genes were strongly predicted to be involved in SC.” [L80-83]

      (3) Please correct "Bacteria strains used in this study" to "bacterial" strains in Line 122.

      We have done so.

      (4) Please indicate in "Lines 394-396" that there were no vortex patterns observed in the moeA mutant.

      We have done so.

      “In contrast, ΔmoeA exhibited limited motility, with a more tightly packed cell organization and a fine, slow-moving layer at the edge (Figure 6, blue arrows), and did not show a ‘vortex’ pattern. This suggests that moeA deletion significantly impairs cell motility and colony expansion.” [428-L431]

      (5) In Figure 4 it looks like with a different carbon source (ASWB with agar and Fucoidan (ASWBF)) the moeA mutant and wild type exchanges its phenotype compared to ASWBKC. Could you explain why this happens in the discussion by highlighting the differences between fucose and Kappa-Carrageenan or confirm if there are any differences in the carbohydrate utilization between the wild type and moeA mutant using biolog assays?

      We have explained the differences. Biolog would not be appropriate as we are looking for metabolic processes of bacteria on surfaces (agar) and this is not necessarily appropriate to biolog, which we understand uses liquid cultivation in microplates.

      “On different polysaccharide media, the ΔmoeA strain showed varied SC and colony expansion patterns: green/blue SC and low colony expansion on agar, intense blue SC and low colony expansion on kappa-carrageenan, dull green SC and low colony expansion on fucoidan, and blue/green SC with higher colony expansion on starch. Interestingly, the color phenotype of the WT and ΔmoeA exchanged their phenotype on kappa-carrageenan (a simple linear sulfated polysaccharide of D-galactopyranose) and fucoidan (a complex sulfated polysaccharide of fucose and other sugars as galactose, xylose, arabinose and rhamnose), showing the importance of the polysaccharide metabolism in SC. While reduced motility has been associated with dull or absent SC, and reduced polysaccharide metabolism (Kientz et al., 2012a; Johansen et al., 2018), ΔmoeA showed reduced motility, but an intense blue SC, and high polysaccharide metabolism. Based on these results, we established a link among polysaccharide metabolism, MoCo biosynthesis, and SC, showing that intense SC is not strictly dependent on motility.” [L636-648]

      (6) In the discussion "Line 632" it is unclear what loss is being limited, and it would help strengthen your discussion if you could add references for lines: 633-636. There are a lot of hypotheses in lines 637-642, it would help the readers if you could clearly mention that these are hypotheses and will need experimental evidence or provide appropriate evidence to support these claims.

      We have done this.

      “Ecologically, we hypothesize that dense, highly structured bacterial colonies, such as necessary for the SC phenotype, can enhance the uptake of metabolic degradation products from complex polysaccharides. These large macromolecules are often partially hydrolyzed extracellularly because they are too large to pass through bacterial cell membranes. For example, marine Vibrionaceae strains that produce lower levels of extracellular alginate lyases tend to aggregate more strongly, potentially facilitating localized degradation and uptake of polysaccharides (D’Souza et al., 2023). Additionally, certain marine bacteria employ a "selfish" mechanism to internalize large polysaccharide fragments into their periplasmic space, minimizing loss to the environment and enhancing substrate utilization (Reintjes et al., 2017). Bacteria secrete enzymes into the surrounding environment to break these polysaccharides down into more easily absorbable monosaccharides or oligosaccharides. This mechanism suggests that the colony structure could create a physical barrier that keeps these products concentrated and near the cells, allowing the colony to efficiently access and utilize these products, preventing the leakage into the surrounding environment. While SC may also yield other ecological benefits associated with growth in biofilms, the highly structured colonies that characterize SC may be more resistant against invasion by competitor species scavenging for degradation products, than an unstructured biofilm. This model is consistent with the observation that SC is associated with polysaccharide metabolism genes, and with the recent observation that SC is mainly localized on surface and interface environments such as airwater interfaces, tidal flats, and marine particles (Zomer et al., 2024).” [L650-670]

      (7) It would help the readers if you could expand on how polysaccharide metabolism is linked to motility in Line 610.

      As indicated previously, this is known and we will clarify.

      “Polysaccharide metabolism in IR1 has been linked to changes in colony color and motility through the study of fucoidan metabolism (van de Kerkhof et al., 2022).” [L622-623]

    1. Author response:

      The following is the authors’ response to the original reviews.

      Reviewer 1:

      In the article titled "Polyphosphate discriminates protein conformational ensembles more efficiently than DNA promoting diverse assembly and maturation behaviors," Goyal and colleagues investigate the role of negatively charged biopolymers, i.e., polyphosphate (polyP) and DNA, play in phase separation of cytidine repressor (CytR) and fructose repressor (FruR). The authors find that both negative polymers drive the formation of metastable protein/polymer condensates. However, polyPdriven condensates form more gel- or solid-like structures over time while DNA-driven condensates tend to dissipate over time. The authors link this disparate condensate behavior to polyP-induced structures within the enzymes. Specifically, they observe the formation of polyproline II-like structures within two tested enzyme variants in the presence of polyP. Together their results provide a unique insight into the physical and structural mechanism by which two unique negatively charged polymers can induce distinct phase transitions with the same protein. This study will be a welcomed addition to the condensate field and provide new molecular insights into how binding partner-induced structural changes within a given protein can affect the mesoscale behavior of condensates. The concerns outlined below are meant to strengthen the manuscript.

      Recommendation:

      We value the reviewer’s positive comments and appreciate time taken to provide detailed feedback that has certainly helped improve our manuscript.

      Major Concerns:

      (1) The biggest concern in this manuscript lies with experiments comparing polyP45, which has a net negative charge of -47, and double-stranded DNA of 45 base pairs (as stated in the methods), which will have a net negative charge of -90. Given the dependence of phase separation and phase transitions on not only net charge but charge density, this is an important factor to consider when comparing the effect of these molecules. It is unclear how or if the authors considered these factors in the design of their experiments. Because of the factor of 2 difference in net charge over the same number of polymer chain components, i.e. a chain of 45 pi vs. a chain of 45 double-stranded base pairs, it is unclear if the results from polyP vs. DNA are directly comparable. One solution would be to repeat all DNA experiments using single-stranded DNA so that the net charge is similar to polyP over the same chain length. Another possibility would be to repeat DNA experiments using a doublestranded DNA of 23 base pairs. This would allow for a nearly equal net charge (-46 vs. -47 for polyP), but the charge density would still be 2X polyP. As it stands now, the perceived differences in DNA vs. polyP behavior may be an artifact arising from the difference in net charge and charge density between DNA and polyP.

      To address the reviewer’s concerns regarding charge density differences between polyP and DNA, we conducted an experiment using a higher DNA concentration (11.24 µM) to obtain charge equivalence between the two experiments (i.e. the total concentration of charges). As shown in Figure S5, even at higher DNA concentration, the condensates undergo progressive dissolution over time. This observation indicates that the differential maturation of condensates, arising from distinct initial protein ensembles, are governed by the intrinsic properties of polyP. Charge density (i.e. the number of charges per unit volume of the polymer), on the other hand, is an intrinsic feature of the polymer which is naturally different between DNA and polyP. In fact, the primary result of our work is our observation that polyP can discern the starting ensembles more efficiently, likely through actively engaging and interacting with the ensemble while DNA appears to be a passive player. The differences are not an artifact as they arise from fundamental features of two natural anionic polymers found within cells. In other words, the outcomes could be very different if the concentration of one polymer dominates over the other (see the response below).

      (2) One outstanding question the authors do not address relates to how mixtures of CytR or FruR, DNA, and polyP behave. In the bacterial cytoplasm, these molecules are all in the same compartment (admittedly that compartment is not well mixed due to unique condensate-driven organization). Would the authors expect to see similar effects of polyP and DNA if they were in the same solution? Perhaps the authors could run a set of experiments where they vary the ratios of DNA and polyP to probe how increased levels of "stress", i.e. increased levels of polyP vs. DNA, alter the formation and behavior of enzymatic condensates.

      Following this comment, we investigated the phase separation behavior of CytR WT in the presence of different charge ratios of polyP-DNA mixtures. As seen in Author response image 1,panel A below, the outcomes are highly sensitive to the starting concentrations: at higher charge concentration of polyP (left panel), the OD and ThT fluorescence intensity is high at lower time points, both decrease and increase again. Fluorescence microscopy images (panel B) reveal similar trends, but the more fascinating outcome are the FRAP recovery profiles which recover extremely fast and fully at zero time point (panel C) despite aggregation-like tendencies observed in ThT fluorescence assays. However, at longer time points (20 and 40 mins) the FRAP recovery is significantly weaker but recovers to ~65% at 1 hour (panel C). At high relative polyP concentrations with respect to DNA, droplets are formed first which then transition into aggregates (liquid-to-solid transition; middle image in panel A). At relatively high DNA concentrations it appears that both droplets and aggregates co-exist as both OD and ThT fluorescence are moderately high. Given these complex behaviors, we have not included the same in the current manuscript as we still do not fully understand the origins of these differences. In fact, we are planning to extend this study by exploring the combinations in detail to understand the relative roles played by the two polymers in ternary mixtures.

      Author response image 1.

      (3) In Figure 1H, the recovery trace shows the fractional recovery of DM to near WT levels. It is clear from the images that recovery of the bleached region occurs, but the overall fluorescence intensity of DM is much lower than WT, even when accounting for the difference in starting condensate sizes in the Pre-Bleach images. Shouldn't this qualitative difference in total fluorescence be reflected in the quantitative trace?

      In Figure 2H, as the reviewer rightly points out, there is a clear difference in the absolute fluorescence intensity between WT and DM condensates. We would like to clarify that the recovery traces shown in Figure 2I were normalized to the pre-bleach intensity of each individual condensate to reflect fractional recovery. This normalization is intended to highlight the relative mobility of the protein within each condensate, but it does not capture the difference in total fluorescence intensity between WT and DM.

      (4) A description of the molten-globular variant Y19A FruR should be included in the main text where the variant is introduced. There is currently no additional description of the molten-globular variant in the Supplement as suggested by the manuscript.

      Figure 6A depicts the three-dimensional structure of FruR WT, with tyrosine residues Y19 and Y28, shown in red, forming stacking interactions. In the Y19A mutant, the loss of these interactions results in little changes in secondary structure (as shown in Figure 6E) but disrupts the protein’s tertiary structure, resulting in a molten globular state. The FruR work is now published in JPCB and can be found at https://doi.org/10.1021/acs.jpcb.4c03895, and is also appropriately cited in the revised version (reference 53).

      (5) Throughout the manuscript, the authors discuss polyP and DNA being able (or unable) to "distinguish" between different variants of CytR and FruR. This is confusing and suggests that DNA or polyP can choose to bind one form over another. The authors should re-work the language in this section to better reflect their direct observations for the behavior of protein in CD experiments and condensate behavior in imaging and turbidity experiments.

      We have now modified the text where necessary. The experiments were not done in the presence of both polyP and DNA, but in isolation (protein + polyP or protein + DNA). Hence, our aim is to convey that polyP is the polymer that leads to variable outcomes because of its ability to ‘interact’ differently with the different starting ensembles.

      Minor Concerns:

      (1) For all Figures, please include the number of measurements, i.e., N = ...

      We have updated all figure legends to include the number of measurements, indicated as N = ..., as suggested.

      (2) For all Figures, please place panel labels, i.e., A, B, C, etc., in the same respective location for each panel. As currently mapped out, it is difficult to easily determine which data are associated with each panel because the IDs are in various locations.

      Due to variations in data presentation and spacing within individual plots, it was challenging to place all labels in exactly the same position without obscuring important details. We have therefore maintained the labels as they were before.

      (3) In the introduction, it would be helpful for the authors to specify exactly what is meant by chaperone. Given the context, it seems that the authors refer to the chaperone activity as one that prevents aggregation. Is this correct?

      We refer to chaperone activity specifically as the ability to prevent aggregation of proteins. We have now clarified this definition in the Introduction section of the revised manuscript.

      (4) The results for experiments shown in Figure 3 need additional setup in the text. Were these measurements taken immediately after mixing WT, DM, or P33A with polyP? If so, why do condensates immediately appear and then dissipate before ThT-detected aggregates begin forming? Or were condensates allowed to form and then transferred to a different buffer, after which measurements were taken? Without a brief description of the experimental setup, interpreting the results is difficult.

      The condensates appear immediately after adding polyP to protein solutions, indicating that the condensate phase is kinetically accessible on mixing polyP with DM or the WT. As illustrated in Figure 3A and 3B, for WT protein, the condensates undergo liquid to solid transition over the time as this likely is the most thermodynamically stable phase. Effectively, this work is to convey that it is important to look at time-dependence of even droplets when formed as they may not be the most stable phase.

      (5) Please include images of P33A over the time course of the experiment in Figure 3B.

      We have included the representative images of P33A in presence of polyP over the time in Figure 3B in the revised manuscript.

      (6) In Figures 3D, E, G, and H, please plot each measurement separately with mean and standard deviation to enable the reader to see each data point.

      We have now revised Figures 3D, E, G, and H to show individual data points along with the mean and standard deviation.

      (7) In the top paragraph on page 12, "fast-moving molecules" can be replaced with "dynamic molecules", as this offers a better description of the FRAP data.

      We have incorporated the suggested changes.

      (8) In the "Structural changes within the condensates spans over three hours" results section on page 15, the conclusion reads "In summary, we find that both the WT and the DM 'unfold' on forming condensates with polyP..." The way this is written suggests that WT and DM behave in a similar manner. Given the CD data, however, it seems that by 4 hours, DM forms alpha helices while the WT does not. This suggests that while each unfolds, the conformation at 4 hours is different. The summary should reflect these differences.

      We fully agree with the reviewer on this. The summary is now modified to include the fact the DM forms alpha helices at 4 hours while the WT does not.

      (9) At the end of the first paragraph of the results section "DNA does not discriminate the conformational ensembles" the authors should refer to Figure 2G, where they show the altered morphology of polP-P33A condensates.

      We have now included the reference to Figure 2G.

      (10) The authors refer to droplets "solubilizing" throughout the manuscript. It seems that dissolve is a better term to use. Solubilize is better associated with individual biomolecules while dissolve is better associated with condensate behavior.

      We thank the reviewer for pointing this out. We have revised the manuscript to replace “solubilize” with “dissolve”.

      (11) In Figures 5L and 5N, please change the Y-axis scale so that each curve is visible on the plot.

      We have adjusted the Y-axis scale in Figures 5L, 5M, and 5N to ensure that each curve is clearly visible and for easier comparison among the variants.

      (12) The authors should show an image of FruR WT and Y19A with DNA for a direct comparison with experiments in which FruR and polyP were used. The addition of turbidity measurements of samples shown in Figure 6D will offer another direct comparison. As written, there is no way for the author to directly compare the effects of polyP and DNA on FruR phase transitions.

      As suggested, we have now included representative images of FruR WT and Y19A with DNA (Figure 6K and 6L) to enable a direct comparison with the FruR–polyP experiments. Also, we have already shown turbidity measurements in Figure 6B and 6C corresponding to the samples shown in Figure 6D.

      Reviewer 2:

      In this study, Goyal et al demonstrate that the assembly of proteins with polyphosphate into either condensates or aggregates can reveal information on the initial protein ensemble. They show that, unlike DNA, polyphosphate is able to effectively discriminate against initial protein ensembles with different conformational heterogeneity, structure, and compactness. The authors further show that the protein native ensemble is vital on whether polyphosphate induces phase separation or aggregation, whereas DNA induces a similar outcome regardless of the initial protein ensemble. This work provides a way to improve our mechanistic understanding of how conformational transitions of proteins may regulate or drive LLPS condensate and aggregate assemblies within biological systems.

      We thank the reviewer for the favorable comments on the manuscript.

      Major Concerns:

      (1) The authors are using bacterial proteins (CytR and FruR) and solely represent polyphosphates as polyP45 (a polyphosphate with 45 Pi units). However, in bacterial systems, polyphosphates can be significantly longer (in the order of 100s to 1000 Pi units). Additionally, the experiments were run at neutral pH (7.0), and though this is fairly appropriate for the cytoplasm, volutin granules (where polyphosphates often accumulate) are typically considered slightly acidic (pH 5.5-6.5). From a physiological perspective, understanding how pH and the length of polyphosphate influence the ability to induce condensates or aggregates could be of importance.

      We appreciate the reviewer’s insightful comments regarding the physiological relevance of polyphosphate length and pH. In our current study, we used polyP45 as it is easily available commercially and we conducted our experiments at pH 7 to mimic the general cytoplasm conditions. We agree that polyphosphates in bacterial cells can be significantly longer (hundreds to thousands of Pi units) and conducting experiments at slightly more acidic environment would be physiologically relevant. We plan to use longer polyP from Regene Tiss Inc. and acidic pH to explore how polyphosphate-induced phase separation of CytR vary with pH as a part of a future study. One could imagine doing all the experiments listed in the manuscript at different pH conditions for the different variants, but this could not be a part of the current work which has a specific focus on the differences in maturation properties depending on the nature of starting ensemble. However, the pKa values of the internal hydroxyl groups is ~2.2 (DOI:10.2147/IJN.S389819) indicating that the polyP carries near identical charges in the pH range between 4-7, and hence we expect little change in the charged status of polyP. On the other hand, the protonation states of charged amino acids within CytR could vary with pH, thus influencing its assembly properties.

      (2) In the study, the longest metastable condensate induced by polyphosphate lasted approximately 3 hours before resolubilizing. It would be nice if the authors were able to generate a longer-lived condensate phase that would enable further mechanistic studies (e.g., NMR).

      We agree that generating longer-lived condensates would be highly valuable for mechanistic studies. However, the formation and stability of condensates is an intrinsic property of protein, and optimizing different conditions for a longer-lived condensate phase is beyond the scope of the current study. It is possible that the condensates are long-lived with longer polyP, but it is not clear if this would indeed be the case. We would also like to state here that while it is common to report on the liquid-to-solid transition in condensates, the intrinsic metastability of droplets (when there is no aggregation) is rarely reported. One possibility is to mutationally introduce cysteine residues and induce the formation of disulphide bridges (as done in a recent work, doi: 10.1021/jacs.4c09557) that make the condensate highly stable kinetically; however, this would also complicate the interpretation as the mechanism of condensate formation might be very different. We have therefore reported our results as an observation arising from differences in the nature of the poly-anionic polymers.

      (3) The authors showed that CytR DM (fully folded), CytR WT (minor state folded), and CytR P33A (highly disordered) with polyphosphates lead to longer-lived condensates that resolubilize, shorterlived condensates that aggregate, and immediate aggregating, respectively. Whereas FruR (folded) and FruR Y19A (molten globular) with polyphosphate induce spontaneous aggregation and short-lived condensates, respectively. I would expect FruR to be more similar to CytR DM and FruR Y19A more similar to CytR WT in terms of structure and conformational dynamics and plasticity, yet they have opposing results. This raises a bit of concern. Meaning, that though polyphosphate discriminates between the different ensembles, is it actually possible to obtain information on the initial ensemble composition?

      In the current study, we show that CytR WT (less structured) and FruR Y19A (molten globule) form short-lived condensates that aggregate. We agree with the reviewer that while CytR DM (fully folded) forms condensates that dissolve over time, FruR WT (fully folded) variant forms aggregates immediately upon polyP addition. The observations show that polyP can discriminate between different protein conformations, in contrast to DNA, which does not show such selectivity. However, we acknowledge that while polyP-induced behavior reflects aspects of protein ensemble properties, it does not provide direct insight into the nature of the initial conformational ensemble.

      (4) In the case of FruR with polyphosphate, no CD for the secondary structure analysis was provided as it was for CytR. It would be useful to see if the polyphosphate-induced structural changes observed for CytR hold true for FruR as well.

      We thank the reviewer for the suggestion. In response, we have performed far-UV CD experiments on FruR variants in the presence of polyP. Similar to the CytR WT, FruR WT shows unfolding upon polyP addition. A similar outcome is noted for the Y19A variant though there is significant residual helix content in the condensate unlike the WT. The CD spectra of FruR variants have been added to Figure 6.

      Minor Concerns/Suggestions:

      Under conclusion, third paragraph, first sentence. This sentence reads, "Our observations thus establish that polyP efficiently discriminates the conformational features of proteins than DNA, contributing to the diverse outcomes."

      We thank the reviewer for pointing this out. The sentence has been revised for clarity. It now reads “Our observations establish that polyP is more sensitive to the conformational features of proteins than DNA, thereby contributing to the diverse outcomes.”

      One experimental suggestion. Seeing that protein dynamics and plasticity seem to play a role. For either CytR WT or DM, it would be interesting to see the influence of temperature. Altering the temperature is a good way to perturb the population distribution of conformation sub-states and to alter kinetics. It may be that at a lower temperature (maybe 5C) for the WT you reduce conformational dynamics and you obtain results more similar to that of the DM. Alternatively, heating the DM would be another option. Obviously, there are additional challenges that may arise with changing the temperature, but if it were to work I think it could add some value.

      We thank the reviewer for the thoughtful suggestion. Due to limitations in our current experimental setup (as the reviewer notes as ‘challenges’)- the confocal set up does not have a temperature controller - we will not be to perform temperature-controlled assays. However, the ‘structure’ of CytR variants do not vary much between 280 – 298 K, and this is one of the reasons for choosing three variants without altering any other thermodynamic property. If temperature were varied, the dynamics of polyP would also change and hence the true molecule origins of any differences we might observe will be confounded by the dynamic effects on polyP as well. In this work, we have eliminated any dynamic differences in polyP by performing the experiments at a fixed temperature.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      One enduring mystery involving the evolution of genomes is the remarkable variation they exhibit with respect to size. Much of that variation is due to differences in the number of transposable elements, which often (but not always) correlates with the overall quantity of DNA. Amplification of TEs is nearly always either selectively neutral or negative with respect to host fitness. Given that larger effective population sizes are more efficient at removing these mutations, it has been hypothesized that TE content, and thus overall genome size, may be a function of effective population size. The authors of this manuscript test this hypothesis by using a uniform approach to analysis of several hundred animal genomes, using the ratio of synonymous to nonsynonymous mutations in coding sequence as a measure of the overall strength of purifying selection, which serves as a proxy for effective population size over time. The data convincingly demonstrates that it is unlikely that effective population size has a strong effect on TE content and, by extension, overall genome size (except for birds).

      Strengths:

      Although this ground has been covered before in many other papers, the strength of this analysis is that it is comprehensive and treats all the genomes with the same pipeline, making comparisons more convincing. Although this is a negative result, it is important because it is relatively comprehensive and indicates that there will be no simple, global hypothesis that can explain the observed variation.

      Weaknesses:

      In several places, I think the authors slip between assertions of correlation and assertions of cause-effect relationships not established in the results.

      Several times in the previous version of the manuscript we used the expression “effect of dN/dS on…” which might suggest a causal relationship. We have rephrased these expressions and highlighted the changes in the main text, so that correlation is not mistaken with causation (see also responses to detailed comments below).

      In other places, the arguments end up feeling circular, based, I think, on those inferred causal relationships. It was also puzzling why plants (which show vast differences in DNA content) were ignored altogether.

      The analysis focuses on metazoans for two reasons: one practical and one fundamental.

      The practical reason is computational. Our analysis included TE annotation, phylogenetic estimation and dN/dS estimation, which would have been very difficult with the hundreds, if not thousands, of plant genomes available. If we had included plants, it would have been natural to include fungi as well, to have a complete set of multicellular eukaryotic genomes, adding to the computational burden. The second fundamental reason is that plants show important genome size differences due to more frequent whole genome duplications (polyploidization) than in animals. It is therefore possible that the effect of selection on genome size is different in these two groups, which would have led us to treat them separately, decreasing the interest of this comparison. For these reasons we chose to focus on animals that still provide very wide ranges of genome size and population size well suited to test the impact of genetic drift on the genomic TE content.

      Reviewer #2 (Public review):

      Summary:

      The Mutational Hazard Hypothesis (MHH) is a very influential hypothesis in explaining the origins of genomic and other complexity that seem to entail the fixation of costly elements. Despite its influence, very few tests of the hypothesis have been offered, and most of these come with important caveats. This lack of empirical tests largely reflects the challenges of estimating crucial parameters.

      The authors test the central contention of the MHH, namely that genome size follows effective population size (Ne). They martial a lot of genomic and comparative data, test the viability of their surrogates for Ne and genome size, and use correct methods (phylogenetically corrected correlation) to test the hypothesis. Strikingly, they not only find that Ne is not THE major determinant of genome size, as is argued by MHH, but that there is not even a marginally significant effect. This is remarkable, making this an important paper.

      Strengths:

      The hypothesis tested is of great importance.

      The negative finding is of great importance for reevaluating the predictive power of the tested hypothesis.

      The test is straightforward and clear.

      The analysis is a technical tour-de-force, convincingly circumventing a number of challenges of mounting a true test of the hypothesis.

      Weaknesses:

      I note no particular strengths, but I believe the paper could be further strengthened in three major ways.

      (1) The authors should note that the hypothesis that they are testing is larger than the MHH.

      The MHH hypothesis says that (i) low-Ne species have more junk in their genomes and

      (ii) this is because junk tends to be costly because of increased mutation rate to nulls, relative to competing non/less-junky alleles.

      The current results reject not just the compound (i+ii) MHH hypothesis, but in fact any hypothesis that relies on i. This is notably a (much) more important rejection. Indeed, whereas MHH relies on particular constructions of increased mutation rates of varying plausibility, the more general hypothesis i includes any imaginable or proposed cost to the extra sequence (replication costs, background transcription, costs of transposition, ectopic expression of neighboring genes, recombination between homologous elements, misaligning during meiosis, reduced organismal function from nuclear expansion, the list goes on and on). For those who find the MHH dubious on its merits, focusing this paper on the MHH reduces its impact - the larger hypothesis that the small costs of extra sequence dictate the fates of different organisms' genomes is, in my opinion, a much more important and plausible hypothesis, and thus the current rejection is more important than the authors let on.

      The MHH is arguably the most structured and influential theoretical framework proposed to date based on the null assumption (i), therefore setting the paper up with the MHH is somehow inevitable. Because of this, we mostly discuss the assumption (ii) (the mutational aspect brought about by junk DNA) and the peculiarities of TE biology that can drive the genome away from the expectations of (i). We however agree that the hazard posed by extra DNA is not limited to the gain of function via the mutation process, but can be linked to many other molecular processes as mentioned above. Moreover, we also agree that our results can be interpreted within the general framework of the nearly-neutral theory. They demonstrate that mutations, whether increasing or decreasing genome size, have a distribution of fitness effects that falls outside the range necessary for selection in larger populations. In the revised manuscript, we made the concept of hazard more comprehensive and further stressed that this applies not only to TEs but any nearly-neutral mutation affecting non-coding DNA (lines 491-496): “Notably, these results not only reject the theory of extra non-coding DNA being costly for its point mutational risk, but also challenges the more general idea of its accumulation depending on other kinds of detrimental effects, such as increased replication, pervasive transcription, or ectopic recombination. Therefore, our results can be considered more general than a mere rejection of the MHH hypothesis, as they do not support any theory predicting that species with low Ne would accumulate more non-coding DNA.”

      (2) In addition to the authors' careful logical and mathematical description of their work, they should take more time to show the intuition that arises from their data. In particular, just by looking at Figure 1b one can see what is wrong with the non-phylogenetically-corrected correlations that MHH's supporters use. That figure shows that mammals, many of which have small Ne, have large genomes regardless of their Ne, which suggests that the coincidence of large genomes and frequently small Ne in this lineage is just that, a coincidence, not a causal relationship. Similarly, insects by and large have large Ne, regardless of their genome size. Insects, many of which have large genomes, have large Ne regardless of their genome size, again suggesting that the coincidence of this lineage of generally large Ne and smaller genomes is not causal. Given that these two lineages are abundant on earth in addition to being overrepresented among available genomes (and were even more overrepresented when the foundational MHH papers collected available genomes), it begins to emerge how one can easily end up with a spurious non-phylogenetically corrected correlation: grab a few insects, grab a few mammals, and you get a correlation. Notably, the same holds for lineages not included here but that are highly represented in our databases (and all the more so 20 years ago): yeasts related to S. cerevisiae (generally small genomes and large median Ne despite variation) and angiosperms (generally large genomes (compared to most eukaryotes) and small median Ne despite variation). Pointing these clear points out will help non-specialists to understand why the current analysis is not merely a they-said-them-said case, but offers an explanation for why the current authors' conclusions differ from the MHH's supporters and moreover explain what is wrong with the MHH's supporters' arguments.

      We thank the referee for this perspective. We agree that comparing dispersion of the points from the non-phylogenetically corrected correlation with the results of the phylogenetic contrasts intuitively emphasizes the importance of accounting for species relatedness. We added on to the discussion to stress the phylogenetic structure present in the data (lines 408-417): “It is important to note how not treating species traits as non-independent leads to artifactual results (Figure 2B-C). For instance, mammals have on average small population sizes and the largest genomes. Conversely, insects tend to have large Ne and overall small genomes. With a high sampling power and phylogenetic inertia being taken into account, our meta-analysis clearly points at a phylogenetic structure in the data: the main clades are each confined to separate genome size ranges regardless of their dN/dS variation. The other way around, variability in genome size can be observed in insects, irrespective of their dN/dS. Relying on non phylogenetically corrected models based on a limited number of species (such as that available at the time of the MHH proposal) can thus result in a spurious positive scaling between genome size and Ne proxies.”

      (3) A third way in which the paper is more important than the authors let on is in the striking degree of the failure of MHH here. MHH does not merely claim that Ne is one contributor to genome size among many; it claims that Ne is THE major contributor, which is a much, much stronger claim. That no evidence exists in the current data for even the small claim is a remarkable failure of the actual MHH hypothesis: the possibility is quite remote that Ne is THE major contributor but that one cannot even find a marginally significant correlation in a huge correlation analysis deriving from a lot of challenging bioinformatic work. Thus this is an extremely strong rejection of the MHH. The MHH is extremely influential and yet very challenging to test clearly. Frankly, the authors would be doing the field a disservice if they did not more strongly state the degree of importance of this finding.

      We respectfully disagree with the review that there is currently no evidence for an effect of Ne on genome size evolution. While it is accurate that our large dataset allows us to reject the universality of Ne as the major contributor to genome size variation, this does not exclude the possibility of such an effect in certain contexts. Notably, there are several pieces of evidence that find support for Ne to determine genome size variation and to entail nearly-neutral TE dynamics under certain circumstances, e.g. of particularly strongly contrasted Ne and moderate divergence times (Lefébure et al., 2017 Genome Res 27: 1016-1028; Mérel et al., 2021 Mol Biol Evol 38: 4252-4267; Mérel et al., 2024 biorXiv: 2024-01; Tollis and Boissinot, 2013 Genome Biol Evol 5: 1754-1768; Ruggiero et al., 2017 Front Genet 8: 44). The strength of such works is to analyze the short-term dynamics of TEs in response to N<sub>e</sub> within groups of species/populations, where the cost posed by extra DNA is likely to be similar. Indeed, the MHH predicts genome size to vary according to the combination of drift and mutation under the nearly-neutral theory of molecular evolution. Our work demonstrates that it is not true universally but does not exclude that it could exist locally. Moreover, defence mechanisms against TEs proliferation are often complex molecular machineries that might or might not evolve according to different constraints among clades. We have detailed these points in the discussion (lines 503-518).

      Reviewer #3 (Public review):

      Summary

      The Mutational Hazard Hypothesis (MHH) suggests that lineages with smaller effective population sizes should accumulate slightly deleterious transposable elements leading to larger genome sizes. Marino and colleagues tested the MHH using a set of 807 vertebrate, mollusc, and insect species. The authors mined repeats de novo and estimated dN/dS for each genome. Then, they used dN/dS and life history traits as reliable proxies for effective population size and tested for correlations between these proxies and repeat content while accounting for phylogenetic nonindependence. The results suggest that overall, lineages with lower effective population sizes do not exhibit increases in repeat content or genome size. This contrasts with expectations from the MHH. The authors speculate that changes in genome size may be driven by lineage-specific host-TE conflicts rather than effective population size.

      Strengths

      The general conclusions of this paper are supported by a powerful dataset of phylogenetically diverse species. The use of C-values rather than assembly size for many species (when available) helps mitigate the challenges associated with the underrepresentation of repetitive regions in short-read-based genome assemblies. As expected, genome size and repeat content are highly correlated across species. Nonetheless, the authors report divergent relationships between genome size and dN/dS and TE content and dN/dS in multiple clades: Insecta, Actinopteri, Aves, and Mammalia. These discrepancies are interesting but could reflect biases associated with the authors' methodology for repeat detection and quantification rather than the true biology.

      Weaknesses

      The authors used dnaPipeTE for repeat quantification. Although dnaPipeTE is a useful tool for estimating TE content when genome assemblies are not available, it exhibits several biases. One of these is that dnaPipeTE seems to consistently underestimate satellite content (compared to repeat masker on assembled genomes; see Goubert et al. 2015). Satellites comprise a significant portion of many animal genomes and are likely significant contributors to differences in genome size. This should have a stronger effect on results in species where satellites comprise a larger proportion of the genome relative to other repeats (e.g. Drosophila virilis, >40% of the genome (Flynn et al. 2020); Triatoma infestans, 25% of the genome (Pita et al. 2017) and many others). For example, the authors report that only 0.46% of the Triatoma infestans genome is "other repeats" (which include simple repeats and satellites). This contrasts with previous reports of {greater than or equal to}25% satellite content in Triatoma infestans (Pita et al. 2017). Similarly, this study's results for "other" repeat content appear to be consistently lower for Drosophila species relative to previous reports (e.g. de Lima & Ruiz-Ruano 2022). The most extreme case of this is for Drosophila albomicans where the authors report 0.06% "other" repeat content when previous reports have suggested that 18%->38% of the genome is composed of satellites (de Lima & Ruiz-Ruano 2022). It is conceivable that occasional drastic underestimates or overestimates for repeat content in some species could have a large effect on coevol results, but a minimal effect on more general trends (e.g. the overall relationship between repeat content and genome size).

      There are indeed some discrepancies between our estimates of low complexity repeats and those from the literature due to the approach used. Hence, occasional underestimates or overestimates of repeat content are possible. As noted, the contribution of “Other” repeats to the overall repeat content is generally very low, meaning an underestimation bias. We thank the reviewer for providing this interesting review.

      We emphasized these points in the discussion of our revised manuscript (lines 358-376): “While the remarkable conservation of avian genome sizes has prompted interpretations involving further mechanisms (see discussion below), dnaPipeTE is known to generally underestimate satellite content (Goubert et al. 2015). This bias is more relevant for those species that exhibit large fractions of satellites compared to TEs in their repeatome. For instance, the portions of simple and low complexity repeats estimated with dnaPipeTE are consistently smaller than those reported in previous analyses based on assembly annotation for some species, such as Triatoma infestans (0.46% vs 25%; 7 Mbp vs 400 Mbp), Drosophila eugracilis (1.28% vs 10.89%; 2 Mbp vs 25 Mbp), Drosophila albomicans (0.06% vs 18 to 38%; 0.12 Mbp vs 39 to 85 Mbp) and some other Drosophila species (Pita et al. 2017; de Lima and Ruiz-Luano 2022; Supplemental Table S2). Although the accuracy of Coevol analyses might occasionally be affected by such underestimations, the effect is likely minimal on the general trends. Inability to detect ancient TE copies is another relevant bias of dnaPipeTE. However, the strong correlation between repeat content and genome size and the consistency of dnaPipeTE and earlGrey results, even in large genomes such as that of Aedes albopictus, indicate that dnaPipeTE method is pertinent for our large-scale analysis. Furthermore, such an approach is especially fitting for the examination of recent TEs, as this specific analysis is not biased by very repetitive new TE families that are problematic to assemble.”

      Not being able to correctly estimate the quantity of satellites might pose a problem for quantifying the total content of junk DNA. However, the overall repeat content mostly composed of TEs correlates very well with genome size, both in the overall dataset and within clades (with the notable exception of birds) so we are confident that this limitation is not the explanation of our negative results. Moreover, while satellite information might be missing, this is not problematic to test our hypothesis, as we focus on TEs, whose proliferation mechanism differs significantly from that of tandem repeats and largely account for genome size variation.

      Another bias of dnaPipeTE is that it does not detect ancient TEs as well as more recently active TEs (Goubert et al., 2015 Genome Biol Evol 7: 1192-1205). Thus, the repeat content used for PIC and coevolve analyses here is inherently biased toward more recently inserted TEs. This bias could significantly impact the inference of long-term evolutionary trends.

      Indeed, dnaPipeTE is not good at detecting old TE copies due to the read-based approach, biasing the outcome towards new elements. We agree that TE content can be underestimated, especially in those genomes that tend to accumulate TEs rather than getting rid of them. However, the sum of old TEs and recent TEs is extremely well correlated to genome size (Pearson’s correlation: r = 0.87, p-value < 2.2e-16; PIC: slope = 0.22, adj-R<sup>2</sup> = 0.42, p-value < 2.2e-16). Our main result therefore does not rely on an accurate estimation of old TEs. In contrast, we hypothesized that recent TEs could be interesting because selection could be more likely to act on TEs insertion and dynamics rather than on non-coding DNA as a whole. Our results demonstrate that this is not the case. It should be noted that in spite of its limits towards old TEs, dnaPipeTE is well-suited for this analysis as it is not biased by highly repetitive new TE families that are challenging to assemble. In the revised manuscript, we now emphasize the limitations of dnaPipeTE and discuss the consequences on our results. See lines 359-374 (reported above) and lines 449-455: “On the other hand, it is conceivable the avian TE diversity to be underappreciated due to the limits of sequencing technologies used so far in resolving complex repeat-rich regions. For instance, employment of long-reads technologies allowed to reveal more extended repeated regions that were previously ignored with short read assemblies (Kapusta and Suh 2017; Benham et al. 2024). Besides, quite large fractions might indeed be satellite sequences constituting relevant fractions of the genome that are challenging to identify with reference- or read-based methods (Edwards et al. 2025).”

      Finally, in a preliminary work on the dipteran species, we showed that the TE content estimated with dnaPipeTE is generally similar to that estimated from the assembly with earlGrey (Baril et al., 2024 Mol Biol Evol 38: msae068) across a good range of genome sizes going from drosophilid-like to mosquito-like (TE genomic percentage: Pearson’s r = 0.88, p-value = 1.951e-10; TE base pairs: Pearson’s r = 0.90, p-value = 3.573e-11; see also the corrected Supplementary Figure S2 and new Supplementary Figure S3). While TEs for these species are probably dominated by recent to moderately recent TEs, Ae. albopictus is an outlier for its genome size and the estimations with the two methods are largely consistent. However, the computation time required to estimate TE content using EarlGrey was significantly longer, with a ~300% increase in computation time, making it a very costly option (a similar issue applicable to other assembly-based annotation pipelines). Given the rationale presented above, we decided to use dnaPipeTE instead of EarlGrey.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      Since I am not an expert in the field, some of these comments may simply reflect a lack of understanding on my part. However, in those cases, I hope they can help the authors clarify important points. I did have a bunch of comments concerning the complexity of the relationship between TEs and their hosts that would likely affect TE content, but I ended up deleting most of them because they were covered in the discussion. However, I do think that in setting up the paper, particularly given the results, it might have been useful to introduce those issues in the introduction. That is to say, treating TEs as a generic mutagen that will fit into a relatively simple model is unlikely to be correct. What will ultimately be more interesting are the particulars of the ways that the relationships between TEs and their host evolve over time. Finally, given the huge variation in plant genes with respect to genome size and TE content, along with really interesting variation in deletion rates, I'm surprised that they were not included. I get that you have to draw a line somewhere, and this work builds on a bunch of other work in animals, but it seems like a missed opportunity.

      We chose to restrict the introduction to the rationale behind the MHH as it is the starting point and focus of the manuscript. Because the aspects of the complexity of TE-host relationships are only covered in a speculative way, we limited them to the discussion but it is true that introducing them at the very beginning gives a more comprehensive overview. The introduction now includes a few sentences about lineage-specific selective effect of TEs and TE-host evolution (lines 83-86): “On top of that, an alternative TE-host-oriented perspective is that the accumulation of TEs in particular depends on their type of activity and dynamics, as well as on the lineage-specific silencing mechanisms evolved by host genomes (Ågren and Wright 2011).”

      Page 4. "The MHH is highly popular..." Evidence for this? It is fine as is, but it could also be seen as a straw man argument. Perhaps make clear this is an opinion of the authors?

      That MHH is popular and well-known is more a fact than an opinion: the original paper by Lynch and Conery (2003) and “The origins of genome architecture” by Lynch (2007) have respectively 1872 and 1901 citations to the present date (04/03/2025). Besides, the MHH is often invoked in highly cited reviews about TEs, e.g. Bourque et al., 2018 Genome Biol 19:1-12; Wells and Feschotte, 2020 Annu Rev Genet 54: 539-561.

      Page 4. "on phylogenetically very diverse datasets..." Given the fact that even closely related plants can show huge variation in genome size, it's a shame that they weren't included here. There are also numerous examples of closely related plants that are obligate selfers and out-crossers.

      This is true, and some studies already tested MHH in specific plant groups (Ågren et al., 2014 BMC Genom 15: 1-9; Hu et al., 2011 Nat Genet 43: 476-481; Wright et al., 2008 Int J Plant Sci 169: 105-118), including selfers vs out-crossers cases (Glémin et al., 2019 Evolutionary genomics: statistical and computational methods: 331-369). Further development in this kingdom would be interesting. However, the boundary was set to metazoans since the very beginning of analyses to maintain a large phylogenetic span and a manageable computational burden. Furthermore, some of the included animal clades are supposed to display good Ne contrasts according to known LHTs or to previous literature: for instance, the very different Ne of mammals and insects, as well as more narrowed examples like Drosophilidae and solitary vs eusocial hymenopterans.

      Page 6. "species-poor, deep-branching taxa were excluded" I see why this was done, as these taxa would not provide close as well as distant comparisons, but I would have thought they might have provided some interesting outlying data. As the geneticists say, value the exceptions.

      The reason to exclude them was not only that they would solely provide very distant comparisons. The lack of a rich and balanced sampling would imply calculating nucleotide substitution rates over hundreds of millions of years, which typically lead to saturation of synonymous sites. In case of saturation of synonymous sites, the synonymous divergence will be underestimated, and therefore, the dN/dS ratio no longer a valuable estimate of N<sub>e</sub>. Outside vertebrates and insects, the available genomes in a clade would mostly correspond to a few species from an entire phylum, making it challenging to estimate dN/dS and to correlate present day genome size with Ne estimated over hundreds of millions of years.

      Figure 1. What are the scaling units for each of these values? I get that dN/dS is between 0 and 1, but what about genome sizes? Are these relative sizes? Are TE content values a percent of the total? This may be mentioned elsewhere, but I think it is worth putting that information here as well.

      Thanks for pointing this out. Both genome sizes and TE contents are in bp, we added this information in the legend of the figure.

      Page 8. TE content estimates are invariably wrong given the diversity of TEs and, in many genomes, the presence of large numbers of low copy number "dead" elements. If that varies between taxa, this could cause problems. Given that, I would have liked to see the protocols used here be compared to a set of "gold standard" genomes with exceptionally well-annotated TEs (Humans and D. melanogaster, for instance).

      As already mentioned, dnaPipeTE is indeed biased towards young TEs (elements older than 25-30% are generally not detected). TE content can therefore be underestimated, especially in those genomes that tend to accumulate TEs rather than getting rid of them. Although most of them do not have “gold-standard” genomes, a comparison of dnaPipeTE with TE annotations from assemblies is already provided for a subset of species. Some variation can be present - see Supplemental Figure S6 and comments of Reviewer#3 about detection of satellite sequences. However, the subset covers a good range of genome sizes and overall dnaPipeTE emerges as an appropriate tool to characterize the general patterns of repeat content variation.

      Page 11. "close to 1 accounts for more..." I would say "closer" rather than "close".

      Agreed and changed.

      Page 11. "We therefore employed this parameter..." I know you made the point earlier, but maybe reiterate the general point here that selection is lower on average with a lower effective population size. Actually, I'm wondering if we don't need a different term for long-term net effective population size, which dN/dS is measuring.

      We reiterated here the relationship among dN/dS, Ne and magnitude of selection (lines 200-204): “a dN/dS closer to 1 accounts for more frequent accumulation of mildly deleterious mutations over time due to increased genetic drift, while a dN/dS close to zero is associated with a stronger effect of purifying selection. We therefore employed this parameter as a genomic indicator of N<sub>e</sub>, as the two are expected to scale negatively between each other.”

      Page 11. "We estimated dN/dS with a mapping method..." I very much appreciate that the authors are using the same pipeline for the analysis of all of these taxa, but I would also be interested in how these dN/dS values compare with previously obtained values for a subset of intensively studied taxa.

      The original publication of the method demonstrated that dN/dS estimations using mapping are highly similar to those obtained with maximum likelihood methods, such as implemented in CODEML (Romiguier et al., 2014 J Evol Biol 27: 593-603). Below is the comparison for 16 vertebrate species from Figuet et al. (2016 Mol Biol Evol 33: 1517-1527), where dN/dS are reasonably correlated (slope = 0.57, adjusted-R<sup>2</sup> = 0.39, p-value=0.006). That being said, some noise can be present as the compared genes and the phylogeny used are different. Although we expect some value between 0 and 1, some range of variation is to be expected depending on both the species used and the markers, as substitution rates and/or selection strength might be different. Differences in dN/dS for the same species would not necessarily imply an issue with one of the methods.

      Author response image 1.

      Page 12. " As expected, Bio++ dN/dS scales positively with..." Should this be explicitly referenced earlier? I do see that references mentioning both body mass and longevity are included earlier, but the terms themselves are not.

      We added a list of the expected correlations for dN/dS and LHTs at the beginning of the paragraph (lines 205-208): “In general, dN/dS is expected to scale positively with body length, age at first birth, maximum longevity, age at sexual maturity and mass, and to scale negatively with metabolic rate, population density and depth range.”

      Page 12. "dN/dS estimation on the trimmed phylogeny deprived of short and long branches results in a stronger correlation with LHTs, suggesting that short branches..." and what about the long branches? Trimming them helps because LHTs change over long periods of time?

      Trimming of long branches should avoid saturation in the signal of synonymous substitutions if present (whereby increase in dN is not parallelled by corresponding increase in dS due to depletion of all sites). Excluding very long branches was one of the reasons why we excluded taxonomic groups with few species. See lines 131-133: “For reliable estimation of substitution rates, this dataset was further downsized to 807 representative genomes as species-poor, deep-branching taxa were excluded”. Correlating present-day genome size with Ne estimates over long periods of time could weaken a potential correlation. However, exploratory analyses (not included) did not indicate that excluding long branches improved the relationship between Ne and genome size/TE content. The rationale is explained in Materials and Methods but was wrongly formulated. We rephrased it and added a reference (lines 636-638): “Estimation of dN/dS on either very long or short terminal branches might lead to loss of accuracy due to branch saturation (Weber et al. 2014) or to a higher variance of substitution rates, respectively”.

      Table 2. "Expected significant correlations are marked in bold black; significant correlations opposite to the expected trend are marked in bold red." Expected based on the initial hypothesis? Perhaps frame it as a test of the hypothesis?

      As per the comment above, we added a sentence in the main text to clarify the expected correlations for dN/dS and LHTs (lines 205-208): “In general, dN/dS is expected to scale positively with body length, age at first birth, maximum longevity, age at sexual maturity and mass, and to scale negatively with metabolic rate, population density and depth range.”. The second expected correlation is that between dN/dS and genome size/TE content, which is stated at the beginning of paragraph 2.5 (lines 244-245): “If increased genetic drift leads to TE expansions, a positive relationship between dN/dS and TE content, and more broadly with genome size, should be observed.”.

      Page 14. "Based on the available traits, the two kinds of Ne proxies analyzed here correspond in general..." the two kinds being dN/dS and a selection of LHT?

      We rephrased the sentence as such (lines 233-234): “Based on the available traits, the estimations of dN/dS ratios obtained using two different methods correspond in general to each other”.

      Table 3. Did you explain why there is a distinction between GC3-poor and GC3-rich gene sets?

      No, the explanation is missing, thank you for pointing it out. The choice comes from the observations made by Mérel et al. (2024 biorXiv: 2024-01), who do find a stronger relationship between dN/dS and genome size in Drosophila using the same tool (Coevol) in GC3-poor genes than in GC3-rich ones or in random sets of genes exhibiting heterogeneity in GC3 content. There are several possible explanations for this. First, mixing genes with various base compositions in the same concatenate can alter the calculation of codon frequency and impair the accuracy of the model estimating substitution rates.

      Moreover, base composition and evolutionary rates may not be two independent molecular traits, at the very least in Drosophila, and more generally in species experiencing selection on codon bias. Because optimal codons are enriched in G/C bases at the third position (Duret and Mouchiroud, 1999 PNAS 96: 4482-4487), GC3-rich genes are likely to be more expressed and therefore evolve under stronger purifying selection than GC3-poor genes in Drosophila.

      Accordingly, Merel and colleagues observed significantly higher dN/dS estimates for GC3-poor genes than for GC3-rich genes. Additionally, selection on codon usage acting on these highly expressed genes, that are GC3-rich, violates the assumed neutrality of dS. This implies that dN/dS estimates based on genes under selection on codon bias are likely less appropriate proxies of Ne than expected.

      Although some of these observations may be specific to Drosophila, this criterion was taken into consideration as taking restricted gene subsets was required for Coevol runs. We added this explanation in materials and methods (lines 723-738).

      Page 16. "Coevol dN/dS scales negatively with genome size across the whole dataset (Slope = -0.287, adjusted-R<sup>2</sup> = 0.004, p-value = 0.039) and within insects" Should I assume that none of the other groups scale negatively on their own, but cumulatively, all of them do?

      Yes, and this is an “insect-effect”: the regression of the whole dataset is negative but it is not anymore when insects are removed (with the model still being far from significant).

      Page 16. "Overall, we find no evidence for a recursive association of dN/dS with genome size and TE content across the analysed animal taxa as an effect of long-term Ne variation." I get the point, but this is starting to feel a bit circular. What you see is a lack of an association between dN/dS and TE content, but what do you mean by "as an effect of..." here? You are using dN/dS as a proxy, so the wording here feels odd.

      See the reply below.

      Page 17. I'm not sure that "effect" here is the word to use. You are looking at associations, not cause-effect relationships. Certainly, dN/dS is not causing anything; it is an effect of variation in purifying selection.

      Agreed, dN/dS is the ratio reflecting the level of purifying selection, not the cause itself. dN/dS is employed here as the independent variable in the correlation with genome size or TE content. dN/dS has an “effect” on the dependent variables in the sense that it can predict their variation, not in the sense that it is causing genome size to vary. We rephrased this and similar sentences to avoid misunderstandings (changes are highlighted in the revised text).

      Page 17. "Instead, mammalian TE content correlates positively with metabolic rate and population density, and negatively with body length, mass, sexual maturity, age at first birth and longevity." I guess I'm getting tripped up by measures of current LHTs and historical LHTs which, I'm assuming, varies considerably over the long periods of time that impact TE content evolution.

      PIC analyses can be considered as correlations on current LHTs as we compare values (or better, contrasts) at the tips of phylogenies. In the case of Coevol, traits are inferred at internal nodes, in such a way that the model should take into account the historical variation of LHTs, too.

      Page 18. "positive effect of dN/dS on recent TE insertions..." Again, this is not a measure of the effect of dN/dS on TE insertions, it is a measure of correlation. I know it's shorthand, but in this case, I think it really matters that we avoid making cause inferences.

      We have rephrased this as ”...very weak positive correlation of dN/dS with recent TE insertions…”.

      Page 18. "are consistent with the scenarios depicted by genome size and overall TE content in the corresponding clades." Maybe be more explicit here at the very end of the results about what those scenarios are.

      Correlating the recent TE content with dN/dS and LHTs basically recapitulates the relationship found using the other genomic traits (genome size and overall TE content). We have rephrased the closing sentence as “Therefore, the coevolution patterns between population size and recent TE content are consistent with the pictures emerging from the comparison of population size proxies with genome size and overall TE content in the corresponding clades” (lines 312-315).

      Page 19. "However, the difficulty in assembling repetitive regions..." I would say the same is true of TE content, which is almost always underestimated for the same reasons.

      “Repetitive regions” is here intended as an umbrella term including all kinds of repeats, from simple ones to transposable elements.

      Page 20. "repeat content has a lower capacity to explain size compared to other clades." Perhaps, but I'm not convinced this is not due to large numbers of low copy number elements, perhaps purged at varying rates. Are we certain that dnaPipeTE would detect these? Have rates of deletion in the various taxa examined been estimated?

      It is possible that low copy number elements are detected differently, according to the rate of decay in different species and depending also on the annotation method (indeed low copy families are less likely to be captured during read sampling by dnaPipeTE). A negative correlation between assembly size and deletion rate was observed in birds (Ji et al., 2023 Sci Adv 8: eabo0099). So we should expect a rate of TE removal inversely proportional to genome size, a positive correlation between TE content and genome size, and negative relationship between TE content and deletion rate, too. The relationship of TE content with deletion rate and genome size however appears more complex than this, even this paper using assembly-based TE annotations. However, misestimations of repeat content are also potentially due to the limited capacity of dnaPipeTE of detecting simple and low complexity repeats (see comments from Reviewer#3), which might be important genomic components in birds (see a few comments below).

      Page 21. "DNA gain, and their evolutionary dynamics appear of prime importance in driving genome size variation." How about DNA loss over time?

      See response to the comment below.

      Page 22. "in the latter case, the pace of sequence erosion could be in the long run independent of drift and lead to different trends of TE retention and degradation in different lineages." Ah, I see my earlier question is addressed here. How about deletion as a driver as well?

      Deletion was not investigated here. However, deletion processes are surely very different across animals and their impact merits to be studied as well within a comparative framework. Small scale deletion events have even been proposed to contrast the increase in genome size by TE expansion (Petrov et al., 2002 Theor Popul Biol 61: 531-544). In fact, their magnitude would not be high enough to effectively contrast processes of genome expansion in most organisms (Gregory, 2004 Gene 324: 15-34). However, larger-scale deletions might play an important role in genome size determinism by counterbalancing DNA gain (Kapusta et al., 2017 PNAS 114: E1460-E1469; Ji et al., 2023 Sci Adv 8: eabo0099). For sake of space we do not delve in detail into this issue, but we do provide some perspectives about the role of deletion (see lines 518-521 and 535-541).

      Page 22. "however not surprising given the higher variation of TE load compared to the restricted genome size range." I admit, I'm struggling with this. If it isn't genes, and it isn't satellites, and it isn't TEs, what is it?

      Most birds having ~1Gb genomes and displaying very low TE contents. Other studies annotated TEs in avian genome assemblies and also found a not so strong correlation between amount of TEs and genome size (Ji et al., 2023 Sci Adv 8: eabo0099, Kapusta and Suh, 2016 Ann N Y Acad Sci 1389: 164-185). It is possible that the TE diversity is underappreciated in birds due to the limits of sequencing technologies used so far in resolving complex repeat-rich regions. For instance, employment of long-reads technologies allowed to reveal more extended repeated regions that were previously ignored with short read assemblies (Kapusta and Suh, 2016 Ann N Y Acad Sci 1389: 164-185). Besides, quite large fractions might indeed be satellite sequences constituting relevant fractions of the genome (Edwards et al., 2025 biorXiv: 2025-02). We added this perspective in the discussion (lines 446-455): “As previous studies find relatively weak correlations between TE content and genome size in birds (Ji et al. 2022; Kapusta and Suh 2017), it is possible for the very narrow variation of the avian genome sizes to impair the detection of consistent signals. On the other hand, it is conceivable the avian TE diversity to be underappreciated due to the limits of sequencing technologies used so far in resolving complex repeat-rich regions. For instance, employment of long-reads technologies allowed to reveal more extended repeated regions that were previously ignored with short read assemblies (Kapusta and Suh 2017; Benham et al. 2024). Besides, quite large fractions might indeed be satellite sequences constituting relevant fractions of the genome that are challenging to identify with reference- or read-based methods (Edwards et al. 2025).” See also responses to Reviewer#3’s concerns about dnaPipeTE.

      Page 24. "Our findings do not support the quantity of non-coding DNA being driven in..." Many TEs carry genes and are "coding".

      Yes. Non-coding DNA intended as the non-coding portion of genomes not directly involved in organisms’ functions and fitness (in other words sequences not undergoing purifying selection). TEs do have coding parts but are in most part molecular parasites hijacking hosts’ machinery.

      Page 25. "There is some evidence of selection acting against TEs proliferation." Given that the vast majority of TEs are recognized and epigenetically silenced in most genomes, I'd say the evidence is overwhelming. Here I suspect you mean evidence for success in preventing proliferation. Actually, since we know that systems of TE silencing have a cost, it might be worth considering how the costs and benefits of these systems may have influenced overall TE content.

      We meant selection against TE proliferation in the making, notably visible at the level of genome-wide signatures for relaxed/effective selection. We rephrased it as “Evidence for signatures of negative selection against TE proliferation exist at various degrees.” (line 543).

      Reviewer #3 (Recommendations for the authors):

      Page 14: Please define GC3-rich and GC3-poor gene sets and how they were established, as well as why the analyses were conducted separately on GC3-rich and GC3-poor genes.

      We added a detailed explanation for the choice of GC3-rich and GC3-poor genes (see modified section Methods - Phylogenetic independent contrasts and Coevol reconstruction, lines 723-738).

      “Genes were selected according to their GC content at the third codon position (GC3). Indeed, mixing genes with heterogeneous base composition in the same concatenate might result in an alteration of the calculation of codon frequencies, and consequently impair the accuracy of the model estimating substitution rates (Mérel et al. 2024). Moreover, genes with different GC3 levels can reflect different selective pressures, as highly expressed genes should be enriched in optimal codons as a consequence of selection on codon usage. In Drosophila, where codon usage bias is at play, most optimal codons present G/C bases at the third position (Duret and Mouchiroud, 1999), meaning that genes with high GC3 content should evolve under stronger purifying selection than GC3-poor genes. Accordingly, Mérel et al. (2024) do find a stronger relationship between dN/dS and genome size when using GC3-poor genes, as compared to GC3-rich genes or gene concatenates of random GC3 composition. Finally, dN/dS can be influenced by GC-biased gene conversion (Bolívar et al. 2019; Ratnakumar et al. 2010), and the strength at which such substitution bias acts can be reflected by base composition. For these reasons, two sets of 50 genes with similar GC3 content were defined in order to employ genes undergoing similar evolutionary regimes.”

      Please add lines between columns and rows in tables. Table 3 is especially difficult to follow due to its size, and lines separating columns and rows would vastly help with readability.

      We added lines delimiting cells in all the main tables.

      Throughout the text and figures, please be consistent with either scientific names or common names for lineages or clades.

      Out of the five groups, for four of them the common name is the same as the scientific one (except Aves/birds).

      Regarding the title for section 3.1, I don't believe "underrate" is the best word here. I find this title confusing.

      We replaced the term “underrate” with “underestimate” in the title.

      The authors report that read type (short vs. long) does not have a significant effect on assembly size relative to C-value. However, the authors (albeit admittedly in the discussion) removed lower-quality assemblies using a minimum N50 cutoff. Thus, this lack of read-type effect could be quite misleading. I strongly recommend the authors either remove this analysis entirely from the manuscript or report results both with and without their minimum N50 cutoff. I expect that read type should have a strong effect on assembly size relative to C-value, especially in mammals where TEs and satellites comprise ~50% of the genome.

      Yes, it's likely that if we took any short-read assembly, we would have a short-read effect. We do not mean to suggest that in general short reads produce the same assembly quality as long reads, but that in this dataset we do not need to account for the read effect in the model to predict C-values. Adding the same test including all assemblies will be very time-consuming because C-values should be manually checked as already done for the species. If we removed this test, readers might wonder whether our genome size predictions are not distorted by a short-read effect. We now make it clear that this quality filter likely has an outcome on our observations: “This suggests that the assemblies selected for our dataset can mostly provide a reliable measurement of genome size, and thus a quasi-exhaustive view of the genome architecture.” (lines 333-335).

      There seem to be some confusing inconsistencies between Supplementary Table S2 and Supplementary Figure S2. In Supplementary Table S2, the authors report ~24% of the Drosophila pectinifera genome as unknown repeats. This is not consistent with the stacked bar plot for D. pectinifera in Supplementary Figure S2.

      True, the figure is wrong, thank you for spotting the error. The plot of Supplemental Figure S2 was remade with the correct repeat proportions as in Supplementary Tables S2 and S4. Because the reference genome sizes on which TE proportions are calculated are different for the two methods, we added another supplemental figure showing the same comparison in Kbp (now Supplemental Figure S3).

      At the bottom of page 20: "many species with a high duplication score in our dataset correspond to documented duplication" How many?

      Salmoniformes (9), Acipenseriformes (1), Cypriniformes (3) out of 23 species with high duplication score. It’s detailed in the results (lines 193-196): “Of the 24 species with more than 30% of duplicated BUSCO genes, 13 include sturgeon, salmonids and cyprinids, known to have undergone whole genome duplication (Du et al. 2020; Li and Guo 2020; Lien et al. 2016), and five are dipteran species, where gene duplications are common (Ruzzante et al. 2019).”

      Top of page 21: "However, the contribution of duplicated genes to genome size is minimal compared to the one of TEs, and removing species with high duplication scores does not affect our results: this implies that duplication does not impact genome size strongly enough to explain the lack of correlation with dN/dS." This sentence is confusing and needs rewording.

      We reworded the sentence (lines 383-384): “this implies that duplication is unlikely to be the factor causing the relationship between genome size and dN/dS to deviate from the pattern expected from the MHH”.

      Beginning of section 3.3: "Our dN/dS calculation included several filtering steps by branch length and topology: indeed, selecting markers by such criteria appears to be an essential step to reconcile estimations with different methodologies" A personal communication is cited here. Are there really no peer-reviewed sources supporting this claim?

      This mainly comes from a comparison of dN/dS calculation with different methods (notably ML method of bpp vs Coevol bayesian framework) on a set of Zoonomia species. We observed that estimations with different methods appeared correlated but with some noise: filtering out genes with deviant topologies (by a combination of PhylteR and of an unpublished Bayesian shrinkage model) reconciled even more the estimations obtained from different methods. Results are not shown here but the description of an analogous procedure is presented in Bastian, M. (2024). Génomique des populations intégrative: de la phylogénie à la génétique des populations (Doctoral dissertation, Université lyon 1) that we added to the references.

      Figure 2 needs to be cropped to remove the vertical gray line on the right of the figure as well as the portion of visible (partly cropped) text at the top. What is the "Tree scale" in Figure 1?

      Quality of figure 2 in the main text was adjusted. The tree scale is in amino acid substitutions, we added it in the legend of the figure.

      It is also unclear whether the authors used TE content or overall repeat content for their analyses.

      The overall repeat content includes both TEs and other kinds of repeats (simple repeats, low complexity repeats, satellites). The contribution of such other repeats to the total content is generally quite low for most species compared to that of TEs (only 13 genomes in all dataset have more than 3% of “Other” repeats). Conversely, the “other” repeats were not included in the recent content since the divergence of a copy from its consensus sequence is pertinent only for TEs.

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Overall, the data presented in this manuscript is of good quality. Understanding how cells control RPA loading on ssDNA is crucial to understanding DNA damage responses and genome maintenance mechanisms. The authors used genetic approaches to show that disrupting PCNA binding and SUMOylation of Srs2 can rescue the CPT sensitivity of rfa1 mutants with reduced affinity for ssDNA. In addition, the authors find that SUMOylation of Srs2 depends on binding to PCNA and the presence of Mec1.

      Comments on revisions:

      I am satisfied with the revisions made by the authors, which helped clarify some points that were confusing in the initial submission.

      Thank you.

      Reviewer #2 (Public Review):

      This revised manuscript mostly addresses previous concerns by doubling down on the model without providing additional direct evidence of interactions between Srs2 and PCNA, and that "precise sites of Srs2 actions in the genome remain to be determined." One additional Srs2 allele has been examined, showing some effect in combination with rfa1-zm2. Many of the conclusions are based on reasonable assumptions about the consequences of various mutations, but direct evidence of changes in Srs2 association with PNCA or other interactors is still missing. There is an assumption that a deletion of a Rad51-interacting domain or a PCNA-interacting domain have no pleiotropic effects, which may not be the case. How SLX4 might interact with Srs2 is unclear to me, again assuming that the SLX4 defect is "surgical" - removing only one of its many interactions.

      Previous studies have already provided direct evidence for the interaction between Srs2 and PCNA through the Srs2’s PIM region (Armstrong et al, 2012; Papouli et al, 2005); we have added these citations in the text. Similarly. Srs2 associations with SUMO and Rad51 have also been demonstrated (Colavito et al, 2009; Kolesar et al, 2016; Kolesar et al., 2012), and these studies were cited in the text.

      We did not state that a deletion of a Rad51-interacting domain or a PCNA-interacting domain have no pleiotropic effects. We only assessed whether these previously characterized mutant alleles could mimic srs2∆ in rescuing rfa1-zm2 defects.

      We assessed the genetic interaction between slx4-RIM and srs2-∆PIM mutants, and not the physical interaction between the two proteins. As we described in the text, our rationale for this genetic test is based on that the reports that both slx4 and srs2 mutants impair recovery from the Mec1 induced checkpoint, thus they may affect parallel pathways of checkpoint dampening.

      One point of concern is the use of t-tests without some sort of correction for multiple comparisons - in several figures. I'm quite sceptical about some of the p < 0.05 calls surviving a Bonferroni correction. Also in 4B, which comparison is **? Also, admittedly by eye, the changes in "active" Rad53 seem much greater than 5x. (also in Fig. 3, normalizing to a non-WT sample seems odd).

      Claims made in this work were based only on pairwise comparison not multi-comparison. We have now made this point clearer in the graphs and in Method. As the values were compared between a wild-type strain and a specific mutant strain, or between two mutants, we believe that t-test is suitable for statistical analysis.

      Figure 4B, ** indicates that the WT value is significantly different from that of the slx4-RIM srs2-∆PIM double mutant and from that of srs2-∆PIM single mutant. We have modified the graph to indicate the pair-wide comparison. The 5-fold change of active Rad53 levels was derived by comparing the values between the srs2∆ PIM slx4<sup>RIM</sup>-TAP double mutant and wild-type Slx4-TAP. In Figure 3, normalization to the lowest value affords better visualization. This is rather a stylish issue; we would like to maintain it as the other reviewers had no issues.

      What is the WT doubling time for this strain? From the FACS it seems as if in 2 h the cells have completed more than 1 complete cell cycle. Also in 5D. Seems fast...

      Wild-type W303 strain has less than 90 min doubling time as shown by many labs, and our data are consistent with this. The FACS profiles for wild-type cells shown in Figures 3C, 4C, and 5C are consistent with each other, showing that after G1 cells entered the cell cycle, they were in G2 phase at the 1-hour time points, and then a percentage of the cells exited the first cell cycle by two hours.

      I have one over-arching confusion. Srs2 was shown initially to remove Rad51 from ssDNA and the suppression of some of srs2's defects by deleting rad51 made a nice, compact story, though exactly how srs2's "suppression of rad6" fit in isn't so clear (since Rad6 ties into Rad18 and into PCNA ubiquitylation and into PCNA SUMOylation). Now Srs2 is invoked to remove RPA. It seems to me that any model needs to explain how Srs2 can be doing both. I assume that if RPA and Rad51 are both removed from the same ssDNA, the ssDNA will be "trashed" as suggested by Symington's RPA depletion experiments. So building a model that accounts for selective Srs2 action at only some ssDNA regions might be enhanced by also explaining how Rad51 fits into this scheme.

      While the anti-recombinase function of Srs2 was better studied, its “anti-RPA” role in checkpoint dampening was recently described by us (Dhingra et al, 2021) following the initial report by the Haber group some time ago (Vaze et al, 2002). A better understanding of this new role is required before we can generate a comprehensive picture of how Srs2 integrates the two functions (and possibly other functions). Our current work addresses this issue by providing a more detailed understanding of this new role of Srs2.

      Single molecular data showed that Srs2 strips both RPA and Rad51 from ssDNA, but this effect is highly dynamic (i.e. RPA and Rad51 can rebind ssDNA after being displaced) (De Tullio et al, 2017). As such, generation of “deserted” ssDNA regions lacking RPA and Rad51 in cells can be an unlikely event. Rather, Srs2 can foster RPA and Rad51 dynamics on ssDNA. Additional studies will be needed to generate a model that integrates the anti-recombinase and the anti-RPA roles of Srs2.

      As a previous reviewer has pointed out, CPT creates multiple forms of damage. Foiani showed that 4NQO would activate the Mec1/Rad53 checkpoint in G1- arrested cells, presumably because there would be singlestrand gaps but no DSBs. Whether this would be a way to look specifically at one type of damage is worth considering; but UV might be a simpler way to look. As also noted, the effects on the checkpoint and on viability are quite modest. Because it isn't clear (at least to me) why rfa1 mutants are so sensitive to CPT, it's hard for me to understand how srs2-zm2 has a modest suppressive effect: is it by changing the checkpoint response or facilitating repair or both? Or how srs2-3KR or srs2-dPIM differ from rfa1-zm2 in this respect. The authors seem to lump all these small suppressions under the rubric of "proper levels of RPA-ssDNA" but there are no assays that directly get at this. This is the biggest limitation.

      CPT treatment is an ideal condition to examine how cells dampen the DNA damage checkpoint, because while most genotoxic conditions (e.g. 4NQO, MMS) induce both the DNA replication checkpoint and the DNA damage checkpoint, CPT was shown to only induced the latter (Menin et al, 2018; Minca & Kowalski, 2011; Redon et al, 2003; Tercero et al, 2003). Future studies examining 4NQO and UV conditions can further expand our understanding of checkpoint dampening in different conditions.

      We have previously provided evidence to support the conclusion that srs2 suppression of rfa1-zm is partly mediated by changing checkpoint levels (Dhingra et al., 2021). We cannot exclude the possibility that the suppression may also be related to changes of DNA repair; we have now added this note in the text.

      Regarding direct testing RPA levels on DNA, we have previously shown that srs2∆ increased the levels of chromatin associated Rfa1 and this is suppressed by rfa1-zm2 (Dhingra et al., 2021). We have now included chromatin fractionation data to show that srs2-∆PIM also led to an increase of Rfa1 on chromatin, and this was suppressed by rfa1-zm2 (new Fig. S2).

      Srs2 has also been implicated as a helicase in dissolving "toxic joint molecules" (Elango et al. 2017). Whether this activity is changed by any of the mutants (or by mutations in Rfa1) is unclear. In their paper, Elango writes: "Rare survivors in the absence of Srs2 rely on structure-specific endonucleases, Mus81 and Yen1, that resolve toxic joint-molecules" Given the involvement of SLX4, perhaps the authors should examine the roles of structure-specific nucleases in CPT survival?

      Srs2 has several roles, and its role in RPA antagonism can be genetically separated from its role in Rad51 regulation as we have shown in our previous work (Dhingra et al., 2021) and this notion is further supported by evidence presented in the current work. Srs2’s role in dissolving "toxic joint molecules” was mainly observed during BIR (Elango et al, 2017). Whether it is related to checkpoint dampening will be interesting to address in the future but is beyond of the scope of the current work that seeks to answer the question how Srs2 regulates RPA during checkpoint dampening. Similarly, determining the roles of Mus81 and Yen1 and other structural nucleases in CPT survival is a worthwhile task but it is a research topic well separated from the focus of this work.

      Experiments that might clarify some of these ambiguities are proposed to be done in the future. For now, we have a number of very interesting interactions that may be understood in terms of a model that supposes discriminating among gaps and ssDNA extensions by the presence of PCNA, perhaps modified by SUMO. As noted above, it would be useful to think about the relation to Rad6.

      Several studies have shown that Srs2’s functional interaction with Rad6 is based on Srs2-mediated recombination regulation (reviewed by (Niu & Klein, 2017). Given that recombinational regulation by Srs2 is genetically separable from the Srs2 and RPA antagonism (Dhingra et al., 2021), we do not see a strong rationale to examine Rad6 in this work, which addresses how Srs2 regulates RPA. With this said, this study has provided basis for future studies of possible cross-talks among different Srs2-mediated pathways.

      Reviewer #3 (Public Review):

      The superfamily I 3'-5' DNA helicase Srs2 is well known for its role as an anti-recombinase, stripping Rad51 from ssDNA, as well as an anti-crossover factor, dissociating extended D-loops and favoring non-crossover outcome during recombination. In addition, Srs2 plays a key role in in ribonucleotide excision repair. Besides DNA repair defects, srs2 mutants also show a reduced recovery after DNA damage that is related to its role in downregulating the DNA damage signaling or checkpoint response. Recent work from the Zhao laboratory (PMID: 33602817) identified a role of Srs2 in downregulating the DNA damage signaling response by removing RPA from ssDNA. This manuscript reports further mechanistic insights into the signaling downregulation function of Srs2.

      Using the genetic interaction with mutations in RPA1, mainly rfa1-zm2, the authors test a panel of mutations in Srs2 that affect CDK sites (srs2-7AV), potential Mec1 sites (srs2-2SA), known sumoylation sites (srs2-3KR), Rad51 binding (delta 875-902), PCNA interaction (delta 1159-1163), and SUMO interaction (srs2SIMmut). All mutants were generated by genomic replacement and the expression level of the mutant proteins was found to be unchanged. This alleviates some concern about the use of deletion mutants compared to point mutations. Double mutant analysis identified that PCNA interaction and SUMO sites were required for the Srs2 checkpoint dampening function, at least in the context of the rfa1-zm2 mutant. There was no effect of this mutants in a RFA1 wild type background. This latter result is likely explained by the activity of the parallel pathway of checkpoint dampening mediated by Slx4, and genetic data with an Slx4 point mutation affecting Rtt107 interaction and checkpoint downregulation support this notion. Further analysis of Srs2 sumoylation showed that Srs2 sumoylation depended on PCNA interaction, suggesting sequential events of Srs2 recruitment by PCNA and subsequent sumoylation. Kinetic analysis showed that sumoylation peaks after maximal Mec1 induction by DNA damage (using the Top1 poison camptothecin (CPT)) and depended on Mec1. This data are consistent with a model that Mec1 hyperactivation is ultimately leading to signaling downregulation by Srs2 through Srs2 sumoylation. Mec1-S1964 phosphorylation, a marker for Mec1 hyperactivation and a site found to be needed for checkpoint downregulation after DSB induction, did not appear to be involved in checkpoint downregulation after CPT damage. The data are in support of the model that Mec1 hyperactivation when targeted to RPA-covered ssDNA by its Ddc2 (human ATRIP) targeting factor, favors Srs2 sumoylation after Srs2 recruitment to PCNA to disrupt the RPA-Ddc2-Mec1 signaling complex. Presumably, this allows gap filling and disappearance of long-lived ssDNA as the initiator of checkpoint signaling, although the study does not extend to this step.

      Strengths:

      (1) The manuscript focuses on the novel function of Srs2 to downregulate the DNA damage signaling response and provide new mechanistic insights.

      (2) The conclusions that PCNA interaction and ensuing Srs2-sumoylation are involved in checkpoint downregulation are well supported by the data.

      Weaknesses:

      (1) Additional mutants of interest could have been tested, such as the recently reported Pin mutant, srs2-Y775A (PMID: 38065943), and the Rad51 interaction point mutant, srs2-F891A (PMID: 31142613).

      (2) The use of deletion mutants for PCNA and RAD51 interaction is inferior to using specific point mutants, as done for the SUMO interaction and the sites for post-translational modifications.

      (3) Figure 4D and Figure 5A report data with standard deviations, which is unusual for n=2. Maybe the individual data points could be plotted with a color for each independent experiment to allow the reader to evaluate the reproducibility of the results.

      Comments on revisions:

      In this revision, the authors adequately addressed my concerns. The only issue I see remaining is the site of Srs2 action. The authors argue in favor of gaps and against R-loops and ssDNA resulting from excessive supercoiling. The authors do not discuss ssDNA resulting from processing of onesided DSBs, which are expected to result from replication run-off after CPT damage but are not expected to provide the 3'-junction for preferred PCNA loading. Can the authors exclude PCNA at the 5'-junction at a resected DSB?

      We have now added a sentence stating that we cannot exclude the possibility that PCNA may be positioned at a 5’-junction, as this can be observed in vitro, albert that PCNA loading was seen exclusively at a 3’-junction in the presence of RPA (Ellison & Stillman, 2003; Majka et al, 2006).

      Recommendations For the authors:

      Reviewer #2 (Recommendations For the authors):

      A Bonferroni correction should be made for the multiple comparisons in several figures.

      Specific comments:

      l. 41. This is a too long and confusing sentence.

      Sentence shortened: “These data suggest that Srs2 recruitment to PCNA proximal ssDNA-RPA filaments followed by its sumoylation can promote checkpoint recovery, whereas Srs2 action is minimized at regions with no proximal PCNA to permit RPA-mediated ssDNA protection”.

      l. 60. Identify Ddc2 and Mec1 as ATRIP and ATR.

      Done.

      l. 125 "fails to downregulate RPA levels on chromatin and Mec1-mediated DDC..." fails to downregulate RPA and fails to reduce Mec1-mediated DDC?

      Sentence modified: “fails to downregulate both the RPA levels on chromatin and the Mec1-mediated DDC”

      l. 204 "consistent with the notion that Srs2 has roles beyond RPA regulation"... What other roles? It's stripping of Rad51? Removing toxic joint molecules? Something else?

      Sentence modified: “consistent with the notion that Srs2 has roles beyond RPA regulation, such as in Rad51 regulation and removing DNA joint molecules”.

      l. 249 "Significantly, srs2-ΔPIM and -3KR increased the percentage of rfa1-zm2 cells transitioning into the G1 phase" No. Just back to normal. As stated in l. 258: "258 We found that srs2-ΔPIM and srs2-3KR mutants on their own behaved normally in the two DDC assays described above." All of these effects are quite small.

      Sentence modified: “Compared with rfa1-zm2 cells, srs2-∆PIM rfa1-zm2 and srs2-3KR rfa1-zm2 cells showed increased percentages of cells transitioning into the G1 phase”.

      l. 468 "Our previous work has provided several lines of evidence to support that Rad51 removal by Srs2 is separable from the Srs2-RPA antagonism (Dhingra et al., 2021). What evidence? See my comment above about not having both proteins removed at the same time.

      We have addressed this point in our initial rebuttal and some key points are summarized below. In our previous report (Dhingra et al., 2021), we provided several lines of evidence to support the conclusion that Rad51 is not relevant to the Srs2-RPA antagonism. For example, while rad51∆ rescues the hyper-recombination phenotype of srs2∆ cells, rad51∆ did not affect the hyper-checkpoint phenotype of srs2∆. In contrast, rfa1-zm1/zm2 have the opposite effects, that is, rfa1zm1/zm2 suppressed the hyper-checkpoint, but not the hyper-recombination, phenotype of srs2∆ cells. The differential effects of rad51∆ and rfa1-zm1/zm2 were also seen for the ATPase dead allele of Srs2 (srs2K41A). For example, rfa1-zm2 rescued hyper-checkpoint and CPT sensitivity of srs2-K41A cells, while rad51∆ had neither effect. These and other data described by Dhingra et al (2021) suggest that Srs2’s effects on checkpoint vs. recombination can be separated genetically. Consistent with our conclusion summarized above, deleting the Rad51 binding domain in Srs2 (srs2-∆Rad51BD) has no effect on rfa1-zm2 phenotype in CPT (Fig. 2D). This data provides yet another evidence that Srs2 regulation of Rad51 is separable from the Srs2RPA antagonism.

      l. 525 "possibility, we tested the separation pin of Srs2 (Y775), which was shown to enables its in vitro helicase activity during the revision of our work..." ?? there was helicase activity during the revision of your work? Please fix the sentence.

      Sentence modified: “we tested the separation pin of Srs2 (Y775). This residue was shown to be key for the Srs2’s helicase activity in vitro in a report that was published during the revision of our work (Meir et al, 2023).”

      Fig. 3. "srs2-ΔPIM and -3KR allow better G1 entry of rfa1-zm2 cells." is it better entry or less arrest at G2/M? One implies better turning off of a checkpoint, the other suggests less activation of the checkpoint.

      This is a correct statement. For all strains examined in Figure 3, cells were seen in G2/M phase after 1-hour CPT treatment, suggesting proper arrest.

      References:

      Armstrong AA, Mohideen F, Lima CD (2012) Recognition of SUMO-modified PCNA requires tandem receptor motifs in Srs2. Nature 483: 59-63

      Colavito S, Macris-Kiss M, Seong C, Gleeson O, Greene EC, Klein HL, Krejci L, Sung P (2009) Functional significance of the Rad51-Srs2 complex in Rad51 presynaptic filament disruption. Nucleic Acids Res 37: 6754-6764.

      De Tullio L, Kaniecki K, Kwon Y, Crickard JB, Sung P, Greene EC (2017) Yeast Srs2 helicase promotes redistribution of single-stranded DNA-bound RPA and Rad52 in homologous recombination regulation. Cell Rep 21: 570-577

      Dhingra N, Kuppa S, Wei L, Pokhrel N, Baburyan S, Meng X, Antony E, Zhao X (2021) The Srs2 helicase dampens DNA damage checkpoint by recycling RPA from chromatin. Proc Natl Acad Sci U S A 118: e2020185118

      Elango R, Sheng Z, Jackson J, DeCata J, Ibrahim Y, Pham NT, Liang DH, Sakofsky CJ, Vindigni A, Lobachev KS et al (2017) Break-induced replication promotes formation of lethal joint molecules dissolved by Srs2. Nat Commun 8: 1790

      Ellison V, Stillman B (2003) Biochemical characterization of DNA damage checkpoint complexes: clamp loader and clamp complexes with specificity for 5' recessed DNA. PLoS Biol 1: E33

      Kolesar P, Altmannova V, Silva S, Lisby M, Krejci L (2016) Pro-recombination Role of Srs2 Protein Requires SUMO (Small Ubiquitin-like Modifier) but Is Independent of PCNA (Proliferating Cell Nuclear Antigen) Interaction. J Biol Chem 291: 7594-7607.

      Kolesar P, Sarangi P, Altmannova V, Zhao X, Krejci L (2012) Dual roles of the SUMO-interacting motif in the regulation of Srs2 sumoylation. Nucleic Acids Res 40: 7831-7843.

      Majka J, Binz SK, Wold MS, Burgers PM (2006) Replication protein A directs loading of the DNA damage checkpoint clamp to 5'-DNA junctions. J Biol Chem 281: 27855-27861

      Meir A, Raina VB, Rivera CE, Marie L, Symington LS, Greene EC (2023) The separation pin distinguishes the pro- and anti-recombinogenic functions of Saccharomyces cerevisiae Srs2. Nat Commun 14: 8144

      Menin L, Ursich S, Trovesi C, Zellweger R, Lopes M, Longhese MP, Clerici M (2018) Tel1/ATM prevents degradation of replication forks that reverse after Topoisomerase poisoning. EMBO Rep 19: e45535

      Minca EC, Kowalski D (2011) Replication fork stalling by bulky DNA damage: localization at active origins and checkpoint modulation. Nucleic Acids Res 39: 2610-2623

      Niu H, Klein HL (2017) Multifunctional roles of Saccharomyces cerevisiae Srs2 protein in replication, recombination and repair. FEMS Yeast Res 17: fow111

      Papouli E, Chen S, Davies AA, Huttner D, Krejci L, Sung P, Ulrich HD (2005) Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. Mol Cell 19: 123-133

      Redon C, Pilch DR, Rogakou EP, Orr AH, Lowndes NF, Bonner WM (2003) Yeast histone 2A serine 129 is essential for the efficient repair of checkpoint-blind DNA damage. EMBO Rep 4: 678-684

      Tercero JA, Longhese MP, Diffley JFX (2003) A central role for DNA replication forks in checkpoint activation and response. Mol Cell 11: 1323-1336

      Vaze MB, Pellicioli A, Lee SE, Ira G, Liberi G, Arbel-Eden A, Foiani M, Haber JE (2002) Recovery from checkpointmediated arrest after repair of a double-strand break requires Srs2 helicase. Mol Cell 10: 373-385

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      I In this manuscript, Jiao D et al reported the induction of synthetic lethal by combined inhibition of anti-apoptotic BCL-2 family proteins and WSB2, a substrate receptor in CRL5 ubiquitin ligase complex. Mechanistically, WSB2 interacts with NOXA to promote its ubiquitylation and degradation. Cancer cells deficient in WSB2, as well as heart and liver tissues from Wsb2-/- mice exhibit high susceptibility to apoptosis induced by inhibitors of BCL-2 family proteins. The anti-apoptotic activity of WSB2 is partially dependent on NOXA.

      Overall, the finding, that WSB2 disruption triggers synthetic lethality to BCL-2 family protein inhibitors by destabilizing NOXA, is rather novel. The manuscript is largely hypothesis-driven, with experiments that are adequately designed and executed. However, there are quite a few issues for the authors to address, including those listed below.

      Specific comments:

      (1) At the beginning of the Results section, a clear statement is needed as to why the authors are interested in WSB2 and what brought them to analyze "the genetic co-dependency between WSB2 and other proteins".

      We thank the reviewer for raising this important point. We agree that a clear rationale should be provided at the beginning of the Results section. As reported in previous studies [Ref: 1, 2, 3], strong synthetic interactions have been observed between WSB2 and several mitochondrial apoptosis-related factors, including MCL-1, BCL-xL, and MARCH5. We have referenced these findings in the Discussion section. Motivated by these studies, we became interested in the role of WSB2 and aimed to investigate the specific mechanisms underlying its synthetic lethality with anti-apoptotic BCL-2 family members. We will revise the beginning of the Results section to clearly state this rationale.

      (1) McDonald, E.R., 3rd et al. Project DRIVE: A Compendium of Cancer Dependencies and Synthetic Lethal Relationships Uncovered by Large-Scale, Deep RNAi Screening. Cell 170, 577-592 e510 (2017).

      (2) DeWeirdt, P.C. et al. Genetic screens in isogenic mammalian cell lines without single cell cloning. Nat Commun 11, 752 (2020).

      (3) DeWeirdt, P.C. et al. Optimization of AsCas12a for combinatorial genetic screens in human cells. Nat Biotechnol 39, 94-104 (2021).

      (2) In general, the biochemical evidence supporting the role of WSB2 as a SOCS box-containing substrate-binding receptor of CRL5 E3 in promoting NOXA ubiquitylation and degradation is relatively weak. First, since NOXA binds to WSB2 on its SOCS box, which consists of a BC box for Elongin B/C binding and a CUL5 box for CUL5 binding, it is crucial to determine whether the binding of NOXA on the SOCS box affects the formation of CRL5WSB2 complex. The authors should demonstrate the endogenous binding between NOXA and the CRL5WSB2 complex. Additionally, the authors may also consider manipulating CUL5, SAG, or ElonginB/C to assess if it would affect NOXA protein turnover in two independent cell lines.

      We thank the reviewer for raising this important point. To determine whether endogenous NOXA binds to the intact CRL5<sup>WSB2</sup> complex, we performed co-immunoprecipitation assays using an antibody against NOXA. Indeed, NOXA co-immunoprecipitated with all subunits of the CRL5<sup>WSB2</sup> complex (Figure 2—figure supplement 1D), suggesting that NOXA binding to WSB2 does not disrupt interactions between WSB2 and the other CRL5 subunits. Moreover, depletion of CRL5 complex components (RBX2/SAG, CUL5, ELOB, or ELOC) through siRNAs in C4-2B or Huh-7 cells also resulted in a marked increase in NOXA protein levels.

      Second, in all the experiments designed to detect NOXA ubiquitylation in cells, the authors utilized immunoprecipitation (IP) with FLAG-NOXA/NOXA, followed by immunoblotting (IB) with HA-Ub. However, it is possible that the observed poly-Ub bands could be partly attributed to the ubiquitylation of other NOXA binding proteins. Therefore, the authors need to consider performing IP with HA-Ub and subsequently IB with NOXA. Alternatively, they could use Ni-beads to pull down all His-Ub-tagged proteins under denaturing conditions, followed by the detection of FLAG-tagged NOXA using anti-FLAG Ab. The authors are encouraged to perform one of these suggested experiments to exclude the possibility of this concern. Furthermore, an in vitro ubiquitylation assay is crucial to conclusively demonstrate that the polyubiquitylation of NOXA is indeed mediated by the CRL5WSB2 complex.

      We appreciate the reviewer for raising these important considerations regarding our ubiquitylation assays. We fully acknowledge the reviewer's concern that classical ubiquitination assays could potentially detect ubiquitination of proteins interacting with NOXA. However, we would like to clarify that our experimental conditions effectively mitigate this issue. Specifically, cells were lysed using buffer containing 1% SDS followed by boiling at 105°C for 5 minutes. These rigorous denaturing conditions ensure disruption of non-covalent protein interactions, thereby effectively eliminating the possibility of detecting ubiquitination signals from NOXA-associated proteins.

      Regarding the suggestion to perform an in vitro ubiquitination assay, we agree this experiment would indeed provide additional evidence. However, due to significant technical complexities associated with reconstituting CRL5-based E3 ubiquitin ligase activity in vitro—which would require the expression and purification of at least six recombinant proteins—such experiments are rarely performed in this context. Furthermore, NOXA is uniquely localized as a membrane protein on the mitochondrial outer membrane, posing additional significant challenges for protein expression and purification. Given the robustness of our current in vivo ubiquitylation assay under stringent denaturing conditions, we believe our existing data sufficiently and conclusively demonstrate NOXA ubiquitination mediated by the CRL5<sup>WSB2</sup> complex.

      (3) In their attempt to map the binding regions between NOXA and WSB2, the authors utilized exogenous proteins of both WSB2 and NOXA. To strengthen their findings, it would be more convincing to perform IP with exogenous wt/mutant WSB2 or NOXA and subsequently perform IB to detect endogenous NOXA or WSB2, respectively. Additionally, an in vitro binding assay using purified proteins would provide further evidence of a direct binding between NOXA and WSB2.

      We thank the reviewer for raising these important issues. In response to the reviewer’s suggestion to map the binding regions between NOXA and WSB2 more convincingly, we have indeed performed semi-endogenous Co-IP assays, which yielded results consistent with our exogenous protein experiments (Figure 3—figure supplement 1A, B). Concerning the recommendation to further validate direct interaction using purified recombinant proteins, we encountered substantial technical difficulties in obtaining pure and soluble recombinant WSB2 protein. Additionally, given that NOXA is an outer mitochondrial membrane protein and the interaction occurs on mitochondria, we believe that an in vitro binding assay may have limited physiological relevance. We hope the reviewer can appreciate these practical challenges and our current evidence supporting the strong interaction between NOXA and WSB2.

      Reviewer #2 (Public Review):

      Summary:

      Exploring the DEP-MAP database and two drug-screen databases, the authors identify WSB2 as an interactor of several BCL2 proteins. In follow-up experiments, they show that CRL5/WSB2 controls NOXA protein levels via K48 ubiquitination following direct protein-protein interaction, and cell death sensitivity in the context of BH3 mimetic treatment, where WSB2 depletion synergizes with drug treatment.

      Strengths:

      The authors use a set of orthogonal methods across different model cell lines and a new WSB2 KO mouse model to confirm their findings. They also manage to correlate WSB2 expression with poor prognosis in prostate and liver cancer, supporting the idea that targeting WSB2 may sensitize cancers for treatment with BH3 mimetics.

      Weaknesses:

      The conclusions drawn based on the findings in cancer patients are very speculative, as regulation of NOXA cannot be the sole function of CRL5/WSB2 and it is hence unclear what causes correlation with patient survival. Moreover, the authors do not provide a clear mechanistic explanation of how exactly higher levels of NOXA promote apoptosis in the absence of WSB2. This would be important knowledge, as usually high NOXA levels correlate with high MCL1, as they are turned over together, but in situations like this, or loss of other E3 ligases, such as MARCH, the buffering capacity of MCL1 is outrun, allowing excess NOXA to kill (likely by neutralizing other BCL2 proteins it usually does not bind to, such as BCLX). Moreover, a necroptosis-inducing role of NOXA has been postulated. Neither of these options is interrogated here.

      Recommendations For The Authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) Figure 2J. The authors showed that "the mRNA levels of NOXA were even reduced in WSB2-KO cells compared to parental cells". What is the possible mechanism? This point should at least be discussed.

      We thank the reviewer for raising these important issues. The underlying mechanisms for the significantly lower mRNA levels of NOXA following the KO of WSB2 are not fully understood at present. However, we propose that this could represent a form of negative feedback regulation at the level of gene expression. Specifically, when the protein levels of BNIP3/3L rise sharply, it may activate mechanisms that suppress their own mRNA synthesis or stability, serving as a buffering system to prevent further protein accumulation. Such negative feedback loops may be critical for maintaining cellular homeostasis and avoiding excessive protein production. Moreover, this phenomenon is frequently observed in other studies investigating substrates targeted by E3 ubiquitin ligases for degradation. We have elaborated on this point in the Discussion section.

      (2) Figure 2M. A previous study has clearly demonstrated that NOXA is subjected to ubiquitylation and degradation by CRL5 E3 ligase (PMID: 27591266). This paper should be cited. Also, in that publication, NOXA ubiquitylation is via the K11 linkage, not the K48 linkage. The authors should include K11R mutant in their assay.

      We thank the reviewer for raising this important issue. We thank the reviewer for suggesting the relevant reference (PMID: 27591266), which we have now cited accordingly. Additionally, we would like to clarify that our new in vivo ubiquitination assays included the K11R and K11-only ubiquitin mutants, and our data demonstrate that WSB2-mediated NOXA ubiquitination indeed involves the K11 linkage ubiquitination(Figure 2—figure supplement 1E).

      (3) Figure 3H, J. The authors stated, "By mutating these lysine residues to arginine, we found that WSB2-mediated NOXA ubiquitination was completely abolished". Which one of the three lysine residues is playing the dominant role?

      We thank the reviewer for raising this important issue. To address this, we generated FLAG-NOXA mutants individually substituting lysine residues K35, K41, and K48 with arginine. In vivo ubiquitination assays demonstrated that lysine 48 (K48) is the predominant residue responsible for WSB2-mediated NOXA ubiquitination (Figure 3—figure supplement 1C).

      (4) Figure 3N. The authors need to show that the fusion peptide containing C-terminal NOXA peptide competitively inhibits the interaction between endogenous WSB2 and NOXA and extends the protein half-life of NOXA, leading to NOXA accumulation.

      We sincerely thank the reviewer for raising these important issues. As suggested, we investigated whether the fusion peptide containing the C-terminal NOXA sequence competitively disrupts the interaction between endogenous WSB2 and NOXA, subsequently influencing NOXA stability. Our results demonstrated that treatment with this fusion peptide indeed significantly reduced the endogenous interaction between WSB2 and NOXA (Figure 3—figure supplement 1D). Furthermore, we observed that the peptide dose-dependently increased endogenous NOXA protein levels and prolonged its protein half-life, thereby resulting in the accumulation of NOXA (Figure 3N; Figure 3—figure supplement 1E, F). These findings collectively indicate that the fusion peptide competitively inhibits the WSB2-NOXA interaction, stabilizes NOXA protein, and enhances its accumulation.

      (5) Figure 4. a) It would be better to investigate whether WSB2 knockdown can sensitize cancer cells to the treatment with ABT-737 or AZD5991, evidenced by a decrease in both IC50 values and clonogenic survival rates and whether such sensitization is dependent on NOXA. b) The authors need to show the levels of cleaved caspase-3/7/9 and the percentages of apoptotic cells in shNC cells upon silencing of WSB2 in Figure 4A-F. c) It will be more convincing to repeat the experiment to show synthetic lethality by WSB2 disruption and MCL-1 inhibitor AZD5991 treatment using another cell line, such as WSB2-deficient Huh-7 cells in Figure 4 I&J.

      We sincerely thank the reviewer for these valuable and constructive suggestions. Regarding point (a): We believe that our current Western blot and flow cytometry data (Figure 4G–L) have already provided strong evidence that WSB2 depletion enhances apoptosis in response to ABT-737 and AZD5991. Therefore, we consider that additional IC50 and clonogenic survival assays, while informative, may not be essential for supporting our conclusion. Furthermore, as shown in Figure 5A–F, we found that silencing NOXA largely, though not completely, reversed the enhanced apoptosis triggered by these inhibitors in WSB2-deficient cells, suggesting that the sensitization effect is at least partially dependent on NOXA.

      Regarding point (b): We have shown that WSB2 knockout alone had no impact on the levels of cleaved caspase-3/7/9 or the percentages of apoptotic cells in Huh-7 and C4-2B cells (Figure 4G-L and Figure 4—figure supplement 1A-D), indicating that WSB2 loss does not induce apoptosis on its own under basal conditions.

      Regarding point (c): We appreciate the reviewer’s suggestion and have now repeated the experiment in WSB2 knockout Huh-7 cells. The new results further support the synthetic lethality between WSB2 loss and AZD5991 treatment (Figure 4—figure supplement 1C, D).

      (6) Figure 5A/C/E. The effect of siNOXA is minor, if any, for cleavage of caspases. The same thing for Figure 6F/H.

      We appreciate the reviewer’s insightful observation regarding the relatively modest effect of shNOXA on caspase cleavage in Figures 5A/C/E and Figures 6F/H. Indeed, we acknowledge that the reduction in caspase cleavage following NOXA knockdown is moderate. However, consistent with our discussions in the manuscript, NOXA knockdown significantly—but not completely—rescued the increased apoptosis observed in WSB2-deficient cells treated with BCL-2 family inhibitors. This suggests that while NOXA plays a notable role, additional mechanisms or unidentified targets may also be involved in WSB2-mediated regulation of apoptosis.

      (7) Figure 5 I&J. The authors may consider performing IHC staining, immunofluorescence, or WB analysis to show the levels of NOXA and cleaved caspases or PARP in xenograft tumors. This would provide in vivo evidence of significant apoptosis induction resulting from the co-administration of ABT-737 and R8-C-terminal NOXA peptide.

      We appreciate the reviewer's thoughtful suggestion regarding additional immunohistochemical or immunofluorescence analyses in xenograft tumors. However, due to current limitations in available antibodies suitable for reliable detection of NOXA by IHC and IF, we are unable to perform these experiments. We greatly appreciate the reviewer's understanding of this technical constraint. Nevertheless, our existing data collectively supports the conclusion that the combination of ABT-737 and R8-C-terminal NOXA peptide significantly enhances apoptosis in vivo.

      (8) Figure 7. Does an inverse correlation exist between the protein levels of WSB2 and NOXA in RPAD or LIHC tissue microarrays? On page 12, in the first paragraph, Figure 7M-P was cited incorrectly.

      We sincerely thank the reviewer for raising this important issue. As mentioned above, due to current limitations regarding the availability of suitable antibodies that can reliably detect NOXA by IHC, we regret that it is not feasible to experimentally address this question at this time.

      Additionally, we have carefully corrected the citation error involving Figure 7M-P on page 12, as pointed out by the reviewer.

      (9) Figure S1D. BCL-W levels were reduced upon WSB2 overexpression, which should be acknowledged.

      We sincerely thank the reviewer for raising this important issue. We acknowledge that BCL-W protein levels were slightly reduced upon WSB2 overexpression in Figure S1D. However, this effect is distinct from the pronounced reduction observed in NOXA protein levels. We have revised the manuscript to clarify this point. Additionally, we recognize that transient overexpression systems may occasionally lead to non-specific or artifactual changes. Our exogenous expression and co-immunoprecipitation experiments did not support an interaction between BCL-W and WSB2. Therefore, the observed reduction of BCL-W under these conditions may not reflect a physiologically relevant regulation.

      (10) Figure S4. Given WSB2 KO mice are viable; the authors may consider determining whether these mice are more sensitive to radiation-induced tissue damage or but more resistant to radiation-induced tumorigenesis?

      We sincerely thank the reviewer for this insightful and biologically meaningful suggestion. We agree that investigating the potential role of WSB2 in radiation-induced tissue damage and tumorigenesis would be of great interest. However, conducting such experiments requires access to specialized irradiation facilities, which are currently unavailable to us. Nevertheless, we recognize the value of this line of investigation and plan to explore it in our future studies.

      (11) All data were displayed as mean{plus minus}SD. However, for data from three independent experiments, it is more appropriate to present the results as mean{plus minus}SEM, not mean{plus minus}SD.

      We sincerely thank the reviewer for highlighting this important issue. In line with the reviewer's suggestion, we have revised the manuscript accordingly and now present data from three independent experiments as mean ± SEM.

      (12) The figure legends require careful review: i) The low dose of ABT-199 (Figure 6H) and the dose of ABT-199 used in Figure 6I are missing. ii) The legends for Figure S1D-E are incorrect. iii) The name of the antibody in the legend of Figure S3C is incorrect.

      We sincerely thank the reviewer for raising these important issues. We have carefully corrected all the errors mentioned. In addition, we have thoroughly reviewed the manuscript to prevent similar errors.

      Reviewer #2 (Recommendations For The Authors):

      The authors focus on NOXA, after initially identifying WSB2 to interact with several BCL2 proteins. The rationale behind this is that WSB2 depletion or overexpression affects NOXA levels, but none of the other BCL2 proteins tested, as stated in the text. Yet, BCLW is also depleted upon overexpression of WSB2 (Supplementary Figure 1). How does this phenomenon relate to the sensitization noted, is BCL-W higher in WSB2 KO cells? It does not seem so though. This warrants discussion.

      We appreciate the reviewer for raising this important issue. Our results showed that overexpression of WSB2 markedly reduced NOXA levels, while the levels of other BCL-2 family proteins remained unaffected or minimally affected, such as BCL-W (Figure 2—figure supplement 1A). Furthermore, depletion of WSB2 through shRNA-mediated KD or CRISPR/Cas9-mediated KO in C4-2B cells or Huh-7 cells led to a marked increase in the steady-state levels of endogenous NOXA, without affecting other BCL-2 family proteins examined, included BCL-W (Figure 2A-C, Figure 2—figure supplement 2A, B).

      If WSB2 depletion does not affect MCL1 levels, how does excess NOXA actually kill? Does it bind to any (other) prosurvival proteins under conditions of WSB2 depletion? Is the MCL1 half-life changed?

      We appreciate the reviewer for raising this important point. NOXA is a BH3-only protein known to promote apoptosis primarily by binding to and neutralizing anti-apoptotic BCL-2 family members, especially MCL-1, via its BH3 domain. It can inhibit MCL-1 either through competitive binding or by facilitating its ubiquitination and subsequent proteasomal degradation. In our system, the total protein levels of MCL-1 remained unchanged in WSB2 knockout cells, suggesting that NOXA may not be promoting apoptosis through enhanced MCL-1 degradation. Instead, we speculate that the accumulation of NOXA in WSB2-deficient cells enhances apoptosis by sequestering MCL-1 through direct binding, thereby freeing pro-apoptotic effectors such as BAK and BAX. In line with our observations, Nakao et al. reported that deletion of the mitochondrial E3 ligase MARCH5 led to a pronounced increase in NOXA expression, while leaving MCL-1 protein levels unchanged in leukemia cell lines (Leukemia. 2023 ;37:1028-1038., PMID: 36973350).

      Additionally, NOXA has been reported to interact with other anti-apoptotic proteins, including BCL-XL. It is therefore possible that under conditions of WSB2 depletion, excess NOXA may also bind to BCL-XL and relieve its inhibition of BAX/BAK, further contributing to apoptosis. Future experiments assessing NOXA binding partners in WSB2-deficient cells would help clarify this mechanism.

      I think some initial insights into the mechanism underlying the sensitization would add a lot to this study. Is there a role of BFL1/A1 in any of these cell lines, as it can also rather selectively bind to NOXA and is sometimes deregulated in cancer?

      We appreciate the reviewer for raising this important issue. While BFL1/A1 is indeed another anti-apoptotic BCL-2 family member that can selectively bind to NOXA and has been implicated in cancer, our study primarily focuses on the WSB2-NOXA axis. However, given its potential involvement in apoptosis regulation, it would be an interesting direction for future studies to explore whether BFL1/A1 contributes to NOXA-mediated sensitization in specific cellular contexts.

      Otherwise, this is a very nice and convincing study.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The manuscript focuses on the olfactory system of Pieris brassicae larvae and the importance of olfactory information in their interactions with the host plant Brassica oleracea and the major parasitic wasp Cotesia glomerata. The authors used CRISPR/Cas9 to knockout odorant receptor coreceptors (Orco), and conducted a comparative study on the behavior and olfactory system of the mutant and wild-type larvae. The study found that Orco-expressing olfactory sensory neurons in antennae and maxillary palps of Orco knockout (KO) larvae disappeared, and the number of glomeruli in the brain decreased, which impairs the olfactory detection and primary processing in the brain. Orco KO caterpillars show weight loss and loss of preference for optimal food plants; KO larvae also lost weight when attacked by parasitoids with the ovipositor removed, and mortality increased when attacked by untreated parasitoids. On this basis, the authors further studied the responses of caterpillars to volatiles from plants attacked by the larvae of the same species and volatiles from plants on which the caterpillars were themselves attacked by parasitic wasps. Lack of OR-mediated olfactory inputs prevents caterpillars from finding suitable food sources and from choosing spaces free of enemies.

      Strengths:

      The findings help to understand the important role of olfaction in caterpillar feeding and predator avoidance, highlighting the importance of odorant receptor genes in shaping ecological interactions.

      Weaknesses:

      There are the following major concerns:

      (1) Possible non-targeted effects of Orco knockout using CRISPR/Cas9 should be analyzed and evaluated in Materials and Methods and Results.

      Thank you for your suggestion. In the Materials and Methods, we mention how we selected the target region and evaluated potential off-target sites by Exonerate and CHOPCHOP. Neither of these methods found potential off-target sites with a more-than-17-nt alignment identity. Therefore, we assumed no off-target effect in our Orco knockout. Furthermore, we did not find any developmental differences between wildtype and knockout caterpillars when these were reared on leaf discs in Petri dishes (Fig S4). We will further highlight this information on the off-target evaluation in the Results section.

      (2) Figure 1E: Only one olfactory receptor neuron was marked in WT. There are at least three olfactory sensilla at the top of the maxillary palp. Therefore, to explain the loss of Orcoexpressing neurons in the mutant (Figure 1F), a more rigorous explanation of the photo is required.

      Thank you for pointing this out. The figure shows only a qualitative comparison between WT and KO and we did not aim to determine the total number of Orco positive neurons in the maxillary palps or antennae of WT and KO caterpillars, but please see our previous work for the neuron numbers in the caterpillar antennae (Wang et al., 2024). We did indeed find more than one neuron in the maxillary palps, but as these were in very different image planes it was not possible to visualize them together. However, we will add a few sentences in the Results and Discussion section to explain the results of the maxillary palp Orco staining.

      (3) In Figure 1G, H, the four glomeruli are circled by dotted lines: their corresponding relationship between the two figures needs to be further clarified.

      Thank you for pointing this out. The four glomeruli in Figure 1G and 1H are not strictly corresponding. We circled these glomeruli to highlight them, as they are the best visualized and clearly shown in this view. In this study, we only counted the number of glomeruli in both WT and KO, however, we did not clarify which glomeruli are missing in the KO caterpillar brain. We will further clarify this in the figure legend.

      (4) Line 130: Since the main topic in this study is the olfactory system of larvae, the experimental results of this part are all about antennal electrophysiological responses, mating frequency, and egg production of female and male adults of wild type and Orco KO mutant, it may be considered to include this part in the supplementary files. It is better to include some data about the olfactory responses of larvae.

      Thank you for your suggestion. We do agree with your suggestion, and we will consider moving this part to the supplementary information. Regarding larval olfactory response, we unfortunately failed to record any spikes using single sensillum recordings due to the difficult nature of the preparation; however we do believe that this would be an interesting avenue for further research.

      (5)Line 166: The sentences in the text are about the choice test between " healthy plant vs. infested plant", while in Fig 3C, it is "infested plant vs. no plant". The content in the text does not match the figure.

      Thank you for pointing this out. The sentence is “We compared the behaviors of both WT and Orco KO caterpillars in response to clean air, a healthy plant and a caterpillar-infested plant”. We tested these three stimuli in two comparisons: healthy plant vs no plant, infested plant vs no plant. The two comparisons are shown in Figure 3C separately. We will aim to describe this more clearly in the revised version of this manuscript.

      (6) Lines 174-178: Figure 3A showed that the body weight of Orco KO larvae in the absence of parasitic wasps also decreased compared with that of WT. Therefore, in the experiments of Figure 3A and E, the difference in the body weight of Orco KO larvae in the presence or absence of parasitic wasps without ovipositors should also be compared. The current data cannot determine the reduced weight of KO mutant is due to the Orco knockout or the presence of parasitic wasps.

      Thank you for pointing this out. We did not make a comparison between the data of Figures 3A and 3E since the two experiments were not conducted at the same time due to the limited space in our BioSafety III greenhouse. We do agree that the weight decrease in Figure 3E is partly due to the reduced caterpillar growth shown in Figure 3A. However, we are confident that the additional decrease in caterpillar weight shown in Figure 3E is mainly driven by the presence of disarmed parasitoids. To be specific, the average weight in Figure 3A is 0.4544 g for WT and 0.4230 g for KO, KO weight is 93.1% of WT caterpillars. While in Figure 3E, the average weight is 0.4273 g for WT and 0.3637 g for KO, KO weight is 85.1% of WT caterpillars. We will discuss this interaction between caterpillar growth and the effect of the parasitoid attacks more extensively in the revised version of the manuscript.

      (7) Lines 179-181: Figure 3F shows that the survival rate of larvae of Orco KO mutant decreased in the presence of parasitic wasps, and the difference in survival rate of larvae of WT and Orco KO mutant in the absence of parasitic wasps should also be compared. The current data cannot determine whether the reduced survival of the KO mutant is due to the Orco knockout or the presence of parasitic wasps.

      We are happy that you highlight this point. When conducting these experiments, we selected groups of caterpillars and carefully placed them on a leaf with minimal disturbance of the caterpillars, which minimized hurting and mortality. We did test the survival of caterpillars in the absence of parasitoid wasps from the experiment presented in Figure 3A, although this was missing from the manuscript. There is no significant difference in the survival rate of caterpillars between the two genotypes in the absence of wasps (average mortality WT = 8.8 %, average mortality KO = 2.9 %; P = 0.088, Wilcoxon test), so the decreased survival rate is most likely due to the attack of the wasps. We will add this information to the revised version of the manuscript.

      (8) In Figure 4B, why do the compounds tested have no volatiles derived from plants? Cruciferous plants have the well-known mustard bomb. In the behavioral experiments, the larvae responses to ITC compounds were not included, which is suggested to be explained in the discussion section.

      Thank you for the suggestion. We assume you mean Figure 4D/4E instead of Figure 4B. In Figure 4B, many of the identified chemical compounds are essentially plant volatiles, especially those from caterpillar frass and caterpillar spit. In Figure 4D/4E, most of the tested chemicals are derived from plants. But indeed, we did not include ITCs, based on information from the EAG results in Figures 2A & 2B. Butterfly antennae did not respond strongly to ITCs, so we did not include ITCs in the larval behavioural tests. Instead, the tested chemicals in Figure 4D/4E either elicit high EAG responses of butterflies or have been identified as “important” by VIP scores in the chemical analyses. In the EAG results of Plutella xylostella (Liu et al., 2020), moths responded well to a few ITCs, the tested ITCs in our study are actually adopted from this study except for those that were not available to us. However, butterflies did not show a strong response to the tested ITCs; therefore, we did not include ITCs because we expected that Pieris brassicae caterpillars are not likely to show good responses to ITCs. We will add this explanation to the revised version of our manuscript.

      (9) The custom-made setup and the relevant behavioral experiments in Figure 4C need to be described in detail (Line 545).

      We will add more detailed descriptions for the setup and method in the Materials and Methods.

      (10) Materials and Methods Line 448: 10 μL paraffin oil should be used for negative control.

      Thank you for pointing this out. We used both clean filter paper and clean filter paper with 10 μL paraffin oil as negative controls, but we did not find a significant difference between the two controls. Therefore, in the EAG results of Figure 2A/2B, we presented paraffin oil as one of the tested chemicals. We will re-run our statistical tests with paraffin oil as negative control, although we do not expect any major differences to the previous tests.

      Reviewer #2 (Public review):

      Summary:

      This manuscript investigated the effect of olfactory cues on caterpillar performance and parasitoid avoidance in Pieris brassicae. The authors knocked out Orco to produce caterpillars with significantly reduced olfactory perception. These caterpillars showed reduced performance and increased susceptibility to a parasitoid wasp.

      Strengths:

      This is an impressive piece of work and a well-written manuscript. The authors have used multiple techniques to investigate not only the effect of the loss of olfactory cues on host-parasitoid interactions, but also the mechanisms underlying this.

      Weaknesses:

      (1) I do have one major query regarding this manuscript - I agree that the results of the caterpillar choice tests in a y-maze give weight to the idea that olfactory cues may help them avoid areas with higher numbers of parasitoids. However, the experiments with parasitoids were carried out on a single plant. Given that caterpillars in these experiments were very limited in their potential movement and source of food - how likely is it that avoidance played a role in the results seen from these experiments, as opposed to simply the slower growth of the KO caterpillars extending their period of susceptibility? While the two mechanisms may well both take place in nature - only one suggests a direct role of olfaction in enemy avoidance at this life stage, while the other is an indirect effect, hence the distinction is important.

      We do agree with your comment that both mechanisms may be at work in nature and we do address this in the Discussion section. In our study, we did find that wildtype caterpillars were more efficient in locating their food source and did grow faster on full plants than knockout caterpillars. This faster growth will enable wildtype caterpillars to more quickly outgrow the life-stages most vulnerable to the parasitoids (L1 and L2). The olfactory system therefore supports the escape from parasitoids indirectly by enhancing feeding efficiency directly.

      Figure 3D shows that WT caterpillars prefer infested plants without parastioids to infested plants with parasitoids. In addition, we observed that caterpillars move frequently between different leaves. Therefore, we speculate that WT caterpillars make use of volatiles from the plant or from (parasitoid-exposed) conspecifics via their spit or faeces to avoid parts of the plant potentially attracting natural enemies. Knockout caterpillars are unable to use these volatile danger cues and therefore do not avoid plant parts that are most attractive to their natural enemies, making KO caterpillars more susceptible and leading to more natural enemy harassment. Through this, olfaction also directly impacts the ability of a caterpillar to find an enemy-free feeding site.

      We think that olfaction supports the enemy avoidance of caterpillars via both these mechanisms, although at different time scales. Unfortunately, our analysis was not detailed enough to discern the relative importance of the two mechanisms we found. However, we feel that this would be an interesting avenue for further research. Moreover, we will sharpen our discussion on the potential importance of the two different mechanisms in the revised version of this manuscript.

      (2) My other issue was determining sample sizes used from the text was sometimes a bit confusing. (This was much clearer from the figures).

      We will revise the sample size in the text to make it more clear.

      (3) I also couldn't find the test statistics for any of the statistical methods in the main text, or in the supplementary materials.

      Thank you for pointing this out. We will provide more detailed test statistics in the main text and in the supplementary materials of the revised version of the manuscript.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      (1) Abstract

      Line 24: "optimal food plant" should be changed to "optimal food plants"

      Thank you for the suggestion, we will revise it.

      (2) Introduction

      Lines 44-46: The sentence should be rephrased.

      Thank you for the suggestion, we will revise it.

      Line 50: "are" should be changed to "is".

      Thank you for the suggestion, we will revise it.

      Lines 57 and 58: Please provide the Latin names of "brown planthoppers" and "striped stem borer".

      Thank you for the suggestion, we will revise it.

      Line 85: "investigate the influence of odor-guided behavior by this primary herbivore on the next trophic levels"; similarly, Line 160: "investigate if caterpillars could locate the optimal host-plant when supplied with differently treated plants". These sentences are not very accurate in describing the relevant experiments. A: Thank you for the suggestion, we will revise them.

      Reviewer #2 (Recommendations for the authors):

      (1) L53 Remove the "the" from "Under the strong selection pressure"

      Thank you for the suggestion, we will revise it.

      (2) L80 I suggest adding a reference for the spitting behaviour, e.g. Muller et al 2003.

      Thank you for the suggestion, we will add it.

      (3) L89 establishing a homozygous KO insect colony.

      Thank you for the suggestion, we will revise it.

      (4) L107 perhaps this goes against the journal style but I always like to see acronyms explained the first time they are used.

      Thank you for the suggestion, we will try to make it more understandable.

      (5) L146-148 sentence difficult to read - consider rephrasing.

      Thank you for the suggestion, we will revise it.

      (6) L230 do you mean still produce? Rather than still reproduce?

      Thank you for the suggestion, we will revise it.

      (7) L233 missing an and before "a greater vulnerability to the parasitoid wasp".

      Thank you for pointing this out, we will revise it.

      (8) L238 malfunctional is a strange word choice.

      Thank you for pointing this out, we will revise it.

      (9) L181 - can the authors confirm that this lower survival was due to parasitism by the wasps?

      This question is similar to Q(7) of Reviewer 1, so we quote our answer for Q(7) here:

      When conducting these experiments, we selected groups of caterpillars and carefully placed them on a leaf with minimal disturbance of the caterpillars, which minimized hurting and mortality. We did test the survival of caterpillars in the absence of parasitoid wasps from the experiment presented in Figure 3A, although this was missing from the manuscript. There is no significant difference in the survival rate of caterpillars between the two genotypes in the absence of wasp (average mortality WT = 8.8 %, average mortality KO = 2.9 %; P = 0.088, Wilcoxon test), so the decreased survival rate is most likely due to the attack of the wasps. We will add this information to the revised version of the manuscript.

      (10) L474 - has it been tested if wasps still behave similarly after their ovipositor has been removed?

      Thank you for pointing out this issue. We did not strictly compare if disarmed and untreated wasps have similar behaviors. However, we did observe if disarmed wasps can actively move or fly after recovering from anesthesia before releasing into a cage, otherwise we would replace with another active one.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      This study aims to identify the proteins that compose the electrical synapse, which are much less understood than those of the chemical synapse. Identifying these proteins is important to understand how synaptogenesis and conductance are regulated in these synapses. The authors identified more than 50 new proteins and used immunoprecipitation and immunostaining to validate their interaction of localization. One new protein, a scaffolding protein, shows particularly strong evidence of being an integral component of the electrical synapse. However, many key experimental details are missing (e.g. mass spectrometry), making it difficult to assess the strength of the evidence.

      Strengths:

      One newly identified protein, SIPA1L3, has been validated both by immunoprecipitation and immunohistochemistry. The localization at the electrical synapse is very striking.<br /> A large number of candidate interacting proteins were validated with immunostaining in vivo or in vitro.

      Weaknesses:

      There is no systematic comparison between the zebrafish and mouse proteome. The claim that there is "a high degree of evolutionary conservation" was not substantiated.

      We have added a table as supplementary figure 3 that shows a comparison of all candidates. While there are differences in both proteomes, components such as ZO proteins and the endocytosis machinery are clearly conserved.

      No description of how mass spectrometry was done and what type of validation was done.

      We have contacted the mass spec facility we worked with and added a paragraph explaining the mass spec. procedure in the material and methods section.

      The threshold for enrichment seems arbitrary.

      Yes, the thresholds are somewhat arbitrary. This is due to the fact that experiments that captured larger total amounts of protein (mouse retina samples) had higher signal-to-noise ratio than those that captured smaller total amounts of protein (zebrafish retina). This allowed us to use a more stringent threshold in the mouse dataset to focus on high probability captured proteins.

      Inconsistent nomenclature and punctuation usage.

      We have scanned through the manuscript and updated terms that were used inconsistently in the interim revision of the manuscript.

      The description of figures is very sparse and error-prone (e.g. Figure 6).

      In Figure 1B, there is very broad non-specific labeling by avidin in zebrafish (In contrast to the more specific avidin binding in mice, Figure 2B). How are the authors certain that the enrichment is specific at the electrical synapse?

      The enrichment of the proteins we identified is specific for electrical synapses because we compared the abundance of all candidates between Cx35b-V5-TurboID and wildtype retinas. Proteins that are components of electrical synapses, will only show up in the Cx35b-V5-TurboID condition. The western blot (Strep-HRP) in figure 1C shows the differences in the streptavidin labeling and hence the enrichment of proteins that are part of electrical synapses. Moreover, while the background appears to be quite abundant in sections, biotinylation is a rare posttranslational modification and mainly occurs in carboxylases: The two intense bands that show up above 50 and 75 kDa. The background mainly originates from these two proteins. Therefore, it is easy to distinguish specific hits from non-specific background.

      In Figure 1E, there is very little colocalization between Cx35 and Cx34.7. More quantification is needed to show that it is indeed "frequently associated."

      We agree that “frequently associated” is too strong as a statement. We corrected this and instead wrote “that Cx34.7 was only expressed in the outer plexiform layer (OPL) where it was associated with Cx35b at some gap junctions” in line 151. There are many gap junctions at which Cx35b is not colocalized with Cx34.7.

      Expression of GFP in HCs would potentially be an issue, since GFP is fused to Cx36 (regardless of whether HC expresses Cx36 endogenously) and V5-TurboID-dGBP can bind to GFP and biotinylate any adjacent protein.

      Thank you for this suggestion! There should be no Cx36-GFP expression in horizontal cells, which means that the nanobody cannot bind to anything in these cells. Moreover, to recognize specific signals from non-specific background, we included wild type retinas throughout the entire experiments. This condition controls for non-specific biotinylation.

      Figure 7: the description does not match up with the figure regarding ZO-1 and ZO-2.

      It appears that a portion of the figure legend was left out of the submitted version of the manuscript. We have put the legend for panels A through C back into the manuscript in the interim revision.

      Reviewer #2 (Public review):

      Summary:

      This study aimed to uncover the protein composition and evolutionary conservation of electrical synapses in retinal neurons. The authors employed two complementary BioID approaches: expressing a Cx35b-TurboID fusion protein in zebrafish photoreceptors and using GFP-directed TurboID in Cx36-EGFP-labeled mouse AII amacrine cells. They identified conserved ZO proteins and endocytosis components in both species, along with over 50 novel proteins related to adhesion, cytoskeleton remodeling, membrane trafficking, and chemical synapses. Through a series of validation studies¬-including immunohistochemistry, in vitro interaction assays, and immunoprecipitation - they demonstrate that novel scaffold protein SIPA1L3 interacts with both Cx36 and ZO proteins at electrical synapse. Furthermore, they identify and localize proteins ZO-1, ZO-2, CGN, SIPA1L3, Syt4, SJ2BP, and BAI1 at AII/cone bipolar cell gap junctions.

      Strengths:

      The study demonstrates several significant strengths in both experimental design and validation approaches. First, the dual-species approach provides valuable insights into the evolutionary conservation of electrical synapse components across vertebrates. Second, the authors compare two different TurboID strategies in mice and demonstrate that the HKamac promoter and GFP-directed approach can successfully target the electrical synapse proteome of mouse AII amacrine cells. Third, they employed multiple complementary validation approaches - including retinal section immunohistochemistry, in vitro interaction assays, and immunoprecipitation-providing evidence supporting the presence and interaction of these proteins at electrical synapses.

      Weaknesses:

      The conclusions of this paper are supported by data; however, some aspects of the quantitative proteomics analysis require clarification and more detailed documented. The differential threshold criteria (>3 log2 fold for mouse vs >1 log2 fold for zebrafish) will benefit from biological justification, particularly given the cross-species comparison. Additionally, providing details on the number of biological or technical replicates used in this study, along with analyses of how these replicates compare to each other, would strengthen the confidence in the identification of candidate proteins. Furthermore, including negative controls for the histological validation of proteins interacting with Cx36 could increase the reliability of the staining results.

      While the study successfully characterized the presence of candidate proteins at the electrical synapses between AII amacrine cells and cone bipolar cells, it did not compare protein compositions between the different types of electrical synapses within the circuit. Given that AII amacrine cells form both homologous (AII-AII) and heterologous (AII-cone bipolar cell) electrical synapses-connections that serve distinct functional roles in retinal signaling processing-a comparative analysis of their molecular compositions could have provided important insights into synapse specificity.

      Reviewer #3 (Public review):

      Summary:

      This study by Tetenborg S et al. identifies proteins that are physically closely associated with gap junctions in retinal neurons of mice and zebrafish using BioID, a technique that labels and isolates proteins proximal to a protein of interest. These proteins include scaffold proteins, adhesion molecules, chemical synapse proteins, components of the endocytic machinery, and cytoskeleton-associated proteins. Using a combination of genetic tools and meticulously executed immunostaining, the authors further verified the colocalizations of some of the identified proteins with connexin-positive gap junctions. The findings in this study highlight the complexity of gap junctions. Electrical synapses are abundant in the nervous system, yet their regulatory mechanisms are far less understood than those of chemical synapses. This work will provide valuable information for future studies aiming to elucidate the regulatory mechanisms essential for the function of neural circuits.

      Strengths:

      A key strength of this work is the identification of novel gap junction-associated proteins in AII amacrine cells and photoreceptors using BioID in combination with various genetic tools. The well-studied functions of gap junctions in these neurons will facilitate future research into the functions of the identified proteins in regulating electrical synapses.

      Thank you for these comments.

      Weaknesses:

      I do not see major weaknesses in this paper. A minor point is that, although the immunostaining in this study is beautifully executed, the quantification to verify the colocalization of the identified proteins with gap junctions is missing. In particular, endocytosis component proteins are abundant in the IPL, making it unclear whether their colocalization with gap junction is above chance level (e.g. EPS15l1, HIP1R, SNAP91, ITSN in Figure 3B).

      Recommendations for the authors:

      Reviewer #2 (Recommendations for the authors):

      (1) It would be helpful to include a comprehensive summary of the results from the quantitative proteomics analyses, such as the number of proteins detected in each species and the number of proteins associated with each GO term. Additionally, a clear figure or table highlighting the specific proteins conserved between zebrafish and mice would strengthen the evidence for evolutionary conservation of proteins at electrical synapses.

      We have added the raw data we received from our mass spec facility including a comparison of all the candidates for different species. Supplementary figure 3.

      (2) A more detailed description of the number of experimental and/or technical replicates would improve the technical rigor of the study. For example, what was the rationale for using different log2 fold-change cutoffs in mice versus zebrafish? Are the replicates consistent in terms of protein enrichment?

      We have added raw data from individual experiments as a supplement (Excel spreadsheet). We have two replicates from zebrafish and two from mice. The first experiment in mice was conducted with fewer retinas and a different promoter (human synapsin promoter) and didn’t yield nearly as many candidates. We are currently running a third experiment with 35 mouse retinas which will most likely detect more candidates as we have identified currently. We can update the proteome in this paper once the analysis is complete. It is not feasible to conduct these experiments with multiple replicates at the same time, since the number of animals that have to be used is simply too high, especially since very specific genotypes are required that are difficult obtain.

      (3) It would be interesting to determine whether there are differences in the presence of candidate proteins between AII-AII gap junctions and AII-cone bipolar cell gap junctions. Given that the subcellular localization of AII-AII gap junctions differs from that of AII-cone bipolar cell gap junctions (with most AII-AII gap junctions located below AII-cone ones), histological validations of the proteins shown in Figure 6 can be repeated for AII-AII gap junctions. This would help reveal similarities or differences in the protein compositions of these two types of gap junctions.

      Thank you for this suggestion. We had similar plans. However, we realized that homologous gap junctions are difficult to recognize with GFP. The dense GFP labeling in the proximal IPL, where AII-AII gap junctions are formed, does not allow us to clearly trace the location of individual dendrites from different cells. Detecting AII-AII gap junctions would require intracellular dye Injections of neighboring AII cells. Unfortunately, we don’t have a set up that would allow this. Bipolar cell terminals, on the contrary, are a lot easier to detect with markers such as SCGN, which is why we decided to focus on AII/ONCB gap junctions.

      (4) In Figures 1 and 2, it would be helpful to clarify in the figure legends whether the proteins in the interaction networks represent all detected proteins or only those selected based on log2 fold-change or other criteria.

      Thank you for this suggestion! We have added a description in lines 643 and 662.

      (5) In Figure 1A (bottom panel), please include a negative control for the Neutravidin staining result from the non-labeling group.

      We only tested the biotinylation for wild type retinas in cell lysates and western blots as shown in figure 1C, which shows an entirely different biotinylation pattern.

      (6) In Figure 2B, please include the results of Neutravidin staining for both the labeling and non-labeling groups.

      Same comment: We see the differences in the biotinylation pattern on western blots, which is distinct for Cx36-EGFP and wild type retinas, although both genotypes were injected with the same AAV construct and the same dose of biotin. We hope that this provides sufficient evidence for the specificity of our approach.

      (7) In Figure 5B, the sizes of multiple proteins detected by Western blotting are inconsistent and confusing. For example, the size of Cx36 in the "FLAG-SJ2BP" panel differs from that in the other three panels. Additionally, in the "Myc-SIPA1L3+" panel, the size of SIPA1l3 appears different between the input and IP conditions.

      Thank you for pointing this out! The differences in the molecular weight can be explained by dimerization. We have indicated the position of the dimer and the monomer bands with arrows. Especially, when larger amounts of Cx36 are coprecipitated Cx36 preferentially occurs as a dimer. This can also be seen in our previous publication:

      S. Tetenborg et al., Regulation of Cx36 trafficking through the early secretory pathway by COPII cargo receptors and Grasp55. Cellular and Molecular Life Sciences 81, 1-17 (2024). Figure 1D

      The band that occurs above 150kDa in the SIPA1L3 input is most likely a non-specific product. The specific band for SIPA1L3 can be seen in the IP sample, which has the appropriate molecular weight. We often see much better immuno reactivity for the protein of interest in IP samples, because the protein is concentrated in these experiments which facilitates its detection.

      (8) How specific are the antibodies used for validating the proteins in this study? Given that many proteins, such as EPS15l1, HIP1R, SNAP91, GPrin1, SJ2BP, Syt4, show broad distribution in the IPL (Figure 3B, 4A, 6D), it is important to validate the specificity of these antibodies. Additionally, including negative controls in the histological validation would strengthen the reliability of the results.

      We carefully selected the antibodies based on western blot data, that confirmed that each antibody detected an antigen of appropriate size. Moreover, the distribution of the proteins mentioned is consistent with function of each protein described in the literature. EPS15L1 and GPrin1 for instance are both membrane-associated, which is evident in Hek cells. Figure 5C.

      A true negative control would require KO tissue and we don’t think that this is feasible at this point.

      (9) In Figure 7F, the model could be improved by highlighting which components may be conserved between zebrafish and mice, as well as which components are conserved between the AII-AII junction and AII-cone bipolar cell junction?

      Thank you for this suggestion. However, we don’t think that this is necessary as our study primarily focuses on the AII amacrine cell.

      Currently we are unable to distinguish differences in the composition of AII-AII and AII-ONCB junctions as described above.

      (10) Are there any functional measurements that could support the conclusion that "loss of Cx36 resulted in a quantitative defect in the formation of electrical synapse density complex"?

      The loss of electrical synapse density proteins is shown by these immunostaining comparisons. Functional measurements necessarily depend on the function of the electrical synapse itself, which is gone in the case of the Cx36 KO. It is not clear that a different functional measurement can be devised.

      Reviewer #3 (Recommendations for the authors):

      (1) It would be very helpful if there were page and line numbers on the manuscript.

      Line and page numbers have been added.

      (2) Typos in the 3rd paragraph, the sentence 'which is triggered by the influx of Calcium though non-synaptic NMDA...'

      Should it read '... Calcium THROUGH non-synaptic NMDA'?

      We have corrected this typo.

      (3) Figure 1B: please add a description of the top panels, 'Cx36 S293'.

      A description of the top panels has been added to the figure legend in line. Line 639.

      (4) Figure 1C: what do the arrows indicate?

      We apologize for the confusion. The arrows in the western blot indicate the position of the Cx35-V5-TurboID construct, which can be detected with streptavidin-HRP and the V5 antibody. We have added a description for these arrows to the figure legend. See line 641.

      (5) Related to the point in the 'Weakness', there are some descriptions of how well some of the gap junction-associated proteins colocalize with Cx36 in immunostaining. For example, 'In comparison to the scaffold proteins, however, the colocalization of Cx36 with each of these endocytic components, was clearly less frequent and more heterogenous, which appears to reflect different stages in the life cycle of Cx36' and 'All of these proteins showed considerable colocalization with Cx36 in AII amacrine cell dendrites'. It would be nice to see quantification data to support these claims.

      Thank you for this suggestion. We have added a colocalization analysis to figure 3 (C & D). We quantified the colocalization for the endocytosis proteins Eps15l1 and Hip1r. This quantification included a flipped control to rule out random overlap. For both proteins we confirmed true colocalization (Figure 3D).

      (6) In Figure 5B, it would be helpful if there were arrows or some kind in western blottings to indicate which bands are supposed to be the targeted proteins.

      We have added arrows in IP samples to indicate bands representing the corresponding protein.

      (7) In the sentence including 'for the PBM of Cx36, as it is the case for ZO-1', what is PBM?

      The PBM means PDZ binding motif. We have added an explanation for this abbreviation in line 244.

      (8) Please add a description of the Cx35b promoter construct in the Method section.

      The Cx35b Promoter is a 6.5kb fragment. We will make the clone available via Addgene to ensure that all details of the clone can be accessed via snapgene or alternative software.

    1. Author response:

      Reviewer #1:

      As this code was developed for use with a 4096 electrode array, it is important to be aware of double-counting neurons across the many electrodes. I understand that there are ways within the code to ensure that this does not happen, but care must be taken in two key areas. Firstly, action potentials traveling down axons will exhibit a triphasic waveform that is different from the biphasic waveform that appears near the cell body, but these two signals will still be from the same neuron (for example, see Litke et al., 2004 "What does the eye tell the brain: Development of a System for the Large-Scale Recording of Retinal Output Activity"; figure 14). I did not see anything that would directly address this situation, so it might be something for you to consider in updated versions of the code.

      We thank the reviewer for this insightful comment. We agree that signals from the same neuron may be collected by adjacent channels. To address this concern in our software, we plan to add a routine to SpikeMAP that allows users to discard nearby channels where spike count correlations exceed a pre-determined threshold. Because there is no ground truth to map individual cells to specific channels on the hd-MEA, a statistical approach is warranted.

      Secondly, spike shapes are known to change when firing rates are high, like in bursting neurons (Harris, K.D., Hirase, H., Leinekugel, X., Henze, D.A. & Buzsáki, G. Temporal interaction between single spikes and complex spike bursts in hippocampal pyramidal cells. Neuron 32, 141-149 (2001)). I did not see this addressed in the present version of the manuscript.

      This is a valid concern. To ensure that firing rates are relatively constant over the duration of a recording, we will plot average spike rates using rolling windows of a fixed duration. We expect that population firing rates will remain relatively stable across the duration of recordings.

      Another area for possible improvement would be to build on the excellent validation experiments you have already conducted with parvalbumin interneurons. Although it would take more work, similar experiments could be conducted for somatostatin and vasoactive intestinal peptide neurons against a background of excitatory neurons. These may have different spike profiles, but your success in distinguishing them can only be known if you validate against ground truth, like you did for the PV interneurons.

      We agree that further cycles of experiments could be performed with SOM, VIP, and other neuronal subtypes, and we hope that researchers will take advantage of SpikeMAP too. We will clarify this possibility in the Discussion section of the manuscript.

      Reviewer #2:

      Summary:

      While I find that the paper is nicely written and easy to follow, I find that the algorithmic part of the paper is not really new and should have been more carefully compared to existing solutions. While the GT recordings to assess the possibilities of a spike sorting tool to distinguish properly between excitatory and inhibitory neurons are interesting, spikeMAP does not seem to bring anything new to state-of-the-art solutions, and/or, at least, it would deserve to be properly benchmarked. I would suggest that the authors perform a more intensive comparison with existing spike sorters.

      We thank the reviewer for this comment. As detailed in Table 1, SpikeMAP is the only method that performs E/I sorting on large-scale multielectrodes, hence a comparison to competing methods is not currently possible. That being said, many of the pre-processing steps of SpikeMAP (Figure 1) involve methods that are already well-established in the literature and available under different packages. To highlight the contribution of our work and facilitate the adoption of SpikeMAP, we plan to provide a “modular” portion of SpikeMAP that is specialized in performing E/I sorting and can be added to the pipeline of other packages such as KiloSort more clearly.  This modularized version of the code will be shared freely along with the more complete version already available.

      Weaknesses:

      (1) The global workflow of spikeMAP, described in Figure 1, seems to be very similar to that of Hilgen et al. 2020 (10.1016/j.celrep.2017.02.038). Therefore, the first question is what is the rationale of reinventing the wheel, and not using tools that are doing something very similar (as mentioned by the authors themselves). I have a hard time, in general, believing that spikeMAP has something particularly special, given its Methods, compared to state-of-the-art spike sorters.

      We agree with the reviewers that there are indeed similarities between our work and the Hilgen et al. paper. However, while the latter employs optogenetics to stimulate neurons on a large-scale array, their technique does not specifically target inhibitory (e.g., PV) neurons as described in our work. We will clarify our paper accordingly.

      This is why, at the very least, the title of the paper is misleading, because it lets the reader think that the core of the paper will be about a new spike sorting pipeline. If this is the main message the authors want to convey, then I think that numerous validations/benchmarks are missing to assess first how good spikeMAP is, with reference to spike sorting in general, before deciding if this is indeed the right tool to discriminate excitatory vs inhibitory cells. The GT validation, while interesting, is not enough to entirely validate the paper. The details are a bit too scarce for me, or would deserve to be better explained (see other comments after).

      The title of our work will be edited to make it clear that while elements of the pipeline are well-established and available from other packages, we are the first to extend this pipeline to E/I sorting on large-scale arrays.

      (2) Regarding the putative location of the spikes, it has been shown that the center of mass, while easy to compute, is not the most accurate solution [Scopin et al, 2024, 10.1016/j.jneumeth.2024.110297]. For example, it has an intrinsic bias for finding positions within the boundaries of the electrodes, while some other methods, such as monopolar triangulation or grid-based convolution, might have better performances. Can the authors comment on the choice of the Center of Mass as a unique way to triangulate the sources?

      We agree with the reviewer and will point out limits of the center-of-mass algorithm based on the article of Scopin et al (2024). Further, we will augment the existing code library to include monopolar triangulation or grid-based convolution as options available to end-users.

      (3) Still in Figure 1, I am not sure I really see the point of Spline Interpolation. I see the point of such a smoothing, but the authors should demonstrate that it has a key impact on the distinction of Excitatory vs. Inhibitory cells. What is special about the value of 90kHz for a signal recorded at 18kHz? What is the gain with spline enhancement compared to without? Does such a value depend on the sampling rate, or is it a global optimum found by the authors?

      We will clarify these points. Specifically, the value of 90kHz was chosen because it provided a reasonable temporal characterization of spikes; this value, however, can be adjusted within the software based on user preference.

      (4) Figure 2 is not really clear, especially panel B. The choice of the time scale for the B panel might not be the most appropriate, and the legend filtered/unfiltered with a dot is not clear to me in Bii.

      We will re-check Fig.2B which seems to have error in rendering, likely due to conversion from its original format.

      In panel E, the authors are making two clusters with PCA projections on single waveforms. Does this mean that the PCA is only applied to the main waveforms, i.e. the ones obtained where the amplitudes are peaking the most? This is not really clear from the methods, but if this is the case, then this approach is a bit simplistic and does not really match state-of-the-art solutions. Spike waveforms are quite often, especially with such high-density arrays, covering multiple channels at once, and thus the extracellular patterns triggered by the single units on the MEA are spatio-temporal motifs occurring on several channels. This is why, in modern spike sorters, the information in a local neighbourhood is often kept to be projected, via PCA, on the lower-dimensional space before clustering. Information on a single channel only might not be informative enough to disambiguate sources. Can the authors comment on that, and what is the exact spatial resolution of the 3Brain device? The way the authors are performing the SVD should be clarified in the methods section. Is it on a single channel, and/or on multiple channels in a local neighbourhood?

      Here, the reviewer is suggesting that it may be better to perform PCA on several channels at once, since spikes can occur at several channels at the same time. To address this concern, small routine will be written allowing users to choose how many nearby channels to be selected for PCA.

      (5) About the isolation of the single units, here again, I think the manuscript lacks some technical details. The authors are saying that they are using a k-means cluster analysis with k=2. This means that the authors are explicitly looking for 2 clusters per electrode? If so, this is a really strong assumption that should not be held in the context of spike sorting, because, since it is a blind source separation technique, one cannot pre-determine in advance how many sources are present in the vicinity of a given electrode. While the illustration in Figure 2E is ok, there is no guarantee that one cannot find more clusters, so why this choice of k=2? Again, this is why most modern spike sorting pipelines do not rely on k-means, to avoid any hard-coded number of clusters. Can the authors comment on that?

      It is true that k=2 is a pre-determined choice in our software. In practice, we found that k>2 leads to poorly defined clusters. However, we will ensure that this parameter can be adjusted in the software. Furthermore, if the user chooses not to pre-define this value, we will provide the option to use a Calinski-Harabasz criterion to select k.

      (6) I'm surprised by the linear decay of the maximal amplitude as a function of the distance from the soma, as shown in Figure 2H. Is it really what should be expected? Based on the properties of the extracellular media, shouldn't we expect a power law for the decay of the amplitude? This is strange that up to 100um away from the soma, the max amplitude only dropped from 260 to 240 uV. Can the authors comment on that? It would be interesting to plot that for all neurons recorded, in a normed manner V/max(V) as function of distances, to see what the curve looks like.

      We share the reviewer’s concern and will add results that include a population of neurons to assess the robustness of this phenomenon.

      (7) In Figure 3A, it seems that the total number of cells is rather low for such a large number of electrodes. What are the quality criteria that are used to keep these cells? Did the authors exclude some cells from the analysis, and if yes, what are the quality criteria that are used to keep cells? If no criteria are used (because none are mentioned in the Methods), then how come so few cells are detected, and can the authors convince us that these neurons are indeed "clean" units (RPVs, SNRs, ...)?

      We applied stringent criteria to exclude cells, and we will revise the main text to be clear about these criteria, which include a minimum spike rate and the use of LDA to separate out PCA clusters. For the cells that were retained, we will include SNR estimates.

      (8) Still in Figure 3A, it looks like there is a bias to find inhibitory cells at the borders, since they do not appear to be uniformly distributed over the MEA. Can the authors comment on that? What would be the explanation for such a behaviour? It would be interesting to see some macroscopic quantities on Excitatory/Inhibitory cells, such as mean firing rates, averaged SNRs... Because again, in Figure 3C, it is not clear to me that the firing rates of inhibitory cells are higher than Excitatory ones, whilst they should be in theory.       

      We will include a comparison of firing rates for E and I neurons. It is possible that I cells are located at the border of the MEA due to the site of injections of the viral vector, and not because of an anatomical clustering of I cells per se. We will clarify the text accordingly.

      (9) For Figure 3 in general, I would have performed an exhaustive comparison of putative cells found by spikeMAP and other sorters. More precisely, I think that to prove the point that spikeMAP is indeed bringing something new to the field of spike sorting, the authors should have compared the performances of various spike sorters to discriminate Exc vs Inh cells based on their ground truth recordings. For example, either using Kilosort [Pachitariu et al, 2024, 10.1038/s41592-024-02232-7], or some other sorters that might be working with such large high-density data [Yger et al, 2018, 10.7554/eLife.34518].

      As mentioned previously, Kilosort and related approaches do not address the problem of E/I identification (see Table 1). However, they do have pre-processing steps in common with SpikeMAP. We will add some specific comparison points – for instance, the use of k-means and PCA (which is more common across packages) and the use of cubic spline interpolation (which is less common). Further, we will provide a stand-alone E/I sorting module that can be added to the pipeline of other packages, so that users can use this functionality without having to migrate their entire analysis.

      (10) Figure 4 has a big issue, and I guess the panels A and B should be redrawn. I don't understand what the red rectangle is displaying.

      We apologize for this issue. It seems there was a rendering problem when converting the figure from its original format. We will address this issue in the revised version of the manuscript.

      (11) I understand that Figure 4 is only one example, but I have a hard time understanding from the manuscript how many slices/mice were used to obtain the GT data? I guess the manuscript could be enhanced by turning the data into an open-access dataset, but then some clarification is needed. How many flashes/animals/slices are we talking about? Maybe this should be illustrated in Figure 4, if this figure is devoted to the introduction of the GT data.

      We will mention how many flashes/animals/slices were employed in the GT data and provide open access to these data.

      (12) While there is no doubt that GT data as the ones recorded here by the authors are the most interesting data from a validation point of view, the pretty low yield of such experiments should not discourage the use of artificially generated recordings such as the ones made in [Buccino et al, 2020, 10.1007/s12021-020-09467-7] or even recently in [Laquitaine et al, 2024, 10.1101/2024.12.04.626805v1]. In these papers, the authors have putative waveforms/firing rate patterns for excitatory and inhibitory cells, and thus, the authors could test how good they are in discriminating the two subtypes.

      We thank the reviewer for the suggestion that SpikeMAP could be tested on artificially generated spike trains and will add the citation of the two papers mentioned. We hope future efforts will employ SpikeMAP on both synthetic and experimental data to explore the neural dynamics of E and I neurons in healthy and pathological circuits of the brain.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public reviews:

      Concerning the grounding in experimental phenomenology, it would be beneficial to identify specific experiments to strengthen the model. In particular, what evidence supports reversible beta cell inactivation? This could potentially be tested in mice, for instance, by using an inducible beta cell reporter, treating the animals with high glucose levels, and then measuring the phenotype of the marked cells. Such experiments, if they exist, would make the motivation for the model more compelling.

      There is some direct evidence of reversible beta cell inactivation in rodent / in vitro models. We had already mentioned this in the discussion, but we have added some text emphasizing / clarifying the role of this evidence (lines 359–362).

      Others have also argued that some analyses of insulin treatment in conventional T2D, which has a stronger effect in patients with higher glucose before treatment, provides indirect evidence of reversal of glucotoxicity. We have also mentioned this in the revised paper (lines 284–285).

      For quantitative experiments, the authors should be more specific about the features of beta cell dysfunction in KPD. Does the dysfunction manifest in fasting glucose, glycemic responses, or both? Is there a ”pre-KPD” condition? What is known about the disease’s timescale?

      The answers to some of these questions are not entirely clear—patients present with very high glucose, and thus must be treated immediately. Due to a lack of antecedent data it is not entirely clear what the pre-KPD condition is, but there is some evidence that KPD is at least not preceded by diabetes symptoms. This point is already noted in the introduction of the paper and Table 1. However, we have added a small note clarifying that this does not rule out mild hyperglycemia, as in prediabetes (and indeed, as our model might predict) (lines 76–77). Similarly, due to the necessity of immediate insulin treatment, it is not clear from existing data whether the disorder manifests more strongly in fasting glucose or glucose response, although it is likely in both. (We might infer this since continuous insulin treatment does not produce fasting hypoglycemia, and the complete lack of insulin response to glucose shortly after presentation should produce a strong effect in glycemic response.) We believe our existing description of KPD lists all of the relevant timescales, however we have also slightly clarified this description in response to the first referee’s comments (lines 66–73, 83)

      The authors should also consider whether their model could apply to other conditions besides KPD. For example, the phenomenology seems similar to the ”honeymoon” phase of T1D. Making a strong case for the model in this scenario would be fascinating.

      This is an excellent idea, which had not occurred to us. We have briefly discussed this possibility in the remission (lines 281–291), but plan to analyze it in more detail in a future manuscript.

      Reviewer #1 (Recommendations for the author):

      Whenever simulation results are presented, parameter values should be specified right there in the figure captions.

      We have added the values of glucotoxicity parameters to the caption of Figure 2. In other figures, we have explicitly mentioned which panel of Figure 2 the parameters are taken from. Description of the non-glucotoxicity parameters is a bit cumbersome (there are a lot of them, but our model of fast dynamics is slightly different from Topp et al. so it does not suffice to simply say we took their parameters) so we have referred the reader to the Materials and Methods for those.

      I was confused by the language in Figure 4. Could the authors clarify whether they argue that: (1) the observed KPD behaviour is the result of the system switching from one stable state to another when perturbed with high glucose intake? (2) the observed KPD behaviour is the result of one of the steady states disappearing with high glucose intake?

      What we mean to say is that during a period of high sugar intake or exogeneous insulin treatment, one of the fixed points is temporarily removed—it is still a fixed point of the “normal” dynamics, but not a fixed point of the dynamics with the external condition added. Since when glucose (insulin) intake is high enough, only the low (high)-β fixed point is present, under one of these conditions the dynamics flow toward that fixed point. When the external influx of glucose/insulin is turned off, both fixed points are present again—but if the dynamics have moved sufficiently far during the external forcing, the fixed point they end up in will have switched from one fixed point to the other. We have edited the text to make this clearer (lines 153–185). Do note, however, that in response to both referee’s comments (see below), Figures 3 and 4 have been replaced with more illuminating ones. This specific point is now addressed by the new Figure 3.

      The adaptation of the prefactor ’c’ was confusing to me. I think I understood it in the end, but it sounded like, ”here’s a complication, but we don’t explain it because it doesn’t really matter”. I think the authors can explain this better (or potentially leave out the complication with ’c’ altogether?).

      Indeed, the existence of an adaptation mechanism is important for our overall picture of diabetes pathogenesis, but not for many of our analyses, which assume prediabetes. Nonetheless, we agree that the current explanation of it’s role is confusing because of its vagueness. We have elaborated the explanation of the type of dynamics we assume for c, adding an equation for its dynamics to the “Model” section of the Materials and methods, explained in lines 456–465. We have also amended Figure 1 to note this compensation.

      I expect the main impact of this work will be to get clinical practitioners and biomedical researchers interested in the intermediate timescale dynamics of β-cells and take seriously the possibility that reversible inactive states might exist. But this impact will only be achieved when the results are clearly and easily understandable by an audience that is not familiar with mathematical modelling. I personally found it difficult to understand what I was supposed to see in the figures at first glance. Yes, the subtle points are indeed explained in the figure captions, but it might be advantageous to make the points visually so clear that a caption is barely needed. For example, when claiming that a change in parameters leads to bistability, why not plot the steady state values as a function of that parameter instead of showing curves from which one has to infer a steady state?

      I would advise the authors to reconsider their visual presentation by, e.g., presenting the figures to clinical practitioners or biomedical researchers with just a caption title to test whether such an audience can decipher the point of the figure! This is of course merely a personal suggestion that the authors may decide to ignore. I am making this suggestion only because I believe in the quality of this work and that improving the clarity of the figures and the ease with which one can understand the main points would potentially lead to a much larger impact on the presented results.

      This is a very good point. We have made several changes. Firstly, we have added smaller panels showing the dynamics of β to Figure 2; previously, the reader had to infer what was happening to β from G(t). Secondly, we have completely replaced the two figures showing dβ/dt, and requiring the reader to infer the fixed points of β, with bifurcation diagrams that simply show the fixed points of G and β. The new figures show through bifurcation diagrams how there are multiple fixed points in KPD, how glucose or insulin treatment force the switching of fixed points, and how the presence of bistability depends on the rate of glucotoxicity. (These new figures are Fig. 3–5 in the revised manuscript.)

      Could the authors explicitly point out what could be learned from their work for the clinic? At the moment treatment consists of giving insulin to patients. If I understand correctly, nothing about the current treatment would change if the model is correct. Is there maybe something more subtle that could be relevant to devising an optimal treatment for KPD patients?

      This is another very good point. We have added a new figure (Fig. 7) in our results section showing how this model, or one like it, can be analyzed to suggest an insulin treatment schedule (once parameters for an individual patient can be measured), and added some discussion of this point (lines 224–240) as well as lifestyle changes our model might suggest for KPD patients to the discussion (lines 413–425).

      Similarly, could the authors explicitly point out how their model could be experimentally tested? For example, are the functions f(G) and g(G) experimentally accessible? Related to that, presumably the shape of those functions matters to reproduce the observed behaviour. Could the authors comment on that / analyze how reproducing the observed behaviour puts constraints on the shape of the used functions and chosen parameter values?

      g(G) has not been carefully measured in cellular data, however it could be in more quantative versions of existing experiments. Further, our model indeed requires some general features for the forms of f(G) and g(G) to produce KPD-like phenomena. We have added some comment on this to the discussion section of the revised manuscript (lines 367–372).

      Could the authors explicitly spell out which parameters they think differ between individual KPD patients, and which parameters differ between KPD patients and ’regular’ type 2 diabetics?

      In general we expect all parameters should vary both among KPD patients and between KPD / “conventional” T2D. The primary parameter determining whether KPD and conventional T2D, is seen, however, is the ratio kIN/kRE. We have elaborated on both these points in the revised mansuscript. (Lines 186–192, 250–257.)

      I was confused about the timescale of remission. At one point the authors write “KPD patients can often achieve partial remission: after a few weeks or months of treatment with insulin” but later the authors state that “the duration of the remission varies from 6 months to 10 years”.

      The former timescale is the typical timescale achieve remission. After remission is reached, however, it may or may not last—patients may experience a relapse, where their condition worsens and they again require insulin. We have edited the text to clarify this distinction (lines 66–73).

      When the authors talk about intermediate timescales in the main text could they specify an actual unit of time, such as days, weeks, or months as it would relate to the rate constants in their model for those transitions?

      We have done so (lines 86–87, figure 1 caption, figure 2 caption). Getting KPD-like behavior requires (at high glucose) the deactivation process to be somewhat faster than the reactivation process, so the relevant scales are between weeks (reactivation) and days (deactivation at high G).

      The authors state ”Our simple model of β-cell adaptation also neglects the known hyperglycemiainduced leftward shift in the insulin secretion curve f(G) in Eq. (2)) ”. This seems an important consideration. Could the authors comment on why they did not model this shift, and/or explicitly discuss how including it is expected to change the model dynamics?

      We agree that this process seems potentially relevant, as it seems to happen on a relatively fast timescale compared to glucose-induced β-cell death. It is, however, not so well characterized quantitatively that including it is a simple matter of putting in known values—we would be making assumptions that would complicate the interpretation of our results.

      It is clear that this effect will need to be considered when quanitatively modelling real patient data. However, it is also straightforward to argue that this effect by itself cannot produce KPD-like symptoms, and will only tend to reduce the rate of glucotoxocity necessary to produce bibstability. We have added a discussion of this in the revisions (lines 307–315). We have also, in general, expanded the discussion of the effects that each neglected detail we have mentioned is expected to have (lines 292–315).

      The authors end with a statement that their results may “contribute to explanation of other observations that involve rapid onset or remission of diabetes-like phenomena, such as during pregnancy or for patients on very low calorie diets.” Could the authors spell out exactly how their model potentially relates to these phenomena?

      Our thinking is that, even when another direct cause, such as loss of insulin resistance, is implicated in reversal of diabetes, some portion of the effect may be explained by reversal of glucotoxicity. This is indeed at this point just a hypothesis, but we have expanded on it briefly in the revision. (Lines 281–291.)

      Minor typos:

      In Figure 2.D the last zero of 200 on the axis was cut off.

      Line 359 - there is a missing word ”in the analysis”.

      We have fixed these typos, thanks.

      Reviewer #2 (Recommendations for the author):

      The manuscript could be significantly improved in two key areas: the presentation of the analysis, and the relation with experimental phenomenology.

      Regarding the analysis presentation, the figures could be substantially enhanced with minimal effort from the authors. At present, they are sparse, lack legends, and offer only basic analysis. The authors should consider presenting, for example, a bifurcation diagram for beta cell mass and fasting glucose levels as a function of kIN, and how insulin sensitivity and average meal intake modulate this relationship. The goal should be to present clear, testable predictions in an intuitive manner. Currently, the specific testable predictions of the model are unclear.

      The response to this question is copied from the reponses to related questions from the first referee.

      This is a very good point. We have made several changes. Firstly, we have added smaller panels showing the dynamics of β to Figure 2; previously, the reader thad to infer what was happening to β from G(t). Secondly, we have completely replaced the two figures showing dβ/dt, and requiring the reader to infer the fixed points of β, with bifurcation diagrams that simply show the fixed points of G and β. The new figures show through bifurcation diagrams how there are multiple fixed points in KPD, how glucose or insulin treatment force the switching of fixed points, and how the presence of bistability depends on the rate of glucotoxicity. We have also supplemented our phase diagram that shows the effects of SI and the total beta cell population with bifurcation diagrams showing β as SI and βTOT are varied. (These new figures are Fig. 3–5 in the present manuscript.) Finally, we have added another figure analyzing the model’s predictions for the optimal insulin treatment and the resulting time needed to achieve remission (Fig. 7)

    1. Author response:

      The following is the authors’ response to the previous reviews.

      Reviewer 1:

      The authors frequently refer to their predictions and theory as being causal, both in the manuscript and in their response to reviewers. However, causal inference requires careful experimental design, not just statistical prediction. For example, the claim that "algorithmic differences between those with BPD and matched healthy controls" are "causal" in my opinion is not warranted by the data, as the study does not employ experimental manipulations or interventions which might predictably affect parameter values. Even if model parameters can be seen as valid proxies to latent mechanisms, this does not automatically mean that such mechanisms cause the clinical distinction between BPD and CON, they could plausibly also refer to the effects of therapy or medication. I recommend that such causal language, also implicit to expressions like "parameter influences on explicit intentional attributions", is toned down throughout the manuscript.

      Thankyou for this chance to be clearer in the language. Our models and paradigm introduce a from of temporal causality, given that latent parameter distributions are directly influenced by latent parameter estimates at a previous point in time (self-uncertainty and other uncertainty directly governs social contagion). Nevertheless, we appreciate the reviewers perspective and have now toned down the language to reflect this.

      Abstract:

      ‘Our model makes clear predictions about the mechanisms of social information generalisation concerning both joint and individual reward.’

      Discussion:

      ‘We can simulate this by modelling a framework that incorporates priors based on both self and a strong memory impression of a notional other (Figure S3).’

      ‘We note a strength of this work is the use of model comparison to understand algorithmic differences between those with BPD and matched healthy controls.’

      Although the authors have now much clearer outlined the stuy's aims, there still is a lack of clarity with respect to the authors' specific hypotheses. I understand that their primary predictions about disruptions to self-other generalisation processes underlying BPD are embedded in the four main models that are tested, but it is still unclear what specific hypotheses the authors had about group differences with respect to the tested models. I recommend the authors specify this in the introduction rather than refering to prior work where the same hypotheses may have been mentioned.

      Thankyou for this further critique which has enabled us to more cleary refine our introduction. We have now edited our introduction to be more direct about our hypotheses, that these hypotheses are instantiated into formal models, and what our predictions were. We have also included a small section on how previous predictions from other computational assessments of BPD link to our exploratory work, and highlighted this throughout the manuscript.

      ‘This paper seeks to address this gap by testing explicitly how disruptions in self-other generalization processes may underpin interpersonal disruptions observed in BPD. Specifically, our hypotheses were: (i) healthy controls will demonstrate evidence for both self-insertion and social contagion, integrating self and other information during interpersonal learning; and (ii) individuals with BPD will exhibit diminished self-other integration, reflected in stronger evidence for observations that assume distinct self-other representations.

      We tested these hypotheses by designing a dynamic, sequential, three-phase Social Value Orientation (Murphy & Ackerman, 2014) paradigm—the Intentions Game—that would provide behavioural signatures assessing whether BPD differed from healthy controls in these generalization processes (Figure 1A). We coupled this paradigm with a lattice of models (M1-M4) that distinguish between self-insertion and social contagion (Figure 1B), and performed model comparison:

      M1. Both self-to-other (self-insertion) and other-to-self (social contagion) occur before and after learning M2. Self-to-other transfer only occurs M3. Other-to-self transfer only occurs M4. Neither transfer process, suggesting distinct self-other representations

      We additionally ran exploratory analysis of parameter differences and model predictions between groups following from prior work demonstrating changes in prosociality (Hula et al., 2018), social concern (Henco et al., 2020), belief stability (Story et al., 2024a), and belief updating (Story, 2024b) in BPD to understand whether discrepancies in self-other generalisation influences observational learning. By clearly articulating our hypotheses, we aim to clarify the theoretical contribution of our findings to existing literature on social learning, BPD, and computational psychiatry.’

      Caveats should also be added about the exploratory nature of the many parameter group comparisons. If there are any predictions about group differences that can be made based on prior literature, the authors should make such links clear.

      Thank you for this. We have now included caveats in the text to highlight the exploratory nature of these group comparisons, and added direct links to relevant literature where able:

      Introduction

      ‘We additionally ran exploratory analysis of parameter differences and model predictions between groups following from prior work demonstrating changes in prosociality (Hula et al., 2018), social concern (Henco et al., 2020), belief stability (Story et al., 2024a), and belief updating (Story, 2024b) in BPD to understand whether discrepancies in self-other generalisation influences observational learning. By clearly articulating our hypotheses, we aim to clarify the theoretical contribution of our findings to existing literature on social learning, BPD, and computational psychiatry.’

      Model Comparison

      ‘We found that CON participants were best fit at the group level by M1 (Frequency = 0.59, Exceedance Probability = 0.98), whereas BPD participants were best fit by M4 (Frequency = 0.54, Exceedance Probability = 0.86; Figure 2A). This suggests CON participants are best fit by a model that fully integrates self and other when learning, whereas those with BPD are best explained as holding disintegrated and separate representations of self and other that do not transfer information back and forth.

      We first explore parameters between separate fits (see Methods). Later, in order to assuage concerns about drawing inferences from different models, we examined the relationships between the relevant parameters when we forced all participants to be fit to each of the models (in a hierarchical manner, separated by group). In sum, our model comparison is supported by convergence in parameter values when comparisons are meaningful (see Supplementary Materials). We refer to both types of analysis below.’

      Phase 2 analysis

      ‘Prior work predicts those with BPD should focus more intently on public social information, rather than private information that only concerns one party (Henco et al., 2020). In BPD participants, only new beliefs about the relative reward preferences – mutual outcomes for both player - of partners differed (see Fig 2E): new median priors were larger than median preferences in phase 1 (mean = -0.47; = -6.10, 95%HDI: -7.60, -4.60).’

      ‘Models of moral preference learning (Story et al., 2024) predicts that BPD vs non-BPD participants have more rigid beliefs about their partners. We found that BPD participants were equally flexible around their prior beliefs about a partner’s relative reward preferences (= -1.60, 95%HDI: -3.42, 0.23), and were less flexible around their beliefs about a partner’s absolute reward preferences (=-4.09, 95%HDI: -5.37, -2.80), versus CON (Figure 2B).’

      Phase 3 analysis

      ‘Prior work predicts that human economic preferences are shaped by observation (Panizza, et al., 2021; Suzuki et al. 2016; Yu et al, 2021), although little-to-no work has examined whether contagion differs for relative vs. absolute preferences. Associative models predict that social contagion may be exaggerated in BPD (Ereira et al., 2018).… As a whole, humans are more susceptible to changing relative preferences more than selfish, absolute reward preferences, and this is disrupted in BPD.’

      Psychometric and Intentional Attribution analysis

      ‘Childhood trauma, persecution, and poor mentalising in BPD are all predicted to disrupt one’s ability to change (Fonagy & Luyten, 2009).’

      ‘Prior work has also predicted that partner-participant preference disparity influences mental state attributions (Barnby et al., 2022; Panizza et al., 2021).’

      I'm not sure I understand why the authors, after adding multiple comparison correction, now list two kinds of p-values. To me, this is misleading and precludes the point of multiple comparison corrections, I therefore recommend they report the FDR-adjusted p-values only. Likewise, if a corrected p-value is greater than 0.05 this should not be interpreted as a result.

      We have now adjusted the exploratory results to include only the FDR corrected values in the text.

      ‘We assessed conditional psychometric associations with social contagion under the assumption of M3 for all participants. We conducted partial correlation analyses to estimate relationships conditional on all other associations and retained all that survived bootstrapping (5000 reps), permutation testing (5000 reps), and subsequent FDR correction. When not controlled for group status, RGPTSB and CTQ scores were both moderately associated with MZQ scores (RGPTSB r = 0.41, 95%CI: 0.23, 0.60, p[fdr]=0.043; CTQ r = 0.354 95%CI: 0.13, 0.56, p[fdr]=0.02). This was not affected by group correction. CTQ scores were moderately and negatively associated with shifts in individualistic reward preferences (; r = -0.25, 95%CI: -0.46, -0.04, p[fdr]=0.03). This was not affected by group correction. MZQ scores were in turn moderately and negatively associated with shifts in prosocial-competitive preferences () between phase 1 and 3 (r = -0.26, 95%CI: -0.46, -0.06, p[fdr]=0.03). This was diminished when controlled for group status (r = 0.13, 95%CI: -0.34, 0.08, p[fdr]=0.20). Together this provides some evidence that self-reported trauma and self-reported mentalising influence social contagion (Fig S11). Social contagion under M3 was highly correlated with contagion under M1 demonstrating parsimony of outcomes across models (Fig S12).

      Prior work has predicted that partner-participant preference disparity influences mental state attributions (Barnby et al., 2022; Panizza et al., 2021). We tested parameter influences on explicit intentional attributions in Phase 2 while controlling for group status. Attributions included the degree to which they believed their partner was motived by harmful intent (HI) and self-interest (SI). According with prior work (Barnby et al., 2022), greater disparity of absolute preferences before learning was associated on a trend level with reduced attributions of SI (<= -0.23, p[fdr]=0.08), and greater disparity of relative preferences before learning exaggerated attributions of HI = 0.21, p[fdr]=0.08), but did not survive correction (Figure S4B). This is likely due to partners being significantly less individualistic and prosocial on average compared to participants (= -5.50, 95%HDI: -7.60, -3.60; = 12, 95%HDI: 9.70, 14.00); partners are recognised as less selfish and more competitive.’

      Can the authors please elaborate why the algorithm proposed to be employed by BPD is more 'entropic', especially given both their self-priors and posteriors about partners' preferences tended to be more precise than the ones used by CON? As far as I understand, there's nothing in the data to suggest BPD predictions should be more uncertain. In fact, this leads me to wonder, similarly to what another reviewer has already suggested, whether BPD participants generate self-referential priors over others in the same way CON participants do, they are just less favourable (i.e., in relation to oneself, but always less prosocial) - I think there is currently no model that would incorporate this possibility? It should at least be possible to explore this by checking if there is any statistical relationship between the estimated θ_ppt^m and 〖p(θ〗_par |D^0).

      Thank you for this opportunity to be clearer in our wording. We belief the reviewer is referring to this line in the discussion: ‘In either case, the algorithm underlying the computational goal for BPD participants is far higher in entropy and emphasises a less stable or reliable process of inference.’

      We note in the revised Figure 2 panel E and in the results that those with BPD under M4 show insertion along absolute reward (they still expect diminished selfishness in others), but neutral priors over relative reward (around 0, suggesting expectations of neither prosocial or competitive tendencies of others). Thus, θ_ppt^m (self preference) and θ_par^m (other preference) are tightly associated for absolute, but not relative reward.

      In our wording, we meant that whether under model M4 or M1, those with BPD either show a neutral prior over relative reward (M4) or a prior with large variance over relative reward (M1), showing expectations of difference between themselves and their partner. In both cases, expectation about a partner’s absolute reward preferences is diminished vs. CON participants. We have strengthened our language in the discussion to clarify this:

      ‘In either case, the algorithm underlying the computational goal for BPD participants is far higher in uncertainty, whether through a neutral central tendency (M4) or large variance (M1) prior over relative reward in phase 2, and emphasises a less certain and reliable expectation about others.’

      To note, social contagion under M3 was highly correlated with contagion under M1 (see Fig S11). This provides some preliminary evidence that trauma impacts beliefs about individualism directly, whereas trauma and persecutory beliefs impact beliefs about prosociality through impaired trait mentalising" - I don't understand what the authors mean by this, can they please elaborate and add some explanation to the main text?

      We have now clarified this in the text:

      ‘Together this provides some evidence that self-reported trauma and self-reported mentalising influence social contagion (Fig S11). Social contagion under M3 was highly correlated with contagion under M1 demonstrating parsimony of outcomes across models (Fig S12).’

      I noted that at least some of the newly added references have not been added to the bibliography (e.g., Hitchcock et al. 2022).

      Thankyou for noticing this omission. We have now ensured all cited works are in the reference list.

      Reviewer 2:

      The paper is not based on specific empirical hypotheses formulated at the outset, but, rather, it uses an exploratory approach. Indeed, the task is not chosen in order to tackle specific empirical hypotheses. This, in my view, is a limitation since the introduction reads a bit vague and it is not always clear which gaps in the literature the paper aims to fill. As a further consequence, it is not always clear how the findings speak to previous theories on the topic.’

      As I wrote in the public review, however, I believe that an important limitation of this work is that it was not based on testing specific empirical hypotheses formulated at the outset, and on selecting the experimental paradigm accordingly. This is a limitation because it is not always clear which gaps in the literature the paper aims to fill. As a consequence, although it has improved substantially compared to the previous version, the introduction remains a bit vague. As a further consequence, it is not always clear how the findings speak to previous theories on the topic. Still, despite this limitation, the paper has many strengths, and I believe it is now ready for publication

      Thank you for this further critique. We appreciate your appraisal that the work has improved substantially and is ready for publication. We nevertheless have opted to clarify our introduction and aprior predictions throughout the manuscript (please see response to Reviewer 1).

      Reviewer 3:

      Although the authors note that their approach makes "clear and transparent a priori predictions," the paper could be improved by providing a clear and consolidated statement of these predictions so that the results could be interpreted vis-a-vis any a priori hypotheses.

      In line with comments from both Reviewer 1 and 2, we have clarified our introduction to make it clear what our aprior predictions and hypotheses are about our core aims and exploratory analyses (see response to Reviewer 1).

      The approach of using a partial correlation network with bootstrapping (and permutation) was interesting, but the logic of the analysis was not clearly stated. In particular, there are large group (Table 1: CON vs. BPD) differences in the measures introduced into this network. As a result, it is hard to understand whether any partial correlations are driven primarily by mean differences in severity (correlations tend to be inflated in extreme groups designs due to the absence of observation in middle of scales forming each bivariate distribution). I would have found these exploratory analyses more revealing if group membership was controlled for.

      Thank you for this chance to be clearer in our methods. We have now written a more direct exposition of this exploratory method:

      ‘Exploratory Network Analysis

      To understand the individual differences of trait attributes (MZQ, RGPTSB, CTQ) with other-to-self information transfer () across the entire sample we performed a network analysis (Borsboom, 2021). Network analysis allows for conditional associations between variables to be estimated; each association is controlled for by all other associations in the network. It also allows for visual inspection of the conditional relationships to get an intuition for how variables are interrelated as a whole (see Fig S11). We implemented network analysis with the bootNet package in r using the ‘estimateNetwork’ function with partial correlations (Epskamp, Borsboom & Fried, 2018). To assess the stability of the partial correlations we further implemented bootstrap resampling with 5000 repetitions using the ‘bootnet’ function. We then additionally shuffled the data and refitted the network 5000 times to determine a p<sub>permuted</sub> value; this indicates the probability that a conditional relationship in the original network was within the null distribution of each conditional relationship. We then performed False Discovery Rate correction on the resulting p-values. We additionally controlled for group status for all variables in a supplementary analysis (Table S4).’

      We have also further corrected for group status and reported these results as a supplementary table, and also within the main text alongside the main results. We have opted to relegate Figure 4 into a supplementary figure to make the text clearer.

      ‘We explored conditional psychometric associations with social contagion under the assumption of M3 for all participants (where everyone is able to be influenced by their partner). We conducted partial correlation analyses to estimate relationships conditional on all other associations and retained all that survived bootstrapping (5000 reps), permutation testing (5000 reps), and subsequent FDR correction. When not controlled for group status, RGPTSB and CTQ scores were both moderately associated with MZQ scores (RGPTSB r = 0.41, 95%CI: 0.23, 0.60, p[fdr]=0.043; CTQ r = 0.354 95%CI: 0.13, 0.56, p[fdr]=0.02). This was not affected by group correction. CTQ scores were moderately and negatively associated with shifts in individualistic reward preferences (; r = -0.25, 95%CI: -0.46, -0.04, p[fdr]=0.03). This was not affected by group correction. MZQ scores were in turn moderately and negatively associated with shifts in prosocial-competitive preferences () between phase 1 and 3 (r = -0.26, 95%CI: -0.46, -0.06, p[fdr]=0.03). This was diminished when controlled for group status (r = 0.13, 95%CI: -0.34, 0.08, p[fdr]=0.20). Together this provides some evidence that self-reported trauma and self-reported mentalising influence social contagion (Fig S11). Social contagion under M3 was highly correlated with contagion under M1 demonstrating parsimony of outcomes across models (Fig S12).’

      Discussion first para: "effected -> affected"

      Thanks for spotting this. We have now changed it.

      Add "s" to "participant: "Notably, despite differing strategies, those with BPD achieved similar accuracy to CON participant."

      We have now changed this.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Firstly, we would like to thank the reviewers for their time and efforts in critiquing this paper. The reviewers addressed our study to be significant, but also presented great suggestions to improve our manuscript, mainly the comparison of mRNA and eRNA for predicting subtype specificity and prognosis, the integration with independent validation datasets, etc. Our preliminary analyses showed that our classified mRNAs can predict subtypes better which is not surprising, as these subtypes were initially discovered using mRNA differences. Hence, we employed a novel approach of associating these classified mRNA and eRNA with distance and identified 71% classified eRNAs are associated with classified mRNAs. We also propose to integrate the datasets with PEGS (Briggs et al 2021) to achieve better mRNA-eRNA association and Perturb-seq validated regions to achieve functional validation of the eRNA loci. We believe that our potential improved integrative analyses will improve the novelty and power of our findings, as this is an unique approach which is employed in patient samples-based high resolution eRNA atlas for the first time. We have addressed most of the other major and minor comments of the reviewers and have provided the preliminary revised manuscript.

      Reviewer #1

      Evidence, reproducibility and clarity

      Summary<br /> This study assesses eRNA activity as a classifier of different subtypes of breast cancer and as a prognosis tool. The authors take advantage of previously published RNA-seq data from human breast cancer samples and assess it more deeply, considering the cancer subtype of the patient. They then apply two machine learning approaches to find which eRNAs can classify the different breast cancer subtypes. While they do not find any eRNA that helps distinguish ductal vs. lobular breast cancers, their approach helps identify eRNAs that distinguish luminal A, B, basal and Her2+ cancers. They also use motif enrichment analysis and ChIP-seq datasets to characterize the eRNA regions further. Through this analysis, they observe that those eRNAs where ER binds strongest are associated with a poor patient prognosis.

      Major comments:

      Part of the rationale for this study is the previous observation that eRNAs are less associated with the prognosis of breast cancer patients in comparison to mRNAs and they claim that the high heterogeneity between breast cancer subtypes would mask the importance of eRNAs. In this study, the authors solely focus on eRNAs as a classification of breast cancer subtypes and prognostic tool and do not answer whether eRNAs or mRNAs are a better predictor of cancer subtypes and of prognosis. Since the answer and the tools are already in their hands, it would be important to also see a comparative analysis where they assess which of the two (mRNAs or eRNAs) is a better predictor.

      Response: We appreciate the reviewer for this valid point about comparing the prognostic eRNAs vs mRNAs. Our study doesn’t imply that eRNA markers are better than mRNAs in predicting subtype specificity and/or prognosis, but our motivation for working with eRNAs is that they can be used to define relevant transcriptional regulators and prognosis generally if they are subtyped. As the molecular subtypes in breast cancers were established using gene expression datasets, mRNAs would perform better as predictors of subtypes and or prognosis. However, identifying regulatory networks with emphasis on transcription factor binding motif analyses is not achievable using mRNA datasets. Analysing the active enhancer regions with eRNA transcription will provide high resolution landscape of TF and epigenetic networks. These sorts of analyses usually require ATAC-seq or H3K27ac datasets, but these assays need fresh frozen tissue material and laborious experimental designs compared to RNA-seq datasets. Furthermore, eRNA-transcribing enhancers represent highly active enhancers, while ATAC and H3K27ac datasets can identify all enhancers, which can be inactive or poised, but captured due to the dynamic nature of enhancers. We demonstrate that traditional RNA-seq datasets mapped on active enhancer regions showing eRNA transcription would be sufficient to identify the highly active TF network and gene-enhancer regulatory frameworks in a subtype-specific manner, hence emphasising the potential of eRNA studies.

      Hence, the scope of our study is not to establish which RNA can predict subtype and survival, but to demonstrate the potential of studying eRNAs in patient samples using traditional RNA-seq assays. This study would be beneficial for epigenetics biologists of how enhancer transcription can be associated with gene regulation through deregulated transcription factor networks in patients. The above section had been included in the discussion in the revised manuscript.

      As the comparative analyses suggested by the reviewer will substantiate the potential of eRNAs being studied as cancer prognostic markers, we performed identical methodologies with our machine learning approaches on the published TCGA mRNA-seq datasets, identify the subtype-specific mRNAs as well as prognostic mRNAs and perform the comparative analyses of eRNAs and mRNAs. As we expected, mRNAs indeed perform better in associating with subtype specificity than eRNAs as we could identify more subtype-specific mRNAs with better statistics metrics. The results exhibit great separation across subtypes (Basal, Her2, LumA/B) as well as Ductal vs Lobular.

      We believe that eRNA and mRNA are complementary but not comparative to predict subtype-specific survival. To address this in the revised manuscript, we performed an initial selection of the eRNAs associated with their corresponding subtype-specific mRNAs within 50 kb distance which can be integrated with the above analyses, based on the suggestion from reviewer 3. In our preliminary analysis, around 71% of eRNAs are associated with the subtype-specific mRNAs and we also observed an observable separation of ductal and lobular subtypes using this method.

      Furthermore, we integrated our enhancer RNAs with the key enhancer regions which show significant impact on gene transcription, as shown in single cell CRISPRi screens (Perturb-seq) datasets derived from ATAC-matched H3K27ac datasets verified on one ER+ and one ER- breast cancer cell lines (Wang et al., Genome Biology 2025, https://genomebiology.biomedcentral.com/articles/10.1186/s13059-025-03474-0) . Our initial analyses identified at least 29 regions from the Perturb-seq datasets overlapping with 72 and 5 eRNAs of subtype classification and Her2 survival respectively.

      For the revised manuscript, we will perform the mRNA-eRNA association in a detailed manner and include the data. We will also employ our well-established tool for associating mRNAs and noncoding elements, Peak set Enrichment in Gene Sets (PEGS, Briggs et al., F1000 research, 2021 https://f1000research.com/articles/10-570/v2 ). We hypothesise that this will improve the power of the classification models used in the study and will also provide gene-enhancer RNA interaction landscape in patient samples for the first time. Furthermore, we will integrate the activity of these eRNA-mRNA pairs with chromatin accessibility and enhancer activity using ATAC-seq and H3K27ac ChIP-seq datasets to establish more robust active regulatory networks in patient samples. We will also perform motif analyses on the published ATAC-seq peaks (performed on TCGA-BRCA patient samples, Corces et al., 2018) close to the eRNA loci to identify the TF networks with better precision, hopefully unravelling novel and relevant subtype-specific TFs in an efficient manner, better than our original work. Furthermore, as an experimental functional validation of our classified eRNAs, we will investigate the regulatory effect of 29 Perturb-seq overlapped regions. Hence, our revised manuscript will potentially provide a comprehensive validated list of enhancer RNA regions which are highly active, actively transcribing, subtype and survival specific regulatory networks in breast cancer patients for the first time.

      The authors run the umaps of Fig. 1C only taking the predictor eRNAs. It is then somewhat expected to observe a separation. Coming from a single-cell omics field, what I would suggest is to take the eRNA loci and compute a umap with the highly variable regions, perform clustering on it and assess how the cancer subtypes are structured within the data. This would give a first overview of how much segregation and structure one can have with this data. Having a first step of data exploration would also strengthen the paper. If the authors have tried it, could the authors comment on it?

      Response: We appreciate the reviewer for sharing their experience from single cell omics analysis. In our case, following the scRNA like pipeline is not appropriate, given the focus of our study on identifying markers on the already annotated subtypes. Basically, we aim to assess the quality of the identified markers (the quality is quantified by the statistics provided for random forest classification), and we see that the data is well-separated in PCA using only PC1 and PC2. We showed the umap (using PC1 and PC2) for better visualization in the original manuscript and we included the PCA plots in the revised manuscript.

      'neither measures could classify any distinct eRNAs for invasive ductal vs lobular cancer samples' S1B. Just by eye, I can see a potential enrichment of ductal on the left and on the right while lobular stays in the center. This suggests to me that, while perhaps each eRNA alone does not have the power to classify the lobular vs ductal subtype, perhaps there is a difference - which could result from a cooperative model of eRNA influence - that would need further exploration. Would a PCA also show enrichments of ductal vs. lobular in specific parts of the plot? It may be worth exploring the PC loadings to see which eRNAs could play an influence. In this regard, a more unbiased visual examination, as suggested in my previous point, could help clarify whether there could be an association of certain eRNAs that cannot be captured by ML.

      Response: The subtypes of cancer patients (Basal, Her2, LumA/B) possess clear differences in mRNA expression in breast cancer studies. Given the fixed annotations of the subtypes in the patient datasets, we applied our methodologies on mRNA datasets, and the results exhibited great separation across subtypes (Basal, Her2, LumA/B) as well as Ductal vs Lobular. In addition, 70% of subtype-specific eRNAs are located next to mRNA. This ensures that we detected proper eRNA markers. Furthermore, Random Forest is the standard and powerful non-linear classifier for these types of classifying questions. Therefore, we hypothesized that the data which can distinguish Ductal vs Lobular does not exist in the used eRNA dataset. We only detected 38 subtype-specific mRNAs using information gain with standard cutoff 0.05 which they have classifying power across ductal-lobular. With this standard cutoff only one eRNA-associated gene was detected. To explore more, we used low cutoff for information gain (0.01) and then took only the eRNAs which are located near classified mRNAs (up to 50KB). In this way, we detected 96 eRNA candidates linked to 8 classified mRNAs. These 96 eRNAs could, to some extent, classify ductal vs lobular (PCA plots attached above). This observation can further verify that if a more comprehensive eRNA dataset exists, we could detect better eRNA markers and cover more (probably all) mRNA markers. Hence, cooperative model of eRNA as suggested by the reviewer can't be achieved and random forest is one of the efficient tools to decipher the cooperation if it exists. Besides, as we demonstrated in this paper that eRNA is a complementary dataset to mRNA which can assist in the identification of regulatory networks. For the revision, we will provide more detailed eRNA-mRNA associations using integration with PEGS and Perturb-seq validated regions, in both subtype classification and survival and will motivate the potential similar studies for ductal vs lobular in the discussion.

      "we employed machine learning approaches on 302,951 eRNA loci identified from RNA-seq datasets from 1,095 breast cancer patient samples from previous studies" - the previous studies from which the authors take the data [11,12] highlight the presence of ~60K enhancers in the human genome and they use less than that in their analysis. Could the authors please clarify the differences in numbers with previous studies and give a reasoning?

      Response: ~300K enhancers are derived from ENCODE H3K27ac datasets which represents all active enhancer regions marked by H3K27ac (Hnisz et al., 2013). This is a high-resolution map of eRNA loci ever presented. In Chen et al 2020, 1,531 superenhancers representing 30K eRNA loci was utilised for exploratory analysis, and the findings were generalised back to the 300K set. 65K enhancer loci covers tissue-specific enhancers initially identified by FANTOM CAGE datasets and this subset provide limited regions of eRNA expression. Hence, our analyses on ~300K eRNA loci provide unbiased information on subtype specificity and gene-TF regulatory networks. The differences had been highlighted in the methods and results in the revised manuscript.

      Also, from the methods section, they discard many patient samples due to low QC, so, from what I understand, the number of samples analyzed in the end is 975 and not 1,095.

      Response: We thank the reviewer for pointing this out and we have updated the numbers in the revised manuscript.

      Minor comments:

      Can the authors please state the parameters of the umap in methods? Although it could be intrinsic to the dataset, data points are grouped in a way that makes me think that the granularity is too forced. Could the authors please show how the umap would behave with more lenient parameters? Or even with PCA?

      Response: We used ‘umap’ function from umap package (with default parameters) in R using only PC1 and PC2, hence the granularity is not forced. As suggested by the reviewer, we have now added PCA plots in the main figures (Fig. 1E) and moved all the umap plots to the Supplementary figures (Fig.S1B) in the revised manuscript.

      'Majority of the basal' -> The majority of the basal.

      Response: We thank the reviewers for noticing the typo and we corrected this in the revised manuscript.

      Significance

      This is a paper relevant in the cancer field, particularly for breast cancer research. The significance of the paper lies in digging into the breast cancer samples, taking the different existing subtypes into account to assess the contribution of eRNAs as a classifier and as a prognostic tool. The data is already available but it has not been studied to this degree of detail. It highlights the importance of characterizing cancer samples in more depth, considering its intrinsic heterogeneity, as averaging across different subtypes would mask biology. My expertise lies in gene regulation and single-cell omics. My contribution will therefore be more focused on the analysis and extraction of biological information. The extent of its specific relevance in cancer research falls beyond my expertise.

      Response: We appreciate the reviewer for understanding our efforts to bring out the importance of subtyping and to explore the association of eRNA in breast cancer transcriptional gene regulatory networks.

      Reviewer #2

      Evidence, reproducibility and clarity

      Summary<br /> Enhancer RNAs (eRNAs) are early indicators of transcription factor (TF) activity and can identify distinct molecular subtypes and pathological outcomes in breast cancer. In this study, Patel et al. analysed 302,951 polyadenylated eRNA loci from 1,095 breast cancer patients using RNA-seq data, applying machine learning (ML) to classify eRNAs associated with specific molecular subtypes and survival. They discovered subtype-specific eRNAs that implicate both established and novel regulatory pathways and TFs, as well as prognostic eRNAs -specifically, LumA and HER2-survival- that distinguish favorable from poor survival outcomes. Overall, this ML-based approach illustrates how eRNAs reveal the molecular grammar and pathological implications underlying breast cancer heterogeneity.

      Major comments

      1. The authors define 302,951 eRNA loci based on RNA-seq data, yet it is widely known that many enhancers reside in proximity to promoters or within intronic regions (examples presented in Fig. 3B and S3). Consequently, it seems likely that reads mapped to these regions might not truly represent eRNA signals but include mRNA contamination. Could the authors clarify how they ensured that the identified eRNAs were not confounded by mRNA reads? What fraction of these enhancer loci is promoter proximal or intronic? How does H3K4me3, a well-established and standardized active promoter histone mark, behave on these loci? The reviewer considers it important to confirm that the identified eRNAs are indeed of enhancer origin rather than promoter transcripts.

      Response: For this study, we utilised pan cancer atlas-based published work (Chen et al 2018 and 2020) where the abundant RNA signals on intronic and intergenic regions are included, and promoter-based signals are excluded. These studies utilise the advantage of identifying eRNAs on large sample size and the possibility of mRNA being on introns in 1000s of patient samples is very low. A clarification of this concern had been discussed in the Introduction of these studies as follows: “because eRNA reads associated with real enhancer activity recurrently accumulate, whereas background transcription noise tends to occur stochastically. The large number of RNA-seq reads obtained would compensate for the statistical power compromised by the low eRNA expression level typically observed in a single sample.” We included clarification of this concern in the discussion. Furthermore, as per the reviewer’s suggestion, we examined the distribution of the eRNA loci across the genome and found that majority of eRNA regions are located on introns and intergenic regions. This figure had been included in the Supplementary Fig. S6A.

      2. In Fig. 1B, the F measure (0.540) of the Basal subtype using the Logmc method contradicts its extremely high precision (1.000) and sensitivity (0.890). The authors need to clarify the exact formula or method used to compute F1 and the discrepancy in the reported metrics for this subtype and perhaps other subtypes as well.

      Response: We apologise for the mistake in this section and thank the reviewer for pointing this out. We included the formulas for each statistical metric in the method section of the manuscript. The F-measure was mentioned wrong which led to the confusion here. The figure had been corrected with the F-measure of 0.94 in the revised manuscript.

      3. As shown in Fig. 4C, S4B, and most, if not all, tracks of Fig. S3, ER binding regions are not annotated as eRNA loci. It seems, in this reviewer's opinion, very unlikely that this is because they generally lack eRNA expression, but rather they do not express polyadenylated eRNA (typically 1D eRNA), which is captured in this dataset. The reviewer posits that these enhancers produce more transient, non-polyadenylated 2D eRNA. It has been widely documented in prior studies that ER-bound enhancers exhibit bimodal eRNA expression patterns [e.g., Li, W. et al. Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation. Nature 498, 516-520 (2013)]. Could the authors address this opinion and elaborate on how the restriction to polyadenylated transcripts might underrepresent enhancers regulated by ER and other TFs and whether this bias impacts the overall findings?

      Response: The authors appreciate the reviewer’s suggestion to address the caveats of using polyadenylated eRNAs to identify the ER binding patterns. TCGA eRNA atlas with polyadenylated eRNAs indeed possesses this disadvantage of using polyadenylated eRNAs for this study, however currently there are no data available with bidirectional transcripts in any breast cancer patient samples. The tools to profile these RNAs are not robust enough to be performed on frozen cancer tissue samples which are extremely limited in their size and availability. By utilising the polyadenylated eRNA-seq datasets, we might not only lose the accuracy of ER binding patterns, but also for other transcription factors which activate/associate with bimodal expression around enhancers. However, our integrative analysis on stable polyadenylated eRNA loci can still identify the most-relevant TF networks of each subtype.

      Furthermore, we validated this finding by analysing our own datasets of KAS-seq which represents any active transcribing bidirectional enhancers from MCF7 cell line. Independently, we also incorporated ATAC-seq, H3K27ac ChIP-seq, CAGE and GRO-seq data on the gene profiles in Fig. S3 to associate the eRNA regions identified in polyadenylated RNA datasets with ER binding sites in patients and published bidirectional transcripts in the preliminarily revised manuscript. We observed that all the ER binding sites are accompanied by open and active enhancer marks with bidirectional transcription (either GRO- or CAGE positive) but they are not on the exact location of eRNA regions. Subtype-specific eRNA regions close to genes like MLPH and XBP1 possess both active bidirectional transcribing ER bound sites far away (around 1.5 kb) from subtype-specific eRNA loci and bidirectional transcribing ER unbound sites. However, these distal ER binding sites are close to the regions from the list of 300K eRNA loci and they were simply not identified as subtype-specific regions. Hence, it can be true that the occupancy of ER might not be present on all subtype-specific eRNA loci, but our subtype-specific eRNA sites are representative of bidirectional transcription.

      Upon the suggestion from the reviewer, we discussed the potential of identifying TF networks by analysing the 1D eRNAs, in the revised manuscript.

      4. Despite the unsatisfied performance of the ML approach on classifying Her2 subtypes, the hierarchical clustering performed in Fig. 2A and S2A appears to show a reasonable separation of Her2 subtypes, showing as a clustered green band. Could the authors quantitatively assess how effective this clustering results and compare that to the ML outcome? (OPTIONAL)

      Response: The authors acknowledge this interpretation from the reviewers. Using both the measures, our ML platform can identify markers for Her2 subtype but some of the statistical metrics are poor. As the heatmaps were performed based on these identified Her2 markers, a separate analysis on this cluster would not be much informative. The poor metrics for Her2 classification was already justified, partly due to the low number of Her2+ patients in the cohort.

      5. In Fig. 4 and S4, the authors reported to have enriched binding or motif of TFs, e.g., FOXA1, AP-2, and E2A, specifically at enhancer loci with low eRNA level, which conflicts with their established roles as transcriptional activators. The reviewer asks for an address as to why these factors would be associated with basal low-eRNA regions and whether any additional data might clarify their functional role in these contexts.

      Response: The authors appreciate the reviewer’s concern, but we would like to clarify that eRNAs which are less expressed in basal subtype are classified as basal low. These regions show high expression in luminal patients. Hence, there is a strong overlap of basal low and luminal high regions. FOXA1 and AP2 factors are strongly established coactivators in luminal ER+ transcriptional signaling, hence they are associated with basal low eRNA regions. We clarified this in the discussion and provided more literature evidence in the revised manuscript to demonstrate the strong role of FOXA1 and AP2 factors in ER+ luminal breast cancer transcriptional response.

      6. Regarding Fig. 4B, the authors state that "ER binding occupies only the strongest ssDNA and GRO-seq-positive sites". Firstly, the GRO-seq data quality is poor with indiscernible peaks. This may be insufficient for a qualified representation of nascent eRNA expression. More importantly, it appears each heatmap is ranked independently, so top loci for ssDNA are not necessarily top loci for GRO-seq, ER, Pol-II, or H3K27ac. The reviewer requests clarification on how the authors plot these heatmaps and questions whether the statement is supported by the analysis as presented.

      Response: We acknowledge the reviewer’s concern and based on their suggestion, we utilised another set of GRO-seq datasets which is more deeply sequenced and published by the same lab. The average plot from these new datasets showed better profile. We also apologize for not providing enough details of how we generated the heatmaps in Fig. 4B. The heatmaps were made separately for each profile to auto scale with their own intensity levels but the order of the regions is based on KAS-seq intensity. The order of these regions was kept the same between each profile. Hence, top loci of ssDNA are not exact top loci of GRO, ER, H3K27ac and Polymerase but top loci of ssDNA also show similar high intensity in GRO, ER, H3K27ac and Polymerase, hence correlated. We also removed regions which belong to blacklisted regions of hg38 and the regions which were over-sequenced due to amplifications and showed weird signals. We provided the new heatmaps and profile plots in the revised manuscript with different clusters of KAS-seq intensity. We also updated the methods section to clarify how these heatmaps were made.

      7. In Fig. S4B and the third plot of 4C, the averaged histogram of ER binding appears in multiple sharp peaks with drastic asymmetric positioning around the enhancer centre, which is highly atypical of most published ER ChIP-seq profiles. Could the authors discuss possible "spatial syntax" or directional patterns of ER binding in relation to eRNA loci and cite any literature showing a similar pattern? Further evidence is required to substantiate these observations, as they are remarkably unique.

      Response: The authors agree with the reviewer’s point about asymmetric peaks of ER on the luminal specific eRNA regions. Due to the nature of the average profile plots and the number of regions explored here are so low, the profiles look asymmetrical and different than the published literature. Heatmaps lose their resolution when made on a very low number of regions. The focus of this analysis is to highlight that the ER is not binding to the centre of eRNA loci which is contradictory to the published findings from in vitro studies, but further away on these subtype-specific regions. We don’t have any solid evidence to demonstrate the directional patterns of ER binding related to this data. To avoid any confusion, we removed these average plots but focused on the already existing single gene profiles in Fig. S3 and discussed our interpretations in detail.

      Minor comments<br /> 1. When introducing eRNAs, the reviewer recommends mentioning that 1) eRNA levels correlate with enhancer activity and 2) eRNA expression precedes target gene transcription, thus reflecting upstream regulatory events. Relevant references include: Arner, E. et al. Transcribed enhancers lead waves of coordinated transcription in transitioning mammalian cells. Science 347, 1010-1014 (2015); Carullo, N. V. N. et al. Enhancer RNAs predict enhancer-gene regulatory links and are critical for enhancer function in neuronal systems. Nucleic Acids Res. 48, 9550-9570 (2020); Kaikkonen, Minna U. et al. Remodeling of the Enhancer Landscape during Macrophage Activation Is Coupled to Enhancer Transcription. Mol. Cell 51, 310-325 (2013).

      Response: These are great recommendations from the reviewer, and we included the suggested publications in the Introduction section of the revised manuscript.

      2. H3K27ac is used initially to define these regulatory loci, and like eRNAs, H3K27ac also varies among patients. Which H3K27ac dataset(s) were used initially, and could this approach potentially overlook patient-specific enhancers? (OPTIONAL)

      Response: This is a totally valid point from the reviewer. The idea of this project is to define common subtype-specific enhancers which can be regulatory and prognostic, hence can be developed further as biomarkers providing benefit for more patients in the future. Hence, investigating the common enhancers which are activated in multiple normal and cancer cell lines defined by ENCODE is more valid than patient-specific enhancers whose activity might be influenced by specific genetic alterations. There is very limited availability of H3K27ac ChIP-seq datasets from cancer patients to explore the patient-specific enhancers, and our analyses were totally based on the published work, hence not possible to fully address this concern. The source of the H3K27ac ENCODE datasets (from 86 human cell lines and tissue samples) is clarified in the revised manuscript.

      3. In addition to the overall metrics displayed in Fig. 2B, could the authors provide precision and sensitivity values for LumA and LumB separately under the Logmc method, given the observation in Fig. 2E that LumA and LumB are not well separated in the UMAP projection?

      Response: The authors appreciate the suggestion from the reviewer. We have included the metrics separately for LumA and LumB in the revised manuscript in Fig. S1D.

      4. Could the author elaborate, in the discussion section, on why there is a substantial difference in ML performance depending on whether InfoGain or Logmc is used?

      Response: We have included the following text in the discussion to explain the differences between these two measures.

      “InfoGain measure work with the approach of binarization with k-means (k=2). It has the potential to capture both strongly expressed eRNAs which are differential between subtypes as well as low expressed sparser on and off eRNAs. In the first case, although eRNA is highly expressed in all patients, the higher expression mode becomes 1 and the lower expressed mode become 0. However, in case of low expression, more on and off expression, recentered logmc would not generate a striking high value. Furthermore, binarization is also a strong process to perform better clustering and classification, as distinguishing between data points gets better and clearer. “

      5. How does the expression pattern of Basal high, Basal low, Her2, and Lum eRNA clusters behave differentially in Basal, Her2, and LumA/B subtypes? Are Basal high eRNAs downregulated in Her2 or Lum subtypes, and vice versa? Since many downstream analyses rely on these eRNA clusters, it is suggested to include a heatmap and/or boxplot that displays how each eRNA category is expressed in each subtype to confirm that these definitions are consistent.

      Response: We thank the reviewers for this suggestion and apologise for not providing enough clarification on the expression of eRNAs in other subtypes. Indeed, Basal high expressed eRNA are expressed low in LumA and LumB and Basal low expressed eRNAs are expressed higher in lumA and lumB. Her2 subtype-specific eRNAs has a trend of expression between Basal and Lum, as it can be seen in the umap and PCA. Basically, the Basal high expressed eRNAs are Lum lower expressed eRNAs, and the Basal low expressed markers are Lum higher expressed markers. As per the suggestion from the reviewer, we provided heatmaps on eRNA expression of each subtype-specific with regulation in other subtype patients in figure S2F-K.

      Referee cross-commenting

      I share Reviewer #1's opinion that the manuscript should assess whether mRNA or eRNA is the stronger predictor of breast cancer subtypes and clinical outcomes. It will greatly improve the novelty if eRNA is shown to be a better indicator for cancer characterization.

      Also, I strongly concur with Reviewer #3 that the current informatics approach is superficial and that several conclusions are contentious. The authors need to resolve the inconsistencies in their ML statistics and the potentially misleading interpretations of the ChIPseq and motif enrichment results.

      It is further recommended that, building Reviewer #3's comment, the study integrate eRNA signatures with their proximal genes to address 1) whether genes located near these enhancers are differentially expressed-and correlated with enhancer activity-across cancer subtypes, and 2) whether it provides insights into understanding the enhancer-gene regulatory architecture in a subtype-specific context.

      Response: We thank reviewer 2 for cross-commenting on reviewer 1 and 3’s suggestions. Indeed, these are interesting points to cover and will increase the novelty of the study. Based upon these suggestions and discussed earlier for reviewer 1’s comments, we will explore the comparison of mRNAs vs eRNAs as predictor of cancer subtypes and prognosis and the association of genes-eRNAs in cis as discussed in other reviewer’s comments. Our preliminary analyses show a strong association of eRNA and mRNA specific to subtypes and an observable separation on subtypes which were harder to classify markers using eRNAs alone. Hence, we will improve these analyses, and the manuscript further as discussed above in the final revision.

      Significance

      General Assessment

      This study provides insights into the potential use of eRNA to classify breast cancer subtypes and refine prognostic markers. A strength is the integration of large-scale RNA-seq data with machine learning to identify eRNA signatures in biologically-meaningful patient samples, revealing both established and novel TF networks. The study also discovered eRNA clusters that correlate with the survival of patients, thus providing strong clinical implications. However, the ML approach yields several inconsistencies-for instance, unsatisfactory classification results for the Her2 subtype as well as the confused statistical metrics in the results. Furthermore, the ML model struggles to differentiate more nuanced molecular classes (e.g., LumA vs. LumB) and higher-level histological subtypes (e.g., lobular vs. ductal), thus limiting its power to dissect more delicate pathological and molecular mechanisms. Another limitation worth noting of this ML approach is the exclusive use of only polyadenylated eRNAs via RNA-seq, which excludes perhaps the more prominent 2D eRNA expressed in regulatory enhancers. Moreover, certain datasets appear to be of suboptimal quality, leading to assertions that would benefit from additional supporting evidence. Altogether, while the study offers a promising angle on eRNA-based tumor stratification, more robust experimental validations are needed to resolve inconsistencies and clarify the mechanistic underpinnings.

      Advance<br /> Conceptually, the study highlights the potential for eRNA-based signatures to capture regulatory variation beyond classical markers. However, the utility of these signatures is constrained by the focus on polyadenylated transcripts alone, likely underrepresenting key enhancer regions, and certain evidence presented in this study is not substantial enough to support some statements. While the work adds an important dimension to the understanding of enhancer biology in breast cancer, the resulting insights are partly hampered by limitations in data coverage and quality.

      Audience<br /> The primary audience includes cancer epigenetics, functional genomics, and bioinformatics researchers who are interested in leveraging eRNAs as biomarkers and dissecting complex regulatory networks in breast cancer. Clinically oriented scientists focusing on molecular diagnostics may also find relevance in the authors' approach to stratify subtypes and outcomes. The research is most relevant to a specialized audience within basic and translational cancer genomics, as well as computational biology groups interested in eRNA analysis.

      Field of Expertise

      I evaluate this manuscript as a researcher specializing in cancer epigenetics, functional genomics, and NGS-based data analysis. Parts of the manuscript touching on clinical outcome measures may require additional review from practicing oncologists.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      This study aims to classify prognostic and subtype-specific eRNAs in breast cancer, highlighting their potential as biomarkers.<br /> Data was analysed using existing machine learning algorithms,<br /> Data analysis is superficial and it is hard to understand the key significant findings.

      This is an important topic and a highly relevant approach to identifying RNA-based biomarkers.<br /> They analyse published RNAseq datasets by focusing on molecular subtype-specific eRNAs, enhancing clinical relevance and thereby addressing the heterogeneity of the cancer type (strength of the study).

      Weaknesses include: Most of the findings are purely correlation-based and also based on a reanalysis of published datasets; it would benefit from experimental validation to support their findings. Differential expression analysis of large datasets likely yields some differences in the transcriptome. How significant are these changes?<br /> Does the expression of eRNAs affect the expression of genes in cis? Although this analysis would provide some associated gene expression differences, it can also provide some insights into subtype-specific differences in gene expression programs.<br /> If the authors find experimental validations are not feasible, I recommend validating the eRNA signature in an independent dataset.

      Response: We acknowledge the weaknesses noticed by the reviewer from this study about the correlation-based analyses of published datasets. While the TCGA eRNA atlas datasets are reanalysed, these are the high-resolution maps ever published on eRNA expression on cancer patient samples, and our study is the first to establish the subtype specific classification of eRNAs. We believe that the eRNAs are biologically relevant, as they are strongly associated with the subtype-specific pathways and epigenetic regulators. Upon suggestion from the reviewers, we will explore the association of mRNAs and eRNAs in cis to establish further significance and relevance of the eRNAs we identified (discussed earlier in reviewer 1 comments).

      We would like to focus on studying the functional relevance of eRNAs as a separate project. In vitro studies to establish the knockdown of eRNAs are not straightforward due to the toxicity and non-specific targeting of the locked nucleic acids approach or Cas13-based RNA targeting. siRNA-based approaches don't target the nuclear eRNAs effectively, even though they were widely used by other labs to target eRNAs. Hence, a lot of effort on optimisations are needed to establish functional validation of our eRNAs, hence not under the scope and time frame of this study/revision. To provide validation and significance using independent datasets, we will explore the association of these factors with the expression of subtype-specific eRNAs further in our final revised manuscript using the tools explained above for reviewer 1 (PEGS and Perturb-seq integration). Integration of our classified eRNAs with the published Perturb-seq validated regions from ER+ and ER- breast cancer cell lines will provide the functional validation of patient-associated classified enhancer/eRNAs. Hence, our study would be the first to demonstrate the validated gene-enhancer regulatory networks from breast cancer patient datasets.

      Furthermore, we included the single gene visualisation profiles of independent datasets of ER ChIP-seq from different patients (Ross-Innes et al., 2012), ATAC-seq from TCGA patients (Corces et al., 2018), H3K27ac ChIP-seq datasets from cell lines (Theodorou et al., 2013 and Hickey et al., 2021) and GRO-seq and CAGE data published in MCF7 cells close to the eRNA regions and discussed their overlap with the eRNA regions in the revised manuscript. In the final revision, we will perform further detailed integration of all these profiles. Overall, our study will provide the integratory analysis of various independent epigenetic and functional profiles to validate our classified subtype and survival-specific eRNA regions.

      Here are major points; addressing these points in the revised version is important.

      From Figure 1B, what eRNAs were identified for LumB using log2MC?

      Response: The authors acknowledge the lack of analyses on LumB eRNAs in the original version of the manuscript. In the final revised manuscript after associating with mRNAs, we will provide the heatmaps, pathway analyses and other functional annotations for LumB specific eRNAs.

      Page 8 However, sensitivity and F-measure .... It would help to include the metrics for the number of patients in each subtype. The ratio of eRNAs/number of cases in each subtype would inform if the number of eRNAs is an outcome of no. of cases or subgroup-specific.

      Response: This is a great suggestion from the reviewer, and we included the number of patients for each subtype in the table in Fig. 1D. We observed that the basal patients are low in number, but we identified more basal eRNAs. Hence, the number of eRNAs identified in subtype-specific manner is not correlated to the number of patients in the cohort.

      Page 9 "Altogether, both measurements classify eRNAs efficiently based on subtypes, InfoGain allowed us to distinguish further samples based on high and low expression of eRNAs for basal subtype and performed better in statistical metrics" Based on statistical metrics, both models seem to be performing similarly except for Her2.

      Response: We apologise for this wrong interpretation. We corrected this in the revised manuscript at page 9.

      In Fig. 1B, the F-measure metrics are wrong for basal LogMC, as it is 0.94 rather than 0.54, which could lead to a misinterpretation of the model.

      Response: We apologise for the mistake in this figure, and we included the corrected heatmap in the revised manuscript.

      Many genome browser figures, including Figure S3. TFBS is not at the same site as eRNAs detected. Is there CAGE data to show that binding these TFs at these sites leads to the expression of eRNAs? That will give direct evidence that the eRNAs are transcribed due to these TFs

      Response: This is a great suggestion from the reviewer. We incorporated ATAC-seq, H3K27ac ChIP-seq, CAGE and GRO-seq data on the gene profiles in Fig. S3 to validate the activity of these ER binding sites in the preliminarily revised manuscript. We observed that all the ER binding sites are accompanied by open and active enhancer marks with bidirectional transcription (either GRO- or CAGE positive) but they are not on the exact location of eRNA regions (250-1000 bps away from the centre of ER binding site). Subtype-specific eRNA regions close to genes like MLPH and XBP1 possess active bidirectional transcribing ER binding sites far away from subtype-specific eRNA loci and also ER unbound sites. However, these distal ER binding sites are close to the regions from the list of 300K eRNA loci and they were simply not identified as subtype-specific regions.

      Page 10, There were 30 Her2-specific eRNA regions.... Do the same enhancers also regulate these genes as those from which eRNAs are transcribed? Is it cis-effect, or could these affect the trans-regulating of other genes?

      Response: We acknowledge the concern from the reviewer, however this is hard to be validated, as functional experiments to explore the 3D interactions of enhancers and gene promoters are not robust enough to be performed in patient samples and can't be performed within the revision time frame. In the final revised manuscript, we will explore the association of enhancers and promoters of ERBB2 with PEGS association as discussed above and with available HiC datasets in Her2+ cell lines (HCC1954, GSE167150, Kim et al., 2022 https://pubmed.ncbi.nlm.nih.gov/35513575/ )

      Minor comments:

      Page 8 "InfoGain meausure..." Fig. S2A also shows high and low expressed eRNAs for the basal group

      Response: We apologise for the lack of clarity here. InfoGain measure identifies both high and low expressed eRNAs in all patients showing similar pattern of regulation among patients. However, logmc derived eRNAs are highly expressed in most patients. Low expressed eRNAs could not be identified in logmc measure as strong as InfoGain regions. The text in the results had been edited in the revised manuscript to reflect better clarity on this point.

      Page 11, Our analyses also identified the role of another..... The statement is misleading as it is the enrichment of these TFs with the eRNAs<br /> Response: We included the word “enrichment” to clarify this statement.

      Page 13, "Around 90% of eRNAs are bidirectional and non-polyadenylated [53]. TCGA expression datasets are based on RNA-seq assays, which capture only non-polyadenylated RNAs. Thus, analysing the expression of eRNAs on mRNA-seq datasets might not be adequate". It is very confusing, please check<br /> Response: We apologise for the mistake, and this has been corrected in the revised manuscript.

      Reviewer #3 (Significance (Required)):

      This is an important topic and a highly relevant approach to identifying RNA-based biomarkers.<br /> They analyse published RNAseq datasets by focusing on molecular subtype-specific eRNAs, enhancing clinical relevance and thereby addressing the heterogeneity of the cancer type (strength of the study).

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary: 

      Beyond what is stated in the title of this paper, not much needs to be summarized. eIF2A in HeLa cells promotes translation initiation of neither the main ORFs nor short uORFs under any of the conditions tested. 

      Strengths: 

      Very comprehensive, in fact, given the huge amount of purely negative data, an admirably comprehensive and well-executed analysis of the factor of interest. 

      Weaknesses: 

      The study is limited to the HeLa cell line, focusing primarily on KO of eIF2A and neglecting the opposite scenario, higher eIF2A expression which could potentially result in an increase in non-canonical initiation events. 

      We thank the reviewer for the positive evaluation. As suggested by the reviewer in the detailed recommendations, we will clarify in the title, abstract and text that our conclusions are limited to HeLa cells. Furthermore, as suggested we will test the effect of eIF2A overexpression on the luciferase reporter constructs, and will upload a revised manuscript.

      Reviewer #2 (Public review):

      Summary 

      Roiuk et al describe a work in which they have investigated the role of eIF2A in translation initiation in mammals without much success. Thus, the manuscript focuses on negative results. Further, the results, while original, are generally not novel, but confirmatory, since related claims have been made before independently in different systems with Haikwad et al study recently published in eLife being the most relevant. 

      Despite this, we find this work highly important. This is because of a massive wealth of unreliable information and speculations regarding eIF2A role in translation arising from series of artifacts that began at the moment of eIF2A discovery. This, in combination with its misfortunate naming (eIF2A is often mixed up with alpha subunit of eIF2, eIF2S1) has generated a widespread confusion among researchers who are not experts in eukaryotic translation initiation. Given this, it is not only justifiable but critical to make independent efforts to clear up this confusion and I very much appreciate the authors' efforts in this regard.  

      Strengths 

      The experimental investigation described in this manuscript is thorough, appropriate and convincing. 

      Weaknesses 

      However, we are not entirely satisfied with the presentation of this work which we think should be improved. 

      We thank the reviewer for the positive evaluation. We will revise the manuscript according to the reviewer's suggestions made in the detailed recommendations.

      Reviewer #3 (Public review):

      Summary: 

      This is a valuable study providing solid evidence that the putative non-canonical initiation factor eIF2A has little or no role in the translation of any expressed mRNAs in cultured human (primarily HeLa) cells. Previous studies have implicated eIF2A in GTP-independent recruitment of initiator tRNA to the small (40S) ribosomal subunit, a function analogous to canonical initiation factor eIF2, and in supporting initiation on mRNAs that do not require scanning to select the AUG codon or that contain near-cognate start codons, especially upstream ORFs with non-AUG start codons, and may use the cognate elongator tRNA for initiation. Moreover, the detected functions for eIF2A were limited to, or enhanced by, stress conditions where canonical eIF2 is phosphorylated and inactivated, suggesting that eIF2A provides a back-up function for eIF2 in such stress conditions. CRISPR gene editing was used to construct two different knockout cell lines that were compared to the parental cell line in a large battery of assays for bulk or gene-specific translation in both unstressed conditions and when cells were treated with inhibitors that induce eIF2 phosphorylation. None of these assays identified any effects of eIF2A KO on translation in unstressed or stressed cells, indicating little or no role for eIF2A as a back-up to eIF2 and in translation initiation at near-cognate start codons, in these cultured cells. 

      The study is very thorough and generally well executed, examining bulk translation by puromycin labeling and polysome analysis and translational efficiencies of all expressed mRNAs by ribosome profiling, with extensive utilization of reporters equipped with the 5'UTRs of many different native transcripts to follow up on the limited number of genes whose transcripts showed significant differences in translational efficiencies (TEs) in the profiling experiments. They also looked for differences in translation of uORFs in the profiling data and examined reporters of uORF-containing mRNAs known to be translationally regulated by their uORFs in response to stress, going so far as to monitor peptide production from a uORF itself. The high precision and reproducibility of the replicate measurements instil strong confidence that the myriad of negative results they obtained reflects the lack of eIF2A function in these cells rather than data that would be too noisy to detect small effects on the eIF2A mutations. They also tested and found no evidence for a recent claim that eIF2A localizes to the cytoplasm in stress and exerts a global inhibition of translation. Given the numerous papers that have been published reporting functions of eIF2A in specific and general translational control, this study is important in providing abundant, high-quality data to the contrary, at least in these cultured cells. 

      Strengths: 

      The paper employed two CRISPR knock-out cell lines and subjected them to a combination of high-quality ribosome profiling experiments, interrogating both main coding sequences and uORFs throughout the translatome, which was complemented by extensive reporter analysis, and cell imaging in cells both unstressed and subjected to conditions of eIF2 phosphorylation, all in an effort to test previous conclusions about eIF2A functioning as an alternative to eIF2. 

      Weaknesses: 

      There is some question about whether their induction of eIF2 phosphorylation using tunicamycin was extensive enough to state forcefully that eIF2A has little or no role in the translatome when eIF2 function is strongly impaired. Also, similar conclusions regarding the minimal role of eIF2A were reached previously for a different human cell line from a study that also enlisted ribosome profiling under conditions of extensive eIF2 phosphorylation; although that study lacked the extensive use of reporters to confirm or refute the identification by ribosome profiling of a small group of mRNAs regulated by eIF2A during stress. 

      We thank the reviewer for the positive evaluation. We will revise the manuscript according to the recommendations made in the detailed recommendations. Regarding the two points mentioned here:

      (1) The reason eIF2alpha phosphorylation does not increase appreciably is because unfortunately the antibody is very poor. The fact that the Integrated Stress Response (ISR) is induced by our treatment can be seen, for instance, by the fact that ATF4 protein levels increase strongly (in the very same samples where eIF2alpha phosphorylation does not increase much, in Suppl. Fig. 5E). We will strengthen the conclusion that the ISR is indeed activated with additional experiments/data as suggested by the reviewer.

      (2) We agree that our results are in line with results from the previous study mentioned by the reviewer, so we will revise the manuscript to mention this other study more extensively in the discussion.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      (1) I suggest to state (already in the abstract, but perhaps also even in the title, definitely in the rest of the paper) that this analysis is limited to the HeLa cell line. 

      As suggested, we have now specified in both the title and the abstract that the work is done in HeLa cells.

      (2) In my view, it is a pity that the authors - given the tools are available - did not check the impact of high eIF2A levels on expression of individual mRNAs under normal and stress conditions. I am not suggesting to repeat ribo-seq in this setup, it would be too much to ask for, but re-examining some of the many reporters the authors generated with eIF2A overexpressed may point to some function, e.g. increased number of non-canonical initiation events (non-AUG-initiated)? If anything, the use of HeLa and the primary focus on eIF2A KO neglecting the prospective impact of eIF2A overexpression should be mentioned as two main limitations of this study. 

      We thank the reviewer for the good suggestion to test our synthetic reporters with eIF2A overexpression. New Suppl. Fig. 4G now shows that overexpression of eIF2A does not affect translation of synthetic reporters carrying an ATG start codon in different initiation contexts, or carrying near-cognate start codons, in agreement with a lack of effect on translation which we previously observed with loss of eIF2A.

      (3) Ribo-seq with eIF2A. Did the authors focus on ORFs that are known, or whose isoforms are known, to be non-AUG initiated? Would the loss of eIF2A decrease FPs in their CDSes under at least some conditions?

      We have now assessed the read distribution on the eIF4G2 transcript in both the control and tunicamycin conditions ( Author response image 1). In our hands, eIF4G2 is one of the best examples of non-AUG initiation in human cells, since the main coding sequence starts with GTG and the CDS is well translated. Nonetheless, we do not observe any significant changes in read distribution (panels A-B) or overall translation efficiency of eIF4G2 upon eIF2A loss (panels C-D).

      Author response image 1.

      (A-B) Average reads occupancy on the eIF4G2 (ENST0000339995) transcript in DMSO treated (panel A, n=3) or tunicamycin treated samples (panel B, n=2) derived from either control (black) or eIF2A-KO (red) HeLa cells. Reads counts were normalized to sequencing depth and averaged between either 3 (DMSO-treated) or 2 (tunicamycin-treated) replicates. Graphs were then smoothened with a sliding window of 3 nt. (C-D) The total number of reads mapping to the eIF4G2 CDS, normalized to library sequencing depth per replica was quantified. No significant difference between control and eIF2A-KO cells was observed in either DMSO treated (panel C) or tunicamycin treated (panel D) cells. Significance by unpaired, two-sided, t-test. ns = not significant.

      Thank you for giving me the opportunity to review this article.

      Reviewer #2 (Recommendations for the authors):

      While some of our suggestions below may be considered subtle, in our opinion they are important and it would be good if the authors consider them for their revision, we also have a couple of technical suggestions. 

      (1) Abstract. 

      The authors failed to identify the role of eIF2A in translation initiation and have provided compelling evidence that eIF2A is not involved in recognition of non-AUG codons as start codons nor in recruitment of initiator tRNA during stress conditions which are two activities most commonly misattributed to eIF2A. However, they have not exhausted all possible potential functions of eIF2A, see below, it is also possible that eIF2A may have a role not yet suggested by anyone and it may function in translation initiation in special circumstances that have not been tested yet. The authors indeed discuss such possibility in the Discussion section. Given that there is genetic evidence (that is unaffected by biochemical impurities) linking eIF2A to other initiation factors (5B and 4E), we are not yet convinced that eIF2A does not have any role in translation initiation and therefore we find the last sentence of the abstract premature. We suggest to soften this statement into something like this: whether eIF2A has any role in translation remains unknown, it may even have a role in a different aspect of RNA Biology. 

      We agree with the reviewer. We changed the last sentence of the abstract to read as follows:

      “It is possible that eIF2A plays a role in translation regulation in specific conditions that we have not tested here, or that it plays a role in a different aspect of RNA biology.”

      (2) Recently eIF2A has been implicated in ribosomal frameshifting, see Wei et al 2023 DOI: 10.1016/j.celrep.2023.112987 

      Could authors look into PEG10 mRNA ribosome profile to see if there are detectable statistically significant changes in footprint density downstream of frameshift site between WT and eIF2A Kos? It is likely that the coverage will be insufficient to give a definitive answer, but it is worth checking, it would be a pity to miss it. 

      We thank the reviewer for this suggestion. We have now looked at the distribution of ribosome footprints on the PEG10 transcript variant that is expressed in HeLa cells (ENST00000482108) and indeed observe coverage downstream of the annotated stop codon, consistent with a frameshifting event that results in an extended protein isoform being translated. Visual assessment of the read distribution between the main ORF and the "ORF extension" does not show a substantial difference between control and eIF2A knock-out cells ( Author response image 2A-B). Additionally, we quantified the ratio of reads mapping to the PEG10 ORF upstream of the slippery site versus those mapping downstream, extending into the predicted longer protein. Nonetheless, we could not detect significant changes between control and eIF2A-KO cells in either tested condition ( Author response image 2C-D).

      Author response image 2.

      (A-B) Average reads occupancy on the PEG10 (ENST00000482108) transcript in DMSO treated (panel A, n=3) or tunicamycin treated samples (panel B, n=2) derived from either control (black) or eIF2A-KO (red) HeLa cells are shown. Reads counts were normalized to sequencing depth and averaged between either 3 (DMSO-treated) or 2 (tunicamycin-treated) replicates. Graphs were then smoothened with a sliding window of 3 nt. (C-D) The ratio of reads mapping to the ORF upstream of the slippery site to reads mapping to the predicted extended protein downstream to the slippery site is shown. Reads counts were normalized to the sequencing depth. Neither DMSO treated samples (panel C) nor tunicamycin treated samples (panel D) had a significant difference between control and eIF2A-KO cells. Significance by unpaired, two-sided, t-test. ns = not significant.

      (3) Introduction 

      Given the volume of unreliable claims regarding eIF2A in the literature and the overall confusion it is very difficult (may even be impossible) to write a clear coherent introduction into the topic. Nonetheless, there are few points that need to be taken into account. 

      The authors state that eIF2A is capable to recruit initiator tRNA citing Zoll et al 2002. This activity was later shown to be a biochemical artefact (which was most likely reproduced by Kim et al 2018), eIF2A fraction was contaminated with eIF2D which does bind tRNAs in GTP-independent manner. eIF2A purified from RRL separates from initiator tRNA binding activity, see Dmitriev et al 2010 DOI: 10.1074/jbc.M110.119693. This point is also relevant to the second paragraph of Discussion, it should be acknowledged that it has been shown previously that eIF2A does not bind the initiator tRNA.

      We appreciate the advice provided by the reviewer. We have modified both the introduction and the 2nd paragraph of the discussion to reflect that the tRNA-binding activity is due to contaminating eIF2D rather than eIF2A.

      In many cases the authors describe certain claims as facts even though they refute them themselves. For example 

      "Such eIF2A-driven non-AUG initiation events were shown to play a crucial role in different aspects of cell physiology and disease progression: cellular adaptation during the integrated stress response (Chen et al., 2019; Starck et al., 2016)"  While non-AUG initiation events do play crucial roles in different aspects of cell physiology (reviewed in Andreev et al 2023 doi: 10.1186/s13059-022-02674-2) eIF2A has nothing to do with it as the authors show themselves. Therefore different language should be used, e.g.. "eIF2A has been suggested (or proposed or reported) to be responsible for non-AUG initiation events that were shown to play ..." 

      The word "shown" is used in many other instances for the claims that the authors refute. "Shown" is only appropriate for strong evidence that leaves little doubt. 

      We agree with the reviewer and made the suggested changes in the text.

      (4) Supplementary Fig. 1. 

      Panel C is used to argue that eIF2A has a higher concentration than in the nucleus, perhaps it is worth explaining how this conclusion was drawn. If levels in cytoplasm are comparable to GAPDH and Tubulin but less than c-Myc in nucleus does it really mean that there is less eIF2A in the nucleus than in cytoplasm? This is not obvious to us. Also, presumably WCL stands for Whole Cell Lysate, it would be nice to introduce this abbreviation somewhere. 

      To compare levels of eIF2A in the nuclear and cytosolic fractions, we lysed the two fractions in equal volumes of buffer (i.e. the cytosolic fraction was extracted in 200 µl of hypotonic buffer, and the nuclear fraction was extracted in 200 µl of cell extraction buffer). This assures that per microliter of lysate we have the same number of "cytosols" or nuclei. Hence, equal intensity bands in the cytosolic and nuclear fractions would mean that half of the protein is in the nucleus and half is in the cytosol. We originally described this in the Methods section, but now also mention it in the Results and in the figure legend.

      We replaced WCL with "whole cell" in the figure. 

      (5) The differential translation analysis is described very briefly "To obtain values of translation efficiency, log2 fold changes, and adjusted p values the DESeq2 software package was used". Was TE calculated based on ribosome footprint to RNA-seq ratios? How exactly DESeq2 was used here? TE measured in this way spuriously correlates with RNA-seq values, see Larsson et al 2010 DOI: 10.1073/pnas.1006821107, perhaps it would be worse assessing differential translation with anota2seq (Oertlin et al 2019 doi: 10.1093/nar/gkz223.)? Anota2seq avoids calculating the ratios and enables comprehensive analysis of differential translation including detection of buffered translation which might be the case here while avoiding artefacts that may arise from varying RNA levels.  

      We now specified in more detail in the Methods section how we analyzed the data. Indeed, the DeSeq2 was used on translation efficiency values, which we calculated as the ratio of ribosome footprints to RNA-seq. 

      As suggested, we have now also performed the analysis using anota2seq (Suppl. Fig. 3C) and this analysis identified zero transcripts that are translationally regulated, in agreement with our analysis.

      (6) Section "eIF2a-inactivating stresses do not redirect tRNA delivery function to eIF2A." 

      The description of ISR mechanism is a bit inaccurate. Strictly speaking eIF2alpha phosphorylation does not inactivate it eIF2alpha. It results in formation of a very stable eIF2*GDP*eIF2B complex, thus severely depleting eIF2B which serves as a GEF for eIF2. This in turn reduces the ternary complex (eIF2*GTP*tRNAi) concentration since there is no free eIF2B to exchange GDP for GTP. Without getting into much detail, we think it would be more accurate to say that eIF2alpha phosphorylation leads to ternary complex depletion instead of saying that stress inactivates eIF2alpha. 

      We agree with the reviewer - we were trying to use simple, compact wording. We have now reworded the section title to "No detectable role for eIF2A in translation when eIF2 is inhibited" and rephrased the subsequent text to be correct.

      Also the subtitle uses eIF2a with small a that stands for alpha which potentially could lead to substantial confusion since in this case the difference between eIF2alpha and eIF2A is only in capitalisation of the last letter, many text-mining engines such as modern LLMs may not be able to pick the differences. Perhaps it would be better to refer to eIF2alpha by the HGNC approved name of its gene - eIF2S1 to avoid further confusions. For clarity it may be stated at the beginning that eIF2S1 is commonly known as eIF2alpha. 

      We thank the reviewer for this point. We have removed all instances of eIF2a (with lowercase a) from the manuscript to avoid this source of confusion. In the first instance of eIF2a we also added the official HGNC gene name. However, we prefer to use eIF2a instead of eIF2S1 because people outside the translation field tend to know the subunit as eIF2a, and we think it is important that also people outside the translation field read this manuscript, since some of the questionable papers on eIF2A come from labs working at the interface between translation and other fields.

      Minor 

      Introduction 

      (7) "uses the CAT anticodon" change CAT to CAU 

      We corrected CAT to CAU

      (8) "In the canonical initiation pathway", change "canonical" to "most common", canonical is somewhat a judgemental statement that originates in theology. Same applies to numerous occurrences of "canonical AUG", simply using "AUG" would be simpler and more accurate as you will avoid giving impression that there are "non-canonical AUGs".  

      Done.

      (9) "eIF2A was initially considered to be a functional analogue of prokaryotic IF2 (Merrick and Anderson, 1975), however later this role was reassigned to the above-mentioned heterotrimeric factor eIF2 (a,b,g) (Levin et al., 1973)." - there is a chronological contradiction within this sentence, the initial consideration is attributed to 1975 while its later reassignment to 1973. 

      We are grateful to the reviewer for spotting this mistake. There was a citation problem; we fixed it and now cite the correct paper for the initial discovery of eIF2A to PMID 5472357 (Shafritz et al 1970).

      (10) "On the other hand, studies on the role of eIF2A on viral IRES translation have arrived at conflicting results." Remove "On the other hand" since conflicting results have been mentioned above. In fact the entire sentence is somewhat redundant given prior "For example, eIF2A has been studied in the context of internal ribosome entry sites (IRES), where it was found to act both as a suppressor and an activator of IRESmediated initiation."  

      We have rewritten the paragraph to make it more coherent.

      (11) Fig. 1. C-D. is using CHX abbreviation for cycloheximide, this need to be mentioned on the legend or elsewhere in the text. Otherwise CHX may not be clear for a reader uninitiated in ribosome profiling. 

      We now mention in the figure legend that CHX stands for cycloheximide and indicate that it was used as a negative control to block translation. 

      (12) Page 7, section "Ribosome profiling reveals a few eIF2Adependent transcripts" 

      In this section you describe ribosome profiling experiments and identify few transcripts whose translation seems to be changing based on ribosome profiling data. Then you attempt to verify them using gene expression reporters and reasonably suggest that these are false positives. In essence this section argues that there are no eIF2A-dependent transcripts, therefore the title of this subsection is misleading, it makes sense to rename it so that it better reflects the content of this section. 

      We agree and have renamed the section to "Ribosome profiling identifies no eIF2Adependent transcripts"

      (13) Page 8, top. Rephrase "To do this, we performed ribosome profiling on control and eIF2AKO cells, which sequences the mRNA footprints protected by ribosomes."  

      Fixed.

      (14) Page 10, bottom. "Several studies have reported that eIF2A can delivery alternative initiator tRNAs to uORFs with nearcognate start codons". Change "delivery" to "deliver". 

      Thanks for spotting it. We corrected to “deliver”

      (15) Page 13 "This suggests that, as in non-stressed conditions, eIF2A has a minimal effect on global translation also when eIF2a activity is low." - rephrase to avoid impression that eIF2alpha activity is low in normal conditions, also please see comment #6 above. 

      We fixed this sentence to read: “This suggests that, as in non-stressed conditions, eIF2A has a minimal effect on global translation also when the integrated stress response is active.”

      Reviewer #3 (Recommendations for the authors):

      - The experimental data in Fig. S5E do not support the claim of increased eIF2 phosphorylation on TM treatment; although, comparing Fig. S5A with Fig. 1B supports a marked reduction in bulk translation and the reporter data in Fig. 4A show the expected induction of the uORF-containing reporters by TM. Because these are the conditions employed for ribosome profiling in stress conditions shown in Fig. 4B, it would be reassuring to document TM-induced translational efficiencies of ATF4 and the other known mRNAs resistant to eIF2 phosphorylation in the ribosome profiling data, including gene browser images of the replicate experiments. If the induction of TEs by TM for such mRNAs was not robust, it would be valuable to repeat the analysis using arsenite (SA) treatment, which produces a greater inhibition of bulk translation. 

      Unfortunately, the eIF2alpha antibody is not very good and also detects the nonphosphorylated protein, causing high background and poor apparent induction in response to tunicamycin. The fact that the ISR was activated is visible from the induction of ATF that was assessed by western blot in the Suppl. Fig. 5E. To ensure that our ribosome profiling libraries also recorded the activation of ISR we built single gene plots for ATF4 both in control and HeLa eIF2A-KO cell. As shown in  Author response image 3 A&B in both cell lines tunicamycin treatment led to the induction of ATF4. This can also be seen by the 4-fold induction in ATF4 translation efficiency in response to tunicamycin in both WT and eIF2A-KO cells ( Author response image 3C). Additionally, we checked that another marker induced by tunicamycin, HSPA5, is also translationally upregulated in both cell lines, as well as the downstream target of ATF4 – PPP1R15B. ( Author response image 3C). 

      Author response image 3.

      (A-B) Average read occupancy on the ATF4 (ENST00000674920) transcript in DMSO treated (n=3) or tunicamycin treated samples (n=2) derived from either control (panel A) or eIF2A-KO (panel B) HeLa cells are shown. Read counts were normalized to sequencing depth and averaged between either 3 (DMSO-treated) or 2 (tunicamycin-treated) replicates. Graphs were then smoothened with a sliding window of 3 nt. (C) Scatter plot of log2(fold change) of Translation Efficiency TM/DMSO for control cells on the xaxis versus eIF2AKO cells on the y-axis. The induction of ATF4 as well as the downstream target PPP1R15B are shown. The upregulation of HSP5A translation, the other hallmark of ER-stress induced by tunicamycin treatment is shown.

      - It should be pointed out in the text that in both published studies being cited here of cells lacking eIF2A, that by Gaikwad et al. on a yeast eIF2A deletion mutant, and that by Ichihara et al. on human HEK293 CRISPR KO cells, the analyses included stress conditions in which eIF2 phosphorylation is induced (amino acid starvation or SA treatment, respectively), as was conducted here.  

      Good point - we added this information into the introduction: 

      "Furthermore, loss of eIF2A in several systems did not recapitulate these effects on non-AUG initiation in either non-stressed or stress conditions (caused either by amino acid depletion or sodium arsenate treatment) (Gaikwad et al., 2024; Ichihara et al., 2021)."

      - The Ichihara et al. (2021) study just mentioned reached some of the same conclusions for HEK cells obtained here by conducting ribosome profiling in untreated and SA-treated cells, finding only 1 mRNA (untreated) or four mRNAs (SA-treated cells) that showed significantly reduced TEs in the eIF2A knockout vs. parental cells. It seems appropriate for the authors to expand their treatment of this prior work by summarizing its findings in some detail and also noting how their study goes beyond this previous one. 

      We have added a paragraph to the discussion pointing out that our data agree fully with Ichihara et al. (2021), and that Ichihara et al. (2021) also found only very few mRNAs that change in TE upon loss of eIF2A in either non-stressed or stressed conditions.

    1. In both differentiated instruction and arts integration, the classroom’s physical environment is flexible. In arts integration, furniture is moved to allow for movement, theatrical or dance improvisations, or for various groupings. Students carry out routines for efficiently and quietly setting and re-setting furniture. Teachers organize materials and establish efficient routines for distribution and clean-up. The classroom reflects a student-centered focus with interesting displays documenting students’ creative process and the products they have created.

      I agree with this because, it is important for students to have a place that allows them to focus on their creative sides. As an example, if I may talk about. I was a theatre student through high school and one specific class came to mind. In Drama 4, we did this process called Libby Appel. Within this process was given a clean slate for us to work from. Our whole classroom space was cleared out and as students we had control. Not only was it great for self-expression, but it also taught us to show our creativity with a clean slate. We as student were given instructions but as control of our successes in the process. The reason I brought this up is because, it is important as educators to teach students to use their own creativity. I think that is when students learn the most.

    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1 (Public review):

      Summary:

      This manuscript describes the role of PRDM16 in modulating BMP response during choroid plexus (ChP) development. The authors combine PRDM16 knockout mice and cultured PRDM16 KO primary neural stem cells (NSCs) to determine the interactions between BMP signaling and PRDM16 in ChP differentiation.

      They show PRDM16 KO affects ChP development in vivo and BMP4 response in vitro. They determine genes regulated by BMP and PRDM16 by ChIP-seq or CUT&TAG for PRDM16, pSMAD1/5/8, and SMAD4. They then measure gene activity in primary NSCs through H3K4me3 and find more genes are co-repressed than co-activated by BMP signaling and PRDM16. They focus on the 31 genes found to be co-repressed by BMP and PRDM16. Wnt7b is in this set and the authors then provide evidence that PRDM16 and BMP signaling together repress Wnt activity in the developing choroid plexus.

      Strengths:

      Understanding context-dependent responses to cell signals during development is an important problem. The authors use a powerful combination of in vivo and in vitro systems to dissect how PRDM16 may modulate BMP response in early brain development.

      We thank the reviewer for the thoughtful summary and positive feedback. We appreciate the recognition of our integrative in vivo and in vitro approach. We're glad the reviewer found our findings on context-dependent gene regulation and developmental signaling valuable.

      Main weaknesses of the experimental setup:

      (1) Because the authors state that primary NSCs cultured in vitro lose endogenous Prdm16 expression, they drive expression by a constitutive promoter. However, this means the expression levels are very different from endogenous levels (as explicitly shown in Supplementary Figure 2B) and the effect of many transcription factors is strongly dose-dependent, likely creating differences between the PRDM16-dependent transcriptional response in the in vitro system and in vivo.

      We acknowledge that our in vitro experiments may not ideally replicate the in vivo situation, a common limitation of such experiments, our primary aim was to explore the molecular relationship between PRDM16 and BMP signaling in gene regulation. Such molecular investigations are challenging to conduct using in vivo tissues. In vitro NSCs treated with BMP4 has been used a model to investigate NSC proliferation and quiescence, drawing on previous studies (e.g., Helena Mira, 2010; Marlen Knobloch, 2017). Crucially, to ensure the relevance of our in vitro findings to the in vivo context, we confirmed that cultured cells could indeed be induced into quiescence by BMP4, and this induction necessitated the presence of PRDM16. Furthermore, upon identifying target genes co-regulated by PRDM16 and SMADs, we validated PRDM16's regulatory role on a subset of these genes in the developing Choroid Plexus (ChP) (Fig. 7 and Suppl.Fig7-8). Only by combining evidence from both in vitro and in vivo experiments could we confidently conclude that PRDM16 serves as an essential co-factor for BMP signaling in restricting NSC proliferation.

      (2) It seems that the authors compare Prdm16_KO cells to Prdm16 WT cells overexpressing flag_Prdm16. Aside from the possible expression of endogenous Prdm16, other cell differences may have arisen between these cell lines. A properly controlled experiment would compare Prdm16_KO ctrl (possibly infected with a control vector without Prdm16) to Prdm16_KO_E (i.e. the Prdm16_KO cells with and without Prdm16 overexpression.)

      We agree that Prdm16 KO cells carrying the Prdm16-expressing vector would be a good comparison with those with KO_vector. However, despite more than 10 attempts with various optimization conditions, we were unable to establish a viable cell line after infecting Prdm16 KO cells with the Prdm16-expressing vector. The overall survival rate for primary NSCs after viral infection is low, and we observed that KO cells were particularly sensitive to infection treatment when the viral vector was large (the Prdm16 ORF is more than 3kb).

      As an alternative oo assess vector effects, we instead included two other control cell lines, wt and KO cells infected with the 3xNLS_Flag-tag viral vector, and presented the results in supplementary Fig 2.  When we compared the responses of the four lines — wt, KO, wt infected with the Flag vector, KO infected with the Flag vector — to the addition and removal of BMP4, we confirmed that the viral infection itself has no significant impacts on the responses of these cells to these treatments regarding changes in cell proliferation and Ttr induction.

      Given that wt cells and the KO cells, with or without viral backbone infection behave quite similarly in terms of cell proliferation, we speculate that even if we were successful in obtaining a cell line with Prdm16-expressing vector in the KO cells, it may not exhibit substantial differences compared to wt cells infected with Prdm16-expressing vector.

      Other experimental weaknesses that make the evidence less convincing:

      (1) The authors show in Figure 2E that Ttr is not upregulated by BMP4 in PRDM16_KO NSCs. Does this appear inconsistent with the presence of Ttr expression in the PRDM16_KO brain in Figure1C?

      The reviwer’s point is that there was no significant increase in Ttr expression in Prdm16_KO cells after BMP4 treatment (Fig. 2E), but there remained residule Ttr mRNA signals in the Prdm16 mutant ChP (Fig. 1C). We think the difference lies in the measuable level of Ttr expression between that induced by BMP4 in NSC culture and that in the ChP. This is based on our immunostaining expreriment in which we tried to detect Ttr using a Ttr antibody. This antibody could not detect the Ttr protein in BMP4-treated Prdm16_expressing NSCs but clearly showed Ttr signal in the wt ChP. This means that although Ttr expression can be significantly increased by BMP4 in vitro to a level measurable by RT-qPCR, its absolute quantity even in the Prdm16_expressing condition is much lower compared to that in vivo. Our results in Fig 1C and Fig 2E, as well as Fig 7B, all consistently showed that Prdm16 depletion significantly reduced Ttr expression in in vitro and in vivo.

      (2) Figure 3: The authors use H3K4me3 to measure gene activity. This is however, very indirect, with bulk RNA-seq providing the most direct readout and polymerase binding (ChIP-seq) another more direct readout. Transcription can be regulated without expected changes in histone methylation, see e.g. papers from Josh Brickman. They verify their H3K4me3 predictions with qPCR for a select number of genes, all related to the kinetochore, but it is not clear why these genes were picked, and one could worry whether these are representative.

      H3K4me3 has widely been used as an indicator of active transcription and is a mark for cell identity genes. And it has been demonstrated that H3K4me3 has a direct function in regulating transciption at the step of RNApolII pausing release. As stated in the text, there are advantages and disadvantages of using H3K4me3 compared to using RNA-seq. RNA-seq profiles all gene products, which are affected by transcription and RNA stability and turnover. In contrast, H3K4me3 levels at gene promoter reflects transcriptional activity. In our case, we aimed to identify differential gene expression between proliferation and quiescence states. The transition between these two states is fast and dynamic. RNA-seq may not be able to identify functionally relevant genes but more likely produces false positive and negative results. Therefore, we chose H3K4me3 profiling.

      We agree that transcription may change without histone methylation changes. This may cause an under-estimation of the number of changed genes between the conditions. 

      We validated 7 out of 31 genes (Wnt7b, Id3, Mybl2, Spc24, Spc25, Ndc80 and Nuf2). We chose these genes based on two critira: 1) their function is implicated in cell proliferation and cell-cycle regulation based on gene ontology analysis; 2) their gene products are detectable in the developing ChP based on the scRNA-seq data. Three of these genes (Wnt7b, Id3, Mybl2) are not related to the kinetochore. We now clarify this description in the revised text.

      (3) Line 256: The overlap of 31 genes between 184 BMP-repressed genes and 240 PRDM16-repressed genes seems quite small.

      This result indicates that in addition to co-repressing cell-cycle genes, BMP and PRDM16 have independent fucntions. For example, it was reported that BMP regulates neuronal and astrocyte differentiation (Katada, S. 2021), while our previous work demonstrated that Prdm16 controls temporal identity of NSCs (He, L. 2021).

      (4) The Wnt7b H3K4me3 track in Fig. 3G is not discussed in the text but it shows H3K4me3 high in _KO and low in _E regardless of BMP4. This seems to contradict the heatmap of H3K4me3 in Figure 3E which shows H3K4me3 high in _E no BMP4 and low in _E BMP4 while omitting _KO no BMP4. Meanwhile CDKN1A, the other gene shown in 3G, is missing from 3E.

      The track in Fig 3G shows the absolute signal of H3K4me3 after mapping the sequencing reads to the genome and normaliz them to library size. Compare the signal in Prdm16_E with BMP4 and that in Prdm16_E without BMP4, the one with BMP4 has a lower peak. The same trend can be seen for the pair of Prdm16_KO cells with or without BMP4.  The heatmap in Fig. 3E shows the relative level of H3K4me3 in three conditions. The Prdm16_E cells with BMP4 has the lowest level, while the other two conditions (Prdm16_KO with BMP4 and Prdm16_E without BMP4) display higher levels. These two graphs show a consistent trend of H3K4me3 changes at the Wnt7b promoter across these conditions. Figure 3E only includes genes that are co-repressed by PRDM16 and BMP. CDKN1A’s H3K4me3 signals are consistent between the conditions, and thus it is not a PRDM16- or BMP-regulated gene. We use it as a negative control. 

      (5) The authors use PRDM16 CUT&TAG on dissected dorsal midline tissues to determine if their 31 identified PRDM16-BMP4 co-repressed genes are regulated directly by PRDM16 in vivo. By manual inspection, they find that "most" of these show a PRDM16 peak. How many is most? If using the same parameters for determining peaks, how many genes in an appropriately chosen negative control set of genes would show peaks? Can the authors rigorously establish the statistical significance of this observation? And why wasn't the same experiment performed on the NSCs in which the other experiments are done so one can directly compare the results? Instead, as far as I could tell, there is only ChIP-qPCR for two genes in NSCs in Supplementary Figure 4D.

      In our text, we indicated the genes containing PRDM16 binding peaks in the figures and described them as “Text in black in Fig. 6A and Supplementary Fig. 5A”. We will add the precise number “25 of these genes” in the main text to clarify it. We used BMP-only repressed 184-31 =153 genes (excluding PRDM16-BMP4 co-repressed) as a negative control set of genes. By computationally determine the nearest TSS to a PRDM16 peak, we identified 24/31 co-repressed genes and 84/153 BMP-only-repressed genes, containing PRDM16 peaks in the E12.5 ChP data. Fisher’s Exact Test comparing the proportions yields the P-value = 0.015.

      We are confused with the second part of the comment “And why wasn't the same experiment performed on the NSCs in which the other experiments are done so one can directly compare the results? Instead, as far as I could tell, there is only ChIP-qPCR for two genes in NSCs in Supplementary Figure 4D.” If the reviewer meant why we didn’t sequence the material from sequential-ChIP or validate more taget genes, the reason is the limitation of the material. Sequential ChIP requires a large quantity of the antibodies, and yields little material barely sufficient for a few qPCR after the second round of IP. This yielded amount was far below the minimum required for library construction. The PRDM16 antibody was a gift, and the quantity we have was very limited. We made a lot of efforts to optimize all available commercial antibodies in ChIP and Cut&Tag, but none of them worked in these assays.

      (6) In comparing RNA in situ between WT and PRDM16 KO in Figure 7, the authors state they use the Wnt2b signal to identify the border between CH and neocortex. However, the Wnt2b signal is shown in grey and it is impossible for this reviewer to see clear Wnt2b expression or where the boundaries are in Figure 7A. The authors also do not show where they placed the boundaries in their analysis. Furthermore, Figure 7B only shows insets for one of the regions being compared making it difficult to see differences from the other region. Finally, the authors do not show an example of their spot segmentation to judge whether their spot counting is reliable. Overall, this makes it difficult to judge whether the quantification in Figure 7C can be trusted.

      In the revised manuscript we have included an individal channel of Wnt2b and mark the boundaries. We also provide full-view images and examples of spot segmentation in the new supplementary figure 8. 

      (7) The correlation between mKi67 and Axin2 in Figure 7 is interesting but does not convincingly show that Wnt downstream of PRDM16 and BMP is responsible for the increased proliferation in PRDM16 mutants.

      We agree that this result (the correlation between mKi67 and Axin2) alone only suggests that Wnt signaling is related to the proliferation defect in the Prdm16 mutant, and does not necessarily mean that Wnt is downstream of PRDM16 and BMP. Our concolusion is backed up by two additional lines of evidences:  the Cut&Tag data in which PRDM16 binds to regulatory regions of Wnt7b and Wnt3a; BMP and PRDM16 co-repress Wnt7b in vitro.

      An ideal result is that down-regulating Wnt signaling in Prdm16 mutant can rescue Prdm16 mutant phenotype. Such an experiment is technically challenging. Wnt plays diverse and essential roles in NSC regulation, and one would need to use a celltype-and stage-specific tool to down-regulate Wnt in the background of Prdm16 mutation. Moreover, Wnt genes are not the only targets regulated by PRDM16 in these cells, and downregulating Wnt may not be sufficient to rescue the phenotype. 

      Weaknesses of the presentation:

      Overall, the manuscript is not easy to read. This can cause confusion.

      We have revised the text to improve clarity.

      Reviewer #1 (Recommendations for the authors):

      (1) Overall, the manuscript is not easy to read. Here are some causes of confusion for which the presentation could be cleaned up:

      We are grateful for the reviewer’s suggestion. In the revised manuscript, we have made efforts to improve the clarity of the text.

      (a) Part of the first section is confusing in that some statements seem contradictory, in particular:

      "there is no overall patterning defect of ChP and CH in the Prdm16 mutant" (line 125)

      "Prdm16 depletion disrupted the transition from neural progenitors into ChP epithelia" (line 144)

      It would be helpful if the authors could reformulate this more clearly.

      We modified the text to clarify that while the BMP-patterned domain is not affected, the transition of NSCs into ChP epithelial cells is compromised in the Prdm16 mutant.

      (b) Flag_PRDM16, PRDM16_expressing, PRDM16_E, PRDM16 OE all seem to refer to the same PRDM16 overexpressing cells, which is very confusing. The authors should use consistent naming. Moreover, it would be good if they renamed these all to PRDM16_OE to indicate expression is not endogenous but driven by a constitutive promoter.

      We appreciate the comment and agree that the use of multiple terms to refer to the same PRDM16-overexpressing condition was confusing. Our original intention in using Prdm16_E was to distinguish cells expressing PRDM16 from the two other groups: wild-type cells and Prdm16_KO cells, which both lack PRDM16 protein expression. However, we acknowledge that Prdm16_E could be misinterpreted as indicating expression from the endogenous Prdm16 promoter. To avoid this confusion and ensure consistency, we have now standardized the terminology and refer to this condition as Prdm16_OE, indicating Flag-tagged PRDM16 expression driven by a constitutive promoter.

      (c) Line 179 states "generated a cell line by infecting Prdm16_KO cells with the same viral vector, expressing 3xNSL_Flag". Do the authors mean 3xNLS_Flag_Prdm16, so these are the Prdm16_KO_E cells by the notation suggested above? Or is this a control vector with Flag only? The following paragraph refers to Supplementary Figure 2C-F where the same construct is called KO_CDH, suggesting this was an empty CDH vector, without Flag, or Prdm16. This is confusing.

      We appreciate the reviewer’s careful reading and helpful comment. We acknowledge the confusion caused by the inconsistent terminology. To clarify: in line 179, we intended to describe an attempt to generate a Prdm16_KO cell line expressing 3xNLS_Flag_Prdm16, not a control vector with Flag only. However, despite repeated attempts, we were unable to establish this line due to low viral efficiency and the vulnerability of Prdm16_KO cells to infection with the large construct. Therefore, these cells were not included in the subsequent analyses.

      The term KO_CDH refers to Prdm16_KO cells infected with the empty CDH control vector, which lacks both Flag and Prdm16. This is the line used in the experiments shown in Supplementary Fig. 2C–F. We have revised the text throughout the manuscript to ensure consistent use of terminology and to avoid this confusion.

      (2) The introductory statements on lines 53-54 could use more references.

      Thanks for the suggestion. We have now included more references.

      (3) It would be helpful if all structures described in the introduction and first section were annotated in Figure 1, or otherwise, if a cartoon were included. For example, the cortical hem, and fourth ventricle.

      Thanks for the suggestion. We have now indicated the structures, ChP, CH and the fourth ventricle, in the images in Figure 1 and Supplementary Figure 1.

      (4) In line 115, "as previously shown.." - to keep the paper self-contained a figure illustrating the genetics of the KO allele would be helpful.

      Thanks for the suggestion. We have now included an illustration of the Prdm16 cGT allele in Figure 1B.

      (5) In Figure 1D as costain for a ChP marker would be helpful because it is hard to identify morphologically in the Prdm16 KO.

      Appoligize for the unclarity. The KO allele contains a b-geo reporter driven by Prdm16 endogenous promoter. The samples were co-stained for EdU, b-Gal and DAPI. To distingquish the ChP domain from the CH, we used the presence of b b-Gal as a marker. We indicated this in the figure legend, but now have also clarified this in the revised text.

      (6) The details in Figure 1E are hard to see, a zoomed-in inset would help.

      A zoomed-in inset is now included in the figure.

      (7) Supplementary Figure 2A does not convincingly show that PRDM16 protein is undetectable since endogenous expression may be very low compared to the overexpression PRDM16_E cells so if the contrast is scaled together it could appear black like the KO.

      We appreciate the reviewer’s point and have carefully considered this concern. We concluded that PRDM16 protein is effectively undetectable in cultured wild-type NSCs based on direct comparison with brain tissue. Both cultured NSCs and brain sections were processed under similar immunostaining and imaging conditions. While PRDM16 showed robust and specific nuclear localization in embryonic brain sections (Fig. 1B and Supplementary Fig. 1A), only a small subset of cultured NSCs exhibited PRDM16 signal, primarily in the cytoplasm (middle panel of Fig. 2A). This stark contrast supports our conclusion that endogenous PRDM16 protein is either absent or significantly downregulated in vitro. Because of this limitation, we turned to over-expressing Prdm16 in NSC culture using a constitutive promoter. 

      (9) Line 182 "Following the washout step" - no such step had been described, maybe replace by "After washout of BMP".

      Yes, we have revised the text.

      (8) Line 214: "indicating a modest level" - what defines modest? Compared to what? Why is a few thousand moderate rather than low? Does it go to zero with inhibitors for pathways?

      Here a modest level means a lower level than to that after adding BMP4. To clarify this, we revised the description to “indicating endogenous levels of …”

      (9) The way qPCR data are displayed makes it difficult to appreciate the magnitude of changes, e.g. in Supplementary Figure 2B where a gap is introduced on the scale. Displaying log fold change / relative CT values would be more informative.

      We used a segmented Y-axis in Supplementary Figure 2B because the Prdm16 overexpression samples exhibited much higher experssion levels compared to other conditions. In response to this suggestion, we explored alternative ways to present the result, including ploting log-transformed values and log fold changes. However, these methods did not enhance the clarity of the differences – in fact, log scaling made the magnitude of change appear less apparent. To address this, we now present the overexpression samples in a separate graph, thereby eliminating the need for a broken Y-axis and improving the overall readability of the data.

      (10) Writing out "3 days" instead of 3D in Figure 2A would improve clarity. It would be good if the used time interval is repeated in other figures throughout the paper so it is still clear the comparison is between 0 and 3 days.

      We have changed “3D” to “3 days”. All BMP4 treatments in this study were 3 days.

      (11) Line 290: "we found that over 50% of SMAD4 and pSMAD1/5/8 binding peaks were consistent in Prdm16_E and Prdm16_KO cells, indicating that deletion of Prdm16 does not affect the general genomic binding ability of these proteins" - this only makes sense to state with appropriate controls because 50% seems like a big difference, what is the sample to sample variability for the same condition? Moreover, the next paragraph seems to contradict this, ending with "This result suggests that SMAD binding to these sites depends on PRDM16". The authors should probably clarify the writing.

      We appreciate the reviwer’s comment and agree that clarification was needed. Our point was that SMAD4 and pSMAD1/5/8 retain the ability to bind DNA broadly in the Prdm16 KO cells, with more than half of the original binding sites still occupied. This suggests that deletion of Prdm16 does not globally impair SMAD genomic binding. Howerever, our primary interest lies in the subset of sites that show differential by SMAD binding between wt and Prdm16 KO conditions, as thse are likely to be PRDM16-dependent. 

      In the following paragraph, we focused specifically on describing SMAD and PRDM16 co-bound sites. At these loci, SMAD4 and pSMAD1/5/8 showed reduced enrichment in the absence of PRDM16, suggesting PRDM16 facilitates SMAD binding at these particular regions. We have revised the text in the manuscript to more clearly distinguish between global SMAD binding and PRDM16-dependent sites.

      (12) Much more convincing than ChIP-qPCR for c-FOS for two loci in Figures 5F-G would be a global analysis of c-FOS ChIP-seq data.

      We agree that a global c-FOS ChIP-seq analysis would provide a more comprehensive view of c-FOS binding patterns. However, the primary focus of this study is the interaction between BMP signaling and PRDM16. The enrichment of AP-1 motifs at ectopic SMAD4 binding sites was an unexpected finding, which we validated using c-FOS ChIP-qPCR at selected loci. While a genome-wide analysis would be valuable, it falls beyond the current scope. We agree that future studies exploring the interplay among SMAD4/pSMAD, PRDM16, and AP-1 will be important and informative.

      (13) Figure 6A is hard to read. A heatmap would make it much easier to see differences in expression. Furthermore, if the point is to see the difference between ChP and CH, why not combine the different subclusters belonging to those structures? Finally, why are there 28 genes total when it is said the authors are evaluating a list of 31 genes and also displaying 6 genes that are not expressed (so the difference isn't that unexpressed genes are omitted)?

      For the scRNA-seq data, we chose violin plots because they display both gene expression levels and the number of cells that express each gene. However, we agree that the labels in Figure 6A were too small and difficult to read. We have revised the figure by increasing the font size and moved genes with low expression to  Supplementary Figure 5A. Figure 6A includes 17 more highly expressed genes together with three markers, and  Supplementary Figure 5A contains 13 lowly expressed genes. One gene Mrtfb is missing in the scRNA-seq data and thus not included. We have revised the description of the result in the main text and figure legends.

      Reviewer #2 (Public review):

      Summary:

      This article investigates the role of PRDM16 in regulating cell proliferation and differentiation during choroid plexus (ChP) development in mice. The study finds that PRDM16 acts as a corepressor in the BMP signaling pathway, which is crucial for ChP formation.

      The key findings of the study are:

      (1) PRDM16 promotes cell cycle exit in neural epithelial cells at the ChP primordium.

      (2) PRDM16 and BMP signaling work together to induce neural stem cell (NSC) quiescence in vitro.

      (3) BMP signaling and PRDM16 cooperatively repress proliferation genes.

      (4) PRDM16 assists genomic binding of SMAD4 and pSMAD1/5/8.

      (5) Genes co-regulated by SMADs and PRDM16 in NSCs are repressed in the developing ChP.

      (6) PRDM16 represses Wnt7b and Wnt activity in the developing ChP.

      (7) Levels of Wnt activity correlate with cell proliferation in the developing ChP and CH.

      In summary, this study identifies PRDM16 as a key regulator of the balance between BMP and Wnt signaling during ChP development. PRDM16 facilitates the repressive function of BMP signaling on cell proliferation while simultaneously suppressing Wnt signaling. This interplay between signaling pathways and PRDM16 is essential for the proper specification and differentiation of ChP epithelial cells. This study provides new insights into the molecular mechanisms governing ChP development and may have implications for understanding the pathogenesis of ChP tumors and other related diseases.

      Strengths:

      (1) Combining in vitro and in vivo experiments to provide a comprehensive understanding of PRDM16 function in ChP development.

      (2) Uses of a variety of techniques, including immunostaining, RNA in situ hybridization, RT-qPCR, CUT&Tag, ChIP-seq, and SCRINSHOT.

      (3) Identifying a novel role for PRDM16 in regulating the balance between BMP and Wnt signaling.

      (4) Providing a mechanistic explanation for how PRDM16 enhances the repressive function of BMP signaling. The identification of SMAD palindromic motifs as preferred binding sites for the SMAD/PRDM16 complex suggests a specific mechanism for PRDM16-mediated gene repression.

      (5) Highlighting the potential clinical relevance of PRDM16 in the context of ChP tumors and other related diseases. By demonstrating the crucial role of PRDM16 in controlling ChP development, the study suggests that dysregulation of PRDM16 may contribute to the pathogenesis of these conditions.

      We thank the reviewer for the thorough and thoughtful summary of our study. We’re glad the key findings and significance of our work were clearly conveyed, particularly regarding the role of PRDM16 in coordinating BMP and Wnt signaling during ChP development. We also appreciate the recognition of our integrated approach and the potential implications for understanding ChP-related diseases.

      Weaknesses:

      (1) Limited investigation of the mechanism controlling PRDM16 protein stability and nuclear localization in vivo. The study observed that PRDM16 protein became nearly undetectable in NSCs cultured in vitro, despite high mRNA levels. While the authors speculate that post-translational modifications might regulate PRDM16 in NSCs similar to brown adipocytes, further investigation is needed to confirm this and understand the precise mechanism controlling PRDM16 protein levels in vivo.

      While mechansims controlling PRDM16 protein stability and nuclear localization in the developing brain are interesting, the scope of this paper is revealing the function of PRDM16 in the choroid plexus and its interaction with BMP signaling. We will be happy to pursuit this direction in our next study.

      (2) Reliance on overexpression of PRDM16 in NSC cultures. To study PRDM16 function in vitro, the authors used a lentiviral construct to constitutively express PRDM16 in NSCs. While this approach allowed them to overcome the issue of low PRDM16 protein levels in vitro, it is important to consider that overexpressing PRDM16 may not fully recapitulate its physiological role in regulating gene expression and cell behavior.

      As stated above, we acknowledge that findings from cultured NSCs may not directly apply to ChP cells in vivo. We are cautious with our statements. The cell culture work was aimed to identify potential mechanisms by which PRDM16 and SMADs interact to regulate gene expression and target genes co-regulated by these factors. We expect that not all targets from cell culture are regulated by PRDM16 and SMADs in the ChP, so we validated expression changes of several target genes in the developing ChP and now included the new data in Fig. 7 and Supplementary Fig. 7. Out of the 31 genes identified from cultured cells, four cell cycle regulators including Wnt7b, Id3, Spc24/25/nuf2 and Mybl2, showed de-repression in Prdm16 mutant ChP. These genes can be relevant downstream genes in the ChP, and other target genes may be cortical NSC-specific or less dependent on Prdm16 in vivo.

      (3) Lack of direct evidence for AP1 as the co-factor responsible for SMAD relocation in the absence of PRDM16. While the study identified the AP1 motif as enriched in SMAD binding sites in Prdm16 knockout cells, they only provided ChIP-qPCR validation for c-FOS binding at two specific loci (Wnt7b and Id3). Further investigation is needed to confirm the direct interaction between AP1 and SMAD proteins in the absence of PRDM16 and to rule out other potential co-factors.

      We agree that the finding of the AP1 motif enriched at the PRDM16 and SMAD co-binding regions in Prdm16 KO cells can only indirectly suggest AP1 as a co-factor for SMAD relocation. That’s why we used ChIP-qPCR to examine the presence of C-fos at these sites. Although we only validated two targets, the result confirms that C-fos binds to the sites only in the Prdm16 KO cells but not Prdm16_expressing cells, suggesting AP1 is a co-factor.  Our results cannot rule out the presence of other co-factors.

      Reviewer #2 (Recommendations for the authors):

      Minor typo: [7, page 3] "sicne" should be "since".

      We appreciate the reviewer’s careful reading. We have now corrected the typo and revised some part of the text to improve clarity.

      Reviewer #3 (Public review):

      Summary:

      Bone morphogenetic protein (BMP) signaling instructs multiple processes during development including cell proliferation and differentiation. The authors set out to understand the role of PRDM16 in these various functions of BMP signaling. They find that PRDM16 and BMP co-operate to repress stem cell proliferation by regulating the genomic distribution of BMP pathway transcription factors. They additionally show that PRDM16 impacts choroid plexus epithelial cell specification. The authors provide evidence for a regulatory circuit (constituting of BMP, PRDM16, and Wnt) that influences stem cell proliferation/differentiation.

      Strengths:

      I find the topics studied by the authors in this study of general interest to the field, the experiments well-controlled and the analysis in the paper sound.

      We thank the reviewer for their positive feedback and thoughtful summary. We appreciate the recognition of our efforts to define the role of PRDM16 in BMP signaling and stem cell regulation, as well as the soundness of our experimental design and analysis.

      Weaknesses:

      I have no major scientific concerns. I have some minor recommendations that will help improve the paper (regarding the discussion).

      We have revised the discussion according to the suggestions.

      Reviewer #3 (Recommendations for the authors):

      Specific minor recommendations:

      Page 18. Line 526: In a footnote, the authors point out a recent report which in parallel was investigating the link between PRDM16 and SMAD4. There is substantial non-overlap between these two papers. To aid the reader, I would encourage the authors to discuss that paper in the discussion section of the manuscript itself, highlighting any similarities/differences in the topic/results.

      Thanks for the suggestion. We now included the comparison in the discussion. One conclusion between our study and this publication is consistent, that PRDM16 functions as a co-repressor of SMAD4. However, the mechanims are different. Our data suggests a model in which PRDM16 facilitates SMAD4/pSMAD binding to repress proliferation genes under high BMP conditions. However, the other report suggests that SMAD4 steadily binds to Prdm16 promoter and switches regulatory functions depending on the co-factors. Together with PRDM16, SMAD4 represses gene expression, while with SMAD3 in response to high levels of TGF-b1, it activates gene expression. These differences could be due to different signaling (BMP versus TGF-b), contexts (NSCs versus Pancreatic cancers) etc.

      Page 3. Line 65: typo 'since'

      We appreciate the reviewer’s careful reading. We have now corrected the typo and revised the text to improve clarity.

    1. Author response:

      The following is the authors’ response to the previous reviews

      Public Reviews:

      Reviewer #1 (Public Review):

      This manuscript describes a series of experiments documenting trophic egg production in a species of harvester ant, Pogonomyrmex rugosus. In brief, queens are the primary trophic egg producers, there is seasonality and periodicity to trophic egg production, trophic eggs differ in many basic dimensions and contents relative to reproductive eggs, and diets supplemented with trophic eggs had an effect on the queen/worker ratio produced (increasing worker production).

      The manuscript is very well prepared and the methods are sufficient. The outcomes are interesting and help fill gaps in knowledge, both on ants as well as insects, more generally. More context could enrich the study and flow could be improved.

      We thank the reviewer for these comments. We agree that the paper would benefit from more context. We have therefore greatly extended the introduction.

      Reviewer #2 (Public Review):

      The manuscript by Genzoni et al. provides evidence that trophic eggs laid by the queen in the ant Pogonomyrmex rugosis have an inhibitory effect on queen development. The authors also compare a number of features of trophic eggs, including protein, DNA, RNA, and miRNA content, to reproductive eggs. To support their argument that trophic eggs have an inhibitory effect on queen development, the authors show that trophic eggs have a lower content of protein, triglycerides, glycogen, and glucose than reproductive eggs, and that their miRNA distributions are different relative to reproductive eggs. Although the finding of an inhibitory influence of trophic eggs on queen development is indeed arresting, the egg cross-fostering experiment that supports this finding can be effectively boiled down to a single figure (Figure 6). The rest of the data are supplementary and correlative in nature (and can be combined), especially the miRNA differences shown between trophic and reproductive eggs. This means that the authors have not yet identified the mechanism through which the inhibitory effect on queen development is occurring. To this reviewer, this finding is more appropriate as a short report and not a research article. A full research article would be warranted if the authors had identified the mechanism underlying the inhibitory effect on queen development. Furthermore, the article is written poorly and lacks much background information necessary for the general reader to properly evaluate the robustness of the conclusions and to appreciate the significance of the findings.

      We thank the reviewer for these comments. We agree that the paper would benefit by having more background information and more discussion. We have followed this advice in the revision.

      Reviewer #3 (Public Review):

      In "Trophic eggs affect caste determination in the ant Pogonomyrmex rugosus" Genzoni et al. probe a fundamental question in sociobiology, what are the molecular and developmental processes governing caste determination? In many social insect lineages, caste determination is a major ontogenetic milestone that establishes the discrete queen and worker life histories that make up the fundamental units of their colonies. Over the last century, mechanisms of caste determination, particularly regulators of caste during development, have remained relatively elusive. Here, Genzoni et al. discovered an unexpected role for trophic eggs in suppressing queen development - where bi-potential larvae fed trophic eggs become significantly more likely to develop into workers instead of gynes (new queens). These results are unexpected, and potentially paradigm-shifting, given that previously trophic eggs have been hypothesized to evolve to act as an additional intracolony resource for colonies in potentially competitive environments or during specific times in colony ontogeny (colony foundation), where additional food sources independent of foraging would be beneficial. While the evidence and methods used are compelling (e.g., the sequence of reproductive vs. trophic egg deposition by single queens, which highlights that the production of trophic eggs is tightly regulated), the connective tissue linking many experiments is missing and the downstream mechanism is speculative (e.g., whether miRNA, proteins, triglycerides, glycogen levels in trophic eggs is what suppresses queen development). Overall, this research elevates the importance of trophic eggs in regulating queen and worker development but how this is achieved remains unknown.

      We thank the reviewer for these comments and agree that future work should focus on identifying the substances in trophic eggs that are responsible for caste determination.  

      Recommendations For The Authors:

      Reviewer #1 (Recommendations For The Authors):

      Introduction:

      The context for this study is insufficiently developed in the introduction - it would be nice to have a more detailed survey of what is known about trophic eggs in insects, especially social insects. The end of the introduction nicely sets up the hypothesis through the prior work described by Helms Cahan et al. (2011) where they found JH supplementation increased trophic egg production and also increased worker size. I think that the introduction could give more context about egg production in Pogonomyrmex and other ants, including what is known about worker reproduction. For example, Suni et al. 2007 and Smith et al. 2007 both describe the absence of male production by workers in two different harvester ants. Workers tend to have underdeveloped ovaries when in the presence of the queen. Other species of ants are known to have worker reproduction seemingly for the purpose of nutrition (see Heinze and Hölldober 1995 and subsequent studies on Crematogaster smithi). Because some ants, including Pogonomyrmex, lack trophallaxis, it has been hypothesized that they distribute nutrients throughout the nest via trophic eggs as is seen in at least one other ant (Gobin and Ito 2000). Interestingly, Smith and Suarez (2009) speculated that the difference in nutrition of developing sexual versus worker larvae (as seen in their pupal stable isotope values) was due to trophic egg provisioning - they predicted the opposite as was found in this study, but their prediction was in line with that of Helms Cahan et al. (2011). This is all to say that there is a lot of context that could go into developing the ideas tested in this paper that is completely overlooked. The inclusion of more of what is known already would greatly enrich the introduction.

      We agree that it would be useful to provide a larger context to the study. We now provide more information on the life-history of ants and explained under what situations queens and workers may produce trophic eggs. We also mentioned that some ants such as Crematogaster smithi have a special caste of “large workers” which are morphologically intermediate between winged queens and small workers and appear to be specialized in the production of unfertilized eggs. We now also mention the study of Goby and Ito (200) where the authors show that trophic eggs may play an important role in food distribution withing the colony, in particular in species where trophallaxis is rare or absent.

      Methods:

      L49: What lineage is represented in the colonies used? The collection location is near where both dependent-lineage (genetic caste determining) P. rugosus and "H" lineage exist. This is important to know. Further, depending on what these are, the authors should note whether this has relevance to the study. Not mentioning genetic caste determination in a paper that examines caste determination is problematic.

      This is a good point. We have now provided information at the very beginning of the material and method section that the queens had been collected in populations known not to have dependentlineage (genetic caste determining) mechanisms of caste determination.

      L63 and throughout: It would be more efficient to have a paragraph that cites R (must be done) and RStudio once as the tool for all analyses. It also seems that most model construction and testing was done using lme4 - so just lay this out once instead of over and over.

      We agree and have updated the manuscript accordingly.

      L95: 'lenght' needs to be 'length' in the formula.

      Thanks, corrected.

      L151: A PCA was used but not described in the methods. This should be covered here. And while a Mantel test is used, I might consider a permANOVA as this more intuitively (for me, at least) goes along with the PCA.

      We added the PCA description in the Material and Method section.

      Results:

      I love Fig. 3! Super cool.

      Thanks for this positive comment.

      Discussion:

      It would be good to have more on egg cannibalism. This is reasonably well-studied and could be good extra context.

      We have added a paragraph in the discussion to mention that egg cannibalism is ubiquitous in ants.

      Supp Table 1: P. badius is missing and citations are incorrectly attributed to P. barbatus.

      P. badius was present in the Table but not with the other Pogonomyrmex species. For some genera the species were also not listed in alphabetic order. This has been corrected.

      Reviewer #2 (Recommendations For The Authors):

      Comments on introduction:

      The introduction is missing information about caste determination in ants generally and Pogonomyrmex rugosis specifically. This is important because some colonies of Pogonomyrmex rugosis have been shown to undergo genetic caste determination, in which case the main result would be rendered insignificant. What is the evidence that caste determination in the lineages/colonies used is largely environmentally influenced and in what contexts/environmental factors? All of this should be made clear.

      This is a good point. We have expanded the introduction to discuss previous work on caste determination in Pogonomyrmex species with environmental caste determination and now also provide evidence at the beginning of the Material and Method section that the two populations studied do not have a system of genetic caste determination.

      Line 32 and throughout the paper: What is meant exactly by 'reproductive eggs'? Are these eggs that develop specifically into reproductives (i.e., queens/males) or all eggs that are non-trophic? If the latter, then it is best to refer to these eggs as 'viable' in order to prevent confusion.

      We agree and have updated the manuscript accordingly.

      Figure 1/Supp Table 1: It is surprising how few species are known to lay trophic eggs. Do the authors think this is an informative representation of the distribution of trophic egg production across subfamilies, or due to lack of study? Furthermore, the branches show ant subfamilies, not families. What does the question mark indicate? Also, the information in the table next to the phylogeny is not easy to understand. Having in the branches that information, in categories, shown in color for example, could be better and more informative. Finally, having the 'none' column with only one entry is confusing - discuss that only one species has been shown to definitely not lay trophic eggs in the text, but it does not add much to the figure.

      Trophic eggs are probably very common in ants, but this has not been very well studied. We added a sentence in the manuscript to make this clear.

      Thanks for noticing the error family/subfamily error. This has been corrected in Figure 1 and Supplementary Table 1.

      The question mark indicates uncertainty about whether queens also contribute to the production of trophic eggs in one species (Lasius niger). We have now added information on that in the Figure legend.

      We agree with the reviewer that it would be easier to have the information on whether queens and workers produce trophic on the branches of the Tree. However, having the information on the branches would suggest that the “trait” evolved on this part of the tree. As we do not know when worker or queen production of trophic eggs exactly evolved, we prefer to keep the figure as it is.

      Finally, we have also removed the none in the figure as suggested by the reviewer and discussed in the manuscript the fact that the absence of trophic eggs has been reported in only one ant species (Amblyopone silvestrii: Masuko 2003_)._

      Comments on materials and methods:

      Why did they settle on three trophic eggs per larva for their experimental setup?

      We used three trophic eggs because under natural conditions 50-65% of the eggs are trophic. The ratio of trophic eggs to viable eggs (larvae) was thus similar natural condition.

      Line 50: In what kind of setup were the ants kept? Plaster nests? Plastic boxes? Tubes? Was the setup dry or moist? I think this information is important to know in the context of trophic eggs.

      We now explain that colonies were maintained in plastic boxes with water tubes.

      Line 60: Were all the 43 queens isolated only once, or multiple times?

      Each of the 43 queens were isolated for 8 hours every day for 2 weeks, once before and once after hibernation (so they were isolated multiple times). We have changed the text to make clear that this was done for each of the 43 queens.

      Could isolating the queen away from workers/brood have had an effect on the type of eggs laid?

      This cannot be completely ruled out. However, it is possible to reliably determine the proportion of viable and trophic eggs only by isolating queens. And importantly the main aim of these experiments was not to precisely determine the proportion viable and trophic eggs, but to show that this proportion changes before and after hibernation and that queens do not lay viable and trophic eggs in a random sequence.

      Since it was established that only queens lay trophic eggs why was the isolation necessary?

      Yes this was necessary because eggs are fragile and very difficult to collect in colonies with workers (as soon as eggs are laid they are piled up and as soon as we disturb the nest, a worker takes them all and runs away with them). Moreover, it is possible that workers preferentially eat one type of eggs thus requiring to remove eggs as soon as queens would have laid them. This would have been a huge disturbance for the colonies.

      Line 61: Is this hibernation natural or lab induced? What is the purpose of it? How long was the hibernation and at what temperature? Where are the references for the requirement of a diapause and its length?

      The hibernation was lab induced. We hibernated the queens because we previously showed that hibernation is important to trigger the production of gynes in P. rugosus colonies in the laboratory (Schwander et al 2008; Libbrecht et al 2013). Hibernation conditions were as described in Libbrecht et al (2013).  

      Line 73: If the queen is disturbed several times for three weeks, which effect does it have on its egg-laying rate and on the eggs laid? Were the eggs equally distributed in time in the recipient colonies with and without trophic eggs to avoid possible effects?

      It is difficult to respond what was the effect of disturbance on the number and type of eggs laid. But again our aim was not to precisely determine these values but determine whether there was an effect of hibernation on the proportion of trophic eggs. The recipient colonies with and without trophic eggs were formed in exactly the same way. No viable eggs were introduced in these colonies, but all first instar larvae have been introduced in the same way, at the same time, and with random assignment. We have clarified this in the Material and Method section.

      Line 77: Before placing the freshly hatched larvae in recipient colonies, how long were the recipient colonies kept without eggs and how long were they fed before giving the eggs? Were they kept long enough without the queen to avoid possible effects of trophic eggs, or too long so that their behavior changed?

      The recipient colonies were created 7 to 10 days before receiving the first larvae and were fed ad libitum with grass seeds, flies and honey water from the beginning. Trophic eggs that would have been left over from the source colony should have been eaten within the first few days after creating the recipient colonies. However, even if some trophic eggs would have remained, this would not influence our conclusion that trophic eggs influence caste fate, given the fully randomized nature of our treatments and the considerable number of independent replicates. The same applies to potential changes in worker behavior following their isolation from the queen.

      Line 77: Is it known at what stage caste determination occurs in this species? Here first instar larvae were given trophic eggs or not. Does caste-determination occur at the first instar stage? If not, what effect could providing trophic eggs at other stages have on caste-determination?

      A previous study showed that there is a maternal effect on caste determination in the focal species (Schwander et al 2008). The mechanism underlying this maternal effect was hypothesized to be differential maternal provisioning of viable eggs. However, as we detail in the discussion, the new data presented in our study suggests that the mechanism is in fact a different abundance of trophic eggs laid by queens. There is currently no information when exactly caste determination occurs during development

      Comments on results:

      Line 65: How does investigating the order of eggs laid help to "inform on the mechanisms of oogenesis"?

      We agree that the aim was not to study the mechanism of oogenesis. We have changed this sentence accordingly: “To assess whether viable and trophic eggs were laid in a random order, or whether eggs of a given type were laid in clusters, we isolated 11 queens for 10 hours, eight times over three weeks, and collected every hour the eggs laid”

      Figure 2: There is no description/discussion of data shown in panels B, C, E, and F in the main text.

      We have added information in the main text that while viable eggs showed embryonic development at 25 and 65 hours (Fig 12 B, C) there was no such development for trophic eggs (Fig. 2 E,F).

      Line 172: Please explain hibernation details and its significance on colony development/life cycle.

      We have added this information in the Material and Method section.

      Figure 6: How is B plotted? How could 0% of gynes have 100% survival?

      The survival is given for the larvae without considering caste. We have changed the de X axis of panel B and reworded the Figure legend to clarify this.

      Is reduced DNA content just an outcome of reduced cell number within trophic eggs, i.e., was this a difference in cell type or cell number? Or is it some other adaptive reason?

      It is likely to be due to a reduction in cell number (trophic eggs have maternal DNA in the chorion, while viable eggs have in addition the cells from the developing zygote) but we do not have data to make this point.

      Is there a logical sequence to the sequence of egg production? The authors showed that the sequence is non-random, but can they identify in what way? What would the biological significance be?

      We could not identify a logical sequence. Plausibly, the production of the two types of eggs implies some changes in the metabolic processes during egg production resulting in queens producing batches of either viable or trophic eggs. This would be an interesting question to study, but this is beyond the scope of this paper.

      Figure 6b is difficult to follow, and more generally, legends for all figures can be made clearer and more easy to follow.

      We agree. We have now improved the legends of Fig 6B and the other figures.

      Lines 172-174: "The percentage of eggs that were trophic was higher before hibernation...than after. This higher percentage was due to a reduced number of reproductive eggs, the number of trophic eggs laid remained stable" - are these data shown? It would be nice to see how the total egglaying rate changes after hibernation. Also, is the proportion of trophic eggs laid similar between individual queens?

      No the data were not shown and we do not have excellent data to make this point. We have therefore removed the sentence “This higher percentage was due to a reduced number of reproductive eggs, the number of trophic eggs laid remained stable” from the manuscript.

      Figure 6B: Do several colonies produce 100% gynes despite receiving trophic eggs? It would be interesting if the authors discussed why this might occur (e.g., the larvae are already fully determined to be queens and not responsive to whatever signal is in the trophic eggs).

      The reviewer is correct that 4 colonies produced 100% gynes despite receiving trophic eggs. However, the number of individuals produced in these four colonies was small (2,1,2,1, see supplementary Table 2). So, it is likely that it is just by chance that these colonies produced only gynes.

      Figure 5: Why a separation by "size distribution variation of miRNA"? What is the relevance of looking at size distributions as opposed to levels?

      We did that because there many different miRNA species, reflected by the fact that there is not just one size peak but multiple one. This is why we looked at size distribution

      Figure 2: The image of the viable embryo is not clear. If possible, redo the viable to show better quality images.

      Unfortunately, we do not anymore have colonies in the laboratory so this is not possible.

      Comments on discussion:

      Lines 236-247: Can an explanation be provided as to why the effect of trophic eggs in P. rugosus is the opposite of those observed by studies referenced in this section? Could P. rugosus have any life history traits that might explain this observation?

      In the two mentioned studies there were other factors that co-varied with variation in the quantity of trophic eggs. We mentioned that and suggested that it would be useful to conduct experimental manipulation of the quantity of trophic eggs in the Argentine ant and P. barbatus (the two species where an effect of trophic eggs had been suggested).

      The discussion should include implications and future research of the discovery.

      We made some suggestions of experiments that should be performed in the future

      The conclusion paragraph is too short and does not represent what was discussed.

      We added two sentences at the end of the paragraph to make suggestions of future studies that could be performed.

      Lines 231 to 247: Drastically reduce and move this whole part to the introduction to substantiate the assumption that trophic eggs play a nutritional role.

      We moved most of this paragraph to the introduction, as suggested by the reviewer.

      Reviewer #3 (Recommendations For The Authors):

      I would like to commend the authors on their study. The main findings of the paper are individually solid and provide novel insight into caste determination and the nature of trophic eggs. However, the inferences made from much of the data and connections between independent lines of evidence often extend too far and are unsubstantiated.

      We thank the reviewer for the positive comment. We made many changes in the manuscript to improve the discussion of our results.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The manuscript by Duilio M. Potenza et al. explores the role of Arginase II in cardiac aging, majorly using whole-body arg-ii knock-out mice. In this work, the authors have found that Arg-II exerts non-cell-autonomous effects on aging cardiomyocytes, fibroblasts, and endothelial cells mediated by IL-1b from aging macrophages. The authors have used arg II KO mice and an in vitro culture system to study the role of Arg II. The authors have also reported the cell-autonomous effect of Arg-II through mitochondrial ROS in fibroblasts that contribute to cardiac aging. These findings are sufficiently novel in cardiac aging and provide interesting insights. While the phenotypic data seems strong, the mechanistic details are unclear. How Arg II regulates the IL-1b and modulates cardiac aging is still being determined. The authors still need to determine whether Arg II in fibroblasts and endothelial contributes to cardiac fibrosis and cell death. This study also lacks a comprehensive understanding of the pathways modulated by Arg II to regulate cardiac aging.

      We sincerely appreciate the valuable feedback provided by the reviewer. It's gratifying to hear that our work provided novel information on the role of arginase-II in cardiac aging which is a complex process involving various cell types and mechanisms. We have devoted considerable effort by performing new experiments to address the reviewer's comments and to delineate more detailed mechanisms of Arg-II in cardiac aging. Please, see below our specific answers to each point of the reviewers.

      Strengths:

      This study provides interesting information on the role of Arg II in cardiac aging.

      The phenotypic data in the arg II KO mice is convincing, and the authors have assessed most of the aging-related changes.

      The data is supported by an in vitro cell culture system.

      We appreciate this reviewer’s positive assessment on the strength of our study.

      Weaknesses:

      The manuscript needs more mechanistic details on how Arg II regulates IL-1b and modulates cardiac aging.

      We made great effort and have performed new experiments in human monocyte cell line (THP1) in which iNOS is not expressed and not inducible by LPS and arg-ii gene was knocked out by CRISPR technology. Moreover, murine bone-marrow derived macrophages in which inos gene was ablated, is also use for this purpose. We found that in the human THP1 monocytes in which Arg-II but not iNOS is induced by LPS (100 ng/mL for 24 hours) (Suppl. Fig. 6A), mRNA and protein levels of IL-1b precursor are markedly reduced in arg-ii knockout THP1<sup>arg-ii<sup>-/-</sup></sup> as compared to the THP1<sup>wt</sup> cells (Suppl. Fig. 6B and 6C), further confirming that Arg-II promotes IL-1b production as also shown in RAW264.7 macrophages (Suppl. Fig. 5A and 5C). Moreover, in the mouse bone-marrow-derived macrophages, LPS-induced IL-1b production is inhibited by inos deficiency (BMDM<sup>inos-/-</sup> vs BMDM<sup>wt</sup>) (Suppl. Fig. 6D and 6E), while Arg-II levels are slightly enhanced in the BMDM<sup>inos-/-</sup> cells (Suppl. Fig. 6D and 6F). All together, these results suggest that iNOS slightly reduces Arg-II expression. Arg-II and iNOS can be upregulated by LPS independently. Both Arg-II and iNOS are required for IL-1b production upon LPS stimulation as illustrated in Suppl. Fig. 6G. For detailed results and discussion, please see answers to the comments point 2 or point 6 raised by this reviewer.

      The authors used whole-body KO mice, and the role of macrophages in cardiac aging is not studied in this model. A macrophage-specific arg II Ko would be a better model.

      We fully agree with this comment of the reviewer. Unfortunately, this macrophage specific arg-ii knockout animal model is not available, yet. Future research shall develop the macrophage-specific arg-ii<sup>-/-</sup> mouse model to confirm this conclusion with aging animals. Since Arg-II is also expressed in fibroblasts and endothelial cells and exerts cell-autonomous and paracrine functions, aging mouse models with conditional arg-ii knockout in the specific cell types would be the next step to elucidate cell-specific function of Arg-II in cardiac aging. We have pointed out this aspect for future research on page 19, lines 2 to 6.

      Experiments need to validate the deficiency of Arg II in cardiomyocytes.

      As pointed out by this reviewer in the comment point 10, Arg-II was previously reported to be expressed in isolated cardiomyocytes from in rats (PMID: 16537391). Unfortunately, negative controls. i.e., arg-ii<sup>-/-</sup> samples were not included in the study to avoid any possible background signals. We made great effort to investigate whether Arg-II is present in the cardiomyocytes from different species including mice, rats and humans and have included old arg-ii<sup>-/-</sup> mouse samples as a negative control. This allows to validate the antibody specificity and background noises beyond any reasonable doubt. The new experiments in Suppl. Fig. 4 confirms the specificity of the antibody against Arg-II in old mouse kidney which is known to express Arg-II in the S3 proximal tubular cells (Huang J, et al. 2021). To exclude the possible species-specific different expression of Arg-II in the cardiomyocytes, aged mouse and rat heart tissues were used for cellular localization of Arg-II by confocal immunofluorescence staining. As shown in Suppl. Fig. 4B and 4C, both species show Arg-II expression only in non-cardiomyocytes (cells between striated cardiomyocytes) (red arrows) but not in striated cardiomyocytes. Even in the rat myocardial infarction tissues, Arg-II was not found in cardiomyocytes but in endocardium cells (Suppl. Fig. 4B). In isolated cardiomyocytes exposed to hypoxia, a well know strong stimulus for Arg-II protein levels, no Arg-II signals could be detected, while in fibroblasts from the same animals, an elevated Arg-II levels under hypoxia is demonstrated (Fig. 5B). Furthermore, even RT-qPCR could not detect arg-ii mRNA in cardiomyocytes but in non-cardiomyocytes (Fig. 5C). All together, these results demonstrate that Arg-II are not expressed or at negligible levels in cardiomyocytes but expressed in non-cardiomyocytes. This new experiments with rat heart are included in the method section on page 20, the 1st paragraph. The results are described on page 7, the 1st paragraph, and discussed on page 12, the 2nd paragraph. Legend to Suppl. Fig. 4 is included in the file “Suppl. figure legend_R”.

      The authors have never investigated the possibility of NO involvement in this mice model.

      As above mentioned, we made great effort and have performed new experiments in human monocyte cell line (THP1) in which iNOS is not expressed and not inducible by LPS and arg-ii gene was knocked out by CRISPR technology. Moreover, murine bone-marrow derived macrophages in which inos gene was ablated, is also use for this purpose. The results show that Arg-II and iNOS can be upregulated by LPS independent of each other and iNOS slightly reduces Arg-II expression. However, both Arg-II and iNOS are required for IL-1b production upon LPS stimulation. For detailed results and discussion, please see answers to the comments point 2 or point 6 raised by this reviewer.

      A co-culture system would be appropriate to understand the non-cell-autonomous functions of macrophages.

      We appreciate the suggestion by this reviewer regarding the co-culture system to test the non-cell autonomous role of Arg-II. We think that our current model, which involves treating cells with conditioned media, is a well-established and effective method for demonstrating the non-cell autonomous role of Arg-II. This approach allows us to observe the effects of Arg-II on surrounding cells through the factors present in the conditioned media released from macrophages. The co-culture system could be considered, if the released factor in the conditioned medium is not stable. This is however not the case. Therefore, we are confident that our experimental model with conditioned medium is sufficiently enough to demonstrate a paracrine effect of cell-cell interaction (please also see answers to the comment point 16.

      The Myocardial infarction data shown in the mice model may not be directly linked to cardiac aging.

      As we have introduced and discussed in the manuscript, aging is a predominant risk factor for cardiovascular disease (CVD). Studies in experimental animal models and in humans provide evidence demonstrating that aging heart is more vulnerable to stressors such as ischemia/reperfusion injury and myocardial infarction as compared to the heart of young individuals. Even in the heart of apparently healthy individuals of old age, chronic inflammation, cardiomyocyte senescence, cell apoptosis, interstitial/perivascular tissue fibrosis, endothelial dysfunction and endothelial-mesenchymal transition (EndMT), and cardiac dysfunction either with preserved or reduced ejection fraction rate are observed. Our study is aimed to investigate the role of Arg-II in cardiac aging phenotype and age-associated cardiac vulnerability to stressors. Therefore, cardiac functional changes and myocardial infarction in response to ischemia/reperfusion injury are suitable surrogate parameters for the purpose.

      Reviewer #2 (Public Review):

      Summary:

      The results from this study demonstrated a cell-specific role of mitochondrial enzyme arginase-II (Arg-II) in heart aging and revealed a non-cell-autonomous effect of Arg-II on cardiomyocytes, fibroblasts, and endothelial cells through the crosstalk with macrophages via inflammatory factors, such as by IL-1b, as well as a cell-autonomous effect of Arg-II through mtROS in fibroblasts contributing to cardiac aging phenotype. These findings highlight the significance of non-cardiomyocytes in the heart and bring new insights into the understanding of pathologies of cardiac aging. It also provides new evidence for the development of therapeutic strategies, such as targeting the ArgII activation in macrophages.

      We're grateful for the reviewer's positive feedback, acknowledging the significant findings of our study on the role of arginase-II (Arg-II) in cardiac aging. We appreciate this reviewer’s insight into the therapeutic potential of targeting Arg-II activation in macrophages and are excited about the implications for future interventions in age-related cardiac pathologies. Thank you for recognizing the importance of our work in advancing our understanding of cardiac aging and potential therapeutic strategies.

      Strengths:

      This study targets an important clinical challenge, and the results are interesting and innovative. The experimental design is rigorous, the results are solid, and the representation is clear. The conclusion is logical and justified.

      We thank this reviewer for the positive comment.

      Weaknesses:

      The discussion could be extended a little bit to improve the realm of the knowledge related to this study.

      We appreciate this comment and have added and revised our discussion on this aspect accordingly at the end of the discussion section on page 19.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      I have several critical concerns, specifically about the mechanism of how Arg-II plays a role in cardiac aging.

      My major concerns are:

      (1) The authors have shown non-cell-autonomous effects on aging cardiomyocytes, fibroblasts, and endothelial cells mediated by IL-1b from aging macrophages. A macrophage-specific Arg-II knock-out mouse model is a suitable and necessary control to establish claims.

      We fully agree with this comment of the reviewer. Unfortunately, this macrophage specific arg-ii knockout animal model is not available, yet. Future research shall develop the macrophage-specific arg-ii<sup>-/-</sup> mouse model to confirm this conclusion with aging animals. Since Arg-II is also expressed in fibroblasts and endothelial cells and exerts cell-autonomous and paracrine functions, aging mouse models with conditional arg-ii knockout in the specific cell types would be the next step to elucidate cell-specific function of Arg-II in cardiac aging. We have pointed out this aspect for future research on page 19, lines 2 to 6.

      (2) This study suggests that Arg-II exerts its effect through IL-1b in cardiac ageing. However, all experiments performed to demonstrate the link between ArgII and IL-1β are correlative at best. The underlying molecular mechanism, including transcription factors involved in the regulation of IL-1β by arg-ii, has not been demonstrated.

      We sincerely appreciate this reviewer’s comment on the aspect! To make it clear, a causal role of Arg-II in promoting IL-1β production in macrophages is evidenced by the experimental results showing that old arg-ii<sup>-/-</sup> mouse heart has lower IL-1β levels than the age-matched wt mouse heart (Fig. 6A to 6D). We further showed that the cellular IL-1β protein levels and release are reduced in old arg-ii<sup>-/-</sup> mouse splenic macrophages as compared to the wt cells (Fig. 7A, 7C, and 7D). This result is further confirmed with the mouse macrophage cell line RAW264.7 (Suppl. Fig. 5A and suppl. Fig. 5C), in which we demonstrate that silencing arg-ii reduces IL-1β levels stimulated with LPS.

      According to this reviewer’s comment (see comment point 6), we made further effort to investigate possible involvement of iNOS in Arg-II-regulated IL-1β production in macrophages stimulated with LPS. We performed new experiments in human monocyte cell line (THP1) in which iNOS is not expressed and not inducible by LPS and arg-ii gene was knocked out by CRISPR technology in the cells.

      Moreover, murine bone-marrow derived macrophages in which inos gene was ablated, is also use for this purpose. We found that in the human THP1 monocytes in which Arg-II but not iNOS is induced by LPS (100 ng/mL for 24 hours) (Suppl. Fig. 6A), mRNA and protein levels of IL-1b are markedly reduced in arg-ii knockout THP1<sup>arg-ii<sup>-/-</sup></sup> as compared to the THP1<sup>wt</sup> cells (Suppl. Fig. 6B and 6C), further confirming that Arg-II promotes IL-1b production as also shown in RAW264.7 macrophages (Suppl. Fig. 5A and 5C). The results suggest that Arg-II promotes IL-1b production independently of iNOS. Moreover, the role of iNOS in IL-1b production was also studied in the mouse bone-marrow-derived macrophages in which inos gene is ablated. The results demonstrate that LPS-induced IL-1b production is inhibited by inos deficiency (BMDM<sup>inos-/-</sup> vs BMDM<sup>wt</sup>) (Suppl. Fig. 6D and 6E), while Arg-II levels are slightly enhanced in the BMDM<sup>inos-/-</sup> cells (Suppl. Fig. 6D and 6F). Since arginase and iNOS share the same metabolic substrate L-arginine, <sup>inos-/-</sup> is expected to increase IL-1b production. This is however not the case. A strong inhibition of IL-1β production in <sup>inos-/-</sup> macrophages is observed. These results implicate that iNOS promotes IL-1β production independently of Arg-II and the inhibiting effect of IL-1β by inos deficiency is dominant and able to counteract Arg-II’s stimulating effect on IL-1β production. Hence, our results demonstrate that Arg-II promotes IL-1β production in macrophages independently of iNOS. All together, these results suggest that iNOS slightly reduces Arg-II expression. Arg-II and iNOS can be upregulated by LPS independently. Both Arg-II and iNOS are required for IL-1b production upon LPS stimulation (This concept is illustrated in the Suppl. Fig. 6G). The new results are described on page 8, the last paragraph and page 9, the 1st paragraph, presented in Suppl. Fig.6. The legend to Suppl. Fig. 6 is described in the file “Supplementary figure legend-R”. The related experimental methods are updated on page 23, the last two paragraphs and page 26 the last paragraph. The results are discussed o page 14, the last paragraph and page 15, the first two paragraphs.

      (3) Figure 2: The authors have not validated the whole-body Arg-II knock-out mice for arg-ii ablation.

      Thanks for pointing out this missing information! We have added the information regarding genotyping of the mice in the method section on page 20, first paragraph. Moreover, Fig. 5C also confirms the genotyping of the non-cardiomyocyte cells isolated from wt and arg-ii<sup>-/-</sup> animals.

      (4) It is unclear why the authors have chosen to focus on IL-1β specifically, among other pro-inflammatory cytokines that were also downregulated in Arg-II-/- mice as demonstrated in Fig. 2A-D.

      We appreciate the reviewer's question, which provides an opportunity to delve deeper into our findings. In our investigation, we observed that aging is accompanied by elevated levels of various proinflammatory markers. Intriguingly, our data revealed that tnf-α remained unaffected by the ablation of arg-ii during aging in the heart tissues, while Il-1β showed a significant reduction in arg-ii<sup>-/-</sup> animals compared to age-matched wild-type (wt) mice (Fig. 2). Mcp1 is however a chemoattractant for macrophages and F4-80 serves as a pan marker for macrophages. Moreover, our previous studies demonstrate a relationship between Arg-II and IL-1β in vascular disease and obesity and age-associated renal and pulmonary fibrosis. Finally, IL-1β has been shown to play a causal role in patients with coronary atherosclerotic heart disease as shown by CANTOS trials. Therefore, we have focused on IL-1β in this study. We have now explained and strengthened this aspect in the manuscript on page 7, the last two lines and page 8, the 1st paragraph as following:

      “Taking into account that our previous studies demonstrated a relationship of Arg-II and IL-1β in vascular disease and obesity (Ming et al., 2012) and in age-associated organ fibrosis such as renal and pulmonary fibrosis (Huang et al., 2021; Zhu et al., 2023), and IL-1β has been shown to play a causal role in patients with coronary atherosclerotic heart disease as shown by CANTOS trials (Ridker et al., 2017), we therefore focused on the role of IL-1β in crosstalk between macrophages and cardiac cells such as cardiomyocytes, fibroblasts and endothelial cells”.

      (5) Although macrophages are shown to be involved in cardiac ageing in the arg-ii mouse model, the authors have not estimated macrophage infiltration and expression of inflammatory or senescence markers in the hearts of these mice.

      Thank you very much for raising this important point! Taking the comments of the reviewer into account, we have performed new experiments, i.e., multiple immunofluorescent staining to analyze the infiltrated (CCR2<sup>+</sip>/F4-80<sup>+</sup>) and resident (LYVE1<sup>+</sup>/F4-80<sup>+</sup>) macrophage populations and to investigate to which extent that Arg-II affects the infiltrated and resident macrophage populations in the aging heart and whether this is regulated by arg-ii<sup>-/-</sup>. The results show an age-associated increase in the numbers of F4/80<sup>+</sup> cells in the wt mouse heart, which is reduced in the age-matched arg-ii<sup>-/-</sup> animals (Fig. 2G). This result is in accordance with the result of f4/80 gene expression shown in Fig. 2A, demonstrating that arg-ii gene ablation reduces macrophage accumulation in the aging heart. Interestingly, resident macrophages as characterized by LYVE1<sup>+</sup>/F4-80<sup>+</sup> cells (Fig. 2E and 2H) are predominant in the aging heart as compared to the infiltrated CCR2<sup>+</sup>/F4-80<sup>+</sup> cells (Fig. 2F and 2I). The increase in both LYVE1<sup>+</sup>/F4-80<sup>+</sup> and CCR2<sup>+</sup>/F4-80<sup>+</sup> macrophages in aging heart is reduced in arg-ii<sup>-/-</sup> mice (Fig. 2E, 2F, 2H, and 2I). These new results are described on page 6, the 1st paragraph, presented in Fig. 2E to 2I, and discussed on page 13, the 2nd, paragraph. The legend to Fig. 2 is revised. The method for this additional experiment is included on page 22, the 1st paragraph.

      Moreover, the aged-associated accumulation of the senescence cells as demonstrated by p16<sup>ink4</sup> positive cells is significantly reduced in arg-ii<sup>-/-</sup> animals. This new result is incorporated in the Fig. 1 as Fig. 1G and 1H and described / discussed on page 5, the 2nd paragraph and page 14, the 2nd last sentences of the 1st paragraph. The method of p16<sup>ink4</sup> staining is included in the method section on page 22, the 1st paragraph, line 7. The legend to Fig. 1 is revised accordingly.

      (6) Previously, Arg-II has been reported to serve a crucial role in ageing associated with reduced contractile function in rat hearts by regulating Nitric Oxide Synthase (PMID: 22160208). Elevated NO and superoxide have been shown to play crucial roles in the etiology of cardiovascular diseases (PMID: 24180388). Therefore, it is important to assess whether Nitric Oxide (NO) is involved in the aging-related phenotype in this mouse model.

      Following the reviewer's suggestion, we conducted new experiments to investigate the role of nitric oxide (NO) in the context of the effect of Arg-II-induced IL-1b production in macrophages. We have addressed this question in the response to the comment point 2.

      (7) Based on the results demonstrated in the study, ablation of Arg-II can be expected to cause a reduction in inflammation-associated phenotypes throughout the body at the multi-organ level. The observed improved cardiac phenotype could be an outcome of whole-body Arg-II ablation. It would be fruitful to develop a cardiac-specific Arg-II knockout mouse model to establish the role of Arg-II in the heart, independent of other organ systems.

      We agree with the comment of the reviewer on this point. Unfortunately, as explained above (see point 1), it is currently not possible for us to perform the requested experiments, due to lack of cardiac specific arg-ii-knockout mouse model. Moreover, such an approach is complicated by the absence of Arg-II in cardiomyocytes and the expression of Arg-II in multiple cells including endothelial cells, fibroblasts and macrophage of different origin (resident and monocyte-derived infiltrating cells). It’s thus difficult to generate a cardiac-specific gene knockout mouse. One shall investigate roles of cell-specific Arg-II in cardiac aging by generating cell-specific arg-ii<sup>-/-</sup> mice. We appreciate very this important aspect and have discussed issue on page 19, the lines 2 to 6.

      (8) Contrary to the findings in this paper, Arg-II has previously been reported to be essential for IL-10-mediated downregulation of pro-inflammatory cytokines, including IL-1β (PMID: 33674584).

      Thank you very much for mentioning this study! We have now discussed thoroughly the controversies as the following on page 15, the last paragraph and page 16, the 1st paragraph;

      “It is of note that a study reported that Arg-II is required for IL-10 mediated-inhibition of IL-1b in mouse BMDM upon LPS stimulation (Dowling et al., 2021), which suggests an anti-inflammatory function of Arg-II. The results of our present study, however, demonstrate that LPS enhances Arg-II and IL-1b levels in macrophages and knockout or silencing Arg-II reduces IL-1b production and release, demonstrating a pro-inflammatory effect of Arg-II. Our findings are supported by the study from another group, which shows decreased pro-inflammatory cytokine production including IL-6 and IL-1b in arg-ii<sup>-/-</sup> BMDM most likely through suppression of NFkB pathway, since arg-ii<sup>-/-</sup> BMDM reveals decreased activation of NFkB and IL-1b levels upon LPS stimulation (Uchida et al., 2023). Most importantly, our previous study also showed that re-introducing arg-ii gene back to the arg-ii<sup>-/-</sup> macrophages markedly enhances LPS-stimulated pro-inflammatory cytokine production (Ming et al., 2012), providing further evidence for a pro-inflammatory role of arg-ii under LPS stimulation. In support of this conclusion, chronic inflammatory diseases such as atherosclerosis and type 2 diabetes (Ming et al., 2012), inflammaging in lung (Zhu et al., 2023), kidney (Huang et al., 2021) and pancreas (Xiong, Yepuri, Necetin, et al., 2017) of aged animals or acute organ injury such as acute ischemic/reperfusion or cisplatin-induced renal injury are reduced in the arg-ii<sup>-/-</sup> mice (Uchida et al., 2023). The discrepant findings between these studies and that with IL-10 may implicate dichotomous functions of Arg-II in macrophages, depending on the experimental context or conditions. Nevertheless, our results strongly implicate a pro-inflammatory role of Arg-II in macrophages in the inflammaging in aging heart”.

      (9) The authors have only performed immunofluorescence-based experiments to show fibrotic and apoptotic phenotypes throughout this study. To verify these findings, we suggest that they additionally perform RT-PCR or western blotting analysis for fibrotic markers and apoptotic markers.

      The fibrotic aspect was analyzed not only by microscopy but also by using a quantitative biochemical assay such as hydroxyproline content assessment. Hydroxyproline is a major component of collagen and largely restricted to collagen. Therefore, the measurement of hydroxyproline levels can be used as an indicator of collagen content as previous investigated in the lung (Zhu et al., 2023). We have also measured collagen genes expression by RT-qPCR as suggested by the reviewer and found an age-related decline of collagen mRNA expression levels in both wt and arg-ii<sup>-/-</sup> mice, suggesting that the age-associated cardiac fibrosis and prevention in arg-ii<sup>-/-</sup> mice is due to alterations of translational and/or post-translational regulations, including collagen synthesis and/or degradation. The results are in accordance with that reported by other studies published in the literature. We have pointed out this aspect on page 5, the 2nd paragraph:

      “The increased cardiac fibrosis in aging is however, associated with decreased mRNA levels of collagen-Ia (col-Ia) and collagen-IIIa (col-IIIa), the major isoforms of pre-collagen in the heart (Suppl. Fig. 2A and 2B), which is a well-known phenomenon in cardiac fibrotic remodelling (Besse et al., 1994; Horn et al., 2016). The results demonstrate that age-associated cardiac fibrosis and prevention in arg-ii<sup>-/-</sup> mice is due to alterations of translational and/or post-translational regulations including collagen synthesis and/or degradation”.

      The results are presented in Suppl. Fig. 2, legend to Suppl. Fig. 2 is included in the file “Suppl. figure legend_R”. Suppl. table 2 for primers is revised accordingly.

      We did not use additional markers to perform apoptotic assays with whole heart, since Fig. 3 shows good evidence that the aging is associated with increased apoptotic cells in the heart and significantly reduced in the arg-ii<sup>-/-</sup> mice. The reduction of TUNEL positive (apoptotic) cells in aged arg-ii<sup>-/-</sup> mice is mainly due to decrease in apoptotic cardiomyocytes. With the histological analysis, the apoptotic cell types can be well analysed. Moreover, biochemical assay for apoptosis such as caspase-3 cleavage with whole heart tissues can not distinguish apoptotic cell types and may not be sensitive enough for aging heart, due to relatively low numbers of apoptotic cells in aging heart as compared to myocardial infarct model.  

      (10) Figure 4: arg-ii has previously been reported to be expressed in rat cardiomyocytes (PMID: 16537391). We strongly suggest the authors verify the expression of Arg-II via immunostaining in isolated cardiomyocytes (using published protocols), and by using multiple different cardiomyocyte-specific markers for colocalization studies to prove the lack of arg-ii expression beyond a reasonable doubt.

      As pointed out by this reviewer, Arg-II was previously reported to be expressed in isolated cardiomyocytes from in rats (PMID: 16537391). Unfortunately, negative controls. i.e., arg-ii<sup>-/-</sup> samples were not included in the study to avoid any possible background signals. We made great effort to investigate whether Arg-II is present in the cardiomyocytes from different species including mice, rats and humans and have included old arg-ii<sup>-/-</sup> mouse samples as a negative control. This allows to validate the antibody specificity and background noises beyond any reasonable doubt. The new experiments in Suppl. Fig. 4 confirms the specificity of the antibody against Arg-II in old mouse kidney which is known to express Arg-II in the S3 proximal tubular cells (Huang J, et al. 2021). To exclude the possible species-specific different expression of Arg-II in the cardiomyocytes, aged mouse and rat heart tissues were used for cellular localization of Arg-II by confocal immunofluorescence staining. As shown in Suppl. Fig. 4B and 4C, both species show Arg-II expression only in non-cardiomyocytes (cells between striated cardiomyocytes) (red arrows) but not in striated cardiomyocytes. Even in the rat myocardial infarction tissues, Arg-II was not found in cardiomyocytes but in endocardium cells (Suppl. Fig. 4B). In isolated cardiomyocytes exposed to hypoxia, a well know strong stimulus for Arg-II protein levels, no Arg-II signals could be detected, while in fibroblasts from the same animals, an elevated Arg-II levels under hypoxia is demonstrated (Fig. 5B). Furthermore, RT-qPCR could not detect arg-ii mRNA in cardiomyocytes but in non-cardiomyocytes (Fig. 5C). All together, these results demonstrate that Arg-II are not expressed or at negligible levels in cardiomyocytes but expressed in non-cardiomyocytes. This new experiments with rat heart are included in the method section on page 20, the 1st paragraph. The results are described on page 7, the 1st paragraph, and discussed on page 12, the 2nd paragraph. Legend to Suppl. Fig. 4 is included in the file “Suppl. figure legend_R”.

      (11) Figure 6G: It may be worthwhile to supplement arg-ii<sup>-/-</sup> old cells with IL-1beta to see if there is an increase in TUNEL-positive cells.

      IL-1b is a well known pro-inflammatory cytokine that causes apoptosis in various cell types including cardiomyocytes (Shen Y., et al., Tex Heart Inst J. 2015;42:109–116. doi: 10.14503/THIJ-14-4254; Liu Z. et. al., Cardiovasc Diabetol 2015;14,125. doi: 10.1186/s12933-015-0288-y; Li. Z., et al., Sci Adv 2020;6:eaay0589. doi: 10.1126/sciadv.aay0589). We appreciate very much the interesting idea of this reviewer to investigate the apoptotic responses of cardiomyocytes from arg-ii<sup>-/-</sup> mice to IL-1b. We agree that it is possible that cardiomyocytes from wt from arg-ii<sup>-/-</sup> mice react differently to IL-1b, although the cardiomyocytes do not express Arg-II as demonstrated in our present study. If this is true, it must be due to non-cell autonomous effects of different aging microenvironment in the heart or epigenetic modulations of the myocytes. We found that this is a very interesting aspect and requires further extensive investigation. Since our current study focused on the effect of wt and arg-ii<sup>-/-</sup> macrophages on cardiomyocytes and non-cardiomyocytes, we prefer not to include this suggested aspect in our manuscript and would like to explore it in the following study.

      (12) Figures 4-9: It would be interesting to see if the effect of ArgII in cardiac ageing is gender-specific. It is recommended to include experimental data with male mice in addition to the results demonstrated in female mice.

      As pointed out in the manuscript, we have focused on female mice, because an age-associated increase in arg-ii expression is more pronounced in females than in males (Fig. 1A). As suggested by this reviewer, we performed additional experiments investigating effects of arg-ii deficiency in male mice during aging, focusing on pathophysiological outcomes of ischemia/reperfusion injury in ex vivo experiments. The ex vivo functional analytic experiments with Langendorff system were performed in aged male mice (see Suppl. Fig. 9). Following ischemia/reperfusion injury, wt male mice display reduced left ventricular developed pressure (LVDP), as well as the inotropic and lusitropic states (expressed as dP/dt max and dP/dt min, respectively). As previously reported (Murphy et al., 2007), we also found that old male mice are more prone to I/R injury than age-matched female animals. Specifically, 15 minutes of ischemia are enough to significantly affect the left ventricle contractile function in the male mice (Suppl. Fig. 9). As opposite, age-matched old female mice are relatively resistant to I/R injury, and at least 20 min of ischemia are necessary to induce a significant impairment of the contractile function (Fig. 10). Similar to females, the post I/R recovery of cardiac function is also significantly improved in the male arg-ii<sup>-/-</sup> mice as compared to age-matched wt animals. In addition to functional recovery, triphenyl tetrazolium chloride (TTC) staining (myocardial infarction) upon I/R-injury in males is significantly reduced in the age-matched male arg-ii<sup>-/-</sup> animals (Suppl. Fig. 9C and 9D). All together, these results reveal a role for Arg-II in heart function impairment during aging in both genders with a higher vulnerability to stress in the males. These new results are presented in Suppl. Fig. 9, described on page 10, the last paragraph and page 11. The results are discussed on page 18, the 2nd paragraph as following:

      “The fact that aged females have higher Arg-II but are more resistant to I/R injury seems contradictory to the detrimental effect of Arg-II in I/R injury. It is presumable that cardiac vulnerability to injuries stressors depends on multiple factors/mechanisms in aging. Other factors/mechanisms associated with sex may prevail and determine the higher sensitivity of male heart to I/R injury, which requires further investigation. Nevertheless, the results of our study show that Arg-II plays a role in cardiac I/R injury also in males”.

      The information on the experimental methods in the male animals is included on page 20, the last paragraph and page 21, the 1st paragraph. Legend to Suppl. Fig. 9 is included in the file “Suppl. figure legend_R”.

      (13) Figure 6G: cardiomyocytes from wild-type mice, when treated with macrophages, show 0% TUNEL-positive cells. Since it is unlikely to obtain no TUNEL staining in a cell population, there may be an experimental or analytical error.

      Now it is Fig. 7F and 7G. This is due to our specific experimental procedure. After tissue digestion, cardiomyocytes were plated on laminin-coated dishes. Laminin promotes the adhesion of survived cells. Following plating, we conducted a deep washing process to remove damaged and partially adherent cells. This step ensures that only well-shaped, viable, and strongly adherent cells remain as bioassay cells. These “healthy” cells are then selected for the experiments. the apoptotic cells are removed by washing out, reflecting the high viability of the bioassay cells. We have added this detailed information in the method section on page 24, the 2nd paragraph.

      (14) Figure 7J: Please assess whether arg-ii depletion also affects the mtROS phenotype.

      According to the suggestion of this reviewer, we performed new experiments which show that human cardiac fibroblasts (HCFs) exposed to hypoxia (1% O<sub>2</sub>, 48 hours), a known physiological trigger of Arg-II up-regulation, exhibit increased mtROS generation, which involves Arg-II (new Fig. 8M to 8P). We found that Arg-II protein level as well as mtROS (assessed by mitoSOX staining) were both enhanced, accompanied by increased levels of HIF1α (Fig 8M). Moreover, mito-TEMPO pre-incubation reduces mtROS, confirming the mitochondrial origin of the ROS. Silencing of arg-ii with rAd-mediated shRNA, significantly reduces mtROS levels demonstrating a role of Arg-II in the production of mitochondrial ROS in cardiac fibroblasts (Fig 8M to 8P). We have included these results on page 9, the last paragraph and discussed the results on page 17, the 1st paragraph. The related method is described on page 26, the 2nd paragraph. Legend to Fig. 8 is updated on page 32.

      (15) Figure 8A-E: The authors have treated human-origin endothelial cells with mice-origin macrophage-conditioned media. It would be more suitable to treat the endothelial cells with human-origin macrophage-conditioned media.

      We acknowledge the concern regarding the use of mouse-origin macrophage-conditioned media on human-origin endothelial cells. It is to note, the biological cross-reactivity of cytokines from one species on cells from a different species has been reported in the literature. It was observed that there is quite a strict threshold of 60% amino acid identity, above which cytokines tend to cross-react and statistically, cytokines would tend to cross-react more often as their % amino acid identity increases (Scheerlinck JPY. Functional and structural comparison of cytokines in different species. Vet Immunol Immunopathol. 1999; 72:39-44. https://doi.org/10.1016/S0165-2427(99)00115-4). Taking IL-1b as an example, the 17.5 kDa mature mouse and human IL-1b share 92% aa sequence identity, suggesting a high cross-reactivity. Indeed, human IL-1b has shown biological cross-reactivity in mouse cells (Ledesma E., et al. Interleukin-1 beta (IL-1β) induces tumor necrosis factor alpha (TNF-α) expression on mouse myeloid multipotent cell line 32D cl3 and inhibits their proliferation. Cytokine. 2004; 26:66-72. https://doi.org/10.1016/j.cyto.2003.12.009). Moreover, our results also support the reported cross-reactivity between human and mouse IL-1b. The CM from mouse macrophage indeed showed biological function in human endothelial cells. The observed effects of the conditioned media from aged wild-type macrophages on endothelial cells were specifically mediated through IL-1β. This conclusion is supported by our data showing that the upregulation induced by the conditioned media was significantly reduced by the addition of an IL-1β receptor blocker.

      (16) The co-culture system would be more interesting to test the non-cell autonomous role of Arg II.

      We appreciate the suggestion by this reviewer regarding the co-culture system to test the non-cell autonomous role of Arg-II. We believe that our current model, which involves treating cells with conditioned media, is a well-established and effective method for demonstrating the non-cell autonomous role of Arg-II. This approach allows us to observe the effects of Arg-II on surrounding cells through the factors present in the conditioned media. The co-culture system could be considered, if the released factor in the conditioned medium is not stable. This is however not the case. So we are confident that our experimental model with conditioned medium is good enough to demonstrate a paracrine effect of cell-cell interaction.

      Reviewer #2 (Recommendations For The Authors):

      Some minor comments may be considered to improve the realm of the knowledge related to this study.

      We appreciate this comment and have added and revised our discussion on this aspect accordingly at the end of the discussion section on page 19, the last 6 lines.

      (1) The current study showed strong evidence demonstrating the key role of cardiac macrophages in pathologies of cardiac aging, particularly, the macrophages (MФ) from the circulating blood (hematogenous). It is known that the heart is among the minority of organs in which substantial numbers of yolk-sac MФ persist in adulthood and play a crucial role in maintaining cardiac function. Thus, the adult mammalian heart contains two separate and discrete cardiac MФ subgroups, i.e., the resident MФs originated from yolk sac-derived progenitors and the hematogenous MФs recruited from circulating blood monocytes. These two subtypes of MФs may play distinctive roles in the aging heart and the response to cardiac injury. The author could extend the discussion on the possibility of the resident MФs in aging hearts, which could be further investigated in the future.

      We appreciate the suggestion and agree that it provides valuable insight into the study. Taking the comments of the reviewer 1 into account, we have performed new experiments, i.e., co- immunostaining to analyze the infiltrated (CCR2<sup>+</sup>/F4-80<sup>+</sup>) and resident (LYVE1<sup>+</sup>/F4-80<sup>+</sup>) macrophage populations and to investigate to which extent that Arg-II affects infiltrated and resident macrophage populations in the aging heart. We found that in line with the gene expression of f4/80, immunofluorescence staining reveals an age-associated increase in the numbers of F4/80<sup>+</sup> cells in the wt mouse heart, which is reduced in the age-matched arg-ii<sup>-/-</sup> animals (Fig. 2E, F, G), demonstrating that arg-ii gene ablation reduces macrophage accumulation in the aging heart. Interestingly, resident macrophages as characterized by LYVE1<sup>+</sup>/F4-80<sup>+</sup> cells (Fig. 2E and 2H) are predominant in the aging heart as compared to the infiltrated CCR2<sup>+</sup>/F4-80<sup>+</sup> cells (Fig. 2F and 2I). The increase in both LYVE1<sup>+</sup>/F4-80<sup>+</sup> and CCR2<sup>+</sup>/F4-80<sup>+</sup> macrophages in aging heart is reduced in arg-ii<sup>-/-</sup> mice (Fig. 2E, 2F, 2H, and 2I). These new results are described on page 6, the 1st paragraph, presented in Fig. 2E to 2I, and discussed on page 13, the 2nd, paragraph. The legend to Fig. 2 is revised. The method for this additional experiment is included on page 22, the 1st paragraph.

      (2) It would be beneficial to the readers if the author could provide some explanation about why ArgII could not be detected in VSMCs in the mouse heart and the species difference between humans and mice. In addition, the author may provide an assumption on the possibility that there may also be a cross-talk between macrophages and VSMCs in the aging heart. A little bit more explanation in the Discussion will be helpful.

      We acknowledge and appreciate the suggestion and have discussed these points on page 19 as the following:

      “In this context, another interesting aspect is the cross-talk between macrophages and vascular SMC in the aging heart. In our present study, we could not detect Arg-II in vascular SMC of mouse heart but in that of human heart. This could be due to the difference in species-specific Arg-II expression in the heart or related to the disease conditions in human heart which is harvested from patients with cardiovascular diseases. Indeed, in the apoe<sup>-/-</sup> mouse atherosclerosis model, aortic SMCs do express Arg-II (Xiong et al., 2013). It is interesting to note that rodents hardly develop atherosclerosis as compared to humans. Whether this could be partly contributed by the different expression of Arg-II in vascular SMC between rodents and humans requires further investigation. In our present study, the aspect of the cross-talk between macrophages and vascular SMC is not studied. Since the crosstalk between macrophages and vascular SMC has been implicated in the context of atherogenesis as reviewed (Gong et al., 2025), further work shall investigate whether Arg-II expressing macrophages could interact with vascular SMC in the coronary arteries in the heart and contribute to the development of coronary artery disease and/or vascular remodelling and the underlying mechanisms“.

      (3) Please clarify the arrows in Figure 9C that indicate the infarct area in each splicing section from one heart.

      The arrows in Figure 9C (now Fig. 10C) are indeed utilized to indicate the sections displaying the infarcted area within each splicing section from one heart. We have explained the arrow in the figure legend (now Fig. 10 and also new Suppl. Fig. 9).

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Response to Reviewers and Revision Plan

      We thank all three reviewers for their thoughtful and constructive comments. We are pleased that the reviewers found our work to be "very interesting," "well written," with "high quality" data that is "convincing" and will be "of broad interest for the community of axon guidance, circuit formation and brain development." We particularly appreciate the recognition that our study provides "novel functions for Cas family genes in forebrain axon organization" and uses "state-of-the art mouse genetics" with "quantitative and statistical rigor." Below are our detailed responses to each reviewer's comments, including extensive additional experiments and analyses that we will perform to significantly strengthen the manuscript.

      Reviewer #1

      We thank this reviewer for recognizing that our experiments are "carefully done and quantified" with "clear and striking" phenotypes that "support most of the conclusions in the manuscript." We appreciate their acknowledgment that this work will be "of interest to developmental neurobiologists and the axon guidance and adhesion fields."

      Major Comments:

      __ Authors clearly show that misplaced TCA axons are coordinate with cortical layer defects, with misplaced tbr1+ neurons, in EMX-Cre cas and integrin knockouts, suggesting these axons are following misplaced cells. These results are described as 100% coordinate, but since there is no figure of quantification, authors need to clarify how many embryos were examined for each genotype, as this was not described in results or legends.__ We apologize for this oversight and will provide detailed quantification of this important finding. We examined a total of 11 Emx1Cre;TcKO embryos with 13 controls, and 14 Emx1Cre;Itgb1 embryos with 13 littermate controls at two developmental stages (E16.5 and P0) to quantify the coordination between misplaced Tbr1+ neurons and cortical bundle formation. This quantification will be presented in the main text and figure legend.

      Here's a more detailed breakdown of those numbers: For Emx1Cre;TcKO knockouts, we examined 7 controls and 5 mutants at P0, and 6 controls and 6 mutant embryos at E16.5. For the Emx1Cre;Itgb1 knockouts, we examined 5 controls and 6 mutant neonates at P0, and 8 controls and 8 mutant embryos at E16.5.

      __ Are the neurons not misplaced in Nex cre cas or integrin knockouts? One would think presumably not, but then what are the tbr1+ cell migration defect caused by? I struggle with the semantics of non-neuronal autonomous role of cas in cortex, since tbr1+ neurons are misplaced, and this is what the axons are mistargeting too. So yes, potentially cas or b1 is not needed in those neurons, but those misplaced neurons are presumably driving the phenotype.__

      We agree that this important point requires better explanation. You are absolutely correct that Tbr1+ neurons are not misplaced in NexCre;TcKO mutants (Wong et al., 2023), which is precisely why these animals do not exhibit cortical bundle formation. In addition to our previously published data showing normal location of Tbr1+ neurons in those mutants, we can also provide similar analysis at E16.5 and P0 as a supplemental figure. The model we propose is that Cas genes are required in radial glial cells for proper positioning of deep layer cortical neurons. These correctly positioned neurons, in turn, provide appropriate guidance cues for TCA projections. Hence, our model is that while the role of Cas genes is non-neuronal-autonomous (acting in radial glia rather than in the neurons themselves), the mispositioned Tbr1+ neurons in Emx1Cre;TcKO mutants drive the TCA misprojection phenotype. We will clarify this mechanism in the discussion and provide a new graphical model as a supplemental figure to facilitate conceptualization of our conclusions.

      __ Authors need to clarify in the discussion that they can't rule out the cas not also needed in tca neurons, Since neither emx or nex cre would hit those cells.__

      We will add the following clarification to the discussion: The analysis of cortical bundle formation in Emx1Cre;TcKOrevealed a comparable phenotype to that observed in NestinCre;TcKO, strongly suggesting a cortical-autonomous role for Cas genes in CB formation. "However, we cannot formally exclude a thalamus-autonomous role for Itgb1 or Cas genes in TCA pathfinding, as we did not ablate these genes exclusively in the thalamus. Future studies using thalamus-specific Cre drivers would be needed to definitively address this question."

      __ Could authors add boxes in zoomed out brain images to denote zoom regions. And potentially a schematic demonstrating placement of DiI for lipophilic tracing experiments.__

      We will add boxes to denote zoom regions where possible throughout the manuscript. For some high magnification panels, we selected the best representative images, which don't necessarily correspond to specific regions of the lower magnification panels, but we will note this in the figure legends. We will also add a schematic diagram to a supplemental figure illustrating DiI placement for all lipophilic tracing experiments.

      Reviewer #2

      We thank this reviewer for describing our study as "very interesting," "well written," with data that are "of high quality" and findings that are "convincing." We appreciate their recognition that we used "state-of-the art mouse genetics" and that our work will be "of broad interest for the community of axon guidance, circuit formation and brain development."

      Major Comments:

      __ Immunofluorescence labeling for other β-integrin family members to examine expression in AC axons may provide insights into why β1-integrin deficiency does not replicate the Cas TcKO phenotype.__ This is an excellent suggestion that we will address experimentally. We will perform RNAscope analysis for integrin β5, β6, and β8 in developing piriform and S1 cortex at E14.5, E16.5, and E18.5, as these are the only other β-integrins expressed during cortical development. We anticipate that this analysis may reveal expression of alternative β-integrins in the neurons that extend axons along the developing anterior commissure, which would provide a potential explanation for why β1-integrin deficiency does not replicate the AC phenotype observed in Cas TcKO animals. These new data will be presented as part of a new figure.

      __ Is there any evidence that β1-integrin in developing cortical axons is colocalized with Cas proteins (in vivo or in vitro)?__

      We have tested multiple antibodies for p130Cas and CasL without success in cortical tissue. However, we will test two new integrin β1 antibodies and a new p130Cas antibody. While direct colocalization may be challenging due to species restrictions and tissue-specific antibody performance, we will attempt to show regional co-expression in consecutive sections. If the integrin antibodies work, we will present data as a supplemental figure demonstrating that p130Cas (using our BAC-EGFP reporter) and β1-integrin show overlapping expression patterns in developing cortical white matter tracts and neurons, supporting their potential functional interaction. In the end, while we will try to address this critique, we will be limited by the reagents that are available to us.

      Minor Comments:

      __ How long do the Cas TcKO with the various cre driver survive?__

      We have not systematically quantified survival beyond 6 months, but surprisingly, survival up to 6 months of age appears normal for all genotypes examined. This information will be included in the Methods section.

      Reviewer #3

      We thank this reviewer for acknowledging that our "main claims and conclusions are solidly supported by the data" with "good overall data quality" and "high quantitative and statistical rigor." We appreciate their recognition that we "uncover novel functions for Cas family genes in forebrain axon organization" and that our "overall reporting and discussion of findings is data-driven and refrains from excessive speculation."

      Addressing Concerns About Novelty and Impact:

      We respectfully disagree with the characterization of our findings as "somewhat incremental." While we acknowledge that similar axonal defects have been described in other lamination mutants, our study makes several novel and significant contributions:

      First demonstration of Cas family requirement in forebrain axon tract development: This is the first study to establish roles for Cas proteins in axon guidance, representing a completely new function for these well-studied signaling molecules. Novel β1-integrin-independent role for Cas proteins: Our finding that AC defects occur in Cas mutants but not β1-integrin mutants reveals a previously unknown signaling pathway and challenges the assumption that Cas proteins always function downstream of β1-integrin. Mechanistic insights into cortical-TCA interactions: While the general principle that cortical lamination affects TCA projections has been established, our work provides the first demonstration of how specific adhesion signaling molecules (Cas proteins) control this process through radial glial function. Cell-type specific requirements: Our systematic analysis using multiple Cre drivers provides unprecedented detail about where and when Cas proteins function during brain development, revealing both neuronal-autonomous (AC) and non-neuronal autonomous (TCA) roles.

      As Reviewer #2 noted, "The main advancement is a more nuanced understanding of where and when these molecules function during brain development and insights into the origin of the defects observed." This represents significant mechanistic progress in understanding forebrain circuit assembly.

      Specific Comments:

      Suggestion about cell autonomy testing: We appreciate the optional suggestion to test strict cell autonomy using sparse deletion approaches. While this would indeed be interesting, it would represent a substantial undertaking beyond the scope of the current study. However, we believe our current data using NexCre (which hits early postmitotic neurons) versus NestinCre (CNS-wide deletion) and Emx1Cre (cortical progenitors) provides supportive evidence for neuronal autonomy of the AC phenotype, as mentioned by the reviewer.

      In vitro axon guidance assays: This is an excellent suggestion for future molecular studies. In the discussion we identify specific candidate guidance molecules (e.g. Ephrins) that would be prime targets for such experiments.

      Cross-Reviewer Comments:

      We appreciate Reviewer #3's agreement with the other reviewers' suggestions and will address the quantification of neuronal mispositioning/axon bundle correlation as requested by Reviewer #1.

      Additional Improvements:

      Beyond addressing the specific reviewer comments, we will make several additional improvements to strengthen the manuscript:

      Enhanced statistical analysis: All quantifications will include appropriate statistical tests with clearly stated n values and multiple litters represented. Expanded discussion: We will better contextualize our findings within the broader axon guidance literature and discuss future directions (e.g. TCAs). New data: Additional controls, expression analysis, and quantifications will strengthen our conclusions.

      We believe these revisions, particularly the new experimental data addressing integrin family expression and the detailed quantification of phenotype coordination, will significantly strengthen our conclusions and demonstrate the novelty and impact of our findings. We hope the reviewers will find these improvements satisfactory and agree that our work makes important contributions to understanding axon guidance mechanisms in the developing forebrain.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary

      In this beautiful paper the authors examined the role and function of NR2F2 in testis development and more specifically on fetal Leydig cells development. It is well known by now that FLC are developed from an interstitial steroidogenic progenitors at around E12.5 and are crucial for testosterone and INSL3 production during embryonic development, which in turn shapes the internal and external genitalia of the male. Indeed, lack of testosterone or INSL3 are known to cause DSD as well as undescended testis, also termed as cryptorchidism. The authors first characterized the expression pattern of the NR2R2 protein during testis development and then used two cKO systems of NR2F2, namely the Wt1-creERT2 and the Nr5a1-cre to explore the phenotype of loss of NR2F2. They found in both cases that mice are presenting with undescended testis and major reduction in FLC numbers. They show that NR2F2 has no effect on the amount and expression of the progenitor cells but in its absence, there are less FLC and they are immature.

      The effect of NR2F2 is cell autonomous and does not seem to affect other signalling pathways implemented in Leydig cell development as the DHH, PDGFRA and the NOTCH pathway.

      Overall, this paper is excellent, very well written, fluent and clear. The data is well presented, and all the controls and statistics are in place. I think this paper will be of great interest to the field and paves the way for several interesting follow up studies as stated in the discussion

      Reviewer #2 (Public review):

      The major conclusion of the manuscript is expressed in the title: "NR2F2 is required in the embryonic testis for Fetal Leydig Cell development" and also at the end of the introduction and all along the result part. All the authors' assertions are supported by very clear and statistically validated results from ISH, IHC, precise cell counting and gene expression levels by qPCR. The authors used two different conditional Nr2f2 gene ablation systems that demonstrate the same effects at the FLC level. They also showed that the haplo-insufficiency of Wt1 in the first system (knock-in Wt1-cre-ERT2) aggravated the situation in FLC differentiation by disturbing the differentiation of Sertoli cells and their secretion of pro-FLC factors, which had a confounding effect and encouraged them to use the second system. This demonstrates the great rigor with which the authors interpreted the results. In conclusion, all authors' claims and conclusions are justified by their high-quality results.

      Recommendations for the authors:

      We thank the reviewers for their comments which have improved and strengthened our manuscript. Please see our responses to specific comments below in blue.

      Reviewer #1 (Recommendations for the authors):

      I have several small comments:

      (1) There has been recently a preprint from the Yao lab about the role of NR2F2 is steroidogenic cells (https://www.biorxiv.org/content/10.1101/2024.09.16.613312v1). They performed cKO of NR2F2 using the Wt1creERT2 and found similar results. You should present and discuss this paper in light of your results.

      Estermann et al., report a very similar phenotype of FLC hypoplasia in an independent mouse model of Nr2f2 conditional mutation. We have now referred to this article in the discussion of our manuscript as suggested.

      (2) In the introduction I think it is important to mention that the steroidogenic progenitors are derived from Wnt5a positive cells (https://pubmed.ncbi.nlm.nih.gov/35705036/).

      We have mentioned this point in the introduction as suggested.

      (3) In both models you show a decrease in the number of FLC (60% or 40%) and yet they both present with undescended testis. It is important to discuss the fact that there is no need for a complete ablation of testosterone and INSL3 in order to get cryptorchidism.

      We have mentioned this point in the discussion as suggested.

      The fact that you get only partial reduction in FLC is likely due to redundancy with additional factors, possibly the ARX like you stated in the discussion and it will be interesting to explore that in the future but is beyond the scope of the current paper.

      We agree with the reviewer, this question could be addressed by analyzing Arx,Nr2f2 double mutants.

      (4) In page 8 line 11 you mention data not shown- not sure if this is allowed in the journal .

      The data is now shown in Figure S5A as suggested.

      (5) In Figure 2- it will be good if you add a schematic model of the mouse strains used as well as the experimental and control mice next to the Tam scheme. Similar scheme should be in figure 3 for Nr5a1-cre.

      We have modified Figures 2 and 3 as suggested.

      (6) There is a clear and pronounced effect of the testis cords number and size. It will be good if you could qualify testis cord numbers/ diameter in the mutants even if you do not follow in detail the effect on Sertoli cells

      We have quantified testis cords numbers and area in E14.5 Control and Wt1<sup>CreERT2/+</sup>; Nr2f2<sup>flox/flox</sup> testes. This data is now shown in Figure S2M.

      (7) It will be good to present the undescended testis in the Wt1-cre model in figure 2 and not in the supp figure

      The data is now shown in Figure 2H-I as suggested.

      (8) Please add labelling of the testis, kidney, bladder, vas deferens in figure 3 N+O and in the Wt1-cre model

      We have added the labels in Figures 2 and 3 as suggested.

      (9) In figure 5 which present both models- it will be good to use the scheme I suggested before to highlight which results refer to which ko model.

      We have modified Figure 5 as suggested.

      Reviewer #2 (Recommendations for the authors):  

      The work presented in this manuscript gave me food for thought. I have always been intrigued by the fact that of the large number of interstitial cells in the testis, a minority differentiate into mature androgen-producing Leydig cells. In other words, how is the number of functional steroidogenic cells defined from a large pool of progenitor cells (ARX and NR2F2 positive ones)? This may have a link with the levels of androgens produced (a kind of feedback control) or the effectiveness of these androgens on the target tissues (i.e.: as spermatogenesis efficiency in adults). In addition, there must be specific signals (probably linked to gonadotropins) that induce the recruitment of Leydig cells from the progenitor pool. Perhaps the genetic models generated in this study could help to address these questions. I leave it to the authors to judge.

      We agree with the reviewer. How NR2F2 (and other factors) integrate extrinsic cues to regulate the recruitment of a subset of interstitial steroidogenic progenitors along the Leydig cell differentiation pathway is a fascinating question beyond the scope of this work.

      In addition to this reflection, I propose a few minor modifications likely to improve the quality of the manuscript:

      (1) Page 3, lane 3: I suggest to replace "growth" by "differentiation"

      We have modified the text as suggested.

      (2) Page 3, lane 4: the "scrotum" is missing in the parenthesis. Please add it before "and penis"

      We have modified the text as suggested.

      (3) Page 5, lanes 21-24: kidney hypoplasia is also evident on Fig S2H (stated in the figure legend). It could be also mentioned in this sentence and it implies "...that NR2F2 function is required for testicular and kidney development."

      We have modified the text as suggested.

      (4) Page 5, lanes 28-30. In addition to the reduction in the number of HSD3B-positive cells, HSD3B staining seems clearly more faint in mutant FLC (Fig 2M) compared to adrenal cells on the same section or FLC in control gonads. This fits well with other results on the level of steroidogenic enzymes (Fig 2O) and those presented thereafter (Fig S4 I-J and Fig 5). Perhaps the author could mention this fact.

      We have modified the text as suggested in the results section “NR2F2 is required for FLC maturation” (Page 8).

      (5) Page 5, lanes 31-34: testicular descent is hugely sensible to INSL3 in the mouse (by contrast with other species where androgens seem to be more critical). I was wondering if you can check a better phenotypic marker for the absence (or reduction) of androgens like the differentiation of epididymides by HE staining or the anogenital distance at birth.

      We have measured the anogenital distance at P0 and P1 as suggested and have included the corresponding graph in Fig. S3P

      (6) Page 8, lanes 21-22: "HSD3B positive FLC were smaller and more elongated". It is clear on Fig 5F but not evident on Fig 5D. Could the authors propose another image?

      We have modified Figure 5 as suggested and provide now another example of HSD3B positive FLCs in a Nr5a1Cre; Nr2f2<sup>flox/flox</sup> mutant gonad (Fig. 5D) and the corresponding control littermate (Fig. 5C).

      (7) Page 14, lane 12: "(arrow in I)" should be "(arrow in H)"

      We have modified the text as suggested. Please note that ACTA 2 expression is now shown in Figure S2 G-H.

      (8) Page 15, lane 6: "Arrows indicate NR5A1 positive FLC". There is no arrow on Fig4 C,D; but a kind of scale bar on the enlargement shown in C.

      We have modified Figure 4 as suggested.

    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1 (Public review):

      Summary:

      This paper provides a computational model of a synthetic task in which an agent needs to find a trajectory to a rewarding goal in a 2D-grid world, in which certain grid blocks incur a punishment. In a completely unrelated setup without explicit rewards, they then provide a model that explains data from an approach-avoidance experiment in which an agent needs to decide whether to approach or withdraw from, a jellyfish, in order to avoid a pain stimulus, with no explicit rewards. Both models include components that are labelled as Pavlovian; hence the authors argue that their data show that the brain uses a Pavlovian fear system in complex navigational and approach-avoid decisions.

      Thanks to the reviewer’s comments, we have now added the following text to our Discussion section (Lines 290-302):

      “When it comes to our experiments, both the simulation and VR experiment models are related and derived from the same theoretical framework maintaining an algebraic mapping. They differ only in task-specific adaptations i.e. differ in action sets and differ in temporal difference learning rules - multi-step decisions in the grid world vs. Rescorla-Wagner rule for single-step decisions in the VR task. This is also true for Dayan et al. [2006] who bridge Pavlovian bias in a Go-No Go task (negative auto-maintenance pecking task) and a grid world task. A further minor difference between the simulation and VR experiment models is the use of a baseline bias in the human experiment's RL and the RLDDM model, where we also model reaction times with drift rates which is not a behaviour often simulated in the grid world simulations. As mentioned previously, we use the grid world tasks for didactic purposes, similar to Dayan et al. [2006] and common to test-beds for algorithms in reinforcement learning [Sutton et al., 1998]. The main focus of our work is on Pavlovian fear bias in safe exploration and learning, rather than on its role in complex navigational decisions. Future work can focus on capturing more sophisticated safe behaviours, such as escapes [Evans et al., 2019, Sporrer et. al., 2023] and model-based planning, which span different aspects of the threat-imminence continuum [Mobbs et al., 2020].”

      In the first setup, they simulate a model in which a component they label as Pavlovian learns about punishment in each grid block, whereas a Q-learner learns about the optimal path to the goal, using a scalar loss function for rewards and punishments. Pavlovian and Q-learning components are then weighed at each step to produce an action. Unsurprisingly, the authors find that including the Pavlovian component in the model reduces the cumulative punishment incurred, and this increases as the weight of the Pavlovian system increases. The paper does not explore to what extent increasing the punishment loss (while keeping reward loss constant) would lead to the same outcomes with a simpler model architecture, so any claim that the Pavlovian component is required for such a result is not justified by the modelling. 

      Thanks to the reviewer’s comments, we have now added the following text to our Discussion section (Line 303-313):

      “In our simulation experiments, we assume the coexistence of the Pavlovian fear system and the instrumental system to demonstrate the emergent safety-efficiency trade-off from their interaction. It is possible that similar behaviours could be modelled using an instrumental system alone, with higher punishment sensitivity, therefore we do not argue for the necessity for the Pavlovian fear system here. Instead, the Pavlovian fear system itself could be a potential biologically plausible implementation of punishment sensitivity. Unlike punishment sensitivity (scaling of the punishments), which has not been robustly mapped to neural substrates in fMRI studies; the neural substrates for the Pavlovian fear system are well known (e.g., the limbic loop and amygdala, further see Supplementary Fig. 16). Additionally, Pavlovian fear system provides a separate punishment memory that cannot be erased by greater rewards like [Elfwing and Seymour, 2017, Wang et al., 2018]. This fundamental point can be observed in our simple T-maze simulations, where the Pavlovian fear system encourages avoidance behaviour and the agent chooses the smaller reward instead of the greater reward.”

      In the second setup, an agent learns about punishments alone. "Pavlovian biases" have previously been demonstrated in this task (i.e. an overavoidance when the correct decision is to approach). The authors explore several models (all of which are dissimilar to the ones used in the first setup) to account for the Pavlovian biases. 

      Thanks to the reviewer’s comments, we have now added a paragraph in our Discussion section (Line 290-302) explaining the similarity of our models and their integrated interpretation. We hope this addresses the reviewer’s concerns.

      Strengths: 

      Overall, the modelling exercises are interesting and relevant and incrementally expand the space of existing models. 

      Weaknesses: 

      I find the conclusions misleading, as they are not supported by the data. 

      First, the similarity between the models used in the two setups appears to be more semantic than computational or biological. So it is unclear to me how the results can be integrated. 

      Thanks to the reviewer’s comments, we have now added a paragraph in our Discussion section (Line 290-302 onwards) explaining the similarity of our models and their integrated interpretation. We hope this addresses the reviewer’s concerns.

      Secondly, the authors do not show "a computational advantage to maintaining a specific fear memory during exploratory decision-making" (as they claim in the abstract). Making such a claim would require showing an advantage in the first place. For the first setup, the simulation results will likely be replicated by a simple Q-learning model when scaling up the loss incurred for punishments, in which case the more complex model architecture would not confer an advantage. The second setup, in contrast, is so excessively artificial that even if a particular model conferred an advantage here, this is highly unlikely to translate into any real-world advantage for a biological agent. The experimental setup was developed to demonstrate the existence of Pavlovian biases, but it is not designed to conclusively investigate how they come about. In a nutshell, who in their right mind would touch a stinging jellyfish 88 times in a short period of time, as the subjects do on average in this task? Furthermore, in which real-life environment does withdrawal from a jellyfish lead to a sting, as in this task? 

      Crucially, simplistic models such as the present ones can easily solve specifically designed lab tasks with low dimensionality but they will fail in higher-dimensional settings. Biological behaviour in the face of threat is utterly complex and goes far beyond simplistic fight-flight-freeze distinctions (Evans et al., 2019). It would take a leap of faith to assume that human decision-making can be broken down into oversimplified sub-tasks of this sort (and if that were the case, this would require a meta-controller arbitrating the systems for all the sub-tasks, and this meta-controller would then struggle with the dimensionality j). 

      Thanks to the reviewer’s comments, we have now mentioned this point in Lines 299-302.

      On the face of it, the VR task provides higher "ecological validity" than previous screen-based tasks. However, in fact, it is only the visual stimulation that differs from a standard screen-based task, whereas the action space is exactly the same. As such, the benefit of VR does not become apparent, and its full potential is foregone. 

      If the authors are convinced that their model can - then data from naturalistic approach-avoidance VR tasks is publicly available, e.g. (Sporrer et al., 2023), so this should be rather easy to prove or disprove. In summary, I am doubtful that the models have any relevance for real-life human decision-making. 

      Finally, the authors seem to make much broader claims that their models can solve safety-efficiency dilemmas. However, a combination of a Pavlovian bias and an instrumental learner (study 1) via a fixed linear weighting does not seem to be "safe" in any strict sense. This will lead to the agent making decisions leading to death when the promised reward is large enough (outside perhaps a very specific region of the parameter space). Would it not be more helpful to prune the decision tree according to a fixed threshold (Huys et al., 2012)? So, in a way, the model is useful for avoiding cumulatively excessive pain but not instantaneous destruction. As such, it is not clear what real-life situation is modelled here. 

      We hope our additions to the Discussion section, from Line 290 to Line 313 address the reviewer’s concerns.  

      A final caveat regarding Study 1 is the use of a PH associability term as a surrogate for uncertainty. The authors argue that this term provides a good fit to fear-conditioned SCR but that is only true in comparison to simpler RW-type models. Literature using a broader model space suggests that a formal account of uncertainty could fit this conditioned response even better (Tzovara et al., 2018). 

      We have now added a line discussing this. (Line 356-358)

      “Future work could also use a formal account of uncertainty which could fit the fear-conditioned skin-conductance response better than Pearce-Hall associability [Tzovara et al., 2018].”

      Reviewer #2 (Public review): 

      Summary: 

      The authors tested the efficiency of a model combining Pavlovian fear valuation and instrumental valuation. This model is amenable to many behavioral decision and learning setups - some of which have been or will be designed to test differences in patients with mental disorders (e.g., anxiety disorder, OCD, etc.). 

      Strengths: 

      (1) Simplicity of the model which can at the same time model rather complex environments. 

      (2) Introduction of a flexible omega parameter. 

      (3) Direct application to a rather advanced VR task. 

      (4) The paper is extremely well written. It was a joy to read. 

      Weaknesses: 

      Almost none! In very few cases, the explanations could be a bit better. 

      Thank you, we have added further explanations in the discussion section. We have further improved the writing in abstract, introduction and Methods section taking into account recommendations from reviewer #2 and #3.

      Reviewer #2 (Recommendations for the authors): 

      (1) Why is there no flexible omega in Figures 3B and 3C? Did I miss this? 

      Thank you. We have now added additional text to explain our motivation in Experiment 2, which only varies the fixed omega and omits the flexible omega (Lines 136-140).

      “In this set of results, we wish to qualitatively tease apart the role of a Pavlovian bias in shaping and sculpting the instrumental value and also provide more insight into the resulting safety-efficiency trade-off. Having shown the benefits of a flexible ω in the previous section, here we only vary the fixed ω to illustrate the effect of a constant bias and are not concerned with the flexible bias in this experiment.”

      We encourage the reader to consider this akin to an additional study that will explain how Pavlovian bias to withdraw can play a role in avoiding punishments similar to that of punishment sensitivity. This is particularly important as we do have neural correlates for Pavlovian biases but lack a clear neural correlation for punishment sensitivity so far, as mentioned in our new additions to the Discussion section (Lines 303-313).

      (2) The introduction of the flexible omega and the PAL agent in the results is a bit sudden. Some more details are needed to understand this during the first read of this passage. 

      We thank reviewer #2 for bringing this to our notice. We have attempted to refine our passage by including sentences like - 

      “The standard (rational) reinforcement learning system is modelled as the instrumental learning system. The additional Pavlovian fear system biases the withdrawal actions to aid in safe exploration, in line with our hypothesis.”

      “Both systems learn using a basic temporal difference updating rule (or in instances, its special case, the Rescorla-Wagner rule)”

      “We implement the flexible ω using Pearce-Hall associability (see equation 15 in Methods). The Pearce-Hall associability maintains a running average of absolute temporal difference errors (δ) as per equation 14. This acts as a crude but easy-to-compute metric for outcome uncertainty which gates the influence of the Pavlovian fear system, in line with our hypothesis. This implies that higher the outcome uncertainty, as is the case in early exploration, the more cautious our agent will be, resulting in safer exploration”

      (3) In my view, the possibility of modeling moving predators is extremely interesting. I would include Figure 8D and the corresponding explanation in the main text. 

      Response with revision: We thank the reviewer for finding our simulation on moving predators extremely interesting. Unfortunately, since our instrumental system is not model-based, and especially is not explicitly modelling the predator dynamics, our simulation might not be a very accurate representation of real moving predator environments. As pointed out by Reviewer #1, perhaps several other systems other than Pavlovian fear responses are necessary for safe behaviour in such environments and we hope to address these in future studies. Thanks again for taking an interest in our simulations.

      (4) The VR experiment should be mentioned more clearly in the abstract and the introduction. It should be mentioned a bit more clearly why VR was helpful and why the authors did not use a simple bird's eye grid world task. 

      I cannot assess the RLDDM and I did not check the code. 

      Thank you, we have now mentioned the VR experiment more clearly in the abstract and the introduction. We also now further mention that the VR experiment “builds upon previous Go-No Go studies studying Pavlovian-Instrumental transfer (Guitart-Masip et al, 2012; Cavanagh et al, 2013). The virtual-reality approach confers a greater ecological validity and the immersive nature may contribute better fear conditioning, making it easier to distinguish the aversive components.”

      A bird’s eye grid world may not invoke a strong withdrawal response, as seen in these immersive approach-withdrawal tasks where we can clearly distinguish a Pavlovian fear-based withdrawal response. We did include immersive VR maze results in the supplementary materials, but future work is needed to isolate the different systems at play in such a complex behaviour.

      Reviewer #3 (Public review): 

      Summary: 

      This paper aims to address the problem of exploring potentially rewarding environments that contain the danger, based on the assumption that an independent Pavlovian fear learning system can help guide an agent during exploratory behaviour such that it avoids severe danger. This is important given that otherwise later gains seem to outweigh early threats, and agents may end up putting themselves in danger when it is advisable not to do so. 

      The authors develop a computational model of exploratory behaviour that accounts for both instrumental and Pavlovian influences, combining the two according to uncertainty in the rewards. The result is that Pavlovian avoidance has a greater influence when the agent is uncertain about rewards. 

      Strengths: 

      The study does a thorough job of testing this model using both simulations and data from human participants performing an avoidance task. Simulations demonstrate that the model can produce "safe" behaviour, where the agent may not necessarily achieve the highest possible reward but ensures that losses are limited. Interestingly, the model appears to describe human avoidance behaviour in a task that tests for Pavlovian avoidance influences better than a model that doesn't adapt the balance between Pavlovian and instrumental based on uncertainty. The methods are robust, and generally, there is little to criticise about the study. 

      Weaknesses: 

      The extent of the testing in human participants is fairly limited but goes far enough to demonstrate that the model can account for human behaviour in an exemplar task. There are, however, some elements of the model that are unrealistic (for example, the fact that pre-training is required to select actions with a Pavlovian bias would require the agent to explore the environment initially and encounter a vast amount of danger in order to learn how to avoid the danger later). The description of the models is also a little difficult to parse. 

      Thank you, we have now attempted to clarify these points in the Discussion section by adding the following text (Lines 313-321):

      “ We next discuss the plausibility of pre-training to select the hardwired actions In the human experiment, the withdrawal action is straightforwardly biased, as noted, while in the grid world, we assume a hardwired encoding of withdrawal actions for each state/grid. This innate encoding of withdrawal actions could be represented in the dPAG [Kim et al., 2013]. We implement this bias using pre-training, which we assume would be a product of evolution. Alternatively, this could be interpreted as deriving from an appropriate value initialization where the gradient over initialized values determines the action bias. Such aversive value initialization, driving avoidance of novel and threatening stimuli, has been observed in the tail of the striatum in mice, which is hypothesised to function as a Pavlovian fear/threat learning system [Menegas et al., 2018].”

      Reviewer #3 (Recommendations for the authors): 

      I have relatively little to suggest, as in my view the paper is robust, thorough, and creative, and does enough to support the primary argument being made at the most fundamental level. My suggestions for improvement are as follows: 

      (1) Some aspects of the model are potentially unrealistic (as described in the public review), and the paper may benefit from some discussion of these issues or attempts to make the model more realistic - i.e., to what extent is this plausible in explaining more complex avoidance behaviour? Primarily, the fact that pre-training is required to identify actions subject to Pavlovian bias seems unlikely to be effective in real-world situations - is there a better way to achieve this in cases where there isn't necessarily an instinctual Pavlovian response? 

      Thank you, we agree that the advantage of Pavlovian bias is restricted to the bias/instinctual Pavlovian response conferred by evolution. Future work is needed to model more complex avoidance behaviour such as escapes. We hope to have made this more clear with our edits to the Discussion (Lines 299-302) in our response to Reviewer #1’s comments, specifically:

      “The main focus of our work is on Pavlovian fear bias in safe exploration and learning, rather than on its role in complex navigational decisions. Future work can focus on capturing more sophisticated safe behaviours, such as escapes [Evans et al., 2019, Sporrer et. al., 2023] and model-based planning which span different aspects of the threat-imminence continuum [Mobbs et al., 2020]”  

      (2) The description of the model in the method can be a little hard to follow and would benefit from further explanation of certain parameters. In general, it would be good to ensure that all terms mentioned in equations are described clearly in the text (for example, in Equation1 it isn't clear what k refers to). 

      Thank you, we have now added further information on all of the parameters in Equation 1 and overall improved the Methods section writing, for instance using time subscript for less confusion while introducing the parameters. We use the standard notation used in Sutton and Barto textbook. k refers to the timesteps into the future, and is now explained better in the Methods section.

      (3) Another point of clarification in Equation 1 - does the policy account for the Pavlovian influence or is this purely instrumental? 

      Thank you, Equation 1 is purely instrumental. We have now specifically mentioned this. The Pavlovian influence follows later. They are combined into propensities for action as per equations 11-13.

      (4) I was curious whether similar outcomes could be achieved by more complex instrumental models without the need for Pavlovian influences. For example, could different risk-sensitive decision rules (e.g., conditional value at risk) that rely only on the instrumental system afford safe behaviour without the need for an additional Pavlovian system? 

      Thank you for your comment. Yes, CVaR can achieve safe exploration/cautious behaviour in choices similar to Pavlovian avoidance learning. But we think both differ in the following ways:

      (1) CVaR provides the correct solution to the wrong problem (objective that only maximises the lower tail of the distribution of outcomes)

      (2) Pavlovian bias provides the wrong solution to the right problem (normative objective, but a Pavlovian bias which may be vestige of evolution)

      Here we use the “wrong problem, wrong solution, wrong environment” categorisation terminology from Huys et al. 2015.

      Huys, Q. J., Guitart-Masip, M., Dolan, R. J., & Dayan, P. (2015). Decision-theoretic psychiatry. Clinical Psychological Science, 3(3), 400-421.

      Secondly, we find an effect of Pavlovian bias on reaction times - slowing down of approach responses and faster withdrawal responses. We do not think this can be best explained in a CVaR type model and is a direction for future work. We think such model-based methods are slower to compute, but Pavlovian withdrawal bias is quicker response.

      We have now included this in brief in Lines 280-288.

      (5) Figure 5 would benefit from a clearer caption as it is not necessarily clear from the current one that the left panels refer to choices and the right panels to reaction times. 

      Thank you, we have improved the caption for Fig. 5.

      (6) It would be good to include some indication of the quality of the model fits for the human behavioural study (i.e., diagnostics such as R-hat) to ensure that differences in model fit between models are not due to convergence issues with different models. This would be especially helpful for the RLDDM models as these can be difficult to fit successfully.

      Thank you, we observed that all Rhat values were strictly less than 1.05 (most parameters were less than 1.01 and generally close to 1), indicating that the models converged. We have now added this line to the results (Line 246-248). Thanks to the reviewer’s comments, we have now added the following text to our Discussion section (Lines 290-302): “When it comes to our experiments, both the simulation and VR experiment models are related and derived from the same theoretical framework maintaining an algebraic mapping. They differ only in task-specific adaptations i.e. differ in action sets and differ in temporal difference learning rules - multi-step decisions in the grid world vs. Rescorla-Wagner rule for single-step decisions in the VR task. This is also true for Dayan et al. [2006] who bridge Pavlovian bias in a Go-No Go task (negative auto-maintenance pecking task) and a grid world task. A further minor difference between the simulation and VR experiment models is the use of a baseline bias in the human experiment's RL and the RLDDM model, where we also model reaction times with drift rates which is not a behaviour often simulated in the grid world simulations. As mentioned previously, we use the grid world tasks for didactic purposes, similar to Dayan et al. [2006] and common to test-beds for algorithms in reinforcement learning [Sutton et al., 1998]. The main focus of our work is on Pavlovian fear bias in safe exploration and learning, rather than on its role in complex navigational decisions. Future work can focus on capturing more sophisticated safe behaviours, such as escapes [Evans et al., 2019, Sporrer et. al., 2023] and model-based planning, which span different aspects of the threat-imminence continuum [Mobbs et al., 2020].” In the first setup, they simulate a model in which a component they label as Pavlovian learns about punishment in each grid block, whereas a Q-learner learns about the optimal path to the goal, using a scalar loss function for rewards and punishments. Pavlovian and Q-learning components are then weighed at each step to produce an action. Unsurprisingly, the authors find that including the Pavlovian component in the model reduces the cumulative punishment incurred, and this increases as the weight of the Pavlovian system increases. The paper does not explore to what extent increasing the punishment loss (while keeping reward loss constant) would lead to the same outcomes with a simpler model architecture, so any claim that the Pavlovian component is required for such a result is not justified by the modelling.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      In this manuscript, Azlan et al. identified a novel maternal factor called Sakura that is required for proper oogenesis in Drosophila. They showed that Sakura is specifically expressed in the female germline cells. Consistent with its expression pattern, Sakura functioned autonomously in germline cells to ensure proper oogenesis. In Sakura KO flies, germline cells were lost during early oogenesis and often became tumorous before degenerating by apoptosis. In these tumorous germ cells, piRNA production was defective and many transposons were derepressed. Interestingly, Smad signaling, a critical signaling pathway for GSC maintenance, was abolished in sakura KO germline stem cells, resulting in ectopic expression of Bam in whole germline cells in the tumorous germline. A recent study reported that Bam acts together with the deubiquitinase Otu to stabilize Cyc A. In the absence of sakura, Cyc A was upregulated in tumorous germline cells in the germarium. Furthermore, the authors showed that Sakura co-immunoprecipitated Otu in ovarian extracts. A series of in vitro assays suggested that the Otu (1-339 aa) and Sakura (1-49 aa) are sufficient for their direct interaction. Finally, the authors demonstrated that the loss of otu phenocopies the loss of sakura, supporting their idea that Sakura plays a role in germ cell maintenance and differentiation through interaction with Otu during oogenesis.

      Strengths:

      To my knowledge, this is the first characterization of the role of CG14545 genes. Each experiment seems to be well-designed and adequately controlled.

      Weaknesses:

      However, the conclusions from each experiment are somewhat separate, and the functional relationships between Sakura's functions are not well established. In other words, although the loss of Sakura in the germline causes pleiotropic effects, the cause-and-effect relationships between the individual defects remain unclear.

      Reviewer #2 (Public review):

      In this study, the authors identified CG14545 (and named it Sakura), as a key gene essential for Drosophila oogenesis. Genetic analyses revealed that Sakura is vital for both oogenesis progression and ultimate female fertility, playing a central role in the renewal and differentiation of germ stem cells (GSC).

      The absence of Sakura disrupts the Dpp/BMP signaling pathway, resulting in abnormal bam gene expression, which impairs GSC differentiation and leads to GSC loss. Additionally, Sakura is critical for maintaining normal levels of piRNAs. Also, the authors convincingly demonstrate that Sakura physically interacts with Otu, identifying the specific domains necessary for this interaction, suggesting a cooperative role in germline regulation. Importantly, the loss of otu produces similar defects to those observed in Sakura mutants, highlighting their functional collaboration.

      The authors provide compelling evidence that Sakura is a critical regulator of germ cell fate, maintenance, and differentiation in Drosophila. This regulatory role is mediated through the modulation of pMad and Bam expression. However, the phenotypes observed in the germarium appear to stem from reduced pMad levels, which subsequently trigger premature and ectopic expression of Bam. This aberrant Bam expression could lead to increased CycA levels and altered transcriptional regulation, impacting piRNA expression. Given Sakura's role in pMad expression, it would be insightful to investigate whether overexpression of Mad or pMad could mitigate these phenotypic defects (UAS-Mad line is available at Bloomington Drosophila Stock Center).

      As suggested reviewer 1, we tested whether overexpression of Mad could rescue or mitigate the loss of sakura phenotypic defects, by using nos-Gal4-VP16 > UASp-Mad-GFP in the background of sakura<sup>null</sup>. As shown in Fig S11, we did not observe any mitigation of defects.

      Then, we also tested whether expressing a constitutive active form of Tkv, by using UAS-Dcr2, NGT-Gal4 > UASp-tkv.Q235D in the background of sakura<sup>RNAi</sup>. As shown in Fig S12, we did not observe any mitigation of defects by this approach either.

      A major concern is the overstated role of Sakura in regulating Orb. The data does not reveal mislocalized Orb; rather, a mislocalized oocyte and cytoskeletal breakdown, which may be secondary consequences of defects in oocyte polarity and structure rather than direct misregulation of Orb. The conclusion that Sakura is necessary for Orb localization is not supported by the data. Orb still localizes to the oocyte until about stage 6. In the later stage, it looks like the cytoskeleton is broken down and the oocyte is not positioned properly, however, there is still Orb localization in the ~8-stage egg chamber in the oocyte. This phenotype points towards a defect in the transport of Orb and possibly all other factors that need to localize to the oocyte due to cytoskeletal breakdown, not Orb regulation directly. While this result is very interesting it needs further evaluation on the underlying mechanism. For example, the decrease in E-cadherin levels leads to a similar phenotype and Bam is known to regulate E-cadherin expression. Is Bam expressed in these later knockdowns?

      We examined Bam and DE-Cadherin expression in later RNAi knockdowns driven by ToskGal4. As shown in Fig S9, Bam was not expressed in these later knockdowns compared with controls. DE-Cadherin staining suggested a disorganized structure in late-stage egg chambers.

      We agree that we overstated a role of Sakura in regulating Orb in the initial manuscript. We changed the text to avoid overstating.

      The manuscript would benefit from a more balanced interpretation of the data concerning Sakura's role in Orb regulation. Furthermore, a more expanded discussion on Sakura's potential role in pMad regulation is needed. For example, since Otu and Bam are involved in translational regulation, do the authors think that Mad is not translated and therefore it is the reason for less pMad? Currently the discussion presents just a summary of the results and not an extension of possible interpretation discussed in context of present literature.

      We changed the text to avoid overstating a role of Sakura in regulating Orb localization.

      Based on our newly added results showing that transgenic overexpression of Mad could not rescue or mitigate the phenotypic defects of sakura<sup>null</sup> mutant (Fig S11), we do not think the reason for less pMad is less translation of Mad.

      Reviewer #3 (Public review):

      In this very thorough study, the authors characterize the function of a novel Drosophila gene, which they name Sakura. They start with the observation that sakura expression is predicted to be highly enriched in the ovary and they generate an anti-sakura antibody, a line with a GFP-tagged sakura transgene, and a sakura null allele to investigate sakura localization and function directly. They confirm the prediction that it is primarily expressed in the ovary and, specifically, that it is expressed in germ cells, and find that about 2/3 of the mutants lack germ cells completely and the remaining have tumorous ovaries. Further investigation reveals that Sakura is required for piRNA-mediated repression of transposons in germ cells. They also find evidence that sakura is important for germ cell specification during development and germline stem cell maintenance during adulthood. However, despite the role of sakura in maintaining germline stem cells, they find that sakura mutant germ cells also fail to differentiate properly such that mutant germline stem cell clones have an increased number of "GSC-like" cells. They attribute this phenotype to a failure in the repression of Bam by dpp signaling. Lastly, they demonstrate that sakura physically interacts with otu and that sakura and otu mutants have similar germ cell phenotypes. Overall, this study helps to advance the field by providing a characterization of a novel gene that is required for oogenesis. The data are generally high-quality and the new lines and reagents they generated will be useful for the field. However, there are some weaknesses and I would recommend that they address the comments in the Recommendations for the authors section below.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      General Comments:

      (1) The gene nomenclature: As mentioned in the text, Sakura means cherry blossom and is one of the national flowers of Japan. I am not sure whether the phenotype of the CG14545 mutant is related to Sakura or not. I would like to suggest the authors reconsider the naming.

      The striking phenotype of sakura mutant­ is tumorous and germless ovarioles. The tumorous phenotype, exhibiting lots of round fusome in germarium visualized by anti-Hts staining, looks like cherry blossom blooming to us. Also, the germless phenotype reminds us falling of the cherry blossom, especially considering that the ratio of tumorous phenotype decreases and that of germless decreases over fly age. Furthermore, “Sakura” symbolizes birth and renewal in Japanese culture (the last author of this manuscript is Japanese). Our findings indicated that the gene sakura is involved in regulation of renewal and differentiation of GSCs (which leads to birth). These are the reasons for the naming, which we would like to keep.

      (2) In many of the microscopic photographs in the figures, especially for the merged confocal images, the resolution looks low, and the images appear blurred, making it difficult to judge the authors' claims. Also, the Alpha Fold structure in Figure 10A requires higher contrast images. The magnification of the images is often inadequate (e.g. Figures 3A, 3B, 5E, 7A, etc). The authors should take high-magnification images separately for the germarium and several different stages of the egg chambers and lay out the figures.

      We are very sorry for the low-resolution images. This was caused when the original PDF file with high-resolution images was compressed in order to meet the small file size limit in the eLife submission portal. In the revised submission, we used high-resolution images.

      Specific Comments

      (1) How Sakura can cooperate with Otu remains unanswered. Sakura does not regulate deubiquitinase activity in vitro. Both sakura and otu appear to be involved in the Dpp-Smad signaling pathway and in the spatial control of Bam expression in the germarium, whereas Otu has been reported to act in concert with Bam to deubiquitinate and stabilize Cyc A for proper cystoblast differentiation. Therefore, it is plausible that the stabilization of Cyc A in the Sakura mutant is an indirect consequence of Bam misexpression and independent of the Sakura-Otu interaction. The authors may need to provide much deeper insight into the mechanism by which Sakura plays roles in these seemingly separable steps to orchestrate germ cell maintenance and differentiation during early oogenesis.

      Yes, it is possible that the stabilization of CycA in the sakura mutant is an indirect consequence of Bam misexpression and independent of the Sakura-Otu interaction. To test the significance and role of the Sakura-Otu interaction, we have attempted to identify Sakura point mutants that lose interaction with Otu. If such point mutants were successfully obtained, we were planning to test if their transgene expression could rescue the phenotypes of sakura mutant as the wild-type transgene did. However, after designing and testing the interaction of over 30 point mutants with Otu, we could not obtain such mutant version of Sakura yet. We will continue making efforts, but it is beyond the scope of the current study. We hope to address this important point in future studies.

      (2) Figure 3A and Figure 4: The authors show that piRNA production is abolished in Sakura KO ovaries. It is known that piRNA amplification (the ping-pong cycle) occurs in the Vasa-positive perinuclear nuage in nurse cells. Is the nuage normally formed in the absence of Sakura? The authors provide high-magnification images in the germarium expressing Vas-GFP. How does Sakura, and possibly Out, contribute to piRNA production? Are the defects a direct or indirect consequence of the loss of Sakura?

      We provided higher magnification images of germarium expressing Vasa-EGFP in sakura mutant background (Fig 3A and 3B). The nuage formation does not seem to be dysregulated in sakura mutant. Currently, we do not know if the piRNA defects are direct or indirect consequence of the loss of Sakura. This question cannot be answered easily. We hope to address this in future studies.

      (3) Figure 7 and Figure 12: The authors showed that Dpp-Smad signaling was abolished in Sakura KO germline cells. The same defects were also observed in otu mutant ovaries (Figure 12B). How does the Sakura-Otu axis contribute to the Dpp-Smad pathway in the germline?

      As we mentioned in the response to comment (1), we attempted to test the significance and role of the Sakura-Otu interaction, including in the Dpp-Smad pathway in the germline, but we have not yet been able to obtain loss-of-interaction mutant(s) of Sakura. We hope to address this in future studies.

      (4) Figure 9 and Fig 10: The authors raised antibodies against both Sakura and Otu, but their specificities were not provided. For Western blot data, the authors should provide whole gel images as source data files. Also, the authors argue that the Otu band they observed corresponds to the 98-kDa isoform (lines 302-304). The molecular weight on the Western blot alone would be insufficient to support this argument.

      When we submitted the initial manuscript, we also submitted original, uncropped, and unmodified whole Western blot images for all gel images to the eLife journal, as requested. We did the same for this revised submission. I believe eLife makes all those files available for downloading to readers.

      In the newly added Fig S13B, we used very young 2-5 hours ovaries and 3-7 days ovaries. 2-5 days ovaries contain only mostly pre-differentiated germ cells. Older ovaries (3-7 days in our case here) contain all 14 stages of oogenesis and later stages predominate in whole ovary lysates.

      As reported in previous literature (Sass et al. 1995), we detected a higher abundance of the 104 kDa Otu isoform than the 98 kDa isoform in from 2-5 hours ovaries and predominantly the 98 kDa isoform in 3-7 days ovaries (Fig S13B). These results confirmed that the major Otu isoform we detected in Western blot, all of which uses old ovaries except for the 2-5 hours ovaries in Fig S13B, is the 98 kDa isoform.

      (5) Otu has been reported to regulate ovo and Sxl in the female germline. Is Sakura involved in their regulation?

      We examined sxl alternative splicing pattern in sakura mutant ovaries. As shown in Fig S6, we detected the male-specific isoform of sxl RNA and a reduced level of the female-specific sxl isoform in sakura mutant ovaries. Thus Sakura seems to be involved in sxl splicing in the female germline, while further studies will be needed to understand whether Sakura has a direct or indirect role here.

      (6) Lines 443-447: The GSC loss phenotype in piwi mutant ovaries is thought to occur in a somatic cell-autonomous manner: both piwi-mutant germline clones and germline-specific piwi knockdown do not show the GSC-loss phenotype. In contrast, the authors provide compelling evidence that Sakura functions in the germline. Therefore, the Piwi-mediated GSC maintenance pathway is likely to be independent of the Sakura-Otu axis.

      We changed the text accordingly.

      Reviewer #2 (Recommendations for the authors):

      Overall, this is a cleanly written manuscript, with some sentences/sections that are confusing the way they are constructed (i.e. Line 37-38, 334, section on Flp/FRT experiments).

      We rewrote those sections to avoid confusion.

      Comment for all merged image data: the quality of the merged images is very poor - the individual channels are better but should also be reprocessed for more resolved image data sets. Also, it would be helpful to have boundaries drawn in an individual panel to identify the regions of the germarium, as cartooned in Figure S1A (which should be brought into Figure 1) F-actin or Vsg staining would have helped throughout the manuscript to enhance the visualization of described phenotypes.

      We are very sorry for the low-resolution images. This was caused when the original PDF file with high-resolution images was compressed in order to meet the small file size limit in the eLife submission portal. In the revised submission, we used high-resolution images.

      We outlined the germarium in Fig 1E.

      We brought the former FigS1 into Fig 1A.

      We provided Phalloidin (F-Actin) staining images in Fig S7.

      All p-values seem off. I recommend running the data through the student t-test again.

      We used the student t-test to calculate p-values and confirmed that they are correct. We don’t understand why the reviewer thinks all p-values seem off.

      In the original manuscript, as we mentioned in each figure legends, we used asterisk (*) to indicate p-value <0.05, without distinguishing whether it’s <0.001, <0.01< or <0.05.

      Probably reviewer 2 is suggesting us to use ***, **, and *, to indicate p-value of <0.001, <0.01, and <0.05, respectively? If so, we now followed reviewer2’s suggestions.

      Figure 1

      (1) Within the text, C is mentioned before A.

      We updated the text and now we mentioned Fig 1A before Fig 1C.

      (2) B should be the supplemental figure.

      We moved the former Fig 1B to Supplemental Figure 1.

      (3) C - How were the different egg chamber stages selected in the WB? Naming them 'oocytes' is deceiving. Recommend labeling them as 'egg chambers', since an oocyte is claimed to be just the one-cell of that cyst.

      We changed the labeling to egg chambers.

      (4) Is the antibody not detecting Sakura in IF? There is no mention of this anywhere in the manuscript.

      While our Sakura antibody detects Sakura in IF, it seems to detect some other proteins as well. Since we have Sakura-EGFP fly strain (which fully rescues sakura<sup>null</sup> phenotypes) to examine Sakura expression and localization without such non-specific signal issues, we relied on Sakura-EGFP rather than anti-Sakura antibodies for IF.

      (5) Expand on the reliance of the sakura-EGFP fly line. Does this overexpression cause any phenotypes?

      sakura-EGFP does not cause any phenotypes in the background of sakura[+/+] and sakura[+/-].

      (6) Line 95 "as shown below" is not clear that it's referencing panel D.

      We now referenced Fig 1D.

      (7) Re: Figures 1 E and F. There is no mention of Hts or Vasa proteins in the text.<br /> "Sakura-EGFP was not expressed in somatic cells such as terminal filament, cap cells, escort cells, or follicle cells (Figure 1E). In the egg chamber, Sakura-EGFP was detected in the cytoplasm of nurse cells and was enriched in developing oocytes (Figure 1F)". Outline these areas or label these structures/sites in the images. The color of Merge labels is confusing as the blue is not easily seen.

      We mentioned Hts and Vasa in the text. We labeled the structures/sites in the images and updated the color labeling.

      Figure 2

      (1) Entire figure is not essential to be a main figure, but rather supplemental.

      We don’t agree with the reviewer. We think that the female fertility assay data, where sakura null mutant exhibits strikingly strong phenotype, which was completely rescued by our Sakura-EGFP transgene, is very important data and we would like to present them in a main figure.

      (2) 2A- one star (*) significance does not seem correct for the presented values between 0 and 100+.

      In the original manuscript, as we mentioned in each figure legends, we used asterisk (*) to indicate p-value <0.05, without distinguishing whether it’s <0.001, <0.01< or <0.05.

      Probably reviewer 2 is suggesting us to use ***, **, and *, to indicate p-value of <0.001, <0.01, and <0.05, respectively? If so, we now followed reviewer2’s suggestions.

      (3) 2C images are extremely low quality. Should be presented as bigger panels.

      We are very sorry for the low-resolution images. This was caused when the original PDF file with high-resolution images was compressed in order to meet the small file size limit in the eLife submission portal. In the revised submission, we used high-resolution images. We also presented as bigger panels.

      Figure 3

      (1) "We observed that some sakura<sup>null</sup> /null ovarioles were devoid of germ cells ("germless"), while others retained germ cells (Fig 3A)" What is described is, that it is hard to see. Must have a zoomed-in panel.

      We provided zoomed-in panels in Fig 3B

      (2) C - The control doesn't seem to match. Must zoom in.

      We provided matched control and also zoomed in.

      (3) For clarity, separate the tumorous and germless images.

      In the new image, only one tumorous and one germless ovarioles are shown with clear labeling and outline, for clarity.

      (4) Use arrows to help clearly indicate the changes that occur. As they are presented, they are difficult to see.

      We updated all the panels to enhance clarity.

      (5) Line 158 seems like a strong statement since it could be indirect.

      We softened the statement.

      Figure 4

      (1) Line 188-189 - Conclusion is an overstatement.

      We softened the statement.

      (2) Is the piRNA reduction due to a change in transcription? Or a direct effect by Sakura?

      We do not know the answers to these questions. We hope to address these in future studies.

      Figure 5

      (1) D - It might make more sense if this graph showed % instead of the numbers.

      We did not understand the reviewer’s point. We think using numbers, not %, makes more sense.

      (2) Line 213 - explain why RNAi 2 was chosen when RNAi 1 looks stronger.

      Fly stock of RNAi line 2 is much healthier than RNAi line 1 (without being driven Gal4) for some reasons. We had a concern that the RNAi line 1 might contain an unwanted genetic background. We chose to use the RNAi 2 line to avoid such an issue.

      (3) In Line 218 there's an extra parenthesis after the PGC acronym.

      We corrected the error.

      (4) TOsk-Gal4 fly is not in the Methods section.

      We mentioned TOsk-Gal4 in the Methods.

      Figure 6:

      (1) The FLP-FRT section must be rewritten.

      We rewrote the FLP-FRT section.

      (2) A - include statistics.

      We included statistics using the chi-square test.

      (3) B - is not recalled in the Results text.

      We referred Fig 6B in the text.

      (4) Line 232 references Figure 3, but not a specific panel.

      We referred Fig 3A, 3C, 3D, and 3E, in the text.

      Figure 7/8 - can go to Supplemental.

      We moved Fig 8 to supplemental. However, we think Fig 7 data is important and therefore we would like to present them as a main figure.

      (1) There should be CycA expression in the control during the first 4 divisions.

      Yes, there is CycA expression observed in the control during the first 4 divisions, while it’s much weaker than in sakura<sup>null</sup> clone.

      (2) Helpful to add the dotted lines to delineate (A) as well.

      We added a dotted outline for germarium in Fig 7A.

      (3) Line 263 CycA is miswritten as CyA.

      We corrected the typo.

      Figure 9

      (1) Otu antibody control?

      We validated Otu antibody in newly added Fig 10C and Fig S13A.

      (2) Which Sakura-EGFP line was used? sakura het. or null background? This isn't mentioned in the text, nor legend.

      We used Sakura-EGFP in the background of sakura[+/+]. We added this information in the methods and figure legend.

      (3) C - Why the switch to S2 cells? Not able to use the Otu antibody in the IP of ovaries?

      We can use the Otu antibody in the IP of ovaries. However, in anti-Sakura Western after anti-Otu IP, antibody light chain bands of the Otu antibodies overlap with the Sakura band. Therefore, we switched to S2 cells to avoid this issue by using an epitope tag.

      Figure 10

      (1) A- The resolution of images of the ribbon protein structure is poor.

      We are very sorry for the low-resolution images. This was caused when the original PDF file with high-resolution images was compressed in order to meet the small file size limit in the eLife submission portal. In the revised submission, we used high-resolution images.

      (2) A table summarizing the interactions between domains would help bring clarity to the data presented.

      We added a table summarizing the fragment interaction results.

      (3) Some images would be nice here to show that the truncations no longer colocalize.

      We did not understand the reviewer’s points. In our study, even for the full-length proteins.

      We have not shown any colocalization of Sakura and Otu in S2 cells or in ovaries, except that they both are enriched in developing oocytes in egg chambers.

      Figure 12

      (1) A - control and RNAi lines do not match.

      We provided matched images.

      (2) In general, since for Sakura, only its binding to Otu was identified and since they phenocopy each other, doesn't most of the characterization of Sakura just look at Otu phenotypes? Does Sakura knockdown affect Otu localization or expression level (and vice versa)?

      We tested this by Western (Fig S15) and IF (Fig 12). Sakura knockdown did not decrease Otu protein level, and Otu knockdown did not decrease Sakura protein level (Fig S15). In sakura<sup>null</sup> clone, Otu level was not notably affected (Fig 12). In sakura<sup>null</sup> clone, Otu lost its localization to the posterior position within egg chambers.

      Figure S6

      (1) It is Luciferase, not Lucifarase.

      We corrected the typo.

      Reviewer #3 (Recommendations for the authors):

      (1) It is interesting that germless and tumorous phenotypes coexist in the same population of flies. Additional consideration of these essentially opposite phenotypes would significantly strengthen the study. For example, do they co-exist within the same fly and are the tumorous ovarioles present in newly eclosed flies or do they develop with age? The data in Figure 8 show that bam knockdown partially suppresses the germless phenotype. What effect does it have on the tumorous phenotype? Is transposon expression involved in either phenotype? Do Sakura mutant germline stem cell clones overgrow relative to wild-type cells in the same ovariole? Does sakura RNAi driven by NGT-Gal4 only cause germless ovaries or does it also cause tumorous phenotypes? What happens if the knockdown of Sakura is restricted to adulthood with a Gal80ts? It may not be necessary to answer all of these questions, but more insight into how these two phenotypes can be caused by loss of sakura would be helpful.

      We performed new experiments to answer these questions.

      do they co-exist within the same fly and are the tumorous ovarioles present in newly eclosed flies or do they develop with age?

      Tumorous and germless ovarioles coexist in the same fly (in the same ovary). Tumorous ovarioles are present in very young (0-1 day old) flies, including newly eclosed (Fig S5). The ratio of germless ovarioles increases and that of tumorous ovarioles decreases with age (Fig S5).

      The data in Figure 8 show that bam knockdown partially suppresses the germless phenotype. What effect does it have on the tumorous phenotype?

      bam knockdown effect on tumorous phenotype is shown in Fig S10. bam knockdown increased the ratio of tumorous ovarioles and the number of GSC-like cells.

      Is transposon expression involved in either phenotype?

      Since our transposon-piRNA reporter uses germline-specific nos promoter, it is expressed only in germ line cells, so we cannot examine in germless ovarioles.

      Do Sakura mutant germline stem cell clones overgrow relative to wild-type cells in the same ovariole?

      Yes, Sakura mutant GSC clones overgrow. Please compare Fig 6C and Fig S8.

      Does sakura RNAi driven by NGT-Gal4 only cause germless ovaries or does it also cause tumorous phenotypes?

      Fig S10 and Fig S12 show the ovariole phenotypes of sakura RNAi driven by NGT-Gal4. It causes both germless and tumorous phenotypes.

      What happens if the knockdown of Sakura is restricted to adulthood with a Gal80ts?

      Our mosaic clone was induced at the adult stage, so we already have data of adulthood-specific loss of function. Gal80ts does not work well with nos-Gal4.

      (2) The idea that the excessive bam expression in tumorous ovaries is due to a failure of bam repression by dpp signaling is not well-supported by the data. Dpp signaling is activated in a very narrow region immediately adjacent to the niche but the images in Figure 7A show bam expression in cells that are very far away from the niche. Thus, it seems more likely to be due to a failure to turn bam expression off at the 16-cell stage than to a failure to keep it off in the niche region. To determine whether bam repression in the niche region is impaired, it would be important to examine cells adjacent to the niche directly at a higher magnification than is shown in Figure 7A.

      We provided higher magnification images of cells adjacent to the niche in new Fig 7A.

      We found that cells adjacent to the niche also express Bam-GFP.

      That said, we agree with the reviewer. A failure to turn bam expression off at the 16-cell stage may be an additional or even a main cause of bam misexpression in sakura mutant. We added this in the Discussion.

      (3) In addition, several minor comments should be addressed:

      a. Does anti-Sakura work for immunofluorescence?

      While our Sakura antibody detects Sakura in IF, it seems to detect some other proteins as well. Since we have Sakura-EGFP fly strain to examine Sakura expression and localization without such non-specific signal issues, we relied on Sakura-EGFP rather than anti-Sakura antibodies.

      b. Please provide insets to show the phenotypes indicated by the different color stars in Figure 3C more clearly.

      We provided new, higher-magnification images to show the phenotypes more clearly.

      c. Please indicate the frequency of the expression patterns shown in Figure 4D (do all ovarioles in each genotype show those patterns or is there variable penetrance?).

      We indicated the frequency.

      d. An image showing TOskGal4 driving a fluorophore should be provided so that readers can see which cells express Gal4 with this driver combination.

      It has been already done in the paper ElMaghraby et al, GENETICS, 2022, 220(1), iyab179, so we did not repeat the same experiment.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      Mallimadugula et al. combined Molecular Dynamics (MD) simulations, thiol-labeling experiments, and RNA-binding assays to study and compare the RNA-binding behavior of the Interferon Inhibitory Domain (IID) from Viral Protein 35 (VP35) of Zaire ebolavirus, Reston ebolavirus, and Marburg marburgvirus. Although the structures and sequences of these viruses are similar, the authors suggest that differences in RNA binding stem from variations in their intrinsic dynamics, particularly the opening of a cryptic pocket. More precisely, the dynamics of this pocket may influence whether the IID binds to RNA blunt ends or the RNA backbone.

      Overall, the authors present important findings to reveal how the intrinsic dynamics of proteins can influence their binding to molecules and, hence, their functions. They have used extensive biased simulations to characterize the opening of a pocket which was not clearly seen in experimental results - at least when the proteins were in their unbound forms. Biochemical assays further validated theoretical results and linked them to RNA binding modes. Thus, with the combination of biochemical assays and state-of-the-art Molecular Dynamics simulations, these results are clearly compelling.

      Strengths:

      The use of extensive Adaptive Sampling combined with biochemical assays clearly points to the opening of the Interferon Inhibitory Domain (IID) as a factor for RNA binding. This type of approach is especially useful to assess how protein dynamics can affect its function.

      Weaknesses:

      Although a connection between the cryptic pocket dynamics and RNA binding mode is proposed, the precise molecular mechanism linking pocket opening to RNA binding still remains unclear.

      Reviewer #2 (Public review):

      Summary:

      The authors aimed to determine whether a cryptic pocket in the VP35 protein of Zaire ebolavirus has a functional role in RNA binding and, by extension, in immune evasion. They sought to address whether this pocket could be an effective therapeutic target resistant to evolutionary evasion by studying its role in dsRNA binding among different filovirus VP35 homologs. Through simulations and experiments, they demonstrated that cryptic pocket dynamics modulate the RNA binding modes, directly influencing how VP35 variants block RIG-I and MDA5-mediated immune responses.

      The authors successfully achieved their aim, showing that the cryptic pocket is not a random structural feature but rather an allosteric regulator of dsRNA binding. Their results not only explain functional differences in VP35 homologs despite their structural similarity but also suggest that targeting this cryptic pocket may offer a viable strategy for drug development with reduced risk of resistance.

      This work represents a significant advance in the field of viral immunoevasion and therapeutic targeting of traditionally "undruggable" protein features. By demonstrating the functional relevance of cryptic pockets, the study challenges long-standing assumptions and provides a compelling basis for exploring new drug discovery strategies targeting these previously overlooked regions.

      Strengths:

      The combination of molecular simulations and experimental approaches is a major strength, enabling the authors to connect structural dynamics with functional outcomes. The use of homologous VP35 proteins from different filoviruses strengthens the study's generality, and the incorporation of point mutations adds mechanistic depth. Furthermore, the ability to reconcile functional differences that could not be explained by crystal structures alone highlights the utility of dynamic studies in uncovering hidden allosteric features.

      Weaknesses:

      While the methodology is robust, certain limitations should be acknowledged. For example, the study would benefit from a more detailed quantitative analysis of how specific mutations impact RNA binding and cryptic pocket dynamics, as this could provide greater mechanistic insight. This study would also benefit from providing a clear rationale for the selection of the amber03 force field and considering the inclusion of volume-based approaches for pocket analysis. Such revisions will strengthen the robustness and impact of the study.

      Reviewer #3 (Public review):

      Summary:

      The authors suggest a mechanism that explains the preference of viral protein 35 (VP35) homologs to bind the backbone of double-stranded RNA versus blunt ends. These preferences have a biological impact in terms of the ability of different viruses to escape the immune response of the host.

      The proposed mechanism involves the existence of a cryptic pocket, where VP35 binds the blunt ends of dsRNA when the cryptic pocket is closed and preferentially binds the RNA double-stranded backbone when the pocket is open.

      The authors performed MD simulation results, thiol labelling experiments, fluorescence polarization assays, as well as point mutations to support their hypothesis.

      Strengths:

      This is a genuinely interesting scientific question, which is approached through multiple complementary experiments as well as extensive MD simulations. Moreover, structural biology studies focused on RNA-protein interactions are particularly rare, highlighting the importance of further research in this area.

      Weaknesses:

      - Sequence similarity between Ebola-Zaire (94% similarity) explains their similar behaviour in simulations and experimental assays. Marburg instead is a more distant homolog (~80% similarity relative to Ebola/Zaire). This difference is sequence and structure can explain the propensities, without the need to involve the existence of a cryptic pocket.  

      - No real evidence for the presence of a cryptic pocket is presented, but rather a distance probability distribution between two residues obtained from extensive MD simulations. It would be interesting to characterise the modelled RNA-protein interface in more detail

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      Before assessing the overall quality and significance of this work, this reviewer needs to specify the context of this review. This reviewer's expertise lies in biased and unbiased molecular dynamics simulations and structural biology. Hence, while this reviewer can overall understand the results for thiol-labeling and RNA-binding assays, this review will not assess the quality of these biochemical assays and will mainly focus on the modelling results.

      Overall, the authors present important findings to reveal how the intrinsic dynamics of proteins can influence their binding to molecules and, hence, their functions. They have used extensive biased simulations to characterize the opening of a pocket which was not clearly seen in experimental results - at least when the proteins were in their unbound forms. Biochemical assays further validated theoretical results and linked them to RNA binding modes. Thus, with the combination of biochemical assays and state-of-the-art Molecular Dynamics simulations, these results are clearly compelling.

      Beyond the clear qualities of this work, I would like to mention a few points that may help to better contextualize and rationalize the results presented here.

      - First, both the introduction and discussion sections seem relatively condensed. Extending them to, for example, better describe the methodological context and discuss the methodological limitations and potential future developments related to biased simulations may help the reader get a better idea of the significance of this work.

      - The authors presented 3 homologs in this study: IIDs of Reston, Zaire, and Marburg viruses. While Zaire and Reston are relatively similar in terms of sequence (Figure S1). The sequences clearly differ between Marburg and the two other viruses. Can the author indicate a similarity/identity score for each sequence alignment and extend Figure S1 to really compare Marburg sequence with Reston and Zaire? Can they also discuss how these differences may impact the comparison of the three IIDs? This may also help the reader to understand why sometimes the authors compare the three viruses and why sometimes they are focusing only on comparing Zaire and Reston.

      We would like to thank the reviewer for raising this point and we agree that additional details about the sequence comparison provide more context for the choices of substitutions we made. Therefore, we have updated Fig S1 to include a detailed pairwise comparison of all the IID sequences including the percentage sequence similarity and identity. We have also added the following sentences to the results section where we first introduced the substitutions between Zaire and Reston IIDs

      “While the sequence of Marburg IID differs significantly from Reston and Zaire IIDs with a sequence identity of 42% and 45% respectively (Fig S1), the sequences of Reston and Zaire IID are 88% identical and 94% similar. Particularly, substitutions between these homologs are all distal to the RNA-binding interfaces and all the residues known to make contacts with dsRNA from structural studies are identical. Therefore, we reasoned that comparing these two homologs would help us identify minimal substitutions that control pocket opening probability and allow us to study its effect on dsRNA binding with minimal perturbation of other factors.”

      - In this work, the authors mentioned the cryptic pocket but only illustrated the opening of this pocket by using a simple distance between residues (Figure 2) and a SASA of one cysteine (Figure 3). In previous work done by the authors (Cruz et al. , Nature Communications, 2022), they better characterized residues involved in RNA binding and forming the cryptic pocket. Thus, would it be possible to better described this cryptic pocket (residues involved, volume, etc ..) and better explain how, structurally speaking, it can affect RNA binding mode (blunt ends vs backbone) ?

      We thank the reviewer for pointing out the need for clarification on the residues involved in RNA binding and pocket opening and the mechanism linking them. We have performed the CARDS analysis on Reston and Marburg IID simulations as we had done on Zaire IID simulations in Cruz et al, 2022. The results are shown in Fig S3 and discussed in the main text in the first results section.

      - As a counter-example, the authors used C315 for SASA calculation and thiol labeling (Figure 3). This cysteine is mainly buried as seen by SASA for Reston and Marburg and thiol labelling (Figure 3 E,G,H). Would it be possible to also get thiol labeling rates for Cystein 264 in Reston and its equivalent to see a case where the residue is solvent exposed?

      We have shown the SASA for C264 from the simulations in Fig S4 and the thiol labeling rates for all 4 cysteines in Reston IID in Fig S6. Comparing these rates to the rates of all 4 cysteines obtained for Zaire IID (Fig 4 in Cruz et Al, 2022), we observe that the rates for C264, which is expected to be exposed are significantly faster than those of C315 which is largely buried in all variants.  

      - I strongly support here the will of the authors to share their data by depositing them in an OSF repository. These data help this reviewer to assess some of the results produced by the authors and help to better understand the dynamics of their respective systems. I have just a few comments that need to be addressed regarding these data: o While there are data for WT Reston and Marburg, there is no data for Zaire. Is this because these data correspond to the previous work (Cruz et al. 2022) (in this case, it would be good to make this clear in the main text) or is it an omission? o There is no center.xtc file in the Marburg-MSM directory o There is no protmasses.pdb in the Reston-MSM directory

      - In general, if possible, it would be good to use the same name for each type of file presented in each directory to help a potential user understand a bit more how to use these data.

      - If possible, adding a bit more of metadata and explanations on the OSF webpage would be very beneficial to help find these data. To help in this direction, the authors may have a look to the guidelines presented at the end of this article: https://elifesciences.org/articles/90061

      We thank the reviewer for pointing out the omissions from the OSF repository. We have added the missing files and followed a uniform naming convention. We have also added documentation in the metadata section of the OSF repository to help others use the data.  

      Indeed, the simulation data used for Zaire IID is available on the OSF repository corresponding to Cruz et al. 2022 at https://osf.io/5pg2a. We have also clarified this in the data availability section of the main text.  

      Minor point:

      In Figure 2, there is a slight bump for the 225-295 distance around 1 nm for Reston. Can the author comment it ? As these results are based on long AS, even if very small, do the authors think this population is significant?

      Comparing the probability distributions obtained from bootstrapping the frames used to calculate the MSM equilibrium probabilities (Revised Fig1), we observe that the bump for the Reston IID distribution is persistent in all bootstraps indicating that it might indeed be significant. This is also consistent with our observation that the cysteine 296 does get fully labeled in our thiol labeling experiments, albeit significantly slowly compared to the other homologs.  

      Reviewer #2 (Recommendations for the authors):

      I recommend that the authors implement moderate revisions prior to the publication of this research article, addressing the identified weaknesses (see below).

      The authors should provide a rationale for their selection of the amber03 force field (Duan et al., JCTC 24, 1999-2012, 2003) for molecular dynamics simulations, particularly given the availability of more recent and optimized versions of the AMBER force fields. These newer force fields may offer improved parameterization for biomolecular systems, potentially enhancing the accuracy and reliability of the simulation results.

      We chose the Amber03 force field because it has performed well in much of our past work, including the original prediction of the cryptic pocket that we study in this manuscript. The results presented in this manuscript also demonstrate the predictive power of Amber03.

      Additionally, while the authors utilized solvent-accessible surface area (SASA) for cryptic pocket analysis, volume-based approaches may be more suitable for this purpose. Several studies (e.g., Sztain et al. J. Chem. Inf. Model. 2021, 61, 7, 3495-3501) have demonstrated the utility of volume analysis in identifying and characterizing cryptic pockets. The authors could consider incorporating such methodologies to provide a more comprehensive assessment of pocket dynamics.

      The authors propose that the cryptic pocket is not merely a random structural feature but functions as an allosteric regulator of dsRNA binding. To further substantiate this claim, an in-depth analysis of this allosteric effect using for instance network analysis could significantly enhance the study. Such an approach could identify key residues and interaction networks within the protein that mediate the allosteric regulation. This type of mechanistic insight would not only provide a stronger theoretical framework but also offer valuable information for the rational design of therapeutic interventions targeting the cryptic pocket.  

      We thank the reviewer for pointing out the need for clarification on the molecular mechanism linking the opening of the cryptic pocket to RNA binding. We have performed the CARDS analysis on Reston and Marburg IID simulations as was done on Zaire IID simulations in Cruz et al, 2022. The results are shown in Fig S3 and discussed in the main text in the first results section. Briefly, we do find a community (blue) comprising the pocket residues in Reston and Marburg IIDs as we did in Zaire. Similarly, we find that many of the RNA binding residues fall into the orange and green communities as in Zaire. However, there are differences in exactly which residues are clustered into which of these two communities. There are also differences in how strongly connected these communities are in the three homologs. Therefore, while we can conclude that pocket residues likely have varying influence on the RNA binding residues in the homologs, it is hard to say exactly what that variation is from this analysis alone.  

      Reviewer #3 (Recommendations for the authors):

      - MD simulations: All simulations were initialised from the 3 crystal structures, is it correct? In all cases, RNA ds was not included in simulations, right? Were crystallographic MG ions in the vicinity of the binding site included? these are known to influence structural dynamics to a large extent.

      All simulations were indeed initialized using only protein atoms from the crystal structures 3FKE, 4GHL, and 3L2A. Therefore, crystallographic Mg ions were not included in the simulations. However, we do agree with the reviewer and think that the effect of parameters such as salt concentration, specifically Mg ions which are known to be important for the stability of dsRNA, on the pocket opening equilibrium merits detailed study in future work.

      - Figure 2: Would it be possible to perform e.g. a block error analysis and show the statistical errors of the distributions?

      We agree that showing the statistical variation in the MSM equilibrium probabilities is important for comparing the different distributions. Therefore, we have updated Figs 2 and 5 to show the distributions obtained from MSMs constructed using 100 and 10 random samples of the data respectively to indicate the extent of the statistical variability in the MSM construction.  

      - More detailed structural biology experiments (such as NMR or HDX-MS) could potentially shed more light on the differential behaviour of the three different homologs, providing more evidence for the presence of the cryptic pocket.

      We agree that NMR and HDX-MS are powerful means to study dynamics and are actively exploring these approaches for our future work.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In the manuscript by Tie et.al., the authors couple the methodology which they have developed to measure LQ (localization quotient) of proteins within the Golgi apparatus along with RUSH based cargo release to quantify the speed of different cargos traveling through Golgi stacks in nocodazole induced Golgi ministacks to differentiate between cisternal progression vs stable compartment model of the Golgi apparatus. The debate between cisternal progression model and stable compartment model has been intense and going on for decades and important to understand the basic way of function/organization of the Golgi apparatus. As per the stable compartment model, cisterna are stable structures and cargo moves along the Golgi apparatus in vesicular carriers. While as per cisternal progression model, Golgi cisterna themselves mature acquiring new identity from the cis face to the trans face and act as transport carriers themselves. In this work, authors provide a missing part regarding intra-Golgi speed for transport of different cargoes as well as the speed of TGN exit and based on the differences in the transport velocities for different cargoes tested favor a stable compartment model. The argument which authors make is that if there is cisternal progression, all the cargoes should have a similar intra-Golgi transport speed which is essentially the rate at which the Golgi cisterna mature. Furthermore, using a combination of BFA and Nocodazole treatments authors show that the compartments remain stable in cells for at least 30-60 minutes after BFA treatment.

      Strengths:

      The method to accurately measure localization of a protein within the Golgi stack is rigorously tested in the previous publications from the same authors and in combination with pulse chase approaches has been used to quantify transport velocities of cargoes through the Golgi. This is a novel aspect in this paper and differences in intra-Golgi velocities for different cargoes tested makes a case for a stable compartment model.

      Weaknesses:

      Experiments are only tested in one cell line (HeLa cells) and predominantly derived from experimental paradigm using RUSH assays where a secretory cargo is released in a wave (not the most physiological condition) and therefore additional approaches would make a more compelling case for the model.

      We have added datasets from 293T cells in the revamped manuscript.

      Reviewer #2 (Public Review):

      Summary:

      This manuscript describes the use of quantitative imaging approaches, which have been a key element of the labs work over the past years, to address one of the major unresolved discussions in trafficking: intra-Golgi transport. The approach used has been clearly described in the labs previous papers, and is thus clearly described. The authors clearly address the weaknesses in this manuscript and do not overstate the conclusions drawn from the data. The only weakness not addressed is the concept of blocking COPI transport with BFA, which is a strong inhibitor and causes general disruption of the system. This is an interesting element of the paper, which I think could be improved upon by using more specific COPI inhibitors instead, although I understand that this is not necessarily straightforward.

      I commend the authors on their clear and precise presentation of this body of work, incorporating mathematical modelling with a fundamental question in cell biology. In all, I think that this is a very robust body of work, that provides a sound conclusion in support of the stable compartment model for the Golgi.

      General points:

      The manuscript contains a lot of background in its results sections, and the authors may wish to consider rebalancing the text: The section beginning at Line 175 is about 90% background and 10% data. Could some data currently in supplementary be included here to redress this balance, or this part combined with another?

      In the revamped manuscript, we have moved the background information on rapid partitioning and rim progression models to the Introduction.

      Reviewer #3 (Public Review):

      The manuscript by Tie et al. provides a quantitative assessment of intra-Golgi transport of diverse cargos. Quantitative approaches using fluorescence microscopy of RUSH synchronized cargos, namely GLIM and measurement of Golgi residence time, previously developed by the author's team (publications from 20216 to 2022), are being used here.

      Most of the results have been already published by the same team in 2016, 2017, 2020 and 2021. In this manuscript, very few new data have been added. The authors have put together measurements of intra-Golgi transport kinetics and Golgi residence time of many cargos. The quantitative results are supported by a large number of Golgi mini-stacks/cells analyzed. They are discussed with regard to the intra-Golgi transport models being debated in the field, namely the cisternal maturation/progression model and the stable compartments model. However, over the past decades, the cisternal progression model has been mostly accepted thanks to many experimental data.

      The authors show that different cargos have distinct intra-Golgi transport kinetics and that the Golgi residence time of glycosyltransferases is high. From this and the experiment using brefeldinA, the authors suggest that the rim progression model, adapted from the stable compartments model, fits with their experimental data.

      Strengths:

      The major strength of this manuscript is to put together many quantitative results that the authors previously obtained and to discuss them to give food for thought about the intraGolgi transport mechanism.

      The analysis by fluorescence microscopy of intra-Golgi transport is tough and is a tour de force of the authors even if their approach show limitations, which are clearly stated. Their work is remarkable in regards to the numbers of Golgi markers and secretory cargos which have been analyzed.

      Weaknesses:

      As previously mentioned, most of the data provided here were already published and thus accessible for the community. Is there is a need to publish them again?

      The authors' discussion about the intra-Golgi transport model is rather simplistic. In the introduction, there is no mention of the most recent models, namely the rapid partitioning and the rim progression models. To my opinion, the tubular connections between cisternae and the diffusion/biochemical properties of cargos are not enough taken into account to interpret the results. Indeed, tubular connections and biochemical properties of the cargos may affect their transit through the Golgi and the kinetics with which they reach the TGN for Golgi exit.

      Nocodazole is being used to form Golgi mini-stacks, which are necessary to allow intra-Golgi measurement. The use of nocodazole might affect cellular homeostasis but this is clearly stated by the authors and is acceptable as we need to perturb the system to conduct this analysis. However, the manual selection of the Golgi mini-stack being analyzed raises a major concern. As far as I understood, the authors select the mini-stacks where the cargo and the Golgi reference markers are clearly detectable and separated, which might introduce a bias in the analysis.

      The terms 'Golgi residence time ' is being used but it corresponds to the residence time in the trans-cisterna only as the cargo has been accumulated in the trans-Golgi thanks to a 20{degree sign}C block. The kinetics of disappearance of the protein of interest is then monitored after 20{degree sign}C to 37{degree sign}C switch.

      Another concern also lies in the differences that would be introduced by different expression levels of the cargo on the kinetics of their intra-Golgi transport and of their packaging into post-Golgi carriers.

      Please see below for our replies to intra-Golgi transport models, the Golgi residence time, and different expression levels of cargos.

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      The data shown by the authors to measure differential intra Golgi velocities based on previously established methodology make a case for a stable compartment model, however more data is needed to make a complete story and the clarity of presentation can be improved.

      We sincerely appreciate the reviewer's insightful, detailed, and constructive feedback. Your thoughtful comments have helped us refine our analyses, clarify key points, and strengthen the overall quality of our manuscript. We are grateful for the time and effort you have dedicated to reviewing our work and providing valuable suggestions. Your input has been instrumental in improving both the scientific rigor and presentation of our findings. Thank you for your thorough and thoughtful review.

      Main points:

      (1) Along with the studies in yeast, which authors describe in this paper, the main evidence for cisternal maturation model in mammalian cells comes from Bonfanti et.al., (https://doi.org/10.1016/S0092-8674(00)81723-7), which used EM to visualize a wave of Collagen through Golgi stacks. It is therefore important this work needs to include collagen as one of the cargos tested. Can the authors use the RUSH-Col1AGFP (see: https://doi.org/10.1083/jcb.202005166) as a cargo to monitor intra-Golgi velocities?

      I understand that Hela cells are not professional collagen-secreting, but the authors can use U2OS cells to measure collagen export and two other extreme (slow and fast) cargos to validate the same trend in intra-Golgi transport velocities is seen in other cell lines. This will address three concerns: a. This is not a Hela-specific phenomenon; b. Transport of large cargoes like collagen agree with their proposal; c. To see if the same cargo has the same (similar) intra-Golgi speed and the trend between different cargoes is conserved across cell lines.

      Due to the difficulty of manipulating and imaging the procollagen-I RUSH reporter, we selected the collagenX-RUSH reporter (SBP-GFP-collagenX) instead. Our previous study (Tie et al., eLife, 2028) demonstrated that SBP-GFP-collagenX assembles as a large molecular weight particle, each having ~ 190 copies of SBP-GFP-collagenX. With an estimated mean size of ~ 40 nm, these aggregates are not as large as FM4 aggregates and procollagen-I (> 300 nm) and, therefore, are not excluded from conventional transport vesicles, which typically have a size of 50 – 100 nm. However, collagenX has distinct intra-Golgi transport behaviour from conventional secretory cargos -- while conventional secretory cargos localize to the cisternal interior, collagenX partitions to the cisternal rim (Tie et al., eLife, 2028).

      We studied the intra-Golgi transport of SBP-GFP-collagenX in HeLa cells via GLIM and side averaging. The new results are included in Figure 3 of the revamped manuscript. CollagenX has similar intra-Golgi transport kinetics as conventional secretory cargos, displaying the first-order exponential function in LQ vs. time and velocity vs. time plots.

      The side-averaging images are consistent with previous and current results. collagenX displays a double-punctum during the intra-Golgi transport, indicating a cisternal rim localization, as expected for large secretory cargos. Therefore, our new data demonstrated that cisternal rim partitioned large-size secretory cargos might follow intra-Golgi transport kinetics similar to those of cisternal interior partitioned conventional secretory cargos.

      We tried SBP-GFP-CD59 and SBP-GFP-Tac-TC, cargos with fast and slow intra-Golgi transport velocities, respectively, in 293T cells. Results are included in Figure 2, Supplementary Figure 2, and Table 1 of the revamped manuscript. We found that SBP-GFPTac-TC showed similar t<sub>intra</sub>s, 17 and 14 min, respectively, in HeLa and 293T cells. Considering our previous finding that glycosylation has an essential role in the Golgi exit (Sun et al., JBC, 2020), the distinct intra-Golgi transport kinetics of SBP-GFP-CD59 (t<sub>intra</sub>s, 13 and 5 min, respectively, in HeLa and 293T cells) might be due to its distinct luminal glycosylation between HeLa and 293T cells. Supporting this hypothesis, SBP-GFP-Tac-TC does not have any glycosylation sites due to the truncation of the Tac luminal domain.

      (2) RUSH assay has its own caveats which authors also refer to in the manuscript. Authors should test their model by using pulse chase approaches by SNAP tagged constructs which will allow them to do pulse chase assays without the requirement to release cargo as a wave (see: doi: 10.1242/jcs.231373). It is not necessary to test all the cargoes but the two on the ends of the spectrum (slow and fast). To avoid massive overexpression, authors could express the proteins using weaker promoters. Authors could also use this approach to simultaneously measure the two cargoes by tagging them with CLIP and SNAP tags and doing the pulse chase simultaneously (see: DOI: 10.1083/jcb.202206132). In this case it may be difficult to stain both GM130 and TGN, but authors could monitor the rate of segregation from the GM130 signal.

      During the RUSH assay, the sudden release of a large amount of secretory reporters does not occur under native secretory conditions and, consequently, might introduce artifacts. The reviewer suggests using pulse-chase labeling of SNAP (or CLIP)-tagged secretory cargos, which occurs in a steady state and hence more closely resembles native secretory transport. This is an excellent suggestion. However, we have not yet tested this method due to the following concerns.

      The standard protocol involves blocking existing reporters, pulse-labeling newly synthesized reporters, and chasing their movement along the secretory pathway. However, the typical 20minute pulse labeling period used in the two references would be too long, as a substantial portion of the reporters would already reach the trans-Golgi or exit the Golgi before the chase begins. Conversely, reducing the pulse labeling time would significantly weaken the GLIM signal.

      (3) While the intra-Golgi velocities are different for different cargoes tested, authors should show a control that the arrival of the cargoes from ER to the cis-Golgi follows similar kinetics or if there are differences there is no correlation with the intra-Golgi velocities. In other words, do cargoes which show slow intra-Golgi velocities also take more time to reach the cis-Golgi and vice versa.

      In nocodazole-induced Golgi ministacks, the ER exit site, ERGIC, and cis-Golgi are spatially closely associated. At the earliest measurable time point—5 minutes after biotin treatment— we observed that the secretory cargo had already reached the cis-Golgi (Figure 2 and Supplementary Figure 2). The rapid ER-to-cis-Golgi transport exceeds the temporal resolution of our current protocol, making it difficult to address the reviewer’s question (see our reply to Minor Points (2) of Reviewer #2 for more detailed discussion on this).

      (4) Were the different cargos traveling (at different speeds) through Golgi at the rims, or in the middle of ministack, or by vesicles?

      Please also refer to our reply to Question 1 of Reviewer #1. For the nocodazole-induced Golgi ministack, we previously investigated the lateral cisternal localization of RUSH secretory reporters using our en face average imaging (Tie et al., eLife, 2018). We found that small or conventional cargos (such as CD59 and E-cadherin) partition to the cisternal interior while large cargos (collagenX and FM4-CD8a) partition to the cisternal rim during their intra-Golgi transport. Using GLIM, we showed that the intra-Golgi transport kinetics of collagenX is similar to that of small cargos as both follow the first-order exponential function (Figure 3A-C). Therefore, cisternal rim partitioned large size secretory cargos might have intra-Golgi transport kinetics similar to those of cisternal interior partitioned conventional secretory cargos.

      (5) Figure 4, under both nocodazole and BFA treatment for 30mins, would the stacks have the same number (274 nm per LQ) as thickness? Or does it shrink a little? Considering extended BFA treatment reduced intact Golgi ministacks. This is important to understand the LQ numbers of those Golgi proteins. Besides, can they include one ERGIC marker in this assay, would it be approaching cis-Golgi? Images used for quantification in Figure 4 should be shown in the main figure.

      We define the axial size of the Golgi ministack as the axial distance from the GM130 to the GalT-mCherry, d<sub>(GM130-GalT-mCherry)</sub>, measured using the Gaussian centers of their line intensity profiles. As the reviewer suggested, we measured the axial size of the ministack during the nocodazole and BFA treatment. Indeed, we found a decrease in the ministack axial size from 300 ± 10 nm at 0 min to 190 ± 30 nm at 30 min of BFA treatment. This observation is further confirmed by our side average imaging. The new data is presented in Fig. 6G.

      Our study focuses on changes in the organization of the Golgi ministack. So, we didn’t include ERGIC53 in the current analysis. Instead, we quantified the axial distance between GalTmCherry and CD8a-furin, d<sub>(GalT-mCherry-CD8a-furin)</sub>, and found that it decreased from 200 ± 20 nm at 0 min to 100 ± 30 nm at 30 min of BFA treatment, suggesting the collapse of the TGN. The collapse of the TGN is further visualized by our side average imaging. The new data is presented in Fig. 6H.

      Therefore, our new data demonstrates that the Golgi ministack shrinks, and the TGN collapses under BFA treatment.

      Minor points:

      (1) The LQ data come from confocal/airy scan images, but no such images were shown in this paper. The authors can't assume every reader to have prior knowledge of their previous work. It will be beneficial to have one example image and how the LQ was measured.

      As advised by the reviewer, we have prepared Supplementary Figure 1 to provide a brief illustration of the principle behind GLIM and image processing steps involved.

      (2) The cargos used in this paper need to be introduced: what are they, how were they used in previous literature. Especially the furin constructs come out of the blue (also see point 7).

      As suggested by the reviewer, we have included a schematic diagram in Fig. 1 of the revised manuscript to illustrate all RUSH reporters and their corresponding ER hooks. In this diagram, we also highlight the key sequence differences in the cytosolic tails of different furin mutants.

      Additionally, we have added references for each RUSH reporter at the beginning of the Results and Discussion section.

      (3) There are two categories of exocytosis, constitutive and regulated. It important to state that the phenomenon observed is in cells predominantly showing only constitutive secretion.

      As the reviewer advised, we have added the following sentences in the section titled “Limitations of the study”.

      “Third, all RUSH reporters used in this study are constitutive secretory cargos. As a result, the intra-Golgi transport dynamics observed here might not reflect those of regulated secretion, which involves the synchronized release of a large quantity of cargo in response to a specific signal.”

      (4) All the cargoes show a progressive reduction in instantaneous velocities from cis to medial to trans. Authors should discuss how do they mechanistically explain this. Is the rate of vesicle production progressively decreasing from cis to trans and if so, why?

      As our imaging methods cannot differentiate vesicles from the cisternal rim, we could not tell if the vesicle production rate had changed during the intra-Golgi transport. We have provided an explanation of the progressive reduction of the intra-Golgi transport velocity in the Results and Discussion section. Please see the text below.

      “The progressive reduction in intra-Golgi transport of secretory cargo might result from the enzyme matrix's retention at the trans-Golgi. As the secretory cargos progress along the Golgi stack from the cis to the trans-side, more and more cargos become temporarily retained in the trans-Golgi region, gradually reducing their overall intra-Golgi transport velocity. If the release or Golgi exit of these cargos from the enzyme matrix follows a constant probability per unit time, i.e., a first-order kinetics process, the rate of cargo exiting from the Golgi should follow the first-order exponential function. Since the mechanism underlying intra-Golgi transport kinetics reflects fundamental molecular and cellular processes of the Golgi, further experimental data are essential to rigorously test this hypothesis.”

      (5) The supp file 1 nicely listed the raw data for plotting, and n for numbers of ministacks. Could the authors also show number of cells or experiment repeats?

      In the revamped version of the Supplementary File 1, we have added the cell number for each LQ measurement.

      (6) This recent work used novel multiplexing methods to show that nocodazole-treated cells had similar protein organization as in control may be cited. It also showed the effect of BFA. https://www.cell.com/cell/abstract/S0092-8674(24)00236-8.

      We have added this reference to the Introduction section to support that nocodazole-induced Golgi ministacks have a similar organization as the native Golgi. However, our BFA treatment was combined with the nocodazole treatment, while this paper’s BFA treatment does not contain nocodazole.

      (7) Figure 1G-J, authors should show a schematic to show the difference between different furin constructs. Also, LQ values in Fig 1I start from 1. Authors may need to include even earlier timepoints.

      As suggested by the reviewer, we have shown the domain organization of wild type and mutant furin RUSH reporters in Figure 1, highlighting key amino acids in the cytosolic tail. Please also see our reply to Minor Points (2) of Reviewer #1.

      In the revised manuscript, Fig. 1l (SBP-GFP-CD8a-furin-AC #1) has been updated to become Fig. 2J. In this dataset, the first time point was selected at a relatively late stage (20 min), resulting in an initial LQ value of 0.92. However, this should not pose an issue, as SBP-GFPCD8a-furin-AC reaches a plateau of ~ 1.6. The number of data points is sufficient to capture the rising phase and fit the first-order exponential function curve with an adjusted R<sup>2</sup> = 0.99. Furthermore, we have four independent datasets in total on the intra-Golgi transport of SBPGFP-CD8a-furin-AC (#1-4), demonstrating the consistency of our measurements.

      (8) Figure 2A need to show the data points, not just the lines.

      In the revamped manuscript, Fig. 2A has been updated to become Fig. 4A. The plot of Fig. 4A is calculated based on Equation 3.

      So, it does not have data points. However, t<sub>intra</sub> is calculated based on the experimental LQ vs. t kinetic data. 

      (9) Imaging and camera settings like exposure time, pixel size, etc should be reported in Methods.

      As suggested by the reviewer, we have supplied this information in the Materials and Methods section of the revised manuscript.

      (1) The exposure time and pixel size for the wide-field microscopy:

      “The image pixel size is 65 nm. The range of exposure time is 400 – 5000 ms for each channel.”

      (2) The exposure time and pixel size for the spinning disk confocal microscopy: “The image pixel size is 89 nm. The range of exposure time is 200 – 500 ms for each channel.”

      (3) The pixel dwelling time and pixel size for the Airyscan microscopy:

      “For side averaging, images were acquired under 63× objective (NA 1.40), zoomed in 3.5× to achieve 45 nm pixel size using the SR mode. The pixel dwelling time is 1.16 µs.”

      Reviewer #2 (Recommendations For The Authors):

      We sincerely appreciate the reviewer's insightful, detailed, and constructive feedback. Your thoughtful comments have helped us refine our analyses, clarify key points, and strengthen the overall quality of our manuscript. We are grateful for the time and effort you have dedicated to reviewing our work and providing valuable suggestions. Your input has been instrumental in improving both the scientific rigor and presentation of our findings. Thank you for your thorough and thoughtful review.

      Minor points:

      (1) Equation 2: A should be in front of the ln2. It's already resolved in equation 3, so likely only needs changing in the text

      As suggested by the reviewer, we have changed it accordingly.

      (2) Line 152: Why is there a lack of experimental data? High ER background and low golgi signal make it difficult to select ministacks: would be good to see examples of these images. Is 0 a relevant timepoint as cargo is still at the ER? Instead would a timepoint <5' be better demonstrate initial arrival in fast cargo, and 0' discarded?

      We observed that RUSH reporters typically do not exit the ER in < 5 min of biotin treatment, resulting in a high ER background and low Golgi signal. Example images of SBP-GFP-CD59 are shown below (scale bar: 10 µm). Possible reasons include: 1) the time required for biotin diffusion into the ER, 2) the time needed to displace the RUSH hook from the RUSH reporter, and 3) the time for recruitment of RUSH reporters to ER exit sites. As a result, we could not obtain LQs for time points earlier than 5 min during the biotin chase.

      Author response image 1.

      Despite the challenge in measuring LQs at early time points, 0 is still a relevant time point. At t = 0 min, RUSH reporters should be at the ER membrane near the ER exit site, a definitive pre-Golgi location along the Golgi axis, although we still don’t have a good method to determine its LQ.

      (3) Table 1 Line 474: 1-3 independent replicates: is there a better way of incorporating this into the table to make it more streamlined? It would be useful to see each cargo as a mean with error. Is there a more demonstrative way to present the table, for example (but does not have to be) fastest cargo first (Tintra) as in Table 2?

      As suggested by the reviewer, we revised Table 1. We calculated the mean and SD of t<sub>intra</sub> and arranged our RUSH reporters in ascending order based on their t<sub>intra</sub> values.

      (4) Line 264 / Fig 3B: It's unclear to me why the VHH-anti-GFP-mCherry internalisation approach was used, when the cells were expressing GFP, that could be used for imaging. Also, this introduces a question over trafficking of the VHH itself, to access the same compartments as the GFP-proteins are localised. It would be useful to describe the choice of this approach briefly in the text.

      Here, the surface-labeling approach is used to investigate if GFP-Tac-TC possesses a Golgi retrieval pathway after its exocytosis to the plasma membrane. When VHH-anti-GFP-mCherry is added to the tissue culture medium, it binds to the cell surface-exposed GFP-fused MGAT1, MGAT2, Tac, Tac-TC, CD8a, and CD8a-TC. Next, VHH-anti-GFP-mCherry traces the internalized GFP-fused transmembrane proteins. The surface-labeling approach has two advantages in this case. 1) It is much more sensitive in revealing the minor number of GFPtransmembrane proteins at the plasma membrane and endosomes, which are usually drowned in the strong Golgi and ER background fluorescence in the GFP channel. 2) While the GFP fluorescence distribution has reached a dynamic equilibrium, the surface labeling approach can reveal the endocytic trafficking route and dynamics.

      As the reviewer suggested, we added the following sentence to describe the choice of the cellsurface labeling – “By binding to the cell surface-exposed GFP, VHH-anti-GFP-mCherry serves as a sensitive probe to track the endocytic trafficking itinerary of the above GFP-fused transmembrane proteins”. 

      Regarding the trafficking of VHH-anti-GFP-mCherry itself, in HeLa cells that do not express GFP-fused transmembrane proteins, VHH-anti-GFP-mCherry can be internalized by fluidphase endocytosis. However, the fluid-phase endocytosis is negligible under our experimental condition, as we previously demonstrated (Sun et al., JCS, 2021; PMID: 34533190).

      (5) 446 Typo "internalization"

      It has been corrected.

      Reviewer #3 (Recommendations For The Authors):

      Below are my recommendations for the authors to improve their manuscript:

      We sincerely appreciate the reviewer's insightful, detailed, and constructive feedback. Your thoughtful comments have helped us refine our analyses, clarify key points, and strengthen the overall quality of our manuscript. We are grateful for the time and effort you have dedicated to reviewing our work and providing valuable suggestions. Your input has been instrumental in improving both the scientific rigor and presentation of our findings. Thank you for your thorough and thoughtful review.

      (1) Line 48: Tie at al. 2016 is cited. Please add references to original work showing that cargos transit from cis to trans Golgi cisternae.

      After reviewing the literature, we identified two references that provide some of the earliest morphological evidence of secretory cargo transit from the cis- to the trans-Golgi:

      (1) Castle et al, JCB, 1972; PMID: 5025103

      (2) Bergmann and Singer, JCB, 1983; PMID: 6315743

      The first study utilized pulse-chase autoradiographic EM imaging to track secretory protein movement, while the second employed immuno-EM imaging to observe the synchronized release of VSVGtsO45. Accordingly, we have removed Tie et al., 2016 and replaced it with these newly identified references.

      (2) I would suggest to cite earlier (in the Introduction) the rapid partitioning and rim progression models.

      As suggested, we have moved the rapid partitioning and rim progression models to the Introduction section.

      (3) Figure 1: LQ vs. time plot for SBP-GFP-CD8a-furinAC (panel I, 0.9 to 1.75 in 150 min) is different from Fig 7G of Tie et al. 2016 (LQ O-1.5 in 100 min). Please comment on why those 2 sets of data are different.

      We appreciate the reviewer for pointing out this error. In our previous publication (Tie et al., MBoC, 2016), we presented a total of four datasets on SBP-GFP-CD8a-furin-AC. However, in the earlier version of our manuscript, we mistakenly listed only three datasets, inadvertently omitting Fig. 7G from Tie et al., MBoC, 2016.

      In the revised version, we have now included Fig. S2T (SBP-GFP-CD8a-furin-AC #4), which corresponds to Fig. 7G from Tie et al., MBoC, 2016.

      (4) As mentioned in the public review, I think measurement of the expression level of the cargos is necessary to compare their transport kinetics.

      The reviewer raises a valid concern that is challenging to address. All our data were obtained by imaging overexpressed reporters, and we assume that their overexpression does not significantly impact the Golgi or the secretory pathway. Our previous studies have demonstrated that overexpression does not substantially affect LQs (Figure S2 of Tie et al., MBoC, 2016, and Figure S1 of Tie et al., JCB, 2022).

      We acknowledge this concern as one of the limitations in our study at the end of our manuscript:

      “First, our approach relied on the overexpression of fluorescence protein-tagged cargos. The synchronized release of a large amount of cargo could significantly saturate and skew the intra-Golgi transport.” 

      (5) To my opinion, cisternal continuities would also affect retrograde transport (accelerate) (by diffusion for instance) and not only retrograde transport. Please comment on how this would affect intra-Golgi transport kinetics.

      We believe the reviewer is suggesting “cisternal continuities would also affect retrograde transport (accelerate) (by diffusion for instance) and not only anterograde transport.”

      Transient cisternal continuities have been reported to facilitate the anterograde transport of large quantities of secretory cargos (Beznoussenko et al., 2014; PMID: 24867214) (Marsh et al., 2004; PMID: 15064406) (Trucco et al., 2004; PMID: 15502824). However, we are not aware of any reports demonstrating that such continuities facilitate the retrograde transport of secretory cargo, although Trucco et al. (2004) speculated that Golgi enzymes might use these connections to diffuse bidirectionally (anterograde and retrograde direction). For this reason, we did not discuss this scenario in our manuscript.

      (6) Lines 188-190: I don't understand why the rapid partitioning model is excluded. Please detail more the arguments used for this statement.

      Below is the section from the Introduction that addresses the reviewer's question.

      “This model (rapid partitioning model) suggests that cargos rapidly diffuse throughout the Golgi stack, segregating into multiple post-translational processing and export domains, where cargos are packed into carriers bound for the plasma membrane. Nonetheless, synchronized traffic waves have been observed through various techniques, including EM (Trucco et al., 2004) and advanced light microscopy methods we developed, such as GLIM and side-averaging(Tie et al., 2016; Tie et al., 2022). These findings suggest that the rapid partitioning model might not accurately represent the true nature of the intra-Golgi transport.”

      (7) I would suggest replacing the 'Golgi residence time' by another name as it reflects mainly the time of Golgi exit if I am not mistaken.

      We believe the term “Golgi residence time” more accurately reflects the underlying mechanism – retention. The same approach to measure the Golgi residence time can also be applied to Golgi enzymes such as ST6GAL1. Its slow Golgi exit kinetics (t<sub>1/2</sub> = 5.3 hours) (Sun et al., JCS, 2021) should be primarily due to a strong Golgi retention at its steady state Golgi localization.

      In contrast, the conventional secretory cargos’ Golgi exit times are usually much shorter (t<sub>1/2</sub> < 20 min) (Table 2) due to weaker Golgi retention. In a broader sense, the Golgi exit kinetics of a secretory cargo should be influenced by its Golgi retention. Furthermore, we have consistently used the term “Golgi residence time” in our previous publications. So, we propose maintaining this terminology in the current manuscript.

      (8) Lines 300-306: I would suggest that the authors remove this part as it is highly speculative and not supported by data.

      We have relocated this discussion to the section titled "Our data supports the rim progression model, a modified version of the stable compartment model."

      Our enzyme matrix hypothesis offers a potential explanation for key observations, including the differential cisternal localization of small and large cargos and the interior localization of Golgi enzymes. Cryo-FIB-ET has shown that the interior of Golgi cisternae is enriched with densely packed Golgi enzymes (Engel et al., PNAS, 2015; PMID: 26311849), supporting this hypothesis.

      Additionally, this hypothesis helps explain the gradual reduction in intra-Golgi transport velocities of secretory cargos, as requested by Reviewer #1 (Minor Points 4). For these reasons, we propose retaining this discussion in the manuscript.

      (9) In Figure 3B, percentage of MGAT2-GFP cells with anti-GFP signal at the Golgi is of 41% while Sun et al. 2021 reported 25%, please comment this difference. Reply:

      We included more cells for the quantification. The percentage of cells showing Golgi localization of VHH-anti-GFP-mCherry is now 32% (n = 266 cells). The observed difference, 32% vs. 25% (Sun et al., JCS, 2021), is likely due to uncontrollable variations in experimental conditions, which might have influenced the endocytic Golgi targeting efficiency.

      (10) The effects of brefeldinA are pleiotropic as it disassembles COPI and clathrin coats but also induces tubulation of endosomes. I would recommend using Golgicide A, which is more specific.

      We agree with the reviewer that Golgicide A might be more specific as an inhibitor of Arf1. We will certainly consider using this inhibitor next time.

    1. The language was important invention

      Believes in the same type of religions and custums so that people that we ahvnet met are still recognizable wen we run into them it too thousands of years with the invention of art and language before you were talking you were making arting

      hi my name is Alan Kay and I like to apologize for having a bit of laryngitis just on the day of this shoot and I've been asked to talk about inventing the future and of course we mostly think of inventing in the realm of technology but I think most people watching this will have been struck by the fact that living in the 21st century in the United States is a vastly different experience than living a hundred thousand years ago anywhere in the world and as far as we know the brains that we have are roughly the same as those brains that belong to the very same species we are mostly lived in small groups of people hunting and gathering and falling in love and telling stories to each other and fighting other people taking revenge caring for the young and gradually building up a culture that they taught to the next generation in their tribe and the first great invention of human beings or of evolution was this idea of culture and it came from a slightly earlier invention of evolution which was language and there's a language that just as a few important ways more different than our primate ancestors and that was enough to be able to deal with sequences of things and portrayals of things and being able to make up things which we no other animals can do but be able to tell our made-up things to other people and get them to believe in it that started to allow us to aggregate together in larger than about a hundred people which is what we can deal with face to face so this notion of culture beliefs in the same kinds of religions beliefs in the same kinds of customs is something that can spread so that people we've never met are still recognizable when we finally do run into them so we can think about that as the first great inventing the future for Humanity and it took many tens of thousands of years with the invention art which may have always been with us in between before we started taking stock of the world around us and starting

    1. Author response:

      The following is the authors’ response to the current reviews.

      We wanted to clarify Reviewer #1’s latest comment in the last round of review, “Furthermore, the referee appreciates that the authors have echoed the concern regarding the limited statistical robustness of the observed scrambling events.” We appreciate the follow up information provided from Reviewer #1 that their comment is specifically about the low count alternative pathway events that we view at the dimer interface, and not the statistics of the manuscript overall as they believe that “the study presents a statistically rigorous analysis of lipid scrambling events across multiple structures and conformations (Reviewer #1)”. We agree with the Reviewer and acknowledge that overall our coarse-grained study represents the most comprehensive single manuscript of the entire TMEM16 family to date.


      The following is the authors’ response to the original reviews.

      Public Review:

      Reviewer #1 (Public review):

      Summary:

      The manuscript investigates lipid scrambling mechanisms across TMEM16 family members using coarse-grained molecular dynamics (MD) simulations. While the study presents a statistically rigorous analysis of lipid scrambling events across multiple structures and conformations, several critical issues undermine its novelty, impact, and alignment with experimental observations.

      Critical issues:

      (1) Lack of Novelty:

      The phenomenon of lipid scrambling via an open hydrophilic groove is already well-established in the literature, including through atomistic MD simulations. The authors themselves acknowledge this fact in their introduction and discussion. By employing coarse-grained simulations, the study essentially reiterates previously known findings with limited additional mechanistic insight. The repeated observation of scrambling occurring predominantly via the groove does not offer significant advancement beyond prior work.

      We agree with the reviewer’s statement regarding the lack of novelty when it comes to our observations of scrambling in the groove of open Ca2+-bound TMEM16 structures. However, we feel that the inclusion of closed structures in this study, which attempts to address the yet unanswered question of how scrambling by TMEM16s occurs in the absence of Ca2+, offers new observations for the field. In our study we specifically address to what extent the induced membrane deformation, which has been theorized to aid lipids cross the bilayer especially in the absence of Ca2+, contributes to the rate of scrambling (see references 36, 59, and 66). There are also several TMEM16F structures solved under activating conditions (bound to Ca2+ and in the presence of PIP2) which feature structural rearrangements to TM6 that may be indicative of an open state (PDB 6P48) and had not been tested in simulations. We show that these structures do not scramble and thereby present evidence against an out-of-the-groove scrambling mechanism for these states. Although we find a handful of examples of lipids being scrambled by Ca2+-free structures of TMEM16 scramblases, none of our simulations suggest that these events are related to the degree of deformation.

      (2) Redundancy Across Systems:

      The manuscript explores multiple TMEM16 family members in activating and non-activating conformations, but the conclusions remain largely confirmatory. The extensive dataset generated through coarse-grained MD simulations primarily reinforces established mechanistic models rather than uncovering fundamentally new insights. The effort, while statistically robust, feels excessive given the incremental nature of the findings.

      Again, we agree with the reviewer’s statement that our results largely confirm those published by other groups and our own. We think there is however value in comparing the scrambling competence of these TMEM16 structures in a consistent manner in a single study to reduce inconsistencies that may be introduced by different simulation methods, parameters, environmental variables such as lipid composition as used in other published works of single family members. The consistency across our simulations and high number of observed scrambling events have allowed us to confirm that the mechanism of scrambling is shared by multiple family members and relies most obviously on groove dilation.

      (3) Discrepancy with Experimental Observations:

      The use of coarse-grained simulations introduces inherent limitations in accurately representing lipid scrambling dynamics at the atomistic level. Experimental studies have highlighted nuances in lipid permeation that are not fully captured by coarse-grained models. This discrepancy raises questions about the biological relevance of the reported scrambling events, especially those occurring outside the canonical groove.

      We thank the reviewer for bringing up the possible inaccuracies introduced by coarse graining our simulations. This is also a concern for us, and we address this issue extensively in our discussion. As the reviewer pointed out above, our CG simulations have largely confirmed existing evidence in the field which we think speaks well to the transferability of observations from atomistic simulations to the coarse-grained level of detail. We have made both qualitative and quantitative comparisons between atomistic and coarse-grained simulations of nhTMEM16 and TMEM16F (Figure 1, Figure 4-figure supplement 1, Figure 4-figure supplement 5) showing the two methods give similar answers for where lipids interact with the protein, including outside of the canonical groove. We do not dispute the possible discrepancy between our simulations and experiment, but our goal is to share new nuanced ideas for the predicted TMEM16 scrambling mechanism that we hope will be tested by future experimental studies.

      (4) Alternative Scrambling Sites:

      The manuscript reports scrambling events at the dimer-dimer interface as a novel mechanism. While this observation is intriguing, it is not explored in sufficient detail to establish its functional significance. Furthermore, the low frequency of these events (relative to groove-mediated scrambling) suggests they may be artifacts of the simulation model rather than biologically meaningful pathways.

      We agree with the reviewer that our observed number of scrambling events in the dimer interface is too low to present it as strong evidence for it being the alternative mechanism for Ca2+-independent scrambling. This will require additional experiments and computational studies which we plan to do in future research. However, we are less certain that these are artifacts of the coarse-grained simulation system as we observed a similar event in an atomistic simulation of TMEM16F.

      Conclusion:

      Overall, while the study is technically sound and presents a large dataset of lipid scrambling events across multiple TMEM16 structures, it falls short in terms of novelty and mechanistic advancement. The findings are largely confirmatory and do not bridge the gap between coarse-grained simulations and experimental observations. Future efforts should focus on resolving these limitations, possibly through atomistic simulations or experimental validation of the alternative scrambling pathways.

      Reviewer #2 (Public review):

      Summary:

      Stephens et al. present a comprehensive study of TMEM16-members via coarse-grained MD simulations (CGMD). They particularly focus on the scramblase ability of these proteins and aim to characterize the "energetics of scrambling". Through their simulations, the authors interestingly relate protein conformational states to the membrane's thickness and link those to the scrambling ability of TMEM members, measured as the trespassing tendency of lipids across leaflets. They validate their simulation with a direct qualitative comparison with Cryo-EM maps.

      Strengths:

      The study demonstrates an efficient use of CGMD simulations to explore lipid scrambling across various TMEM16 family members. By leveraging this approach, the authors are able to bypass some of the sampling limitations inherent in all-atom simulations, providing a more comprehensive and high-throughput analysis of lipid scrambling. Their comparison of different protein conformations, including open and closed groove states, presents a detailed exploration of how structural features influence scrambling activity, adding significant value to the field. A key contribution of this study is the finding that groove dilation plays a central role in lipid scrambling. The authors observe that for scrambling-competent TMEM16 structures, there is substantial membrane thinning and groove widening. The open Ca2+-bound nhTMEM16 structure (PDB ID 4WIS) was identified as the fastest scrambler in their simulations, with scrambling rates as high as 24.4 {plus minus} 5.2 events per μs. This structure also shows significant membrane thinning (up to 18 Å), which supports the hypothesis that groove dilation lowers the energetic barrier for lipid translocation, facilitating scrambling.

      The study also establishes a correlation between structural features and scrambling competence, though analyses often lack statistical robustness and quantitative comparisons. The simulations differentiate between open and closed conformations of TMEM16 structures, with open-groove structures exhibiting increased scrambling activity, while closed-groove structures do not. This finding aligns with previous research suggesting that the structural dynamics of the groove are critical for scrambling. Furthermore, the authors explore how the physical dimensions of the groove qualitatively correlate with observed scrambling rates. For example, TMEM16K induces increased membrane thinning in its open form, suggesting that membrane properties, along with structural features, play a role in modulating scrambling activity.

      Another significant finding is the concept of "out-of-the-groove" scrambling, where lipid translocation occurs outside the protein's groove. This observation introduces the possibility of alternate scrambling mechanisms that do not follow the traditional "credit-card model" of groove-mediated lipid scrambling. In their simulations, the authors note that these out-of-the-groove events predominantly occur at the dimer interface between TM3 and TM10, especially in mammalian TMEM16 structures. While these events were not observed in fungal TMEM16s, they may provide insight into Ca2+-independent scrambling mechanisms, as they do not require groove opening.

      Weaknesses:

      A significant challenge of the study is the discrepancy between the scrambling rates observed in CGMD simulations and those reported experimentally. Despite the authors' claim that the rates are in line experimentally, the observed differences can mean large energetic discrepancies in describing scrambling (larger than 1kT barrier in reality). For instance, the authors report scrambling rates of 10.7 events per μs for TMEM16F and 24.4 events per μs for nhTMEM16, which are several orders of magnitude faster than experimental rates. While the authors suggest that this discrepancy could be due to the Martini 3 force field's faster diffusion dynamics, this explanation does not fully account for the large difference in rates. A more thorough discussion on how the choice of force field and simulation parameters influence the results, and how these discrepancies can be reconciled with experimental data, would strengthen the conclusions. Likewise, rate calculations in the study are based on 10 μs simulations, while experimental scrambling rates occur over seconds. This timescale discrepancy limits the study's accuracy, as the simulations may not capture rare or slow scrambling events that are observed experimentally and therefore might underestimate the kinetics of scrambling. It's however important to recognize that it's hard (borderline unachievable) to pinpoint reasonable kinetics for systems like this using the currently available computational power and force field accuracy. The faster diffusion in simulations may lead to overestimated scrambling rates, making the simulation results less comparable to real-world observations. Thus, I would therefore read the findings qualitatively rather than quantitatively. An interesting observation is the asymmetry observed in the scrambling rates of the two monomers. Since MARTINI is known to be limited in correctly sampling protein dynamics, the authors - in order to preserve the fold - have applied a strong (500 kJ mol-1 nm-2) elastic network. However, I am wondering how the ENM applies across the dimer and if any asymmetry can be noticed in the application of restraints for each monomer and at the dimer interface. How can this have potentially biased the asymmetry in the scrambling rates observed between the monomers? Is this artificially obtained from restraining the initial structure, or is the asymmetry somehow gatekeeping the scrambling mechanism to occur majorly across a single monomer? Answering this question would have far-reaching implications to better describe the mechanism of scrambling.

      The main aim of our computational survey was to directly compare all relevant published TMEM16 structures in both open and closed states using the Martini 3 CGMD force field. Our standardized simulation and analysis protocol allowed us to quantitatively compare scrambling rates across the TMEM16 family, something that has never been done before. We do acknowledge that direct comparison between simulated versus experimental scrambling rates is complicated and is best to be interpreted qualitatively. In line with other reports (e.g., Li et al, PNAS 2024), lipid scrambling in CGMD is 2-3 orders of magnitude faster than typical experimental findings. In the CG simulation field, these increased dynamics due to the smoother energy landscape are a well known phenomenon. In our view, this is a valuable trade-off for being able to capture statistically robust scrambling dynamics and gain mechanistic understanding in the first place, since these are currently challenging to obtain otherwise. For example, with all-atom MD it would have been near-impossible to conclude that groove openness and high scrambling rates are closely related, simply because one would only measure a handful of scrambling events in (at most) a handful of structures.

      Considering the elastic network: the reviewer is correct in that the elastic network restrains the overall structure to the experimental conformation. This is necessary because the Martini 3 force field does not accurately model changes in secondary (and tertiary) structure. In fact, by retaining the structural information from the experimental structures, we argue that the elastic network helped us arrive at the conclusion that groove openness is the major contributing factor in determining a protein’s scrambling rate. This is best exemplified by the asymmetric X-ray structure of TMEM16K (5OC9), in which the groove of one subunit is more dilated than the other. In our simulation, this information was stored in the elastic network, yielding a 4x higher rate in the open groove than in the closed groove, within the same trajectory.

      Notably, the manuscript does not explore the impact of membrane composition on scrambling rates. While the authors use a specific lipid composition (DOPC) in their simulations, they acknowledge that membrane composition can influence scrambling activity. However, the study does not explore how different lipids or membrane environments or varying membrane curvature and tension, could alter scrambling behaviour. I appreciate that this might have been beyond the scope of this particular paper and the authors plan to further chase these questions, as this work sets a strong protocol for this study. Contextualizing scrambling in the context of membrane composition is particularly relevant since the authors note that TMEM16K's scrambling rate increases tenfold in thinner membranes, suggesting that lipid-specific or membrane-thickness-dependent effects could play a role.

      Considering different membrane compositions: for this study, we chose to keep the membranes as simple as possible. We opted for pure DOPC membranes, because it has (1) negligible intrinsic curvature, (2) forms fluid membranes, and (3) was used previously by others (Li et al, PNAS 2024). As mentioned by the reviewer, we believe our current study defines a good, standardized protocol and solid baseline for future efforts looking into the additional effects of membrane composition, tension, and curvature that could all affect TMEM16-mediated lipid scrambling.

      Reviewer #3 (Public review):

      Strengths:

      The strength of this study emerges from a comparative analysis of multiple structural starting points and understanding global/local motions of the protein with respect to lipid movement. Although the protein is well-studied, both experimentally and computationally, the understanding of conformational events in different family members, especially membrane thickness less compared to fungal scramblases offers good insights.

      We appreciate the reviewer recognizing the value of the comparative study. In addition to valuable insights from previous experimental and computational work, we hope to put forward a unifying framework that highlights various TMEM16 structural features and membrane properties that underlie scrambling function.

      Weaknesses:

      The weakness of the work is to fully reconcile with experimental evidence of Ca²⁺-independent scrambling rates observed in prior studies, but this part is also challenging using coarse-grain molecular simulations. Previous reports have identified lipid crossing, packing defects, and other associated events, so it is difficult to place this paper in that context. However, the absence of validation leaves certain claims, like alternative scrambling pathways, speculative.

      Answer: It is generally difficult to quantitatively compare bulk measurements of scrambling phenomena with simulation results. The advantage of simulations is to directly observe the transient scrambling events at a spatial and temporal resolution that is currently unattainable for experiments. The current experimental evidence for the precise mechanism of Ca2+-independent scrambling is still under debate. We therefore hope to leverage the strength of MD and statistical rigor of coarse-grained simulations to generate testable hypotheses for further structural, biochemical, and computational studies.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      The findings are largely confirmatory and do not bridge the gap between coarse-grained simulations and experimental observations. Future efforts should focus on resolving these limitations, possibly through atomistic simulations or experimental validation of the alternative scrambling pathways.

      While we agree with what the reviewer may be hinting at regarding limitations of coarse-grained MD simulations, we believe that our study holds much more merit than this comment suggests. We have provided something that has yet to be done in the field: a comprehensive study that directly compares the scrambling rates of multiple TMEM16 family members in different conformations using identical simulation conditions. Our work clearly shows that a sufficiently dilated grooves is the major structural feature that enables robust scrambling for all TMEM16 scramblases members with solved structures. While all TMEM16s cause significant distortion and thinning of the membrane, we assert that the extreme thinning observed around open grooves is significantly enhanced by the lipid scrambling itself as the two leaflets merge through lipid exchange.  We saw no evidence that membrane thinning/distortion alone, in the absence of an open groove, could support scrambling at the rates observed under activating conditions or even the low rates observed in Ca2+-independent scrambling. Moreover, our handful of observations of scrambling events outside of the groove, which has not yet been reported in any study, opens an exciting new direction for studying alternative scrambling mechanisms. That said, we are currently following up on many of the observations reported here such as: scrambling events outside the groove, the kinetics of scrambling, the possibility that lipids line the groove of non-scramblers like TMEM16A, etc. This is being done experimentally with our collaborators through site directed mutagenesis and with all-atom MD in our lab. Unfortunately, it is well beyond the scope of the current study to include all of this in the current paper.

      Reviewer #2 (Recommendations for the authors):

      Major comments and questions:

      (1) Line 214 and Figure 1- Figure Supplement 1: why have you only compared the final frame of the trajectory to the cryo-EM structure? Even if these comparisons are qualitative, they should be representative of the entire trajectory, not a single frame.

      We thank the reviewer for this suggestion and replaced the single-frame snapshots in Figure 1-figure supplement 1 for ensemble-averaged head groups densities. The overall agreement between membrane shapes in CGMD and cryo-EM was not affected by this change.

      (2) Lines 228-231: You comment 'Residues in this site on nhTMEM16 and TMEMF also seem to play a role in scrambling but the mechanism by which they do so is unclear.' This is something you could attempt to quantify in the simulations by calculating the correlation between scrambling and protein-membrane interactions/contacts in this site. Can you speculate on a mechanism that might be a contributing factor?

      We probed the correlation between these residues and scrambling lipids, as suggested by the reviewer, and interestingly not all scrambling lipids interact with these residues. Yet there is strong lipid density in this vicinity (see insets in Figure 1 and Figure 4-figure supplement 2). These observations lead us to suspect these residues impact scrambling indirectly through influencing the conformation of the protein or flexibility and shape of the membrane. This interpretation fits with mutagenesis studies highlighting a role for these residues in scrambling (see refs 59, 62, and 67). Specifically, Falzone et al. 2022 (ref 59) suggested that they may thin the membrane near the groove, but this has not been tested via structure determination and a detailed model of how they impact scrambling is missing. We could address this question with in silico mutations; however, CG simulation is not an appropriate method to study large scale protein dynamics, and AA simulations are likely best, but beyond the scope of this paper.

      (3) Lines 240-245 and Figure 1B: This section discusses the coupling between membrane distortions and the sinusoidal curve around the protein, however, Figure 1B only shows snapshots of the membrane distortions. Is it possible to understand how these two collective variables are correlated quantitatively (as opposed to the current qualitative analysis)?

      We believe that it may be possible to quantitatively capture these two key features of the membrane, as we did previously with nhTMEM16 using our continuum elasticity-based model of the membrane (Bethel and Grabe 2016). Our model agreed with all atom MD surfaces to within ~1 Å, hence showing good quantitative agreement throughout the entire membrane. However, we doubt that we could distill the essence of our model down to a simple functional relationship between the sinusoidal wave and pinching, which we think the reviewer is asking. Rather, we believe that the large-scale sinusoidal distortion (collective variable 1) and pinching/distortion (collective variable 2) near the groove arise from the interplay of the specific protein surface chemistry for each protein (patterning of polar and non-polar residues) and the membrane. This is why we chose to simply report the distinct patterns that the family members impose on the surrounding membrane, which we think is fascinating. Specifically, Fig. 1B shows that different TMEM16 family members distort the membrane in different ways. Most notably, fungal TMEM16s feature a more pronounced sinusoidal deformation, whereas the mammalian members primarily produce local pinching. Then, in Fig. 3A we show that the thinning at the groove happens in all structures and is more pronounced in open, scrambling-competent conformations. In other words, proteins can show very strong thinning (e.g. TMEM16K, 5OC9) even though the membrane generally remains flat.

      (4) Lines 257-258: Authors comment that TMEM16A lacks scramblase activity yet can achieve a fully lipid-lined groove (note the typo - should be lipid-lined, not lipid-line). Is a fully lipid-lined groove a prerequisite for scramblase activity? Are lipid-lined grooves the only requirement for scramblase activity? Could the authors clarify exactly what the prerequisite for scramblase activity is to avoid any confusion; this will be useful for later descriptions (i.e. line 295) where scrambling competence is again referred to. Additionally, the associated figure panel (Figure 1D) shows a snapshot of this finding but lacks any statistical quantifications - is a fully lipid-lined groove a single event? Perhaps the additional analyses, such as the groove-lipid contacts, may be useful here.

      The definition of lipid scrambling is that a lipid fully transitions from one membrane leaflet to the other. While a single lipid could transition through the groove on its own, it is well documented in both atomistic and CG MD simulations, that lipid scrambling typically happens through a lipid-lined groove, as shown in Fig. 1A-B. The lipids tend to form strong choline-to-phosphate interactions with nearest neighbors that make this energetically favorable. That said, lipid-lined grooves are not sufficient for robust scrambling, which is what we show in Fig. 1D where the non-scrambler TMEM16A did in fact feature a lipid-lined groove. As suggested, we performed contact analysis and found that residue K645 on TM6 in the middle of the groove contacts lipids in 9.2% of the simulation frames.

      To get a better understanding of how populated the TM4-TM6 pathway is with lipids across all simulated structures, we determined for every simulation frame how many headgroup beads resided in the groove. This indicates that the ion-conductive state of TMEM16A (5OYB*, Fig. 1D) only had 1 lipid in the pathway, on average, meaning that the configuration shown Fig. 1D is indeed exceptional. As a reference, our strongest scrambler nhTMEM16 4WIS, had an average of 2.8 lipids in the groove. We added a table containing the means and standard deviations that resulted from this analysis as Figure 1-Table supplement 1.

      (5) Lines 295-298 : The scrambling rates of the Ca²⁺-bound and Ca²⁺-free structures fall within overlapping error margins, it becomes difficult to definitively state that Ca²⁺ binding significantly enhances scrambling activity. This undermines the claim that the Ca²⁺-bound structure is the strongest scrambler. The authors should conduct statistical analyses to determine if the difference between the two conditions is statistically significant.

      In contrast to the reviewer’s comment, we do not claim that Ca2+-binding itself enhances lipid scrambling. Instead, what we show is that WT structures that are solved in an open confirmation (all of which are Ca2+-bound, except 6QM6) are robust scramblers. For nhTMEM16, we did not observe any scrambling events for the closed-groove proteins, making further statistical analysis redundant.

      (6) The authors claim that the scrambling rates derived from their MD simulations are in "excellent agreement" with experimental findings (lines 294-295), despite significant discrepancy between simulated and experimentally measured rates. For example, the simulated rate of 24.4 {plus minus} 5.2 events/µs for the open, Ca²⁺-bound fungal nhTMEM16 (PDB ID 4WIS) corresponds to approximately 24 million events per second, which is vastly higher than experimental rates. Experimental studies have reported scrambling rate constants of ~0.003 s⁻¹ for TMEM16 family members in the absence of Ca²⁺, measured under physiological conditions (https://doi.org/10.1038/s41467-019-11753-1 ). Even with Ca²⁺ activation, scrambling rates remain several orders of magnitude lower than the rates observed in simulations. Moreover, this highlights a larger problem: lipid scrambling rates occur over timescales that are not captured by these simulations. While the authors elude to these discrepancies (lines 605-606), they should be emphasised in the text, as opposed to the table caption. These should also be reconducted to differences between the membrane compositions of different studies.

      We agree with the spirit of the reviewer’s comment, and because of that, we were very careful not to claim that we reproduce experimental scrambling rates, just that the trends (scrambling-competent, or not) are correct. On lines 294-295, we actually said that the scrambling rates in our simulations excellently agree with “the presumed scrambling competence of each experimental structure”, which is true. 

      As explained extensively in the discussion section of our paper (and by many others), direct comparison between MD (e.g., Martini 3, but also atomistic force fields) dynamics and experimental measurements is challenging. The primary goal of our paper is to quantify and compare the scrambling capacity of different TMEM16 family members and different states, within a CGMD context.

      That said, we agree with the reviewer that we may have missed rare or long-timescale events (as is the case in any MD experiment) and added this point to the discussion.

      (7) To address these discrepancies, the authors should: i) emphasize that simulated rates serve as qualitative indicators of scrambling competence rather than absolute values comparable to experimental findings and ii) discuss potential reasons for the divergence, such as simulation timescale limitations or lipid bilayer compositions that may favor scrambling and force field inaccuracies.

      Please see our answer to question 6. Within the context of our CGMD survey, we confidently call our results quantitative. However, we agree with the reviewer that comparison with experimental scrambling rates is qualitative and should be interpreted with caution. To reflect this, we rewrote the first sentence of the relevant paragraph in the discussion section.

      (8) Line 310: Can the authors provide a rationale as to why one monomer has a wider groove than the other? Perhaps a contact analysis could be useful. See the comment above about ENM.

      The simulation of Ca2+-bound TMEM16K was initiated from an asymmetric X-ray structure in which chain B features a more dilated groove than chain A (PDB 5OC9). The backbones of TM4 and TM6 in the closed groove (A) are close enough together to be directly interconnected by the elastic network. In contrast, TM4 and TM6 in the more dilated subunit (B) are not restricted by the elastic network and, as a consequence, display some “breathing” behavior (Fig. 3B and Fig. 3-Suppl. 6A), giving rise to a ~4x higher scrambling rate. We explicitly added the word “cryo-EM” and the PDB ID to the sentence to emphasize that the asymmetry stems from the original experimental structure.

      When answering this question, we also corrected a mislabeled chain identifier which was in the original manuscript ‘chain A’ when it is actually ‘chain B’ in Fig.2-Suppl. 3A.

      (9) Line 312: Authors speculate that increased groove width likely accounts for increased scrambling rates. For statistical significance, authors should attempt to correlate scrambling rates and groove width over the simulation period.

      The Reviewer is referring to our description of scrambling rates we measured for TMEM16K where we noted that on average the groove with the highest scrambling rate is also on average wider than the opposite subunit which is below 6 Å. We do not suggest that the correlation between scrambling and groove width is continuous, as the Reviewer may have interpreted from our original submission, but we think it is a binary outcome – lipids cannot easily enter narrow grooves (< 6 Å) and hence scrambling can only occur once this threshold is reached at which point it occurs at a near constant rate. We showed this for 4 different family members in the original Fig. 3B, where scrambling events (black dots) were much more likely during, or right after, groove dilation to distances > 6 Å. 

      (10) Line 359: Authors have plotted the minimum distance between residues TM4 and TM6 in Fig. 3A/B, claiming that a wide groove is required for scrambling. Upon closer examination, it is clear that several of these distributions overlap, reducing the statistical significance of these claims. Statistical tests (i.e. KS-tests) should be performed to determine whether the differences in distributions are significant.

      The Reviewer appears to be asking for a statistical test between the six distance distributions represented by the data in Fig. 3A for the scrambling competent structures (6QP6*, 8B8J, 6QM6, 7RXG, 4WIS, 5OC9), and we think this is being asked because it is believed that we are making a claim that the greater the distance, the greater the scrambling rate. If we have interpreted this comment correctly, we are not making this claim. Rather, we are simply stating that we only observe robust scrambling when the groove width regularly separates beyond 6 Å. The full distance distributions can now be found in Figure 3-figure supplement 6B, and we agree there is significant overlap between some of these distributions. However, the distinguishing characteristic of the 6 distributions from scrambling competent proteins is that they all access large distances, while the others do not. Notably, TMEM16F proteins (6QP6*, 8B8J) are below the 6 Å threshold on average, but they have wide standard deviations and spend well over ¼ of their time in the permissive regime (the upper error bar in the whisker plots in Fig. 3A is the 75% boundary).

      (11) Line 363-364: The authors state that all TMEM16 structures thin the membrane. Could the authors include a description of how membrane thinning is calculated, for instance, is the entire membrane considered, or is thinning calculated on a membrane patch close to the protein? Do membrane patches closer to the transmembrane protein increase or decrease thickness due to hydrophobic packing interactions? The latter question is of particular concern since Martini3 has been shown to induce local thinning of the membrane close to transmembrane helices, yielding thicknesses 2-3 Å thinner than those reported experimentally (https://doi.org/10.1016/j.cplett.2023.140436). This could be an important consideration in the authors' comparison to the bulk membrane thickness (line 364). Finally, how is the 'bulk membrane thickness' measured (i.e., from the CG simulations, from AA simulations, or from experiments)?

      Regarding the calculation of thinning and bulk membrane thickness, as described in Method “Quantification of membrane deformations”, the minimal membrane thickness, or thinning, is defined as the shortest distance between any two points from the interpolated upper and lower leaflet surfaces constructed using the glycerol beads (GL1 and GL2). Bulk membrane thickness is calculated by taking the vertical distance between the averaged glycerol surfaces at the membrane edge.

      The concern of localized membrane deformation due to force field artifacts is well-founded. However, the sinusoidal deformations shown here are much greater than 2-3 Å Martini3 imperfections, and they extend for up to 10 Å radially away from the protein into the bulk membrane (see Figure 3-figure supplement 1-5 for more of a description). Most importantly, the sinusoidal wave patterns set up by the proteins is very similar to those described in the previous continuum calculation and all-atom MD for nhTMEM16 (https://www.pnas.org/doi/full/10.1073/pnas.1607574113).

      (12) Line 374: The authors state a 'positive correlation' between membrane thinning/groove opening and scrambling rates. To support this claim, the authors should report. the correlation coefficients.

      We have removed any discussion concerning correlations between the magnitude of the scrambling rate and the degree of membrane thinning/groove opening. Rather we simply state that opening beyond a threshold distance is required for robust scrambling, as shown in our analysis in Fig. 3A.

      Concerning the relation between thinning and scrambling: Instantaneous membrane thinning is poorly defined (because it is governed by fluctuations of single lipids), and therefore difficult to correlate with the timing of individual scrambling events in a meaningful way.  Moreover, as we state later in that same section, “we argue that the extremely thin membranes are likely correlated with groove opening, rather than being an independent contributing factor to lipid scrambling”.

      (13) Line 396: It is stated that TMEM16A is not a scramblase but the simulating scrambling activity is not zero. How can you be sure that you are monitoring the correct collective variable if you are getting a false positive with respect to experiments?

      We only observe 2 scrambling events in 10 ms, which is a very small rate compared to the scrambling competent states. In a previous large survey Martini CG simulation study that inspired our protocol (Li et al, PNAS 2024), they employed a 1 event/ms cut-off to distinguish scramblers from non-scramblers. Hence, they would have called TMEM16A a non-scrambler as well. We expect that false negatives in this context might be an artifact of the CG forcefield, or it could be that TMEM16A can scramble but too slowly to be experimentally detected. Regarding the collective variable for lipid flipping, it is correct, and we know that this lipid actually flipped.

      (14) Line 402: Distance distributions for the electrostatic interactions between E633 and K645 should be included in the manuscript. This is also the case for the interactions between E843-K850 (lines 491-492).

      Our description of interactions between lipid headgroups and E633 and K645 in TMEM16A (5OYB*) are based on qualitative observations of the MD trajectory, and we highlight an example of this interaction in Figure 3-video 4. The video clearly shows that the lipid headgroups in the center of the groove orient themselves such that the phosphate bead (red) rests just above K645 (blue) and at other times the choline bead (blue) rests just below E633 (red). We do not think an additional plot with the distance distributions between lipids and these residues will add to our understanding of how lipids interact residues in the TMEM16A pore.

      We made a similar qualitative observation for the interaction between the POPC choline to E843 and POPC phosphate to K850 while watching the AAMD simulation trajectory of TMEM16F (PDB ID 6QP6). Given that this was a single observation, and the same interactions does not appear in CG simulation of the same structure (see simulation snapshots in Figure 4-figure supplement 5) we do not think additional analysis would add significantly to our understanding of which residues may stabilize lipids in the dimer interface.

      (15) Lines 450-451: 'As the groove opens, water is exposed to the membrane core and lipid headgroups insert themselves into the water-filled groove to bridge the leaflets.' Is this a qualitative observation? Could the authors report the correlation between groove dilation and the number of water permeation events?

      Yes, this is qualitative, and it sketches the order of events during scrambling, and we revised the main text starting at line 450 to indicate this. As illustrated by the density isosurfaces in Appendix 1-Figure 2A, the amount of water found in the closed versus open grooves is striking – there is a significant flood of water that connects the upper and lower solutions upon groove opening. Moreover, Appendix 1-Figure 2B shows much greater water permeation for open structures (4WIS, 7RXG, 5OC9, 8B8J, …) compared to closed structures (6QMB, 6QMA, 8B8Q, and many of the non-labeled data in the figure that all have closed grooves and near 0 water permeation). A notable exception is TMEM16A (7ZK3*8), which has water permeation but a closed groove and little-to-no lipid scrambling.

      Minor Comments:

      (1) Inconsistent use of '10' and 'ten' throughout.

      We like to kindly point out that we do not find examples of inconsistent use.

      (2) Line 32: 'TM6 along with 3, 4 and 5...' should be 'TM6 along with TM3, TM4 and TM5...'. Same in line 142. Naming should stay consistent.

      Changes are reflected in the updated manuscript.

      (3) Line 141: do you mean traverse (i.e. to travel across)? Or transverse (i.e. to extend across the membrane)?

      This is a typo. We meant “traverse”. Thanks for pointing it out.

      (4) Line 142: 'greasy' should be 'strongly hydrophobic'.

      Changes are reflected in the updated manuscript.

      (5) Line 143-144: "credit card mechanism" requires quotation marks.

      Changes are reflected in the updated manuscript.

      (6) Line 144: state if Nectria haematococca is mammalian or fungal, this is not obvious for all readers.

      Changes are reflected in the updated manuscript.

      (7) Line 147-148: Is TMEM16A/TMEM16K fungal or mammalian? What was the residue before the mutation and which residue is mutated? Perhaps the nomenclature should read as TMEM16X10Y where X=the residue prior to the mutation, 10 is a placeholder for the residue number that is mutated and Y=the new residue following mutation.

      “TMEM16” is the protein family. “A” denotes the specific homolog rather than residue.  

      (8) Lines 157-158: same as 10, it is unclear if these are fungal or mammalian.

      Clarifications added.

      (9) Line 184: "...CGMD simulation" should be "...CGMD simulations".

      Changes made.

      (10) Line 191-192: It would help to create a table of all of the mutants (including if they are mammalian or fungal) summarizing the salt concentrations, lipid and detergent environments, the presence of modulators/activators, etc.

      We added this information to Appendix 1-Table 1 in the supplemental information. We did not specify NaCl concentrations, because they all experimental procedures used standard physiological values for this (100-150 mM).

      (11) Line 210: inconsistencies with 'CG' and 'coarse-grain'.

      Changes made.

      (12) Figure 1 caption: '...totaling ~2μs (B)...' is missing the fullstop after 2μs.

      Changes made.

      (13) Figure 1B: it may be useful to label where the Ca2+ ion binds or include a schematic.

      We updated Fig. 1A to illustrate where Ca2+ binds.

      (14) Line 311: Are these mean distances? The authors should add standard deviations.

      Yes, they are. We added the standard deviations to the text.

      (15) Line 321-322: Perhaps a schematic in Figure 2 would be useful to visualize the structural features described here.

      We would kindly refer interested readers to reference [60].

      (16) Line 377: '...are likely a correlate of groove opening...' should read as: '...are likely correlated to groove opening...'.

      Thank you for pointing it out. Changes made.

      (17) Line 398: the '...empirically determined 6Å threshold for scrambling.' Was this determined from the simulations or from experiments? What does "empirically" mean here? Please state this.

      This value was determined from the simulations. Based on our analysis of the correlation between scrambling rate and groove dilation, we found that the minimal TM4/6 distance of 6 Å can distinguish between the high and low activity scramblers. The exact numerical value is somewhat arbitrary as there is a range of values around 6 Å that serve to distinguish scramblers from non-scramblers.

      (18) Figure 4: This figure should be labelled as A, B, C and D, with the figure caption updated accordingly.

      We updated Figure 4 and its caption.

      Reviewer #3 (Recommendations for Authors):

      The authors must do additional simulations to further validate their claim with different lipids and further substantiate dimer interface independent of Ca2+ ions.

      Thank you for the suggestion. We completely agree that studying scrambling in the context of a diverse lipid environment is an exciting area to explore. We are indeed actively working on a project that shares the similar idea. We decided not to include that study because we think the additional discussion involved would be excessive for the current manuscript. We, however, look forward to publishing our findings in a separate manuscript in the near future. In terms of Ca2+-independent scrambling, we are planning with our experimental collaborator for mutagenesis studies that target the residues we identified along the dimer interface.

      Since calcium ions are critical for the stability of these structures, authors should show that they were placed throughout the simulations consistently.

      As stated in the method section “Coarse-grained system preparation and simulation detail”, all Ca2+ ions are manually placed into the coarse-grained structure from the beginning of the simulation at their identical corresponding position in the experimental structure and harmonically bonded to adjacent acidic residues throughout the duration of simulation. We have also added a label to Fig 1A to indicate where the two Ca2+ ions are located.

      The comparison with experimental structures should be consistent with complete simulation, and not the last structure of the trajectory. Depending on the conformational variability, this might be misleading.

      We agree and updated Fig. 1-supplement figure 1 accordingly. The overall agreement between membrane shapes in CGMD and cryo-EM was not affected by this change.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer 1 (Public review):

      (1) The authors state that they have reclassified the allelic expression status of 32 genes (shown in Table S5, Supplementary Figure 3). The concern is the source of the tissue or cell line which was originally used to make the classification of XCI status, and whether the comparisons are equivalent. For example, if cell lines (and not tissues) were used to define the XCI status for EGFL6, TSPAN6, and CXorf38, then how can the authors be sure that the escape status in whole tissues would be the same? Also, along these lines, the authors should consider whether escape status in previous studies using immortalized/cancer cell lines (such as the meta-analyses done in Balaton publication) would be different compared to healthy tissues (seems like it should be). Therefore, making comparisons between healthy whole tissues and cancer cell lines doesn't make sense.

      Indeed, many previous classifications were based on clonal cell lines, which could result in atypical patterns of escape due to the profound and varied effects of adaptation to culture. However, one of the primary goals of our study was to directly determine allele-specific expression from the X-chromosome in healthy primary tissues, in part to exclude the potential confounding effects of cell culture. 

      Whereas we do perform comparisons with cell culture-based classifications, we also provide detailed comparisons with the previous classification of Tukiainen et al, which also uses primary human tissues. In addition, whereas the comparison with Balaton et al is not optimal, we hold that it is valuable as it reveals which genes may exhibit aberrant escape patterns in culture. Finally, despite the above reservations, our comparison revealed an over-whelming agreement with previous research which suggests that in the vast majority of cases, escape appears to be correctly maintained in culture. 

      (2) The authors note that skewed XCI is prevalent in the human population, and cite some publications (references 8, 10-12). If RNAseq data is available from these female individuals with skewed XCI (such as ref 12), the authors should consider using their allelic expression pipeline to identify XCI status of more X-linked genes.

      Indeed, we completely agree and are in the process of obtaining this data which has proven complex and time-consuming in the currently regulatory environment.

      (3) It has been well established that the human inactive X has more XCI escape genes compared to the mouse inactive X. In light of the author's observations across human tissues, how does the XCI status compare with the same tissues in mice?

      This is a very interesting point, and a comparison we are currently working on. However, this is a major undertaking and one that is outside of the scope of this study. We do appreciate the differences in mice and humans on X-chromosome level and could only speculate on the overlap being relatively small as the number of escapees in mice has been shown the be far lower than in humans.

      Reviewer 2 (Public review):

      In my view there are only minor weaknesses in this work, that tend to come about due to the requirement to study individuals with highly skewed X inactivation. I wonder whether the cause of the highly skewed X inactivation may somehow influence the likelihood of observing tissue-specific escape from X inactivation. In this light, it would be interesting to further understand the genetic cause for the highly skewed X inactivation in each of these three cases in the whole exome sequencing data. Future additional studies may validate these findings using single-cell approaches in unrelated individuals across tissues, where there is normal X inactivation.

      We thank the reviewer for their positive assessment of our work. This is a point we have and continue to grapple with. We cannot rule out that the genetic cause of complete skewing may influence tissue-specific XCI.  Moreover, the genetic cause for the non-mosaic XCI is currently unclear and is likely to vary between individuals, which could also result in inter-individual variation in tissue-specific escape. We are currently performing large prospective studies in the tissues of healthy females to specifically address this point.

      Reviewer 3 (Public review):

      There are very few, except that this escape catalogue is limited to 3 donors, based on a single(representative) tissue screen in 285 female donors, mostly using muscle samples. However, if only pituitary samples had been screened, nmXCI-1 would have been missed. Additional donors in the 285 representative samples cross a lower threshold of AE = 0.4. It would be worthwhile to query all tissues of the 285 donors to discover more nmXCI cases, as currently fewer than half of X-linked genes received a call using this very worthwhile approach.

      We thank the reviewer for their positive assessment of our work. Of course, we agree that a tissue-wide screen in all individuals would have been optimal and is a line of research we are currently pursuing. However, the analysis of allele-specific expression in all 5,000 RNA-seq samples is a massive undertaking and was simply not practicable within the time-scale of this study. 

      Recommendations for the authors:

      Reviewer #2 (Recommendations for the authors):

      Thanks to the authors for an interesting manuscript! I enjoyed reading it and the care that has gone into explaining the analyses and the findings. There are a few recommendations that I have for strengthening the work.

      We thank the reviewer for the nice feedback. Much appreciated.

      (1) I would like to see a genetic analysis of the three individuals, to try and identify the genetic causes of the skewed X inactivation beyond just considering the XIC or translocations. The cause of the highly skewed X inactivation would be of interest to many.

      This is certainly a very interesting avenue of research and one that we are currently focusing on. However, in the current study we simply had too few skewed XCI females to assess this  in an exhaustive manner. To tackle this issue, we have begun a prospective study of healthy females to identify additional non-mosaic females.

      (2) I wonder whether the cause of the skewed XCI may somehow influence the assessment of tissue-specific escape? If there is a problem with X inactivation itself, perhaps escape would also be different, making it appear more constitutive than tissue-specific?

      This is a point we have and continue to grapple with. We cannot rule out that the genetic cause of complete skewing may influence tissue-specific XCI.  Moreover, the genetic cause for the non-mosaic XCI is currently unclear and is likely to vary between individuals, which could result in inter-individual variation in tissue-specific escape.

      (3) Presentation/wording suggestions:

      I think the abstract is likely a bit inaccessible to those outside the field. I am in the X inactivation field, but don't use the term non-mosaic X inactivation, but rather would call it highly skewed, or non-random X inactivation. In my view, it would be simpler for the abstract to call non-mosaic XCI highly skewed XCI instead, or to use more words to ensure it is clear for the reader.

      We agree that the terminology of completely skewed/non-mosaic XCI could be more clearly defined in the abstract and have clarified this. “Using females that are non-mosaic (completely skewed) for X-inactivation (nmXCI) has proven a powerful and natural genetic system for profiling X-inactivation in humans.”

      I would consider calling the always escape genes constitutive escapees, while the variable may be facultative.

      This is something we have also considered and have received differing feedback on. However, we will definitely keep this in mind for future publications.

      Line 132, it would be useful to explain median >0.475 as less than 2.5% of reads coming from the inactive allele here, not just in the methods. Can you also explain why this cutoff was chosen?

      We thank the reviewer for this clarification. A clarification has been added to the main text as suggested.

      The cutoff was applied to account for potential variations in skewing, given that we screened only a single tissue sample per individual. Although nmXCI females are theoretically expected to have 0% of reads originating from the 'inactive' allele, this is not always observed due to (a) technical errors such as PCR or sequencing inaccuracies, or (b) differences in skewing between tissue types.

      Lines 156-160 describe how the heterozygous SNPs were identified in relation to Figure 2. I read these in the methods so that I could understand Figure 1, so I suggest moving this section up.

      We have moved the section as suggested by the reviewer.

      Line 156, consider adding in a sentence to describe what is shown in Figures 2A and B i.e, the overlap of SNPs and spread along the X.

      We have added a sentence describing what is shown in Figures 2A and 2B as suggested by the reviewer.

      Line 217, it would be useful to give the % of genes that show tissue-specific escape, to quantify rare.

      We have added a sentence quantifying ‘rare’ at the suggested line.

      (4) Typos:

      Line 119, missing 'the most' before extensive (and remove an).

      We thank the reviewer for pointing this out. This error has been corrected.

      Reviewer #3 (Recommendations for the authors):

      Some results in the supplementary figures were quite striking. What is going on with DDX3X and ZRSR2? How come total read counts are so different between individuals?

      Indeed, this is a very intriguing observation and one that we have simply failed to understand thus far. We are currently performing a large prospective study to obtain greater number of non-mosaic females and tissues samples. Hopefully, additional observations across females will allow us to gain further insights into the inter-individual behaviour of DDX3X and ZRSR2.   

      One item I would like to see added is some analysis to address the cause of these extremely skewed XCI individuals. The copy number analysis suggests there are some segmental deletions on the X in all three nmXCI cases. Where are these deletions, and do any fall in the region of the X-inactivation centre? Have the authors performed any analysis of potentially deleterious X-linked variants in the WGS or WES data? Why are these donors so skewed? It's interesting that UPIC was still more skewed than the other two.

      The segmental deletions the reviewer points out are not segmental deletions, the same variation in coverage is found in all females we’ve looked at including females with a mosaic XCI (see Author response image 1 below where the same pattern of slightly lower read counts is observed at the same sites in all female samples). No deletions were identified in the XIC region. No analysis was performed of deleterious X-linked variants. Why the donors are so skewed is unknown and intriguing. Indeed, identifying the origin of extreme skewing (including the females in this study) is now the main focus of the group. Whereas UPIC had trisomy 17, which has likely resulted in the observed skewing, we have not yet found a genetic variant that could explain the skewing observed in 13PLJ or ZZPU.

      Author response image 1.

      Copy number as log2 ratio using 500kb bins across the X-chromosome for 3 mosaic XCI females (1QPFJ, OXRO, and RU1J) and 3 nmXCI females, UPIC, nmXCI-1 and nmXCI-2.

      This is not necessary to address with new analyses, but as alluded to above, the authors could screen more than a single representative tissue. And to apply this analysis to larger databases (UK biobank), which the authors may be planning to do already.

      This an avenue of research we are currently investigating. 

      The code is well-documented and accessible. Additional information on the manual reclassification (to deal with inflated binomial P-values) would be helpful. Why not require a minimal threshold for escape (10% of active X allele) in addition to a significant binomial P (inactive X exp. > 2.5% of active)?

      We thank the reviewer for this positive assessment of the code. 

      Indeed, how to define ‘escape’ is a vexed issue, and one we feel has been given undue weight within the field. In reality, studies of escape are often dealing with sparse data (e.g. read depth), few observations (genes and individuals) and substantial amounts of missing data. Thus, it is unlikely that a standard statistical approach will be sensitive and specific across different studies and data types. Similarly, cut-offs, though useful would also need to be adjusted to the data type and quality in any given study.

      Whereas we initially used a significant binomial P-value as our sole test (often quoted as ‘best practice’), this resulted in wide-spread inflation of P-values. Thus, we switched to manually curating the allelic expression status of all 380 genes using the empirical guideline of allelic ratio >0.4 (also a commonly used cut-off) as indicating mono-allelic expression. We considered combining the binomial P-value with the cut-off but felt that this would result in an overly complex definition of escape and would unnecessarily exclude many genes from classification, due to the opposing effects of low/high read depth on the binomial and cut-off approaches respectively.

      Indeed, due to the difficultly of both accurate and objective ‘classification’ of escape that we placed an emphasis on clearly displaying all data for each gene in each individual to allow readers to see all the data on which each classification was based.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:  

      Reviewer #1 (Public review):  

      Summary:  

      This work examines the binding of several phosphonate compounds to a membrane-bound pyrophosphatase using several different approaches, including crystallography, electron paramagnetic resonance spectroscopy, and functional measurements of ion pumping and pyrophosphatase activity. The work attempts to synthesize these different approaches into a model of inhibition by phosphonates in which the two subunits of the functional dimer interact differently with the phosphonate.  

      Strengths:  

      This study integrates a variety of approaches, including structural biology, spectroscopic measurements of protein dynamics, and functional measurements. Overall, data analysis was thoughtful, with careful analysis of the substrate binding sites (for example calculation of POLDOR omit maps).  

      Weaknesses:  

      Unfortunately, the protein did not crystallize with the more potent phosphonate inhibitors. Instead, structures were solved with two compounds with weak inhibitory constants >200 micromolar, which limits the molecular insight into compounds that could possibly be developed into small molecule inhibitors. Likewise, the authors choose to focus the spectroscopy experiments on these weaker binders, missing an opportunity to provide insight into the interaction between more potent binders and the protein. 

      We acknowledge the reviewer concern regarding the choice of weaker inhibitors. We attempted cocrystallization with all available inhibitors, including those with higher potency. However, despite numerous efforts, these potent inhibitors yielded low-resolution crystals, making them unsuitable for detailed structural analysis. Therefore, we chose to focus on the weaker binders, as we were able to obtain high-quality crystal structures for these compounds. This allowed us to perform DEER spectroscopy and monitor conformational TmPPase state ensembles in solution with the added advantage of accurately analysing the data against structural models derived from X-ray crystallography. Using these weaker inhibitors enabled a more precise interpretation of the DEER data, thus providing reliable insights into the conformational dynamics and inhibition mechanism. As suggested by the reviewer, in the revised version, we add new DEER experiments, conditions and analysis on two of the more potent inhibitors (alendronate and pamidronate) to provide additional insight into their interactions. Furthermore, we also implemented additional DEER data on the cytoplasmic side of TmPPase; at a new site we identified (with the advantage of being an endogenous cysteine residue) and spin labelled (C599R1), given the DEER data for the previous T211R1cytoplasmic site were difficult to interpret owing to the highly dynamic nature of this region. The new pair C599R1 yielded high-quality DEER traces and indicated more clearly than T211R1, distance distributions consistent with asymmetry across the sampled conditions.  Again, as suggested by the reviewer, alendronate and pamidronate DEER measurements were also recorded for this site (cytoplasmic side; C599R1) as well as the periplasmic side (525R1).

      In general, the manuscript falls short of providing any major new insight into membrane-bound pyrophosphatases, which are a very well-studied system. Subtle changes in the structures and ensemble distance distributions suggest that the molecular conformations might change a little bit under different conditions, but this isn't a very surprising outcome. It's not clear whether these changes are functionally important, or just part of the normal experimental/protein ensemble variation. 

      We respectfully disagree with the reviewer. The scale of motions particularly seen in solution (and now on a new reliable spin pair (C599R1) located on the cytoplasmic side) correspond to those seen in the full panoply of crystal structures of mPPases. Some proteins undergo very large conformational changes during catalysis – such as the rotary ATPase. This one does not, meaning that the precise motions we describe here are relevant and observed in solution for the first time. Conformational changes in the ensemble, whether large or small, represent essential protein motions which underlie key mPPase catalytic function. These dynamic transitions are extremely challenging to monitor, especially in so many conditions and our DEER spectroscopy data demonstrate the sensitivity and resolution necessary to monitor these subtle changes in equilibria, even if these are only a few Angstroms. For several of the conditions we investigated by DEER in solution, corresponding X-ray structures have been solved, with the derived distances agreeing well with the DEER distributions. This further validates the biological relevance of the structures, and reveals the complete conformational ensemble, intractable using other current approaches. Indeed, some conformational states were previously seen using serial time-resolved X-ray static structures and were consistent with asymmetry.

      The ZLD-bound crystal structure doesn't predict the DEER distances, and the conformation of Na+ binding site sidechains in the ZLD structure doesn't predict whether sodium currents occur. This might suggest that the ZLD structure captures a conformation that does not recapitulate what is happening in solution/ a membrane. 

      We agree with the reviewer that the ZLD-bound crystal structure does not predict the DEER distances. However, we believe this discrepancy arises from the steric bulkiness of ZLD inhibitor, which prevents the closure of the hydrolytic centre. Additionally, the absence of Na+ at the ion gate in the ZLD-bound structure suggests that Na+ transport does not occur, a conclusion further supported by our electrometric measurements. We agree with the reviewer; distances observed in the DEER experiments might represent a potential new conformation in solution, not captured by the static X-ray structure, thereby offering new insights into the dynamic nature of the protein under physiological conditions. This serves to emphasize the complementarity of the DEER approach to Xray crystallography and redoubles the importance of using both techniques. Finally, the static X-ray structures have not captured the asymmetric conformations that must exist to explain half-of-thesites reactivity, where DEER yields distance distributions, across all 16 cases tested here (two mutants with eight conditions each), that are consistent with asymmetry.

      Reviewer #2 (Public review):  

      Summary:  

      Crystallographic analysis revealed the asymmetric conformation of the dimer in the inhibitor-bound state. Based on this result, which is consistent with previous time-resolved analysis, authors verified the dynamics and distance between spin introduced label by DEER spectroscopy in solution and predicted possible patterns of asymmetric dimer.  

      Strengths:  

      Crystal structures with inhibitor bound provide detailed coordination in the binding pocket thus useful information for the mPPase field and maybe for drug development.  

      Weaknesses:  

      The distance information measured by DEER is advantageous for verifying the dynamics and structure of membrane protein in solution. However, regarding T211 data, which, as the authors themselves stated, lacks measurement precision, it is unclear for readers how confident one can judge the conclusion leading from these data for the cytoplasmic side. 

      We thank the reviewer for acknowledging the advantageous use of the DEER methodology for identifying dynamic states of membrane proteins in solution. In our original manuscript, we used two sites in our analysis: S525 (periplasm) and T211 (cytoplasm), in which S525R1 yielded highquality DEER data, while T211R1 yielded weak (or no) visual oscillations, leading to broad distributions for the several conditions tested. In the revised manuscript, we now added a third site at the cytoplasmic side (C599R1 located at TMH14), which yielded high-quality DEER data and comparable to S525R1. Both C599R1 and C525R1 spin pairs generated distance distributions for all 16 conditions (two mutants of eight conditions each) that were described well by the solution-state ensemble adopting a predominantly asymmetric conformation.  

      Furthermore, we have tailored our interpretation of the T211R1 DEER data, and refrain from using the data to draw conclusions about the TmPPase conformational ensemble in the presence of different inhibitors. However, we still opted to include the T211R1 data in the SI because they confirm an important structural feature of mPPase in solution conditions; the intrinsically dynamic behaviour of the loop5-6 where T211 is located. This observation in solution is also consistent with our previous (Kellosalo et al., Science, 2012; Li et al., Nat. Commun, 2016; Vidilaseris et al., Sci. Adv., 2019; Strauss et al., EMBO Rep., 2024) and current X-ray crystallography data. To reiterate, we excluded T211R1 from any analysis relating to mPPase asymmetry and our conclusions were entirely based on the S525R1 and new C599R1 DEER data, which allowed us to monitor both sides on the membrane.  

      The distance information for the luminal site, which the authors claim is more accurate, does not indicate either the possibility or the basis for why it is the ensemble of two components and not simply a structure with a shorter distance than the crystal structure.  

      We thank the reviewer for pointing out this possibility and alternative interpretation of our DEER data. We now provide further analysis to show that our DEER data from both membrane sides reporters are highly consistent with (although they cannot completely exclude) asymmetry and rephrase to be inclusive of other possibilities. Importantly, this additional possibility does not affect the current interpretation of the data in our manuscript. Furthermore, we have removed Fig. 6 from the manuscript, and we now include a direct comparison of the in silico predicted distribution coming from the asymmetric hybrid structure with the 8 conditions tested, for both mutants (i.e. S525R1 and C599R1).

      Reviewer #3 (Public review):  

      Summary:  

      Membrane-bound pyrophosphatases (mPPases) are homodimeric proteins that hydrolyze pyrophosphate and pump H+/Na+ across membranes. They are attractive drug targets against protist pathogens. Non-hydrolysable PPi analogue bisphosphonates such as risedronate (RSD) and pamidronate (PMD) serve as primary drugs currently used. Bisphosphonates have a P-C-P bond, with its central carbon can accommodate up to two substituents, allowing a large compound variability. Here the authors solved two TmPPase structures in complex with the bisphosphonates etidronate (ETD) and zoledronate (ZLD) and monitored their conformational ensemble using DEER spectroscopy in solution. These results reveal the inhibition mechanism of these compounds, which is crucial for developing future small molecule inhibitors.  

      Strengths:  

      The authors show that seven different bisphosphonates can inhibit TmPPase with IC50 values in the micromolar range. Branched aliphatic and aromatic modifications showed weaker inhibition.  

      High-resolution structures for TmPPase with ETD (3.2 Å) and ZLD (3.3 Å) are determined. These structures reveal the binding mode and shed light on the inhibition mechanism. The nature of modification on the bisphosphonate alters the conformation of the binding pocket.  

      The conformational heterogeneity is further investigated using DEER spectroscopy under several conditions.  

      Weaknesses:  

      The authors observed asymmetry in the TmPPase-ELD structure above the hydrolytic center. The structural asymmetry arises due to differences in the orientation of ETD within each monomer at the active site. As a result, loop5-6 of the two monomers is oriented differently, resulting in the observed asymmetry. The authors attempt to further establish this asymmetry using DEER spectroscopy experiments. However, the (over)interpretation of these data leads to more confusion than any further understanding. DEER data suggest that the asymmetry observed in the TmPPase-ELD structure in this region might be funneled from the broad conformational space under the crystallization conditions. 

      We respectfully disagree with the reviewer. The asymmetry was previously established using serial time crystallography (Strauss et al., EMBO Rep, 2024) and biochemical assays (e.g. Malinen et al., Prot. Sci., 2022; Artukka et al., Biochem J, 2018; Luoto et al., PNAS, 2013) and partially seen in one static structure (Vidilaseris et al., Sci Adv 2019). DEER data here also show that the previously proposed asymmetry is also present (and this presence of asymmetry is consistent across all DEER data) within the TmPPase conformational ensemble in solution conditions. Although we cannot rule out the possibility that the TmPPase monomers adopt a metastable intermediate state, in such a case we would expect the distance changes reported by DEER to be symmetric across both membrane sides. However, we observe a symmetry breaking between the cytoplasmic and periplasmic TmPPase sites. Indeed, DEER data yield distance distributions similar to that of the hybrid asymmetric structure under all: apo, +Ca, +Ca/ETD, +ETD, +ZLD, +IDP, +PAM, +ALE conditions.

      DEER data for position T211R1 at the enzyme entrance reveal a highly flexible conformation of loop56 (and do not provide any direct evidence for asymmetry, Figure EV8).

      Please see relevant response above. We acknowledge that T211 is indeed situated on a highly dynamic loop, which is important for gating and our DEER data confirm the high flexibility of this protein region. Given we have not observed dipolar oscillations, leading to broad distributions, we have stated in the original manuscript that we will not establish the presence of any asymmetry in solution on the basis of T211, rather relying on the S525R1 and the new C599R1 sites, for which we have acquired high-quality DEER data, as was also pointed out and has been commented on by all reviewers. We have provided data at the C599R1 position (same cytoplasmic side as 211 for which we have now limited our analysis to a minimum) which further provides evidence for asymmetry, including two new conditions.

      Similarly, data for position S521R1 near the exit channel do not directly support the proposed asymmetry for ETD.  

      The reviewer appears to suggest that we hold the S525R1 DEER data as direct proof of asymmetry; this is combative on the grounds that to directly prove asymmetry would require time-resolved DEER measurements, far beyond the scope of this work. Rather, we have applied DEER measurements to explore whether asymmetry (observed previously via time-resolved X-ray crystallography) is also present (or indeed a possibility) in solution. All our S525R1 and C599R1 DEER data (recorded for eight conditions) are consistent with asymmetry (see also detailed response above).

      Despite the high quality of the data, they reveal a very similar distance distribution. The reported changes in distances are very small (+/- 0.3 nm), which can be accommodated by a change of spin label rotamer distribution alone. Further, these spin labels are located on a flexible loop, thereby making it difficult to directly relate any distance changes to the global conformation

      We thank the reviewer for recognising the high quality of our DEER data for the S525R1 site which we now complement with a new pair on the cytoplasmic facing membrane side (C599R1) with DEER data of comparable quality as for S525R1, where visual oscillations in the raw traces for both spin pairs, as in our case, reportedly lead to highly accurate and reliable distributions, able to separate (in fortuitous cases) helical movements of only a few Angstroms (Peter et al., Nature Comms 13:4396, 2022; Klose et al., Biophys J 120:4842-4858, 2021). The ability of DEER/PELDOR offering near Angstrom resolution was also previously demonstrated by the acquisition and solution of highresolution multi-subunit spin-labelled membrane protein structures (Pliotas at al., PNAS, 2012; Pliotas et al., Nat Struct Mol Biol, 2015; Pliotas, Methods Enzymol, 2017) as well as its ability in detecting small (and of similar to mPPase magnitude) conformational changes in different integral membrane protein systems (Kapsalis et al., Nature Comms, 2019; Kubatova et al., PNAS, 2023; Schmidt et al., JACS, 2024; Lane et al., Structure, 2024; Hett et al., JACS, 2021; Zhao et al., Nature, 2024), occurring under different conditions and/or stimuli in solution and/or lipid environment. The changes here are not below the detection sensitivity of DEER (e.g. ~ 7 Angstroms between the two modal distance extremes (+Ca vs +IDP for S525R1), and with all other conditions showing intermediate changes.  

      We agree with the reviewer that these changes are relatively small, but they are expected for membrane ion pumps. Indeed, none of the mPPase structures show helical movements of greater than half a turn, and that only in helices 6 and 12. There appear to be larger-scale loop closing motions of the 5-6 loop that includes T211, due to the presence of E217 which binds to one of the Mg<sup>2+</sup> ions that coordinate the leaving group phosphate. This is, inter alia, the reason that this loop is so flexible: it cannot order before substrate is bound.  

      The reviewer suggests that the subtle distance shifts detected arise only from changes of label rotamer distribution. However, the concerted nature of the modal distance shifts with respect to multiple different conditions at a single labelling site strongly suggests that preferential rotamer orientations are not the cause. Indeed, for so many spin labels to undergo an arbitrary shift that the modal distance of the entire distribution changes – and in the absence of any conformational change – appears improbable. Here we have the resolution to detect such subtle differences by DEER, given there are unambiguous shifts in our time domain data (i.e. the position of the minimum of the first dipolar oscillation) (Fig 4) and these are reflected in the modal distances in the distributions. We also refrain from performing any quantitative analysis and use qualitative trends in modal distance shifts only; all which support our proposed model of a symmetry breaking across the membrane face. To further belabour this point, we do not quantify the DEER data (for instance through parametric fitting) to extract populations of different conformational states and we appreciate that to do so would be highly prone to error; however we do (and can, we feel without over-interpretation) assert that the modal distances shift.  

      The interpretations listed below are not supported by the data presented:  

      (1) 'In the presence of Ca2+, the distance distribution shifts towards shorter distances, suggesting that the two monomers come closer at the periplasmic side, and consistent with the predicted distances derived from the TmPPase:Ca structure.'

      Problem: This is a far-stretched interpretation of a tiny change, which is not reliable for the reasons described in the paragraph above. 

      While the authors overall agree with the reviewer assessment that ±0.3 nm is a small (not a minor) change, there are literature examples quantifying (or using for quantification) distribution peaks separated by similar Δr. (Kubatova et al., PNAS, 2023; Schmidt et al., JACS, 2024; Hett et al., JACS, 2021; Zhao et al., Nature, 2024). However, the time-domain data clearly indicate the position of the first minimum of the dipolar oscillation shifts to shorter dipolar evolution time. The sensitivity of the time-domain data to subtle changes in dipolar coupling frequency is significantly improved compared to the distance distributions.

      Importantly, we have fitted Gaussians to the experimental distance distributions of 525R1 output by the Comparative Deer Analyzer 2.0 and observed a change in the distribution width in presence of Ca2+, implying the rotameric freedom of the spin label is restricted. However, the CW-EPR for 525R1 indicate that the rotational correlation time of the spin label is highly consistent between conditions (the spectra are almost identical); this cannot be explained simply by rotameric preference of the spin label (as asserted by the reviewer 3), as there is no (further) immobilisation observed from the CW-EPR of apo-state (Figure EV9) to that in presence of Ca2+. Furthermore, in the absence of conformational changes, it is reasonable to assume (and demonstrable from the CW-EPR data) that the rotamer cloud should not significantly change between conditions. However, Gaussian fits of the two extreme cases yielding the longest (i.e., in presence of IDP) and shortest (in presence of ZLD) modal distances for the 525R1 DEER data indicated significant (i.e., above the noise floor after Tikhonov validation) probability density for the IDP condition at 50 Å (P(r) = 0.18). This occurs at four standard deviations above the mean of the Guassian fit to the +ZLD condition, which by random chance should occur with <0.007% probability.  

      As in previous response, the method can detect changes of such magnitude which are not small, but physiologically relevant and expected for integral membrane proteins, such as mPPases. Indeed, even in equal (or more) complex systems such as heptameric mechanosensitive channel proteins DEER provided sub-Angstrom accuracy, when a spin labelled high resolution XRC structure was solved (Pliotas et al., PNAS, 2012; Pliotas et al., Nat Struct Mol Biol, 2015). Despite this being an ideal case where DEER accuracy was experimentally validated another high-resolution structural method on modified membrane protein and is not very common it demonstrates the power of the method, especially when strong oscillations are present in the raw DEER data (as here for mPPase S525R1, and C599R1), even when multiple distances are present, Angstrom resolution is achievable in such challenging protein classes.

      (2) 'Based on the DEER data on the IDP-bound TmPPase, we observed significant deviations between the experimental and the in silico distances derived from the TmPPase:IDP X-ray structure for both cytoplasmic- (T211R1) and periplasmic-end (S525R1) sites (Figure 4D and Figure EV8D). This deviation could be explained by the dimer adopting an asymmetric conformation under the physiological conditions used for DEER, with one monomer in a closed state and the other in an open state.'  

      Problem: The authors are trying to establish asymmetry using the DEER data. Unfortunately, no significant difference is observed (between simulation and experiment) for position 525 as the authors claim (Figure 4D bottom panel). The observed difference for position 112 must be accounted for by the flexibility and the data provide no direct evidence for any asymmetry.  

      Reviewer 3 is incorrect in suggesting that we are trying to prove asymmetry through the DEER data. That is a well-known fact in the literature (e.g. Vidilaseris et al, Sci Adv 2019) where we show (1) that the exit channel inhibitor ATC (i.e. close to S525R1) binds better in solution to the TmPPase:PPi complex than the TmPPase:PPi<sub>2</sub> complex, and (2) that ATC binds in an asymmetric fashion to the TmPPase:IDP<sub>2</sub> complex with just one ATC dimer on one of the exit channels. We merely use the DEER data to support this well-established fact.  

      However, because we agree that the DEER data in presence of IDP does not provide direct proof for asymmetry; particularly for the cytoplasmic facing mutant T211R1, we have refrained from interpreting T211R1 data beyond being a highly dynamic loop region (as evidenced by the broad distributions). As pointed out by the reviewer, the differences in distance distributions between conditions observed for T211R1 likely arise from conformational heterogeneity in solution. Furthermore, we now report DEER data on another new site (C599R1), which is also on the cytoplasmic side and yields high quality DEER data comparable to the S525R1 data (commended for their quality by both the reviewers). The C599R1 measurements show that in all conditions tested, highly similar distributions are observed, inconsistent with the in silico predicted distance distributions from the symmetric X-ray structures, but consistent with an asymmetric hybrid structure (i.e. open-closed) in solution. Importantly, the difference between the fully open (6.8 nm modal distance) and fully closed (4.8 nm modal distance) states of the C599R1 dimer is larger than for the S525R1 dimer pair. Thus, delineating the asymmetric hybrid conformation from the symmetric conformations is more robust.

      (3) 'Our new structures, together with DEER distance measurements that monitor the conformational ensemble equilibrium of TmPPase in solution, provide further solid experimental evidence of asymmetry in gating and transitional changes upon substrate/inhibitor binding.'  

      Problem: See above. The DEER data do not support any asymmetry. 

      We feel that the reviewer comments here are somewhat unfounded. All the DEER data (for 525R1 periplasmic and C599R1 cytoplasmic sites are described, most parsimoniously, using an asymmetric hybrid structure. In particular, the new C599R1 distance distributions are poorly described by the symmetric X-ray crystal structures, with a conserved modal distance of approx. 5.8 nm throughout the tested conditions that aligns nicely with the in silico predictions from the asymmetric hybrid structure. Additionally, all S525R1 and C599R1 data well exceed the relevant criteria of the recent white paper (Schiemann et al., 2021, JACS) from the EPR community to be considered reliably interpretable (strong visual oscillations in the raw traces; signal-to-noise ratio .r.t modulation depth of > 20 in all cases; replicates have been performed and added into the maintext or supplementary; near quantitative labelling efficiency (evidenced by lack of free spin label signal in the CW-EPR spectra); analysed using the CDA (now Figure EV10) to avoid confirmation bias).

      While the DEER data do not prove asymmetry, we do not claim proof of asymmetry in the above sentence. We concede to rephrase the offending sentence above as: “Our new structures, together with DEER distance measurements that monitor the conformational ensemble of TmPPase in solution, do not exclude asymmetry in gating and transitional changes upon substrate/inhibitor binding and are consistent with our proposed model.” We feel that this reframed conjecture of asymmetry is well founded; indeed, comparing all the 16 experimentally derived DEER distance distributions for the 525R1 and 599R1 sites with in-silico modelling performed on the hybridised asymmetric structure (i.e., comprised of one monomer bound to Ca2+ and another bound to IDP) yields overlap coefficients (Islam and Roux, JPC B, 2015) of >0.85. This implies the envelope of the modelled distance distribution is quantitatively inside the envelope of the experimental distance distributions. Thus, the DEER data support asymmetry (previously observed by time-resolved XRC) in solution, and while we appreciate that ideally one would measure time-resolved DEER to directly correlate kinetics of conformational changes within the ensemble to the catalytic cycle of mPPase, (and this is something we aim to do in the future), it is far beyond the scope of this study.

      Indeed, half-of-the-sites reactivity has been demonstrated in at least the following papers

      (Vidilaseris et al, Sci Acv. ,2019, Strauss et al, EMBO Rep. 2024, Malinen et al Prot Sci, 2022, Artukka et al Biochem J, 2018; Luoto et al, PNAS, 2013). Half-of-the sites activity requires asymmetry in the mechanism, and therefore asymmetric motions in the active site (viz 211) and exit channel (viz 525). As mentioned above, we have demonstrated this for other inhibitors (Vidilaseris et al 2019) and as part of a time-resolved experiment (Strauss et al 2024). In fact, given the wealth of evidence showing that the symmetrical crystal structures sample a non- or less-productive conformation of the protein, it would be quixotic to propose the DEER experiments - in solution - do not generate asymmetric conformations. It certainly doesn’t obey Occam’s razor of choosing the simplest possible explanation that covers the data.

      (4) Based on these observations, and the DEER data for +IDP, which is consistent with an asymmetric conformation of TmPPase being present in solution, we propose five distinct models of TmPPase (Figure 7).  

      Problem: Again, the DEER data do not support any asymmetry and the authors may revisit the proposed models. 

      We have redressed the proposed models and limited them to four asymmetric models to clearly illustrate the apo/+Ca/+Ca:ETD-state (model 1) and highlight the distinct binding patterns of various inhibitors (ETD, ZLD and IDP; model 2-4), which result in a variety of closed/open-open states. In this version, we clarify that the proposed models are not solely based on the DEER data but all DEER data recorded for multiple conditions, inhibitors and for two opposite membrane side facing reporters are highly consistent, and are grounded in both current and previously solved structures, with the DEER data providing additional consistency with these models.

      (5) 'In model 2 (Figure 7), one active site is semi-closed, while the other remains open. This is supported by the distance distributions for S525R1 and T211R1 for +Ca/ETD informed by DEER, which agrees with the in silico distance predictions generated by the asymmetric TmPPase:ETD X-ray structure'  

      Problem: Neither convincing nor supported by the data 

      We respectfully disagree with the reviewer. However, owing to the conformational heterogeneity of T211R1, we now exclude T211R1 data from quantitative interpretation of changes to the conformational ensemble. Instead, we include new DEER data from site C599R1, which provides high-quality and convincing data that is consistent with asymmetry at the cytoplasmic face, and inconsistent with in silico distance distributions derived from symmetric X-ray crystal structures. Furthermore, the S525R1 distance distributions for the +ETD (corresponding to +Ca/ETD) and +ZLD conditions were directly compared with both the apo-state distance distribution (corresponding to a fully open, symmetric conformation) and the in silico predicted distributions of the asymmetric hybrid structure (corresponding to an open-closed conformation). Overlap coefficients were calculated (given in the main text) that indicated the +ETD (corresponding to +Ca/ETD) and +ZLD S525R1 distributions were more consistent with the apo-state distance distribution. This suggests that while on the cytosolic face of the membrane, an open-closed conformation is favoured, on the periplasmic face, a symmetric open-open conformation is favoured.

      Recommendations for the authors:  

      Reviewer #1 (Recommendations for the authors):   

      (1) The DEER experiments were performed with the two crystallized inhibitors, ETD and ZLD, along with previously characterized IDP. It would increase the impact of a tighter-binding phosphonate was examined since the inhibitory mechanism of these molecules is of greater interest. 

      We acknowledge the reviewer concern regarding the choice of weaker inhibitors. We chose to focus on the weaker binders, as we were able to obtain high-quality crystal structures for these compounds. This allowed us to perform DEER spectroscopy with the added advantage of accurately analysing the data against structural models derived from X-ray crystallography. In the revised version, we also include results from alendronate and pamidronate, two of the tighter inhibitors, which show similar and consistent results to the others.

      (2) I'm not able to find the concentrations of ETD and ZLD used for the DEER experiments. This information should be added to the Methods section on sample prep for EPR. 

      The information is already mentioned in the Method section on sample preparation for EPR spectroscopy (page 24), where we indicated that the protein aliquots were incubated with a final concentration of 2 mM inhibitors or 10 mM CaCl2 (30 min, RT). However, we recognise that this may not have been sufficiently clear. To clarify, we now explicitly state that the concentration of ETD and ZLD (amongst other inhibitors) used for the DEER experiments is 2 mM.  

      (3) There should be additional detail about the electrometry replicates. Does "triplicate" mean three measurements on the same sensor, three different sensors, and different protein preparations? At a minimum, data should be collected from three different sensors to ensure that the negative results (lack of current) for ETD and ZLD are not due to a failed sensor prep. In addition, Data from the other replicates should be shown in a supplementary figure, either the traces, or in a summary figure. Are the traces shown collected on the same sensor? They could be, in principle, since the inhibitor is washed away after each perfusion. 

      Yes, by 'triplicate', we mean three measurements taken on the same sensor. All traces shown were collected from a single sensor. Thank you for your advice; we now show here additional data from other sensors that display the same pattern. As for the possibility of a failed sensor preparation, this is unlikely since we always ensure the sensor quality with the substrate (PPi) as a positive control after each measurement.

      Author response image 1.

      (4) I'm confused by the NEM modification assay, and I don't think there is enough information in this manuscript for a reader to figure out what is happening. Why is the protein active if an inhibitor is present? I understand that there is a conformational change in the presence of the inhibitor that buries a cysteine, but the inhibitor itself should diminish function, correct? Is the inhibitor removed before testing the function? In addition, it would be clearer if the cysteines that are modified are indicated in the main text. I don't understand what is being shown in Figure Ev2. Shouldn't the accessible cysteines in the apo form be shown? Finally, the sentence "IDP has been reported to prevent the NEM modification..." does not make sense to me. Should the word "by" be removed from this sentence? 

      We apologize for the confusion. Yes, the inhibitors were removed before testing the protein function. In Figure EV2, the accessible cysteines are shown for both the apo and IDP-bound states. As seen, the accessible cysteines in the IDP-bound states are fewer than those in the apo state, meaning fewer cysteines are available for modification. Consequently, more activity is retained when IDP binds due to the reduction in accessible cysteines. We have addressed this in the manuscript (see the method section on the NEM modification assay).

      (5) Why does the model in Figure 7 show the small molecules bound to only one subunit, when they are crystallized in both subunits? 

      We propose that the small molecules bound to the two subunits in the crystal structure is likely a result of substrate inhibition, given the excess inhibitor used during crystallisation (e.g. Artukka, et al., Biochemical Journal, 2018; Vidilaseris, et al., Science Advances, 2022). Our PELDOR data indicate that in solution, the small molecules bound to TmPPase are in an intermediate state between both subunits being closed and both being open, most likely with at least one subunit in an open state. This is also consistent with previous kinetic studies (Anashkin, V. A., et al., International Journal of Molecular Sciences, 22, 2021), which showed that the binding constant of IDP to the second subunit is around 120 times higher than that of the first subunit.

      (6) The authors argue that the two ETDs bound in the two protomers adopt distinct conformations. Can this be further supported, for example, by swapping the position of the two ETDs between the two protomers and calculating a difference map (there should be corresponding negative/positive density if the modelling of the two different conformations is robust)? 

      As per the reviewer suggestion, we swapped the positions of the two ETDs between the protomers and calculated the difference electron density map. This analysis, presented in Figure EV3, reveals corresponding negative and positive electron density peaks, indicating that the ETDs indeed adopt distinct conformations in each protomer, supporting the accuracy of our modeling.

      (7) Are the changes in loop conformation possibly due to crystal packing differences for the two protomers? 

      We examined the crystal packing of the two protomers and found no interactions at the loop regions (red coloured in Author response image 2 below) that could be attributed to crystal packing differences. Therefore, we rule out this possibility.

      Author response image 2.

      (8) Typos:  

      Legend for Figure EV2 cystine - cysteine  

      Page 14, last sentence of the first paragraph: further - further  

      Figure 6 legend: there is no reference to panel B.  

      Thanks for pointing out the typos, now they are fixed.

      Reviewer #2 (Recommendations for the authors):  

      (1) T211 is located on the same loop where ligand/inhibitor-coordinating side chains (E217, D218) are located. It has not been tested whether spin labeling here would affect inhibitor binding. 

      We test all the mutant(s) activity before spin labelling, but not the activity of the spin-labelled mutants. MTSSL spin labels are typically not structurally perturbing. In particular, the T211R1 site that the reviewer is referring to is now not included in our interpretation of conformational changes occurring during mPPase’s functional cycle.

      (2) Why should the spin label be introduced to T211, which is recognized as a flexible region in the crystal structure? Authors should search for suitable residues except for T211 and other residues in this loop to evaluate the cytoplasmic distance. 

      We acknowledge the reviewer’s concern regarding the flexibility of the T211 region for spin labelling. Given the challenges associated with TmPPase, including reduced protein expression, loss of function, or inaccessibility upon spin labelling at certain sites, we have explored alternative residues. After extensive testing, we identified C599 as a suitable site for spin labelling resulting in high-quality DEER data. The results from spin labelling at C599 have been incorporated into the revised manuscript.

      (3) On the other hand, DEER data for S525 is solid, as the authors stated. This residue is located on the luminal side of the enzyme. However, the description of the luminal side structure and the comparison of symmetric/asymmetric dimer in this par are missing in the paper. 

      We thank the viewer for their positive assessment of the S525R1 DEER data. The data for 525 and now also for 599 spin pairs are indeed solid given the strong visual oscillation we observed particularly in such a challenging system.   

      We presented the periplasmic sites in the crystal structure dimer (Figure 4A), highlighting both the symmetrical region and the asymmetric model in Figure 4. In the revised version, we include additional details about this region and our rationale for labeling at position S525.

      (4) The conclusion models (Figure 7) are misleading. In the crystal structure, the 5-6Loop distance between each monomer should be close given the location of the dimer interface, and the actual distance between T211 in the structure (for example, in 5lzq) is about 10A. Nevertheless, the model depicts this distance longer than S525 (40.7A in 5LZQ), which would give a false impression. 

      We would like to apologize for the misleading model. We have now corrected the models to ensure they are consistent with their respective regions in the crystal structures.

      (5) P8 last paragraph  

      It is hard to imagine that in a crystal lattice, the straight inhibitor always binds to monomer A, and the neighboring monomer is always attached to a slightly tilted inhibitor, which causes asymmetry. For example, wouldn't it mean that it would first bind to one of them, which would then affect the neighboring monomer via 5-6 Loop, which would then affect its binding pose? So in this case, the inhibitor did not ARAISE asymmetry, and this is where it is misleading for readers. 

      We apologize for the confusion. What we intended to convey is that the first inhibitor binds to one protomer, which then affects the conformation of the neighbouring monomer, ultimately influencing its binding pose. This is required for half-of-the-sites reactivity, which is well-established in this system. This is reflected in our crystal structure, where we observed asymmetry in the loop 5-6 region and the ETD orientation between the two protomers. We have addressed this in the manuscript accordingly.

      (6) P11 L4 EV10 instead of EV8? 

      Thanks for pointing out. We have corrected it accordingly.

      (7) P11 L5 It is difficult to determine whether the peak is broad or sharp. Should be evaluated quantitatively by showing the half-value width of the peak. This may also be helpful to judge whether the peak is a mixture of two components or a single one. 

      We have taken this analysis out and rephrased the offending sentence. We have also added the FWHM values as the Reviewer suggested, and corresponding standard deviations for the distance distributions (under approximation as Gaussian distribution).   

      (8) Throughout the paper, the topology of the enzyme may be difficult to follow for readers who are not experts in this field. Please indicate the membrane plane's location or a figure's viewpoint in the caption. 

      We acknowledge the importance of making our figures accessible to all readers. In the revised manuscript, we have enhanced the clarity of our figures by explicitly indicating the membrane plane’s location and specifying the viewpoint in each figure caption. For example, we have added annotations such as “Top view of the superposition of chain A (cyan) and chain B (wheat), showing the relative movements (black arrow) of helices. The membrane plane is indicated by dashed lines.”

      (9) Figure 2B Check the color of the helix.  

      IDP and ETD are almost the same color, so it is difficult to see the superposition. It would be easier to understand the reading by, for example, using a lighter or transparent color set only for IDPs.  

      We acknowledge the reviewer concern regarding the colour similarity between the IDP and ETD in Figure 2B, which hinders clear differentiation. To enhance visual distinction, we have adjusted the colour scheme by changing the TmPPase:IDP structure colour to light blue. This modification improves the clarity of the superposition, making the structural differences more discernible.

      (10) Figure 2C Check the coordination state (dotted line), there appears to be coordination between E217Cg and Mg. Also, water that is located near N492 appears to be a bit distant from Mg, why does this act as a ligand? Stereo view or view from different angles, and distance information would help the reader understand the bonding state in more detail.  

      Yes, we confirm that Mg<sup>2+</sup> is coordinated by the oxygen atoms from both the side chain and main chain of residue E217. The water molecule near N492 is not directly coordinated with Mg<sup>2+</sup> but interacts with the O5 atom of one of the phosphate groups in ETD. To enhance clarity, we have updated Figure 2C (and other related figures) to include stereo views.  

      (11) Figure 5A: in the Bottom view (lower left), the symmetric dimer does not look symmetric. Better to view from a 2-fold axis exactly.  

      We have taken this figure out entirely and instead add a direct comparison to the in silico predicted distribution from the asymmetric hybrid structure to all 16 experimental DEER distributions. We have added the symmetric and asymmetric structures to Fig. 4A and view the symmetric structure along the 2-fold axis, as suggested.   

      (12) Figure 5B: Indicate which data is plotted in the caption.  

      As mentioned above, we have taken this figure out, as we felt quantifying two overlapping populations from a single Gaussian was over-interpretation of the data, and at the suggestion of reviewer 3, we have tailored our interpretation here.  

      (13) Figure EV8:  

      Because the authors discuss a lot about their conclusive model based on this data, Figure EV8 should be treated as a main figure, not a supplement. However, this reviewer has serious concerns about the measurement in this figure. Because DEER for T211 is too noisy, I don't see the point in discussing this in detail. For example, in the Ca/ETD data, there is a peak near 50A, but it would be difficult for TM5 to move away from this distance unless the protein unfolds. I do not find it meaningful to discuss using measurement results in which such an impossible distance is detected as a peak.  

      A: Show top view as in Figure 5  

      D: 2nd row dotted line. Regarding the in silico model that is used as a reference to compare the distance information, the distance of 40-50 A for T211 in the Ca-bound form is hard to imagine. PDB 4av6 model shows that T211 is disordered and not visible, but given the position of the TM5 helix, it does not appear to be that different from the IDR binding structure (5LZQ, 10A between two T211). The structures of in silico models are not shown in the figure, as it is only mentioned as modeled in Rossetafold. Please indicate their structures, especially focused on the relative orientation of T211 and S525 in the dimer, which would allow readers to determine the distances.  

      We acknowledge the reviewer’s concerns regarding Figure EV8 and the DEER data for T211R1. Upon re-evaluation, we recognize that the non-oscillating nature of the DEER data for T211R1 leads to broad distributions, indicating increased conformational dynamics, which is expected for a highly dynamic loop. Consequently, we have limited the discussion and interpretation of T211R1 in the revised manuscript and focused more on C599R1.

      Reviewer #3 (Recommendations for the authors):  

      A careful interpretation of the data in view of these limitations and without directly linking to asymmetry could solve the problem of the over-interpretation of the DEER data.  

      We respectfully disagree with the reviewer. Please see our detailed response above.  

      Additional comments:  

      (1) Did the authors use a Cys-less construct for spin labeling and DEER experiments?  

      We utilized a nearly Cys-less construct in which all native cysteines were mutated to serine, except for Cys183, which was retained due to its buried location and functional importance. We then introduced single cysteine mutations for spin labelling. For C599, Ser599 was reverted to cysteine.

      (2) The time data for position T211R1 is too short for most cases (Figure EV8D) for a reliable distance determination. No confidence interval is given for the '+Ca' sample distance distributions.  

      We recorded longer time traces for two of the conditions to better assign the background. We did not use the 211R1 data to reach any conclusions regarding asymmetry, which were based on the 525R1 and the 599R1 data. We now simply include T211R1 data to indicate the high mobility observed at loop5-6. We have added the confidence interval for the +Ca condition.  

      (3) It is recommended to mention the 2+1 artefact obvious at the end of the DEER data. 

      In the methods section, we have mentioned that the “2+1” artefact present at the end of the S525R1, and T211R1 DEER data likely arises from using a 65 MHz offset, rather than an 80 MHz offset (as for the C599R1 data), which avoids significant overlap of the pump and detection pulses. We also mention in the methods section that owing to the intense “2+1” artefact, the decision was made to truncate the artefact away, to minimise the impact on data treatment. As for motivation to use the lower offset of 65 MHz, we did so to maximise the achievable signal-to-noise ratio (SNR), as particularly for the T211R1 data, the detected echo was quite weak. This was further exacerbated by the poor transverse relaxation time observed at that site.  

      (4) Please check the number of significant digits for all the reported values. 

      We have addressed the number of significant digits as requested.

      (5) Please report the mean distances from DEER experiments with the standard deviation or FWHM.

      We have addressed this in the revised manuscript, we report modal distances rather than the mean distances and provide the FWHM and standard deviation.

    1. Author response:

      Reviewer #1 (Public Review):

      In this manuscript, Tran et al. investigate the interaction between BICC1 and ADPKD genes in renal cystogenesis. Using biochemical approaches, they reveal a physical association between Bicc1 and PC1 or PC2 and identify the motifs in each protein required for binding. Through genetic analyses, they demonstrate that Bicc1 inactivation synergizes with Pkd1 or Pkd2 inactivation to exacerbate PKD-associated phenotypes in Xenopus embryos and potentially in mouse models. Furthermore, by analyzing a large cohort of PKD patients, the authors identify compound BICC1 variants alongside PKD1 or PKD2 variants in trans, as well as homozygous BICC1 variants in patients with early-onset and severe disease presentation. They also show that these BICC1 variants repress PC2 expression in cultured cells.

      Overall, the concept that BICC1 variants modify PKD severity is plausible, the data are robust, and the conclusions are largely supported. However, several aspects of the study require clarification and discussion:

      (1) The authors devote significant effort to characterizing the physical interaction between Bicc1 and Pkd2. However, the study does not examine or discuss how this interaction relates to Bicc1's well-established role in posttranscriptional regulation of Pkd2 mRNA stability and translation efficiency.

      The reviewer is correct that the present study has not addressed the downstream consequences of this interaction considering that Bicc1 is a posttranscriptional regulator of Pkd2 (and potentially Pkd1). We think that the complex of Bicc1/Pkd1/Pkd2 retains Bicc1 in the cytoplasm and thus restrict its activity in participating in posttranscriptional regulation. As we do not have yet experimental data to support this model, we have not included this model in the manuscript. Yet, we will update the discussion of the manuscript to further elaborate on the potential mechanism of the Bicc1/Pkd1/Pkd2 complex.

      (2) Bicc1 inactivation appears to downregulate Pkd1 expression, yet it remains unclear whether Bicc1 regulates Pkd1 through direct interaction or by antagonizing miR-17, as observed in Pkd2 regulation. This should be further examined or discussed.

      This is a very interesting comment. The group of Vishal Patel published that PKD1 is regulated by a mir-17 binding site in its 3’UTR (PMID: 35965273). We, however, have not evaluated whether BICC1 participates in this regulation. A definitive answer would require us utilize some of the mice described in above reference, which is beyond the scope of this manuscript. We, however, will revise the discussion to elaborate on this potential mechanism.

      (3) The evidence supporting Bicc1 and ADPKD gene cooperativity, particularly with Pkd1, in mouse models is not entirely convincing, likely due to substantial variability and the aggressive nature of Bpk/Bpk mice. Increasing the number of animals or using a milder Bicc1 strain, such as jcpk heterozygotes, could help substantiate the genetic interaction.

      We have initially performed the analysis using our Bicc1 complete knockout, we previously reported on (PMID 20215348) focusing on compound heterozygotes. Yet, like the Pkd1/Pkd2 compound heterozygotes (PMID 12140187) no cyst development was observed until we sacrificed the mice at P21. Our strain is similar to the above mentioned jcpk, which is characterized by a short, abnormal transcript thought to result in a null allele (PMID: 12682776). We thank the reviewer for pointing use to the reference showing the heterozygous mice show glomerular cysts in the adults (PMID: 7723240). This suggestion is an interesting idea we will investigate. In general, we agree with the reviewer that the better understanding the contribution of Bicc1 to the adult PKD phenotype will be critical. To this end, we are currently generating a floxed allele of Bicc1 that will allow us to address the cooperativity in the adult kidney, when e.g. crossed to the Pkd1<sup>RC/RC</sup> mice. Yet, these experiments are unfortunately beyond the scope of this manuscript.

      Reviewer #2 (Public Review):

      Tran and colleagues report evidence supporting the expected yet undemonstrated interaction between the Pkd1 and Pkd2 gene products Pc1 and Pc2 and the Bicc1 protein in vitro, in mice, and collaterally, in Xenopus and HEK293T cells. The authors go on to convincingly identify two large and non-overlapping regions of the Bicc1 protein important for each interaction and to perform gene dosage experiments in mice that suggest that Bicc1 loss of function may compound with Pkd1 and Pkd2 decreased function, resulting in PKD-like renal phenotypes of different severity. These results led to examining a cohort of very early onset PKD patients to find three instances of co-existing mutations in PKD1 (or PKD2) and BICC1. Finally, preliminary transcriptomics of edited lines gave variable and subtle differences that align with the theme that Bicc1 may contribute to the PKD defects, yet are mechanistically inconclusive.

      These results are potentially interesting, despite the limitation, also recognized by the authors, that BICC1 mutations seem exceedingly rare in PKD patients and may not "significantly contribute to the mutational load in ADPKD or ARPKD". The manuscript has several intrinsic limitations that must be addressed.

      As mentioned above, the study was designed to explore whether there is an interaction between BICC1 and the PKD1/PKD2 and whether this interaction is functionally important. How this translates into the clinical relevance will require additional studies (and we have addressed this in the discussion of the manuscript).

      The manuscript contains factual errors, imprecisions, and language ambiguities. This has the effect of making this reviewer wonder how thorough the research reported and analyses have been.

      We respectfully disagree with the reviewer on the latter interpretation. The study was performed with rigor. We have carefully assessed the critiques raised by the reviewer. Most of the criticisms raised by the reviewer will be easily addressed in the revised version of the manuscript. Yet, none of the critiques raised by the reviewer seems to directly impact the overall interpretation of the data.

      Reviewer #3 (Public Review):

      Summary:

      This study investigates the role of BICC1 in the regulation of PKD1 and PKD2 and its impact on cytogenesis in ADPKD. By utilizing co-IP and functional assays, the authors demonstrate physical, functional, and regulatory interactions between these three proteins.

      Strengths:

      (1) The scientific principles and methodology adopted in this study are excellent, logical, and reveal important insights into the molecular basis of cystogenesis.

      (2) The functional studies in animal models provide tantalizing data that may lead to a further understanding and may consequently lead to the ultimate goal of finding a molecular therapy for this incurable condition.

      (3) In describing the patients from the Arab cohort, the authors have provided excellent human data for further investigation in large ADPKD cohorts. Even though there was no patient material available, such as HUREC, the authors have studied the effects of BICC1 mutations and demonstrated its functional importance in a Xenopus model.

      Weaknesses:

      This is a well-conducted study and could have been even more impactful if primary patient material was available to the authors. A further study in HUREC cells investigating the critical regulatory role of BICC1 and potential interaction with mir-17 may yet lead to a modifiable therapeutic target.

      This is an excellent suggestion. We agree with the reviewer that it would have been interesting to analyze HUREC material from the affected patients. Unfortunately, besides DNA and the phenotypic analysis described in the manuscript neither human tissue nor primary patient-derived cells collected before the two patients with the BICC1 p.Ser240Pro mutation passed away. To address this missing link, we have – as a first pass - generated HEK293T cells carrying the BICC1 p.Ser240Pro variant. While these admittingly are not kidney epithelial cells, they indeed show a reduced level of PC2 expression. These data are shown in the manuscript. We have not yet addressed how this relates to its crosstalk with miR-17.

      Conclusion:

      The authors achieve their aims. The results reliably demonstrate the physical and functional interaction between BICC1 and PKD1/PKD2 genes and their products.

      The impact is hopefully going to be manifold:

      (1) Progressing the understanding of the regulation of the expression of PKD1/PKD2 genes.

      (2) Role of BiCC1 in mir/PKD1/2 complex should be the next step in the quest for a modifiable therapeutic target.

    1. Author response:

      (1) General Statements

      As you will see in our attached rebuttal to the reviewers, we have added several new experiments and revised manuscript to fully address their concerns.

      (2) Point-by-point description of the revisions

      Reviewer #1:

      Evidence, reproducibility and clarity

      Summary:

      The manuscript by Yang et al. describes a new CME accessory protein. CCDC32 has been previously suggested to interact with AP2 and in the present work the authors confirm this interaction and show that it is a bona fide CME regulator. In agreement with its interaction with AP2, CCDC32 recruitment to CCPs mirrors the accumulation of clathrin. Knockdown of CCDC32 reduces the amount of productive CCPs, suggestive of a stabilisation role in early clathrin assemblies. Immunoprecipitation experiments mapped the interaction of CCDC42 to the α-appendage of the AP2 complex α-subunit. Finally, the authors show that the CCDC32 nonsense mutations found in patients with cardio-facial-neuro-developmental syndrome disrupt the interaction of this protein to the AP2 complex. The manuscript is well written and the conclusions regarding the role of CCDC32 in CME are supported by good quality data. As detailed below, a few improvements/clarifications are needed to reinforce some of the conclusions, especially the ones regarding CFNDS.

      We thank the referee for their positive comments. In light of a recently published paper describing CCDC32 as a co-chaperone required for AP2 assembly (Wan et al., PNAS, 2024, see reviewer 2), we have added several additional experiments to address all concerns and consequently gained further insight into CCDC32-AP2 interactions and the important dual role of CCDC32 in regulating CME. 

      Major comments:

      (1) Why did the protein could just be visualized at CCPs after knockdown of the endogenous protein? This is highly unusual, especially on stable cell lines. Could this be that the tag is interfering with the expressed protein function rendering it incapable of outcompeting the endogenous? Does this points to a regulated recruitment?

      The reviewer is correct, this would be unusual; however, it is not the case. We misspoke in the text (although the figure legend was correct) these experiments were performed without siRNA knockdown and we can indeed detect eGFP-CCDC32 being recruited to CCPs in the presence of endogenous protein. Nonetheless, we repeated the experiment to be certain (see Author response image 1).  

      Author response image 1.

      Cohort-averaged fluorescence intensity traces of CCPs (marked with mRuby-CLCa) and CCP-enriched eGFPCCDC32(FL).

      (2) The disease mutation used in the paper does not correspond to the truncation found in patients. The authors use an 1-54 truncation, but the patients described in Harel et al. have frame shifts at the positions 19 (Thr19Tyrfs*12) and 64 (Glu64Glyfs*12), while the patient described in Abdalla et al. have the deletion of two introns, leading to a frameshift around amino acid 90. Moreover, to be precisely test the function of these disease mutations, one would need to add the extra amino acids generated by the frame shift. For example, as denoted in the mutation description in Harel et al., the frameshift at position 19 changes the Threonine 19 to a Tyrosine and ads a run of 12 extra amino acids (Thr19Tyrfs*12).

      The label of the disease mutant p.(Thr19Tyrfs12) and p.(Glu64Glyfs12) is based on a 194aa polypeptide version of CCDC32 initiated at a nonconventional start site that contains a 9 aa peptide (VRGSCLRFQ) upstream of the N-terminus we show. Thus, we are indeed using the appropriate mutation site (see: https://www.uniprot.org/uniprotkb/Q9BV29/entry). The reviewer is correct that we have not included the extra 12 aa in our construct; however as these residues are not present in the other CFNDS mutants, we think it unlikely that they contribute to the disease phenotype.  Rather, as neither of the clinically observed mutations contain the 78-98 aa sequence required for AP2 binding and CME function, we are confident that this defect contributed to the disease. Thus, we are including the data on the CCDC32(1-54) mutant, as we believe these results provide a valuable physiological context to our studies. 

      (3) The frameshift caused by the CFNDS mutations (especially the one studied) will likely lead to nonsense mediated RNA decay (NMD). The frameshift is well within the rules where NMD generally kicks in. Therefore, I am unsure about the functional insights of expressing a diseaserelated protein which is likely not present in patients.

      We thank the reviewer for bringing up this concern. However, as shown in new Figure S1, the mutant protein is expressed at comparable levels as the WT, suggesting that NMD is not occurring.

      (4) Coiled coils generally form stable dimers. The typically hydrophobic core of these structures is not suitable for transient interactions. This complicates the interpretation of the results regarding the role of this region as the place where the interaction to AP2 occurs. If the coiled coil holds a stable CCDC32 dimer, disrupting this dimer could reduce the affinity to AP2 (by reduced avidity) to the actual binding site. A construct with an orthogonal dimeriser or a pulldown of the delta78-98 protein with of the GST AP2a-AD could be a good way to sort this issue.

      We were unable to model a stable dimer (or other oligomer) of this protein with high confidence using Alphafold 3.0. Moreover, we were unable to detect endogenous CCDC32 coimmunoprecipitating with eGFP-CCDC32 (Fig. S6C). Thus, we believe that the moniker, based solely on the alpha-helical content of the protein is a misnomer.  We have explained this in the main text.

      Minor comments:

      (1) The authors interchangeably use the term "flat CCPs" and "flat clathrin lattices". While these are indeed related, flat clathrin lattices have been also used to refer to "clathrin plaques". To avoid confusion, I suggest sticking to the term "flat CCPs" to refer to the CCPs which are in their early stages of maturation.

      Agreed. Thank you for the suggestion. We have renamed these structures flat clathrin assemblies, as they do not acquire the curvature needed to classify them as pits, and do not grow to the size that would classify then as plaques. 

      Significance

      General assessment:

      CME drives the internalisation of hundreds of receptors and surface proteins in practically all tissues, making it an essential process for various physiological processes. This versatility comes at the cost of a large number of molecular players and regulators. To understand this complexity, unravelling all the components of this process is vital. The manuscript by Yang et al. gives an important contribution to this effort as it describes a new CME regulator, CCDC32, which acts directly at the main CME adaptor AP2. The link to disease is interesting, but the authors need to refine their experiments. The requirement for endogenous knockdown for recruitment of the tagged CCDC32 is unusual and requires further exploration.

      Advance:

      The increased frequency of abortive events presented by CCDC32 knockdown cells is very interesting, as it hints to an active mechanism that regulates the stabilisation and growth of clathrin coated pits. The exact way clathrin coated pits are stabilised is still an open question in the field.

      Audience:

      This is a basic research manuscript. However, given the essential role of CME in physiology and the growing number of CME players involved in disease, this manuscript can reach broader audiences.

      We thank the referee for recognizing the ‘interesting’ advances our studies have made and for considering these studies as ‘an important contribution’ to ‘an essential process for various physiological processes’ and able ‘to reach broader audiences’. We have addressed and reconciled the reviewer’s concerns in our revised manuscript. 

      Field of expertise of the reviewer:

      Clathrin mediated endocytosis, cell biology, microscopy, biochemistry.

      Reviewer #2:

      Evidence, reproducibility and clarity

      In this manuscript, the authors demonstrate that CCDC32 regulates clathrin-mediated endocytosis (CME). Some of the findings are consistent with a recent report by Wan et al. (2024 PNAS), such as the observation that CCDC32 depletion reduces transferrin uptake and diminishes the formation of clathrin-coated pits. The primary function of CCDC32 is to regulate AP2 assembly, and its depletion leads to AP2 degradation. However, this study did not examine AP2 expression levels. CCDC32 may bind to the appendage domain of AP2 alpha, but it also binds to the core domain of AP2 alpha.

      We thank the reviewer for drawing our attention to the Wan et al. paper, that appeared while this work was under review.  However, our in vivo data are not fully consistent with the report from Wan et al. The discrepancies reveal a dual function of CCDC32 in CME that was masked by complete knockout vs siRNA knockdown of the protein, and also likely affected by the position of the GFP-tag (C- vs N-terminal) on this small protein. Thus:

      -  Contrary to Wan et al., we do not detect any loss of AP2 expression (see new Figure S3A-B) upon siRNA knockdown. Most likely the ~40% residual CCDC32 present after siRNA knockdown is sufficient to fulfill its catalytic chaperone function but not its structural role in regulating CME beyond the AP2 assembly step.  

      - Contrary to Wan et al., we have shown that CCDC32 indeed interacts with intact AP2 complex (Figure S3C and 6B,C) showing that all 4 subunits of the AP2 complex co-IP with full length eGFP-CCDC32. Interestingly, whereas the full length CCDC32 pulls down the intact AP2 complex, co-IP of the ∆78-98 mutant retains its ability to pull down the β2-µ2 hemicomplex, its interactions with α:σ2 are severely reduced.  While this result is consistent with the report of Wan et al that CCDC32 binds to the α:σ2 hemi-complex, it also suggests that the interactions between CCDC32 and AP2 are more complex and will require further studies.

      - Contrary to Wan et al., we provide strong evidence that CCDC32 is recruited to CCPs. Interestingly, modeling with AlphaFold 3.0 identifies a highly probably interaction between alpha helices encoded by residues 66-91 on CCDC32 and residues 418-438 on α. The latter are masked by µ2-C in the closed confirmation of the AP2 core, but exposed in the open confirmation triggered by cargo binding, suggesting that CCDC32 might only bind to membrane-bound AP2.

      Thus, our findings are indeed novel and indicate striking multifunctional roles for CCDC32 in CME, making the protein well worth further study. 

      (1) Besides its role in AP2 assembly, CCDC32 may potentially have another function on the membrane. However, there is no direct evidence showing that CCDC32 associates with the plasma membrane.

      We disagree, our data clearly shows that CCDC32 is recruited to CCPs (Fig. 1B) and that CCPs that fail to recruit CCDC32 are short-lived and likely abortive (Fig. 1C). Wan et al. did not observe any colocalization of C-terminally tagged CCDC32 to CCPs, whereas we detect recruitment of our N-terminally tagged construct, which we also show is functional (Fig. 6F).  Further, we have demonstrated the importance of the C-terminal region of CCDC32 in membrane association (see new Fig. S7).  Thus, we speculate that a C-terminally tagged CCDC32 might not be fully functional. Indeed, SIM images of the C-terminally-tagged CCDC32 in Wan et al., show large (~100 nm) structures in the cytosol, which may reflect aggregation. 

      (2) CCDC32 binds to multiple regions on AP2, including the core domain. It is important to distinguish the functional roles of these different binding sites.

      We have localized the AP2-ear binding region to residues 78-99 and shown these to be critical for the functions we have identified. As described above we now include data that are complementary to those of Wan et al. However, our data also clearly points to additional binding modalities. We agree that it will be important and map these additional interactions and identify their functional roles, but this is beyond the scope of this paper.  

      (3) AP2 expression levels should be examined in CCDC32 depleted cells. If AP2 is gone, it is not surprising that clathrin-coated pits are defective.

      Agreed and we have confirmed this by western blotting (Figure S3A-B) and detect no reduction in levels of any of the AP2 subunits in CCDC32 siRNA knockdown cells. As stated above this could be due to residual CCDC32 present in the siRNA KD vs the CRISPR-mediated gene KO.

      (4) If the authors aim to establish a secondary function for CCDC32, they need to thoroughly discuss the known chaperone function of CCDC32 and consider whether and how CCDC32 regulates a downstream step in CME.

      Agreed. We have described the Wan et al paper, which came out while our manuscript was in review, in our Introduction.  As described above, there are areas of agreement and of discrepancies, which are thoroughly documented and discussed throughout the revised manuscript.  

      (5) The quality of Figure 1A is very low, making it difficult to assess the localization and quantify the data.

      The low signal:noise in Fig. 1A the reviewer is concerned about is due to a diffuse distribution of CCDC32 on the inner surface of the plasma membrane. We now, more explicitly describe this binding, which we believe reflects a specific interaction mediated by the C-terminus of CCDC32; thus the degree of diffuse membrane binding we observe follows: eGFP-CCDC32(FL)> eGFPCCDC32(∆78-98)>eGFP-CCDC32(1-54)~eGFP/background (see new Fig. S7). Importantly, the colocalization of CCDC32 at CCPs is confirmed by the dynamic imaging of CCPs (Fig 1B).

      (6) In Figure 6, why aren't AP2 mu and sigma subunits shown?

      Agreed. Not being aware of CCDC32’s possible dual role as a chaperone, we had assumed that the AP2 complex was intact.  We have now added this data in Figure 6 B,C and Fig. S3C, as discussed above. 

      Page 5, top, this sentence is confusing: "their surface area (~17 x 10 nm<sup>2</sup>) remains significantly less than that required for the average 100 nm diameter CCV (~3.2 x 103 nm<sup>2</sup>)."

      Thank you for the criticism. We have clarified the sentence and corrected a typo, which would definitely be confusing.  The section now reads,  “While the flat CCSs we detected in CCDC32 knockdown cells were significantly larger than in control cells (Fig. 4D, mean diameter of 147 nm vs. 127 nm, respectively), they are much smaller than typical long-lived flat clathrin lattices (d≥300 nm)(Grove et al., 2014). Indeed, the surface area of the flat CCSs that accumulate in CCDC32 KD cells (mean ~1.69 x 10<sup>4</sup> nm<sup>2</sup>) remains significantly less than the surface area of an average 100 nm diameter CCV (~3.14 x 10<sup>4</sup> nm<sup>2</sup>). Thus, we refer to these structures as ‘flat clathrin assemblies’ because they are neither curved ‘pits’ nor large ‘lattices’. Rather, the flat clathrin assemblies represent early, likely defective, intermediates in CCP formation.” 

      Significance

      Overall, while this work presents some interesting ideas, it remains unclear whether CCDC32 regulates AP2 beyond the assembly step.

      Our responses above argue that we have indeed established that CCDC32 regulates AP2 beyond the assembly step. We have also identified several discrepancies between our findings and those reported by Wan et al., most notably binding between CCDC32 and mature AP2 complexes and the AP2-dependent recruitment of CCDC32 to CCPs.  It is possible that these discrepancies may be due to the position of the GFP tag (ours is N-terminal, theirs is C-terminal; we show that the N-terminal tagged CCDC32 rescues the knockdown phenotype, while Wan et al., do not provide evidence for functionality of the C-terminal construct). 

      Reviewer #3: 

      Evidence, reproducibility and clarity (Required): 

      In this manuscript, Yang et al. characterize the endocytic accessory protein CCDC32, which has implications in cardio-facio-neuro-developmental syndrome (CFNDS). The authors clearly demonstrate that the protein CCDC32 has a role in the early stages of endocytosis, mainly through the interaction with the major endocytic adaptor protein AP2, and they identify regions taking part in this recognition. Through live cell fluorescence imaging and electron microscopy of endocytic pits, the authors characterize the lifetimes of endocytic sites, the formation rate of endocytic sites and pits and the invagination depth, in addition to transferrin receptor (TfnR) uptake experiments. Binding between CCDC32 and CCDC32 mutants to the AP2 alpha appendage domain is assessed by pull down experiments. Together, these experiments allow deriving a phenotype of CCDC32 knock-down and CCDC32 mutants within endocytosis, which is a very robust system, in which defects are not so easily detected. A mutation of CCDC32, known to play a role in CFNDS, is also addressed in this study and shown to have endocytic defects.

      We thank the reviewer for their positive remarks regarding the quality of our data and the strength of our conclusions.  

      In summary, the authors present a strong combination of techniques, assessing the impact of CCDC32 in clathrin mediated endocytosis and its binding to AP2, whereby the following major and minor points remain to be addressed: 

      - The authors show that CCDC32 depletion leads to the formation of brighter and static clathrin coated structures (Figure 2), but that these were only prevalent to 7.8% and masked the 'normal' dynamic CCPs. At the same time, the authors show that the absence of CCDC32 induces pits with shorter life times (Figure 1 and Figure 2), the 'majority' of the pits.

      Clarification is needed as to how the authors arrive at these conclusions and these numbers. The authors should also provide (and visualize) the corresponding statistics. The same statement is made again later on in the manuscript, where the authors explain their electron microscopy data. Was the number derived from there? 

      These points are critical to understanding CCDC32's role in endocytosis and is key to understanding the model presented in Figure 8. The numbers of how many pits accumulate in flat lattices versus normal endocytosis progression and the actual time scales could be included in this model and would make the figure much stronger. 

      Thank you for these comments.  We understand the paradox between the visual impression and the reality of our dynamic measurements. We have been visually misled by this in previous work (Chen et al., 2020), which emphasizes the importance of unbiased image analysis afforded to us through the well-documented cmeAnalysis pipeline, developed by us (Aguet et al., 2013) and now used by many others (e.g. (He et al., 2020)). 

      The % of static structures was not derived from electron microscopy data, but quantified using cmeAnalysis, which automatedly provides the lifetime distribution of CCPs. We have now clarified this in the manuscript and added a histogram (Fig. S4) quantifying the fraction of CCPs in lifetime cohorts  <20s, 21-60s, 61-100s, 101-150s and >150s (static). 

      - In relation to the above point, the statistics of Figure 2E-G and the analysis leading there should also be explained in more detail: For example, what are the individual points in the plot (also in Figures 6G and 7G)? The authors should also use a few phrases to explain software they use, for example DASC, in the main text. 

      Each point in these bar graphs represents a movie, where n≥12. These details have been added to the respective figure legend. We have also added a brief description of DASC analysis in the text. 

      -  There are several questions related to the knock-down experiments that need to be addressed:

      Firstly, knock-down of CCDC32 does not seem to be very strong (Figure S2B). Can the level of knock-down be quantified? 

      We have now quantified the KD efficiency. It is ~60%. This turns out to be fortuitous (see responses to reviewer 2), as a recent publication, which came out after we completed our study, has shown by CRISPR-mediated knockout, that CCD32 also plays an essential chaperone function required for AP2 assembly.  We do not see any reduction in AP2 levels or its complex formation under our conditions (see new Supplemental Figure S3), which suggests that the effects of CCDC32 on CCP dynamics are more sensitive to CCDC32 concentration than its roles as a chaperone. Our phenotypes would have been masked by more efficient depletion of CCDC32.  

      In page 6 it is indicated that the eGFP-CCDC32(1-54) and eGFP-CCDC32(∆78-98) constructs are siRNA-resistant. However in Fig S2B, these proteins do not show any signal in the western blot, so it is not clear if they are expressed or simply not detected by the antibody. The presence of these proteins after silencing endogenous CCDC32 needs to be confirmed to support Figures 6 and Figures 7, which critically rely on the presence of the CCDC32 mutants. 

      Unfortunately, the C-terminally truncated CCDC32 proteins are not detected because they lack the antibody epitope, indeed even the ∆78-98 deletion is poorly detected (compare the GFP blot in new S1A with the anti-CCDC32 blot in S1B).  However, these constructs contain the same siRNA-resistance mutation as the full length protein. That they are expressed and siRNA resistant can be seen in Fig. S2A (now Fig. S1A) blotting for GFP.

      In Figures 6 and 7, siRNA knock-down of CCDC32 is only indicated for sub-figures F to G. Is this really the case? If not, the authors should clarify. The siRNA knock-down in Figure 1 is also only mentioned in the text, not in the figure legend. The authors should pay attention to make their figure legends easy to understand and unambiguous. 

      No, it is not the case.  Thank you for pointing out the uncertainty. We have added these details to the Figure legends and checked all Figure legends to ensure that they clearly describe the data shown.  

      - It is not exactly clear how the curves in Figure 3C (lower panel) on the invagination depth were obtained. Can the authors clarify this a bit more? For example, what are kT and kE in Figure 3A? What is I0? And how did the authors derive the logarithmic function used to quantify the invagination depth? In the main text, the authors say that the traces were 'logarithmically transformed'. This is not a technical term. The authors should refer to the actual equation used in the figure. 

      This analysis was developed by the Kirchhausen lab (Saffarian and Kirchhausen, 2008). We have added these details and reference them in the Figure legend and in the text. We also now use the more accurate descriptor ‘log-transformed’.

      - In the discussion, the claim 'The resulting dysregulation of AP2 inhibits CME, which further results in the development of CFNDS.' is maybe a bit too strong of a statement. Firstly, because the authors show themselves that CME is perturbed, but by no means inhibited. Secondly, the molecular link to CFNDS remains unclear. Even though CCDC32 mutants seem to be responsible for CFNDS and one of the mutant has been shown in this study to have a defect in endocytosis and AP2 binding, a direct link between CCDC32's function in endocytosis and CFNDS remains elusive. The authors should thus provide a more balanced discussion on this topic. 

      We have modified and softened our conclusions, which now read that the phenotypes we see likely “contribute to” rather than “cause” the disease.

      - In Figure S1, the authors annotate the presence of a coiled-coil domain, which they also use later on in the manuscript to generate mutations. Could the authors specify (and cite) where and how this coiled-coil domain has been identified? Is this predicted helix indeed a coiled-coil domain, or just a helix, as indicated by the authors in the discussion?

      See response to Reviewer 1, point 4.  We have changed this wording to alpha-helix. The ‘coiled-coil’ reference is historical and unlikely a true reflection of CCDC32 structure. AlphaFold 3.0 predictions were unable to identify with certainly any coiled-coil structures, even if we modelled potential dimers or trimers; and we find no evidence of dimerization of CCDC32 in vivo. We have clarified this in the text.

      Minor comments

      - In general, a more detailed explanation of the microscopy techniques used and the information they report would be beneficial to provide access to the article also to non-expert readers in the field. This concerns particularly the analysis methods used, for example: 

      How were the cohort-averaged fluorescence intensity and lifetime traces obtained? 

      How do the tools cmeAnalysis and DASC work? A brief explanation would be helpful. 

      We have expanded Methods to add these details, and also described them in the main text. 

      - The axis label of Figure 2B is not quite clear. What does 'TfnR uptake % of surface bound' mean? Maybe the authors could explain this in more detail in the figure legend? Is the drop in uptake efficiency also accessible by visual inspection of the images? It would be interesting to see that. 

      This is a standard measure of CME efficiency. 'TfnR uptake % of surface bound' = Internalized TfnR/Surface bound TfnR. Again, images may be misleading as defects in CME lead to increased levels of TfnR on the cell surface, which in turn would result in more Tfn uptake even if the rate of CME is decreased.

      - Figure 4: How is the occupancy of CCPs in the plasma membrane measured? What are the criteria used to divide CCSs into Flat, Dome or Sphere categories? 

      We have expanded Methods to add these details. Based on the degree of invagination, the shapes of CCSs were classified as either: flat CCSs with no obvious invagination; dome-shaped CCSs that had a hemispherical or less invaginated shape with visible edges of the clathrin lattice; and spherical CCSs that had a round shape with the invisible edges of clathrin lattice in 2D projection images. In most cases, the shapes were obvious in 2D PREM images. In uncertain cases, the degree of CCS invagination was determined using images tilted at ±10–20 degrees. The area of CCSs were measured using ImageJ and used for the calculation of the CCS occupancy on the plasma membrane.

      - Figure 5B: Can the authors explain, where exactly the GFP was engineered into AP2 alpha? This construct does not seem to be explained in the methods section. 

      We have added this information. The construct, which corresponds to an insertion of GFP into the flexible hinge region of AP2, at aa649, was first described by (Mino et al., 2020) and shown to be fully functional.  This information has been added to the Methods section.

      - Figure S1B: The authors should indicate the colour code used for the structural model.

      We have expanded our structural modeling using AlphaFold 3.0 in light of the recent publication suggesting the CCDC32 interacts with the µ2 subunit and does not bind full length AP2. These results are described in the text. The color coding now reflects certainty values given by AlphaFold 3.0 (Fig. S6B, D). 

      - The list of primers referred to in the materials and methods section does not exist. There is a Table S1, but this contains different data. The actual Table S1 is not referenced in the main text. This should be done. 

      We apologize for this error. We have now added this information in Table S2.

      Significance (Required):

      In this study, the authors analyse a so-far poorly understood endocytic accessory protein, CCDC32, and its implication for endocytosis. The experimental tool set used, allowing to quantify CCP dynamics and invagination is clearly a strength of the article that allows assessing the impact of an accessory protein towards the endocytic uptake mechanism, which is normally very robust towards mutations. Only through this detailed analysis of endocytosis progression could the authors detect clear differences in the presence and absence of CCDC32 and its mutants. If the above points are successfully addressed, the study will provide very interesting and highly relevant work allowing a better understanding of the early phases in CME with implication for disease. 

      The study is thus of potential interest to an audience interested in CME, in disease and its molecular reasons, as well as for readers interested in intrinsically disordered proteins to a certain extent, claiming thus a relatively broad audience. The presented results may initiate further studies of the so-far poorly understood and less well known accessory protein CCDC32.

      We thank the reviewer for their positive comments on the significance of our findings and the importance of our detailed phenotypic analysis made possible by quantitative live cell microscopy. We also believe that our new structural modeling of CCDC32 and our findings of complex and extensive interactions with AP2 make the reviewers point regarding intrinsically disordered proteins even more interesting and relevant to a broad audience.  We trust that our revisions indeed address the reviewer’s concerns. 

      The field of expertise of the reviewer is structural biology, biochemistry and clathrin mediated endocytosis. Expertise in cell biology is rather superficial.

      References:

      Aguet, F., Costin N. Antonescu, M. Mettlen, Sandra L. Schmid, and G. Danuser. 2013. Advances in Analysis of Low Signal-to-Noise Images Link Dynamin and AP2 to the Functions of an Endocytic Checkpoint. Developmental Cell. 26:279-291.

      Chen, Z., R.E. Mino, M. Mettlen, P. Michaely, M. Bhave, D.K. Reed, and S.L. Schmid. 2020. Wbox2: A clathrin terminal domain–derived peptide inhibitor of clathrin-mediated endocytosis. Journal of Cell Biology. 219.

      Grove, J., D.J. Metcalf, A.E. Knight, S.T. Wavre-Shapton, T. Sun, E.D. Protonotarios, L.D. Griffin, J. Lippincott-Schwartz, and M. Marsh. 2014. Flat clathrin lattices: stable features of the plasma membrane. Mol Biol Cell. 25:3581-3594.

      He, K., E. Song, S. Upadhyayula, S. Dang, R. Gaudin, W. Skillern, K. Bu, B.R. Capraro, I. Rapoport, I. Kusters, M. Ma, and T. Kirchhausen. 2020. Dynamics of Auxilin 1 and GAK in clathrinmediated traffic. J Cell Biol. 219.

      Mino, R.E., Z. Chen, M. Mettlen, and S.L. Schmid. 2020. An internally eGFP-tagged α-adaptin is a fully functional and improved fiduciary marker for clathrin-coated pit dynamics. Traffic. 21:603-616.

      Saffarian, S., and T. Kirchhausen. 2008. Differential evanescence nanometry: live-cell fluorescence measurements with 10-nm axial resolution on the plasma membrane. Biophys J. 94:23332342.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reviewer #1

      Evidence, reproducibility and clarity

      In their manuscript de las Mercedes Carro et al investigated the role of Ago proteins during spermatogenesis by producing a triple knockout of Ago 1, 3 and 4. They first describe the pattern of expression of each protein and of Ago2 during the differentiation of male germ cells, then they describe the spermatogenesis phenotype of triple knockout males, study gene deregulation by scRNA seq and identify novel interacting proteins by co-IP mass spectrometry, in particular BRG1/SMARCA4, a chromatin remodeling factor and ATF2 a transcription factor. The main message is that Ago3 and 4 are involved in the regulation of XY gene silencing during meiosis, and also in the control of autosomal gene expression during meiosis. Overall the manuscript is well written, the topic, very interesting and the experiments, well-executed. However, there are some parts of the methodology and data interpretation that are unclear (see below).

      Major comments

      1= Please clarify how the triple KO was obtained, and if it is constitutive or specific to the male germline. In the result section a Cre (which cre?) is mentioned but it is not mentioned in the M&M. On Figure S1, a MICER VECTOR is shown instead of a deletion, but nothing is explained in the text nor legend. Could the authors provide more details in the results section as well as in the M&M ? This is essential to fully interpret the results obtained for this KO line, and to compare its phenotype to other lines (such as lines 184-9 Comparison of triple KO phenotype with that of Ago4 KO). Also, if it is a constitutive KO, the authors should mention if they observed other phenotypes in triple KO mice since AGO proteins are not only expressed in the male germline.

      Response: We apologize for omitting this vital information. We have now incorporated a more detailed description of how the Ago413 mutant was created in the results and M&M sections (line 120 and 686 respectively).

      As mentioned in the manuscript, Ago4, Ago1 and Ago3 are widely expressed in mammalian somatic tissues. Mutations or deletions of these genes does not disrupt development; however, there is limited research on the impact of these mutations in mammalian models in vivo. In humans, mutations in Ago1 and Ago3 genes are associated with neurological disorders, autism and intellectual disability (Tokita, M.J.,et al. 2015- doi: 10.1038/ejhg.2014.202., Sakaguchi et al. 2019- doi: 10.1016/j.ejmg.2018.09.004, Schalk et al 2021- doi: 10.1136/jmedgenet-2021-107751). In mouse, global deletion of Ago1 and Ago3 simultaneously was shown to increase mice susceptibility to influenza virus through impaired inflammation responses (Van Stry et al 2012- doi.org/10.1128/jvi.05303-11). Studies performed in female Ago413 mutants (the same mutant line used herein) have shown that knockout mice present postnatal growth retardation with elevated circulating leukocytes (Guidi et al 2023- doi: 10.1016/j.celrep.2023.113515). Other studies of double conditional knockout of Ago1 and Ago3 in the skin associated the loss of these Argonautes with decreased weight of the offspring and severe skin morphogenesis defects (Wang et al 2012- doi: 10.1101/gad.182758.111). In our study, we did not observe major somatic or overt behavioral phenotypes, and we did not observe statistical differences in body weights of null males compared to WT as shown in figure below.

      2= The paragraph corresponding to G2/M analysis is unclear to me. Why was this analysis performed? What does the heatmap show in Figure S4? What is G2/M score? (Fig 2D). Lines 219-220, do the authors mean that Pachytene cells are in a cell phase equivalent to G2/M? All this paragraph and associated figures require more explanation to clarify the method and interpretation.

      __Response: __We have modified the methods to include more information about how the cell cycle scoring used in Figures 2D and S4 were calculated and will add more information regarding the interpretation of these figures.

      3= I have concerns regarding Fig2G: to be convincing the analysis needs to be performed on several replicates, and, it is essential to compare tubules of the same stage - which does not seem to be the case. This does not appear to be the case. Besides, co (immunofluorescent) staining with markers of different cell types should be shown to demonstrate the earlier expression of some markers and their colocalization with markers of the earlier stages.

      __Response: __We agree with the Reviewer. New images with staged tubules will be added to the analysis of Figure 2G.

      4= one important question that I think the authors should discuss regarding their scRNAseq: clusters are defined using well characterized markers. But Ago triple KO appears to alter the timing of expression of genes... could this deregulation affects the interperetation of scRNAseq clusters and results?

      __Response: __We thank the reviewer for this suggestion and agree that including this information is important. We expect that, at most, this dysregulation impacts the edges of these clusters slightly. Given that marker genes that have been used to define cell types in these data are consistently expressed between the knockout and wildtype mice (see Figure S4A), we do not think that the cells in these clusters have different identities, just dysregulated expression programs. We have added the relevant sentence to the discussion, and will include additional supplemental figure panels to document this point more comprehensively.

      5= XY gene deregulation is mentioned throughout the result section but only X chromosome genes seem to have been investigated.... Even the gene content of the Y is highly repetitive, it would be very interesting to show the level of expression of Y single copy and Y multicopy genes in a figure 3 panel.

      __Response: __We agree with the reviewer that including analysis of Y-linked genes is important. We will add a supplemental figure which includes the Y:Autosome ratio and differential expression analysis.

      6= Can the authors elaborate on the observation that X gene upregulation is visible in the KO before MSCI; that is in lept/zygotene clusters (and in spermatogonia, if the difference visible in 3A is significant?)

      Response: We do see that X gene expression is upregulated before pachynema. Previous scRNA-seq studies that have looked at MCSI have seen that silencing of genes on the X and Y chromosomes starts before the cell clusters that are defined as pachynema, though silencing is not fully completed until pachynema. We have clarified this point in the manuscript.

      7 = miRNA analysis: could the authors indicate if X encoded miRNA were identified and found deregulated? Because Ago4 has been shown to lead to a downregulation of miRNA, among which many X encoded. It is therefore puzzling to see that the triple KO does not recapitulate this observation. Were the analyses performed differently in the present study and in Ago4 KO study?

      __Response: __The analysis identifying downregulation of miRNA in the original Ago4 mutant analysis was conducted relative to total small RNA expression. Amongst those altered miRNA families in the Ago4 mutants, we demonstrated both upregulation and downregulation of miRNA. We agree that confirming a similar global downregulation of miRNA counts compared to other small RNAs is important. Therefore, in a revised manuscript, we will add this information to the miRNA analysis section, especially highlighting the X chromosome-associated miRNAs, as well as whether the ratios between other small RNA classes change.

      8 = The last results paragraph would also benefit from some additional information. It is not clear why the authors focused on enhancers and did not investigate promoters (or maybe they were but it's unclear). Which regions (size and location from TSS) were investigated for motif enrichment analyses? To what correspond the "transcriptional regulatory regions previously identified using dREG" mentioned in the M&M? I understand it's based on a previous article, but more info in the present manuscript would be useful.

      Response: We thank the reviewer for this suggestion. The regions that were used for motif enrichment will be included as a supplementary information in the fully revised manuscript. We have also clarified in the methods that these transcriptional regulatory regions were downloaded from GEO and obtained from previous ChRO-seq data (from GEO) analysis. These data are run through the dREG pipeline that identifies regions predicted to contain transcription start sites, which include promoters and enhancers.

      Minor comments

      1) In the introduction: The sentence "Ago1 is not expressed in the germline from the spermatogonia stage onwards allowing us to use this model to study the roles of Ago4 and Ago3 in spermatogenesis." is misleading because Ago1 is expressed at least in spermatogonia; It would be more precise to write "after spermatogonia stage" and rephrase the sentence. Otherwise it is surprising to see AGO1 protein in testis lysate and it is not in line with the scRNA seq shown in figure 2.

      __Response: __We agree with the Reviewers suggestion and have edited the sentence on line 100. This sentence now reads "Ago1 is not expressed in the germline after the spermatogonia stage allowing us to use this model to study the roles of Ago4 and Ago3 in spermatogenesis".

      2) Could the authors precise if AGO proteins are expressed in other tissues? In somatic testicular cells?

      __Response: __Expression patterns of mammalian AGOs have been described in somatic and testicular tissues for the mouse by Gonzales-Gonzales et al (2008) by qPCR. They found that Ago2 is expressed in all the somatic tissues analyzed (brain, spleen, heart, muscle and lung) as well as the testis, with the highest expression in brain and lowest in heart. Ago1 is highly expressed in spleen compared to all the tissues analyzed, while Ago3 and Ago4 showed highest expression in testis and brain. Within somatic tissues of the testis, the four argonautes are expressed in Sertoli cells, however, Ago1,3 and 4 expression is very low compared to Ago2, with the latter showing a 10-fold higher transcript level. We have included a sentence with this information in the introduction in line 89.

      3) Pattern of expression: How do the authors explain that AGO3 disappears at the diplotene stage and reappears in spermatids?

      __Response: __ Single cell RNAseq data in the germline shows reduced transcript for Ago3 from the Pachytene stage onwards, suggesting minimal if any new transcription in round spermatids. We hypothesize that the AGO3 protein present in the round spermatid stage is cytoplasmic, presumably coming from the pool of AGO3 in the chromatoid body, a cytoplasmic structure with functional association with the nucleus in round spermatids (Kotaja et al, 2003 doi: 10.1073/pnas.05093331).

      4) It would be useful to show the timing of expression of AGO 1 to 4 throughout spermatogenesis in the first paragraph of the article. Maybe the authors could present data from fig2B earlier?

      Response: We understand the Reviewers concern, however, given that Ago expression throughout spermatogenesis was obtained from scRNA seq, we consider that this data should be presented after introducing the Ago413 knockout and the scRNA seq experiment. As Ago1-4 expression was also described in an earlier manuscript by Gonzales-Gonzales et al in the mouse male germline, and our data aligns with this report, we included a sentence about these previous findings in the earlier results section.

      5) Line 190: please modify the sentence "reveal no differences in cellular architecture of the seminiferous tubules when compared to wild-type males" to " reveal no gross differences..." since even without quantification of the different cell types it is visible that KO seminiferous tubules are different from WT tubules.

      __Response: __We agree with the reviewer, and we modified line 190 (now 173) as suggested. Grossly, seminiferous tubules from Ago413 null males contain the same cell types as in wild type tubules, including spermatozoa. However, our studies show that the number and quality of germ cells is compromised in knockouts, as shown by sperm counts and TUNEL staining.

      6) TUNEL analysis: please stage the tubules to determine the stage(s) at which apoptosis is the most predominant.

      __Response: __We have complied with the reviewer suggestion. Figure 1G now shows staged seminiferous tubules, and we have replaced the wild type image for one where the staged tubules match the knockout image.

      7) Figure S4B does not show an increase of cells at Pachytene stage but at Lepto/zygotene stage (as well as an increase of spermatogonia). Please comment this discrepancy with results shown in Fig2.

      __Response: __Figures 2 and S4 show distribution of cells in different substages of spermatogenesis and prophase I measured with very different methods: a cytological approach using chromosome spreads cells vs a transcriptomic approach that involves clustering of cells. We attribute the differences in cell type distribution to differences in the sensitivity of the methods to identify each cell type and therefore identify differences between the number of cells for each group. Moreover, our scRNA-seq data groups the leptotene and zygotene stages together, while the cytological approach allows for separation of these two sub-stages. Importantly, both results show that Ago413 spermatocytes are progressing slower from pachynema into diplonema and/or are dying after pachynema, as stated in line 194 in our manuscript.

      8) Fig5H and 5I are not mentioned in the result section. Also, it would be useful to label them with "all chromosomes" and "XY" to differentiate them easily

      __Response: __We apologize for the omission and have now cited Figures 5H and 5I in the manuscript (line 453). We have added the suggested labels.

      9) Line 530 "data provide further evidence for a functional association between AGO-dependent small RNAs and heterochromatin formation, maintenance and/or silencing." Please rephrase, the present article does not really show that AGO nuclear role depends on small RNAs.

      __Response____: __We agree with the reviewer that these data do not directly show a dependence on small RNAs. As our identified localization of AGO proteins to the pericentric heterochromatin coincides with localization of DICER shown previously by Yadav and collaborators (2020, doi: 10.1093/nar/gkaa460), we do believe that our data further implicates small RNAs in the silencing of heterochromatin. Yadav et al shows that DICER localizes to pericentromeric heterochromatin and processes major satellite transcripts into small RNAs in mouse spermatocytes, and cKO germ cells have reduced localization of SUV39H2 and H3K9me3 to the pericentromeric heterochromatin. Given the colocalization of both small RNA producing machinery and AGOs at pericentromeric heterochromatin, the AGOs may bind these small RNAs, and the statement in line 530 refers to how our results provide evidence for the involvement of other RNAi machinery in the silencing of pericentromeric heterochromatin investigated by Yadav et al which likely includes small RNAs.

      To clarify this point, we have modified the text accordingly.

      10) Line 1256: replace "cite here " by appropriate reference

      __Response: __The reference was added to line 1256.

      11) Please use SMARCA4 instead of BRG1 name as it is its official name.

      __Response: __We have replaced BRG1 with SMARCA4 in the text and figures.

      Figures:

      Figure 1: Are the pictures shown for Ago3-tagged and floxed from the same stages ? The leptotene stage in 1A looks like a zygotene, while some pachytene/diplotene stage pictures do not look alike.

      __Response: __New representative images have been added to figure 1 to match the same substages across the figure.

      Figure 1D, please label the Y scale properly (testis weight related to body weight)

      __Response: __We have fixed this.

      FigS1: Please comment the presence of non-specific bands in the figure legend

      __Response: __We have added a sentence in Figure S1 Legend.

      Fig 2E and F, please indicate on the figure (in addition to its legend), what are the X and Y axes respectively to facilitate its reading.

      __Response: __X and Y axes are now labelled in Figure 2E and F.

      2F: please use an easier abbreviation for Spermatocyte than Sp (which could spermatogonia, sperm etc..) such as Scyte I ? (same comment for Fig 3C)

      Response: The abbreviation for spermatocyte was changed from Sp to Scyte I in Figures 2 and 3.

      Overall, for all figures showing GSEA analyses, could the authors explain what a High positive NES and a High negative NES mean in the results section?

      Response: Thank you for this suggestion. We have added this information where the GSEA score of the cell markers is initially introduced.

      Significance

      Ago proteins are known for their roles in post transcriptional gene regulation via small RNA mediated cleavage of mRNA, which takes places in the cytoplasm. Some Ago proteins have been shown to be also located in the nucleus suggesting other non-canonical roles. It is the case of Ago4 which has been shown to localize to the transcriptionally silenced sex chromosomes (called sex body) of the spermatocyte nucleus, where it contributes to regulate their silencing (Modzelewski et al 2012). Interestingly, Ago4 knockout leads to Ago3 upregulation, including on the sex body indicating that Ago3 and Ago4 are involved in the same nuclear process. In their manuscript, de las Mercedes Carro et al., investigate the consequences of loss of both Ago3 and Ago4 in the male germline by the production of a triple knockout of Ago1, 3 and 4 in the mouse. With this model, the authors describe the role of Ago3 and Ago4 during spermatogenesis and show that they are involved in sex chromosome gene repression in spermatocytes and in round spermatids, as well as in the control of autosomal meiotic gene expression. Triple KO males have impaired meiosis and spermiogenesis, with fewer and abnormal spermatozoa resulting in reduced fertility. Since Ago1 male germline expression is restricted to pre-meiotic germ cells, it is not expected to contribute to the meiotic and postmeiotic phenotypes observed in the triple KO. The strengths of the study are i) the thorough analyses of mRNA expression at the single cell level, and in purified spermatocytes and spermatids (bulk RNAseq), ii) the identification of novel nuclear partners of AGO3/4 relevant for their described nuclear role: ATF2, which they show to also co-localize with the sex body, and BRG1/SMARCA4, a SWI/SNF chromatin remodeler. The main limitation of the study is the lack of information in the method regarding the production of the triple KO, as well as some aspects of the transcriptome and motif analyses. It is also surprising to see that the triple KO does not recapitulate the miRNA deregulation observed in Ago4 KO. The characterization of a non-canonical role of AGO3/4 in male germ cells will certainly influence researchers of the field, and also interest a broader audience studying Argonaute proteins and gene regulation at transcriptional and posttranscriptional levels.

      Reviewer #2

      Evidence, reproducibility and clarity

      In the manuscript titled "Argonaute proteins regulate the timing of the spermatogenic transcriptional program" by Carro et al., the authors present their findings on how Argonaute proteins regulate spermatogenic development. They utilize a mouse model featuring a deletion of the gene cluster on chromosome 4 that contains Ago1, Ago3, and Ago4 to investigate the cumulative roles of AGO3 and AGO4 in spermatogenic cells. The authors characterize the distribution of AGO proteins and their effects on key meiotic milestones such as synapsis, recombination, meiotic transcriptional regulation, and meiotic sex chromosome inactivation (MSCI). They analyze stage-specific transcriptomes in spermatogenic cells using single-cell and bulk RNA sequencing and determine the interactome of AGO3 and AGO4 through mass spectrometry to examine how AGO proteins may regulate gene expression in these cells during meiotic and post-meiotic development. The authors conclude that both AGO3 and AGO4 are essential for regulating the overall gene expression program in spermatogenic cells and specifically modulate MSCI to repress sex-linked genes in pachytene spermatocytes, which may be partially mediated by the proper distribution of DNA damage repair factors. Additionally, AGO3 is suggested to interact with the chromatin remodeler SWI/SNF factor BRG1, facilitating its removal from the sex-chromatin to enable the repression of sex-linked genes during MSCI.

      Major Comments: 1. The study utilized a triple knockout mouse model to determine the effect of AGO3 on spermatogenesis, following up on their previous report about the role of AGO4 in spermatogenesis, which resulted from an upregulation of AGO3 in Ago4-/- spermatocytes. However, the results are more difficult to interpret and ascertain the role of AGO3 in these cells, given the absence of any observable phenotype from Ago3 interruption. AGO4 regulates sex body formation, meiotic sex chromosome inactivation (MSCI), and miRNA production in spermatocytes, all of which were noted in the absence of both AGO3 and AGO4, with only an increased incidence of cells containing abnormal RNAPII at the sex chromosomes. It will be necessary to characterize how AGO3 regulates spermatogenic development, including meiotic progression and the regulation of the meiotic transcriptome, and compare these findings with the current observations to determine if the proposed mechanism involving AGO3, BRG1, and possibly AP2 is relevant in this context.

      __Response: __While we agree with Reviewer that a single Ago3 knockout will help understand distinct roles of AGO3 and AGO4 in spermatogenesis, the time and resources required to generate a new mouse model are substantial. The analysis included in this current manuscript has already taken over seven years, and with the lengthy production of a new single mutant mouse, validation of the new mouse, and then final analysis, we would be looking at another 3-5 years of analysis. In the current funding climate, and with strong concerns over ensuring reduction in utilization of laboratory mice, we consider this request to be far in excess of what is required to move this important story forward.

      The Ago413-/- mouse model has allowed us to associate a nuclear role of Argonaute proteins with a strong reproductive phenotype in the mouse germline. Given the redundancy between Ago3 and Ago4, it is likely that a single Ago3 knockout would have a mild phenotype just like the Ago4 KO. All this said, we agree with the reviewer that analysis of an Ago3 knockout mouse is a valuable next step, just not within this chapter of the story.

      1. Does Ago413-/- mice recapitulate the early meiotic entry phenotype observed in Ago4-/- mice? If not, could it be possible that AGO3 promotes meiotic entry, given its strong mRNA expression in spermatogonia according to the scRNAseq data (Fig. 2B)

      Response: Our scRNA-seq data shows strong expression of Ago3 in spermatogonia, as mentioned by the Reviewer. Analysis of cell cycle marker expression also shows that the transcriptomic profile of spermatogonia is altered, with higher levels of transcripts corresponding to the later G2/M stages (Figure 2D). Moreover, Ago413 knockouts present an increase in the number of spermatogonial stem cells (Supplementary Figure S4B). However, this cluster represents a pool of quiescent and mitotically active cells entering meiosis, therefore interpretation of these data might be challenging. While specific experiments could be conducted to answer this question, this is outside of the scope of our manuscript. The manuscript as it stands is already rather large, and a full analysis of meiotic entry dynamics would dilute the core message relating to chromatin regulation in the sex body.

      1. The authors suggested that the removal of BRG1 by AGO3 is necessary during sex body formation and the eventual establishment of MSCI. However, the BAF complex subunit ARID1A has been shown to facilitate MSCI by regulating promoter accessibility. It will be interesting to determine how BRG1 distribution changes across the genome in the absence of AGO proteins and how that correlates with alterations in sex-linked gene expression.

      __Response: __We agree that changes in BRG1 distribution across the genome would be very interesting to identify. However, in this work we show that BRG1/SMARCA4 protein changes its localization in the sex body very rapidly between early to late pachynema. These two substages are only discernable by immunofluorescence using synaptonemal complex markers, as there are currently no available techniques to enrich for these subfractions. Therefore, study of genome occupancy of BRG1 in these specific substages by techniques such as CUT&Tag are not currently possible. However, we are currently working on new methods to distinguish these cell populations and hope eventually to use these purification strategies to perform the studies suggested by this reviewer. Alternatively, the hope is that single cell CUT&Tag methods will become more reliable, and will enable us to address these questions. Both of these options are not currently available to us. The studies by Menon et al (2024-doi:10.7554/eLife.88024.5) provide strong evidence to support that ARID1A is needed to reduce promoter accessibility of XY silenced genes in prophase I through modulation of H3.3 distribution. However, this mechanism and our identification of the removal of BRG1 between early and late pachytema are not inconsistent with one another, as either SMARCA4 or SMARCA2 can associate with ARID1A as part of the cBAF complex, and ARID1A is also not in all forms of the BAF complex which BRG1 are in. The difference between our results and those seen in Menon et al likely indicate that there are multiple forms of the BAF complex which are differentially regulated during MSCI and play different roles in silencing transcription. Further studies of specific BAF subunits are needed to elucidate how different flavors of the BAF complex act at specific genomic locations and meiotic time points.

      1. The observations presented in this manuscript (Fig. 1D, 2C, 3D, and 4) suggest a haploinsufficiency of the deleted locus in spermatogenic development. How does this compare with the ablation of either Ago3 or Ago4? Please explain.

      Response: Our previous studies in single Ago4 knockouts did not present a heterozygous phenotype (Modzelewski et al 2012, doi: 10.1016/j.devcel.2012.07.003, data not shown). Triple Ago413 knockouts show a much stronger fertility phenotype than single Ago4 knockout. Testis weight of Ago413 homozygous null present a 30% reduction while heterozygous mice show a 15% reduction (Figure 1D), comparable to the 13% reduction previously observed in Ago4-/- males. Sperm counts of Ago413 null and heterozygous males are reduced by 60% and 39% compared to wild type (Figure 1E), respectively, whereas Ago4 null mice have a milder phenotype, with only a 22% reduction in sperm counts. At the MSCI level, both homozygous and heterozygous Ago413 mutant spermatocytes show a similar increase in pachytene spermatocytes with increased RNA pol II ingression into the sex body with respect to wild-type of 35% and 30%, respectively. Ago4 single knockouts show an almost 18% increase in Pol II ingression when compared to wild type. These comparisons are now included in our manuscript in lines 170, 172 and 288. A milder phenotype of the Ago4 knockout and haploinsufficiency in triple Ago413 knockouts but not in Ago4 single knockouts is likely a consequence of the overlapping functions of Ago3 and Ago4 in mammals (and/or overexpression of Ago3 in Ago4 knockouts). In the context of their role in RISC, Wang et al (doi: 10.1101/gad.182758.111) studied the effects of single and double conditional knockouts for Ago1 and Ago2 in miRNA-mediated silencing. They discovered that the interaction between miRNAs and AGOs is highly correlated with the abundance of each AGO protein, and only double knockouts presented an observable phenotype.

      Minor Comments: Based on the interactome analysis, it was argued that AGO3 and AGO4 may function separately. Please discuss how AGO3 might compensate for AGO4 (Line 109).

      Response: We hypothesize that the combined function of AGO3 and AGO4 is needed for proper sex chromosome inactivation during meiosis. We base this hypothesis on the facts that (i) both proteins localize to the sex body in pachytene spermatocytes, (ii) loss of Ago4 leads to upregulation of Ago3, and (iii) the MSCI phenotype of Ago413 knockout mice is much stronger than the single Ago4 knockout (see above). However, AGO3 and AGO4 might not induce silencing through the same mechanism or pathway. In this work, we observed that their temporal expression in prophase I is different; while AGO3 protein seems to disappear by the diplotene stage, AGO4 is present in the sex body of these cells. Moreover, the proteomic analysis revealed a very low number of common interactors, an observation which could support the idea of AGO3 and AGO4 acting by different (albeit perhaps related) mechanisms to achieve MSCI. It is also possible that common interactors were not identified in our proteomic analysis due to the low abundance of AGO3 and AGO4 in the germ cells, limiting the resolution of the proteomics analysis (note that in order to visualize AGO proteins in WB experiments, at least 60 μg of enriched germ cell lysate must be loaded per lane). Moreover, given the difficulty in obtaining enough isolated pachytene and diplotene spermatocytes to perform immunoprecipitation experiments, we performed IP experiments in whole germ cell lysates, which limits the interpretation of our analysis. If AGO3 and AGO4 protein interactors overlap, then AGO3 would directly substitute for AGO4 leading to silencing in single Ago4 knockouts. However, if AGO3 and AGO4 work together through different, complementary mechanisms, then Ago4 mutant mice likely compensates loss of Ago4 by upregulation of Ago3along with specific interactors of the given pathway. We have added a sentence addressing this matter in line 411 of the results section and lines 506 and 513 of the discussion in the revised manuscript.

      In Line 221, it is unclear what is meant by 'cell cycle transcripts'. Does this refer to meiotic transcripts? It is also important to discuss the relevance of the G2/M cell cycle marker genes at later stages of meiotic prophase.

      Response: Thank you for this suggestion. We have changed the relevant text to remove redundancies and include more information. We agree that considering the importance of these genes across meiotic prophase is needed, as cells which are in the dividing stage will already have produced the proteins necessary for division. These cells likely correspond to the diplotene/M cluster cells that have a lower G2/M score, potentially causing the bimodal distribution seen in Figure 2D. We have added a sentence addressing this to the manuscript.

      While identified as a common interactor of both AGO3 and AGO4 in lines 440-445, HNRNPD is not listed among AGO4 interactors in Table S6. Please correct or explain this discrepancy.

      Response: HNRPD was originally identified as an AGO4 interactor using a less strict criteria than the one used in our manuscript: we required consistent enrichment in at least two rounds of IP MS experiments. This reference to HNRNPD was a mistake, given that HNRPD was only enriched in one of our three replicates. Thus, we apologize and have removed the sentence in lines 440-445.

      It is unclear whether wild-type cell lysate or lysate containing FLAG-tagged AGO3 was used for BRG1 immunoprecipitation, and which antibody was used to detect AGO3 in the BRG1 IP sample. A co-IP experiment demonstrating interaction between BRG1 and wild-type AGO3 would be ideal in this context. Furthermore, co-localization by IF would be beneficial to determine the subcellular localization and the cell stages the interaction may be occurring. Additionally, co-IP and Western blot methodologies should be included in the methods section.

      __Response: __MYC-FLAG tagged AGO3 protein lysates were used for BRG1 Co-Immunoprecipitation, along with an anti MYC antibody to detect AGO3. This is now detailed in the Methods section of our revised manuscript (line 1133).

      Regarding BRG1 and AGO3 colocalization by IF, we can confidently show that both AGO3 and BRG1 localize to the sex chromosomes in early pachynema by comparing BRG1/SYCP3 and FLAG-AGO3/SYCP3 stained spreads. We were not able to show colocalization simultaneously on the same cells, given the lack of appropriate antibodies. Our anti FLAG antibody is raised in mouse, while anti BRG1 is raised in rabbit, therefore a non-rabbit, non-mouse anti SYCP3 would be needed to identify prophase I substages, and our lab does not possess such a validated antibody. However, we now have access to a multiplexing kit that allows to use same-species antibodies for immunofluorescence and we can perform these experiments for a revised manuscript.

      __Response: __The methods section now includes description of co-IP methodologies (line 1132). Western Blot methodologies are explained in lane 718, under the "Immunoblotting" title.

      In line 599, it is unclear what is meant by 'persistence of sex chromosome de-repression'. Please correct or clarify this.

      Response: This sentence has been changed and reads: "The persistence of sex chromosome gene expression".

      If possible, please add an illustration to summarize the findings together.

      Response: We thank the reviewer for this suggestion, and have now added this in Figure 6

      Significance

      Overall, this study enhances the understanding of gene expression regulation by AGO proteins during spermatogenesis. Several approaches, including functional, histological, and molecular characterization of the triple knockout phenotype, were instrumental in elucidating the role of AGO proteins in MSCI and meiotic as well as postmeiotic gene regulation. The main limitation of the study is that it is challenging to appreciate the role of AGO3 in addition to the previously published role of AGO4 without the inclusion of necessary control groups. Furthermore, the mechanism of action for AGO proteins in meiotic gene regulation was left relatively unexplored. This study presents new findings that will be significant for the research community interested in gene regulation, chromatin biology, and reproductive biology with the above suggestions considered.

      __Reviewer #3 (Evidence, reproducibility and clarity (Required)): __

      The authors characterize a CRISPR-Cas9 mouse mutant that targets 3 genes that encode AGO family proteins, 2 of which are expressed during spermatogenesis (AGO3 and AGO4) and one that is said is not expressed, AGO1. This mouse mutant showed that AGO3 and AGO4 both contribute to spermatogenesis success as the "Ago413" mutation gave rise to an additive reduction in testis weight, due to spermatocyte apoptosis, and reduction in sperm count. Furthermore, they use insertion mouse mutants for Ago3 and Ago2 that express tagged versions of their corresponding proteins, which they use in combination with pan-AGO antibodies and Ago mutants to show differential expression and localization properties of AGO2, AGO3, and AGO4 (and the absence of AGO1) during spermatogenesis with a particular focus on meiotic prophase. They perform single-cell RNAseq and intricate analyses to demonstrate a change in distribution of meiotic stages in Ago413 mutants, and the overall cell cycle in spermatogonia and spermatocytes is altered. This analysis shows that the mutation leads to an inability to downregulate prior spermatogonia/spermatocyte stage transcripts in a timely manner. On the other hand, later-stage spermatocytes are abnormally expressing spermiogenesis genes. Similar to the Ago4 mutant previously characterized MSCI is disrupted. The authors also show that AGO3 has different interaction partners compared to AGO4 and focus their final assessment on a novel interaction partner of AGO3, BRG1. They show that this factor, which is involved in chromatin remodeling, is aberrantly localized to the sex body during meiotic prophase and diplonema. As BRG1 is involved in open chromatin, it is proposed that AGO3 restricts BRG1 (and related proteins) from the XY chromosome to ensure MSCI. Overall, this paper is very well constructed with mechanistic insights that make this a very impactful contribution to the research community. Major Comments:

      1. The abstract contains "Ago413-/- mouse" without any explanation of what that is. The abstract needs to be a stand-alone document that does not require any referencing for context.

      Response: We have included a sentence describing Ago413 in line 27

      Figure 2C. - The significance bars are confusing as they appear to overlap strangely.

      Response: We have modified this figure and now present the significance bars are on top of the data points.

      On line 235, the authors state that "we first identified the top non-overlapping upregulated genes for Ago413+/+ germ cells in each cluster. Why did the authors not also select down-regulated genes in each cluster to perform a similar analysis?

      __Response: __Thank you for this question. As our goal was to identify genes that are markers of the transcriptional program in each cell type, we used only uniquely upregulated genes for each cluster. Genes that are downregulated for a cluster may be indicative of the transcription in several other cell types, which is not easily interpretable. For a revised manuscript, we will perform this analysis to determine if there is any specific alterations in these downregulated genes.

      Their Ago413 mutant characterization does a good job of assessing meiotic prophase and spermatozoa. However, their assessment of the stages in between these is lacking (meiotic divisions and spermiogenesis).

      Response: We understand the reviewer's concern, however, it is not usual to study stages between the first meiotic division and spermiogenesis because meiosis II is so rapid and thus we lack tools to dissect it. In general, any defect that impacts meiosis I (and particularly prophase I) leads to cell death during prophase I or at metaphase I due to strictly adhered checkpoints that eradicate defective cells. Thus, the increased TUNEL staining in prophase I indicates to us that defective cells are cleared before exit from meiosis I, and those cells progressing to the spermatid stage are "normal" for meiosis II progression. For these cells that did complete meiosis I and progressed normally through meiosis II, we analyzed their spermiogenic outcome extensively (see section entitled "Post-meiotic spermatids from Ago413-/- males exhibit defective spermiogenesis and poor spermatozoa function"). This section included extensive sperm morphology, sperm motility and sperm fertility through in vitro fertilization assays. That said, we have added a sentence on line 268 to explain the transit through meiosis II.

      The discovery of the interaction between BRG1 and AGO3 is exciting. They should assess BRG1 localization in later sub-stages, including late diplonema and diakinesis.

      __Response: __BRG1(SMARCA4) was analyzed throughout prophase I, as shown in image 5G, including quantification of fluorescence intensity included the analysis of diplonema (5H-I). However, diakinesis was not included here since there was no observable signal of BRG1 in these cells. We have explained this in lines 459.

      ATF2 should have been assessed in more detail, as was done for BRG1 in Figure 5.

      __Response: __We agree with the Reviewer, however, staining of chromosome spreads with the anti ATF2 antibody was not possible in our hands after several attempts and changes in staining conditions. However, as staining of sections was successful, we showed localization of ATF2 on spermatocytes by co staining sections with SYCP3 and ATF2.

      Reviewer #3 (Significance (Required)): Overall, this paper is very well constructed with mechanistic insights, as described in my reviewer comments, that make this a very impactful contribution to the research community.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews: 

      Reviewer #1 (Public Review): 

      Summary: 

      The authors state the study's goal clearly: "The goal of our study was to understand to what extent animal individuality is influenced by situational changes in the environment, i.e., how much of an animal's individuality remains after one or more environmental features change." They use visually guided behavioral features to examine the extent of correlation over time and in a variety of contexts. They develop new behavioral instrumentation and software to measure behavior in Buridan's paradigm (and variations thereof), the Y-maze, and a flight simulator. Using these assays, they examine the correlations between conditions for a panel of locomotion parameters. They propose that inter-assay correlations will determine the persistence of locomotion individuality.

      Strengths: 

      The OED defines individuality as "the sum of the attributes which distinguish a person or thing from others of the same kind," a definition mirrored by other dictionaries and the scientific literature on the topic. The concept of behavioral individuality can be characterized as: 

      (1) a large set of behavioral attributes, 

      (2) with inter-individual variability, that are 

      (3) stable over time. 

      A previous study examined walking parameters in Buridan's paradigm, finding that several parameters were variable between individuals, and that these showed stability over separate days and up to 4 weeks (DOI: 10.1126/science.aaw718). The present study replicates some of those findings and extends the experiments from temporal stability to examining the correlation of locomotion features between different contexts.

      The major strength of the study is using a range of different behavioral assays to examine the correlations of several different behavior parameters. It shows clearly that the inter-individual variability of some parameters is at least partially preserved between some contexts, and not preserved between others. The development of highthroughput behavior assays and sharing the information on how to make the assays is a commendable contribution.

      We thank the reviewer for his exceptionally kind assessment of our work!

      Weaknesses: 

      The definition of individuality considers a comprehensive or large set of attributes, but the authors consider only a handful. In Supplemental Fig. S8, the authors show a large correlation matrix of many behavioral parameters, but these are illegible and are only mentioned briefly in Results. 

      We have now uploaded a high-resolution PDF to the Github Address: https://github.com/LinneweberLab/Mathejczyk_2024_eLife_Individuality/blob/main/S8.pdf, and this is also mentioned in the figure legend for Fig. S8

      Why were five or so parameters selected from the full set? How were these selected? 

      The five parameters (% of time walked, walking speed, vector strength, angular velocity, and centrophobicity) were selected because they describe key aspects of the investigated behaviors that can be compared directly across assays. Importantly, several parameters we typically use (e.g., Linneweber et al., 2020) cannot be applied under certain conditions, such as darkness or the absence of visual cues. Furthermore, these five parameters encompass three critical aspects of navigation across standard visual behavioral arenas: (1) The “exploration” category is characterized by parameters describing the fly’s activity. (2) Parameters related to “attention” reflect heightened responses to visual cues, but unlike commonly used metrics such as angle or stripe deviations (e.g., Coulomb, 2012; Linneweber et al., 2020), they can also be measured in absence of visual cues and are therefore suitable for cross-assay comparisons. (3) The parameter “centrophobicity,” used as a potential indicator of anxiety, is conceptually linked to the open-field test in mice, where the ratio of wall-to-open-field activity is frequently calculated as a measurement of anxiety (see for example Carter, Sheh, 2015, chapter 2. https://www.sciencedirect.com/book/9780128005118/guide-to-researchtechniques-in-neuroscience). Admittedly, this view is frequently challenged in mice, but it has a long history which is why we use it.

      Do the correlation trends hold true across all parameters? For assays in which only a subset of parameters can be directly compared, were all of these included in the analysis, or only a subset? 

      As noted above, we only included a subset of parameters in our final analysis, as many were unsuitable for comparison across assays while still providing valuable assayspecific information which are important to relate these results to previous publications.

      The correlation analysis is used to establish stability between assays. For temporal retesting, "stability" is certainly the appropriate word, but between contexts, it implies that there could be 'instability'. Rather, instead of the 'instability' of a single brain process, a different behavior in a different context could arise from engaging largely (or entirely?) distinct context-dependent internal processes, and have nothing to do with process stability per se. For inter-context similarities, perhaps a better word would be "consistency". 

      Thank you for this suggestion. During the preparation of the manuscript, we indeed frequently alternated between the terms “stability” and “consistency.” And decided to go with “stability” as the only descriptor, to keep it simple. We now fully agree with the reviewer’s argument and have replaced “stability” by “consistency” throughout the current version of the manuscript in order to increase clarity and coherence.

      The parameters are considered one by one, not in aggregate. This focuses on the stability/consistency of the variability of a single parameter at a time, rather than holistic individuality. It would appear that an appropriate measure of individuality stability (or individuality consistency) that accounts for the high-dimensional nature of individuality would somehow summarize correlations across all parameters. Why was a multivariate approach (e.g. multiple regression/correlation) not used? Treating the data with a multivariate or averaged approach would allow the authors to directly address 'individuality stability' and analyses of single-parameter variability stability.

      We agree with the reviewer that a multivariate analysis adds clear advantages in terms of statistical power, in addition to our chosen approach. On one hand, we believe that the simplicity of our initial analysis, both for correlational and mean data, makes easy for readers to understand and reproduce our data. While preparing the previous version of the manuscript we were skeptical since more complex analyses often involve numerous choices, which can complicate reproducibility. For instance, a recent study in personality psychology (Paul et al., 2024) highlighted the risks of “forking paths” in statistical analysis, showing that certain choices of statistical methods could even reverse findings—a concern mitigated by our simplistic straightforward approach. Still, in preparation of this revised version of the manuscript, we accepted the reviewer’s advice and reanalyzed the data using a generalized linear model. This analysis nicely recapitulates our initial findings and is now summarized in a single figure (Fig. 9).

      The correlation coefficients are sometimes quite low, though highly significant, and are deemed to indicate stability. For example, in Figure 4C top left, the % of time walked at 23{degree sign}C and 32{degree sign}C are correlated by 0.263, which corresponds to an R2 of 0.069 i.e. just 7% of the 32{degree sign}C variance is predictable by the 23{degree sign}C variance. Is it fair to say that a 7% determination indicates parameter stability? Another example: "Vector strength was the most correlated attention parameter... correlations ranged... to -0.197," which implies that 96% (1 - R2) of Y-maze variance is not predicted by Buridan variance. At what level does an r value not represent stability?

      We agree that this is an important question. Our paper clearly demonstrates that individuality always plays a role in decision-making (and, in this context, any behavioral output can be considered a decision). However, the non-linear relationship between certain situations and the individual’s behavior often reduces the predictive value (or correlation) across contexts, sometimes quite drastically.

      For instance, temperature has a relatively linear effect on certain behavioral parameters, leading to predictable changes across individuals. As a result, correlations across temperature conditions are often similar to those observed across time within the same situation. In contrast, this predictability diminishes when comparing conditions like the presence or absence of visual stimuli, the use of different arenas, or different modalities.

      For this reason, we believe that significance remains the best indicator for describing how measurable individuality persists, even across vastly different situations.

      The authors describe a dissociation between inter-group differences and interindividual variation stability, i.e. sometimes large mean differences between contexts, but significant correlation between individual test and retest data. Given that correlation is sensitive to slope, this might be expected to underestimate the variability stability (or consistency). Is there a way to adjust for the group differences before examining the correlation? For example, would it be possible to transform the values to in-group ranks prior to correlation analysis?  

      We thank the reviewer for this suggestion, and we have now addressed this point. To account for slope effects, we have now introduced in-group ranks for our linear model computation (see Fig. 9). 

      What is gained by classifying the five parameters into exploration, attention, and anxiety? To what extent have these classifications been validated, both in general and with regard to these specific parameters? Is the increased walking speed at higher temperatures necessarily due to an increased 'explorative' nature, or could it be attributed to increased metabolism, dehydration stress, or a heat-pain response? To what extent are these categories subjective?

      We agree that grouping our parameters into traits like exploration, attention, and anxiety always includes subjective decisions. The classification into these three categories is even considered partially controversial in the mouse specific literature, which uses the term “anxiety” in similar experiments (see for exampler Carter, Sheh, 2015, chapter 2 . https://www.sciencedirect.com/book/9780128005118/guide-to-research-techniquesin-neuroscience). Nevertheless, we believe that readers greatly benefit from these categories, since they make it easier to understand (beyond mathematical correlations) which aspects of the flies’ individuality can be considered consistent across situations. Furthermore, these categories serve as a bridge to compare insight from very distinct models.

      The legends are quite brief and do not link to descriptions of specific experiments. For example, Figure 4a depicts a graphical overview of the procedure, but I could not find a detailed description of this experiment's protocol.

      We assume the reviewer is referring to Figure 3a. The detailed experimental protocol can be found in the Materials and Methods section under Setup 2: IndyTrax Multi-Arena Platform. We have now clarified this in the mentioned figure legend.

      Using the current single-correlation analysis approach, the aims would benefit from rewording to appropriately address single-parameter variability stability/consistency (as distinct from holistic individuality). Alternatively, the analysis could be adjusted to address the multivariate nature of individuality, so that the claims and the analysis are in concordance with each other.

      The reviewer raises an important point about hierarchies within the concept of animal individuality or personality. We agree that this is best addressed by first focusing on single behavioral traits/parameters and then integrating several trait properties into a cohesive concept of animal personality (holistic individuality). To ensure consistency throughout the text, we have now thoroughly reviewed the entire manuscript clearly distinguish between single-parameter variability stability/consistency and holistic individuality/personality.

      The study presents a bounty of new technology to study visually guided behaviors. The GitHub link to the software was not available. To verify the successful transfer of open hardware and open-software, a report would demonstrate transfer by collaboration with one or more other laboratories, which the present manuscript does not appear to do. Nevertheless, making the technology available to readers is commendable.

      We have now uploaded all codes and materials to GitHub and made them available as soon as we received the reviewers’ comments. All files and materials can be accessed at https://github.com/LinneweberLab/Mathejczyk_2024_eLife_Individuality, which is now frequently mentioned throughout the revised manuscript.

      The study discusses a number of interesting, stimulating ideas about inter-individual variability, and presents intriguing data that speaks to those ideas, albeit with the issues outlined above.

      While the current work does not present any mechanistic analysis of inter-individual variability, the implementation of high-throughput assays sets up the field to more systematically investigate fly visual behaviors, their variability, and their underlying mechanisms. 

      We thank the reviewer again for the extensive and constructive feedback.

      Reviewer #2 (Public Review): 

      Summary: 

      The authors repeatedly measured the behavior of individual flies across several environmental situations in custom-made behavioral phenotyping rigs.

      Strengths: 

      The study uses several different behavioral phenotyping devices to quantify individual behavior in a number of different situations and over time. It seems to be a very impressive amount of data. The authors also make all their behavioral phenotyping rig design and tracking software available, which I think is great and I'm sure other folks will be interested in using and adapting it to their own needs.

      We thank the reviewer for highlighting the strengths of our study.

      Weaknesses/Limitations: 

      I think an important limitation is that while the authors measured the flies under different environmental scenarios (i.e. with different lighting and temperature) they didn't really alter the "context" of the environment. At least within behavioral ecology, context would refer to the potential functionality of the expressed behaviors so for example, an anti-predator context, a mating context, or foraging. Here, the authors seem to really just be measuring aspects of locomotion under benign (relatively low-risk perception) contexts. This is not a flaw of the study, but rather a limitation to how strongly the authors can really say that this demonstrates that individuality is generalized across many different contexts. It's quite possible that rank order of locomotor (or other) behaviors may shift when the flies are in a mating or risky context. 

      We agree with the reviewer that the definition of environmental context can differ between fields and that behavioral context is differently defined, particularly in ecology. Nevertheless, we highlight that our alternations of environmental context are highly stereotypic, well-defined, and unbiased from any interpretation (we only modified what we stated in the experimental description without designing a specific situation that might be again perceived individually differently. E.g., comparing a context with a predator and one without might result in a binary response because one fraction of the tested individuals might perceive the predator in the predator situation, and the other half does not. 

      The analytical framework in terms of statistical methods is lacking. It appears as though the authors used correlations across time/situations to estimate individual variation; however, far more sophisticated and elegant methods exist. The paper would be a lot stronger, and my guess is, much more streamlined if the authors employ hierarchical mixed models to analyse these data these models could capture and estimate differences in individual behavior across time and situations simultaneously. Along with this, it's currently unclear whether and how any statistical inference was performed. Right now, it appears as though any results describing how individuality changes across situations are largely descriptive (i.e. a visual comparison of the strengths of the correlation coefficients?). 

      The reviewer raises an important point, also raised by reviewer #1. On one hand, we agree with both reviewers that a more aggregated analysis has clear advantages like more statistical power and has the potential to streamline our manuscript, which is why we added such an analysis (see below). On the other hand, we would also like to defend the initial approach we took, since we think that the simplicity of the analysis for both correlational and mean data is easy to understand and reproduce. More complex analyses necessarily include the selection of a specific statistical toolbox by the experimenters and based on these decisions, different analyses become less comparable and more and more complicated to reproduce, unless the entire decision tree is flawlessly documented. For instance, a recent personality psychology paper investigated the relationship between statistical paths within the decision tree (forking analysis) and their results, leading to very surprising results (Paul et al., 2024), since some paths even reversed their findings. Such a variance in conclusions is hardly possible with the rather simplistic and easily reproducible analysis we performed. One of the major strengths of our study is the simple experimental design, allowing for rather simple and easy to understand analyses.

      We nevertheless took the reviewer’s advice very seriously and reanalyzed the data using a generalized linear model, which largely recapitulated the findings of our previously performed “low-tech” analysis in a single figure (Fig. 9).

      Another pretty major weakness is that right now, I can't find any explicit mention of how many flies were used and whether they were re-used across situations. Some sort of overall schematic showing exactly how many measurements were made in which rigs and with which flies would be very beneficial. 

      We apologize for this inconvenience. A detailed overview of male and female sample sizes has been listed in the supplemental boxplots next to the plots (e.g, Fig S6). Apparently, this was not visible enough. Therefore, we have now also uniformly added the sample sizes to the main figure legends.

      I don't necessarily doubt the robustness of the results and my guess is that the author's interpretations would remain the same, but a more appropriate modeling framework could certainly improve their statistical inference and likely highlight some other cool patterns as these methods could better estimate stability and covariance in individual intercepts (and potentially slopes) across time and situation.

      As described above, we have now added the suggested analyses. We hope that the reviewer will appreciate the new Fig. 9, which, in our opinion, largely confirms our previous findings using a more appropriate generalized linear modelling framework.

      Reviewer #3 (Public Review): 

      This manuscript is a continuation of past work by the last author where they looked at stochasticity in developmental processes leading to inter-individual behavioural differences. In that work, the focus was on a specific behaviour under specific conditions while probing the neural basis of the variability. In this work, the authors set out to describe in detail how stable the individuality of animal behaviours is in the context of various external and internal influences. They identify a few behaviours to monitor (read outs of attention, exploration, and 'anxiety'); some external stimuli (temperature, contrast, nature of visual cues, and spatial environment); and two internal states (walking and flying).

      They then use high-throughput behavioural arenas - most of which they have built and made plans available for others to replicate - to quantify and compare combinations of these behaviours, stimuli, and internal states. This detailed analysis reveals that:

      (1) Many individualistic behaviours remain stable over the course of many days. 

      (2) That some of these (walking speed) remain stable over changing visual cues. Others (walking speed and centrophobicity) remain stable at different temperatures.

      (3) All the behaviours they tested failed to remain stable over the spatially varying environment (arena shape).

      (4) Only angular velocity (a readout of attention) remains stable across varying internal states (walking and flying).

      Thus, the authors conclude that there is a hierarchy in the influence of external stimuli and internal states on the stability of individual behaviours.

      The manuscript is a technical feat with the authors having built many new highthroughput assays. The number of animals is large and many variables have been tested - different types of behavioural paradigms, flying vs walking, varying visual stimuli, and different temperatures among others. 

      We thank the reviewer for this extraordinary kind assessment of our work!

      Recommendations for the authors:  

      Reviewing Editor (Recommendations For The Authors): 

      While appreciating the effort and quality of the work that went into this manuscript, the reviewers identified a few key points that would greatly benefit this work.

      (1) Statistical methods adopted. The dataset produced through this work is large, with multiple conditions and comparisons that can be made to infer parameters that both define and affect the individualistic behaviour of an animal. Hierarchical mixed models would be a more appropriate approach to handle such datasets and infer statistically the influence of different parameters on behaviours. We recommend that the authors take this approach in the analyses of their data.

      (2) Brevity in the text. We urge the authors to take advantage of eLife's flexible template and take care to elaborate on the text in the results section, the methods adopted, the legends, and the guides to the legends embedded in the main text. The findings are likely to be of interest to a broad audience, and the writing currently targets the specialist.

      Reviewer #2 (Recommendations For The Authors): 

      I want to start by saying this seems like a really cool study! It's an impressive amount of work and addressing a pretty basic question that is interesting (at least I think so!)

      We thank the reviewer again for this assessment!

      That said, I would really strongly recommend the authors embrace using mixed/hierarchical models to analyze their data. They're producing some really impressive data and just doing Pearson correlation coefficients across time points and situations is very clunky and actually losing out on a lot of information. The most up-todate, state-of-the-art are mixed models - these models can handle very complex (or not so complex) random structures which can estimate variance and importantly, covariance, in individual intercepts both over time and across situations. I actually think this could add some really cool insights into the data and allow you to characterize the patterns you're seeing in far more detail. It's datasets exactly like this that are tailormade for these complex variance partitioning models! 

      As mentioned before, we have now adopted a more appropriate GLM-based data analysis (see above).

      Regardless of which statistical methods you decide to use, please explicitly state in your methods exactly what analyses you did. That is completely lacking now and was a bit frustrating. As such, it's completely unclear whether or how statistical inference was performed. How did you do the behavioral clustering? 

      We apologize that these points were not clearly represented in the previous version of the manuscript. We have now significantly extended the methods section to include a separate paragraph on the statistical methods used, in order to address this critique and hope that the revised version is clear now.

      Also, I could not for the life of me figure out how many flies had been measured. Were they reused across the situation? Or not?

      We reused the same flies across situations whenever possible. However, having one fly experience all assays consecutively was not feasible due to their fragility. Instead, individual flies were exposed to at least 2 of the 3 groups of assays used here: in the Indytrax setup ,  the Buridan arenas and variants thereof, and the virtual arenas Hence, we have compared flies across entirely different setups, but the number of times flies can be retested is limited (as otherwise, sample sizes will drop over time, and the flies will have gone through too many experimental alternations). To make this more clear, we have elaborated on this point in the main text, and we added group sample sizes to figure legends r.

      What are these "groups" and "populations" that are referred to in the results (e.g. lines 384, 391, 409)?

      We apologize for using these two terms somewhat interchangeably without proper introduction/distinction. We have now made this more clear in at the beginning of the results in the main text, by focusing on the term ‘group’. By ‘group’ we refer to the average of all individuals tested in the same situation. Sample sizes in the figure legends now indicate group/population sizes to make this clearer.

      Some of the rationale for the development of the behavioral rigs would have actually been nice to include in the intro, rather than in the results.

      This rationale is introduced at the beginning of the last paragraph of the introduction. We hope that this now becomes clear in the revised version of the manuscript.

      Reviewer #3 (Recommendations For The Authors): 

      This manuscript would do well to take advantage of eLife's flexible word limit. I sense that it has been written in brevity for a different journal but I would urge the authors to revisit this and unpack the language here - in the text, in the figure legends, in references to the figures within the text. The way it's currently written, though not misleading, will only speak to the super-specialist or the super-invested :). But the findings are nice, and it would be nice to tailor it to a broader audience.

      We appreciate this suggestion. Initially, we were hoping that we had described our results as clearly and brief as possible. We apologize if that was not always the case. The comments and requests of all three reviewers now led to a series of additions to both main text and methods, leading to a significantly expanded manuscript. We hope that these additons are helpful for the general, non-expert audience.

    1. Author response:

      The following is the authors’ response to the original reviews

      Overview of changes in the revision

      We thank the reviewers for the very helpful comments and have extensively revised the paper. We provide point-by-point responses below and here briefly highlight the major changes:

      (1) We expanded the discussion of the relevant literature in children and adults.

      (2) We improved the contextualization of our experimental design within previous reinforcement studies in both cognitive and motor domains highlighting the interplay between the two.

      (3) We reorganized the primary and supplementary results to better communicate the findings of the studies.

      (4) The modeling has been significantly revised and extended. We now formally compare 31 noise-based models and one value-based model and this led to a different model from the original being the preferred model. This has to a large extent cleaned up the modeling results. The preferred model is a special case (with no exploration after success) of the model proposed in Therrien et al. (2018). We also provide examples of individual fits of the model, fit all four tasks and show group fits for all, examine fits vs. data for the clamp phases by age, provide measures of relative and absolute goodness of fit, and examine how the optimal level of exploration varies with motor noise.

      Reviewer #1 (Public review):

      Summary:

      Here the authors address how reinforcement-based sensorimotor adaptation changes throughout development. To address this question, they collected many participants in ages that ranged from small children (3 years old) to adulthood (1 8+ years old). The authors used four experiments to manipulate whether binary and positive reinforcement was provided probabilistically (e.g., 30 or 50%) versus deterministically (e.g., 100%), and continuous (infinite possible locations) versus discrete (binned possible locations) when the probability of reinforcement varied along the span of a large redundant target. The authors found that both movement variability and the extent of adaptation changed with age.

      Thank you for reviewing our work. One note of clarification. This work focuses on reinforcementbased learning throughout development but does not evaluate sensorimotor adaptation. The four tasks presented in this work are completed with veridical trajectory feedback (no perturbation).

      The goal is to understand how children at different ages adjust their movements in response to reward feedback but does not evaluate sensorimotor adaptation. We now explain this distinction on line 35.

      Strengths:

      The major strength of the paper is the number of participants collected (n = 385). The authors also answer their primary question, that reinforcement-based sensorimotor adaptation changes throughout development, which was shown by utilizing established experimental designs and computational modelling.

      Thank you.

      Weaknesses:

      Potential concerns involve inconsistent findings with secondary analyses, current assumptions that impact both interpr tation and computational modelling, and a lack of clearly stated hypotheses.

      (1) Multiple regression and Mediation Analyses.

      The challenge with these secondary analyses is that:

      (a) The results are inconsistent between Experiments 1 and 2, and the analysis was not performed for Experiments 3 and 4,

      (b) The authors used a two-stage procedure of using multiple regression to determine what variables to use for the mediation analysis, and

      (c)The authors already have a trial-by-trial model that is arguably more insightful.

      Given this, some suggested changes are to:

      (a) Perform the mediation analysis with all the possible variables (i.e., not informed by multiple regression) to see if the results are consistent.

      (b) Move the regression/mediation analysis to Supplementary, since it is slightly distracting given current inconsistencies and that the trial-by-trial model is arguably more insightful.

      Based on these comments, we have chosen to remove the multiple regression and mediation analyses. We agree that they were distracting and that the trial-by-trial model allows for differentiation of motor noise from exploration variability in the learning block.

      (2) Variability for different phases and model assumptions:

      A nice feature of the experimental design is the use of success and failure clamps. These clamped phases, along with baseline, are useful because they can provide insights into the partitioning of motor and exploratory noise. Based on the assumptions of the model, the success clamp would only reflect variability due to motor noise (excludes variability due to exploratory noise and any variability due to updates in reach aim). Thus, it is reasonable to expect that the success clamps would have lower variability than the failure clamps (which it obviously does in Figure 6), and presumably baseline (which provides success and failure feedback, thus would contain motor noise and likely some exploratory noise).

      However, in Figure 6, one visually observes greater variability during the success clamp (where it is assumed variability only comes from motor noise) compared to baseline (where variability would come from: (a) Motor noise.

      (b) Likely some exploratory noise since there were some failures.

      (c) Updates in reach aim.

      Thanks for this comment. It made us realize that some of our terminology was unintentionally misleading. Reaching to discrete targets in the Baseline block was done to a) determine if participants could move successfully to targets that are the same width as the 100% reward zone in the continuous targets and b) determine if there are age dependent changes in movement precision. We now realize that the term Baseline Variability was misleading and should really be called Baseline Precision.

      This is an important distinction that bears on this reviewer's comment. In clamp trials, participants move to continuous targets. In baseline, participants move to discrete targets presented at different locations. Clamp Variability cannot be directly compared to Baseline Precision because they are qualitatively different. Since the target changes on each baseline trial, we would not expect updating of desired reach (the target is the desired reach) and there is therefore no updating of reach based on success or failure. The SD we calculate over baseline trials is the endpoint variability of the reach locations relative to the target centers. In success clamp, there are no targets so the task is qualitatively different.

      We have updated the text to clarify terminology, expand upon our operational definitions, and motivate the distinct role of the baseline block in our task paradigm (line 674).

      Given the comment above, can the authors please:

      (a) Statistically compare movement variability between the baseline, success clamp, and failure clamp phases.

      Given our explanation in the previous point we don't think that comparing baseline to the clamp makes sense as the trials are qualitatively different.

      (b) The authors have examined how their model predicts variability during success clamps and failure clamps, but can they also please show predictions for baseline (similar to that of Cashaback et al., 2019; Supplementary B, which alternatively used a no feedback baseline)?

      Again, we do not think it makes sense to predict the baseline which as we mention above has discrete targets compared to the continuous targets in the learning phase.

      (c) Can the authors show whether participants updated their aim towards their last successful reach during the success clamp? This would be a particularly insightful analysis of model assumptions.

      We have now compared 31 models (see full details in next response) which include the 7 models in Roth et al. (2023). Several of these model variants have updating even after success with so called planning noise). We also now fit the model to the data that includes the clamp phases (we can't easily fit to success clamp alone as there are only 10 trials). We find that the preferred model is one that does not include updating after success.

      (d) Different sources of movement variability have been proposed in the literature, as have different related models. One possibility is that the nervous system has knowledge of 'planned (noise)' movement variability that is always present, irrespective of success (van Beers, R.J. (2009). Motor learning is optimally tuned to the properties of motor noise. Neuron, 63(3), 406-417). The authors have used slightly different variations of their model in the past. Roth et al (2023) directly Rill compared several different plausible models with various combinations of motor, planned, and exploratory noise (Roth A, 2023, "Reinforcement-based processes actively regulate motor exploration along redundant solution manifolds." Proceedings of the Royal Society B 290: 20231475: see Supplemental). Their best-fit model seems similar to the one the authors propose here, but the current paper has the added benefit of the success and failure clamps to tease the different potential models apart. In light of the results of a), b), and c), the authors are encouraged to provide a paragraph on how their model relates to the various sources of movement variability and ther models proposed in the literature.

      Thank you for this. We realized that the models presented in Roth et al. (2023) as well as in other papers, are all special cases of a more general model. Moreover, in total there are 30 possible variants of the full model so we have now fit all 31 models to our larger datasets and performed model selection (Results and Methods). All the models can be efficiently fit by Kalman smoother to the actual data (rather than to summary statistics which has sometimes been done). For model selection, we fit only the 100 learning trials and chose the preferred model based on BIC on the children's data (Figure 5—figure Supplement 1). After selecting the preferred model we then refit this model to all trials including the clamps so as to obtain the best parameter estimates.

      The preferred model was the same whether we combined the continuous and discrete probabilistic data or just examin d each task separately either for only the children or for the children and adults combined. The preferred model is a pecial case (no exploration after success) of the one proposed in Therrien et al. (2018) and has exploration variability (after failure) and motor noise with full updating with exploration variability (if any) after success. This model differs from the model in the original submission which included a partial update of the desired reach after exploration this was considered the learning rate. The current model suggests a unity learning rate.

      In addition, as suggested by another reviewer, we also fit a value-based model which we adapted from the model described in Giron et al. (2023). This model was not preferred.

      We have added a paragraph to the Discussion highlighting different sources of variability and links to our model comparison.

      (e) line 155. Why would the success clamp be composed of both motor and exploratory noise? Please clarify in the text

      This sentence was written to refer to clamps in general and not just success clamps. However, in the revision this sentence seemed unnecessary so we have removed it.

      (3) Hypotheses:

      The introduction did not have any hypotheses of development and reinforcement, despite the discussion above setting up potential hypotheses. Did the authors have any hypotheses related to why they might expect age to change motor noise, exploratory noise, and learning rates? If so, what would the experimental behaviour look like to confirm these hypotheses? Currently, the manuscript reads more as an exploratory study, which is certainly fine if true, it should just be explicitly stated in the introduction. Note: on line 144, this is a prediction, not a hypothesis. Line 225: this idea could be sharpened. I believe the authors are speaking to the idea of having more explicit knowledge of action-target pairings changing behaviour.

      We have included our hypotheses and predictions at two points in the paper In the introduction we modified the text to:

      "We hypothesized that children's reinforcement learning abilities would improve with age, and depend on the developmental trajectory of exploration variability, learning rate (how much people adjust their reach after success), and motor noise (here defined as all sources of noise associated with movement, including sensory noise, memory noise, and motor noise). We think that these factors depend on the developmental progression of neural circuits that contribute to reinforcement learning abilities (Raznahan et al., 2014; Nelson et al., 2000; Schultz, 1998)."

      In results we modified the sentence to:

      "We predicted that discrete targets could increase exploration by encouraging children to move to a different target after failure.”

      Reviewer #2 (Public review):

      Summary:

      In this study, Hill and colleagues use a novel reinforcement-based motor learning task ("RML"), asking how aspects of RML change over the course of development from toddler years through adolescence. Multiple versions of the RML task were used in different samples, which varied on two dimensions: whether the reward probability of a given hand movement direction was deterministic or probabilistic, and whether the solution space had continuous reach targets or discrete reach targets. Using analyses of both raw behavioral data and model fits, the authors report four main results: First, developmental improvements reflected 3 clear changes, including increases in exploration, an increase in the RL learning rate, and a reduction of intrinsic motor noise. Second, changes to the task that made it discrete and/or deterministic both rescued performance in the youngest age groups, suggesting that observed deficits could be linked to continuous/probabilistic learning settings. Overall, the results shed light on how RML changes throughout human development, and the modeling characterizes the specific learning deficits seen in the youngest ages.

      Strengths:

      (1) This impressive work addresses an understudied subfield of motor control/psychology - the developmental trajectory of motor learning. It is thus timely and will interest many researchers.

      (2) The task, analysis, and modeling methods are very strong. The empirical findings are rather clear and compelling, and the analysis approaches are convincing. Thus, at the empirical level, this study has very few weaknesses.

      (3) The large sample sizes and in-lab replications further reflect the laudable rigor of the study.

      (4) The main and supplemental figures are clear and concise.

      Thank you.

      Weaknesses:

      (1) Framing.

      One weakness of the current paper is the framing, namely w/r/t what can be considered "cognitive" versus "non-cognitive" ("procedural?") here. In the Intro, for example, it is stated that there are specific features of RML tasks that deviate from cognitive tasks. This is of course true in terms of having a continuous choice space and motor noise, but spatially correlated reward functions are not a unique feature of motor learning (see e.g. Giron et al., 2023, NHB). Given the result here that simplifying the spatial memory demands of the task greatly improved learning for the youngest cohort, it is hard to say whether the task is truly getting at a motor learning process or more generic cognitive capacities for spatial learning, working memory, and hypothesis testing. This is not a logical problem with the design, as spatial reasoning and working memory are intrinsically tied to motor learning. However, I think the framing of the study could be revised to focus in on what the authors truly think is motor about the task versus more general psychological mechanisms. Indeed, it may be the case that deficits in motor learning in young children are mostly about cognitive factors, which is still an interesting result!

      Thank you for these comments on the framing of our study. We now clearly acknowledge that all motor tasks have cognitive components (new paragraph at line 65). We also explain why we think our tasks has features not present in typical cognitive tasks.

      (2) Links to other scholarship.

      If I'm not mistaken a common observation in tudies of the development of reinforcement learning is a decrease in exploration over-development (e.g., Nussenbaum and Hartley, 2019; Giron et al., 2023; Schulz et al., 2019); this contrasts with the current results which instead show an increase. It would be nice to see a more direct discussion of previous findings showing decreases in exploration over development, and why the current study deviates from that. It could also be useful for the authors to bring in concepts of different types of exploration (e.g. "directed" vs "random"), in their interpretations and potentially in their modeling.

      We recognize that our results differ from prior work. The optimal exploration pattern differs from task to task. We now discuss that exploration is not one size fits all, it's benefits vary depending upon the task. We have added the following paragraphs to the Discussion section:

      "One major finding from this study is that exploration variability increases with age. Some other studies of development have shown that exploration can decrease with age indicating that adults explore less compared to children (Schulz et al., 2019; Meder et al., 2021; Giron et al., 2023). We believe the divergence between our work and these previous findings is largely due to the experimental design of our study and the role of motor noise. In the paradigm used initially by Schulz et al. (2019) and replicated in different age groups by Meder et al. (2021) and Giron et al. (2023), participants push buttons on a two-dimensional grid to reveal continuous-valued rewards that are spatially correlated. Participants are unaware that there is a maximum reward available and therefore children may continue to explore to reduce uncertainty if they have difficulty evaluating whether they have reached a maxima. In our task by contrast, participants are given binary reward and told that there is a region in which reaches will always be rewarded. Motor noise is an additional factor which plays a key role in our reaching task but minimal if any role in the discretized grid task. As we show in simulations of our task, as motor noise goes down (as it is known to do through development) the optimal amount of exploration goes up (see Figure 7—figure Supplement 2 and Appendix 1). Therefore, the behavior of our participants is rational in terms of R230 increasing exploration as motor noise decreases.

      A key result in our study is that exploration in our task reflects sensitivity to failure. Older children make larger adjustments after failure compared to younger children to find the highly rewarded zone more quickly. Dhawale et al. (2017) discuss the different contexts in which a participant may explore versus exploit (i.e., stick at the same position). Exploration is beneficial when reward is low as this indicates that the current solution is no longer ideal, and the participant should search for a better solution. Konrad et al. (2025) have recently shown this behavior in a real-world throwing task where 6 to 12 year old children increased throwing variability after missed trials and minimized variability after successful trials. This has also been shown in a postural motor control task where participants were more variable after non-rewarded trials compared to rewarded trials (Van Mastrigt et al., 2020). In general, these studies suggest that the optimal amount of exploration is dependent on the specifics of the task."

      (3) Modeling.

      First, I may have missed something, but it is unclear to me if the model is actually accounting for the gradient of rewards (e.g., if I get a probabilistic reward moving at 45°, but then don't get one at 40°, I should be more likely to try 50° next then 35°). I couldn't tell from the current equations if this was the case, or if exploration was essentially "unsigned," nor if the multiple-trials-back regression analysis would truly capture signed behavior. If the model is sensitive to the gradient, it would be nice if this was more clear in the Methods. If not, it would be interesting to have a model that does "function approximation" of the task space, and see if that improves the fit or explains developmental changes.

      The model we use (similar to Roth et al. (2023) and Therrien et al. (2016, 2018)) does not model the gradient. Exploration is always zero-mean Gaussian. As suggested by the reviewer, we now also fit a value-based model (described starting at line 810) which we adapted from the model presented in Giron et al. (2023). We show that the exploration and noise-based model is preferred over the value-based model.

      The multiple-trials-back regression was unsigned as the intent was to look at the magnitude and not the direction of the change in movement. We have decided to remove this analysis from the manuscript as it was a source of confusion and secondary analysis that did not add substantially to the findings of these studies.

      Second, I am curious if the current modeling approach could incorporate a kind of "action hysteresis" (aka perseveration), such that regardless of previous outcomes, the same action is biased to be repeated (or, based on parameter settings, avoided).

      In some sense, the learning rate in the model in the original submission is highly related to perseveration. For example if the learning rate is 0, then there is complete perseveration as you simply repeat the same desired movement. If the rate is 1, there is no perseveration and values in between reflect different amounts of perseveration. Therefore, it is not easy to separate learning rate from perseveration. Adding perseveration as another parameter would likely make it and the learning unidentifiable. However, we now compare 31 models and those that have a non-unity learning rate are not preferred suggesting there is little perseveration.

      (4) Psychological mechanisms. There is a line of work that shows that when children and adults perform RL tasks they use a combination of working memory and trial-by-trial incremental learning processes (e.g., Master et al., 2020; Collins and Frank 2012). Thus, the observed increase in the learning rate over development could in theory reflect improvements in instrumental learning, working memory, or both. Could it be that older participants are better at remembering their recent movements in short-term memory (Hadjiosif et al., 2023; Hillman et al., 2024)?

      We agree that cognitive processes, such as working memory or visuospatial processing, play a role in our task and describe cognitive elements of our task in the introduction (new paragraph at line 65). However, the sensorimotor model we fit to the data does a good job of explaining the variation across age, which suggests that that age-dependent cognitive processes probably play a smaller role.

      Reviewer #3 (Public review):

      Summary:

      The study investigates reinforcement learning across the lifespan with a large sample of participants recruited for an online game. It finds that children gradually develop their abilities to learn reward probability, possibly hindered by their immature spatial processing and probabilistic reasoning abilities. Motor noise, reinforcement learning rate, and exploration after a failure all contribute to children's subpar performance.

      Strengths:

      (1) The paradigm is novel because it requires continuous movement to indicate people's choices, as opposed to discrete actions in previous studies.

      (2) A large sample of participants were recruited.

      (3) The model-based analysis provides further insights into the development of reinforcement learning ability.

      Thank you.

      Weaknesses:

      (1 ) The adequacy of model-based analysis is questionable, given the current presentation and some inconsistency in the results.

      Thank you for raising this concern. We have substantially revised the model from our first submission. We now compare 31 noise-based models and 1 value-based model and fit all of the tasks with the preferred model. We perform model selection using the two tasks with the largest datasets to identify the preferred model. From the preferred model, we found the parameter fits for each individual dataset and simulated the trial by trial behavior allowing comparison between all four tasks. We now show examples of individual fits as well as provide a measure of goodness of fit. The expansion of our modeling approach has resolved inconsistencies and sharpened the conclusions drawn from our model.

      (2) The task should not be labeled as reinforcement motor learning, as it is not about learning a motor skill or adapting to sensorimotor perturbations. It is a classical reinforcement learning paradigm.

      We now make it clear that our reinforcement learning task has both motor and cognitive demands, but does not fall entirely within one of these domains. We use the term motor learning because it captures the fact that participants maximize reward by making different movements, corrupted by motor noise, to unmarked locations on a continuous target zone. When we look at previous ublications, it is clear that our task is similar to those that also refer to this as reinforcement motor learning Cashaback et al. (2019) (reaching task using a robotic arm in adults), Van Mastrigt et al. (2020) (weight shifting task in adults), and Konrad et al. (2025) (real-world throwing task in children). All of these tasks involve trial-by-trial learning through reinforcement to make the movement that is most effective for a given situation. We feel it is important to link our work to these previous studies and prefer to preserve the terminology of reinforcement motor learning.

      Recommendations for the authors:

      Reviewing Editor Comments:

      Thank you for this summary. Rather than repeat the extended text from the responses to the reviewers here, we point the Editor to the appropriate reviewer responses for each issue raised.

      The reviewers and editors have rated the significance of the findings in your manuscript as "Valuable" and the strength of evidence as "Solid" (see eLife evalutation). A consultancy discussion session to integrate the public reviews and recommendations per reviewer (listed below), has resulted in key recommendations for increasing the significance and strength of evidence:

      To increase the Significance of the findings, please consider the following:

      (1) Address and reframe the paper around whether the task is truly getting at a motor learning process or more generic cognitive decision-making capacities such as spatial memory, reward processing, and hypothesis testing.

      We have revised the paper to address the comments on the framing of our work. Please see responses to the public review comments of Reviewers #2 and #3.

      (2) It would be beneficial to specify the differences between traditional reinforcement algorithms (i.e., using softmax functions to explore, and build representations of state-action-reward) and the reinforcement learning models used here (i.e., explore with movement variability, update reach aim towards the last successful action), and compare present findings to previous cognitive reinforcement learning studies in children.

      Please see response to the public review comments of Reviewer #1 in which we explain the expansion of our modeling approach to fit a value-based model as well as 31 other noise-based models. In our response to the public review comments of Reviewer #2, we comment on our expanded discussion of how our findings compare with previous cognitive reinforcement learning studies.

      To move the "Strength of Evidence" to "Convincing", please consider doing the following:

      (1 ) Address some apparently inconsistent and unrealistic values of motor noise, exploration noise, and learning rate shown for individual participants (e.g., Figure 5b; see comments reviewers 1 and take the following additional steps: plotting r squares for individual participants, discussing whether individual values of the fitted parameters are plausible and whether model parameters in each age group can extrapolate to the two clamp conditions and baselines.

      We have substantially updated our modeling approach. Now that we compare 31 noise-based models, the preferred model does not show any inconsistent or unrealistic values (see response to Reviewer #3). Additionally, we now show example individual fits and provide both relative and absolute goodness of fit (see response to Reviewer #3).

      (2) Relatedly, to further justify if model assumptions are met, it would be valuable to show that the current learning model fits the data better than alternative models presented in the literature by the authors themselves and by others (reviewer 1). This could include alternative development models that formalise the proposed explanations for age-related change: poor spatial memory, reward/outcome processing, and exploration strategies (reviewer 2).

      Please see response to public review comments of Reviewer #1 in which we explain that we have now fit a value-based model as well as 31 other noise-based models providing a comparison of previous models as well as novel models. This led to a slightly different model being preferred over the model in the original submission (updated model has a learning rate of unity). These models span many of the processes previously proposed for such tasks. We feel that 32 models span a reasonable amount of space and do not believe we have the power to include memory issues or heuristic exploration strategies in the model.

      (3) Perform the mediation analysis with all the possible variables (i.e., not informed by multiple regression) to see if the results are more consistent across studies and with the current approach (see comments reviewer 1).

      Please see response to public review comments of Reviewer #1. We chose to focus only on the model based analysis because it allowed us to distinguish between exploration variability and motor noise.

      Please see below for further specific recommendations from each reviewer.

      Reviewer #1 (Recommendations for the author):

      (1) In general, there should be more discussion and contextualization of other binary reinforcement tasks used in the motor literature. For example, work from Jeroen Smeets, Katinka van der Kooij, and Joseph Galea.

      Thank you for this comment. We have edited the Introduction to better contextualize our work within the reinforcement motor learning literature (see line 67 and line 83).

      (2) Line 32. Very minor. This sentence is fine, but perhaps could be slightly improved. “select a location along a continuous and infinite set of possible options (anywhere along the span of the bridge)"

      Thank you for this comment. We have edited the sentence to reflect this suggestion.

      (3) Line 57. To avoid some confusion in successive sentences: Perhaps, "Both children over 12 and adolescents...".

      Thank you for this comment. We have edited the sentence to reflect this suggestion.

      (4) Line 80. This is arguably not a mechanistic model, since it is likely not capturing the reward/reinforcement machinery used by the nervous system, such as updating the expected value using reward predic tion errors/dopamine. That said, this phenomenological model, and other similar models in the field, do very well to capture behaviour with a very simple set of explore and update rules.

      We use mechanistic in the standard use in modeling, as in Levenstein et al. (2023), for example. The contrast is not with neural modeling, but with normative modeling, in which one develops a model to optimize a function (or descriptive models as to what a system is trying to achieve). In mechanistic modeling one proposes a mechanism and this can be at a state-space level (as in our case) or a neural level (as suggested my the reviewer) but both are considered mechanistic, just at different levels. Quoting Levenstein "... mechanistic models, in which complex processes are summarized in schematic or conceptual structures that represent general properties of components and their interactions, are also commonly used." We now reference the Levenstein paper to clarify what we mean by mechanistic.

      (5) Figure 1. It would be useful to state that the x-axis in Figure 1 is in normalized units, depending on the device.

      Thank you for this comment. We have added a description of the x-axis units to the Fig. 1 caption.

      (6) Were there differences in behaviour for these different devices? e.g., how different was motor noise for the mouse, trackpad, and touchscreen?

      Thank you for this question. We did not find a significant effect of device on learning or precision in the baseline block. We have added these one way ANOVA results for each task in Supplementary Table 1.

      (7) Line 98. Please state that participants received reinforcement feedback during baseline.

      Thank you for this comment. We have updated the text to specify that participants receive reward feedback during the baseline block.

      (8) Line 99. Did the distance from the last baseline trial influence whether the participant learned or did not learn? For example, would it place them too far from the peak success location such that it impacted learning?

      Thank you for this question. We looked at whether the position of movement on the last baseline block trial was correlated with the first movement position in the learning block. We did not find any correlations between these positions for any of the tasks. Interestingly, we found that the majority of participants move to the center of the workspace on the first trial of the learning block for all tasks (either in the presence of the novel continuous target scene or the presentation of 7 targets all at once). We do not think that the last movement in the baseline block "primed" the participant for the location of the success zone in the learning block. We have added the following sentence to the Results section:

      "Note that the reach location for the first learning trial was not affected by (correlated with) the target position on the last baseline trial (p > 0.3 for both children and adults, separately)."

      (9) The term learning distance could be improved. Perhaps use distance from target.

      Thank you for this comment. We appreciate that learning distance defined with 0 as the best value is counter intuitive. We have changed the language to be "distance from target" as the learning metric.

      (10) Line 188. This equation is correct, but to estimate what the standard deviation by the distribution of changes in reach position is more involved. Not sure if the authors carried out this full procedure, which is described in Cashaback et al., 2019; Supplemental 2.

      There appear to be no Supplemental 2 in the referenced paper so we assume the reviewer is referring to Supplemental B which deals with a shuffling procedure to examine lag-1 correlations.

      In our tasks, we are limited to only 9 trials to analyze in each clamp phase so do not feel a shuffling analysis is warranted. In these blocks, we are not trying to 'estimate what the standard deviation by the distribution of changes in reach position' but instead are calculating the standard deviation of the reach locations and comparing the model fit (for which the reviewer says the formula is correct) with the data. We are unclear what additional steps the reviewer is suggesting. In our updated model analysis, we fit the data including the clamp phases for better parameter estimation. We use simulations to estimate s.d. in the clamp phase (as we ensure in simulations the data does not fall outside the workspace) making the previous analytic formulas an approximation that are no longer used.

      (11) Line 197-199. Having done the demo task, it is somewhat surprising that a 3-year-old could understand these instructions (whose comprehension can be very different from even a 5-year old).

      Thank you for raising this concern. We recognize that the younger participants likely have different comprehension levels compared to older participants. However, we believe that the majority of even the youngest participants were able to sufficiently understand the goal of the task to move in a way to get the video clip to play. We intentionally designed the tasks to be simple such that the only instructions the child needed to understand were that the goal was to get the video clip to play as much as possible and the video clip played based on their movement. Though the majority of younger children struggled to learn well on the probabilistic tasks, they were able to learn well on the deterministic tasks where the task instructions were virtually identical with the exception of how many places in the workspace could gain reward. On the continuous probabilistic task, we did have a small number (n = 3) of 3 to 5 year olds who exhibited more mature learning ability which gives us confidence that the younger children were able to understand the task goal.

      (12) Line 497: Can the authors please report the F-score and p-value separately for each of these one-way ANOVA (the device is of particular interest here).

      Thank you for this request. We have added ina upplementarytable (Supplementary Table 1) with the results of these ANOVAs.

      (13) Past work has discussed how motivation influences learning, which is a function of success rate (van der Kooij, K., in 't Veld, L., & Hennink, T. (2021). Motivation as a function of success frequency. Motivation and Emotion, 45, 759-768.). Can the authors please discuss how that may change throughout development?

      Thank you for this comment. While motivation most probably plays a role in learning, in particular in a game environment, this was out of the scope of the direct focus of this work and not something that our studies were designed to test. We have added the following sentence to the discussion section to address this comment:

      "We also recognize that other processes, such as memory and motivation, could affect performance on these tasks however our study was not designed to test these processes directly and future work would benefit from exploring these other components more explicitly."

      (14) Supplement 6. This analysis is somewhat incomplete because it does not consider success.

      Pekny and collegues (2015) looked at 3 trials back but considered both success and reward. However, their analysis has issues since successive time points are not i.i.d., and spurious relationships can arise. This issue is brought up by Dwahale (Dhawale, A. K., Miyamoto, Y. R., Smith, M. A., & R475 Ölveczky, B. P. (2019). Adaptive regulation of motor variability. Current Biology, 29(21), 3551-3562.). Perhaps it is best to remove this analysis from the paper.

      Thank you for this comment. We have decided to remove this secondary analysis from the paper as it was a source of confusion and did not add to the understanding and interpretation of our behavioral results.

      Reviewer #2 (Recommendations for the author):

      (1 ) the path length ratio analyses in the supplemental are interesting but are not mentioned in the main paper. I think it would be helpful to mention these as they are somewhat dramatic effects

      Thank you for this comment. Path length ratios are defined in the Methods and results are briefly summarized in the Results section with a point to the supplementary figures. We have updated the text to more explicitly report the age related differences in path length ratios.

      (2) The second to last paragraph of the intro could use a sentence motivating the use ofthe different task features (deterministic/probabilistic and discrete/continuous).

      Thank you for this comment. We have added an additional motivating sentence to the introduction.

      Reviewer #3 (Recommendations for the author):

      The paper labeled the task as one for reinforcement motor learning, which is not quite appropriate in my opinion. Motor learning typically refers to either skill learning or motor adaptation, the former for improving speed-accuracy tradeoffs in a certain (often new) motor skill task and the latter for accommodating some sensorimotor perturbations for an existing motor skill task. The gaming task here is for neither. It is more like a

      decision-making task with a slight contribution to motor execution, i.e., motor noise. I would recommend the authors label the learning as reinforcement learning instead of reinforcement motor learning.

      Thank you for this comment. As noted in the response to the public review comments, we agree that this task has components of classical reinforcement learning (i.e. responding to a binary reward) but we specifically designed it to require the learning of a movement within a novel game environment. We have added a new paragraph to the introduction where we acknowledge the interplay between cognitive and motor mechanisms while also underscoring the features in our task that we think are not present in typical cognitive tasks.

      My major concern is whether the model adequately captures subjects' behavior and whether we can conclude with confidence from model fitting. Motor noise, exploration noise, and learning rate, which fit individual learning patterns (Figure 5b), show some quite unrealistic values. For example, some subjects have nearly zero motor noise and a 100% learning rate.

      We have now compared 31 models and the preferred model is different from the one in the first submission. The parameter fits of the new model do not saturate in any way and appear reasonable to us. The updates to the model analysis have addressed the concern of previously seen unrealistic values in the prior draft.

      Currently, the paper does not report the fitting quality for individual subjects. It is good to have an exemplary subject's fit shown, too. My guess is that the r-squared would be quite low for this type of data. Still, given that the children's data is noisier, it might be good to use the adult data to show how good the fitting can be (individual fits, r squares, whether the fitted parameters make sense, whether it can extrapolate to the two clamp phases). Indeed, the reliability of model fitting affects how we should view the age effect of these model parameters.

      We now show fits to individual subjects. But since this is a Kalman smoother it fits the data perfectly by generating its best estimate of motor noise and exploration variability on each trial to fully account for the data — so in that sense R<sup>2</sup> is always 1 so that is not helpful.

      While the BIC analysis with the other model variants provides a relative goodness of fit, it is not straightforward to provide an absolute goodness of fit such as standard R<sup>2</sup> for a feedforward simulation of the model given the parameters (rather than the output of the Kalman smoother). There are two problems. First, there is no single model output. Each time the model is simulated with the fit parameters it produces a different output (due to motor noise, exploration variability and reward stochasticity). Second, the model is not meant to reproduce the actual motor noise, exploration variability and reward stochasticity of a trial. For example, the model could fit pure Gaussian motor noise across trials (for a poor learner) by accurately fitting the standard deviation of motor noise but would not be expected to actually match each data point so would have a traditional R<sup>2</sup> of O.

      To provide an overall goodness of fit we have to reduce the noise component and to do so we exam ined the traditional R<sup>2</sup> between the average of all the children's data and the average simulation of the model (from the median of 1000 simulations per participant) so as to reduce the stochastic variation. The results for the continuous probabilistic and discrete probabilistic task are R<sup>2</sup> of 0.41 and 0.72, respectively.

      Not that variability in the "success clamp" doe not change across ages (Figure 4C) and does not contribute to the learning effect (Figure 4F). However, it is regarded as reflecting motor noise (Figure SC), which then decreases over age from the model fitting (Figure 5B). How do we reconcile these contradictions? Again, this calls the model fitting into question.

      For the success clamp, we only have 9 trials to calculate variability which limits our power to detect significance with age. In contrast, the model uses all 120 trials to estimate motor noise. There is a downward trend with age in the behavioral data which we now show overlaid on the fits of the model for both probabilistic conditions (Figure 5—figure Supplement 4) and Figure 6—figure Supplement 4). These show a reasonable match and although the variance explained is 1 6 and 56% (we limit to 9 trials so as to match the fail clamp), the correlations are 0.52 and 0.78 suggesting we have reasonable relation although there may be other small sources of variability not captured in the model.

      Figure 5C: it appears one bivariate outlier contributes a lot to the overall significant correlation here for the "success clamp".

      Recalculating after removing that point in original Fig 5C was still significant and we feel the plots mentioned in the previous point add useful information to this issue. With the new model this figure has changed.

      It is still a concern that the young children did not understand the instructions. Nine 3-to-8 children (out of 48) were better explained by the noisy only model than the full model. In contrast, ten of the rest of the participants (out of 98) were better explained by the noisy-only model. It appears that there is a higher percentage of the "young" children who didn't get the instruction than the older ones.

      Thank you for this comment. We did take participant comprehension of the task into consideration during the task design. We specifically designed it so that the instructions were simple and straight forward. The child simply needs to understand the underlying goal to make the video clip play as often as possible and that they must move the penguin to certain positions to get it to play. By having a very simple task goal, we are able to test a naturalistic response to reinforcement in the absence of an explicit strategy in a task suited even for young children.

      We used the updated reinforcement learning model to assess whether an individual's performance is consistent with understanding the task. In the case of a child who does not understand the task, we expect that they simply have motor noise on their reach, and crucially, that they would not explore more after failure, nor update their reach after success. Therefore, we used a likelihood ratio test to examine whether the preferred model was significantly better at explaining each participant's data compared to the model variant which had only motor noise (Model 1). Focusing on only the youngest children (age 3-5), this analysis showed that that 43, 59, 65 and 86% of children (out of N = 21, 22, 20 and 21 ) for the continuous probabilistic, discrete probabilistic, continuous deterministic, and discrete deterministic conditions, respectively, were better fit with the preferred model, indicating non-zero exploration after failure. In the 3-5 year old group for the discrete deterministic condition, 18 out of 21 had performance better fit by the preferred model, suggesting this age group understands the basic task of moving in different directions to find a rewarding location.

      The reduced numbers fit by the preferred model for the other conditions likely reflects differences in the task conditions (continuous and/or probabilistic) rather than a lack of understanding of the goal of the task. We include this analysis as a new subsection at the end of the Results.

      Supplementary Figure 2: the first panel should belong to a 3-year-old not a 5-year-old? How are these panels organized? This is kind of confusing.

      Thank you for this comment. Figure 2—figure Supplement 1 and Figure 2—figure Supplement 2 are arranged with devices in the columns and a sample from each age bin in the rows. For example in Figure 2—figure Supplement 1, column 1, row 1 is a mouse using participant age 3 to 5 years old while column 3, row 2 is a touch screen using participant age 6 to 8 years old. We have edited the labeling on both figures to make the arrangement of the data more clear.

      Line 222: make this a complete sentence.

      This sentence has been edited to a complete sentence.

      Line 331: grammar.

      This sentence has been edited for grammar.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      This work tried to map the synaptic connectivity between the inputs and outputs of the song premotor nucleus, HVC in zebra finches to understand how sensory (auditory) to motor circuits interact to coordinate song production and learning. The authors optimized the optogenetic technique via AAV to manipulate auditory inputs from a specific auditory area one-by-one and recorded synaptic activity from a neuron with whole-cell recording from slice preparation with identification of the projection area by retrograde neuronal tracing. This thorough and detailed analysis provides compelling evidence of synaptic connections between 4 major auditory inputs (3 forebrain and 1 thalamic region) within three projection neurons in the HVC; all areas give monosynaptic excitatory inputs and polysynaptic inhibitory inputs, but proportions of projection to each projection neuron varied. They also find specific reciprocal connections between mMAN and Av. Taken together the authors provide the map of the synaptic connection between intercortical sensory to motor areas which is suggested to be involved in zebra finch song production and learning.

      Strengths:

      The authors optimized optogenetic tools with eGtACR1 by using AAV which allow them to manipulate synaptic inputs in a projection-specific manner in zebra finches. They also identify HVC cell types based on projection area. With their technical advance and thorough experiments, they provided detailed map synaptic connections.

      Weaknesses:

      As it is the study in brain slice, the functional implication of synaptic connectivity is limited. Especially as all the experiments were done in the adult preparation, there could be a gap in discussing the functions of developmental song learning.

      We thank the reviewer for their appreciation of our work. Although we agree that there can be limitations to brain slice preparations, the approaches used here for synaptic connectivity mapping are well-designed to identify long-range synaptic connectivity patterns. Optogenetic stimulation of axon terminals in brain slices does not require intact axons and works well when axons are cut, allowing identification of all inputs expressing optogenetic channels from aXerent regions. Terminal stimulation in slices yields stable post-synaptic responses for hours without rundown, assuring that polysynaptic and monosynaptic connections can be reliably identified in our brain slices.  Additionally, conducting similar types of experiments in vivo can run into important limitations. First, the extent of TTX and 4-AP diXusion, which is necessary for identification of long-range monosynaptic connections, can be diXicult to verify in vivo - potentially confounding identification of monosynaptic connectivity.  Second, conducting whole-cell patch-clamp experiments in vivo, particularly in deeper brain regions, is technically challenging, and would limit the number of cells that can be patched and increase the number of animals needed. 

      We agree that there may well be important diXerences between adult connectivity and connectivity patterns in the juvenile brain. Indeed, learning and experience during development almost certainly shape connectivity patterns and these patterns of connectivity may change incrementally and/or dynamically during development. Ultimately, adult connectivity patterns are the result of changes in the brain that accrue over development. Given that this is the first study mapping long-range connectivity of HVC input-output pathways, we reasoned that the adult connectivity would provide a critical reference allowing future studies to map diXerent stages of juvenile connectivity and the changes in connectivity driven by milestones like forming a tutor song memory, sensorimotor learning, and song crystallization.

      In this revision we worked to better highlight the points raised above and thank the reviewer for their comments.

      Reviewer #2 (Public review):

      Summary:

      The manuscript describes synaptic connectivity in the Songbird cortex's four main classes of sensory neuron aXerents onto three known classes of projection neurons of the pre-motor cortical region HVC. HVC is a region associated with the generation of learned bird songs. Investigators here use all male zebra finches to examine the functional anatomy of this region using patch clamp methods combined with optogenetic activation of select neuronal groups.

      Strengths:

      The quality of the recordings is extremely high and the quantity of data is on a very significant scale, this will certainly aid the field.

      Weaknesses:

      The authors could make the figures a little easier to navigate. Most of the figures use actual anatomical images but it would be nice to have this linked with a zebra finch atlas in more of a cartoon format that accompanied each fluro image. Additionally, for the most part, figures showing the labeling lack scale bar values (in um). These should be added not just shown in the legends.

      The authors could make it clear in the abstract that this is all male zebra finches - perhaps this is obvious given the bird song focus, but it should be stated. The number of recordings from each neuron class and the overall number of birds employed should be clearly stated in the methods (this is in the figures, but it should say n=birds or cells as appropriate).

      The authors should consider sharing the actual electrophysiology records as data.

      We thank the reviewer for their assessment of our research and suggestions. We have implemented many of these suggestions and provide details in our response to their specific Recommendations. Additionally, we are organizing our data and will make it publicly available with the version of record.

      Reviewer #3 (Public review):

      Nucleus HVC is critical both for song production as well as learning and arguably, sitting at the top of the song control system, is the most critical node in this circuit receiving a multitude of inputs and sending precisely timed commands that determine the temporal structure of song. The complexity of this structure and its underlying organization seem to become more apparent with each experimental manipulation, and yet our understanding of the underlying circuit organization remains relatively poorly understood. In this study, Trusel and Roberts use classic whole-cell patch clamp techniques in brain slices coupled with optogenetic stimulation of select inputs to provide a careful characterization and quantification of synaptic inputs into HVC. By identifying individual projection neurons using retrograde tracer injections combined with pharmacological manipulations, they classify monosynaptic inputs onto each of the three main classes of glutamatergic projection neurons in HVC (RA-, Area X- and Av-projecting neurons). This study is remarkable in the amount of information that it generates, and the tremendous labor involved for each experiment, from the expression of opsins in each of the target inputs (Uva, NIf, mMAN, and Av), the retrograde labelling of each type of projection neuron, and ultimately the optical stimulation of infected axons while recording from identified projection neurons. Taken together, this study makes an important contribution to increasing our identification, and ultimately understanding, of the basic synaptic elements that make up the circuit organization of HVC, and how external inputs, which we know to be critical for song production and learning, contribute to the intrinsic computations within this critic circuit.

      This study is impressive in its scope, rigorous in its implementation, and thoughtful regarding its limitations. The manuscript is well-written, and I appreciate the clarity with which the authors use our latest understanding of the evolutionary origins of this circuit to place these studies within a larger context and their relevance to the study of vocal control, including human speech. My comments are minor and primarily about legibility, clarification of certain manipulations, and organization of some of the summary figures.

      We thank the reviewer for their thoughtful assessment of our research.

      Recommendations for the authors:

      The following recommendations were considered by all reviewers to be important to incorporate for improving this paper:

      (1) Clarify the site of viral injection and the possibility of labeling other structures a) Show images of viral injection sites.

      We provide a representative image of viral expression for each pathway studied in this manuscript. Please see panel A in Figures 2-3 and 5-6 showing our viral expression in Uva, NIf, mMAN, and Av respectively.  

      b) Include in discussion caveats that the virus may spread beyond the boundaries of structures (e.g. especially injections into NIF could spread into Field L).

      For each HVC aXerent nucleus we have now included a sentence describing the possible spread of viral infection in surrounding structures in the Results. We also now expanded the image from the Av section to include NIf, to showcase lack of viral expression in NIf (see Fig. 6A).

      (2) Clarify the logic and precise methods of the TTX and 4-AP experiments

      a) Please see the detailed issue raised by Reviewer 3, Major Point 1 below.

      The TTX and 4AP application is the gold-standard of opsin-assisted synaptic circuit interrogation, pioneered by the Svoboda lab in 2009 (Petreanu, Mao et al. 2009) and widely used to assess monosynaptic connectivity in multiple brain circuits, as summarized in a recent review(Linders, Supiot et al. 2022). We now better describe the logic of this approach in the second paragraph of the Results section and cite the first description of this method from the Svoboda lab and a recent review weighing this method with other optogenetic methods for tracing synaptic connections in the brain.

      (3) Include caveats in discussion

      a) Note that there may be other inputs to HVC that were not examined in this study (e.g. CMM, Field L)

      In our original manuscript we did state “Although a complete description of HVC circuitry will require the examination of other potential inputs (i.e. RA<sub>HVC</sub> PNs, A11 glutamatergic neurons(Roberts, Klein et al. 2008, Ben-Tov, Duarte et al. 2023)) and a characterization of interneuron synaptic connectivity, here we provide a map of the synaptic connections between the 4 best described aPerents to HVC and its 3 populations of projection neurons” in the last paragraph of the Discussion. We have now edited this sentence to include the projection from NCM to HVC and cited Louder et al., 2024.

      We have extensively mapped input pathways to HVC, and consistent with Vates (Vates, Broome et al. 1996) we have not found evidence that Field L projects to HVC. Rather that it projects to the shelf region outside of HVC. Consistent with this, we do not see retrogradely labeled neurons in Field L following tracer injections confined to HVC (see Fig. 3G). Additionally, we find that CM projections to HVC arise from the nucleus Avalanche (Roberts, Hisey et al. 2017) which we specifically examine in this study. We do not dispute that there may be other pathways projecting to HVC that will need to be examined in the future, including known projections from neuromodulatory regions and RA, from developmentally restricted pathway(s) like NCM (Louder, Kuroda et al. 2024), and from yet unidentified pathways.

      b) Also note that birds in this study were adults and that some inputs to HVC likely to be important for learning may recede during development (e.g. Louder et al, 2024).

      In the second to last paragraph of the Discussion we now state: While our opsin-assisted circuit mapping provides us with a new level of insight into HVC synaptic circuitry, there are limitations to this research that should be considered. All circuit mapping in this study was carried out in brain slices from adult male zebra finches. Future studies will be needed to examine how this adult connectivity pattern relates to patterns of connectivity in juveniles during sensory or sensorimotor phases of vocal learning and connectivity patterns in female birds.   

      (4) Consider cosmetic changes to figures as suggested by Reviewers 2-3 below.

      We thank the reviewers for their suggestions and have implemented the changes as best we can.

      (5) Address all minor issues raised below.

      Reviewer #1 (Recommendations for the authors):

      I see this study is well designed to answer the author's specific question, mapping synaptic auditorymotor connections within HVC. Their experiments with advanced techniques of projection-specific optogenetic manipulation of synaptic inputs and retrograde identification of projection areas revealed input-output combination selective synaptic mapping.

      As I found this study advanced our knowledge with the compelling dataset, I have only some minor comments here.

      (1) One technical concern is we don't see how much the virus infection was focused on the target area and if we can ignore the eXect of synaptic connectivity from surrounding areas. As the amount of virus they injected is large (1.5ul) and target areas are small, we assume the virus might spread to the surrounding area, such as field L which also projects to HVC when targeting Nif. While I think the majority of the projections were from their target areas, it would be better to mention (also the images with larger view areas) the possibilities of projections of surrounding areas.

      We agree with the reviewer about the concern about specificity of viral expression. For this reason, we included sample images of the viral expression in each target area (panel A in Fig. 2,3,5,6). We have now also included a sentence at the beginning of each subsection of our Result to describe how we have ensured interpretability of the results. Uva and mMAN’s surrounding areas are not known to project to HVC. Possible cross-infection is an issue for Av and NIf, and we checked each bird’s injection site to ensure that eGtACR1+ cells were not visible in the unintended HVC-projecting areas.

      As mentioned in our response the public comment, consistent with Vates (Vates, Broome et al. 1996) we do not see evidence that Field L projects directly to HVC (see Fig. 3G).

      (2) Another concern about the technical issue is the damage to axonal projections. While I understand the authors stimulated axonal terminals axonal projections were assumed to be cut and their ability to release neurotransmitters would be reduced especially after long-term survival or repeated stimulation. Mentioning whether projection pathways were within their 230um-thick slice (probably depends on input sites) or not and the eXect of axonal cut would be helpful.

      We agree that slice electrophysiology has limitations. However, we disagree with the claim of reduced reliability or stability of the evoked response. We and others find that electrical and optogenetic repeated terminal stimulation in slices can yield stable post-synaptic responses for tens of minutes and even hours (Bliss and Gardner-Medwin 1973, Bliss and Lomo 1973, Liu, Kurotani et al. 2004, Pastalkova, Serrano et al. 2006, Xu, Yu et al. 2009, Trusel, Cavaccini et al. 2015, Trusel, Nuno-Perez et al. 2019). Indeed, long-term synaptic plasticity experiments in most preparations and across brain areas rely on such stability of the presynaptic machinery for synaptic release, despite axons being severed from their parent soma. Our assumption is the vast majority, if not all, connections between axon terminals and their cell body in the aXerent regions have been cut in our preparations. Nonetheless, the diversity of outcomes we report (currents returning after TTX+4AP or not, depending on the specific combination of input and HVCPN class) is consistent with the robustness of the synaptic interrogation method. 

      (3) While I understand this study focused on 4 major input areas and the authors provide good pictures of synaptic HVC connections from those areas, HVC has been reported to receive auditory inputs from other areas as well (CMM, FieldL, etc.). It is worth mentioning that there are other auditory inputs and would be interesting to discuss coordination with the inputs from other areas.

      We have extensively mapped input pathways to HVC, and consistent with Vates (Vates, Broome et al. 1996) we have not found evidence that Field L projects to HVC. Rather that it projects to the shelf region outside of HVC. Consistent with this, we do not see retrogradely labeled neurons in Field L following tracer injections confined to HVC (see Fig. 3G). Additionally, we find that CM projections to HVC arise from the nucleus Avalanche (Roberts, Hisey et al. 2017) which we specifically examine in this study. We do not dispute that there may be other pathways projecting to HVC that will need to be examined in the future, including known projections from neuromodulatory regions and RA, from developmentally restricted pathway(s) like NCM (Louder, Kuroda et al. 2024), and from yet unidentified pathways.

      (4) The HVC local neuronal connections have been reported to be modified and a recent study revealed the transient auditory inputs into HVC during song learning period. The author discusses the functions of HVC synaptic connections on song learning (also title says synaptic connection for song learning), however, the experiments were done in adults and dp not discuss the possibility of diXerent synaptic connection mapping in juveniles in the song learning period. Mentioning the neuronal activities and connectivity changes during song learning is important. Also, it would be helpful for the readers to discuss the potential diXerences between juveniles/adults if they want to discuss the functions of song learning.

      We now mention in the Discussion that this is an important caveat of our research and that future studies will be needed to examine how these adult connectivity patterns relate to connectivity patterns in juveniles during sensory or sensorimotor phases of vocal learning and connectivity patterns in female birds. Nonetheless, the title and abstract cite song learning because it is important for the broader public to understand that at least some of these aXerent brain regions carry an essential role in song learning (Foster and Bottjer 2001, Roberts, Gobes et al. 2012, Roberts, Hisey et al. 2017, Zhao, Garcia-Oscos et al. 2019, Koparkar, Warren et al. 2024).

      Reviewer #2 (Recommendations for the authors):

      The work is very detailed and will be an important resource to those working in the field. The recordings are of a high quality and lots of information is included such as measures of response kinetics amplitude and pharmacological confirmation of excitatory and inhibitory synaptic responses. In general, I feel the quality is extremely high and the quantity of data is on a very significant exhaustive scale that will certainly aid the field. I have come at this conclusion as a non zebra finch person but I feel the connection information shown will be of benefit given its high quality.

      Figure 7 is a nice way of showing the overall organization. Optional suggestion, consider highlighting anything in Figure 7 that results in a new understanding of the song system as compared to previous work on anatomy and function.

      We thank the reviewer for the kind comments about our research. We have highlighted our newly found connection between mMAN and Av and all the connections onto the HVC PNs in Panel B are newly identified in this study.

      Reviewer #3 (Recommendations for the authors):

      Major points

      (1) Clarification regarding methods for determining monosynaptic events:

      One of the manipulations that I struggled the most with was those describing the use of TTX + 4AP to isolate monosynaptic events. Initially, not being as familiar with the use of optically based photostimulation of axons to release transmitter locally, I was initially confused by statements such as "we found that oEPSC returned after application of TTX+4AP". This might be clear to someone performing these manipulations, but a bit more clarification would be helpful. Should I assume that an existing monosynaptic EPSC would be masked by co-occurring polysynaptic IPSCs which disappear following application of TTX + 4AP, thereby unmasking the monosynaptic EPSC, thereby causing the EPSC to "return"? A word that I am not sure works. Continuing my confusion with these experiments, I am unsure how this cocktail of drugs is added, if it is even added as a cocktail, which is what I initially assumed. The methods and the results are not so clear if they are added in sequence and why and if traces are recorded after the addition of both drugs or if they are recorded for TTX and then again for TTX + 4AP. Finally, looking at the traces in the experimental figures (e.g. Figures 2F, 3F, 5F, and 6F), it is diXicult to see what is being shown, at least for me. First, the authors need to describe better in the results why they stimulate twice in short succession and why they seem to use the response to the second pulse (unless I am mistaken) to measure the monosynaptic event. Second, I was confused by the traces (which are very small) in the presence of TTX. I would have expected to see a response if there was a monosynaptic EPSC but I only seem to see a flat line.  

      The confusion that I list above might be due in part to my ignorance, but it is important in these types of papers not to assume too much expertise if you want readers with a less sophisticated understanding of synaptic physiology to understand the data. In other words, a little bit more clarity and hand-holding would be welcome.

      We understand the reviewer’s confusion about the methodology.  In Voltage clamp, the amplifier injects current through the electrode maintaining the membrane voltage to -70mV, where the equilibrium potential for Cl- is near equilibrium, and therefore the only synaptic current evoked by light stimulation is due to cation influx, mainly through AMPA receptors (see Fig. 1).  Therefore, cooccurring polysynaptic IPSCs wouldn’t be visible. We examine those holding the membrane voltage at +10mV, see Fig. 1. TTX application suppresses V-dependent Na+ channels and therefore stops all neurotransmission. We show the traces upon TTX to show that currents we were recording prior to TTX application were of synaptic origin, and not due to accidental expression of opsin in the patched cell. Also, this ensures that any current visible after 4AP application is due to monosynaptic transmission and not to a failure of TTX application.

      After recording and light stimulation with TTX, we then add 4AP, which is a blocker of presynaptic K+ channels. This prevents the repolarization of the terminals that would occur in response to opsinmediated local depolarization. 4AP application, therefore, allows local opsin-driven depolarizations to reach the threshold for Ca2+-dependent vesicle docking and release. This procedure selectively reveals or unmasks the monosynaptic currents because any non-monosynaptically connected neuron would still need V-dependent Na+ channels to eXectively produce indirect neurotransmission onto the patched cell. The TTX and 4AP application is the gold-standard of opsinassisted synaptic circuit interrogation, pioneered by the Svoboda lab in 2009 and widely used to assess monosynaptic connectivity in multiple brain circuits, as summarized in a recent review (Linders et al., 2022). We now include 2 more sentences near the beginning of the Results to clarify this process and directly point to the Linders review for researchers wanting a deeper explanation of this technique. 

      The double stimulation is unrelated to our testing of monosynaptic connections. We originally conducted the experiments by delivering 2 pulses of light separated by 50ms, a common way to examine the pair-pulse ratio (PPR) – a physiological measure which is used to probe synapses for short-term plasticity and release probability. However, through discussions with colleagues we realized that the slow decay time of eGtACR1 may complicate interpretation of the response to the second light pulse. Thus, we elected to not report these results and indicated this in the Methods section:  “We calculated the paired-pulse ratio (PPR) as the amplitude of the second peak divided by the amplitude of the first peak elicited by the twin stimuli, however due to slow kinetics of eGtACR1 the results would be diPicult to interpret, and therefore we are not currently reporting them.” 

      (2) Suggestions for improving summary figures:

      Summary Figure 1a: The circuit diagram (schematic to the right of 1a) is OK but I initially found it a bit diXicult to interpret. For example, it is not clear why pink RA projecting neurons don't reach as far to the right as X or Av projecting neurons, suggesting that they are not really projection neurons. Also, the big question marks in the intermediate zone are not entirely intuitive. It seems there might be a better way of representing this. It might also be worth stating in the figure legend that the interconnectivity patterns shown in the figure between PNs in HVC are based on specific prior studies.

      We thank the reviewer for the constructive criticism. We have modified the figure to extend the RA projection line and mentioned in the figure legend that connectivity between PNs is based on prior studies.

      Summary Figure 1a: I am not sure I love this figure. There are a few minor issues. First, there are too many browns [Nif/AV and mMAN] which makes it more challenging to clearly disambiguate the diXerent projections. Second, it is unclear why this figure does not represent projections from RA to HVC. My biggest concern with this figure is that it oversimplifies some of the findings. From the figure, one gets the impression that Uva only projects to RA-PNs and that Av only projects to X-PNs even though the authors show connections to other PNs. With the small sample size in this current study for each projection and each PN type, one really cannot rule out that these "minority" projections are not important. I, therefore, suggest that the authors qualitatively represent the strength/probability of connections by weighting with thickness of aXerent connections.

      We assume the reviewer is commenting on our summary figure panel 7B. We agree with the referee that this is a simplified representation of our findings. We had indeed indicated in the legend that this was just a “Schematic of the HVC aXerent connectivity map resulting from the present work” and that “For conceptualization purposes, aXerent connectivity to HVC-PNs is shown only when the rate of monosynaptic connectivity reaches 50% of neurons examined”. We have added a title to highlight that this is but a simplification. We have now adjusted the colors to make the figure easier to follow. Based on the reviewers critique we searched for a better method for summarizing the complex connectivity patterns described in this research. We settled on a Sankey diagram of connectivity. This is now Figure 7C. In this diagram, we are able to show the proportion of connections from each input pathway onto each class of neuron and if these connections are poly or monosynaptic. We find this to a straightforward way of displaying all of the connectivity patterns identified in our figure 2-3 and 4-5 look forward to understanding if the reviewers find this a useful way of illustrating our findings.

      Minor points:

      (1) Line 50 - typo - song circuits.

      Thank you for catching this.

      (2) Line 106 - 111 - The findings suggest that 100% of Uva projections onto HVCRA neurons are monosynaptic. However, because the authors only tested 6 neurons their statements that their findings are so diXerent from other studies, should be somewhat tempered since these other studies (e.g. Moll et al.) looked at 251 neurons in HVC and sampling bias could still somewhat explain the diXerence.

      We observed oEPSCs in 43 of 51 (84.3%) HVC-RA neurons recorded (mean rise time = 2.4 ms) and monosynaptic connections onto 100% of the HVC-RA neurons tested (n = 6). Moll et al. combined electrical stimulation of Uva with two-photon calcium imaging (GCaMP6s) of putative HVC-RA neurons (n = 251 neurons). We should note that these are putative HVC-RA neurons because they were not visually identified using retrograde tracing or using some other molecular handle. They report that only ~16% of HVC-RA neurons showed reliable calcium responses following Uva stimulation. Although the experiments by Moll et al are technically impressive, calcium imaging is an insensitive technique for measuring post-synaptic responses, particularly subthreshold responses, when compared to whole-cell patch-clamp recordings. This approach cannot identify monosynaptic connections and is likely limited to only be sensitive suprathreshold activity that likely relies on recruitment of other polysynaptic inputs onto the neurons in HVC. Furthermore, as indicated in the Discussion, our opsin-mediated synaptic interrogation recruits any eGtACR1+ Uva terminal in the slice and therefore will have great likelihood of revealing any existing connections. 

      A limitation of whole-cell patch-clamp recordings is that it is a laborious low throughput technique. Future experiments using better imaging approaches, like voltage imaging, may be able to weigh in on diXerences between what we report here using whole-cell patch-clamp recordings from visually identified HVC-RA neurons combined with optogenetic manipulations of Uva terminals and the calcium imaging results reported by Moll. Nonetheless, whole-cell patch-clamp recordings combined with optogenetic manipulations is likely to remain the most sensitive method for identifying synaptic connectivity.

      (3) Figure 2G - the significance of white circles is not clear.

      The figure legend indicates that those highlight and mark the position of “retrogradely labeled HVCprojecting neurons in Uva (cyan, white circles)” to facilitate identification of colocalization with the in-situ markers.

      (4) Line 135 - Cardin et al. (J. Neurophys. 2004) is the first to show that song production does not require Nif.

      We thank the reviewer pointing this out and we have cited this important study. 

      (5) Line 183 - This is a confusing sentence because I initially thought that mMAN-mMANHVC PNs was a category!

      We switched the dash with a colon.

      (6) Figure 4d could use some arrows to identify what is shown. It is assumed that the box represents mMAN. Should it be assumed that Av is not in the plane of this section? If not, this should be stated in the legend. It is also unclear where the anterograde projections are. Is this the dork highway that goes from the box to the dorsal surface? If yes this should be indicated but it should also be made clear why the projections go both in the dorsal as well as the ventral directions.

      The inset, as indicated by the lines around it, is a magnification of the terminal fields in Av. We added an explanation of the inset.

      (7) Discussion. In the introduction, the authors mention projections from RA to HVC but never end up studying them in the current manuscript which seems like a missed opportunity and perhaps even a weakness of the study. In the discussion, it would certainly be good for the authors to at least discuss the possible significance of these projections and perhaps why they decided not to study them.

      We thank the reviewer for the comment. Unfortunately, we couldn’t reliably evoke interpretable currents from RA, and we elected to publish the current version of the paper with these 4 major inputs. Nonetheless, we have indicated in the Introduction and in the Discussion that more inputs (e.g. RA, A11, NCM) remain to be evaluated. 

      (8) Line 622 - Is this reference incomplete?

      We thank the reviewer. We have corrected the reference.

      • Ben-Tov, M., F. Duarte and R. Mooney (2023). "A neural hub for holistic courtship displays." Curr Biol 33(9): 1640-1653 e1645.

      • Bliss, T. V. and A. R. Gardner-Medwin (1973). "Long-lasting potentiation of synaptic transmission in the dentate area of the unanaestetized rabbit following stimulation of the perforant path." J Physiol 232(2): 357-374.

      • Bliss, T. V. and T. Lomo (1973). "Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path." J Physiol 232(2): 331-356.

      • Foster, E. F. and S. W. Bottjer (2001). "Lesions of a telencephalic nucleus in male zebra finches: Influences on vocal behavior in juveniles and adults." J Neurobiol 46(2): 142-165.

      • Koparkar, A., T. L. Warren, J. D. Charlesworth, S. Shin, M. S. Brainard and L. Veit (2024). "Lesions in a songbird vocal circuit increase variability in song syntax." Elife 13.

      • Linders, L. E., L. F. Supiot, W. Du, R. D'Angelo, R. A. H. Adan, D. Riga and F. J. Meye (2022). "Studying Synaptic Connectivity and Strength with Optogenetics and Patch-Clamp Electrophysiology." Int J Mol Sci 23(19).

      • Liu, H. N., T. Kurotani, M. Ren, K. Yamada, Y. Yoshimura and Y. Komatsu (2004). "Presynaptic activity and Ca2+ entry are required for the maintenance of NMDA receptor-independent LTP at visual cortical excitatory synapses." J Neurophysiol 92(2): 1077-1087.

      • Louder, M. I. M., M. Kuroda, D. Taniguchi, J. A. Komorowska-Muller, Y. Morohashi, M. Takahashi, M. Sanchez-Valpuesta, K. Wada, Y. Okada, H. Hioki and Y. Yazaki-Sugiyama (2024). "Transient sensorimotor projections in the developmental song learning period." Cell Rep 43(5): 114196.

      • Pastalkova, E., P. Serrano, D. Pinkhasova, E. Wallace, A. A. Fenton and T. C. Sacktor (2006). "Storage of spatial information by the maintenance mechanism of LTP." Science 313(5790): 1141-1144.

      • Petreanu, L., T. Mao, S. M. Sternson and K. Svoboda (2009). "The subcellular organization of neocortical excitatory connections." Nature 457(7233): 1142-1145.

      • Roberts, T. F., S. M. Gobes, M. Murugan, B. P. Olveczky and R. Mooney (2012). "Motor circuits are required to encode a sensory model for imitative learning." Nat Neurosci 15(10): 1454-1459.

      • Roberts, T. F., E. Hisey, M. Tanaka, M. G. Kearney, G. Chattree, C. F. Yang, N. M. Shah and R. Mooney (2017). "Identification of a motor-to-auditory pathway important for vocal learning." Nat Neurosci 20(7): 978-986.

      • Roberts, T. F., M. E. Klein, M. F. Kubke, J. M. Wild and R. Mooney (2008). "Telencephalic neurons monosynaptically link brainstem and forebrain premotor networks necessary for song." J Neurosci 28(13): 3479-3489.

      • Trusel, M., A. Cavaccini, M. Gritti, B. Greco, P. P. Saintot, C. Nazzaro, M. Cerovic, I. Morella, R. Brambilla and R. Tonini (2015). "Coordinated Regulation of Synaptic Plasticity at Striatopallidal and Striatonigral Neurons Orchestrates Motor Control." Cell Rep 13(7): 1353-1365.

      • Trusel, M., A. Nuno-Perez, S. Lecca, H. Harada, A. L. Lalive, M. Congiu, K. Takemoto, T. Takahashi, F. Ferraguti and M. Mameli (2019). "Punishment-Predictive Cues Guide Avoidance through Potentiation of Hypothalamus-to-Habenula Synapses." Neuron 102(1): 120-127.e124.

      • Vates, G. E., B. M. Broome, C. V. Mello and F. Nottebohm (1996). "Auditory pathways of caudal telencephalon and their relation to the song system of adult male zebra finches." Journal of Comparative Neurology 366(4): 613-642.

      • Xu, T., X. Yu, A. J. Perlik, W. F. Tobin, J. A. Zweig, K. Tennant, T. Jones and Y. Zuo (2009). "Rapid formation and selective stabilization of synapses for enduring motor memories." Nature 462(7275): 915-919.

      • Zhao, W., F. Garcia-Oscos, D. Dinh and T. F. Roberts (2019). "Inception of memories that guide vocal learning in the songbird." Science 366: 83 - 89.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Wang et al., recorded concurrent EEG-fMRI in 107 participants during nocturnal NREM sleep to investigate brain activity and connectivity related to slow oscillations (SO), sleep spindles, and in particular their co-occurrence. The authors found SO-spindle coupling to be correlated with increased thalamic and hippocampal activity, and with increased functional connectivity from the hippocampus to the thalamus and from the thalamus to the neocortex, especially the medial prefrontal cortex (mPFC). They concluded the brain-wide activation pattern to resemble episodic memory processing, but to be dissociated from task-related processing and suggest that the thalamus plays a crucial role in coordinating the hippocampal-cortical dialogue during sleep.

      The paper offers an impressively large and highly valuable dataset that provides the opportunity for gaining important new insights into the network substrate involved in SOs, spindles, and their coupling. However, the paper does unfortunately not exploit the full potential of this dataset with the analyses currently provided, and the interpretation of the results is often not backed up by the results presented. I have the following specific comments.

      Thank you for your thoughtful and constructive feedback. We greatly appreciate your recognition of the strengths of our dataset and findings Below, we address your specific comments and provide responses to each point you raised to ensure our methods and results are as transparent and comprehensible as possible. We hope these revisions address your comments and further strengthen our manuscript. Thank you again for the constructive feedback.

      (1) The introduction is lacking sufficient review of the already existing literature on EEG-fMRI during sleep and the BOLD-correlates of slow oscillations and spindles in particular (Laufs et al., 2007; Schabus et al., 2007; Horovitz et al., 2008; Laufs, 2008; Czisch et al., 2009; Picchioni et al., 2010; Spoormaker et al., 2010; Caporro et al., 2011; Bergmann et al., 2012; Hale et al., 2016; Fogel et al., 2017; Moehlman et al., 2018; Ilhan-Bayrakci et al., 2022). The few studies mentioned are not discussed in terms of the methods used or insights gained.

      We acknowledge the need for a more comprehensive review of prior EEG-fMRI studies investigating BOLD correlates of slow oscillations and spindles. However, these articles are not all related to sleep SO or spindle. Articles (Hale et al., 2016; Horovitz et al., 2008; Laufs, 2008; Laufs, Walker, & Lund, 2007; Spoormaker et al., 2010) mainly focus on methodology for EEG-fMRI, sleep stages, or brain networks, which are not the focus of our study. Thank you again for your attention to the comprehensiveness of our literature review, and we will expand the introduction to include a more detailed discussion of the existing literature, ensuring that the contributions of previous EEG-fMRI sleep studies are adequately acknowledged.  

      Introduction, Page 4 Lines 62-76

      “Investigating these sleep-related neural processes in humans is challenging because it requires tracking transient sleep rhythms while simultaneously assessing their widespread brain activation. Recent advances in simultaneous EEG-fMRI techniques provide a unique opportunity to explore these processes. EEG allows for precise event-based detection of neural signal, while fMRI provides insight into the broader spatial patterns of brain activation and functional connectivity (Horovitz et al., 2008; Huang et al., 2024; Laufs, 2008; Laufs, Walker, & Lund, 2007; Schabus et al., 2007; Spoormaker et al., 2010). Previous EEG-fMRI studies on sleep have focused on classifying sleep stages or examining the neural correlates of specific waves (Bergmann et al., 2012; Caporro et al., 2012; Czisch et al., 2009; Fogel et al., 2017; Hale et al., 2016; Ilhan-Bayrakcı et al., 2022; Moehlman et al., 2019; Picchioni et al., 2011). These studies have generally reported that slow oscillations are associated with widespread cortical and subcortical BOLD changes, whereas spindles elicit activation in the thalamus, as well as in several cortical and paralimbic regions. Although these findings provide valuable insights into the BOLD correlates of sleep rhythms, they often do not employ sophisticated temporal modeling (Huang et al., 2024), to capture the dynamic interactions between different oscillatory events, e.g., the coupling between SOs and spindles.”

      (2) The paper falls short in discussing the specific insights gained into the neurobiological substrate of the investigated slow oscillations, spindles, and their interactions. The validity of the inverse inference approach ("Open ended cognitive state decoding"), assuming certain cognitive functions to be related to these oscillations because of the brain regions/networks activated in temporal association with these events, is debatable at best. It is also unclear why eventually only episodic memory processing-like brain-wide activation is discussed further, despite the activity of 16 of 50 feature terms from the NeuroSynth v3 dataset were significant (episodic memory, declarative memory, working memory, task representation, language, learning, faces, visuospatial processing, category recognition, cognitive control, reading, cued attention, inhibition, and action).

      Thank you for pointing this out, particularly regarding the use of inverse inference approaches such as “open-ended cognitive state decoding.” Given the concerns about the indirectness of this approach, we decided to remove its related content and results from Figure 3 in the main text and include it in Supplementary Figure 7. We will refocus the main text on direct neurobiological insights gained from our EEG-fMRI analyses, particularly emphasizing the hippocampal-thalamocortical network dynamics underlying SO-spindle coupling, and we will acknowledge the exploratory nature of these findings and highlight their limitations.

      Discussion, Page 17-18 Lines 323-332

      “To explore functional relevance, we employed an open-ended cognitive state decoding approach using meta-analytic data (NeuroSynth: Yarkoni et al. (2011)). Although this method usefully generates hypotheses about potential cognitive processes, particularly in the absence of a pre- and post-sleep memory task, it is inherently indirect. Many cognitive terms showed significant associations (16 of 50), such as “episodic memory,” “declarative memory,” and “working memory.” We focused on episodic/declarative memory given the known link with hippocampal reactivation (Diekelmann & Born, 2010; Staresina et al., 2015; Staresina et al., 2023). Nonetheless, these inferences regarding memory reactivation should be interpreted cautiously without direct behavioral measures. Future research incorporating explicit tasks before and after sleep would more rigorously validate these potential functional claims.”

      (3) Hippocampal activation during SO-spindles is stated as a main hypothesis of the paper - for good reasons - however, other regions (e.g., several cortical as well as thalamic) would be equally expected given the known origin of both oscillations and the existing sleep-EEG-fMRI literature. However, this focus on the hippocampus contrasts with the focus on investigating the key role of the thalamus instead in the Results section.

      We appreciate your insight regarding the relative emphasis on hippocampal and thalamic activation in our study. We recognize that the manuscript may currently present an inconsistency between our initial hypothesis and the main focus of the results. To address this concern, we will ensure that our Introduction and Discussion section explicitly discusses both regions, highlighting the complementary roles of the hippocampus (memory processing and reactivation) and the thalamus (spindle generation and cortico-hippocampal coordination) in SO-spindle dynamics.

      Introduction, Page 5 Lines 87-103

      “To address this gap, our study investigates brain-wide activation and functional connectivity patterns associated with SO-spindle coupling, and employs a cognitive state decoding approach (Margulies et al., 2016; Yarkoni et al., 2011)—albeit indirectly—to infer potential cognitive functions. In the current study, we used simultaneous EEG-fMRI recordings during nocturnal naps (detailed sleep staging results are provided in the Methods and Table S1) in 107 participants. Although directly detecting hippocampal ripples using scalp EEG or fMRI is challenging, we expected that hippocampal activation in fMRI would coincide with SO-spindle coupling detected by EEG, given that SOs, spindles, and ripples frequently co-occur during NREM sleep. We also anticipated a critical role of the thalamus, particularly thalamic spindles, in coordinating hippocampal-cortical communication.

      We found significant coupling between SOs and spindles during NREM sleep (N2/3), with spindle peaks occurring slightly before the SO peak. This coupling was associated with increased activation in both the thalamus and hippocampus, with functional connectivity patterns suggesting thalamic coordination of hippocampal-cortical communication. These findings highlight the key role of the thalamus in coordinating hippocampal-cortical interactions during human sleep and provide new insights into the neural mechanisms underlying sleep-dependent brain communication. A deeper understanding of these mechanisms may contribute to future neuromodulation approaches aimed at enhancing sleep-dependent cognitive function and treating sleep-related disorders.”

      Discussion, Page 16-17 Lines 292-307

      “When modeling the timing of these sleep rhythms in the fMRI, we observed hippocampal activation selectively during SO-spindle events. This suggests the possibility of triple coupling (SOs–spindles–ripples), even though our scalp EEG was not sufficiently sensitive to detect hippocampal ripples—key markers of memory replay (Buzsáki, 2015). Recent iEEG evidence indicates that ripples often co-occur with both spindles (Ngo, Fell, & Staresina, 2020) and SOs (Staresina et al., 2015; Staresina et al., 2023). Therefore, the hippocampal involvement during SO-spindle events in our study may reflect memory replay from the hippocampus, propagated via thalamic spindles to distributed cortical regions.

      The thalamus, known to generate spindles (Halassa et al., 2011), plays a key role in producing and coordinating sleep rhythms (Coulon, Budde, & Pape, 2012; Crunelli et al., 2018), while the hippocampus is found essential for memory consolidation (Buzsáki, 2015; Diba & Buzsá ki, 2007; Singh, Norman, & Schapiro, 2022). The increased hippocampal and thalamic activity, along with strengthened connectivity between these regions and the mPFC during SO-spindle events, underscores a hippocampal-thalamic-neocortical information flow. This aligns with recent findings suggesting the thalamus orchestrates neocortical oscillations during sleep (Schreiner et al., 2022). The thalamus and hippocampus thus appear central to memory consolidation during sleep, guiding information transfer to the neocortex, e.g., mPFC.”

      (4) The study included an impressive number of 107 subjects. It is surprising though that only 31 subjects had to be excluded under these difficult recording conditions, especially since no adaptation night was performed. Since only subjects were excluded who slept less than 10 min (or had excessive head movements) there are likely several datasets included with comparably short durations and only a small number of SOs and spindles and even less combined SO-spindle events. A comprehensive table should be provided (supplement) including for each subject (included and excluded) the duration of included NREM sleep, number of SOs, spindles, and SO+spindle events. Also, some descriptive statistics (mean/SD/range) would be helpful.

      We appreciate your recognition of our sample size and the challenges associated with simultaneous EEG-fMRI sleep recordings. We acknowledge the importance of transparently reporting individual subject data, particularly regarding sleep duration and the number of detected SOs, spindles, and SO-spindle events. To address this, we will provide comprehensive tables in the supplementary materials, contains descriptive information about sleep-related characteristics (Table S1), as well as detailed information about sleep waves at each sleep stage for all 107 subjects(Table S2-S4), listing for each subject:(1)Different sleep stage duration; (2)Number of detected SOs; (3)Number of detected spindles; (4)Number of detected SO-spindle coupling events; (5)Density of detected SOs; (6)Density of detected spindles; (7)Density of detected SO-spindle coupling events.

      However, most of the excluded participants were unable to fall asleep or had too short a sleep duration, so they basically had no NREM sleep period, so it was impossible to count the NREM sleep duration, SO, spindle, and coupling numbers.

      Supplementary Materials, Page 42-54, Table S1-S4

      (5) Was the 20-channel head coil dedicated for EEG-fMRI measurements? How were the electrode cables guided through/out of the head coil? Usually, the 64-channel head coil is used for EEG-fMRI measurements in a Siemens PRISMA 3T scanner, which has a cable duct at the back that allows to guide the cables straight out of the head coil (to minimize MR-related artifacts). The choice for the 20-channel head coil should be motivated. Photos of the recording setup would also be helpful.

      Thank you for your comment regarding our choice of the 20-channel head coil for EEG-fMRI measurements. We acknowledge that the 64-channel head coil is commonly used in Siemens PRISMA 3T scanners; however, the 20-channel coil was selected due to specific practical and technical considerations in our study. In particular, the 20-channel head coil was compatible with our EEG system and ensured sufficient signal-to-noise ratio (SNR) for both EEG and fMRI acquisition. The EEG electrode cables were guided through the lateral and posterior openings of the head coil, secured with foam padding to reduce motion and minimize MR-related artifacts. Moreover, given the extended nature of nocturnal sleep recordings, the 20-channel coil allowed us to maintain participant comfort while still achieving high-quality simultaneous EEG-fMRI data.

      We have made this clearer in the revised manuscript. 

      Methods, Page 20 Lines 385-392

      “All MRI data were acquired using a 20-channel head coil on a research-dedicated 3-Tesla Siemens Magnetom Prisma MRI scanner. Earplugs and cushions were provided for noise protection and head motion restriction. We chose the 20-channel head coil because it was compatible with our EEG system and ensured sufficient signal-to-noise ratio (SNR) for both EEG and fMRI acquisition. The EEG electrode cables were guided through the lateral and posterior openings of the head coil, secured with foam padding to reduce motion and minimize MR-related artifacts. Moreover, given the extended nature of nocturnal sleep recordings, the 20-channel coil helped maintain participant comfort while still achieving high-quality simultaneous EEG-fMRI data.”

      (6) Was the EEG sampling synchronized to the MR scanner (gradient system) clock (the 10 MHz signal; not referring to the volume TTL triggers here)? This is a requirement for stable gradient artifact shape over time and thus accurate gradient noise removal.

      Thank you for raising this important point. We confirm that the EEG sampling was synchronized to the MR scanner’s 10 MHz gradient system clock, ensuring a stable gradient artifact shape over time and enabling accurate artifact removal. This synchronization was achieved using the standard clock synchronization interface of the EEG amplifier, minimizing timing jitter and drift. As a result, the gradient artifact waveform remained stable across volumes, allowing for more effective artifact correction during preprocessing. We appreciate your attention to this critical aspect of EEG-fMRI data acquisition.

      We have made this clearer in the revised manuscript. 

      Methods, Page 19-20 Lines 371-383

      “EEG was recorded simultaneously with fMRI data using an MR-compatible EEG amplifier system (BrainAmps MR-Plus, Brain Products, Germany), along with a specialized electrode cap. The recording was done using 64 channels in the international 10/20 system, with the reference channel positioned at FCz. In order to adhere to polysomnography (PSG) recording standards, six electrodes were removed from the EEG cap: one for electrocardiogram (ECG) recording, two for electrooculogram (EOG) recording, and three for electromyogram (EMG) recording. EEG data was recorded at a sample rate of 5000 Hz, the resistance of the reference and ground channels was kept below 10 kΩ, and the resistance of the other channels was kept below 20 kΩ. To synchronize the EEG and fMRI recordings, the BrainVision recording software (BrainProducts, Germany) was utilized to capture triggers from the MRI scanner. The EEG sampling was synchronized to the MR scanner’s 10 MHz gradient system clock, ensuring a stable gradient artifact shape over time and enabling accurate artifact removal. This was achieved via the standard clock synchronization interface of the EEG amplifier, minimizing timing jitter and drift.”

      (7) The TR is quite long and the voxel size is quite large in comparison to state-of-the-art EPI sequences. What was the rationale behind choosing a sequence with relatively low temporal and spatial resolution?

      We acknowledge that our chosen TR and voxel size are relatively long and large compared to state-of-the-art EPI sequences. This decision was made to optimize the signal-to-noise ratio (SNR) and reduce susceptibility-related distortions, which are particularly critical in EEG-fMRI sleep studies where head motion and physiological noise can be substantial. A longer TR allowed us to sample whole-brain activity with sufficient coverage, while a larger voxel size helped enhance BOLD sensitivity and minimize partial volume effects in deep brain structures such as the thalamus and hippocampus, which are key regions of interest in our study. We appreciate your concern and hope this clarification provides sufficient rationale for our sequence parameters.

      We have made this clearer in the revised manuscript. 

      Methods, Page 20-21 Lines 398-408

      “Then, the “sleep” session began after the participants were instructed to try and fall asleep. For the functional scans, whole-brain images were acquired using k-space and steady-state T2*-weighted gradient echo-planar imaging (EPI) sequence that is sensitive to the BOLD contrast. This measures local magnetic changes caused by changes in blood oxygenation that accompany neural activity (sequence specification: 33 slices in interleaved ascending order, TR = 2000 ms, TE = 30 ms, voxel size = 3.5 × 3.5 × 4.2 mm3, FA = 90°, matrix = 64 × 64, gap = 0.7 mm). A relatively long TR and larger voxel size were chosen to optimize SNR and reduce susceptibility-related distortions, which are critical in EEG-fMRI sleep studies where head motion and physiological noise can be substantial. The longer TR allowed whole-brain coverage with sufficient temporal resolution, while the larger voxel size helped enhance BOLD sensitivity and minimize partial volume effects in deep brain structures (e.g., the thalamus and hippocampus), which are key regions of interest in this study.”

      (8) The anatomically defined ROIs are quite large. It should be elaborated on how this might reduce sensitivity to sleep rhythm-specific activity within sub-regions, especially for the thalamus, which has distinct nuclei involved in sleep functions.

      We appreciate your insight regarding the use of anatomically defined ROIs and their potential limitations in detecting sleep rhythm-specific activity within sub-regions, particularly in the thalamus. Given the distinct functional roles of thalamic nuclei in sleep processes, we acknowledge that using a single, large thalamic ROI may reduce sensitivity to localized activity patterns. To address this, we will discuss this limitation in the revised manuscript, acknowledging that our approach prioritizes whole-structure effects but may not fully capture nucleus-specific contributions.

      Discussion, Page 18 Lines 333-341

      “Despite providing new insights, our study has several limitations. First, our scalp EEG did not directly capture hippocampal ripples, preventing us from conclusively demonstrating triple coupling. Second, the combination of EEG-fMRI and the lack of a memory task limit our ability to parse fine-grained BOLD responses at the DOWN- vs. UP-states of SOs and link observed activations to behavioral outcomes. Third, the use of large anatomical ROIs may mask subregional contributions of specific thalamic nuclei or hippocampal subfields. Finally, without a memory task, we cannot establish a direct behavioral link between sleep-rhythm-locked activation and memory consolidation. Future studies combining techniques such as ultra-high-field fMRI or iEEG with cognitive tasks may refine our understanding of subregional network dynamics and functional significance during sleep.”

      (9) The study reports SO & spindle amplitudes & densities, as well as SO+spindle coupling, to be larger during N2/3 sleep compared to N1 and REM sleep, which is trivial but can be seen as a sanity check of the data. However, the amount of SOs and spindles reported for N1 and REM sleep is concerning, as per definition there should be hardly any (if SOs or spindles occur in N1 it becomes by definition N2, and the interval between spindles has to be considerably large in REM to still be scored as such). Thus, on the one hand, the report of these comparisons takes too much space in the main manuscript as it is trivial, but on the other hand, it raises concerns about the validity of the scoring.

      We appreciate your concern regarding the reported presence of SOs and spindles in N1 and REM sleep and the potential implications. Our detection method for detecting SO, spindle, and coupling were originally designed only for N2&N3 sleep data based on the characteristics of the data itself, and this method is widely recognized and used in the sleep research (Hahn et al., 2020; Helfrich et al., 2019; Helfrich et al., 2018; Ngo, Fell, & Staresina, 2020; Schreiner et al., 2022; Schreiner et al., 2021; Staresina et al., 2015; Staresina et al., 2023). While, because the detection methods for SO and spindle are based on percentiles, this method will always detect a certain number of events when used for other stages (N1 and REM) sleep data, but the differences between these events and those detected in stage N23 remain unclear. We will acknowledge the reasons for these results in the Methods section and emphasize that they are used only for sanity checks.

      Methods, Page 25 Lines 515-524

      “We note that the above methods for detecting SOs, spindles, and their couplings were originally developed for N2 and N3 sleep data, based on the specific characteristics of these stages. These methods are widely recognized in sleep research (Hahn et al., 2020; Helfrich et al., 2019; Helfrich et al., 2018; Ngo, Fell, & Staresina, 2020; Schreiner et al., 2022; Schreiner et al., 2021; Staresina et al., 2015; Staresina et al., 2023). However, because this percentile-based detection approach will inherently identify a certain number of events if applied to other stages (e.g., N1 and REM), the nature of these events in those stages remains unclear compared to N2/N3. We nevertheless identified and reported the detailed descriptive statistics of these sleep rhythms in all sleep stages, under the same operational definitions, both for completeness and as a sanity check. Within the same subject, there should be more SOs, spindles, and their couplings in N2/N3 than in N1 or REM (see also Figure S2-S4, Table S1-S4).”

      (10) Why was electrode F3 used to quantify the occurrence of SOs and spindles? Why not a midline frontal electrode like Fz (or a number of frontal electrodes for SOs) and Cz (or a number of centroparietal electrodes) for spindles to be closer to their maximum topography?

      We appreciate your suggestion regarding electrode selection for SO and spindle quantification. Our choice of F3 was primarily based on previous studies (Massimini et al., 2004; Molle et al., 2011), where bilateral frontal electrodes are commonly used for detecting SOs and spindles. Additionally, we considered the impact of MRI-related noise and, after a comprehensive evaluation, determined that F3 provided an optimal balance between signal quality and artifact minimization. We also acknowledge that alternative electrode choices, such as Fz for SOs and Cz for spindles, could provide additional insights into their topographical distributions.

      (11) Functional connectivity (hippocampus -> thalamus -> cortex (mPFC)) is reported to be increased during SO-spindle coupling and interpreted as evidence for coordination of hippocampo-neocortical communication likely by thalamic spindles. However, functional connectivity was only analysed during coupled SO+spindle events, not during isolated SOs or isolated spindles. Without the direct comparison of the connectivity patterns between these three events, it remains unclear whether this is specific for coupled SO+spindle events or rather associated with one or both of the other isolated events. The PPIs need to be conducted for those isolated events as well and compared statistically to the coupled events.

      We appreciate your critical perspective on our functional connectivity analysis and the interpretation of hippocampus-thalamus-cortex (mPFC) interactions during SO-spindle coupling. We acknowledge that, in the current analysis, functional connectivity was only examined during coupled SO-spindle events, without direct comparison to isolated SOs or isolated spindles. To address this concern, we have conducted PPI analyses for all three ROIs(Hippocampus, Thalamus, mPFC) and all three event types (SO-spindle couplings, isolated SOs, and isolated spindles). Our results indicate that neither isolated SOs nor isolated Spindles yielded significant connectivity changes in all three ROIs, as all failed to survive multiple comparison corrections. This suggests that the observed connectivity increase is specific to SO-spindle coupling, rather than being independently driven by either SOs or spindles alone.

      Results, Page 14 Lines 248-255

      “Crucially, the interaction between FC and SO-spindle coupling revealed that only the functional connectivity of hippocampus -> thalamus (ROI analysis, t(106) = 1.86, p = 0.0328) and thalamus -> mPFC (ROI analysis, t(106) = 1.98, p = 0.0251) significantly increased during SO-spindle coupling, with no significant changes in all other pathways (Fig. 4e). We also conducted PPI analyses for the other two events (SOs and spindles), and neither yielded significant connectivity changes in the three ROIs, as all failed to survive whole-brain FWE correction at the cluster level (p < 0.05). Together, these findings suggest that the thalamus, likely via spindles, coordinates hippocampal-cortical communication selectively during SO-spindle coupling, but not isolated SOs or spindle events alone.”

      (12) The limited temporal resolution of fMRI does indeed not allow for easily distinguishing between fMRI activation patterns related to SO-up- vs. SO-down-states. For this, one could try to extract the amplitudes of SO-up- and SO-down-states separately for each SO event and model them as two separate parametric modulators (with the risk of collinearity as they are likely correlated).

      We appreciate your insightful comment regarding the challenge of distinguishing fMRI activation patterns related to SO-up vs. SO-down states due to the limited temporal resolution of fMRI. While our current analysis does not differentiate between these two phases, we acknowledge that separately modeling SO-up and SO-down states using parametric modulators could provide a more refined understanding of their distinct neural correlates. However, as you notes, this approach carries the risk of collinearity, and there is indeed a high correlation between the two amplitudes across all subjects in our results (r=0.98). Future studies could explore more on leveraging high-temporal-resolution techniques. While implementing this in the current study is beyond our scope, we will acknowledge this limitation in the Discussion section.

      Discussion, Page 17 Lines 308-322

      “An intriguing aspect of our findings is the reduced DMN activity during SOs when modeled at the SO trough (DOWN-state). This reduced DMN activity may reflect large-scale neural inhibition characteristic of the SO trough. The DMN is typically active during internally oriented cognition (e.g., self-referential processing or mind-wandering) and is suppressed during external stimuli processing (Yeshurun, Nguyen, & Hasson, 2021). It is unlikely, however, that this suppression of DMN during SO events is related to a shift from internal cognition to external responses given it is during deep sleep time. Instead, it could be driven by the inherent rhythmic pattern of SOs, which makes it difficult to separate UP- from DOWN-states (the two temporal regressors were highly correlated, and similar brain activation during SOs events was obtained if modelled at the SO peak instead, Fig. S5). Since the amplitude at the SO trough is consistently larger than that at the SO peak, the neural activation we detected may primarily capture the large-scale inhibition from DOWN-state. Interestingly, no such DMN reduction was found during SO-spindle coupling, implying that coupling may involve distinct neural dynamics that partially re-engage DMN-related processes, possibly reflecting memory-related reactivation. Future research using high-temporal-resolution techniques like iEEG could clarify these possibilities.”

      Discussion, Page 18 Lines 333-341

      “Despite providing new insights, our study has several limitations. First, our scalp EEG did not directly capture hippocampal ripples, preventing us from conclusively demonstrating triple coupling. Second, the combination of EEG-fMRI and the lack of a memory task limit our ability to parse fine-grained BOLD responses at the DOWN- vs. UP-states of SOs and link observed activations to behavioral outcomes. Third, the use of large anatomical ROIs may mask subregional contributions of specific thalamic nuclei or hippocampal subfields. Finally, without a memory task, we cannot establish a direct behavioral link between sleep-rhythm-locked activation and memory consolidation. Future studies combining techniques such as ultra-high-field fMRI or iEEG with cognitive tasks may refine our understanding of subregional network dynamics and functional significance during sleep.”

      (13) L327: "It is likely that our findings of diminished DMN activity reflect brain activity during the SO DOWN-state, as this state consistently shows higher amplitude compared to the UP-state within subjects, which is why we modelled the SO trough as its onset in the fMRI analysis." This conclusion is not justified as the fact that SO down-states are larger in amplitude does not mean their impact on the BOLD response is larger.

      We appreciate your concern regarding our interpretation of diminished DMN activity reflecting the SO down-state. We acknowledge that the current expression is somewhat misleading, and our interpretation of it is: it could be driven by the inherent rhythmic pattern of SOs, which makes it difficult to separate UP- from DOWN-states (the two temporal regressors were highly correlated, and similar brain activation during SOs events was obtained if modelled at the SO peak instead). Since the amplitude at the SO trough is consistently larger than that at the SO peak, the neural activation we detected may primarily capture the large-scale inhibition from DOWN-state. And we will make this clear in the Discussion section.

      Discussion, Page 17 Lines 308-322

      “An intriguing aspect of our findings is the reduced DMN activity during SOs when modeled at the SO trough (DOWN-state). This reduced DMN activity may reflect large-scale neural inhibition characteristic of the SO trough. The DMN is typically active during internally oriented cognition (e.g., self-referential processing or mind-wandering) and is suppressed during external stimuli processing (Yeshurun, Nguyen, & Hasson, 2021). It is unlikely, however, that this suppression of DMN during SO events is related to a shift from internal cognition to external responses given it is during deep sleep time. Instead, it could be driven by the inherent rhythmic pattern of SOs, which makes it difficult to separate UP- from DOWN-states (the two temporal regressors were highly correlated, and similar brain activation during SOs events was obtained if modelled at the SO peak instead, Fig. S5). Since the amplitude at the SO trough is consistently larger than that at the SO peak, the neural activation we detected may primarily capture the large-scale inhibition from DOWN-state. Interestingly, no such DMN reduction was found during SO-spindle coupling, implying that coupling may involve distinct neural dynamics that partially re-engage DMN-related processes, possibly reflecting memory-related reactivation. Future research using high-temporal-resolution techniques like iEEG could clarify these possibilities.”

      (14) Line 77: "In the current study, while directly capturing hippocampal ripples with scalp EEG or fMRI is difficult, we expect to observe hippocampal activation in fMRI whenever SOs-spindles coupling is detected by EEG, if SOs- spindles-ripples triple coupling occurs during human NREM sleep". Not all SO-spindle events are associated with ripples (Staresina et al., 2015), but hippocampal activation may also be expected based on the occurrence of spindles alone (Bergmann et al., 2012).

      We appreciate your clarification regarding the relationship between SO-spindle coupling and hippocampal ripples. We acknowledge that not all SO-spindle events are necessarily accompanied by ripples (Staresina et al., 2015). However, based on previous research, we found that hippocampal ripples are significantly more likely to occur during SO-spindle coupling events. This suggests that while ripple occurrence is not guaranteed, SO-spindle coupling creates a favorable network state for ripple generation and potential hippocampal activation. To ensure accuracy, we will revise the manuscript to delete this misleading sentence in the Introduction section and acknowledge in the Discussion that our results cannot conclusively directly observe the triple coupling of SO, spindle, and hippocampal ripples.

      Discussion, Page 18 Lines 333-341

      “Despite providing new insights, our study has several limitations. First, our scalp EEG did not directly capture hippocampal ripples, preventing us from conclusively demonstrating triple coupling. Second, the combination of EEG-fMRI and the lack of a memory task limit our ability to parse fine-grained BOLD responses at the DOWN- vs. UP-states of SOs and link observed activations to behavioral outcomes. Third, the use of large anatomical ROIs may mask subregional contributions of specific thalamic nuclei or hippocampal subfields. Finally, without a memory task, we cannot establish a direct behavioral link between sleep-rhythm-locked activation and memory consolidation. Future studies combining techniques such as ultra-high-field fMRI or iEEG with cognitive tasks may refine our understanding of subregional network dynamics and functional significance during sleep.”

      Reviewer #2 (Public review):

      In this study, Wang and colleagues aimed to explore brain-wide activation patterns associated with NREM sleep oscillations, including slow oscillations (SOs), spindles, and SO-spindle coupling events. Their findings reveal that SO-spindle events corresponded with increased activation in both the thalamus and hippocampus. Additionally, they observed that SO-spindle coupling was linked to heightened functional connectivity from the hippocampus to the thalamus, and from the thalamus to the medial prefrontal cortex-three key regions involved in memory consolidation and episodic memory processes.

      This study's findings are timely and highly relevant to the field. The authors' extensive data collection, involving 107 participants sleeping in an fMRI while undergoing simultaneous EEG recording, deserves special recognition. If shared, this unique dataset could lead to further valuable insights. While the conclusions of the data seem overall well supported by the data, some aspects with regard to the detection of sleep oscillations need clarification.

      The authors report that coupled SO-spindle events were most frequent during NREM sleep (2.46 [plus minus] 0.06 events/min), but they also observed a surprisingly high occurrence of these events during N1 and REM sleep (2.23 [plus minus] 0.09 and 2.32 [plus minus] 0.09 events/min, respectively), where SO-spindle coupling would not typically be expected. Combined with the relatively modest SO amplitudes reported (~25 µV, whereas >75 µV would be expected when using mastoids as reference electrodes), this raises the possibility that the parameters used for event detection may not have been conservative enough - or that sleep staging was inaccurately performed. This issue could present a significant challenge, as the fMRI findings are largely dependent on the reliability of these detected events.

      Thank you very much for your thorough and encouraging review. We appreciate your recognition of the significance and relevance of our study and dataset, particularly in highlighting how simultaneous EEG-fMRI recordings can provide complementary insights into the temporal dynamics of neural oscillations and their associated spatial activation patterns during sleep. In the sections that follow, we address each of your comments in detail. We have revised the text and conducted additional analyses wherever possible to strengthen our argument, clarify our methodological choices. We believe these revisions improve the clarity and rigor of our work, and we thank you for helping us refine it.

      We appreciate your insightful comments regarding the detection of sleep oscillations. Our methods for detecting SOs, spindles, and their couplings were originally developed for N2 and N3 sleep data, based on the specific characteristics of these stages. These methods are widely recognized in sleep research (Hahn et al., 2020; Helfrich et al., 2019; Helfrich et al., 2018; Ngo, Fell, & Staresina, 2020; Schreiner et al., 2022; Schreiner et al., 2021; Staresina et al., 2015; Staresina et al., 2023). However, because this percentile-based detection approach will inherently identify a certain number of events if applied to other stages (e.g., N1 and REM), the nature of these events in those stages remains unclear compared to N2/N3. We nevertheless identified and reported the detailed descriptive statistics of these sleep rhythms in all sleep stages, under the same operational definitions, both for completeness and as a sanity check. Within the same subject, there should be more SOs, spindles, and their couplings in N2/N3 than in N1 or REM. We will acknowledge the reasons for these results in the Methods section and emphasize that they are used only for sanity checks.

      Regarding the reported SO amplitudes (~25 µV), during preprocessing, we applied the Signal Space Projection (SSP) method to more effectively remove MRI gradient artifacts and cardiac pulse noise. While this approach enhances data quality, it also reduces overall signal power, leading to systematically lower reported amplitudes. Despite this, our SO detection in NREM sleep (especially N2/N3) remain physiologically meaningful and are consistent with previous fMRI studies using similar artifact removal techniques. We appreciate your careful evaluation and valuable suggestions.

      In addition, we will provide comprehensive tables in the supplementary materials, contains descriptive information about sleep-related characteristics (Table S1), as well as detailed information about sleep waves at each sleep stage for all 107 subjects(Table S2-S4), listing for each subject:(1)Different sleep stage duration; (2)Number of detected SOs; (3)Number of detected spindles; (4)Number of detected SO-spindle coupling events; (2)Density of detected SOs; (3)Density of detected spindles; (4)Density of detected SO-spindle coupling events.

      Methods, Page 25 Lines 515-524

      “We note that the above methods for detecting SOs, spindles, and their couplings were originally developed for N2 and N3 sleep data, based on the specific characteristics of these stages. These methods are widely recognized in sleep research (Hahn et al., 2020; Helfrich et al., 2019; Helfrich et al., 2018; Ngo, Fell, & Staresina, 2020; Schreiner et al., 2022; Schreiner et al., 2021; Staresina et al., 2015; Staresina et al., 2023). However, because this percentile-based detection approach will inherently identify a certain number of events if applied to other stages (e.g., N1 and REM), the nature of these events in those stages remains unclear compared to N2/N3. We nevertheless identified and reported the detailed descriptive statistics of these sleep rhythms in all sleep stages, under the same operational definitions, both for completeness and as a sanity check. Within the same subject, there should be more SOs, spindles, and their couplings in N2/N3 than in N1 or REM (see also Figure S2-S4, Table S1-S4).”

      Supplementary Materials, Page 42-54, Table S1-S4

      Reviewer #3 (Public review):

      Summary:

      Wang et al., examined the brain activity patterns during sleep, especially when locked to those canonical sleep rhythms such as SO, spindle, and their coupling. Analyzing data from a large sample, the authors found significant coupling between spindles and SOs, particularly during the upstate of the SO. Moreover, the authors examined the patterns of whole-brain activity locked to these sleep rhythms. To understand the functional significance of these brain activities, the authors further conducted open-ended cognitive state decoding and found a variety of cognitive processing may be involved during SO-spindle coupling and during other sleep events. The authors next investigated the functional connectivity analyses and found enhanced connectivity between the hippocampus, the thalamus, and the medial PFC. These results reinforced the theoretical model of sleep-dependent memory consolidation, such that SO-spindle coupling is conducive to systems-level memory reactivation and consolidation.

      Strengths:

      There are obvious strengths in this work, including the large sample size, state-of-the-art neuroimaging and neural oscillation analyses, and the richness of results.

      Weaknesses:

      Despite these strengths and the insights gained, there are weaknesses in the design, the analyses, and inferences.

      Thank you for your detailed and thoughtful review of our manuscript. We are delighted that you recognize our advanced analysis methods and rich results of neuroimaging and neural oscillations as well as the large sample size data. In the following sections, we provide detailed responses to each of your comments. And we have revised the text and conducted additional analyses to strengthen our arguments and clarify our methodological choices. We believe these revisions enhance the clarity and rigor of our work, and we sincerely appreciate your thoughtful feedback in helping us refine the manuscript.

      (1) A repeating statement in the manuscript is that brain activity could indicate memory reactivation and thus consolidation. This is indeed a highly relevant question that could be informed by the current data/results. However, an inherent weakness of the design is that there is no memory task before and after sleep. Thus, it is difficult (if not impossible) to make a strong argument linking SO/spindle/coupling-locked brain activity with memory reactivation or consolidation.

      We appreciate your suggestion regarding the lack of a pre- and post-sleep memory task in our study design. We acknowledge that, in the absence of behavioral measures, it is hard to directly link SO-spindle coupling to memory consolidation in an outcome-driven manner. Our interpretation is instead based on the well-established role of these oscillations in memory processes, as demonstrated in previous studies. We sincerely appreciate this feedback and will adjust our Discussion accordingly to reflect a more precise interpretation of our findings.

      Discussion, Page 18 Lines 333-341

      “Despite providing new insights, our study has several limitations. First, our scalp EEG did not directly capture hippocampal ripples, preventing us from conclusively demonstrating triple coupling. Second, the combination of EEG-fMRI and the lack of a memory task limit our ability to parse fine-grained BOLD responses at the DOWN- vs. UP-states of SOs and link observed activations to behavioral outcomes. Third, the use of large anatomical ROIs may mask subregional contributions of specific thalamic nuclei or hippocampal subfields. Finally, without a memory task, we cannot establish a direct behavioral link between sleep-rhythm-locked activation and memory consolidation. Future studies combining techniques such as ultra-high-field fMRI or iEEG with cognitive tasks may refine our understanding of subregional network dynamics and functional significance during sleep.”

      (2) Relatedly, to understand the functional implications of the sleep rhythm-locked brain activity, the authors employed the "open-ended cognitive state decoding" method. While this method is interesting, it is rather indirect given that there were no behavioral indices in the manuscript. Thus, discussions based on these analyses are speculative at best. Please either tone down the language or find additional evidence to support these claims.

      Moreover, the results from this method are difficult to understand. Figure 3e showed that for all three types of sleep events (SO, spindle, SO-spindle), the same mental states (e.g., working memory, episodic memory, declarative memory) showed opposite directions of activation (left and right panels showed negative and positive activation, respectively). How to interpret these conflicting results? This ambiguity is also reflected by the term used: declarative memory and episodic memories are both indexed in the results. Yet these two processes can be largely overlapped. So which specific memory processes do these brain activity patterns reflect? The Discussion shall discuss these results and the limitations of this method.

      We appreciate your critical assessment of the open-ended cognitive state decoding method and its interpretational challenges. Given the concerns about the indirectness of this approach, we decided to remove its related content and results from Figure 3 in the main text and include it in Supplementary Figure 7. 

      Due to the complexity of memory-related processes, we acknowledge that distinguishing between episodic and declarative memory based solely on this approach is not straightforward. We will revise the Supplementary Materials to explicitly discuss these limitations and clarify that our findings do not isolate specific cognitive processes but rather suggest general associations with memory-related networks.

      Discussion, Page 17-18 Lines 323-332

      “To explore functional relevance, we employed an open-ended cognitive state decoding approach using meta-analytic data (NeuroSynth: Yarkoni et al. (2011)). Although this method usefully generates hypotheses about potential cognitive processes, particularly in the absence of a pre- and post-sleep memory task, it is inherently indirect. Many cognitive terms showed significant associations (16 of 50), such as “episodic memory,” “declarative memory,” and “working memory.” We focused on episodic/declarative memory given the known link with hippocampal reactivation (Diekelmann & Born, 2010; Staresina et al., 2015; Staresina et al., 2023). Nonetheless, these inferences regarding memory reactivation should be interpreted cautiously without direct behavioral measures. Future research incorporating explicit tasks before and after sleep would more rigorously validate these potenial functional claims.”

      (3) The coupling strength is somehow inconsistent with prior results (Hahn et al., 2020, eLife, Helfrich et al., 2018, Neuron). Specifically, Helfrich et al. showed that among young adults, the spindle is coupled to the peak of the SO. Here, the authors reported that the spindles were coupled to down-to-up transitions of SO and before the SO peak. It is possible that participants' age may influence the coupling (see Helfrich et al., 2018). Please discuss the findings in the context of previous research on SO-spindle coupling.

      We appreciate your concern regarding the temporal characteristics of SO-spindle coupling. We acknowledge that the SO-spindle coupling phase results in our study are not identical to those reported by Hahn et al. (2020); Helfrich et al. (2018). However, these differences may arise due to slight variations in event detection parameters, which can influence the precise phase estimation of coupling. Notably, Hahn et al. (2020) also reported slight discrepancies in their group-level coupling phase results, highlighting that methodological differences can contribute to variability across studies. Furthermore, our findings are consistent with those of Schreiner et al. (2021), further supporting the robustness of our observations.  

      That said, we acknowledge that our original description of SO-spindle coupling as occurring at the "transition from the lower state to the upper state" was not entirely precise. The -π/2 phase represents the true transition point, while our observed coupling phase is actually closer to the SO peak rather than strictly at the transition. We will revise this statement in the manuscript to ensure clarity and accuracy in describing the coupling phase.  

      Discussion, Page 16 Lines 283-291

      “Our data provide insights into the neurobiological underpinnings of these sleep rhythms. SOs, originating mainly in neocortical areas such as the mPFC, alternate between DOWN- and UP-states. The thalamus generates sleep spindles, which in turn couple with SOs. Our finding that spindle peaks consistently occurred slightly before the UP-state peak of SOs (in 83 out of 107 participants), concurs with prior studies, including Schreiner et al. (2021). Yet it differs from some results suggesting spindles might peak right at the SO UP-state (Hahn et al., 2020; Helfrich et al., 2018). Such discrepancies could arise from differences in detection algorithms, participant age (Helfrich et al., 2018), or subtle variations in cortical-thalamic timing. Nonetheless, these results underscore the importance of coordinated SO-spindle interplay in supporting sleep-dependent processes.”

      (4) The discussion is rather superficial with only two pages, without delving into many important arguments regarding the possible functional significance of these results. For example, the author wrote, "This internal processing contrasts with the brain patterns associated with external tasks, such as working memory." Without any references to working memory, and without delineating why WM is considered as an external task even working memory operations can be internal. Similarly, for the interesting results on SO and reduced DMN activity, the authors wrote "The DMN is typically active during wakeful rest and is associated with self-referential processes like mind-wandering, daydreaming, and task representation (Yeshurun, Nguyen, & Hasson, 2021). Its reduced activity during SOs may signal a shift towards endogenous processes such as memory consolidation." This argument is flawed. DMN is active during self-referential processing and mind-wandering, i.e., when the brain shifts from external stimuli processing to internal mental processing. During sleep, endogenous memory reactivation and consolidation are also part of the internal mental processing given the lack of external environmental stimulation. So why during SO or during memory consolidation, the DMN activity would be reduced? Were there differences in DMN activity between SO and SO-spindle coupling events?

      We appreciate your concerns regarding the brevity of the discussion and the need for clearer theoretical arguments. We will expand this section to provide more in-depth interpretations of our findings in the context of prior literature. Regarding working memory (WM), we acknowledge that our phrasing was ambiguous. We will modify this statement in the Discussion section.

      For the SO-related reduction in DMN activity, we recognize the need for a more precise explanation. This reduced DMN activity may reflect large-scale neural inhibition characteristic of the SO trough. The DMN is typically active during internally oriented cognition (e.g., self-referential processing or mind-wandering) and is suppressed during external stimuli processing (Yeshurun, Nguyen, & Hasson, 2021). It is unlikely, however, that this suppression of DMN during SO events is related to a shift from internal cognition to external responses given it is during deep sleep time. Instead, it could be driven by the inherent rhythmic pattern of SOs, which makes it difficult to separate UP- from DOWN-states (the two temporal regressors were highly correlated, and similar brain activation during SOs events was obtained if modelled at the SO peak instead). Since the amplitude at the SO trough is consistently larger than that at the SO peak, the neural activation we detected may primarily capture the large-scale inhibition from DOWN-state.

      To address your final question, we have conducted the additional post hoc comparison of DMN activity between isolated SOs and SO-spindle coupling events. Our results indicate that

      DMN activation during SOs was significantly lower than during SO-spindle coupling (t(106) = -4.17, p < 1e-4). This suggests that SO-spindle coupling may involve distinct neural dynamics that partially re-engage DMN-related processes, possibly reflecting memory-related reactivation. We appreciate your constructive feedback and will integrate these expanded analyses and discussions into our revised manuscript.

      Results, Page 11 Lines 199-208

      “Spindles were correlated with positive activation in the thalamus (ROI analysis, t(106) = 15.39, p < 1e-4), the anterior cingulate cortex (ACC), and the putamen, alongside deactivation in the DMN (Fig. 3c). Notably, SO-spindle coupling was linked to significant activation in both the thalamus (ROI analysis, t(106) \= 3.38, p = 0.0005) and the hippocampus (ROI analysis, t(106) \= 2.50, p = 0.0070, Fig. 3d). However, no decrease in DMN activity was found during SO-spindle coupling, and DMN activity during SO was significantly lower than during coupling (ROI analysis, t(106) \= -4.17, p < 1e-4). For more detailed activation patterns, see Table S5-S7. We also varied the threshold used to detect SO events to assess its effect on hippocampal activation during SO-spindle coupling and observed that hippocampal activation remained significant when the percentile thresholds for SO detection ranged between 71% and 80% (see Fig. S6).”

      Discussion, Page 17-18 Lines 308-332

      “An intriguing aspect of our findings is the reduced DMN activity during SOs when modeled at the SO trough (DOWN-state). This reduced DMN activity may reflect large-scale neural inhibition characteristic of the SO trough. The DMN is typically active during internally oriented cognition (e.g., self-referential processing or mind-wandering) and is suppressed during external stimuli processing (Yeshurun, Nguyen, & Hasson, 2021). It is unlikely, however, that this suppression of DMN during SO events is related to a shift from internal cognition to external responses given it is during deep sleep time. Instead, it could be driven by the inherent rhythmic pattern of SOs, which makes it difficult to separate UP- from DOWN-states (the two temporal regressors were highly correlated, and similar brain activation during SOs events was obtained if modelled at the SO peak instead, Fig. S5). Since the amplitude at the SO trough is consistently larger than that at the SO peak, the neural activation we detected may primarily capture the large-scale inhibition from DOWN-state. Interestingly, no such DMN reduction was found during SO-spindle coupling, implying that coupling may involve distinct neural dynamics that partially re-engage DMN-related processes, possibly reflecting memory-related reactivation. Future research using high-temporal-resolution techniques like iEEG could clarify these possibilities.

      To explore functional relevance, we employed an open-ended cognitive state decoding approach using meta-analytic data (NeuroSynth: Yarkoni et al. (2011)). Although this method usefully generates hypotheses about potential cognitive processes, particularly in the absence of a pre- and post-sleep memory task, it is inherently indirect. Many cognitive terms showed significant associations (16 of 50), such as “episodic memory,” “declarative memory,” and “working memory.” We focused on episodic/declarative memory given the known link with hippocampal reactivation (Diekelmann & Born, 2010; Staresina et al., 2015; Staresina et al., 2023). Nonetheless, these inferences regarding memory reactivation should be interpreted cautiously without direct behavioral measures. Future research incorporating explicit tasks before and after sleep would more rigorously validate these potential functional claims.”

      Recommendations for the authors:

      Reviewing Editor Comment:

      The reviewers think that you are working on a relevant and important topic. They are praising the large sample size used in the study. The reviewers are not all in line regarding the overall significance of the findings, but they all agree the paper would strongly benefit from some extra work, as all reviewers raise various critical points that need serious consideration.

      We appreciate your recognition of the relevance and importance of our study, as well as your acknowledgment of the large sample size as a strength of our work. We understand that there are differing perspectives regarding the overall significance of our findings, and we value the constructive critiques provided. We are committed to addressing the key concerns raised by all reviewers, including refining our analyses, clarifying our interpretations, and incorporating additional discussions to strengthen the manuscript. Below, we address your specific recommendations and provide responses to each point you raised to ensure our methods and results are as transparent and comprehensible as possible. We believe that these revisions will significantly enhance the rigor and impact of our study, and we sincerely appreciate your thoughtful feedback in helping us improve our work.

      Reviewer #1 (Recommendations for the authors):

      (1) The phrase "overnight sleep" suggests an entire night, while these were rather "nocturnal naps". Please rephrase.

      Response: Thank you for pointing this out. We have revised the phrasing in our manuscript to "nocturnal naps" instead of "overnight sleep" to more accurately reflect the duration of the sleep recordings.

      (2) Sleep staging results (macroscopic sleep architecture) should be provided in more detail (at least min and % of the different sleep stages, sleep onset latency, total sleep duration, total recording duration), at least mean/SD/range.

      Thank you for this suggestion. We will provide comprehensive tables in the supplementary materials, contains descriptive information about sleep-related characteristics. This information will help provide a clearer overview of the macroscopic sleep architecture in our dataset.

      Reviewer #2 (Recommendations for the authors):

      In order to allow for a better estimation of the reliability of the detected sleep events, please:

      (1) Provide densities and absolute numbers of all detected SOs and spindles (N1, NREM, and REM sleep).

      Thank you for pointing this out. We will provide comprehensive tables in the supplementary materials, contains detailed information about sleep waves at each sleep stage for all 107 subjects (Table S2-S4), listing for each subject:1) Different sleep stage duration; 2) Number of detected SOs; 3) Number of detected spindles; 4) Number of detected SO-spindle coupling events; 5) Density of detected SOs; 6) Density of detected spindles; 7) Density of detected SO-spindle coupling events.

      Supplementary Materials, Page 43-54, Table S2-S4

      (2) Show ERPs for all detected SOs and spindles (per sleep stage).

      Thank you for the suggestion. We will provide ERPs for all detected SOs and spindles, separated by sleep stage (N1, N2&N3, and REM) in supplementary Fig. S2-S4. These ERP waveforms will help illustrate the characteristic temporal profiles of SOs and spindles across different sleep stages.

      Methods, Page 25, Line 525-532

      “Event-related potentials (ERP) analysis. After completing the detection of each sleep rhythm event, we performed ERP analyses for SOs, spindles, and coupling events in different sleep stages. Specifically, for SO events, we took the trough of the DOWN-state of each SO as the zero-time point, then extracted data in a [-2 s to 2 s] window from the broadband (0.1–30 Hz) EEG and used [-2 s to -0.5 s] for baseline correction; the results were then averaged across 107 subjects (see Fig. S2a). For spindle events, we used the peak of each spindle as the zero-time point and applied the same data extraction window and baseline correction before averaging across 107 subjects (see Fig. S2b). Finally, for SO-spindle coupling events, we followed the same procedure used for SO events (see Fig. 2a, Figs. S3–S4).”

      (3) Provide detailed info concerning sleep characteristics (time spent in each sleep stage etc.).

      Thank you for this suggestion. Same as the response above, we will provide comprehensive tables in the supplementary materials, contains descriptive information about sleep-related characteristics.

      Supplementary Materials, Page 42, Table S1 (same as above)

      (4) What would happen if more stringent parameters were used for event detection? Would the authors still observe a significant number of SO spindles during N1 and REM? Would this affect the fMRI-related results?

      Thank you for this suggestion. Our methods for detecting SOs, spindles, and their couplings were originally developed for N2 and N3 sleep data, based on the specific characteristics of these stages. These methods are widely recognized in sleep research (Hahn et al., 2020; Helfrich et al., 2019; Helfrich et al., 2018; Ngo, Fell, & Staresina, 2020; Schreiner et al., 2022; Schreiner et al., 2021; Staresina et al., 2015; Staresina et al., 2023). However, because this percentile-based detection approach will inherently identify a certain number of events if applied to other stages (e.g., N1 and REM), the nature of these events in those stages remains unclear compared to N2/N3. We nevertheless identified and reported the detailed descriptive statistics of these sleep rhythms in all sleep stages, under the same operational definitions, both for completeness and as a sanity check. Within the same subject, there should be more SOs, spindles, and their couplings in N2/N3 than in N1 or REM (see also Figure S2-S4, Table S1-S4).

      Furthermore, in order to explore the impact of this on our fMRI results, we conducted an additional sensitivity analysis by applying different detection parameters for SOs. Specifically, we adjusted amplitude percentile thresholds for SO detection (the parameter that has the greatest impact on the results). We used the hippocampal activation value during N2&N3 stage SO-spindle coupling as an anchor value and found that when the parameters gradually became stricter, the results were similar to or even better than the current results. However, when we continued to increase the threshold, the results began to gradually decrease until the threshold was increased to 80%, and the results were no longer significant. This indicates that our results are robust within a specific range of parameters, but as the threshold increases, the number of trials decreases, ultimately weakening the statistical power of the fMRI analysis.

      Thank you again for your suggestions on sleep rhythm event detection. We will add the results in Supplementary and revise our manuscript accordingly.

      Results, Page 11, Line 199-208

      “Spindles were correlated with positive activation in the thalamus (ROI analysis, t(106) = 15.39, p < 1e-4), the anterior cingulate cortex (ACC), and the putamen, alongside deactivation in the DMN (Fig. 3c). Notably, SO-spindle coupling was linked to significant activation in both the thalamus (ROI analysis, t(106) \= 3.38, p = 0.0005) and the hippocampus (ROI analysis, t(106) \= 2.50, p = 0.0070, Fig. 3d). However, no decrease in DMN activity was found during SO-spindle coupling, and DMN activity during SO was significantly lower than during coupling (ROI analysis, t(106) \= -4.17, p < 1e-4). For more detailed activation patterns, see Table S5-S7. We also varied the threshold used to detect SO events to assess its effect on hippocampal activation during SO-spindle coupling and observed that hippocampal activation remained significant when the percentile thresholds for SO detection ranged between 71% and 80% (see Fig. S6).”

      Finally, we sincerely thank all again for your thoughtful and constructive feedback. Your insights have been invaluable in refining our analyses, strengthening our interpretations, and improving the clarity and rigor of our manuscript. We appreciate the time and effort you have dedicated to reviewing our work, and we are grateful for the opportunity to enhance our study based on your recommendations.  

      References:

      Bergmann, T. O., Mölle, M., Diedrichs, J., Born, J., & Siebner, H. R. (2012). Sleep spindle-related reactivation of category-specific cortical regions after learning face-scene associations. NeuroImage, 59(3), 2733-2742. 

      Buzsáki, G. (2015). Hippocampal sharp wave‐ripple: A cognitive biomarker for episodic memory and planning. Hippocampus, 25(10), 1073-1188. 

      Caporro, M., Haneef, Z., Yeh, H. J., Lenartowicz, A., Buttinelli, C., Parvizi, J., & Stern, J. M. (2012). Functional MRI of sleep spindles and K-complexes. Clinical neurophysiology, 123(2), 303-309. 

      Coulon, P., Budde, T., & Pape, H.-C. (2012). The sleep relay—the role of the thalamus in central and decentral sleep regulation. Pflügers Archiv-European Journal of Physiology, 463, 53-71. 

      Crunelli, V., Lőrincz, M. L., Connelly, W. M., David, F., Hughes, S. W., Lambert, R. C., Leresche, N., & Errington, A. C. (2018). Dual function of thalamic low-vigilance state oscillations: rhythm-regulation and plasticity. Nature Reviews Neuroscience, 19(2), 107-118. 

      Czisch, M., Wehrle, R., Stiegler, A., Peters, H., Andrade, K., Holsboer, F., & Sämann, P. G. (2009). Acoustic oddball during NREM sleep: a combined EEG/fMRI study. PloS one, 4(8), e6749. 

      Diba, K., & Buzsáki, G. (2007). Forward and reverse hippocampal place-cell sequences during ripples. Nature Neuroscience, 10(10), 1241. 

      Diekelmann, S., & Born, J. (2010). The memory function of sleep. Nature Reviews Neuroscience, 11(2), 114-126. 

      Fogel, S., Albouy, G., King, B. R., Lungu, O., Vien, C., Bore, A., Pinsard, B., Benali, H., Carrier, J., & Doyon, J. (2017). Reactivation or transformation? Motor memory consolidation associated with cerebral activation time-locked to sleep spindles. PloS one, 12(4), e0174755. 

      Hahn, M. A., Heib, D., Schabus, M., Hoedlmoser, K., & Helfrich, R. F. (2020). Slow oscillation-spindle coupling predicts enhanced memory formation from childhood to adolescence. Elife, 9, e53730. 

      Halassa, M. M., Siegle, J. H., Ritt, J. T., Ting, J. T., Feng, G., & Moore, C. I. (2011). Selective optical drive of thalamic reticular nucleus generates thalamic bursts and cortical spindles. Nature Neuroscience, 14(9), 1118-1120. 

      Hale, J. R., White, T. P., Mayhew, S. D., Wilson, R. S., Rollings, D. T., Khalsa, S., Arvanitis, T. N., & Bagshaw, A. P. (2016). Altered thalamocortical and intra-thalamic functional connectivity during light sleep compared with wake. NeuroImage, 125, 657-667. 

      Helfrich, R. F., Lendner, J. D., Mander, B. A., Guillen, H., Paff, M., Mnatsakanyan, L., Vadera, S., Walker, M. P., Lin, J. J., & Knight, R. T. (2019). Bidirectional prefrontal-hippocampal dynamics organize information transfer during sleep in humans. Nature Communications, 10(1), 3572. 

      Helfrich, R. F., Mander, B. A., Jagust, W. J., Knight, R. T., & Walker, M. P. (2018). Old brains come uncoupled in sleep: slow wave-spindle synchrony, brain atrophy, and forgetting. Neuron, 97(1), 221-230. e224. 

      Horovitz, S. G., Fukunaga, M., de Zwart, J. A., van Gelderen, P., Fulton, S. C., Balkin, T. J., & Duyn, J. H. (2008). Low frequency BOLD fluctuations during resting wakefulness and light sleep: A simultaneous EEG‐fMRI study. Human brain mapping, 29(6), 671-682. 

      Huang, Q., Xiao, Z., Yu, Q., Luo, Y., Xu, J., Qu, Y., Dolan, R., Behrens, T., & Liu, Y. (2024). Replay-triggered brain-wide activation in humans. Nature Communications, 15(1), 7185. 

      Ilhan-Bayrakcı, M., Cabral-Calderin, Y., Bergmann, T. O., Tüscher, O., & Stroh, A. (2022). Individual slow wave events give rise to macroscopic fMRI signatures and drive the strength of the BOLD signal in human resting-state EEG-fMRI recordings. Cerebral Cortex, 32(21), 4782-4796. 

      Laufs, H. (2008). Endogenous brain oscillations and related networks detected by surface EEG‐combined fMRI. Human brain mapping, 29(7), 762-769. 

      Laufs, H., Walker, M. C., & Lund, T. E. (2007). ‘Brain activation and hypothalamic functional connectivity during human non-rapid eye movement sleep: an EEG/fMRI study’—its limitations and an alternative approach. Brain, 130(7), e75. 

      Margulies, D. S., Ghosh, S. S., Goulas, A., Falkiewicz, M., Huntenburg, J. M., Langs, G., Bezgin, G., Eickhoff, S. B., Castellanos, F. X., & Petrides, M. (2016). Situating the default-mode network along a principal gradient of macroscale cortical organization. Proceedings of the National Academy of Sciences, 113(44), 12574-12579. 

      Massimini, M., Huber, R., Ferrarelli, F., Hill, S., & Tononi, G. (2004). The sleep slow oscillation as a traveling wave. Journal of Neuroscience, 24(31), 6862-6870. 

      Moehlman, T. M., de Zwart, J. A., Chappel-Farley, M. G., Liu, X., McClain, I. B., Chang, C., Mandelkow, H., Özbay, P. S., Johnson, N. L., & Bieber, R. E. (2019). All-night functional magnetic resonance imaging sleep studies. Journal of neuroscience methods, 316, 83-98. 

      Molle, M., Bergmann, T. O., Marshall, L., & Born, J. (2011). Fast and slow spindles during the sleep slow oscillation: disparate coalescence and engagement in memory processing. Sleep, 34(10), 1411-1421. 

      Ngo, H.-V., Fell, J., & Staresina, B. (2020). Sleep spindles mediate hippocampal-neocortical coupling during long-duration ripples. Elife, 9, e57011. 

      Picchioni, D., Horovitz, S. G., Fukunaga, M., Carr, W. S., Meltzer, J. A., Balkin, T. J., Duyn, J. H., & Braun, A. R. (2011). Infraslow EEG oscillations organize large-scale cortical– subcortical interactions during sleep: a combined EEG/fMRI study. Brain research, 1374, 63-72. 

      Schabus, M., Dang-Vu, T. T., Albouy, G., Balteau, E., Boly, M., Carrier, J., Darsaud, A., Degueldre, C., Desseilles, M., & Gais, S. (2007). Hemodynamic cerebral correlates of sleep spindles during human non-rapid eye movement sleep. Proceedings of the National Academy of Sciences, 104(32), 13164-13169. 

      Schreiner, T., Kaufmann, E., Noachtar, S., Mehrkens, J.-H., & Staudigl, T. (2022). The human thalamus orchestrates neocortical oscillations during NREM sleep. Nature communications, 13(1), 5231. 

      Schreiner, T., Petzka, M., Staudigl, T., & Staresina, B. P. (2021). Endogenous memory reactivation during sleep in humans is clocked by slow oscillation-spindle complexes. Nature Communications, 12(1), 3112. 

      Singh, D., Norman, K. A., & Schapiro, A. C. (2022). A model of autonomous interactions between hippocampus and neocortex driving sleep-dependent memory consolidation. Proceedings of the National Academy of Sciences, 119(44), e2123432119. 

      Spoormaker, V. I., Schröter, M. S., Gleiser, P. M., Andrade, K. C., Dresler, M., Wehrle, R., Sämann, P. G., & Czisch, M. (2010). Development of a large-scale functional brain network during human non-rapid eye movement sleep. Journal of Neuroscience, 30(34), 11379-11387. 

      Staresina, B. P., Bergmann, T. O., Bonnefond, M., van der Meij, R., Jensen, O., Deuker, L., Elger, C. E., Axmacher, N., & Fell, J. (2015). Hierarchical nesting of slow oscillations, spindles and ripples in the human hippocampus during sleep. Nature Neuroscience, 18(11), 1679-1686. 

      Staresina, B. P., Niediek, J., Borger, V., Surges, R., & Mormann, F. (2023). How coupled slow oscillations, spindles and ripples coordinate neuronal processing and communication during human sleep. Nature Neuroscience, 1-9. 

      Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C., & Wager, T. D. (2011). Large-scale automated synthesis of human functional neuroimaging data. Nature methods, 8(8), 665-670. 

      Yeshurun, Y., Nguyen, M., & Hasson, U. (2021). The default mode network: where the idiosyncratic self meets the shared social world. Nature Reviews Neuroscience, 1-12.

    1. Author response:

      The following is the authors’ response to the original reviews

      Main revision made to the manuscript

      The main revision made to the manuscript is to reconcile our findings with the line attractor model. The revision is based on Reviewer 1’s comment on reinterpreting our results as a superposition of an attractor model with fast timescale dynamics. We expanded our analysis regime to the start of a trial and characterized the overall within-trial dynamics to reinterpret our findings.

      We first acknolwedge that our results are not in contradiction with evidence integration on a line attractor. As pointed out by the reviewers, our finding that the integration of reward outcome explains the reversal probability activity x_rev (Figure 3) is compatible with the line attractor model. However, the reward integration equation is an algebraic relation and does not characterize the dynamics of reversal probability activity. So a closer analysis on the neural dynamics is needed to assess the feasibility of line attractor.

      In the revised manuscript, we show that x_rev exhibits two different activity modes (Figure 4). First, x_rev has substantial non-stationary dynamics during a trial, and this non-stationary activity is incompatible with the line attractor model, as claimed in the original manuscript. Second, we present new results showing that x_rev is stationary (i.e., constant in time) and stable (i.e., contracting) at the start of a trial. These two properties of x_rev support that it is a point attractor at the start of a trial and is compatible with the line attractor model. 

      We further analyze how the two activity modes are linked (Figure 4, Support vector regression). We show that the non-stationary activity is predictable from the stationary activity if the underlying dynamics can be inferred. In other words, the non-stationary activity during a trial is generated by an underlying dynamics with the initial condition provided by the stationary state at the start of trial.

      These results suggest an extension of the line attractor model where an attractor state at the start of a trial provides an initial condition from which non-stationary activity is generated during a trial by an underlying dynamics associated with task-related behavior (Figure 4, Augmented model). 

      The separability of non-stationary trajectories (Figure 5 and 6) is a property of the non-stationary dynamics that allows separable points in the initial stationary state to remain separable during a trial, thus making it possible to represent distinct probabilistic values in non-stationary activity.

      This revised interpretation of our results (1) retains our original claim that the non-stationary dynamics during a trial is incompatible with the line attractor model and (2) introduces attractor state at the start of a trial which is compatible with the line attractor model. Our anlaysis shows that the two activity modes are linked by an underlying dynamics, and the attractor state serves as initial state to launch the non-stationary activity.

      Responses to the Public Reviews:

      Reviewer # 1:

      (1) To provide better explanation of the reversal learning task and network training method, we added detailed description of RNN and monkey task structure (Result Section 1), included a schematic of target outputs (Figure1B), explained the rationale behind using inhibitory network model (Method Section 1) and explained the supervised RNN training scheme (Result Section 1). This information can also be found in the Methods.

      (2) Our understanding is that the augmented model discussed in the previous page is aligned with the model suggested by Reviewer 1: “a curved line attractor, with faster timescale dynamics superimposed on this structure”. It is likely that the “fast” non-stationary activity observed during the trial is driven by task-related behavior, thus is transient. For instance, we do not observe such non-stationary activity in the inter-trial-interval when the task-related behavior is absent. For this reason, the non-stationary trajectories were not considered to be part of the attractor. Instead, they are transient activity generated by the underlying neural dynamics associated with task-related behavior. We believe such characterization of faster timescale dynamics is consistent with Reviewer 1’s view and wanted to clarify that there are two different activity modes.

      (3) We appreciate the reviewers (Reviewer 1 and Reviewer 2) comment that TDR may be limited in isolating the neural subspace of interest. Our study presents what could be learned from TDR but is by no means the only way to interpret the neural data. It would be of future work to apply other methods for isolating task-related neural activities.

      We would appreciate it if the reviewers could share thoughts on what other alternative methods could better isolate the reversal probability activity.

      Reviewer # 2:

      (1) (i) We respectfully disagree with Reviewer 2’s comment that “no action is required to be performed by neurons in the RNN”. In our network setup, the output of RNN learns to choose a sign (+ or -), as Reviewer 2 pointed out, to make a choice. This is how the RNN takes an action. It is unclear to us what Reviewer 2 has intended by “action” and how reaching a target value (not just taking a sign) would make a significant difference in how the network performs the task. 

      (ii)  From Reviewer 2’s comment that “no intervening behavior is thus performed by neurons”, we noticed that the term “intervening behavior” has caused confusion. It refers to task-related behavior, such as making choices or receiving reward, that the subject must perform across trials before reversing its preferred choice. These are the behaviors that intervene the reversal of preferred choice. To clarify its meaning, in the revised manuscript, we changed the term to “task-related behavior” and put them in context. For example, in the Introduction we state that “However, during a trial, task-related behavior, such as making decisions or receiving feedback, produced …”

      (iii) As pointed out by Reviewer 2, the lack of fixation period in the RNN could make differences in the neural dynamics of RNN and PFC, especially at the start of a trial. We demonstrate this issue in Result Section 4 where we analyze the stationary activity at the start of a trial. We find that fixating the choice output to zero before making a choice promotes stationary activity and makes the RNN activity more similar to the PFC activity.

      Reviewer #3:

      (1) (i) In the previous study (Figure 1 in [Bartolo and Averbeck ‘20]), it was shown that neural activity can predict the behavioral reversal trial. This is the reason we examined the neural activity in the trials centered at the behavioral reversal trial. We explained in Result Section 2 that we followed this line of analysis in our study.

      (ii) We would like to emphasize that the main point of Figures 4 and 5 is to show the separability of neural trajectories: the entire trajectory shifts without overlapping. It is not obvious that high-dimensional neural population activity from two trials should remain separated when their activities are compressed into a one-dimensional subspace. The onedimensional activities can easily collide since their activities are compressed into a lowdimensional space. We revised the manuscript to bring out these points. We added an opening paragraph that discusses separability of trajectories and revised the main text to bring out the findings on separability. 

      (iii) We agree with Reviewer 3 that it would be interesting to look at what happens in other subspace of neural activity that are not related to reversal probability and characterize how different neural subspace interact with each. However, the focus of this paper was the reversal probability activity, and we’d consider these questions out of the scope of current paper. We point out that, using the same dataset, neural activity related to other experimental variables were analyzed in other papers [Bartolo and Averbeck ’20; Tang, Bartolo and Averbeck ‘21] 

      (2) (i) In the revised manuscript, we added explanation on the rational behind choosing inhibitory network as a simplified model for the balanced state. In brief, strong inhibitory recurrent connections with strong excitatory external input operates in the balanced state, as in the standard excitatory-inhibitory network. We included references that studied this inhibitory network. We also explained the technical reason (GPU memory) for choosing the inhibitory model.

      (ii) We thank the reviewer for pointing out that the original manuscript did not mention how the feedback and cue were initialized. They were random vectors sample from Gaussian distribution. We added this information in the revised manuscript. In our opinion, it is common to use random external inputs for training RNNs, as it is a priori unclear how to choose them. In fact, it is possible to analyze the effects of random feedback on one-dimensional x_rev dynamics by projecting the random feedback vector to the reversal probability vector. This is shown in Figure 4F.

      (iii) We agree that it would be more natural to train the RNN to solve the task without using the Bayesian model. We point out this issue in the Discussion in the revised manuscript.

      Recommendations for the authors:

      Reviewer #1:

      (1) My understanding of network training was that a Bayesian ideal observer signaled target output based on previous reward outcomes. However, the authors never mention that networks are trained by supervised learning in the main text until the last paragraph of the discussion. There is no mention that there was an offset in the target based on the behavior of the monkeys in the main text. These are really important things to consider in the context of the network solution after training. I couldn't actually find any figure that presents the target output for the network. Did I miss something key here?

      In Result Section 1, we added a paragraph that describes in detail how the RNN is trained. We explained that the network is first simulated and then the choice outputs and reward outcomes are fed into the Bayesian model to infer the scheduled reversal trial. A few trials are added to the inferred reversal trial to obtain the behavioral reversal trial, as found in a previous study [Bartolo and Averbeck ‘20]. Then the network weights are updated by backpropagation-through-time via supervised learning. 

      In the original manuscript, the target output for the network was described in Methods Section 2.5, Step 4. To make this information readily accessible, we added a schematic in Figure 1B that shows the scheduled, inferred and behavioral reversal trials. It also shows how the target choice ouputs are defined. They switch abruptly at the behavioral reversal trial.

      (2) The role of block structure in the task is an important consideration. What are the statistics of block switches? The authors say on average the reversals are every 36 trials, but also say there are random block switches. The reviewer's notes suggest that both the networks and monkeys may be learning about the typical duration of blocks, which could influence their expectations of reversals. This aspect of the task design should be explained more thoroughly and considered in the context of Figure 1E and 5 results.

      We provided more detailed description of the reversal learning task in Result Section 1. We clarified that (1) a task is completed by executing a block of fixed number of trials and (2) reversal of reward schedule occurrs at a random trial around the mid-trial in a block. The differences in the number of trials in a block that the RNNs (36) and the monkeys (80) perform are also explained. We also pointed out the differences in how the reversal trial is randomly sampled.

      However, it is unclear what Reviewer 1 meant by random block switches. Our reversal learning task is completed when a block of fixed number of trials is executed. Reversal of reward schedule occurs only once on a randomly selected trial in the block, and the reversed reward schedule is maintained until the end of a block. It is different from other versions of reveral learning where the reward schedule switches multiple times across trials. We clarified this point in Result Section 1.

      (3) The relationship between the supervised learning approach used in the RNNs and reinforcement learning was confused in the discussion. "Although RNNs in our study were trained via supervised learning, animals learn a reversal-learning task from reward feedback, making it into a reinforcement learning (RL) problem." This is fundamentally not true. In the case of this work, the outcome of the previous trial updates the target output, rather than the trial and error type learning as is typical in reinforcement learning. Networks are not learning by reinforcement learning and this statement is confusing.

      We agree with Reviewer 1’s comment that the statement in the original manuscript is confusing. Our intention was to point out that our study used supervised learning, and this is different from animals learn by reinforcement learning in rea life. We revised the sentence in Discussion as follows:

      “The RNNs in our study were trained via supervised learning. However, in real life, animals learn a reversal learning task via reinforcement learning (RL), i.e., learn the task from reward outcomes.”

      (4) The distinction between line attractors and the dynamic trajectories described by the authors deserves further investigation. A significant concern arises from the authors' use of targeted dimensionality reduction (TDR), a form of regression, to identify the axis determining reversal probability. While this approach can reveal interesting patterns in the data, it may not necessarily isolate the dimension along which the RNN computes reversal probability. This limitation could lead to misinterpretation of the underlying neural dynamics.

      a) This manuscript cites work described in "Prefrontal cortex as a meta-reinforcement learning system," which examined a similar task. In that study, the authors identified a v-shaped curve in the principal component space of network states, representing the probability of choosing left or right.

      Importantly, this curve is topologically equivalent to a line and likely represents a line attractor. However, regressing against reversal probability in such a case would show that a single principal component (PC2) directly correlates with reversal probability.

      b) The dynamics observed in the current study bear a striking resemblance to this structure, with the addition of intervening loops in the network state corresponding to within-trial state evolution. Crucially, these observations do not preclude the existence of a line attractor. Instead, they may reflect the network's need to produce fast timescale dynamics within each trial, superimposed on the slower dynamics of the line attractor.

      c) This alternative interpretation suggests that reward signals could function as inputs that shift the network state along the line attractor, with information being maintained across trials. The fast "intervening behaviors" observed by the authors could represent faster timescale dynamics occurring on top of the underlying line attractor dynamics, without erasing the accumulated evidence for reversals.

      d) Given these considerations, the authors' conclusion that their results are better described by separable dynamic trajectories rather than fixed points on a line attractor may be premature. The observed dynamics could potentially be reconciled with a more nuanced understanding of line attractor models, where the attractor itself may be curved and coexist with faster timescale dynamics.

      We appreciate the insightful comments on (1) the similarity of the work by Wang et al ’18 with our findings and (2) an alternative interpretation that augments the line attractor with fast timescale dynamics. 

      (1) We added a discussion of the work by Wang et al ’18 in Result Section 2 to point out the similarity of their findings in the principal component space with ours in the x_rev and x_choice space. We commented that such network dynamics could emerge when learning to perform the reversal learning the task, regardless of the training schemes. 

      We also mention that the RL approach in Wang et al ’18 does not consider within-trial dynamics, therefore lacks the non-stationary activity observed during the trial in the PFC of monkeys and our trained RNNs.

      (2) We revised our original manuscript substantially to reconcile the line attractor model with the nonstationary activity observed during a trial. 

      Here are the highlights of the revised interpretation of the PFC and the RNN network activity

      - The dynamics of x_rev consists of two activity modes, i.e., stationary activity at the start of a trial and non-stationary activity during the trial. Schematic of the augmented model that reconciles two activity modes is shown in Figure 4A. Analysis of the time derivative (dx_reverse / dt) and contractivity of the stationary state are shown in Figure 4B,C to demonstrate two activity modes.

      - We discuss in Result Section 4 main text that the stationary activity is consistent with the line attractor model, but the non-stationary activity deviates from the model. 

      - The two activity modes are linked dynamically. There is an underlying dynamics that can map the stationary state to the non-stationary trajectory. This is shown by predicting the nonstationary trajectory with the stationary state using a support vector regression model. The prediction results are shown in Figure 4D,E,F.

      - We discuss in Result Section 4 an extension of the standard line attractor model: points on the line attractor can serve as initial states that launch non-stationary activity associated with taskrelated behavior.

      - The separability of neural trajectories presented in Result Section 5 is framed as a property of the non-stationary dynamics associated with task-related behavior.

      To strengthen their claims, the authors should:

      (1) Provide a more detailed description of their RNN training paradigm and task structure, including clear illustrations of target outputs.

      (2) Discuss how their findings relate to and potentially extend previous work on similar tasks, particularly addressing the similarities and differences with the v-shaped state organization observed in reinforcement learning contexts. (https://www.nature.com/articles/s41593-018-0147-8 Figure1).

      (3) Explore whether their results could be consistent with a curved line attractor model, rather than treating line attractors and dynamic trajectories as mutually exclusive alternatives.

      Our response to these three comments is described above.

      Addressing these points would significantly enhance the impact of the study and provide a more nuanced understanding of how reversal probabilities are represented in neural circuits.

      In conclusion, while this study provides interesting insights into the neural representation of reversal probability, there are several areas where the methodology and interpretations could be refined.

      Additional Minor Concerns:

      (1) Network Training and Reversal Timing: The authors mention that the network was trained to switch after a reversal to match animal behavior, stating "Maximum a Posterior (MAP) of the reversal probability converges a few trials past the MAP estimate." More explanation of how this training strategy relates to actual animal behavior would enhance the reader's understanding of the meaning of the model's similarity to animal behavior in Figure 1.

      In Method Section 2.5, we described how our observation that the running estimate of MAP converges a few trials after the actual MAP is analogous to the animal’s reversal behavior.

      “This observation can be interpreted as follows. If a subject performing the reversal learning task employs the ideal observer model to detect the trial at which reward schedule is reversed, the subject can infer the reversal of reward schedule a few trials past the actual reversal and then switch its preferred choice. This delay in behavioral reversal, relative to the reversal of reward schedule, is analogous to the monkeys switching their preferred choice a few trials after the reversal of reward schedule.”

      In Step 4, we also mentioned that the target choice outputs are defined based on our observation in Step 3.

      “We used the observation from Step 3 to define target choice outputs that switch abruptly a few trials after the reversal of reward schedule, denoted as $t^*$ in the following. An example of target outputs are shown in Fig.\,\ref{fig_behavior}B.”

      (2) How is the network simulated in step 1 of training? Is it just randomly initialized? What defines this network structure?

      The initial state at the start of a block was random. We think the initial state is less relevant as the external inputs (i.e., cue and feedback) are strong and drive the network dynamics. We mentioned these setup and observation in Step 1 of training.

      “Step 1. Simulate the network starting from a random initial state, apply the external inputs, i.e., cue and feedback inputs, at each trial and store the network choices and reward outcomes at all the trials in a block. The network dynamics is driven by the external inputs applied periodically over the trials.”

      (3) Clarification on Learning Approach: More description of the approach in the main text would be beneficial. The statement "Here, we trained RNNs that learned from a Bayesian inference model to mimic the behavioral strategies of monkeys performing the reversal learning task [2, 4]" is somewhat confusing, as the model isn't directly fit to monkey data. A more detailed explanation of how the Bayesian inference model relates to monkey behavior and how it's used in RNN training would improve clarity.

      We described the learning approach in more detail, but also tried to be concise without going into technical details.

      We revised the sentence in Introduction as follows:

      “We sought to train RNNs to mimic the behavioral strategies of monkeys performing the reversal learning task. Previous studies \cite{costa2015reversal, bartolo2020prefrontal} have shown that a Bayesian inference model can capture a key aspect of the monkey's behavioral strategy, i.e., adhere to the preferred choice until the reversal of reward is detected and then switch abruptly. We trained the RNNs to replicate this behavioral strategy by training them on target behaviors generated from the Bayesian model.”

      We also added a paragraph in Result Section 1 that explains in detail how the training approach works.

      (4) In Figure 1B, it would be helpful to show the target output.

      We added a figure in Fig1B that shows a schematic of how the target output is generated.

      (5) An important point to consider is that a line attractor can be curved while still being topologically equivalent to a line. This nuance makes Figure 4A somewhat difficult to interpret. It might be helpful to discuss how the observed dynamics relate to potentially curved line attractors, which could provide a more nuanced understanding of the neural representations.

      As discussed above, we interpret the “curved” activity during the trial as non-stationary activity. We do not think this non-stationary activity would be characterized as attractor. Attractor is (1) a minimal set of states that is (2) invariant under the dynamics and (3) attracting when perturbed into its neighborhood [Strogatz, Nonlinear dynamics and chaos]. If we consider the autonomous system without the behavior-related external input as the base system, then the non-stationary states could satisfy (2) and (3) but not (1), so they are not part of the attractor. If we include the behavior-related external input to the autonomous dynamics, then it may be possible that the non-stationary trajectories are part of the attractor. We adopted the former interpretation as the behavior-related inputs are external and transient.

      (6) The results of the perturbation experiments seem to follow necessarily from the way x_rev was defined. It would be valuable to clarify if there's more to these results than what appears to be a direct consequence of the definition, or if there are subtleties in the experimental design or analysis that aren't immediately apparent.

      The neural activity x_rev is correlated to the reversal probability, but it is unclear if the activity in this neural subspace is causally linked to behavioral variables, such as choice output. We added this explanation at the beginning of Results Section 7 to clarify the reason for performing the perturbation experiments.

      “The neural activity $x_{rev}$ is obtained by identifying a neural subspace correlated to reversal probability. However, it remains to be shown if activity within this neural subspace is causally linked to behavioral variables, such as choice output.”

      Reviewer #2:

      Below is a list of things I have found difficult to understand, and been puzzled/concerned about while reading the manuscript:

      (1) It would be nice to say a bit more about the dataset that has been used for PFC analysis, e.g. number of neurons used and in what conditions is Figure 2A obtained (one has to go to supplementary to get the reference).

      We added information about the PFC dataset in the opening paragraph of Result Section 2 to provide an overview of what type of neural data we’ve analyzed. It includes information about the number of recorded neurons, recording method and spike binning process.

      (2) It would be nice to give more detail about the monkey task and better explain its trial structure.

      In Result Section 1 we added a description of the overall task structure (and its difference with other versions of revesal learning task), the RNN / monkey trial structure and differences in RNN and monkey tasks.

      (3) In the introduction it is mentioned that during the hold period, the probability of reversal is represented. Where does this statement come from?

      The fact that neural activity during a hold period, i.e., fixation period before presenting the target images, encodes the probability of reversal was demonstrated in a previous study (Bartolo and Averbeck ’20). 

      We realize that our intention was to state that, during the hold period, the reversal probability activity is stationary as in the line attractor model, instead of focusing on that the probability of reversal is represented during this period. We revised the sentence to convey this message. In addition, we revised the entire paragraph to reinterpret our findings: there are two activity modes where the stationary activity is consistent with the line attractor model but the non-stationary activity deviates from it.

      (4) "Around the behavioral reversal trial, reversal probabilities were represented by a family of rankordered trajectories that shifted monotonically". This sentence is confusing and hard to understand.

      Thank you for point this out. We rewrote the paragraph to reflect our revised interpretation. This sentence was removed, as it can be considered as part of the result on separable trajectories.

      (5) For clarity, in the first section, when it is written that "The reversal behavior of trained RNNs was similar to the monkey's behavior on the same task" it would be nice to be more precise, that this is to be expected given the strategy used to train the network.

      We removed this sentence as it makes a blanket statement. Instead, we compared the behavioral outputs of the RNNs and the monkeys one by one.

      We added a sentence in Result Section 1 that the RNN’s abrupt behavioral reversal is expected as they are trained to mimic the target choice outputs of the Bayesian model.

      “Such abrupt reversal behavior was expected as the RNNs were trained to mimic the target outputs of the Bayesian inference model.”

      (6) What is the value of tau used in eq (1), and how does it compare to trial duration?

      We described the value of time constant tau in Eq (1) and also discussed in Result Section 1 that tau=20ms is much faster than trial duration 500ms, thus the persistent behavior seen in trained RNNs is due to learning.

      (7) It would be nice to expand around the notion of « temporally flexible representation » to help readers grasp what this means.

      Instead of stating that the separable dynamic trajectories have “temporally flexible representation”, we break down in what sense it is temporally flexible: separable dynamic trajectories can accommodate the effects that task-related behavior have on generating non-stationary neural dynamics.

      “In sum, our results show that, in a probabilistic reversal learning task, recurrent neural networks encode reversal probability by adopting, not only stationary states as in a line attractor, but also separable dynamic trajectories that can represent distinct probabilistic values while accommodating non-stationary dynamics associated with task-related behavior.”

      Reviewer #3:

      (1) Data:

      It would be useful to describe the experimental task, recording setup, and analyses in much more detail - both in the text and in the methods. What part of PFC are the recordings from? How many neurons were recorded over how many sessions? Which other papers have they been used in? All of these things are important for the reader to know, but are not listed anywhere. There are also some inconsistencies, with the main text e.g. listing the 'typical block length' as 36 trials, and the methods listing the block length as 24 trials (if this is a difference between the biological data and RNN, that should be more explicit and motivated).

      We provided more detailed description of the monkey experimental task and PFC recordings in Result Section 1. We also added a new section in Methods 2.1 to describe the monkey experiment.

      The experimental analyses should be explained in more detail in the methods. There is e.g. no detailed description of the analysis in Figure 6F.

      We added a new section in Methods 6 to describe how the residual PFC activity is computed. It also describes the RNN perturbation experiments.

      Finally, it would be useful for more analyses of monkey behaviour and performance, either in the main text or supplementary figures.

      We did not pursue this comment as it is unclear how additional behavioral analyses would improve the manuscript.

      (2) Model:

      When fitting the network, 'step 1' of training in 2.3 seems superfluous. The posterior update from getting a reward at A is the same as that from not getting a reward at B (and vice versa), and it is therefore completely independent of the network choice. The reversal trial can therefore be inferred without ever simulating the network, simply by generating a sample of which trials have the 'good' option being rewarded and which trials have the 'bad' option being rewarded.

      We respectfully disagree with Reviewer 3’s comment that the reversal trial can be inferred without ever simulating the network. The only way for the network to know about the underlying reward schedule is to perform the task by itself. By simulating the network, it can sample the options and the reward outcomes. 

      Our understanding is that Review 3 described a strategy that a human would use to perform this task. Our goal was to train the RNN to perform the task.

      Do the blocks always start with choice A being optimal? Is everything similar if the network is trained with a variable initial rewarded option? E.g. in Fig 6, would you see the appropriate swap in the effect of the perturbation on choice probability if choice B was initially optimal?

      Thank you for pointing out that the initial high-value option can be random. When setting up the reward schedule, the initial high-value option was chosen randomly from two choice outputs and, at the scheduled reversal, it was switched to the other option. We did not describe this in the original manuscript.

      We added a descrption in Training Scheme Step 4 that the the initial high-value option is selected randomly. This is also explained in Result Section 1 when we give an overview of the RNN training procedure.

      (3) Content:

      It is rarely explained what the error bars represent (e.g. Figures 3B, 4C, ...) - this should be clear in all figures.

      We added that the error bars represent the standard error of mean.

      Figure 2A: this colour scheme is not great. There are abrupt colour changes both before and after the 'reversal' trial, and both of the extremes are hard to see.

      We changed the color scheme to contrast pre- and post-reversal trials without the abrupt color change.

      Figure 3E/F: how is prediction accuracy defined?

      We added that the prediction accuracy is based on Pearson correlation.

      Figure 4B: why focus on the derivative of the dynamics? The subsequent plots looking at the actual trajectories are much easier to understand. Also - what is 'relative trial' relative to?

      The derivative was analyzed to demonstrate stationarity or non-stationarity of the neural activity. We think it will be clearer in the revised manuscript that the derivative allows us to characterize those two activity modes.

      Relative trial number indicate the trial position relative to the behavioral reversal trial. We added this description to the figures when “relative trial” is used.

      Figure 4C: what do these analyses look like if you match the trial numbers for the shift in trajectories? As it is now, there will presumably be more rewarded trials early and late in each block, and more unrewarded trials around the reversal point. Does this introduce biases in the analysis? A related question is (i) why the black lines are different in the top and bottom plots, and (ii) why the ends of the black lines are discontinuous with the beginnings of the red/blue lines.

      We could not understand what Reviewer 3 was asking in this comment. It’d help if Review 3 could clarify the following question:

      “Figure 4C: what do these analyses look like if you match the trial numbers for the shift in trajectories?”

      Question (i): We wanted to look at how the trajectory shifts in the subsequent trial if a reward is or is not received in the current trial. The top panel analyzed all the trials in which the subsquent trial did not receive a reward. The bottom panel analyzed all the trials in which the subsequent trial received a reward. So, the trials analyzed in the top and bottom panels are different, and the black lines (x_rev of “current” trial) in the top and bottom panels are different.

      Question (ii): Black line is from the preceding trial of the red/blue lines, so if trials are designed to be continuous with the inter-trial-interval, then black and red/blue should be continuous. However, in the monkey experiment, the inter-trial-intervals were variable, so the end of current trial does not match with the start of next trial. The neural trajectories presented in the manuscript did not include the activity in this inter-trial-interval.

      Figure 6C: are the individual dots different RNNs? Claiming that there is a decrease in Delta x_choice for a v_+ stimulation is very misleading.

      Yes individual dots are different RNN perturbations. We added explanation about the dots in Figure7C caption. 

      We agree with the comment that \Delta x_choice did not decrease. This sentence was removed. Instead, we revised the manuscript to state that x_choice for v_+ stimulation was smaller than the x_choice for v_- stimulation. We performed KS-test to confirm statistical significance.

      Discussion: "...exhibited behaviour consistent with an ideal Bayesian observer, as found in our study". The RNN was explicitly trained to reproduce an ideal Bayesian observer, so this can only really be considered an assumption (not a result) in the present study.

      We agree that the statement in the original manuscript is inaccurate. It was revised to reflect that, in the other study, behavior outputs similar to a Bayesian observer emerged by simply learning to do the task, intead of directly mimicking the outputs of Bayesian observer as done in our study.

      “Authors showed that trained RNNs exhibited behavior outputs consistent with an ideal Bayesian observer without explicitly learning from the Bayesian observer. This finding shows that the behavioral strategies of monkeys could emerge by simply learning to do the task, instead of directly mimicking the outputs of Bayesian observer as done in our study.”

      Methods: Would the results differ if your Bayesian observer model used the true prior (i.e. the reversal happens in the middle 10 trials) rather than a uniform prior? Given the extensive literature on prior effects on animal behaviour, it is reasonable to expect that monkeys incorporate some non-uniform prior over the reversal point.

      Thank you for pointing out the non-uniform prior. We haven’t conducted this analysis, but would guess that the convergence to the posterior distribution would be faster. We’d have to perform further analysis, which is out of the scope of this paper, to investigate whether the posteior distribution would be different from what we obtained from uniform prior.

      Making the code available would make the work more transparent and useful to the community.

      The code is available in the following Github repository: https://github.com/chrismkkim/LearnToReverse

    1. Author response:

      Reviewer #1 (Public review):

      This study investigates the sex determination mechanism in the clonal ant Ooceraea biroi, focusing on a candidate complementary sex determination (CSD) locus-one of the key mechanisms supporting haplodiploid sex determination in hymenopteran insects. Using whole genome sequencing, the authors analyze diploid females and the rarely occurring diploid males of O. biroi, identifying a 46 kb candidate region that is consistently heterozygous in females and predominantly homozygous in diploid males. This region shows elevated genetic diversity, as expected under balancing selection. The study also reports the presence of an lncRNA near this heterozygous region, which, though only distantly related in sequence, resembles the ANTSR lncRNA involved in female development in the Argentine ant, Linepithema humile (Pan et al. 2024). Together, these findings suggest a potentially conserved sex determination mechanism across ant species. However, while the analyses are well conducted and the paper is clearly written, the insights are largely incremental. The central conclusion - that the sex determination locus is conserved in ants - was already proposed and experimentally supported by Pan et al. (2024), who included O. biroi among the studied species and validated the locus's functional role in the Argentine ant. The present study thus largely reiterates existing findings without providing novel conceptual or experimental advances.

      Although it is true that Pan et al., 2024 demonstrated (in Figure 4 of their paper) that the synteny of the region flanking ANTSR is conserved across aculeate Hymenoptera (including O. biroi), Reviewer 1’s claim that that paper provides experimental support for the hypothesis that the sex determination locus is conserved in ants is inaccurate. Pan et al., 2024 only performed experimental work in a single ant species (Linepithema humile) and merely compared reference genomes of multiple species to show synteny of the region, rather than functionally mapping or characterizing these regions.

      Other comments:

      The mapping is based on a very small sample size: 19 females and 16 diploid males, and these all derive from a single clonal line. This implies a rather high probability for false-positive inference. In combination with the fact that only 11 out of the 16 genotyped males are actually homozygous at the candidate locus, I think a more careful interpretation regarding the role of the mapped region in sex determination would be appropriate. The main argument supporting the role of the candidate region in sex determination is based on the putative homology with the lncRNA involved in sex determination in the Argentine ant, but this argument was made in a previous study (as mentioned above).

      Our main argument supporting the role of the candidate region in sex determination is not based on putative homology with the lncRNA in L. humile. Instead, our main argument comes from our genetic mapping (in Fig. 2), and the elevated nucleotide diversity within the identified region (Fig. 4). Additionally, we highlight that multiple genes within our mapped region are homologous to those in mapped sex determining regions in both L. humile and Vollenhovia emeryi, possibly including the lncRNA.

      In response to the Reviewer’s assertion that the mapping is based on a small sample size from a single clonal line, we want to highlight that we used all diploid males available to us. Although the primary shortcoming of a small sample size is to increase the probability of a false negative, small sample sizes can also produce false positives. We used two approaches to explore the statistical robustness of our conclusions. First, we generated a null distribution by randomly shuffling sex labels within colonies and calculating the probability of observing our CSD index values by chance (shown in Fig. 2). Second, we directly tested the association between homozygosity and sex using Fisher’s Exact Test (shown in Supplementary Fig. S2). In both cases, the association of the candidate locus with sex was statistically significant after multiple-testing correction using the Benjamini-Hochberg False Discovery Rate. These approaches are clearly described in the “CSD Index Mapping” section of the Methods.

      We also note that, because complementary sex determination loci are expected to evolve under balancing selection, our finding that the mapped region exhibits a peak of nucleotide diversity lends orthogonal support to the notion that the mapped locus is indeed a complementary sex determination locus.

      The fourth paragraph of the results and the sixth paragraph of the discussion are devoted to explaining the possible reasons why only 11/16 genotyped males are homozygous in the mapped region. The revised manuscript will include an additional sentence (in what will be lines 384-388) in this paragraph that includes the possible explanation that this locus is, in fact, a false positive, while also emphasizing that we find this possibility to be unlikely given our multiple lines of evidence.

      In response to Reviewer 1’s suggestion that we carefully interpret the role of the mapped region in sex determination, we highlight our careful wording choices, nearly always referring to the mapped locus as a “candidate sex determination locus” in the title and throughout the manuscript. For consistency, the revised manuscript version will change the second results subheading from “The O. biroi CSD locus is homologous to another ant sex determination locus but not to honeybee csd” to “O. biroi’s candidate CSD locus is homologous to another ant sex determination locus but not to honeybee csd,” and will add the word “candidate” in what will be line 320 at the beginning of the Discussion, and will change “putative” to “candidate” in what will be line 426 at the end of the Discussion.

      In the abstract, it is stated that CSD loci have been mapped in honeybees and two ant species, but we know little about their evolutionary history. But CSD candidate loci were also mapped in a wasp with multi-locus CSD (study cited in the introduction). This wasp is also parthenogenetic via central fusion automixis and produces diploid males. This is a very similar situation to the present study and should be referenced and discussed accordingly, particularly since the authors make the interesting suggestion that their ant also has multi-locus CSD and neither the wasp nor the ant has tra homologs in the CSD candidate regions. Also, is there any homology to the CSD candidate regions in the wasp species and the studied ant?

      In response to Reviewer 1’s suggestion that we reference the (Matthey-Doret et al. 2019) study in the context of diploid males being produced via losses of heterozygosity during asexual reproduction, the revised manuscript will include the following sentence: “Therefore, if O. biroi uses CSD, diploid males might result from losses of heterozygosity at sex determination loci (Fig. 1C), similar to what is thought to occur in other asexual Hymenoptera that produce diploid males (Rabeling and Kronauer 2012; Matthey-Doret et al. 2019).”

      We note, however, that in their 2019 study, Matthey-Doret et al. did not directly test the hypothesis that diploid males result from losses of heterozygosity at CSD loci during asexual reproduction, because the diploid males they used for their mapping study came from inbred crosses in a sexual population of that species.

      We address this further below, but we want to emphasize that we do not intend to argue that O. biroi has multiple CSD loci. Instead, we suggest that additional, undetected CSD loci is one possible explanation for the absence of diploid males from any clonal line other than clonal line A. In response to Reviewer 1’s suggestion that we reference the (Matthey-Doret et al. 2019) study in the context of multilocus CSD, the revised manuscript version will include the following additional sentence in the fifth paragraph of the discussion: “Multi-locus CSD has been suggested to limit the extent of diploid male production in asexual species under some circumstances (Vorburger 2013; Matthey-Doret et al. 2019).”

      Regarding Reviewer 2’s question about homology between the putative CSD loci from the (Matthey-Doret et al. 2019) study and O. biroi, we note that there is no homology. The revised manuscript version will have an additional Supplementary Table (which will be the new Supplementary Table S3) that will report the results of this homology search. The revised manuscript will also include the following additional sentence in the Results: “We found no homology between the genes within the O. biroi CSD index peak and any of the genes within the putative L. fabarum CSD loci (Supplementary Table S3).”

      The authors used different clonal lines of O. biroi to investigate whether heterozygosity at the mapped CSD locus is required for female development in all clonal lines of O. biroi (L187-196). However, given the described parthenogenesis mechanism in this species conserves heterozygosity, additional females that are heterozygous are not very informative here. Indeed, one would need diploid males in these other clonal lines as well (but such males have not yet been found) to make any inference regarding this locus in other lines.

      We agree that a full mapping study including diploid males from all clonal lines would be preferable, but as stated earlier in that same paragraph, we have only found diploid males from clonal line A. We stand behind our modest claim that “Females from all six clonal lines were heterozygous at the CSD index peak, consistent with its putative role as a CSD locus in all O. biroi.” In the revised manuscript version, this sentence (in what will be lines 199-201) will be changed slightly in response to a reviewer comment below: “All females from all six clonal lines (including 26 diploid females from clonal line B) were heterozygous at the CSD index peak, consistent with its putative role as a CSD locus in all O. biroi.”

      Reviewer #2 (Public review):

      The manuscript by Lacy et al. is well written, with a clear and compelling introduction that effectively conveys the significance of the study. The methods are appropriate and well-executed, and the results, both in the main text and supplementary materials, are presented in a clear and detailed manner. The authors interpret their findings with appropriate caution.

      This work makes a valuable contribution to our understanding of the evolution of complementary sex determination (CSD) in ants. In particular, it provides important evidence for the ancient origin of a non-coding locus implicated in sex determination, and shows that, remarkably, this sex locus is conserved even in an ant species with a non-canonical reproductive system that typically does not produce males. I found this to be an excellent and well-rounded study, carefully analyzed and well contextualized.

      That said, I do have a few minor comments, primarily concerning the discussion of the potential 'ghost' CSD locus. While the authors acknowledge (line 367) that they currently have no data to distinguish among the alternative hypotheses, I found the evidence for an additional CSD locus presented in the results (lines 261-302) somewhat limited and at times a bit difficult to follow. I wonder whether further clarification or supporting evidence could already be extracted from the existing data. Specifically:

      We agree with Reviewer 2 that the evidence for a second CSD locus is limited. In fact, we do not intend to advocate for there being a second locus, but we suggest that a second CSD locus is one possible explanation for the absence of diploid males outside of clonal line A. In our initial version, we intentionally conveyed this ambiguity by titling this section “O. biroi may have one or multiple sex determination loci.” However, we now see that this leads to undue emphasis on the possibility of a second locus. In the revised manuscript, we will split this into two separate sections: “Diploid male production differs across O. biroi clonal lines” and “O. biroi lacks a tra-containing CSD locus.”

      (1) Line 268: I doubt the relevance of comparing the proportion of diploid males among all males between lines A and B to infer the presence of additional CSD loci. Since the mechanisms producing these two types of males differ, it might be more appropriate to compare the proportion of diploid males among all diploid offspring. This ratio has been used in previous studies on CSD in Hymenoptera to estimate the number of sex loci (see, for example, Cook 1993, de Boer et al. 2008, 2012, Ma et al. 2013, and Chen et al., 2021). The exact method might not be applicable to clonal raider ants, but I think comparing the percentage of diploid males among the total number of (diploid) offspring produced between the two lineages might be a better argument for a difference in CSD loci number.

      We want to re-emphasize here that we do not wish to advocate for there being two CSD loci in O. biroi. Rather, we want to explain that this is one possible explanation for the apparent absence of diploid males outside of clonal line A. We hope that the modifications to the manuscript described in the previous response help to clarify this.

      Reviewer 2 is correct that comparing the number of diploid males to diploid females does not apply to clonal raider ants. This is because males are vanishingly rare among the vast numbers of females produced. We do not count how many females are produced in laboratory stock colonies, and males are sampled opportunistically. Therefore, we cannot report exact numbers. However, we will add the following sentence to the revised manuscript: “Despite the fact that we maintain more colonies of clonal line B than of clonal line A in the lab, all the diploid males we detected came from clonal line A.”

      (2) If line B indeed carries an additional CSD locus, one would expect that some females could be homozygous at the ANTSR locus but still viable, being heterozygous only at the other locus. Do the authors detect any females in line B that are homozygous at the ANTSR locus? If so, this would support the existence of an additional, functionally independent CSD locus.

      We thank the reviewer for this suggestion, and again we emphasize that we do not want to argue in favor of multiple CSD loci. We just want to introduce it as one possible explanation for the absence of diploid males outside of clonal line A.

      The 26 sequenced diploid females from clonal line B are all heterozygous at the mapped locus, and the revised manuscript will clarify this in what will be lines 199-201. Previously, only six of those diploid females were included in Supplementary Table S2, and that will be modified accordingly.

      (3) Line 281: The description of the two tra-containing CSD loci as "conserved" between Vollenhovia and the honey bee may be misleading. It suggests shared ancestry, whereas the honey bee csd gene is known to have arisen via a relatively recent gene duplication from fem/tra (10.1038/nature07052). It would be more accurate to refer to this similarity as a case of convergent evolution rather than conservation.

      In the sentence that Reviewer 2 refers to, we are representing the assertion made in the (Miyakawa and Mikheyev 2015) paper in which, regarding their mapping of a candidate CSD locus that contains two linked tra homologs, they write in the abstract: “these data support the prediction that the same CSD mechanism has indeed been conserved for over 100 million years.” In that same paper, Miyakawa and Mikheyev write in the discussion section: “As ants and bees diverged more than 100 million years ago, sex determination in honey bees and V. emeryi is probably homologous and has been conserved for at least this long.”

      As noted by Reviewer 2, this appears to conflict with a previously advanced hypothesis: that because fem and csd were found in Apis mellifera, Apis cerana, and Apis dorsata, but only fem was found in Mellipona compressipes, Bombus terrestris, and Nasonia vitripennis, that the csd gene evolved after the honeybee (Apis) lineage diverged from other bees (Hasselmann et al. 2008). However, it remains possible that the csd gene evolved after ants and bees diverged from N. vitripennis, but before the divergence of ants and bees, and then was subsequently lost in B. terrestris and M. compressipes. This view was previously put forward based on bioinformatic identification of putative orthologs of csd and fem in bumblebees and in ants [(Schmieder et al. 2012), see also (Privman et al. 2013)]. However, subsequent work disagreed and argued that the duplications of tra found in ants and in bumblebees represented convergent evolution rather than homology (Koch et al. 2014). Distinguishing between these possibilities will be aided by additional sex determination locus mapping studies and functional dissection of the underlying molecular mechanisms in diverse Aculeata.

      Distinguishing between these competing hypotheses is beyond the scope of our paper, but the revised manuscript will include additional text to incorporate some of this nuance. We will include these modified lines below:

      “A second QTL region identified in V. emeryi (V.emeryiCsdQTL1) contains two closely linked tra homologs, similar to the closely linked honeybee tra homologs, csd and fem (Miyakawa and Mikheyev 2015). This, along with the discovery of duplicated tra homologs that undergo concerted evolution in bumblebees and ants (Schmieder et al. 2012; Privman et al. 2013) has led to the hypothesis that the function of tra homologs as CSD loci is conserved with the csd-containing region of honeybees (Schmieder et al. 2012; Miyakawa and Mikheyev 2015). However, other work has suggested that tra duplications occurred independently in honeybees, bumblebees, and ants (Hasselmann et al. 2008; Koch et al. 2014), and it remains to be demonstrated that either of these tra homologs acts as a primary CSD signal in V. emeryi.”

      (4) Finally, since the authors successfully identified multiple alleles of the first CSD locus using previously sequenced haploid males, I wonder whether they also observed comparable allelic diversity at the candidate second CSD locus. This would provide useful supporting evidence for its functional relevance.

      As is already addressed in the final paragraph of the results and in Supplementary Fig. S4, there is no peak of nucleotide diversity in any of the regions homologous to V.emeryiQTL1, which is the tra-containing candidate sex determination locus (Miyakawa and Mikheyev 2015). In the revised manuscript, the relevant lines will be 307-310. We want to restate that we do not propose that there is a second candidate CSD locus in O. biroi, but we simply raise the possibility that multi-locus CSD *might* explain the absence of diploid males from clonal lines other than clonal line A (as one of several alternative possibilities).

      Overall, these are relatively minor points in the context of a strong manuscript, but I believe addressing them would improve the clarity and robustness of the authors' conclusions.

      Reviewer #3 (Public review):

      Summary:

      The sex determination mechanism governed by the complementary sex determination (CSD) locus is one of the mechanisms that support the haplodiploid sex determination system evolved in hymenopteran insects. While many ant species are believed to possess a CSD locus, it has only been specifically identified in two species. The authors analyzed diploid females and the rarely occurring diploid males of the clonal ant Ooceraea biroi and identified a 46 kb CSD candidate region that is consistently heterozygous in females and predominantly homozygous in males. This region was found to be homologous to the CSD locus reported in distantly related ants. In the Argentine ant, Linepithema humile, the CSD locus overlaps with an lncRNA (ANTSR) that is essential for female development and is associated with the heterozygous region (Pan et al. 2024). Similarly, an lncRNA is encoded near the heterozygous region within the CSD candidate region of O. biroi. Although this lncRNA shares low sequence similarity with ANTSR, its potential functional involvement in sex determination is suggested. Based on these findings, the authors propose that the heterozygous region and the adjacent lncRNA in O. biroi may trigger female development via a mechanism similar to that of L. humile. They further suggest that the molecular mechanisms of sex determination involving the CSD locus in ants have been highly conserved for approximately 112 million years. This study is one of the few to identify a CSD candidate region in ants and is particularly noteworthy as the first to do so in a parthenogenetic species.

      Strengths:

      (1) The CSD candidate region was found to be homologous to the CSD locus reported in distantly related ant species, enhancing the significance of the findings.

      (2) Identifying the CSD candidate region in a parthenogenetic species like O. biroi is a notable achievement and adds novelty to the research.

      Weaknesses

      (1) Functional validation of the lncRNA's role is lacking, and further investigation through knockout or knockdown experiments is necessary to confirm its involvement in sex determination.

      See response below.

      (2) The claim that the lncRNA is essential for female development appears to reiterate findings already proposed by Pan et al. (2024), which may reduce the novelty of the study.

      We do not claim that the lncRNA is essential for female development in O. biroi, but simply mention the possibility that, as in L. humile, it is somehow involved in sex determination. We do not have any functional evidence for this, so this is purely based on its genomic position immediately adjacent to our mapped candidate region. We agree with the reviewer that the study by Pan et al. (2024) decreases the novelty of our findings. Another way of looking at this is that our study supports and bolsters previous findings by partially replicating the results in a different species.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      This manuscript presents an interesting new framework (VARX) for simultaneously quantifying effective connectivity in brain activity during sensory stimulation and how that brain activity is being driven by that sensory stimulation. The core idea is to combine the Vector Autoregressive model that is often used to infer Granger-causal connectivity in brain data with an encoding model that maps the features of a sensory stimulus to that brain data. The authors do a nice job of explaining the framework. And then they demonstrate its utility through some simulations and some analysis of real intracranial EEG data recorded from subjects as they watched movies. They infer from their analyses that the functional connectivity in these brain recordings is essentially unaltered during movie watching, that accounting for the driving movie stimulus can protect one against misidentifying brain responses to the stimulus as functional connectivity, and that recurrent brain activity enhances and prolongs the putative neural responses to a stimulus.

      This manuscript presents an interesting new framework (VARX) for simultaneously quantifying effective connectivity in brain activity during sensory stimulation and how that brain activity is being driven by that sensory stimulation. Overall, I thought this was an interesting manuscript with some rich and intriguing ideas. That said, I had some concerns also - one potentially major - with the inferences drawn by the authors on the analyses that they carried out.

      Main comments:

      (1) My primary concern with the way the manuscript is written right now relates to the inferences that can be drawn from the framework. In particular, the authors want to assert that, by incorporating an encoding model into their framework, they can do a better job of accounting for correlated stimulus-driven activity in different brain regions, allowing them to get a clearer view of the underlying innate functional connectivity of the brain. Indeed, the authors say that they want to ask "whether, after removing stimulus-induced correlations, the intrinsic dynamic itself is preserved". This seems a very attractive idea indeed. However, it seems to hinge critically on the idea of fitting an encoding model that fully explains all of the stimulus-driven activity. In other words, if one fits an encoding model that only explains some of the stimulus-driven response, then the rest of the stimulus-driven response still remains in the data and will be correlated across brain regions and will appear as functional connectivity in the ongoing brain dynamics - according to this framework. This residual activity would thus be misinterpreted. In the present work, the authors parameterize their stimulus using fixation onsets, film cuts, and the audio envelope. All of these features seem reasonable and valid. However, they surely do not come close to capturing the full richness of the stimuli, and, as such, there is surely a substantial amount of stimulus-driven brain activity that is not being accounted for by their "B" model and that is being absorbed into their "A" model and misinterpreted as intrinsic connectivity. This seems to me to be a major limitation of the framework. Indeed, the authors flag this concern themselves by (briefly) raising the issue in the first paragraph of their caveats section. But I think it warrants much more attention and discussion.

      We agree. One can never be sure that all stimulus induced correlation is accounted for. We now formulate our question more cautiously: 

      “We will ask here whether, after removing some of the stimulus-induced correlations, the intrinsic dynamic is similar between stimulus and rest conditions.”

      We also highlight that one may expect the opposite result of what we found: 

      “A general observation of these studies is that a portion of the functional connectivity is preserved between rest and stimulus conditions, while some aspects are altered by the perceptual task [12,16], sometimes showing increased connectivity during the stimulus.[15].” 

      We have added a number of additional features (acoustic edges, fixation novelty, and motion) and more carefully characterize how much “connectivity” each one explains in the neural data: 

      “Removing any of the input features increased the effect size of recurrent connections compared to a model with all features (Fig. S4). We then cumulatively added each feature to the VARX model. Effect size monotonically decreases with each feature added (Fig. 3F). Decreases of effect size are significant when adding film cuts (ΔR=-3.6*10<sup>-6</sup>, p<0.0001, N=26, FDR correction, α=0.05) and the sound envelope (ΔR=-3.59*10<sup>-6</sup>, p=0.002, N=26, FDR correction, α=0.05). Thus, adding more input features progressively reduces the strength of recurrent “connections”.”

      We also added more data to the analysis comparing movies vs rest. We now use 4 different movie segments instead of 1 and find reduced recurrent connectivity during movies: 

      “The number of significant recurrent connections in  were significantly reduced during  movie watching compared to rest (Fig. 4C, fixed effect of stimulus: beta = -3.8*10<sup>-3</sup>, t(17) = -3.9, p<0.001), as is the effect size R (Fig. 4D, fixed effect of stimulus: beta = -2.5*10<sup>-4</sup>, t(17) = -4.1, p<0.001).”

      The additional analysis is described in the Methods section:

      “To compare recurrent connectivity between movies and the resting-state, we compute VARX models in four different movie segments of 5 minutes length to match the length of the resting state recording. We use the first and second half of ‘Despicable Me English’, the first half of ‘Inscapes’ and one of the ‘Monkey’ movies. 18 patients include each of these recordings. For each recording in each patient we compute the fraction of significant channels (p<0.001) and average the effect size R across all channel pairs, excluding the diagonal. We test the difference between movies and resting-state with linear mixed-effect models with stimulus as fixed effect (movie vs rest), and patient as random effect, using matlab’s fitlme() routine.”

      We had already seen this trend of decreasing connectivity during movie watching before, and reported on it cautiously as “largely unaltered”. We updated the Abstract correspondingly from “largely unaltered” to “reduced”: 

      “We also find that the recurrent connectivity during rest is reduced during movie watching.”

      We mentioned this possibility in the Discussion before, namely, that additional input features may reduce recurrent connectivity in the model, and therefore show a difference. We discuss this result now as follows: 

      “The stimulus features we included in our model capture mostly low-level visual and auditory input. It is possible that regressing out a richer stimulus characterization would have removed additional stimulus-induced correlation. While we do not expect that this would change the overall effect of a reduced number of “connections” during movie watching compared to resting state, the interpretation of changes in specific connections will be affected by the choice of features. For example, in sensory cortices, higher recurrent connectivity in the LFP during rest would be consistent with the more synchronized state we saw in rest, as reflected by larger oscillatory activity. Synchronization in higher-order cortices, however, is expected to be more strongly influenced by semantic content of external input.”

      In the Discussion we expand on what might happen if additional stimulus features were to be included into the model:  

      “Previous literature does often not distinguish between intrinsic dynamics and extrinsic effects. By factoring out some of the linear effects of the external input we conclude here that recurrent connectivity is reduced in average. From our prior work49, we know that the stimulus features we included here capture a substantial amount of variance across the brain in intracranial EEG. Arguably, however, the video stimuli had rich semantic information that was not captured by the low-level features used here. Adding such semantic features could have further reduced shared variance, and consequently further reduced average recurrent connectivity in the model.”

      “Similarities and differences between rest and movie watching conditions reported previously, do not draw a firm conclusion as to whether overall “functional connectivity” is increased or reduced. Results seem to depend on the time scale of neural activity analyzed, and the specific brain networks [12,16,63]. However, in fMRI, the conclusion seems to be that functional connectivity during movies is stronger than during rest[15], which likely results from stimulus induced correlations. The VARX model can remove some of the effects of these stimuli, revealing that average recurrent connectivity may be reduced rather than increased during stimulus processing.”

      And in the conclusion we now write: 

      “The model revealed a small but significant decrease of recurrent connectivity when watching movies.”

      (2) Related to the previous comment, the authors make what seems to me to be a complex and important point on page 6 (of the pdf). Specifically, they say "Note that the extrinsic effects captured with filters B are specific (every stimulus dimension has a specific effect on each brain area), whereas the endogenous dynamic propagates this initial effect to all connected brain areas via matrix A, effectively mixing and adding the responses of all stimulus dimensions. Therefore, this factorization separates stimulus-specific effects from the shared endogenous dynamic." It seems to me that the interpretation of the filter B (which is analogous to the "TRF") for the envelope, say, will be affected by the fact that the matrix A is likely going to be influenced by all sorts of other stimulus features that are not included in the model. In other words, residual stimulus-driven correlations that are captured in A might also distort what is going on in B, perhaps. So, again, I worry about interpreting the framework unless one can guarantee a near-perfect encoding model that can fully account for the stimulus-driven activity. I'd love to hear the authors' thoughts on this. (On this issue - the word "dominates" on page 12 seems very strong.)

      This is an interesting point we had not thought about. After some theoretical considerations and some empirical testing we conclude that the effect of missing inputs is relevant, but can be easily anticipated. 

      We have added the following to the Results section explaining and demonstrated empirically the effects of adding features and signals to the model: 

      “As with conventional linear regression, the estimate in B for a particular input and output channel is not affected by which other signals are included in or , provided those other inputs are uncorrelated. We confirmed this here empirically by removing dimensions from (Fig. S11A), and by adding uncorrelated input to (Fig. S11B, adding fixation onset does not affect the estimate for auditory envelope responses). In other words, to estimate B, we do not require all possible stimulus features and all brain activity to be measured and included in the model. In contrast, B does vary when correlated inputs are added to (Fig. S11C, adding acoustic edges changes the auditory envelope response). Evidently the auditory envelope and acoustic edges are tightly coupled in time, whereas fixation onset is not. When a correlated input is missing (acoustic edges) then the other input (auditory envelope) absorbs the correlated variance, thus capturing the combined response of both.”

      (3) Regarding the interpretation of the analysis of connectivity between movies and rest... that concludes that the intrinsic connectivity pattern doesn't really differ. This is interesting. But it seems worth flagging that this analysis doesn't really account for the specific dynamics in the network that could differ quite substantially between movie watching and rest, right? At the moment, it is all correlational. But the dynamics within the network could be very different between stimulation and rest I would have thought.

      As discussed above, with more data and additional stimulus features we now see detectable changes in the connectivity. The example in Figure 4G also shows that specific connections may change in different directions, while overall the strength of connections slightly decreases during movie watching compared to rest. We added the following to the results:

      “While the effect size decreases on average, there is some variation across different brain areas (Fig. 4E-G).”

      But even if the connectivity were unchanged, the activity on this network can be different with varying inputs. We actually also saw that there were changes in the variability of activity (Figs. 6 and S13) that may point to non-linear effects. It seems that injecting the input will cause an overall change in power, which can be explained by a relatively simple non-linear gain adaptation. These effects are already discussed at some length in the paper. 

      (4) I didn't really understand the point of comparing the VARX connectivity estimate with the spare-inverse covariance method (Figure 2D). What was the point of this? What is a reader supposed to appreciate from it about the validity or otherwise of the VARX approach?

      We added the following motivation and clarification on this topic: 

      “To test the descriptive validity [43] of the VARX model we follow the approach of recovering structural connectivity from functional activity in simulation. [44] Specifically, we will compare the recurrent connectivity A derived from brain activity simulated assuming a given structural connectivity, i.e. we ask, can the VARX model recover the underlying structural connectivity, at least in a simulated whole-brian model with known connectivity? … For comparison, we also used the sparse-inverse covariance method to recover connectivity from the correlation matrix (functional connectivity). This method is considered state-of-the-art as it is more sensitive than other methods in detecting structural connections [48]”

      (5) I think the VARX model section could have benefitted a bit from putting some dimensions on some of the variables. In particular, I struggled a little to appreciate the dimensionality of A. I am assuming it has to involve both time lags AND electrode channels so that you can infer Granger causality (by including time) between channels. Including a bit more detail on the dimensionality and shape of A might be helpful for others who want to implement the VARX model.

      Your assumption is correct. We added the following to make this easier for readers: 

      “Therefore, A  has dimensions B has dimensions , where are the dimensions of and respectively.”

      (6) A second issue I had with the inferences drawn by the authors was a difficulty in reconciling certain statements in the manuscript. For example, in the abstract, the authors write "We find that the recurrent connectivity during rest is largely unaltered during movie watching." And they also write that "Failing to account for ... exogenous inputs, leads to spurious connections in the intrinsic "connectivity".

      Perhaps this segment of the abstract needed more explanation. To enhance clarity we have also changed the ordering of the findings. Hopefully this is more clear now: 

      “This model captures the extrinsic effect of the stimulus and separates that from the intrinsic effect of the recurrent brain dynamic. We find that the intrinsic dynamic enhances and prolongs the neural responses to scene cuts, eye movements, and sounds. Failing to account for these extrinsic inputs, leads to spurious recurrent connections that govern the intrinsic dynamic. We also find that the recurrent connectivity during rest is reduced during movie watching.”

      Reviewer #2 (Public review):

      Summary:

      The authors apply the recently developed VARX model, which explicitly models intrinsic dynamics and the effect of extrinsic inputs, to simulated data and intracranial EEG recordings. This method provides a directed method of 'intrinsic connectivity'. They argue this model is better suited to the analysis of task neuroimaging data because it separates the intrinsic and extrinsic activity. They show: that intrinsic connectivity is largely unaltered during a movie-watching task compared to eyes open rest; intrinsic noise is reduced in the task; and there is intrinsic directed connectivity from sensory to higher-order brain areas.

      Strengths:

      (1) The paper tackles an important issue with an appropriate method.

      (2) The authors validated their method on data simulated with a neural mass model.

      (3) They use intracranial EEG, which provides a direct measure of neuronal activity.

      (4) Code is made publicly available and the paper is written well.

      Weaknesses:

      It is unclear whether a linear model is adequate to describe brain data. To the author's credit, they discuss this in the manuscript. Also, the model presented still provides a useful and computationally efficient method for studying brain data - no model is 'the truth'.

      We fully agree and have nothing much to add to this, except to highlight the benefit of a linear model even as explanation for non-linear phenomena: 

      “The [noise-quenching] effect we found here can be explained by a VARX model with the addition of a divisive gain adaptation mechanism … The noise-quenching result and its explanation via gain adaptation shows the benefit of using a parsimonious linear model, which can suggest nonlinear mechanisms as simple corrections from linearity.”

      Appraisal of whether the authors achieve their aims:

      As a methodological advancement highlighting a limitation of existing approaches and presenting a new model to overcome it, the authors achieve their aim. Generally, the claims/conclusions are supported by the results.

      The wider neuroscience claims regarding the role of intrinsic dynamics and external inputs in affecting brain data could benefit from further replication with another independent dataset and in a variety of tasks - but I understand if the authors wanted to focus on the method rather than the neuroscientific claims in this manuscript.

      We fully agree. We added the following to the Discussion section:

      “Future studies should test if our findings replicate in an independent iEEG datasets, including active tasks and whether they generalize to other neuroimaging modalities.”

      Impact:

      The authors propose a useful new approach that solves an important problem in the analysis of task neuroimaging data. I believe the work can have a significant impact on the field.

      Recommendations for the authors:  

      Reviewer #1 (Recommendations for the authors):

      Minor comments:

      (1) Did you mean "less" or "fewer" in the following sentence "..larger values lead to overfitting, i.e. less significant connections..."?

      We mean fewer. Thanks for catching this. 

      (2) I didn't see any equations showing how the regularization parameter lambda is incorporated into the framework.

      We prefer the math and details of the algorithm to an earlier paper that has now been published. Instead we added the following clarification: 

      “The VARX models were fitted to data with the matlab version of the code31 using conventional L2-norm regularization. The corresponding regularization parameter was set to 𝜆=0.3.”

      (3) I think some readers of this might struggle to understand the paragraph beginning

      "Connectivity plots are created with nilearn's plot_connectome() function...". It's all quite opaque for the uninitiated.

      Agreed. We now write more simply: 

      “Connectivity plots in Fig. 4 were created with routines from the nilearn toolbox [51].”

      (4) The paragraph beginning "The length of responses for Figure 5..." is also very opaque and could do with being explained more fully. Or this text could be removed from the methods and incorporated into the relevant results section where you actually discuss this analysis.

      Thank you for flagging this. We expand on the details in the Methods as follows: 

      “The length of responses for each channel in B and H to external inputs in Fig. 5 is computed with Matlab's findpeaks() function. This function returns the full-width at half of the peak maximum minus baseline. Power in each channel is computed as the squares of the responses averaged over the time window that was analyzed (0-0.6s).”

      (5) I think adding some comments to the text or caption related to Figures 3C and 3D would be helpful so readers can understand these numbers a bit better. One seems to be the delta log p value and the other is the delta ratio. What does positive or negative mean? Readers might appreciate a little more help.

      We expanded it as follows, hopefully this helps: 

      “C) difference of log for VAX model without minus with inputs (panel A - B). Both models are fit to the same data. D) Thresholding panels A and B at p<0.0001 gives a fraction of significant connections. Here we show the fraction of significant channels for models with and without input. Each line is a patient with color indicating increase or decrease  E) Mean over all channels for VARX models with and without inputs. Each line is a patient.”

      (6) It is not clear what the colors mean in Figures 4 E, F, G.

      We updated the color scheme for those figure panels and carefully explained it in the caption. Please see the manuscript for updated figure 4.   

      (7) It might be nice to slightly unpack what you mean by the "variability of the internal dynamic" and why it can be equated with the power of the innovation process.

      In the methods we added the following clarification right after defining the VARX model: 

      “The innovation process captures the internal variability of the model. Without it, repeating the same input would always result in a fixed deterministic output .”

      In the results section we added the following: 

      “As a metric of internal variability we measured the power of the intrinsic innovation process , which captures the unobserved “random” brain activity which leads to variations in the responses.”

      (8) Typos etc.

      a) "... has been attributed to variability of ongoing dynamic"

      b) The manuscript refers to a Figure 3G, but there is no Figure 3G.

      c) n_a = n_a = 1. Is that a typo?

      d) fiction

      Thank you for catching these. We fixed them. 

      Reviewer #2 (Recommendations for the authors):

      (1) I'm curious about the authors' opinions on the conditions studied. Naively, eyes open rest and passive movie watching seem like similar conditions - were the authors expecting to see a difference with VARX? Do the authors expect that they would see bigger differences when there is a larger difference in sensory input, e.g. eyes closed rest vs movie watching? Given the authors are arguing the need to explicitly model external inputs, a real data example contrasting two very different external inputs might better demonstrate the model's utility.

      Thank you for this suggestion. We added an analysis of eyes-closed rest recordings, available in 8 patients (Fig. S8). The difference between movie and rest is indeed more pronounced than for eyes open rest. The result is described in the methods:

      “In a subset of patients with eyes-closed resting state we find the same effect, that is qualitatively more pronounced (Fig. S8).”

      This complements our updated finding of a difference between movie and eyes-open rest that does show a significant difference after adding more data to this analysis. The results have been updated as following

      “The number of significant recurrent connections in  were significantly reduced during  movie watching compared to rest (Fig. 4C, fixed effect of stimulus:

      beta = -3.8*10<sup>-3</sup>, t(17) = -3.9, p<0.001), as is the effect size R (Fig. 4D, fixed effect of stimulus: beta = -2.5*10<sup>-4</sup>, t(17) = -4.1, p<0.001).”

      The abstract has been updated accordingly:

      “We also find that the recurrent connectivity during rest is reduced during movie watching.”

      (2) It would also have been interesting to see how the proposed model compares to DCM - however, I understand if the authors wanted to focus on their model rather than a comparison with other models.

      We did not try the DCM for a number of reasons. 1) it does not allow for delays in the model dynamic (i.e. the entire time course of the response has to be captured by the recurrent dynamic of a single time step A). 2. It is computationally prohibitive and would not allow us to analyze large channel counts. 3. The available code is custom made for fMRI or EEG analysis with very specified signal generation models that do not obviously apply to iEEG. We added the following to the Discussion of the CDM:  

      “Similar to the VARX model, DCM includes intrinsic and extrinsic effects A and B. However, the modeling is limited to first-order dynamics (i.e. η<sub>a</sub>=η<sub>b</sub>=1). Thus, prolonged responses have to be entirely captured with a first-order recurrent A. … In contrast, here we have analyzed up to 300 channels per subject across the brain, which would be prohibitive with DCM. By analyzing a large number of recordings we were able to draw more general conclusions about whole-brain activity.”

      (3) I believe improving the consistency of the terminology used would improve the manuscript:

      a) Intrinsic dynamics vs intrinsic connectivity vs recurrent connectivity:

      - The term 'intrinsic dynamic' is first introduced in paragraph 3 of the introduction. An explicit definition of is meant by this term would benefit the manuscript.

      - Sometimes the terminology changes to 'intrinsic connectivity' or 'recurrent connectivity'. An explicit definition of these terms (if they refer to different things) would also benefit the manuscript.

      We had used the term “intrinsic” and “recurrent” interchangeably. We now try to mostly say “intrinsic dynamic” when we talk about the more general phenomenon or recurrent brain dynamic, while using “recurrent connectivity” when we refer to the model parameters A. 

      We provide now a definition already at the start of the Abstract: 

      “Sensory stimulation of the brain reverberates in its recurrent neural networks. However, current computational models of brain activity do not separate immediate sensory responses from this intrinsic dynamic. We apply a vector-autoregressive model with external input (VARX), combining the concepts of “functional connectivity” and “encoding models”, to intracranial recordings in humans. This model captures the extrinsic effect of the stimulus and separates that from the intrinsic effect of the recurrent brain dynamic.”

      And at the start of the introduction: 

      “The primate brain is highly interconnected between and within brain areas. … We will refer to the dynamic driven by this recurrent architecture as the intrinsic dynamic of the brain.”

      b) Intrinsic vs Endogenous and Extrinsic vs Exogenous:

      - Footnote 1 defines the 'intrinsic' and 'extrinsic' terminology.

      - However, there are instances where the authors switch back to endogenous/exogenous.

      - Methods section: "Overall system response", paragraph 2.

      - Results section: "Recurrent dynamic enhances and prolongs stimulus responses".

      - Conclusions section.

      With a foot in both neuroscience and systems identification, it’s a hard habit to break. Thanks for catching it. We searched and replaced all instances of endogenous and exogenous.  

      (4) Methods:

      a) The model equation would be clearer if the convolution was written out fully. (I had to read reference 1 to understand the model.).

      We now spell out the full equation and hope it's not too cumbersome to read:  

      “For the th signal channel the recurrence of the VARX model is given by: 

      b) How is an individual dimension omitted in the reduced model, are the values in the y, x set to zero?

      No, it is actually removed from the linear prediction. We added: 

      “… omitted from the prediction …”

      c) "The p-value quantifies the probability that a specific connection in A or B is zero" - for each of n_a/n_b filters?

      d) It should be clarified that D is a vector.

      We hope the following clarification addresses both these questions: 

      “The p-value quantifies the probability that a specific connection in either A or B is zero. Therefore, D,P and R<sup>2</sup> all have dimensions or for A or B  respectively.”

      (5) Results:

      a) Stimulus-induced reduction of noise in the intrinsic activity: would be good to define the frequency range for theta and beta in paragraph 2.

      Added. 

      b) Neural mass model simulation:

      - A brief description of what was simulated is needed.

      We basically ran the sample code of the neurolib library. With that in mind maybe the description we already provide is sufficient:  

      “We used the default model simulation of the neurolib python library (using their sample code for the “ALNModel”), which is a mean-field approximation of adaptive exponential integrate-and-fire neurons. This model can generate simulated mean firing rates in 80 brain areas based on connectivity and delay matrices determined with diffusion tensor imaging (DTI). We used 5 min of “resting state” activity (no added stimulus, simulated at 0.1ms resolution, subsequently downsampled to 100Hz).”

      - It's not clear to me why the A matrix should match the structural connectivity.

      We added the following introduction to make the purpose of this simulation clear:

      “To test the descriptive validity [43] of the VARX model we follow the approach of recovering structural connectivity from functional activity in simulation. [44] Specifically, we will compare the “connectivity” A derived from brain activity simulated assuming a given structural connectivity, i.e. we ask, can the VARX model recover the underlying structural connectivity, at least in a simulated whole-brian model with known connectivity?”

      - It would be interesting to see the inferred A matrix.

      We added a Supplement figure for this and the following: 

      “The VARX model was estimated with n<sub>a</sub>=2, and no input. The resulting estimate for A is dominated by the diagonal elements that capture the autocorrelation within brain areas (Fig. S1).”

      - How many filters were used here?

      No input filters were used for this simulation:

      We used 5 min of “resting state” activity (no added stimulus, simulated at 0.1ms resolution, subsequently downsampled to 100Hz). 

      c) Intracranial EEG:

      - It's not clear how overfitting was measured and how the selection of the number of filters (n_a and n_b) was done.

      We have removed the statement about overfitting. Mostly the word is used in the context of testing on a separate dataset, which we did not do here. So this “overfitting” can be confusing. Instead we used the analytic p-value as indication that a larger model order is not supported by the data. We write this now as follows: 

      “Increasing the number of delays n<sub>a</sub>, increases estimated effect size R (Fig. S3A,B), however, larger values lead to fewer significant connections (Fig. S3C). Significance (p-value) is computed analytically, i.e. non-parametrically, based on deviance. Values around n<sub>a</sub>=6 time delays appear to be the largest model order supported by this statistical analysis.”

      d) Figure 1:

      - Typo: "auto-regressive"

      Fixed. Thanks for catching that. 

      - LFP and BHA in C are defined much later in the text, would be useful to define these in the caption. o Shouldn't B (the VARX model parameter) be a 2x3 matrix for different time lags?

      Hopefully the following clarifications address both these points: 

      “C) Example of neural signal y(t) recorded at a single location in the brain. We will analyze local field potentials (LFP) and broad-band high frequency activity (BHA) in separate analyses.  D) Examples of filters B for individual feed-forward connections between an extrinsic input and a specific recording location in the brain.”

      (6) Discussion:

      I could not find Muller et al 2016 listed in the references.

      Added. Thanks for catching that omission. 

      Additional edits prompted by reviewers, but not in the context of any particular comment.

      While reviewers did not raise this following point, we felt the need clarify the terminology in the Methods to make sure there is not misunderstanding in the proposed interpretation of the model: 

      “We will refer to the filters in matrix A and B and as recurrent and feed-forward “connections”, but avoid the use of the word “causal” which can be misleading.”

      In addressing questions to Figure 4, we noticed that there is quite a bit of variability across patients, so the analysis for Figure 4 and 7 which combines data across patients now accounts for a random effect of patient (previously we have used mean values for repeated measures). We added the following to the Methods to explain this:

      “To compare recurrent connectivity between movies and the resting-state (in Fig. 4), we compute VARX models in four different movie segments of 5 minutes length to match the length of the resting state recording. We use the first and second half of ‘Despicable Me English’, the first half of ‘Inscapes’ and one of the ‘Monkey’ movies. 18 patients include each of these recordings. For each recording in each patient we compute the fraction of significant channels (p<0.001) and average the effect size R across all channel pairs, excluding the diagonal. We test the difference between movies and resting-state with linear mixed-effect models with stimulus as fixed effect (movie vs rest), and patient as random effect (to account for the repeated measures for the different video segments), using matlab’s fitlme() routine. For the analysis of asymmetry of recurrent connectivity (in Fig. 4) we also used a mixed-effect model with T1w/T2w ratio as fixed effect and patients as random effect (to account for the repeated measures in multiple brain locations).”

      All analyses were rerun with more data (eyes closed resting) and 2 additional patients that have become available since the first submission. Therefore all figures and statistics have been updated throughout the paper. Other than the difference between movies and resting state which was trending before and is now significant, no results changed.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      In this study, the authors engineer the endogenous left boundary of the Drosophila eve TAD, replacing the endogenous Nhomie boundary by either a neutral DNA, a wildtype Nhomie boundary, an inverted Nhomie boundary, or a second copy of the Homie boundary. They perform Micro-C on young embryos and conclude that endogenous Nhomie and Homie boundaries flanking eve pair with head-to-tail directionality to form a chromosomal stem loop. Abrogating the Nhomie boundary leads to ectopic activation of genes in the former neighboring TAD by eve embryonic stripe enhancers. Replacing Nhomie by an inverted version or by Homie (which pairs with itself head-to-head) transformed the stem loop into a circle loop. An important finding was that stem and circle loops differentially impact endogenous gene regulation both within the eve TAD and in the TADs bracketing eve. Intriguingly, an eve TAD with a circle loop configuration leads to ectopic activation of flanking genes by eve enhancers - indicating compromised regulatory boundary activity despite the presence of an eve TAD with intact left and right boundaries.

      Strengths:

      Overall, the results obtained are of high-quality and are meticulously discussed. This work advances our fundamental understanding of how 3D genome topologies affect enhancer-promoter communication.

      Weaknesses:

      Though convincingly demonstrated at eve, the generalizability of TAD formation by directional boundary pairing remains unclear, though the authors propose this mechanism could underly the formation of all TADs in Drosophila and possibly even in mammals. Strong and ample evidence has been obtained to date that cohesin-mediated chromosomal loop extrusion explains the formation of a large fraction of TADs in mammals. 

      (1.1) The difficultly with most all of the studies on mammal TADs, cohesin and CTCF roadblocks is that the sequencing depth is not sufficient, and large bin sizes (>1 kb) are needed to visualize chromosome architecture.  The resulting contact profiles show TAD neighborhoods, not actual TADs.

      The problem with these studies is illustrated by comparing the contact profiles of mammalian MicroC data sets at different bin sizes in Author response image 1.  In this figure, the darkness of the “pixels” in panels E, F, G and H was enhanced by reducing brightness in photoshop.

      Author response image 1.

      Mammalian MicroC profiles different bun sizes

      Panels A and C show “TADs” using bin sizes typical of most mammalian studies (see Krietenstein et al. (2023) (Krietenstein et al. 2020)).  At this level of resolution, TADs, the “trees” that are the building blocks of chromosomes, are not visible.  Instead, what is seen are TAD neighborhoods or “forests”.  Each neighborhood consists of several dozen individual TADs.  The large bins in these panels also artificially accentuated TAD:TAD interactions, generating a series of “stripes” and “dots” that correspond to TADs bumping into each other and sequences getting crosslinked.  For example, in panel A there is prominent stripe on the edge of a “TAD” (blue arrow).  In panel C, this stripe resolves into a series of dots arranged as parallel, but interrupted “stripes” (green and blue arrows).  At the next level of resolution, it can be seen that the stripe marked by the blue arrow and magenta asterisk is generated by contacts between the left boundary of the TAD indicated by the magenta bar with sequences in a TAD (blue bar) ~180 kb way.  While dots and stripes are prominent features in contact profiles visualized with larger bin sizes (A and C), the actual TADs that are observed with a bin size of 200 bp (examples are underlined by black bars in panel G) are not bordered by stripes, nor are they topped by obvious dots.  The one possible exception is the dot that appears at the top of the volcano triangle underlined with magenta.

      The chromosome 1 DNA segment from the MicroC data of Hseih et al. (2023) (Hsieh et al. 2020) shows a putative volcano triangle with a plume (indicated by a V in Author response image 1 panels D, F and H).  Sequences in the V TAD don’t crosslink with their immediate neighbors, and this gives a “plume” above the volcano triangle, as indicate by the light blue asterisk in panels D, F and H.  Interestingly the V TAD does contact two distant TADs, U on the left and W on the right. The U TAD is ~550 kb from V, and the region of contact is indicated by the black arrow.  The W TAD is ~585 kb from V, and the region of contact is indicated by the magenta arrow.  While the plume still seems to be visible with a bin size of 400 bp (light blue asterisk), it is hard to discern when the bin size is 200 bp, as there are not enough reads.

      The evidence demonstrating that cohesin is required for TAD formation/maintenance is based on low resolution Hi-C data, and the effects that are observed are on TAD neighborhoods (forests) and not TADs (trees).  In fact, there is published evidence that cohesin is not required in mammals for TAD formation/maintenance.  In an experiment from Goel et al. 2023 the authors depleted the cohesin component Rad21 and then visualized the effects on TAD organization using the high resolution region capture MicroC (RCMC) protocol.  The MicroC contact map in this figure visualizes a ~250 kb DNA segment around the Ppm1pg locus at 250 bp resolution.  On the right side of the diagonal is the untreated control, while the left side shows the MicroC profile of the same region after Rad21 depletion.  The authors indicated that there was a 97% depletion of Rad21 in their experiment.  However, as is evident from a comparison of the experimental and control, loss of Rad21 has no apparent effect on the TAD organization of this mammalian DNA segment.

      Several other features are worth noting.  First, unlike the MicroC experiments shown in Author response image 1, there are dots at the apex of the TADs in this chromosomal segment.  In the MicroC protocol, fixed chromatin is digested to mononucleosomes by extensive MNase digestion.  The resulting DNA fragments are then ligated, and dinucleosome-length fragments are isolated and sequenced. 

      DNA sequences that are nucleosome free in chromatin (which would be promoters, enhancers, silencers and boundary elements) are typically digested to oligonucleotides in this procedure and won’t be recovered. This means that the dots shown here must correspond to mononucleosome-length elements that are MNase resistant.  This is also true for the dots in the MicroC contact profiles of the Drosophila Abd-B regulatory domain (see Fig. 2B in the paper).  Second, the TADs are connected to each other by 45o stripes (see blue and green arrowheads).  While it is not clear from this experiment whether the stipes are generated by an active mechanism (enzyme) or by some “passive” mechanism (e.g., sliding), the stripes in this chromosomal segment are not generated by cohesin, as they are unperturbed by Rad21 depletion.  Third, there are no volcano triangles with plumes in this chromosomal DNA segment.  Instead, the contact patterns (purple and green asterisks) between neighboring TADs closely resemble those seen for the Abd-B regulatory domains (compare Goel et al. 2023 with Fig. 2B in the paper).  This similarity suggests that the TADs in and around Ppm1g may be circle-loops, not stem-loops.  As volcano triangles with plumes also seem to be rare in the MicroC data sets of Krietenstein et al. (Krietenstein et al. 2020) and Hesih et al. (Hsieh et al. 2020) (with the caveat that these data sets are low resolution: see Author response image 1), it is possible that much of the mammalian genome is assembled into circle-loop TADs, a topology that can’t be generated by the cohesin loop extrusion (bolo tie clip) /CTCF roadblock model.

      While Rad21 depletion has no apparent effect on TADs, it does appear to impact TAD neighborhoods.  This is in a supplemental figure in Goel et al. (Goel et al. 2023).  In this figure, TADs in the Ppm1g region of chromosome 5 are visualized with bin sizes of 5 kb and 1 kb.  A 1.2 Mb DNA segment is shown for the 5 kb bin size, while an 800 kb DNA segment is shown for the 1 kb bin size.  As can be seen from comparing the MicroC profiles in Author response image 2 with that in Goel et al. 2023, individual TADs are not visible.  Instead, the individual TADs are binned into large TAD “neighborhoods” that consist of several dozen or more TADs.

      Unlike the individual TADs shown in Goel et al. 2023, the TAD neighborhoods in Author response image 2 are sensitive to Rad21 depletion.  The effects of Rad21 depletion can be seen by comparing the relative pixel density inside the blue lines before (above the diagonal) and after (below the diagonal) auxin-induced Rad21 degradation.  The reduction in pixel density is greatest for more distant TAD:TAD contacts (farthest from the diagonal).  By contrast, the TADs themselves are unaffected (Goel et al. 2023), as are contacts between individual TADs and their immediate neighbors.  In addition, contacts between partially overlapping TAD neighborhoods are also lost.  At this point it isn’t clear why contacts between distant TADs in the same neighborhood are lost when Rad21 is depleted; however, a plausible speculation is that it is related to the functioning of cohesin in holding newly replicated DNAs together until mitosis and whatever other role it might have in chromosome condensation.

      Author response image 2.

      Ppm1g full locus chr5

      Moreover, given the unique specificity with which Nhomie and Homie are known to pair (and exhibit "homing" activity), it is conceivable that formation of the eve TAD by boundary pairing represents a phenomenon observed at exceptional loci rather than a universal rule of TAD formation. Indeed, characteristic Micro-C features of the eve TAD are only observed at a restricted number of loci in the fly genome…..

      (1.2) The available evidence does not support the claim that nhomie and homie are “exceptional.”  To begin with, nhomie and homie rely on precisely the same set of factors that have been implicated in the functioning of other boundaries in the fly genome.  For example, homie requires (among other factors) the generic boundary protein Su(Hw) for insulation and long-distance interactions (Fujioka et al. 2024).  (This is also true of nhomie: unpublished data.)  The Su(Hw) protein (like other fly polydactyl zinc finger proteins) can engage in distant interactions.  This was first shown by Sigrist and Pirrotta (Sigrist and Pirrotta 1997), who found that the su(Hw) element from the gypsy transposon can mediate long-distance regulatory interactions (PRE dependent silencing) between transgenes inserted at different sites on homologous chromosomes (trans interactions) and at sites on different chromosomes.

      The ability to mediate long-distance interactions is not unique to the su(Hw) element, or homie and nhomie.  Muller et al. (Muller et al. 1999) found that the Mcp boundary from the Drosophila BX-C is also able to engage in long-distance regulatory interactions—both PRE-dependent silencing of mini-white and enhancer activation of mini-white and yellow.  The functioning of the Mcp boundary depends upon two other generic insulator proteins, Pita and the fly CTCF homolog (Kyrchanova et al. 2017).  Like Su(Hw) both are polydactyl zinc finger proteins, and they resemble the mammalian CTCF protein in that their N-terminal domain mediates multimerization (Bonchuk et al. 2020; Zolotarev et al. 2016).  Figure 6 from Muller et el. 1999 shows PRE-dependent “pairing sensitive silencing” interactions between transgenes carrying a mini-white reporter, the Mcp and scs’ (Beaf dependent)(Hart et al. 1997) boundary elements, and a PRE closely linked to Mcp.  In this experiment flies homozygous for different transgene inserts were mated and the eye color was examined in their transheterozygous progeny.  As indicated in the figure, the strongest trans-silencing interactions were observed for inserts on the same chromosomal arm; however, transgenes inserted on the left arm of chromosome 3 can interact across the centromere with transgenes inserted on the right arm of chromosome 3. 

      Figure 5C (left) from Muller et el. 1999 shows a trans-silencing interaction between w#11.102 at 84D and w#11.16 approximately 5.8 Mb away, at 87D.  Figure 5C (right) shows a trans-silencing interaction across the centromere between w#14.29 on the left arm of chromosome 3 at 78F and w#11.102 on the right arm of chromosome 3 at 84D. The eye color phenotype of mini-white-containing transgenes is usually additive: homozygyous inserts have twice as dark eye color as the corresponding hemizygous inserts.  Likewise, in flies trans-_heterozygous for _mini-white transgenes inserted at different sites, the eye color is equivalent to the sum of the two transgenes.  This is not true when mini-white transgenes are silenced by PREs.  In the combination shown in panel A, the t_rans-_heterozygous fly has a lighter eye color than either of the parents.  In the combination in panel B, the _trans-_heterozygous fly is slightly lighter than either parent.

      As evident from the diagram in Figure 6 from Muller et el. 1999, all of the transgenes inserted on the 3rd chromosome that were tested were able to participate in long distance (>Mbs) regulatory interactions.  On the other hand, not all possible pairwise interactions are observed.  This would suggest that potential interactions depend upon the large scale (Mb) 3D folding of the 3rd chromosome.

      When the scs boundary (Zw5 dependent) (Gaszner et al. 1999) was added to the transgene to give sMws’, it further enhanced the ability of distant transgenes to find each other and pair.  All eight of the sMws’ inserts that were tested were able to interact with at least one other sMws’ insert on a different chromosome and silence mini-white.  Vazquez et al. () subsequently tagged the sMws’ transgene with LacO sequences (ps0Mws’) and visualized pairing interactions in imaginal discs.  Trans-heterozygous combinations on the same chromosome were found paired in 94-99% of the disc nuclei, while a trans-heterozygous combination on different chromosomes was found paired in 96% of the nuclei (Table 3 from Vazquez et al. 2006).  Vazquez et al. also examined a combination of four transgenes inserted on the same chromosome (two at the same insertion site, and two at different insertion sites).  In this case, all four transgenes were clustered together in 94% of the nuclei (Table 3 from Vazquez et al. 2006).  Their studies also suggest that the distant transgenes remain paired for at least several hours.  A similar experiment was done by Li et al. (Li et al. 2011), except that the transgene contained only a single boundary, Mcp or Fab-7.  While pairing was still observed in trans-heterozygotes, the frequency was reduced without scs and scs’.

      It is worth pointing out that there is no plausible mechanism in which cohesin could extrude a loop through hundreds of intervening TADs, across the centromere (ff#13.101_ßà_w#11.102: Figure 6 from Muller et el. 1999; w#14.29_ßà_w#11.02: Figure 6 from Muller et el. 1999 and 5) and come to a halt when it “encounters” Mcp containing transgenes on different homologs.  The same is true for Mcp-dependent pairing interactions in cis (Fig. 7 in Muller et al. (Muller et al. 1999)) or Mcp-dependent pairing interactions between transgenes inserted on different chromosomes (Fig. 8 in Muller et al. (Muller et al. 1999); Line 8 in Table 3 from Vazquez et al. 2006). 

      These are not the only boundaries that can engage in long-distance pairing.  Mohana et al. (Mohana et al. 2023) identified nearly 60 meta-loops, many of which appear to be formed by the pairing of TAD boundary elements.  Two examples (at 200 bp resolution from 12-16 hr embryos) are shown in Author response image 3.

      Author response image 3.

      Metaloops on the 2nd and 3rd chromosomes: circle-loops and multiple stem-loops

      One of these meta-loops (panel A) is generated by the pairing of two TAD boundaries on the 2nd chromosome.  The first boundary, blue, (indicated by blue arrow) is located at ~2,006, 500 bp between a small TAD containing the Nplp4 and CG15353 genes and a larger TAD containing 3 genes, CG33543, Obp22a and Npc2aNplp4 encodes a neuropeptide.  The functions of CG15354 and CG33543 are unknown.  Obp22a encodes an odorant binding protein, while Npc2a encodes the Niemann-Pick type C-2a protein which is involved sterol homeostasis.  The other boundary (purple: indicated by purple arrow) is located between two TADs 2.8 Mb away at 4,794,250 bp.  The upstream TAD contains the fipi gene (CG15630) which has neuronal functions in male courtship, while the downstream TAD contains CG3294, which is thought to be a spliceosome component, and schlaff (slf) which encodes a chitin binding protein.  As illustrated in the accompanying diagram, the blue boundary pairs with the purple boundary in a head-to-head orientation, generating a ~2.8 Mb loop with a circle-loop topology.  As a result of this pairing, the multi-gene (CG33543, Obp22a and Npc2a) TAD upstream of the blue boundary interacts with the CG15630 TAD upstream of the purple boundary.  Conversely the small Nplp4:CG15353 TAD downstream of the blue boundary interacts with the CG3294:slf TAD downstream of the purple boundary.  Even if one imagined that the cohesin bolo tie clip was somehow able to extrude 2.8 Mb of chromatin and then know to stop when it encountered the blue and purple boundaries, it would’ve generated a stemloop, not a circle-loop.

      The second meta-loop (panel B) is more complicated as it is generated by pairing interactions between four boundary elements.  The blue boundary (blue arrow) located ~4,801,800 bp (3L) separates a large TAD containing the RhoGEF64C gene from a small TAD containing CG7509, which encodes a predicted subunit of an extracellular carboxypeptidase.  As can be seen in the MicroC contact profile and the accompanying diagram, the blue boundary pairs with the purple boundary (purple arrow) which is located at ~7,013, 500 (3L) just upstream of the 2nd internal promoter (indicated by black arrowhead) of the Mp (Multiplexin) gene.  This pairing interaction is head-to-tail and generates a large stem-loop that spans ~2.2 Mb.  The stem-loop brings sequences upstream of the blue boundary and downstream of the purple boundary into contact (the strings below a bolo tie clip), just as was observed in the boundary bypass experiments of Muravyova et al. (Muravyova et al. 2001) and Kyrchanova et al. (Kyrchanova et al. 2008).  The physical interactions result in a box of contacts (right top) between sequences in the large RhoGEF64C TAD and sequences in a large TAD that contains an internal Mp promoter.  The second pairing interaction is between the brown boundary (brown arrow) and the green boundary (green arrow).  The brown boundary is located at ~4 805,600 bp (3L) and separates the TAD containing CG7590 from a large TAD containing CG1808 (predicted to encode an oxidoreductase) and the Dhc64C (Dynein heavy chain 64C) gene.  The green boundary is located at ~6,995,500 bp (3L), and it separates a TAD containing CG32388 and the biniou (bin) transcription factor from a TAD that contains the most distal promoter of the Mp (Multiplexin) gene (blue arrowhead).  As indicated in the diagram, the brown and green boundaries pair with each other head-to-tail, and this generates a small internal loop (and the final configuration would resemble a bolo tie with two tie clips).  This small internal loop brings the CG7590 TAD into contact with the TAD that extends from the distal Mp promoter to the 2nd internal Mp promoter.  The resulting contact profile is a rectangular box with diagonal endpoints corresponding to the paired blue:purple and brown:green boundaries.  The pairing of the brown:green boundaries also brings the TADs immediately downstream of the brown boundary and upstream of the green boundary into contact with each other, and this gives a rectangular box of interactions between the Dhc64C TAD, and sequences in the bin/CG3238 TAD.  This box is located on the lower left side of the contact map.

      Since the bin and Mp meta-loops in Author response image 3B are stem-loops, they could have been generated by “sequential” cohesin loop extrusion events.  Besides the fact that cohesin extrusion of 2 Mb of chromatin and breaking through multiple intervening TAD boundaries challenges the imagination, there is no mechanism in the cohesion loop extrusion/CTCF roadblock model to explain why cohesion complex 1 would come to a halt at the purple boundary on one side and the blue boundary on the other, while cohesin complex 2 would instead stop when it hits the brown and green boundaries.  This highlights another problem with the cohesin loop extrusion/CTCF roadblock model, namely that the roadblocks are functionally autonomous: they have an intrinsic ability to block cohesin that is entirely independent of the intrinsic ability of other roadblocks in the neighborhood.  As a result, there is no mechanism for generating specificity in loop formation.  By contrast, boundary pairing interactions are by definition non-autonomous and depend on the ability of individual boundaries to pair with other boundaries: specificity is built into the model. The mechanism for pairing, and accordingly the basis for partner preferences/specificity, are reasonably well understood.  Probably the most common mechanism in flies is based on shared binding sites for architectural proteins that can form dimers or multimers (Bonchuk et al. 2021; Fedotova et al. 2017).  Flies have a large family of polydactyl zinc finger DNA binding proteins, and as noted above, many of these form dimers or multimers and also function as TAD boundary proteins.  This pairing principle was first discovered by Kyrchanova et al. (Kyrchanova et al. 2008).  This paper also showed that orientation-dependent pairing interactions is a common feature of endogenous fly boundaries.  Another mechanism for pairing is specific protein:protein interactions between different DNA binding factors (Blanton et al. 2003).  Yet a third mechanism would be proteins that bridge different DNA binding proteins together.  The boundaries that use these different mechanisms (BX-C boundaries, scs, scs’) depend upon the same sorts of proteins that are used by homie and nhomie.  Likewise, these same set of factors reappear in one combination or another in most other TAD boundaries.  As for the orientation of pairing interactions, this is most likely determined by the order of binding sites for chromosome architectural proteins in the partner boundaries.

      …and many TADs lack focal 3D interactions between their boundaries.

      (1.3) The idea that flies differ from mammals in that they “lack” focal 3D interactions is simply mistaken.  One of the problems with drawing this distinction is that most all of the “focal 3D interactions” seen mammalian Hi-C experiments are a consequence of binning large DNA segments in low resolution restriction enzyme-dependent experiments.  This is even true in the two “high” resolution MicroC experiments that have been published (Hsieh et al. 2020; Krietenstein et al. 2020).  As illustrated above in Author response image 1, most of the “focal 3D interactions” (the dots at the apex of TAD triangles) seen with large bin sizes (1 kb and greater) disappear when the bin size is 200 bp and TADs rather than TAD neighborhoods are being visualized.

      As described in point #1.1, in the MicroC protocol, fixed chromatin is first digested to mononucloesomes by extensive MNase digestion, processed/biotinylated, and ligated to give dinucleosome-length fragments, which are then sequenced.  Regions of chromatin that are nucleosome free (promoters, enhancers, silencers, boundary elements) will typically be reduced to oligonucleotides in this procedure and will not be recovered when dinucleosome-length fragments are sequenced.  The loss of sequences from typical paired boundary elements is illustrated by the lar meta-loop shown in Author response image 4 (at 200 bp resolution).  Panels A and B show the contact profiles generated when the blue boundary (which separates two TADs that span  the Lar (Leukocyteantigen-related-like) transcription unit interacts with the purple boundary (which separates two TADs in a gene poor region ~620 kb away).  The blue and purple boundaries pair with each other head-to-head, and this pairing orientation generates yet another circle-loop.  In the circle-loop topology, sequences in the TADs upstream of both boundaries come into contact with each other, and this gives the small dark rectangular box to the upper left of the paired boundaries (Author response image 4A).  (Note that this small box corresponds to the two small TADs upstream of the blue and purple boundaries, respectively. See panel B.)  Sequences in the TADs downstream of the two boundaries also come into contact with each other, and this gives the large box to the lower right of the paired boundaries.  While this meta-loop is clearly generated by pairing interactions between the blue and purple boundaries, the interacting sequences are degraded in the MicroC protocol, and sequences corresponding to the blue and purple boundaries aren’t recovered.  This can be seen in panel B (red arrow and red arrowheads).  When a different Hi-C procedure is used (dHS-C) that captures nucleosome-free regions of chromatin that are physically linked to each other (Author response image 4C & D), the sequences in the interacting blue and purple boundaries are recovered and generate a prominent “dot” at their physical intersection (blue arrow in panel D).

      Author response image 4.

      Lar metaloop. Panels A & bB: MicroC. Panels C & D: dHS-C

      While sequences corresponding to the blue and purple boundaries are lost in the MicroC procedure, there is at least one class of elements that engage in physical pairing interactions whose sequences are (comparatively) resistant to MNase digestion.  This class of elements includes many PREs ((Kyrchanova et al. 2018); unpublished data), the boundary bypass elements in the Abd-B region of BX-C (Kyrchanova et al. 2023; Kyrchanova et al. 2019a; Kyrchanova et al. 2019b; Postika et al. 2018), and “tethering” elements (Batut et al. 2022; Li et al. 2023).  In all of the cases tested, these elements are bound in nuclear extracts by a large (>1000 kD) GAGA factor-containing multiprotein complex called LBC.  LBC also binds to the hsp70 and eve promoters (unpublished data).  Indirect end-labeling experiments (Galloni et al. 1993; Samal et al. 1981; Udvardy and Schedl 1984) indicate that the LBC protects a ~120-180 bp DNA segment from MNase digestion.  It is likely that this is the reason why LBC-bound sequences can be recovered in MicroC experiments as dots when they are physically linked to each other.  One such example (based on the ChIP signatures of the paired elements) is indicated by the green arrow in panel B and D of Author response image 4.  Note that there are no dots corresponding to these two LBC elements within either of the TADs immediately downstream of the blue and purple boundaries.  Instead the sequences corresponding to the two LBC elements are only recovered when the two elements pair with each other over a distance of ~620 kb.  The fact that these two elements pair with each other is consistent with other findings which indicate that, like classical boundaries, LBC elements exhibit partner preferences.  In fact, LBC elements can sometimes function as TAD boundaries.  For example, the Fab-7 boundary has two LBC elements, and full Fab-7 boundary function can be reconstituted with just these two elements (Kyrchanova et al. 2018).

      Reviewer #2 (Public Review):

      "Chromatin Structure II: Stem-loops and circle-loops" by Ke*, Fujioka*, Schedl, and Jaynes reports a set of experiments and subsequent analyses focusing on the role of Drosophila boundary elements in shaping 3D genome structure and regulating gene expression. The authors primarily focus on the region of the fly genome containing the even skipped (eve) gene; eve is expressed in a canonical spatial pattern in fly embryos and its locus is flanked by the well-characterized neighbor of homie (nhomie) and homie boundary elements. The main focus of investigation is the orientation dependence of these boundary elements, which had been observed previously using reporter assays. In this study, the authors use Crispr/Cas9 editing followed by recombination-mediated cassette exchange to create a series of recombinant fly lines in which the nhomie boundary element is either replaced with exongenous sequence from phage 𝝀, an inversion of nhomie, or a copy of homie that has the same orientation as the endogenous homie sequence. The nhomie sequence is also regenerated in its native orientation to control for effects introduced by the transgenesis process.

      The authors then perform high-resolution Micro-C to analyze 3D structure and couple this with fluorescent and colorimetric RNA in situ hybridization experiments to measure the expression of eve and nearby genes during different stages of fly development. The major findings of these experiments are that total loss of boundary sequence (replacement with 𝝀 DNA) results in major 3D structure changes and the most prominent observed gene changes, while inversion of the nhomie boundary or replacement with homie resulted in more modest effects in terms of 3D structure and gene expression changes and a distinct pattern of gene expression change from the 𝝀 DNA replacement. As the samples in which the nhomie boundary is inverted or replaced with homie have similar Micro-C profiles at the eve locus and show similar patterns of a spurious gene activation relative to the control, the observed effects appear to be driven by the relative orientation of the nhomie and homie boundary elements to one another.

      Collectively, the findings reported in the manuscript are of broad interest to the 3D genome field. Although extensive work has gone into characterizing the patterns of 3D genome organization in a whole host of species, the underlying mechanisms that structure genomes and their functional consequences are still poorly understood. The perhaps best understood system, mechanistically, is the coordinated action of CTCF with the cohesin complex, which in vertebrates appears to shape 3D contact maps through a loop extrusion-pausing mechanism that relies on orientation-dependent sequence elements found at the boundaries of interacting chromatin loops.

      (2.1) The notion that mammalian genome is shaped in 3D by the coordinate action of cohesin and CTCF has achieved the status of dogma in the field of chromosome structure in vertebrates.  However, as we have pointed out in #1.1, the evidence supporting this dogma is far from convincing.  To begin with, it is based on low resolution Hi-C experiments that rely on large bin sizes to visualize so-called “TADs.”  In fact, the notion that cohesin/CTCF are responsible on their own for shaping the mammalian 3D genome appears to be a result of mistaking a series of forests for the actual trees that populate each of the forests.

      As illustrated in Author response image 1 above, the “TADs” that are visualized in these low resolution data sets are not TADs at all, but rather TAD neighborhoods consisting of several dozen or more individual TADs.  Moreover, the “interesting” features that are evident at low resolution (>1 kb)—the dots and stripes—largely disappear at resolutions appropriate for visualizing individual TADs (~200 bp).

      In Goel et al. 2023, we presented data from one of the key experiments in Goel et al. (Goel et al. 2023).  In this experiment,  the authors used RCMC to generate high resolution (~250 bp) MicroC contact maps before and after Rad21 depletion.  Contrary to dogma, Rad21 depletion has absolutely no effect on TADs in a ~250 kb DNA segment—and these TADs look very much like the TADs we observe in the Drosophila genome, in particular in the Abd-B region of BX-C that is thought to be assembled into a series of circle-loops (see Fig. 2B).

      While Goel et al. (Goel et al. 2023) observed no effect of Rad21 depletion on TADs, they found that loss of Rad21 disturbs long-distance (but not short-distance) contacts in large TAD neighborhoods when their RCMC data set is visualized using bin sizes of 5 kb and I kb.  This is shown in Author response image 2.  The significance of this finding is, however, uncertain.  It could mean that the 3D organization of large TAD neighborhoods have a special requirement for cohesin activity.  On the other hand, since cohesin functions to hold sister chromosomes together after replication until they separate during mitosis (and might also participate in mitotic condensation), it is also possible that the loss of long-range contacts in large TAD neighborhoods when Rad21 is depleted is simply a reflection of this particular activity.  Further studies will be required to address these possibilities.

      As for CTCF: a careful inspection of the ChIP data in Goel et al. 2023 indicates that CTCF is not found at each and every TAD boundary.  In fact, the notion that CTCF is the be-all and end-all of TAD boundaries in mammals is truly hard to fathom.  For one, the demands for specificity in TAD formation (and in regulatory interactions) are likely much greater than those in flies, and specificity can’t be generated by a single DNA binding protein.  For another, several dozen chromosomal architectural proteins have already been identified in flies.  This means that (unlike what is thought to be true in mammals) it is possible to use a combinatorial mechanism to generate specificity in, for example, the long distance interactions in RFig 6 and 7.  As noted in #2.1 above, many of the known chromosomal architectural proteins in flies are polydactyl zinc finger proteins (just like CTCF).  There are some 200 different polydactyl zinc finger proteins in flies, and the function of only a hand full of these is known at present.  However, it seems likely that a reasonable fraction of this class of DNA binding proteins will ultimately turn out to have an architectural function of some type (Bonchuk et al. 2021; Fedotova et al. 2017).  The number of different polydactyl zinc finger protein genes in mammals is nearly 3 times that of flies.  It is really possible that of these, only CTCF is involved in shaping the 3D structure of the mammalian genome?

      Despite having a CTCF paralog and cohesin, the Drosophila genome does not appear to be structure by loop extrusion-pausing. The identification of orientation-dependent elements with pronounced structural effects on genome folding thus may shed light on alternative mechanisms used to regulated genome structure, which in turn may yield insights into the significance of particular folding patterns.

      (2.2) Here we would like to draw the reviewer’s and reader’s attention to Author response image 3, which shows that orientation-dependent pairing interactions have a significant impact on physical interactions between different sequences.  We would also refer the reader to two other publications.  One of these is Kyrchanova et al. (Kyrchanova et al. 2008), which was the first to demonstrate that orientation of pairing interactions matters.  The second is Fujioka et al. (Fujioka et al. 2016), which describes experiments indicating that nhomie and homie pair with each other head-to-tail and with themselves head-to-head.

      On the whole, this study is comprehensive and represents a useful contribution to the 3D genome field. The transgenic lines and Micro-C datasets generated in the course of the work will be valuable resources for the research community. Moreover, the manuscript, while dense in places, is generally clearly written and comprehensive in its description of the work. However, I have a number of comments and critiques of the manuscript, mainly centering on the framing of the experiments and presentation of the Micro-C results and on manner in which the data are analyzed and reported. They are as follows:

      Major Points:

      (1) The authors motivate much of the introduction and results with hypothetical "stem loop" and "circle loop" models of chromosome confirmation, which they argue are reflected in the Micro-C data and help to explain the observed ISH patterns. While such structures may possibly form, the support for these specific models vs. the many alternatives is not in any way justified. For instance, no consideration is given to important biophysical properties such as persistence length, packing/scaling, and conformational entropy. As the biophysical properties of chromatin are a very trafficked topic both in terms of experimentation and computational modeling and generally considered in the analysis of chromosome conformation data, the study would be strengthened by acknowledgement of this body of work and more direct integration of its findings.

      (2.3) The reviewer is not correct in claiming that “stem-loops” and “circle-loops” are “hypothetical.”  There is ample evidence that both types of loops are present in eukaryotic genomes, and that loop conformation has significant readouts in terms of not only the physical properties of TADs but also their functional properties.  Here we would draw the reviewer’s attention to Author response image 3 and Author response image 4 for examples of loops formed by the orientation-dependent pairing of yet other TAD boundary elements.  As evident from the MicroC data in these figures, circle-loops and stem-loops have readily distinguishable contact patterns.  The experiments in Fujioka et al. (Fujioka et al. 2016) demonstrate that homie and nhomie pair with each other head-to-tail, while they pair with themselves head-to-head.  The accompany paper (Bing et al. 2024) also provides evidence that loop topology is reflected both in the pattern of activation of reporters and in the MicroC contact profiles.  We would also mention again Kyrchanova et al. (Kyrchanova et al. 2008), who were the first to report orientation-dependent pairing of endogenous fly boundaries.

      At this juncture it would premature to try to incorporate computational modeling of chromosome conformation in our studies.  The reason is that the experimental foundations that would be essential for building accurate models are lacking.  As should be evident from RFigs. 1-3 above, studies on mammalian chromosomes are simply not of high enough resolution to draw firm conclusions about chromosome conformation: in most studies only the forests are visible.  While the situation is better in flies, there are still too many unknown.  As just one example, it would be important to know the orientation of the boundary pairing interactions that generate each TAD.  While it is possible to infer loop topology from how TADs interact with their neighbors (a plume versus clouds), a conclusive identification of stem- and circle-loops will require a method to unambiguously determine whether a TAD boundary pairs with its neighbor head-to-head or headto-tail.

      (2) Similar to Point 1, while there is a fair amount of discussion of how the observed results are or are not consistent with loop extrusion, there is no discussion of the biophysical forces that are thought to underly compartmentalization such as block-polymer co-segregation and their potential influence. I found this absence surprising, as it is generally accepted that A/B compartmentalization essentially can explain the contact maps observed in Drosophila and other non-vertebrate eukaryotes (Rowley, ..., Corces 2017; PMID 28826674). The manuscript would be strengthened by consideration of this phenomenon.

      (2.4) Compartments in mammals have typically been identified and characterized using lowresolution data sets, and these studies have relied on visualizing compartments using quite large bin sizes (>>1 kb).  Our experiments have nothing to do with the large-scale compartments seen in these Hi-C experiments.  Instead, we are studying the properties of individual TADs: how TADs are formed, the relationship between TAD topology and boundary:boundary pairing, and the impact of TAD topology on interactions between TADs in the immediate neighborhood.  There is no evidence to date that these large compartments or “block polymer co-segregation” have a) any impact on the properties of individual boundary elements, b) have a role in determining which boundary elements actually come together to form a given TAD, c) impact the orientation of the interactions between boundaries that generate the TAD or d) determine how TADs tend to interact with their immediate neighbors.  

      In more recent publications (c.f., Harris et al. 2023) compartments have shrunk in size and instead of being units of several hundred kb, the median length of the “compartmental” unit in mammalian cells is about12 kb. This is not too much different from the size of fly TADs.  However, the available evidence does not support the idea that block polymer co-segregation/co-repulsion drive the TAD:TAD interactions seen in MicroC experiments.  For example, according to this “micro-compartment” model, the specific patterns of interaction between TADs in the CG3294 meta-loop in Author response image 3 would be driven by block polymer co-segregation and co-repulsion. In this model, the TAD upstream of the blue boundary (which contains CG33543, the odorant binding protein gene Obp22a and the Npc2a gene which encodes a protein involved in sterol homeostasis) would share the same chromatin state/biophysical properties as the TAD upstream of the purple boundary, which has the fipi gene. While it is true that CG33543, Obp22a and also the fipi gene are not expressed in embryos, Npc2a is expressed at high levels during embryogenesis, yet it is part of the TAD that interacts with the fipi TAD.  The TAD downstream of the blue boundary contains CG15353 and Nplp4 and it interacts with the TAD downstream of the purple boundary which contains CG3294 and slfCG15353 and Nplp4 are not expressed in the embryo and as such should share a compartment with a TAD that is also silent. However, slf is expressed at a high level in 1216 hr embryos, while CG3294 is expressed at a low level.  In neither case would one conclude that the TADs upstream and downstream of the blue and purple boundaries, respectively, interact because of shared chromatin/biophysical states that drive block polymer co-segregation corepulsion. 

      One might also consider several gedanken experiments involving the long-range interactions that generate the CG3294 meta-loop in Author response image 3.    According to the micro-compartment model the patchwork pattern of crosslinking evident in the CG3294 meta-loop arises because the interacting  TADs share the same biochemical/biophysical properties, and this drives block polymer cosegregation and co-repulsion.  If this model is correct, then this patchwork pattern of TAD:TAD interactions would remain unchanged if we were to delete the blue or the purple boundary.  However, given what we know about how boundaries can find and pair with distant boundaries (c.f., Figure 6 from Muller et el. 1999 and the discussion in #1.2), the result of these gedanken experiments seem clear: the patchwork pattern shown in Author response image 3A will disappear.  What would happen if we inverted the blue or the purple boundary? Would the TAD containing CG33543, Obp22a and Npc2a still interact with fipi as would be expected from the compartment model?  Or would the pattern of interactions flip so that the CG33543, Obp22a and Npc2a TAD interacts with the TAD containing CG3294 and slf?  Again we can anticipate the results based on previous studies: the interacting TADs will switch when the CG3294 meta-loop is converted into a stem-loop.  If this happened, the only explanation possible in the compartment model is that the chromatin states change when the boundary is inverted so that TAD upstream of blue boundary now shares the same chromatin state as the TAD downstream of the purple boundary, while the TAD downstream of the blue boundary shares same state as the TAD upstream of the purple boundary.  However, there is no evidence that boundary orientation per se can induce a complete switch in “chromatin states” as would be required in the compartment model. 

      While we have not done these experimental manipulations with the CG3294 meta-loop, an equivalent experiment was done in Bing et al. (Bing et al. 2024).  However, instead of deleting a boundary element, we inserted a homie boundary element together with two reporters (gfp and LacZ) 142 kb away from the eve TAD.  The result of this gedanken “reverse boundary deletion” experiment is shown in Author response image 5.  Panel A shows the MicroC contact profile in the region spanning the transgene insertion site and the eve TAD in wild type (read “deletion”) NC14 embryos.  Panel B shows the MicroC contact profile from 12-16 hr embryos carrying the homie dual reporter transgene inserted at -142 kb.  Prior to the “deletion”, the homie element in the transgene pairs with nhomie and homie in the eve TAD and this generates a “mini-metaloop.”  In this particular insert, the homie boundary in the transgene (red arrow) is “pointing” in the opposite orientation from the homie boundary in the eve TAD (red arrow).  In this orientation, the pairing of the transgene homie with eve nhomie/homie brings the LacZ reporter into contact with sequences in the eve TAD.  Since a mini-metaloop is formed by homie_à _nhomie/homie pairing, sequences in TADs upstream and downstream of the transgene insert interact with sequences in TADs close to the eve TAD (Author response image 5B).  Taken together these interactions correspond to the interaction patchwork that is typically seen in “compartments” (see boxed region and inset).  If this patchwork is driven as per the model, by block polymer co-segregation and co-repulsion, then it should still be present when the transgene is deleted.  However, panel A shows that the interactions linking the transgene and the sequences in TADs next to the transgene to eve and TADs next to eve disappear when the homie boundary (plus transgene) is “deleted” in wild type flies.

      Author response image 5.

      Boundary deletion and compartments

      A second experiment would be to invert the homie boundary so that instead of pointing away from eve it points towards eve.  Again, if the compartmental patchwork is driven by block polymer co-segregation and co-repulsion, inverting the homie boundary in the transgene should have no effect on the compartmental contact profile.  Inspection of Fig. 7 in Bing et al. (Bing et al. 2024) will show that this prediction doesn’t hold either.  When homie is inverted, sequences in the eve TAD interact with the gfp reporter not the LacZ reporter.  In addition, there are corresponding changes in how sequences in TADs to either side of eve interact with sequences to either side of the transgene insert.  

      Yet another “test” of compartments generated by block polymer co-segregation/co-repulsion is provided by the plume above the eve volcano triangle.  According to the compartment model, sequences in TADs flanking the eve locus form the plume above the eve volcano triangle because their chromatin shares properties that drive block polymer co-segregation.  These same properties result in repulsive interactions with chromatin in the eve TAD, and this would explain why the eve TAD doesn’t crosslink with its neighbors.  If the distinctive chromatin properties of eve and the neighboring TADs drive block polymer co-segregation and co-repulsion, then inverting the nhomie boundary or introducing homie in the forward orientation should have absolutely no effect on the physical interactions between chromatin in the eve TAD and chromatin in the neighboring TADs.  However, Figures 4 and 6 in this paper indicate that boundary pairing orientation, not block polymer co-segregation/co-repulsion, is responsible for forming the plume above the eve TAD. Other findings also appear to be inconsistent with the compartment model. (A) The plume topping the eve volcano triangle is present in NC14 embryos when eve is broadly expressed (and potentially active throughout the embryo).  It is also present in 12-16 hr embryos when eve is only expressed in a very small subset of cells and is subject to PcG silencing everywhere else in the embryo.  B) According to the compartment model the precise patchwork pattern of physical interactions should depend upon the transcriptional program/chromatin state that is characteristic of a particular developmental stage or cell type.  As cell fate decisions are just being made during NC14 one might expect that most nuclei will share similar chromatin states throughout much of the genome.  This would not be true for 12-16 hr embryos.  At this stage the compartmental patchwork would be generated by a complex mixture of interactions in cells that have quite different transcriptional programs and chromatin states.  In this case, the patchwork pattern would be expected to become fuzzy as a given chromosomal segment would be in compartment A in one group of cells and in compartment B in another.   Unlike 12-16 hr embryos,  larval wing discs would be much more homogeneous and likely give a distinct and relatively well resolved compartmental pattern. We’ve examined the compartment patchwork of the same chromosomal segments in NC14 embryos, 12-16 hr embryos and larval wing disc cells.  While there are some differences (e.g., changes in some of the BX-C TADs in the wing disc sample) the compartmental patchwork patterns are surprisingly similar in all three cases. Nor is there any “fuzziness” in the compartmental patterns evident in 12-16 hr embryos, despite the fact that there are many different cell types at this stage of development.  C) TAD interactions with their neighbors and compartmental patchworks are substantially suppressed in salivary gland polytene chromosomes.  This would suggest that features of chromosome structure might be the driving force behind many of the “compartmental” interactions as opposed to distinct biochemical/biophysical of properties of small chromosomal segments that drive polymer co- segregation/co-repulsion.  

      (3) The contact maps presented in the study represent many cells and distinct cell types. It is clear from single-cell Hi-C and multiplexed FISH experiments that chromosome conformation is highly variable even within populations of the same cell, let alone between cell types, with structures such as TADs being entirely absent at the single cell level and only appearing upon pseudobulking. It is difficult to square these observations with the models of relatively static structures depicted here. The authors should provide commentary on this point.

      (2.5) As should be evident from Author response image 1, single-cell Hi-C experiments would not provide useful information about the physical organization of individual TADs, TAD boundaries or how individual TADs interact with their immediate neighbors.  In addition, since they capture only a very small fraction of the possible contacts within and between TADs, we suspect that these single-cell studies aren’t likely to be useful for making solid conclusions about TAD neighborhoods like those shown in Author response image 1 panels A, B, C and D, or Author response image 2.  While it might be possible to discern relatively stable contacts between pairs of insulators in single cells with the right experimental protocol, the stabilities/dynamics of these interactions may be better judged by the length of time that physical interactions are seen to persist in live imaging studies such as Chen et al. (2018), Vazquez et al. (2006) and Li et al. (2011).

      The in situ FISH data we’ve seen also seems problematic in that probe hybridization results in a significant decondensation of chromatin.  For two probe sets complementary to adjacent ~1.2 kb DNA sequences, the measured center-to-center distance that we’ve seen was ~110 nM.  This is about 1/3rd the length that is expected for a 1.2 kb naked DNA fragment, and about 1.7 times larger than that expected for a beads-on-a-string nucleosome array (~60 nM).  However, chromatin is thought to be compacted into a 30 nM fiber, which is estimated to reduce the length of DNA by at least another ~6 fold.  If this estimate is correct, FISH hybridization would appear to result in a ~10 fold decompaction of chromatin.  A decompaction of this magnitude would necessarily be followed by a significant distortion in the actual conformation of chromatin loops.

      (4) The analysis of the Micro-C data appears to be largely qualitative. Key information about the number of reads sequenced, reaps mapped, and data quality are not presented. No quantitative framework for identifying features such as the "plumes" is described. The study and its findings would be strengthened by a more rigorous analysis of these rich datasets, including the use of systematic thresholds for calling patterns of organization in the data.

      Additional information on the number of reads and data quality have been included in the methods section. 

      (5) Related to Point 4, the lack of quantitative details about the Micro-C data make it difficult to evaluate if the changes observed are due to biological or technical factors. It is essential that the authors provide quantitative means of controlling for factors like sampling depth, normalization, and data quality between the samples.

      In our view the changes in the MicroC contact patterns for the eve locus and its neighbors when the nhomie boundary is manipulated are not only clear cut and unambiguous but are also readily evident in the Figs that are presented in the manuscript.  If the reviewer believes that there aren’t significant differences between the MicroC contact patterns for the four different nhomie replacements, it seems certain that they would also remain unconvinced by a quantitative analysis.

      The reviewer also suggests that biological and/or technical differences between the four samples could account for the observed changes in the MicroC patterns for the eve TAD and its neighbors.  If this were the case, then similar changes in MicroC patterns should be observed elsewhere in the genome.  Since much of the genome is analyzed in these MicroC experiments there is an abundance of internal controls for each experimental manipulation of the nhomie boundary.  For two of the nhomie replacements, nhomie reverse and homie forward, the plume above the eve volcano triangle is replaced by clouds surrounding the eve volcano triangle.  If these changes in the eve MicroC contact patterns are due to significant technical (or biological) factors, we should observe precisely the same sorts of changes in TADs elsewhere in the genome that are volcano triangles with plumes.   Author response image 6 shows the MicroC contact pattern for several genes in the Antennapedia complex.  The deformed gene is included in a TAD which, like eve, is a volcano triangle topped by a plume.  A comparison of the deformed MicroC contact patterns for nhomie forward (panel B) with the MicroC patterns for nhomie reverse (panel C) and homie forward (panel D) indicates that while there are clearly technical differences between the samples, these differences do not result in the conversion of the deformed plume into clouds as is observed for the eve TAD.  The MicroC patterns elsewhere in Antennapedia complex are also very similar in all four samples.  Likewise, comparisons of regions elsewhere in the fly genome indicate that the basic contact patterns are similar in all four samples.   So while there are technical differences which are reflected in the relative pixel density in the TAD triangles and the LDC domains, these differences do not result in converting plumes into clouds nor do the alter the basic patterns of TAD triangles and LDC domains.  As for biological differences— the embryos in each sample are at roughly the same developmental stage and were collected and processed using the same procedures. Thus, the biological factors that could reasonably be expected to impact the organization of specific TADs (e.g., cell type specific differences) are not going to impact the patterns we see in our experiments. 

      Author response image 6.

      (6) The ISH effects reported are modest, especially in the case of the HCR. The details provided for how the imaging data were acquired and analyzed are minimal, which makes evaluating them challenging. It would strengthen the study to provide much more detail about the acquisition and analysis and to include depiction of intermediates in the analysis process, e.g. the showing segmentation of stripes.

      The imaging analysis is presented in Fig. 5 is just standard confocal microscopy.  Individual embryos were visualized and scored.  An embryo in which stripes could be readily detected was scored as ‘positive’ while an embryo in which stripes couldn’t be detected was scored as ‘negative.’   

      Recommendations for the authors:

      Editor comments:

      It was noted that the Jaynes lab previously published extensive genetic evidence to support the stem loop and circle loop models of Homie-Nhomie interactions (Fujioka 2016 Plos Genetics) that were more convincing than the Micro-C data presented here in proof of their prior model. Maybe the authors could more clearly summarize their prior genetic results to further try to convince the reader about the validity of their model.

      Reviewer #1 (Recommendations For The Authors):

      Below, I list specific comments to further improve the manuscript for publication. Most importantly, I recommend the authors tone down their proposal that boundary pairing is a universal TAD forming mechanism.

      (1) The title is cryptic.

      (2) The second sentence in the abstract is an overstatement: "In flies, TADs are formed by physical interactions between neighboring boundaries". Hi-C and Micro-C studies have not provided evidence that most TADs in Drosophila show focal interactions between their bracketing boundaries. The authors rely too strongly on prior studies that used artificial reporter transgenes to show that multimerized insulator protein binding sites or some endogenous fly boundaries can mediate boundary bypass, as evidence that endogenous boundaries pair.

      Please see responses #1.1 and #1.3 and figures Author response image 1 and Author response image 3.  Note that using dHS-C, most TADs that we’ve looked at so far are topped by a “dot” at their apex.

      (3) Line 64: the references do not cite the stated "studies dating back to the '90's'".

      The papers cited for that sentence are reviews which discussed the earlier findings.  The relevant publications are cited at the appropriate places in the same paragraph.  

      (4) Line 93: "On the other hand, while boundaries have partner preferences, they are also promiscuous in their ability to establish functional interactions with other boundaries." It was unclear what is meant here.

      Boundaries that a) share binding sites for proteins that multimerized, b) have binding sites for proteins that interact with each other, or c) have binding sites for proteins that can be bridged by a third protein can potentially pair with each other.  However, while these mechanisms enable promiscuous pairing interactions, they will also generate partner preferences (through a greater number of a, b and/or c).

      (5) It could be interesting to discuss the fact that it remains unclear whether Nhomie and Homie pair in cis or in trans, given that homologous chromosomes are paired in Drosophila.

      The studies in Fujioka et al. (Fujioka et al. 2016) show that nhomie and homie can pair both in cis and in trans.  Given the results described in #1.2, we imagine that they are paired in both cis and trans in our experiments.

      (6) Line 321: Could the authors further explain why they think that "the nhomie reverse circle-loop also differs from the nhomie deletion (λ DNA) in that there is not such an obvious preference for which eve enhancers activate expression"?

      The likely explanation is that the topology/folding of the altered TADs impacts the probability of interactions between the various eve enhancers and the promoters of the flanking genes.  

      (7) The manuscript would benefit from shortening the long Discussion by avoiding repeating points described previously in the Results.

      (8) Line 495: "If, as seems likely, a significant fraction of the TADs genome-wide are circle loops, this would effectively exclude cohesin-based loop extrusion as a general mechanism for TAD formation in flies". The evidence provided in this manuscript appears insufficient to discard ample evidence from multiple laboratories that TADs form by compartmentalization or loop extrusion. Multiple laboratories have, for example, demonstrated that cohesin depletion disrupts a large fraction of mammalian TADs. 

      Points made here and in #9 have been responded to in #1.1, #2.1 and #2.4 above.  We would suggest that the evidence for loop extrusion falls short of compelling (as it is based on the analysis of TAD neighborhoods, not TADs—that is forests, not trees) and given the results reported in Goel et al. (in particular Fig. 4 and Sup Fig. 8) is clearly suspect. This is not to mention the fact that cohesin loop-extrusion can’t generate circle-loops TADs, yet circle-loops clearly exist.  Likewise, as discussed in #2.4, it is not clear to us that the shared chromatin states, polymer co-segregation and co-repulsion account for the compartmental patchwork patterns of TAD;TAD interactions. The results from the  experimental manipulations in this paper and the accompanying paper, together with studies by others (e.g., Kyrchanova et al. (Kyrchanova et al. 2008), Mohana et al. (Mohana et al. 2023) would also seem to be at odds with the model for compartments as currently formulated.  

      The unique properties of Nhomie and Homie, namely the remarkable specificity with which they physically pair over large distances (Fujioka et al. 2016) may rather suggest that boundary pairing is a phenomenon restricted to special loci. Moreover, it has not yet been demonstrated that Nhomie or Homie are also able to pair with the TAD boundaries on their left or right, respectively.

      Points made here were discussed in detail in #1.2.  As described in detail in #1.2, It is not the case that nhomie and homie are in “unique” or “special.”  Other fly boundaries can do the same things.  As for whether nhomie and homie pair with their neighbors:  We haven’t done transgene experiments (e.g., testing by transvection or boundary bypass).  Likewise, in MicroC experiments there are no obvious dots at the apex of the neighboring TADs that would correspond to nhomie pairing with the neighboring boundary to the left and homie pairing with the neighboring boundary to the right. However, this is to be expected. As we discussed in in #1.3 above, only MNase resistant elements will generate dots in standard MicroC experiments.  On the other hand, when boundary:boundary interactions are analyzed by dHS-C (c.f., Author response image 4), there are dots at the apex of both neighboring TADs.  This would be direct evidence that nhomie pairs with the neighboring boundary to the left and homie pairs with the neighboring boundary to the right.

      (9) The comment in point 8 also applies to the concluding 2 sentences (lines 519-524) of the Discussion.

      See response to 8 above. Otherwise, the concluding sentences are completely accurate. Validation of the cohesin loop extrusion/CTCF roadblock model will required demonstrating a) that all TADs are either stem-loops or unanchored loops and b) that TAD endpoints are always marked by CTCF. 

      The likely presence of circle-loops and evidence that TAD boundaries that don’t have CTCF (c.f.,Goel et al. 2023) already suggests that this model can’t (either fully or not all) account for TAD formation in mammals. 

      (10) Figs. 3 and 6: It would be helpful to add the WT screenshot in the same figure, for direct comparison.

      It is easy enough to scroll between Figs-especially since nhomie forward looks just like WT.

      (11) Fig. 6: It would be helpful to show a cartoon view of a circle loop to the right of the Micro-C screenshot, as was done in Fig. 3.

      Good idea.   Added to the Fig.

      (12) Fig. 5: It would be helpful to standardize the labelling of the different genotypes throughout the figures and panels ("inverted" versus "reverse" versus an arrow indicating the direction).

      Fixed.

      Reviewer #2 (Recommendations For The Authors):

      Minor Points:

      (1) The Micro-C data does not appear to be deposited in an appropriate repository. It would be beneficial to the community to make these data available in this way.

      This has been done.

      (2) Readers not familiar with Drosophila development would benefit from a gentle introduction to the stages analyzed and some brief discussion on how the phenomenon of somatic homolog pairing might influence the study, if at all.

      We included a rough description the stages that were analyzed for both the in situs and MicroC. We thought that an actual description of what is going on at each of the stages wasn’t necessary as the process of development is not a focus of this manuscript.  In other studies, we’ve found that there are only minor differences in MicroC patterns between the blastoderm stage and stage 12-16 embryos.  While these minor differences are clearly interesting, we didn’t discuss them in the text.   In all of experiments chromosomes are likely to be paired.  In NC14 embryos (the stage for visualizing eve stripes and the MicroC contact profiles in Fig. 2) replication of euchromatic sequences is thought to be quite rapid.  While homolog pairing is incomplete at this stage, sister chromosomes are paired.  In stage 12-16 embryos, homologs will be paired and if the cells are arrested in G2, then sister chromosome will also be paired.  So in all of experiments, chromosomes (sisters and/or homologs) are paired. However, since we don’t have examples of unpaired chromosomes, our experiments don’t provide any info on how chromosome pairing might impact MicroC/expression patterns.

      (3) "P > 0.01" appears several times. I believe the authors mean to report "P < 0.01".

      Fixed.  

      References for Response

      Batut PJ, Bing XY, Sisco Z, Raimundo J, Levo M, Levine MS. 2022. Genome organization controls transcriptional dynamics during development. Science. 375(6580):566-570.

      Bing X, Ke W, Fujioka M, Kurbidaeva A, Levitt S, Levine M, Schedl P, Jaynes JB. 2024. Chromosome structure i: Loop extrusion or boundary:Boundary pairing? eLife.

      Blanton J, Gaszner M, Schedl P. 2003. Protein:Protein interactions and the pairing of boundary elements in vivo. Genes Dev. 17(5):664-675.

      Bonchuk A, Boyko K, Fedotova A, Nikolaeva A, Lushchekina S, Khrustaleva A, Popov V, Georgiev P. 2021. Structural basis of diversity and homodimerization specificity of zincfinger-associated domains in drosophila. Nucleic Acids Res. 49(4):2375-2389.

      Bonchuk A, Kamalyan S, Mariasina S, Boyko K, Popov V, Maksimenko O, Georgiev P. 2020. Nterminal domain of the architectural protein ctcf has similar structural organization and ability to self-association in bilaterian organisms. Sci Rep. 10(1):2677.

      Chen H, Levo M, Barinov L, Fujioka M, Jaynes JB, Gregor T. 2018. Dynamic interplay between enhancer–promoter topology and gene activity. Nat Genet. 50(9):1296.

      Fedotova AA, Bonchuk AN, Mogila VA, Georgiev PG. 2017. C2h2 zinc finger proteins: The largest but poorly explored family of higher eukaryotic transcription factors. Acta Naturae. 9(2):47-58.

      Fujioka M, Ke W, Schedl P, Jaynes JB. 2024. The homie insulator has sub-elements with different insulating and long-range pairing properties. bioRxiv. 2024.02.01.578481.

      Fujioka M, Mistry H, Schedl P, Jaynes JB. 2016. Determinants of chromosome architecture: Insulator pairing in cis and in trans. PLoS Genet. 12(2):e1005889.

      Galloni M, Gyurkovics H, Schedl P, Karch F. 1993. The bluetail transposon: Evidence for independent cis‐regulatory domains and domain boundaries in the bithorax complex. The EMBO Journal. 12(3):1087-1097.

      Gaszner M, Vazquez J, Schedl P. 1999. The zw5 protein, a component of the scs chromatin domain boundary, is able to block enhancer-promoter interaction. Genes Dev. 13(16):2098-2107.

      Goel VY, Huseyin MK, Hansen AS. 2023. Region capture micro-c reveals coalescence of enhancers and promoters into nested microcompartments. Nat Genet. 55(6):1048-1056.

      Harris HL, Gu H, Olshansky M, Wang A, Farabella I, Eliaz Y, Kalluchi A, Krishna A, Jacobs M, Cauer G et al. 2023. Chromatin alternates between a and b compartments at kilobase scale for subgenic organization. Nat Commun. 14(1):3303.

      Hart CM, Zhao K, Laemmli UK. 1997. The scs' boundary element: Characterization of boundary element-associated factors. Mol Cell Biol. 17(2):999-1009.

      Hsieh TS, Cattoglio C, Slobodyanyuk E, Hansen AS, Rando OJ, Tjian R, Darzacq X. 2020. Resolving the 3d landscape of transcription-linked mammalian chromatin folding. Mol Cell. 78(3):539-553.e538.

      Krietenstein N, Abraham S, Venev SV, Abdennur N, Gibcus J, Hsieh TS, Parsi KM, Yang L, Maehr R, Mirny LA et al. 2020. Ultrastructural details of mammalian chromosome architecture. Mol Cell. 78(3):554-565.e557.

      Kyrchanova O, Chetverina D, Maksimenko O, Kullyev A, Georgiev P. 2008. Orientation-dependent interaction between drosophila insulators is a property of this class of regulatory elements. Nucleic Acids Res. 36(22):7019-7028.

      Kyrchanova O, Ibragimov A, Postika N, Georgiev P, Schedl P. 2023. Boundary bypass activity in the abdominal-b region of the drosophila bithorax complex is position dependent and regulated. Open Biol. 13(8):230035.

      Kyrchanova O, Kurbidaeva A, Sabirov M, Postika N, Wolle D, Aoki T, Maksimenko O, Mogila V, Schedl P, Georgiev P. 2018. The bithorax complex iab-7 polycomb response element has a novel role in the functioning of the fab-7 chromatin boundary. PLoS Genet. 14(8):e1007442. Kyrchanova O, Sabirov M, Mogila V, Kurbidaeva A, Postika N, Maksimenko O, Schedl P, Georgiev P. 2019a. Complete reconstitution of bypass and blocking functions in a minimal artificial fab-7 insulator from drosophila bithorax complex. Proceedings of the National Academy of Sciences.201907190.

      Kyrchanova O, Wolle D, Sabirov M, Kurbidaeva A, Aoki T, Maksimenko O, Kyrchanova M, Georgiev P, Schedl P. 2019b. Distinct elements confer the blocking and bypass functions of the bithorax fab-8 boundary. Genetics.genetics. 302694.302019.

      Kyrchanova O, Zolotarev N, Mogila V, Maksimenko O, Schedl P, Georgiev P. 2017. Architectural protein pita cooperates with dctcf in organization of functional boundaries in bithorax complex. Development. 144(14):2663-2672.

      Li H-B, Muller M, Bahechar IA, Kyrchanova O, Ohno K, Georgiev P, Pirrotta V. 2011. Insulators, not polycomb response elements, are required for long-range interactions between polycomb targets in drosophila melanogaster. Mol Cell Biol. 31(4):616-625.

      Li X, Tang X, Bing X, Catalano C, Li T, Dolsten G, Wu C, Levine M. 2023. Gaga-associated factor fosters loop formation in the drosophila genome. Mol Cell. 83(9):1519-1526.e1514.

      Mohana G, Dorier J, Li X, Mouginot M, Smith RC, Malek H, Leleu M, Rodriguez D, Khadka J, Rosa P et al. 2023. Chromosome-level organization of the regulatory genome in the drosophila nervous system. Cell. 186(18):3826-3844.e3826.

      Muller M, Hagstrom K, Gyurkovics H, Pirrotta V, Schedl P. 1999. The mcp element from the drosophila melanogaster bithorax complex mediates long-distance regulatory interactions. Genetics. 153(3):1333-1356.

      Muravyova E, Golovnin A, Gracheva E, Parshikov A, Belenkaya T, Pirrotta V, Georgiev P. 2001. Loss of insulator activity by paired su(hw) chromatin insulators. Science. 291(5503):495498.

      Postika N, Metzler M, Affolter M, Müller M, Schedl P, Georgiev P, Kyrchanova O. 2018. Boundaries mediate long-distance interactions between enhancers and promoters in the drosophila bithorax complex. PLoS Genet. 14(12):e1007702.

      Samal B, Worcel A, Louis C, Schedl P. 1981. Chromatin structure of the histone genes of d. Melanogaster. Cell. 23(2):401-409.

      Sigrist CJ, Pirrotta V. 1997. Chromatin insulator elements block the silencing of a target gene by the drosophila polycomb response element (pre) but allow trans interactions between pres on different chromosomes. Genetics. 147(1):209-221.

      Udvardy A, Schedl P. 1984. Chromatin organization of the 87a7 heat shock locus of drosophila melanogaster. J Mol Biol. 172(4):385-403.

      Vazquez J, Muller M, Pirrotta V, Sedat JW. 2006. The mcp element mediates stable long-range chromosome-chromosome interactions in drosophila. Molecular Biology of the Cell. 17(5):2158-2165.

      Zolotarev N, Fedotova A, Kyrchanova O, Bonchuk A, Penin AA, Lando AS, Eliseeva IA, Kulakovskiy IV, Maksimenko O, Georgiev P. 2016. Architectural proteins pita, zw5,and zipic contain homodimerization domain and support specific long-range interactions in drosophila. Nucleic Acids Res. 44(15):7228-7241.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      In the manuscript titled "Vangl2 suppresses NF-κB signaling and ameliorates sepsis by targeting p65 for NDP52-mediated autophagic degradation" by Lu et al, the authors show that Vangl2, a planner cell polarity component, plays a direct role in autophagic degradation of NFkB-p65 by facilitating its ubiquitination via PDLIM2 and subsequent recognition and autophagic targeting via the autophagy adaptor protein NDP52. Conceptually it is a wonderful study with excellent execution of experiments and controls. The concerns with the manuscript are mainly on two counts - First issue is the kinetics of p65 regulation reported here, which does not fit into the kinetics of the mechanism proposed here, i.e., Vangl2-mediated ubiquitination followed by autophagic degradation of p65. The second issue is more technical- an absolute lack of quantitative analyses. The authors rely mostly on visual qualitative interpretation to assess an increase or decrease in associations between partner molecules throughout the study. While the overall mechanism is interesting, the authors should address these concerns as highlighted below:

      Major points:

      (1) Kinetics of p65 regulation by Vangl2: As mentioned above, authors report that LPS stimulation leads to higher IKK and p65 activation in the absence of Vangl2. The mechanism of action authors subsequently work out is that- Vangl2 helps recruit E3 ligase PDLIM to p65, which causes K63 ubiquitination, which is recognised by NDP52 for autophagic targeting. Curiously, peak p65 activation is achieved within 30 minutes of LPS stimulation. The time scale of all other assays is way longer. It is not clear that in WT cells, p65 could be targeted to autophagic degradation in Vangl2 dependent manner within 30 minutes. The HA-Myc-Flag-based overexpression and Co-IP studies do confirm the interactions as proposed. However, they do not prove that this mechanism was responsible for the Vangl2-mediated modulation of p65 activation upon LPS stimulation. Moreover, the Vangl2 KO line also shows increased IKK activation. The authors do not show the cause behind increased IKK activation, which in itself can trigger increased p65 phosphorylation.

      We thank the reviewer for this valuable suggestion.

      Indeed, we agreed with the reviewer that peak p65 activation is achieved within 30 minutes of LPS stimulation in vitro, and p65 could not be targeted to autophagic degradation in a Vangl2 dependent manner within 30 minutes. Given that the protein and mRNA levels of Vangl2 were elevated at 3-6 h of LPS stimulation (Fig. S1 C-E), we extended the stimulation time scale in the revised manuscript. The data (Fig. 2A-D in the revised manuscript) demonstrated that IKK phosphorylation was enhanced in Vangl2 KO myeloid cells during the early phase (within 3 h) of LPS stimulation, but not for the prolonged period of LPS stimulation. The underlying mechanism may be complex. Only p65 phosphorylation was continuously enhanced after long-term LPS stimulation in Vangl2 KO cells, compared to WT cells. Furthermore, the overexpression of Vangl2 in A549 cells also demonstrated a reduction of phosphorylation and total endogenous p65 (Fig. 2 I, J in the revised manuscript). These findings were corroborated by overexpression and Co-IP experiments, which collectively indicated that Vangl2 regulates the stability of p65 by promoting its interaction with NDP52 and autophagic degradation. (Page 7; Line 183-185).  

      (2) The other major concern is regarding the lack of quantitative assessments. For Co-IP experiments, I can understand it is qualitative observation. However, when the authors infer that there is an increase or decrease in the association through co-IP immunoblots, it should also be quantified, especially since the differences are quite marginal and could be easily misinterpreted.

      We are grateful to the reviewer for this suggestion. The quantitative analysis has been updated in the revised version.

      (3) Figure 4E and F: It is evident that inhibiting Autolysosome (CQ or BafA1) or autophagy (3MA) led to the recovery of p65 levels and inducing autophagy by Rapamycin led to faster decay in p65 levels. Did the authors also note/explore the possibility that Vangl2 itself may be degraded via the autophagy pathway? IB of WCL upon CQ/BAF/3MA or upon Rapa treatment does indicate the same. If true, how would that impact the dynamics of p65 activation?

      We thank the reviewer for this question. Previous studies have shown that Vangl2 is primarily degraded by the proteasome pathway, rather than by the autolysosomal pathway (doi: 10.1126/sciadv.abg2099; doi: 10.1038/s41598-019-39642-z). In our experiments, Vangl2 recruits E3 ligase PDLIM2 to enhance K63-linked ubiquitination on p65, which serves as a recognition signal for cargo receptor NDP52-mediated selective autophagic degradation. Vangl2 facilitated the interaction between p65 and NDP52, yet itself did not undergo significant autophagic degradation.

      (4) Autophagic targeting of p65 should also be shown through alternate evidence, like microscopy etc., in the LPS-stimulated WT cells.

      We thank the reviewer for this suggestion. We have added the data (co-localization of p65 and LC3 was detected by immunofluorescence) in the revised version (Fig. S4 H in the revised manuscript). (Page 9, lines 267-268)

      Reviewer #2 (Public Review):

      Vangl2, a core planar cell polarity protein involved in Wnt/PCP signaling, mediates cell proliferation, differentiation, homeostasis, and cell migration. Vangl2 malfunctioning has been linked to various human ailments, including autoimmune and neoplastic disorders. Interestingly, Vangl2 was shown to interact with the autophagy regulator p62, and indeed, autophagic degradation limits the activity of inflammatory mediators such as p65/NF-κB. However, if Vangl2, per se, contributes to restraining aberrant p65/NF-kB activity remains unclear.

      In this manuscript, Lu et al. describe that Vangl2 expression is upregulated in human sepsis-associated PBMCs and that Vangl2 mitigates experimental sepsis in mice by negatively regulating p65/NF-κB signaling in myeloid cells. Vangl2 recruits the E3 ubiquitin ligase PDLIM2 to promote K63-linked poly-ubiquitination of p65. Vangl2 also facilitates the recognition of ubiquitinated p65 by the cargo receptor NDP52. These molecular processes cause selective autophagic degradation of p65. Indeed, abrogation of PDLIM2 or NDP52 functions rescued p65 from autophagic degradation, leading to extended p65/NF-κB activity.

      As such, the manuscript presents a substantial body of interesting work and a novel mechanism of NF-κB control. If found true, the proposed mechanism may expand therapeutic opportunities for inflammatory diseases. However, the current draft has significant weaknesses that need to be addressed.

      We appreciate the reviewer’s comments on our manuscript, and we have further improved the manuscript as suggested.

      Specific comments

      (1) Vangl2 deficiency did not cause a discernible increase in the cellular level of total endogenous p65 (Fig 2A and Fig 2B) but accumulated also phosphorylated IKK.

      Even Fig 4D reveals that Vangl2 exerts a rather modest effect on the total p65 level and the figure does not provide any standard error for the quantified data. Therefore, these results do not fully support the proposed model (Figure 7) - this is a significant draw back. Instead, these data provoke an alternate hypothesis that Vangl2 could be specifically mediating autophagic removal of phosphorylated IKK and phosphorylated IKK, leading to exacerbated inflammatory NF-κB response in Vangl2-deficient cells. One may need to use phosphorylation-defective mutants of p65, at least in the over-expression experiments, to dissect between these possibilities.

      We appreciate the reviewer’s comments on our manuscript, and we have further improved the manuscript as suggested.

      (1) Indeed, we agreed with the reviewer that Vangl2 deficiency did not cause a discernible increase in the cellular level of total p65 after a short time of LPS stimulation in vitro, and p65 could not be targeted to autophagic degradation in a Vangl2 dependent manner within 30 minutes. Given that the protein and mRNA levels of Vangl2 were elevated at 3-6 h of LPS stimulation (Fig. S1 C-E), we extended the stimulation time scale in the revised manuscript. The data (Fig. 2A-D in the revised manuscript) demonstrated that IKK phosphorylation was enhanced in Vangl2 KO myeloid cells during the early phase (within 3 h) of LPS stimulation, but not for the prolonged period of LPS stimulation. The underlying mechanism may be complex. Only phosphorylation of p65 and total endogenous p65 was continuously enhanced after long-term LPS stimulation in Vangl2 KO cells, compared to WT cells. Furthermore, the overexpression of Vangl2 in A549 cells also demonstrated a reduction of phosphorylation and total endogenous p65 (Fig. 2 I, J in the revised manuscript). These findings were corroborated by overexpression and Co-IP experiments, which collectively indicated that Vangl2 regulates the stability of p65 by promoting its interaction with NDP52 and autophagic degradation. (Page 7; Line 183-185).  

      (2) Similarly, the stimulation time scale in Fig 4D was extended, and it was demonstrated that p65 was more stable in Vangl2-deficient cells.

      3) Moreover, we constructed phosphorylation-defective mutants of p65 (S536A), and found that Vangl2 could also promote the degradation of the p65 phosphorylation mutants (Fig. S4 A, B in the revised manuscript). Thus, Vangl2 promote the degradation of the basal/unphosphorylated p65. (Page 8, lines 237-240)

      (2) Fig 1A: The data indicates the presence of two subgroups within the sepsis cohort - one with high Vangl2 expressions and the other with relatively normal Vangl2 expression. Was there any difference with respect to NF-κB target inflammatory gene expressions between these subgroups?

      As suggested, we conducted an analysis of NF-kB target inflammatory gene expressions between the high and relatively low Vangl2 expression groups in sepsis patients. The results showed that the serum of the high Vangl2 expression group exhibited lower levels of IL-6, WBC, and CRP than the low Vangl2 expression group, which suggested an inverse correlation between Vangl2 and the inflammatory response (Fig. S1 A in the revised manuscript) (Page 5, lines 126-128).

      (3) The effect of Vangl2 deficiency was rather modest in the neutrophil. Could it be that Vangl2 mediates its effect mostly in macrophages?

      As showed in Fig. S1C-E, the induction of Vangl2 by LPS stimulation is more rapid in macrophages than in neutrophils. This may contribute to its dominant effect in macrophages. Consequently, we primarily focused our investigation on the role of Vangl2 in macrophages.

      (4) Fig 1D and Figure 1E: Data for unstimulated Vangl2 cells should be provided. Also, the source of the IL-1β primary antibody has not been mentioned.

      Thank you for the suggestion. We have updated the data for unstimulated cells in the revised manuscript (Fig. 1 D, E in the revised manuscript). Also, IL-1β primary antibody was purchased from Cell Signaling Technology and the information has been included in the Materials and Methods section (Table S1).

      (5) The relevance and the requirement of RNA-seq analysis are not clear in the present draft. Figure 1E already reveals upregulation of the signature NF-κB target inflammatory genes upon Vangl2 deficiency.

      We agreed with the reviewer that the data presented in Figure 1E demonstrated the upregulation of the signature NF-kB target inflammatory genes upon Vangl2 deficiency in a murine model of LPS induced sepsis. Subsequently, we proceeded to investigate the mechanism by which Vangl2 regulates NF-kB target inflammatory genes at the cellular level in Figure 2. To this end, we performed RNA-seq analysis to screen signal pathways involved in LPS-induced septic shock by comparing LPS-stimulated BMDMs from Vangl2ΔM and WT mice, and identified that TNF signaling pathway and cytokine-cytokine receptor interaction were found to be significantly enriched in Vangl2ΔM BMDMs upon LPS stimulation. This analysis provides further evidence that Vangl2 plays a role in regulating NF-kB signaling pathways and the release of related inflammatory cytokines.

      (6) Fig 2A reveals an increased accumulation of phosphorylated p65 and IKK in Vangl2-deficient macrophages upon LPS stimulation within 30 minutes. However, Vangl2 accumulates at around 60 minutes post-stimulation in WT cells. Similar results were obtained for neutrophils (Fig 2B). There appears to be a temporal disconnect between Vangl2 and phosphorylated p65 accumulation - this must be clarified.

      This concern has been addressed above (see response to questions 1 from reviewer #2). 

      (7) Figure 2E and 2F do not have untreated controls. Presentations in Fig 2E may be improved to more clearly depict IL6 and TNF data, preferably with separate Y-axes.

      Thank you for the suggestion. We have added untreated controls and separated Y-axes for IL-6 and TNF data in the revised manuscript (Fig. 2 E, F in the revised manuscript).

      (8) Line 219: "strongly with IKKα, p65 and MyD88, and weak" - should be revised.

      We have improved the manuscript as suggested in the revised manuscript (Page 7; Line 203).

      (9) It is not clear why IKKβ was excluded from interaction studies in Fig S3G.

      We added the Co-IP experiment and showed that HA-tagged Vangl2 only interacted with Flag-tagged p65, but not with Flag-tagged IKKb in 293T cells (Fig S3H). Furthermore, endogenous co-IP immunoblot analyses showed that Vangl2 did not associate with IKKb (Fig. S3I)

      (10) Fig 3F- In the text, authors mentioned that Vangl2 strongly associates with p65 upon LPS stimulation in BMDM. However, no controls, including input or another p65-interacting protein, were used.

      As reviewer suggested, we have added input and positive control (IkBa) in this experiment (Fig. 3F in the revised manuscript). The results demonstrated that the interaction between p65 and IkBa was attenuated, although the total IkBa did not undergo significant degradation over long-term course of LPS stimulation.

      (11) Figure 4D - Authors claim that Vangl2-deficient BMDMs stabilized the expression of endogenous p65 after LPS treatment. However, p65 levels were particularly constitutively elevated in knockout cells, and LPS signaling did not cause any further upregulation. This again indicates the role of Vangl2 in the basal state. The authors need to explain this and revise the test accordingly.

      Thank you for the reviewer's comments. We repeated the experiment to ascertain whether Vangl2 could stabilize the expression of endogenous p65 before and after LPS treatment. It was found that, due to the extremely low expression of Vangl2 in WT cells in the absence of stimulation, there was no observable difference on the basal level of p65 between WT and Vangl2DM cells. However, upon prolonged LPS stimulation, Vangl2 expression was induced, resulting in p65 degradation in WT cells. In contrast, p65 protein was more stable in Vangl2 deficient cells after LPS stimulation (Fig. 4D in the revised manuscript).

      Reviewer #3 (Public Review):

      Lu et al. describe Vangl2 as a negative regulator of inflammation in myeloid cells. The primary mechanism appears to be through binding p65 and promoting its degradation, albeit in an unusual autolysosome/autophagy dependent manner. Overall, the findings are novel and the crosstalk of PCP pathway protein Vangl2 with NF-kappaB is of interest. …….Regardless, Vangl2 as a negative regulator of NF-kappaB is an important finding. There are, however, some concerns about methodology and statistics that need to be addressed.

      Thank you for your comments on our manuscript, and we have further improved the manuscript as suggested.

      (1) Whether PCP is anyway relevant or if this is a PCP-independent function of Vangl2 is not directly explored (the later appears more likely from the manuscript/discussion). PCP pathways intersect often with developmentally important pathways such as WNT, HH/GLI, Fat-Dachsous and even mechanical tension. It might be of importance to investigate whether Vangl2-dependent NF-kappaB is influenced by developmental pathways.

      Thank you for the reviewer's insightful comments. Our study revealed that Vangl2 recruits the E3 ubiquitin ligase PDLIM2 to facilitate K63-linked ubiquitination of p65, which is subsequently recognized by autophagy receptor NDP52 and then promotes the autophagic degradation of p65. Our findings by using autophagy inhibitors and autophagic-deficient cells indicate that Vangl2 regulates NF-kB signaling through a selective autophagic pathway, rather than affecting the PCP pathway, WNT, HH/GLI, Fat-Dachsous or even mechanical tension. Moreover, a discussion section has been added to the revised version. (Page 12, lines 377-393)

      (2) Are Vangl2 phosphorylations (S5, S82 and S84) in anyway necessary for the observed effects on NF-kappaB or would a phospho-mutant (alanine substitution mutant) Vangl2 phenocopy WT Vangl2 for regulation of NF-kappaB?

      As suggested, we generated phospho-mutants of Vangl2 (S82/84A) and observed that Vangl2 (S82/84A) could still facilitate the degradation of p65 (Fig. S4 B in the revised manuscript), suggesting that Vangl2 regulates the NF-kB pathway independently of its phosphorylation.

      (3) Another area to strengthen might be with regards to specificity of cell types where this phenomenon may be observed. LPS treatment in mice resulted in Vangl2 upregulation in spleen and lymph nodes, but not in lung and liver. What explains the specificity of organ/cell-type Vangl2 upregulation and its consequences observed here? Why is NF-kappaB signaling not more broadly or even ubiquitously affected in all cell types in a Vangl2-dependent manner, rather than being restricted to macrophages, neutrophils and peritoneal macrophages, or, for that matter, in spleen and LN and not liver and lung? After all, one may think that the PCP proteins, as well as NF-kappaB, are ubiquitous.

      Thank you for the reviewer's comments.

      (1) LPS is an important mediator to trigger sepsis with excessive immune activation. As is well known, the spleen and lymph nodes are important peripheral immune organs, where immune cells (e.g., macrophages) are abundant and respond sensitively to LPS stimulation. Nevertheless, immune cells represent a minor fraction of the lungs and liver. Consequently, Vangl2 represents a pivotal regulator of immune function, exhibiting a more pronounced increase in the immune organs and cells.

      2) Induction of Vangl2 expression by LPS stimulation is cell specific. Given that different cells exhibit varying protein abundances, the molecular events involved may also differ. Moreover, we observed high Vangl2 expression in the liver at the basal state (Author response image 1), whereas it was not induced after 12 h of LPS stimulation. Therefore, the functional role of Vangl2 exhibits significant phenotype in macrophages and neutrophils/spleen and LN, rather than in liver or lung cells.

      Author response image 1.

      Vangl2 showed no significant changes in the liver after LPS treatment. Mice (n≥3) were treated with LPS (30 mg/kg, i.p.). Livers were collected at 12 h after LPS treatment. Immunoblot analysis of Vangl2.

      Recommendations For The Authors:

      Reviewer #1 (Recommendations For The Authors):

      General points:

      Figure 4G- panels appear mislabeled. Pl correct.

      We have corrected this mislabeling as you suggested.

      The dynamics of Vangl2 interaction with p65 and autophagy adaptors is not clear/apparent. For example, Vangl2 expression destabilises p65 levels (as in Fig. 4), but in Fig. 5, it seems there is no decline in the p65 protein level, and a large fraction of it coprecipitates with NDP52.

      We appreciate the reviewer’s comments. In the co-IP assay, we used the lysosomal inhibitor CQ to inhibit p65 degradation to observe the interaction between p65 and NDP52 or Vangl2.

      Fig 5E- I would expect p65 levels to be lower in WT cells than Vangl2 KO cells. But as such, there is no difference between the two.

      We appreciate the reviewer’s comments. We repeated the experiments and updated the data. Firstly, Vangl2 was not induced in WT cells in the absence of LPS stimulation, thus there was no difference in p65 expression between the two groups at the basal level. Secondly, we used CQ/Baf-A1 to inhibit the degradation of Vangl2 in the co-IP assay to observe the interaction between p65 and other molecule.

      Reviewer #2 (Recommendations For The Authors):

      A few points that can be looked at and revised.

      (1) Quantification of the presented data is needed for Fig 4D and Fig 4E.

      We added the quantification analysis as suggested.  

      (2) The labeling of Fig 4G should be scrutinized.

      We have corrected this mislabeling as you suggested.

      (3) Fig 6B and Fig 6C should be explained in the result section more elaborately.

      We thank the reviewer for the suggestion, and we have rephrased this sentence to better describe the results. (Page 10, lines 306-313)

      (4) Line 85: "Vangl2 mediated downstream of Toll-like or interleukin (IL)-1" - unclear.

      We appreciate the reviewer’s comments on our manuscript, and we have further improved the manuscript as suggested in the revised manuscript. (Page 3, lines 68)

      (5) Line 181: "mice. Differentially expression analysis" - this should be revised.

      We appreciate the reviewer’s comments on our manuscript, and we have further improved the manuscript as suggested in the revised manuscript. (Page 11, lines 323)

      (6) Line 261-264- CHX-chase assay showed the degradation rate of p65 in Vangl2-deficient BMDM was slower compared with WT cells. However, Vangl2 is not induced in WT BMDMs upon CHX treatment (Fig. S4B).

      We appreciate the reviewer’s comments on our manuscript, and we have further improved the manuscript as suggested in the revised manuscript (Fig. S4D).

      (7) Finally, some editing to provide data only critical for the conclusions could improve the ease of reading.

      We have further improved the manuscript as suggested in the revised manuscript.

      Reviewer #3 (Recommendations For The Authors):

      Comments (general, please address at least in Discussion. Some experimental data, for example the role, if any, of Vangl2 phosphorylations will be very useful):

      (1) It might be interesting to explore whether there are any potential effects of developmental pathways on the observed effect mediated by Vangl2 or if the effects are entirely a PCP-independent function of Vangl2. Please see above public review.

      Thank you for the reviewer's insightful comments. Our study revealed that Vangl2 recruits the E3 ubiquitin ligase PDLIM2 to facilitate K63-linked ubiquitination of p65, which is subsequently recognized by autophagy receptor NDP52 and then promotes the autophagic degradation of p65. Our findings by using autophagy inhibitors and autophagic-deficient cells indicate that Vangl2 regulates NF-kB signaling through a selective autophagic pathway, rather than affecting the PCP pathway, WNT, HH/GLI, Fat-Dachsous or even mechanical tension. Furthermore, we generated phospho-mutants of Vangl2 (S82/84A) and observed that Vangl2 (S82/84A) could still facilitate the degradation of p65 (Fig. S4 B), suggesting that Vangl2 regulates the NF-kB pathway independently of its phosphorylation. In addition, a discussion section has been added to the revised version. (Page 12, lines 377-393)

      (2) What explains the specificity of organ/cell-type Vangl2 upregulation and its consequences observed here? Why is NF-kappaB signaling not more broadly or even ubiquitously affected in all cell types in a Vangl2-dependent manner, rather than being restricted to macrophages, neutrophils and peritoneal macrophages, or, for that matter, in spleen and LN and not liver and lung? Afterall, one may think that the PCP proteins, as well as NF-kappaB, are ubiquitous.

      Thank you for the reviewer's comments. A similar question has been addressed above (refer to the response to question 3 of reviewer 3).

      (3) Another specificity-related question that comes to mind is whether the Vangl2 function in autolysomal/autophagic degradation is restricted to p65 as the exclusive substrate? The cytosolic targeting of p65 as opposed to the more well-known nuclear-targeting is interesting.

      Our previous finding demonstrated that Vangl2 inhibits antiviral IFN-I signaling by targeting TBK1 for autophagic degradation (doi: 10.1126/sciadv.adg2339), thereby indicating that p65 is not the sole substrate for Vangl2. However, in the NF-kB pathway, p65 is a specific substrate for Vangl2. Moreover, our findings indicate that the interaction between Vangl2 and p65 occurs predominantly in the cytoplasm, rather than in the nucleus (Fig. S4 C).

      (4) Pharmacological approach is used to tease apart autolysosome versus proteasome pathway. What is the physiological importance of autophagic degradation? It is interesting to note that Vangl2 was already previously implicated in degrading LAMP-2A and increasing chaperon-mediated autophagy (CMA)-lysosome numbers (PMID: 34214490).

      Previous literature has domonstrated that Vangl2 can inhibit CMA degradation (PMID: 34214490). However, in our study, we found that Vangl2 can promote the selective autophagic degradation of p65. It is important to note that CMA degradation and selective autophagic degradation are two distinct degradation modes, which is not contradictory.

      (5) Are these phenotypes discernable in heterozygotes or only when ablated in homozygosity? Any phenotypes recapitulated in the looptail heterozygote mice?

      We found that these phenotypes discernable only in homozygosity.

      (6) What is the conservation of the Vangl2 p65-interaction site between Vangl2 and Vangl1? PDLIM2 recruitment between Vangl2 and Vangl1?

      We appreciate the reviewer’s comments on our manuscript. Previous studies have shown that human Vangl1 and Vangl2 exhibit only 72% identity and exhibit distinct functional properties (doi: 10.1530/ERC-14-0141).Thus, the interaction of Vangl2 with p65 and PDLIM2 recruitment may not necessarily occur in Vangl1.

      Comments (specific to experiments and data analyses. Please address the following):

      (7) The patient population used in Fig 1 is not described in the Methods. This is a critical omission. Were age, sex etc. controlled for between healthy and disease? How was the diagnosis made? What times during sepsis were the samples collected? As presented, this data is impossible to evaluate and interpret.

      We appreciate the reviewer’s comments on our manuscript, and we have further improved the manuscript as suggested in the revised supplement materials. (Supplementary information, Page 12, lines 146-147)

      (8) In general, the statistical method should be described for each experiment presented in the figures. Comparisons should not be made only at the time point with maximal difference (such as in Fig 1F or Fig 2C, but at all time points using appropriate statistical methods). The sample size should also be included to allow determination appropriateness of parametric or non-parametric tests.

      We appreciate the reviewer’s comments on our manuscript, and we have further improved the manuscript as suggested in the revised manuscript (Figures 1F and 2C).

      (9) PCP pathways can activate p62/SQSTM1 or JNK via RhoA. JNK activation should be tested experimentally.

      According to the reviewer's comments, we further examined the effect of Vangl2 on the JNK pathway. The results showed that Vangl2 did not affect the JNK pathway (Author response image 2). This suggests that Vangl2 functions independently of the PCP pathway.

      Author response image 2.

      Vangl2 did not affect the JNK pathway. WT and Vangl2-deficient (n≥3) BMDMs were stimulated with LPS (100 ng/ml) for the indicated times. Immunoblot analysis of total and phosphorylated JNK.

      (10) Why are different cells such as A549, HEK293, CHO, 293T, THP-1 used during the studies for different experiments? Consistency would improve rigor. At least, logical explanation driving the cell type of choice for each experiment should be included in the manuscript. Nonetheless, one aspect of using a panel of cell lines indicate that the effect of Vangl2 on NF-kappa B is pleiotropic.

      We are grateful to the reviewer for their comments on our manuscript. A549, HEK293, CHO, and 293T cells are commonly utilized in protein-protein interaction studies. The selection of cell lines for overexpression (exogenous) experiment is dependent on their transfection efficiency and the ability to express TLR4 (the receptor for LPS). Additionally, we conducted endogenous experiments by using THP-1 and BMDMs, which are human macrophage cell lines and murine primary macrophages, respectively. Moreover, we generated Vangl2f/f lyz-cre mice by specifically knocking out Vangl2 in myeloid cells, and investigated the effect of Vangl2 on NF-kB signaling in vivo.

    1. Author response:

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The manuscript examines the contribution of the dorsal and intermediate hippocampus to goal-directed navigation in a wide virtual environment where visual cues are provided by the scenery on the periphery of a wide arena. Among a choice of 2 reward zones located near the arena periphery, rats learn to navigate from the center of the arena to the reward zone associated with the highest reward. Navigation performance is largely assessed from the rats' body orientation when they leave the arena center and when they reach the periphery, as well as the angular mismatch between the reward zone and the site rats reach the periphery. Muscimol inactivation of the dorsal and intermediate hippocampus alters rat navigation to the reward zone, but the effect was more pronounced for the inactivation of the intermediate hippocampus, with some rat trajectories ending in the zone associated with the lowest reward. Based on these results, the authors suggest that the intermediate hippocampus is critical, especially for navigating to the highest reward zone.

      Strengths:

      -The authors developed an effective approach to study goal-directed navigation in a virtual environment where visual cues are provided by the peripheral scenery.

      - In general, the text is clearly written and the figures are well-designed and relatively straightforward to interpret, even without reading the legends.

      - An intriguing result, which would deserve to be better investigated and/or discussed, was that rats tended to rotate always in the counterclockwise direction. Could this be because of a hardware bias making it easier to turn left, some aspect of the peripheral landscape, or a natural preference of rats to turn left that is observable (or reported) in a real environment?

      Thank you for the insightful question. As the reviewer mentioned, the counterclockwise rotation behavior was intriguing and unexpected. To answer the reviewer’s question properly, we examined whether such stereotypical turning behavior appeared before the rats acquired the task rule and reward zones in the pre-surgical training phase of the task. Data from the last day of shaping and the first day of the pre-surgical main task day showed no significant difference in the number of trials in which the first body-turn was either clockwise or counterclockwise, suggesting that the rats did not have a bias toward a specific side (p=0.46 for Shaping; p=0.76 for the Main task, Wilcoxon signed-rank test). These results excluded the possibility that there was something in the apparatus's hardware that made the rats turn only to the left. Also, since we used the same peripheral landscape for the shaping and main task, we could assume that the peripheral landscape did not cause movement bias.

      Author response image 1.

      Although it remains inconclusive, we have noticed that some prior studies alluded to a phenomenon similar to this issue, framed as the topic of lateralization or spatial preference by comparing left and right biases. For example, Wishaw et al. (1992) suggested that there was natural lateralization in rats (“Most of the rats displayed either a strong right limb bias or a strong left limb bias.”) but no dominance to a specific side. Andrade et al. (2001) also claimed that “83% of Wistar rats spontaneously showed a clear preference for left or right arms in the T-maze.” However, to the best of our knowledge, there has been no direct evidence that rats have a dominant natural preference only to one side.

      Therefore, while the left-turning behavior remains an intriguing topic for further investigation, we find it difficult to pinpoint the reason behind the behavior in the current study. However, we would like to emphasize that this behavior did not interrupt testing our hypothesis. Nonetheless, we agree with the reviewer’s point that the counterclockwise rotation needs to be discussed more, so we revised the manuscript as follows:

      “To rule out the potential effect of hardware bias or any particular aspect of peripheral landscape to make rats turn only to one side, we measured the direction of the first body-turn in each trial on the last day of shaping and the first day of the main task (i.e., before rats learned the reward zones). There was no significant difference between the clockwise and counterclockwise turns (p=0.46 for shaping, p=0.76 for main task; Wilcoxon signed-rank test), indicating that the stereotypical pattern of counterclockwise body-turn appeared only after the rats learned the reward locations.” (p.6)

      - Another interesting observation, which would also deserve to be addressed in the discussion, is the fact that dHP/iHP inactivations produced to some extent consistent shifts in departing and peripheral crossing directions. This is visible from the distributions in Figures 6 and 7, which still show a peak under muscimol inactivation, but this peak is shifted to earlier angles than the correct ones. Such change is not straightforward to interpret, unlike the shortening of the mean vector length.

      Maybe rats under muscimol could navigate simply by using the association of reward zone with some visual cues in the peripheral scene, in brain areas other than the hippocampus, and therefore stopped their rotation as soon as they saw the cues, a bit before the correct angle. While with their hippocampus is intact, rats could estimate precisely the spatial relationship between the reward zone and visual cues.

      We agree with the possibility suggested by the reviewer. However, although not described in the original manuscript, we performed several different control experiments in a few rats using various visual stimulus manipulations to test how their behaviors change as a result. One of the experiments was the landmark omission test, where one of the landmarks was omitted. The landmark to be made disappear was pseudorandomly manipulated on a trial-by-trial basis. We observed that the omission of one landmark, regardless of its identity, did not cause a specific behavioral change in finding the reward zones, suggesting that the rats were not relying on a single visual landmark when finding the reward zone.

      Author response image 2.

      Therefore, it is unlikely that rats used the spatial relationship between the reward zone and a specific visual cue to solve the task in our study. However, the result was based on an insufficient sample size (n=3), not permitting any meaningful statistical testing. Thus, we have now updated this information in the manuscript as an anecdotal result as follows:

      “Additionally, to investigate whether the rats used a certain landmark as a beacon to find the reward zones, we conducted the landmark omission test as a part of control experiments. Here, one of the landmarks was omitted, and the landmark to be made disappear was pseudorandomly manipulated on a trial-by-trial basis. The omission of one landmark, regardless of its identity, did not cause a specific behavioral change in finding the reward zones, suggesting that the rats were not relying on a single visual landmark when finding the reward zones. The result can be reported anecdotally only because of an insufficient sample size (n=3), not permitting any meaningful statistical testing.” (p.9)

      Weaknesses:

      -I am not sure that the differential role of dHP and iHP for navigation to high/low reward locations is supported by the data. The current results could be compatible with iHP inactivation producing a stronger impairment on spatial orientation than dHP inactivation, generating more erratic trajectories that crossed by chance the second reward zone.

      To make the point that iHP inactivation affects the disambiguation of high and low reward locations, the authors should show that the fraction of trajectories aiming at the low reward zone is higher than expected by chance. Somehow we would expect to see a significant peak pointing toward the low reward zone in the distribution of Figures 6-7.

      We thank the reviewer for the valuable comments. We agree that it is difficult to rigorously distinguish the loss of value representation from spatial disorientation in our experiment. Since the trial ended once the rat touched either reward zone, it was difficult to specify whether they intended to arrive at the location or just moved randomly and arrived there by chance. Moreover, it is possible that the drug infusion did not completely inactivate the iHP but only partially did so.

      To investigate this issue further, we checked whether the distribution of the departure direction (DD) differed between the trials in which rats initially headed north (NW, N, NE) and south (SE, S, SW) at the start. In the manuscript, we demonstrated that DD aligned with the high-value zone, indicating that the rat remembered the scenes associated with the high-value zone (p.8). Based on the rats’ characteristic counterclockwise rotation, the reward zone rats would face first upon starting while heading north would be the high-value zone. On the other hand, the rat would face the low-value reward zone when starting while heading south. In this case, normal rats would inhibit leaving the start zone and rotate further until they face the high-value zone before finally departing the start location. If the iHP inactivation caused a more severe impairment in spatial orientation but not in value representation, it is likely that the iHP-inactivated rats in both north- and south-starting trials would behave similarly with the dHP-inactivated rats, but producing a larger deviation from the high-value zone. However, if the iHP inactivation affected the disambiguation of high and low reward locations, north and south-starting trials would show different DD distributions.

      The circular plots shown below are the DD distributions of dMUS and iMUS. We could see that when they started facing north, iHP-inactivated rats still aligned themselves towards the high-value zone and thus remained spatially oriented, similar to the dHP inactivation session. However, in the south-starting trials, the DD distribution was completely different from the north-starting trials; the rats failed in body alignment towards the high-value zone. Instead, they departed the start point while heading south in most trials. This pattern was not seen in dMUS sessions, even in their south-starting trials, illustrating the distinct deficit caused by iHP inactivation. Additionally, most of the rats with iHP inactivation visited the low-value zone more in south-headed starting trials than in the north-headed trials, except for one rat.

      Author response image 3.

      Furthermore, we would like to clarify that we do not limit the effect of iHP inactivation to the impairment in distinguishing the high and low reward zones. It is possible that iHP inactivation resulted in the loss of a global value-representing map, leading to the impairment in distinguishing both reward zones from other non-rewarded areas in the environment. Figures 6 and 7 implicated this possibility by showing that the peaks are not restricted only to the reward zones. Unfortunately, we cannot rigorously address this in the current study because of the limitations of our experimental design mentioned above.

      Nonetheless, we agree with the reviewer that this limitation needs to be addressed, so we now added how the current study needs further investigation to clarify what causes the behavioral change after the iHP inactivation in the Limitations section (p.21).

      Reviewer #2 (Public Review):

      Summary:

      The aim of this paper was to elucidate the role of the dorsal HP and intermediate HP (dHP and iHP) in value-based spatial navigation through behavioral and pharmacological experiments using a newly developed VR apparatus. The authors inactivated dHP and iHP by muscimol injection and analyzed the differences in behavior. The results showed that dHP was important for spatial navigation, while iHP was critical for both value judgments and spatial navigation. The present study developed a new sophisticated behavioral experimental apparatus and proposed a behavioral paradigm that is useful for studying value-dependent spatial navigation. In addition, the present study provides important results that support previous findings of differential function along the dorsoventral axis of the hippocampus.

      Strengths:

      The authors developed a VR-based value-based spatial navigation task that allowed separate evaluation of "high-value target selection" and "spatial navigation to the target." They were also able to quantify behavioral parameters, allowing detailed analysis of the rats' behavioral patterns before and after learning or pharmacological inactivation.

      Weaknesses:

      Although differences in function along the dorsoventral axis of the hippocampus is an important topic that has received considerable attention, differences in value coding have been shown in previous studies, including the work of the authors; the present paper is an important study that supports previous studies, but the novelty of the findings is not that high, as the results are from pharmacological and behavioral experiments only.

      We appreciate the reviewer's insightful comments. In response, we would like to emphasize that a very limited number of studies investigated the function of the intermediate hippocampus, especially in spatial memory tasks. We tested the differential functions of the dorsal and intermediate hippocampus using a within-animal design and used reversible inactivation manipulation (i.e., muscimol injection) to prevent potential compensation by other brain regions when using irreversible manipulation techniques (i.e., lesion). Also, very few studies have analyzed the navigation trajectories of animals as closely as in the current study. We emphasize the novelty of our study by comparing it with prior studies, as shown below in Table 1.

      Author response table 1.

      Comparison of our study with those from prior studies

      Moreover, to the best of our knowledge, the current manuscript is the first to investigate the hippocampal subregions along the long axis in a VR environment using a hippocampal-dependent spatial memory task. Nonetheless, we agree that the current study has a limitation as a behavior-only experiment. We now have added a comment on how other techniques, such as electrophysiology, would develop our findings in the Limitation section (p.21).

      Reviewer #3 (Public Review):

      Summary:

      The authors established a new virtual reality place preference task. On the task, rats, which were body-restrained on top of a moveable Styrofoam ball and could move through a circular virtual environment by moving the Styrofoam ball, learned to navigate reliably to a high-reward location over a low-reward location, using allocentric visual cues arranged around the virtual environment.

      The authors also showed that functional inhibition by bilateral microinfusion of the GABA-A receptor agonist muscimol, which targeted the dorsal or intermediate hippocampus, disrupted task performance. The impact of functional inhibition targeting the intermediate hippocampus was more pronounced than that of functional inhibition targeting the dorsal hippocampus.

      Moreover, the authors demonstrated that the same manipulations did not significantly disrupt rats' performance on a virtual reality task that required them to navigate to a spherical landmark to obtain reward, although there were numerical impairments in the main performance measure and the absence of statistically significant impairments may partly reflect a small sample size (see comments below).

      Overall, the study established a new virtual-reality place preference task for rats and established that performance on this task requires the dorsal to intermediate hippocampus. They also established that task performance is more sensitive to the same muscimol infusion (presumably - doses and volumes used were not clearly defined in the manuscript, see comments below) when the infusion was applied to the intermediate hippocampus, compared to the dorsal hippocampus, although this does not offer strong support for the authors claim that dorsal hippocampus is responsible for accurate spatial navigation and intermediate hippocampus for place-value associations (see comments below).

      Strengths:

      (1) The authors established a new place preference task for body-restrained rats in a virtual environment and, using temporary pharmacological inhibition by intra-cerebral microinfusion of the GABA-A receptor agonist muscimol, showed that task performance requires dorsal to intermediate hippocampus.

      (2) These findings extend our knowledge about place learning tasks that require dorsal to intermediate hippocampus and add to previous evidence that, for some place memory tasks, the intermediate hippocampus may be more important than other parts of the hippocampus, including the dorsal hippocampus, for goal-directed navigation based on allocentric place memory.

      (3) The hippocampus-dependent task may be useful for future recording studies examining how hippocampal neurons support behavioral performance based on place information.

      Weaknesses:

      (1) The new findings do not strongly support the authors' suggestion that the dorsal hippocampus is responsible for accurate spatial navigation and the intermediate hippocampus for place-value associations.

      The authors base this claim on the differential effects of the dorsal and intermediate hippocampal muscimol infusions on different performance measures. More specifically, dorsal hippocampal muscimol infusion significantly increased perimeter crossings and perimeter crossing deviations, whereas dorsal infusion did not significantly change other measures of task performance, including departure direction and visits to the high-value location. However, these statistical outcomes offer only limited evidence that dorsal hippocampal infusion specifically affected the perimeter crossing, without affecting the other measures. Numerically the pattern of infusion effects is quite similar across these various measures: intermediate hippocampal infusions markedly impaired these performance measures compared to vehicle infusions, and the values of these measures after dorsal hippocampal muscimol infusion were between the values in the intermediate hippocampal muscimol and the vehicle condition (Figures 5-7). Moreover, I am not so sure that the perimeter crossing measures really reflect distinct aspects of navigational performance compared to departure direction and hit rate, and, even if they did, which aspects this would be. For example, in line 316, the authors suggest that 'departure direction and PCD [perimeter crossing deviation] [are] indices of the effectiveness and accuracy of navigation, respectively'. However, what do the authors mean by 'effectiveness' and 'accuracy'? Accuracy typically refers to whether or not the navigation is 'correct', i.e. how much it deviates from the goal location, which would be indexed by all performance measures.

      So, overall, I would recommend toning down the claim that the findings suggest that the dorsal hippocampus is responsible for accurate spatial navigation and the intermediate hippocampus for place-value associations.

      The reviewer mentioned that the statistical outcomes offer limited evidence as the dHP inactivation results were always positioned between the results of the iHP inactivation and controls. However, we would like to emphasize that, projecting to each other, the two subregions are not completely segregated anatomically. It is highly likely this is also true functionally and there should be some overlap in their roles. Considering such relationships between the dHP and iHP, it could be natural to see an intermediate effect after inactivating the dHP, and that is why we focused on the “magnitude” of behavioral changes after inactivation instead of complete dissociation between the two subregions in our manuscript. Unfortunately, because of the nature of the drug infusion study, further dissociation would be difficult, requiring further investigation with different experimental techniques, such as physiological examinations of the neural firing patterns between the two regions. We mentioned this caveat of the current study in the Limitations as follows:

      “However, our study includes only behavioral results and further mechanistic explanations as to the processes underlying the behavioral deficits require physiological investigations at the cellular level. Neurophysiological recordings during VR task performance could answer, for example, the questions such as whether the value-associated map in the iHP is built upon the map inherited from the dHP or it is independently developed in the iHP.” (p.21)

      Regarding the reviewer’s comment on the meaning of measuring the perimeter crossing directions, we would like to draw the reviewer’s attention to the individual trajectories during the iMUS sessions described in Figure 5. Particularly when they were not confident with the location of the higher reward, rats changed their heading directions during the navigation, which resulted in a less efficient route to the goal location. Rats showing this type of behavior tended to hit the perimeter of the arena first before correcting their routes toward the goal zone. In contrast, rats showing effective navigation hardly bumped into the wall or perimeter before hitting the goal zone. Thus, their PCDs matched DDs almost always. When considered together with DD, our PCD measure could tell whether rats not hitting the goal zone directly after departure were impaired in either maintaining the correct heading direction to the goal zone at the start location or orienting themselves to the target zone accurately from the start. Our results suggest that the latter is the case. We included the relevant explanation in the Discussion section as follows:

      “Particularly, rats changed their heading directions during the navigation when they were not confident with the location of the higher reward, resulting in a less efficient route to the goal location. Rats showing this type of behavior tended to hit the perimeter of the arena first before correcting their routes. Therefore, when considered together with DD, our PCD measure could tell that the rats not hitting the goal zone directly after departure were impaired in orienting themselves to the target zone accurately from the start, not in maintaining the correct heading direction to the goal zone at the start location.” (p.19)

      Nonetheless, we agree with the reviewer that the term ‘accuracy’ might be confusing with performance accuracy, so we replaced the term with ‘precision’ throughout the manuscript, referring to the precise targeting of the reward zones.

      (2) The claim that the different effects of intermediate and dorsal hippocampal muscimol infusions reflect different functions of intermediate and dorsal hippocampus rests on the assumption that both manipulations inhibit similar volumes of hippocampal tissue to a similar extent, but at different levels along the dorso-ventral axis of the hippocampus. However, this is not a foregone conclusion (e.g., drug spread may differ depending on the infusion site or drug effects may differ due to differential expression of GABA-A receptors in the dorsal and intermediate hippocampus), and the authors do not provide direct evidence for this assumption. Therefore, a possible alternative account of the weaker effects of dorsal compared to intermediate hippocampal muscimol infusions on place-preference performance is that the dorsal infusions affect less hippocampal volume or less markedly inhibit neurons within the affected volume than the intermediate infusions. I would recommend that the authors briefly consider this issue in the discussion. Moreover, from the Methods, it is not clear which infusion volume and muscimol concentration were used for the different infusions (see below, 4.a.), and this must be clarified.

      We appreciate these insightful comments from the reviewer and agree that we do not provide direct evidence for the point raised by the reviewer. To the best of our knowledge, most of the behavioral studies on the long axis of the hippocampus did not particularly address the differential expression of GABA-A receptors along the axis. We could not find any literature that specifically introduced and compared the levels of expression of GABA-A receptors or the diffusion range of muscimol in the intermediate hippocampus to the other subregions. However, we found that Sotiriou et al. (2005) made such comparisons with respect to the expression of different GABA-A receptors. They concluded that the dorsal and ventral hippocampi have different levels of the GABA-A receptor subtypes. The a1/b2/g2 subtype was dominant in the dorsal hippocampus, while the a2/b1/g2 subtype was prevalent in the ventral hippocampus. Sotiriou and colleagues also mentioned the lower affinity of GABA-A receptor binding in the ventral hippocampus, and this result is consistent with the Papatheodoropoulos et al. (2002) study that showed a weaker synaptic inhibition in the ventral hippocampus compared to the dorsal hippocampus. Papatheodoropoulos et al. speculated differences in GABA receptors as one of the potential causes underlying the differential synaptic inhibition between the dorsal and ventral hippocampal regions. Based on these findings, the same volume of muscimol is more likely to cause a more severe effect on the ventral hippocampus than the dorsal hippocampus. Therefore, we do not believe that the less significant changes after the dorsal hippocampal inactivation were induced by the expression level of GABA-A receptors. Additionally, we have demonstrated in our previous study that muscimol injections in the dorsal hippocampus impair performance to the chance level in scene-based behavioral tasks (Lee et al., 2014; Kim et al., 2012).

      Nonetheless, we mentioned the possibility of differential muscimol expressions between the two target regions. Following the suggestion of the reviewer, we now included this information in the Discussion as follows:

      “Although there is still a possibility that the levels of expression of GABA-A receptors might be different along the longitudinal axis of the hippocampus, …” (p.20)

      Regarding the drug infusion volume and concentration, we included these details in the Methods. Please see our detailed response to 4.a. below.

      (3) It is good that the authors included a comparison/control study using a spherical beacon-guided navigation task, to examine the specific psychological mechanisms disrupted by the hippocampal manipulations. However, as outlined below (4.b.), the sample size for the comparison study was lower than for the main study, and the data in Figure 8 suggest that the comparison task may be affected by the hippocampal manipulations similarly to the place-preference task, albeit less markedly. This would raise the question as to which mechanisms that are common to the two tasks may be affected by hippocampal functional inhibition, which should be considered in the discussion.

      The sample size for the object-guided navigation task was smaller because we initially did not plan the experiment, but later in the study decided to conduct the control test. Therefore, the object-guided navigation task was added to the study design after finishing the first three rats, resulting in a smaller sample size than the place preference task. We included this detail in the manuscript, as follows:

      “Note the smaller sample size in the object-guided navigation task. This was because the task was later added to the study design.” (p.24)

      Regarding the mechanism behind the two different tasks, we did not perform the same heading direction analysis here as in the place preference task because the two tasks have different characteristics such as task complexity. The object-guided navigation task is somewhat similar to the visually guided (or cued) version of the water maze task, which is widely known as hippocampal-independent (Morris et al., 1986; Packard et al., 1989; also see our descriptions on p.15). Therefore, we would argue that the two tasks (i.e., place preference task and object-guided navigation task) used in the current manuscript do not share neural mechanisms in common. Additionally, we confirmed that several behavioral measurements related to motor capacity, such as travel distance and latency, along with the direct hit proportion provided in Figure 8, did not show any statistically significant changes across drug conditions.

      4. Several important methodological details require clarification:

      a. Drug infusions (from line 673):

      - '0.3 to 0.5 μl of either phosphate-buffered saline (PBS) or muscimol (MUS) was infused into each hemisphere'; the authors need to clarify when which infusion volume was used and why different infusion volumes were used.

      We thank the reviewer for carefully reading our manuscript. We were cautious about side effects, such as suppressed locomotion or overly aggressive behavior, since the iHP injection site was close to the ventricle. We were keenly aware that the intermediate to ventral hippocampal regions are sensitive to the drug dosage from our previous experiments. Thus, we observed the rat’s behavior for 20 minutes after drug injection in a clean cage. We started from 0.5 μl, based on our previous study, but if the injected rat showed any sign of side effects in the cage, we stopped the experiment for the day and tried with a lower dosage (i.e., 0.4 μl first, then 0.3 μl, etc.) until we found the right dosage under which the rat did not show any side effect. This procedure is necessary because cannula tip positions are slightly different from rat to rat. When undergoing this procedure, five out of eight rats received 0.4 μl, two received 0.3 μl, and one received 0.5 μl. Still, there was no significant difference in performance, including the high-value visit percentage, departing and perimeter crossing directions, across all dosages. This information is now added in the Methods section as follows:

      “If the rat showed any side effect, particularly sluggishness or aggression, we reduced the drug injection amount in the rat by 0.1 ml until we found the dosage with which there was no visible side effect. As a result, five of the rats received 0.4 ml, two received 0.3 ml, and one received 0.5 ml.” (p.25)

      - I could not find the concentration of the muscimol solution that was used. The authors must clarify this and also should include a justification of the doses used, e.g. based on previous studies.

      Thank you for the suggestion. We used the drug concentration of 1mg/ml, which was adapted from our previous muscimol study (Lee et al., 2014; Kim et al., 2012). The manuscript is now updated, as follows:

      “…or muscimol (MUS; 1mg/ml, dissolved in saline) was infused into each hemisphere via a 33-gauge injection cannula at an injection speed of 0.167 ml/min, based on our previous study (Lee et al., 2014; Kim et al., 2012).” (p.25)

      -  Please also clarify if the injectors and dummies were flush with the guides or by which distance they protruded from the guides.

      The injection and dummy cannula both protruded from the guide cannula by 1 mm, and this information is now added to the Methods section, as follows:

      “The injection cannula and dummy cannula extended 1 mm below the tip of the guide cannula.” (p.25)

      b. Sample sizes: The authors should include sample size justifications, e.g. based on considerations of statistical power, previous studies, practical considerations, or a combination of these factors. Importantly, the smaller sample size in the control study using the spherical beacon-guided navigation task (n=5 rats) limits comparability with the main study using the place-preference task (n=8). Numerically, the findings on the control task (Figure 8) look quite similar to the findings on the place-preference task, with intermediate hippocampal muscimol infusions causing the most pronounced impairment and dorsal hippocampal muscimol infusions causing a weaker impairment. These effects may have reached statistical significance if the same sample size had been used in the place-preference study.

      We set the current sample size for several reasons. First, based on our previous studies, we assumed that eight, or more than six, would be enough to achieve statistical power in a “within-animal design” study. Also, considering the ethical commitments, we tried to keep the number of animals used in the study to the least. Last, our paradigm required very long training periods (3 months on average per animal), so we could not increase the sample size for practical reasons. Regarding the reasons for the smaller sample size for the object-guided navigation task, please see the previous response to 3 above. The manuscript is now revised as follows:

      “Based on our prior studies (Park et al., 2017; Yoo and Lee, 2017; Lee et al., 2014), the sample size of our study was set to the least number to achieve the necessary statistical power in the current within-subject study design for ethical commitments and practical considerations (i.e., relatively long training periods).” (p.22)

      c. Statistical analyses: Why were the data of the intermediate and dorsal hippocampal PBS infusion conditions averaged for some of the analyses (Figure 5; Figure 6B and C; Figure 7B and C; Figure 8B) but not for others (Figure 6A and Figure 7A)?

      The reviewer is correct that we only illustrated the separate dPBS and iPBS data for Figures 6A and 7A. Since the directional analysis is the main focus of the current manuscript, we tried to provide better visualization and more detailed examples of how the drug infusion changed the behavioral patterns between the PBS and MUS conditions in each region. Except for the visualization of DD and PCD, we averaged the PBS sessions to increase statistical power, as described in p.9. We added a detailed description of the reasons for illustrating dPBS and iPBS data separately in the manuscript, as follows:

      “Note that dPBS and iPBS sessions were separately illustrated here for better visualization of changes in the behavioral pattern for each subregion.” (p.12)

      Reviewing Editor (Recommendations For The Authors):

      The strength of evidence rating in the assessment is currently noted as "incomplete." This can be improved following revisions if you amend your conclusions in the paper, including in the title and abstract, such that the paper's major conclusions more closely match what is shown in the Results.

      Following the suggestions of the reviewing editor, we have mentioned the caveats of our study in the Limitations section of our revised manuscript (p.21). In addition, the manuscript has been revised so that the conclusions in the paper match more closely to the experimental results as can been seen in some of the relevant sentences in the abstract and main text as follows:

      “Inactivation of both dHP and iHP with muscimol altered efficiency and precision of wayfinding behavior, but iHP inactivation induced more severe damage, including impaired place preference. Our findings suggest that the iHP is more critical for value-dependent navigation toward higher-value goal locations.” (Abstract; p.2)

      “Whereas inactivation of the dHP mainly affected the precision of wayfinding, iHP inactivation impaired value-dependent navigation more severely by affecting place preference.” (p.5)

      “The iHP causes more damage to value-dependent spatial navigation than the dHP, which is important for navigational precision” (p.12)

      However, we haven’t changed the title of the manuscript as it carries what we’d like to deliver in this study accurately.

      Reviewer #1 (Recommendations For The Authors):

      - What were the dimensions of the environment? What distance did rats typically run to reach the reward zone? A scale bar would be helpful in Figure 1.

      We used the same circular arena from the shaping session, which was 1.6 meters in diameter (p.23), and the shortest path between the start location and either reward zone was 0.62 meters. We revised the manuscript for clarification as follows:

      “For the pre-training session, rats were required to find hidden reward zones…, on the same circular arena from the shaping session.” (p.23)

      “Therefore, the shortest path length between the start position and the reward zone was 0.62 meters.” (p.23)

      We also added a scale bar in Figure 1C for a better understanding.

      - Line 169: "The scene rotation plot covers the period from the start of the trial to when the rat leaves the starting point at the center and the departure circle (Figure 2B)."

      The sentence is unclear. Maybe it should be "... from the start of the trial to when the rat leaves the departure circle”.

      The sentence has been revised following the reviewer's suggestion. (p.7)

      - Line 147: "First, they learned to rotate the spherical treadmill counterclockwise to move around in the virtual environment (presumably to perform energy-efficient navigation)."

      It is not clear from this sentence if rats naturally preferred the counterclockwise direction or if the counterclockwise direction was a task requirement.

      We now clarified in our revised manuscript that it was not a task requirement to turn counterclockwise, as follows:

      “First, although it was not required in the task, they learned to rotate the spherical treadmill counterclockwise…” (p.6)

      - Line 149: "Second, once a trial started, but before leaving the starting point at the center, the animal rotated the treadmill to turn the virtual environment immediately to align its starting direction with the visual scene associated with the high-value reward zone."

      The sentence is unclear. Maybe "Second, once a trial started, the animal rotated the treadmill immediately to align its starting direction with the visual scene associated with the high-value reward zone.”

      We have updated the description following the suggestion. (p.6)

      Reviewer #2 (Recommendations For The Authors):

      - There are some misleading descriptions of the conclusion of the results in this paper. In this study, the functions of (a) selection of high-value target and (b) spatial navigation to the target were assessed in the behavioral experiments. The results of the pharmacological experiments showed that dHP inactivation impaired (b) and iHP inactivation impaired both (a) and (b) (Figures 5 B & D). However, the last sentence of the abstract states that dHP is important for the functions of (a) and iHP for (b). There are several other similar statements in the main text. Since the separation of (a) and (b) is an important and original aspect of this study, the description should clearly show the conclusion that dHP is important for (a) and iHP is important for both (a) and (b).

      Related to the above, the paragraph title in the Discussion "The iHP may contain a value-associated cognitive map with reasonable spatial resolution for goal-directed navigation (536-537)" is also somewhat misleading: "with reasonable resolution for goal-directed behavior" seems to reflect the results of an object-guided navigation task (Figure 8). However, the term "goal-directed behavior" is also used for value-dependent spatial navigation (i.e., the main task), which causes confusion. I would like to suggest clarifying the wording on this point.

      First, we need to correct the reviewer’s statement regarding our descriptions of the results. As the reviewer mentioned, our results indicated that the dHP inactivation impaired (b) but not (a), while the iHP inactivation impaired both (a) and (b). Regarding the iHP inactivation result, we focused on the impairment of (a) since our aim was to investigate spatial-value association in the hippocampus. Also, it was more likely that (a) affected (b), but not the other way, because (a) remained intact when (b) was impaired after dHP inactivation. We emphasized this difference between dHP and iHP inactivation, which was (a). Therefore, we mentioned in the last sentence of the abstract that the dHP is important for (b), which is the precision of spatial navigation to the target location, and the iHP is critical for (a).

      Moreover, we would like to clarify that we were not referring to the object-guided navigation task in Figure 8 in the phrase ‘with a reasonable spatial resolution for goal-directed navigation.’ Please note that the object-guided navigation task did not require fine spatial resolution to find the reward. The phrase instead referred to the dHP inactivation result (Figure 5 and 6), where the rats could find the high-value zone even with dHP inactivation, although the navigational precision decreased. Nonetheless, we agree with the reviewer for the confusion that the title might cause, so now have updated the title as follows:

      “The iHP may contain a value-associated cognitive map with reasonable spatial resolution for value-based navigation” (p.19)

      - As an earlier study focusing on the physiology of iHP, Maurer et al, Hippocampus 15:841 (2005) is also a pioneering and important study, and I suggest citing it.

      Thank you for the suggestion. We included the Maurer et al. (2005) study in the Introduction section as follows:

      “…Specifically, there is physiological evidence that the size of a place field becomes larger as recordings of place cells move from the dHP to the vHP (Jung et al., 1994; Maurer et al., 2005; Kjelstrup et al., 2008; Royer et al., 2010).” (p.4)

      - One of the strengths of this paper is that we have developed a new control system for the VR navigation task device, but I cannot get a very detailed description of this system in the Methods section. Also, no information about the system control has been uploaded to GitHub. I would suggest adding a description of the manufacturer, model number, and size of components, such as a rotary encoder and ball, and information about the software of the control system, with enough detail to allow the reader to reconstruct the system.

      We have now added detailed descriptions of the VR system in the Methods section (see “2D VR system). (p.22)

      Reviewer #3 (Recommendations For The Authors):

      (1) Some comments on specific passages of text:

      Lines 87 to 89: 'Surprisingly, beyond the recognition of anatomical divisions, little is known about the functional differentiation of subregions along the dorsoventral axis of the hippocampus. Moreover, the available literature on the subject is somewhat inconsistent.'

      I would recommend to rephrase these statements. Regarding the first statement, there is substantial evidence for functional differentiation along the dorso-ventral axis of the hippocampus (e.g., see reviews by Moser and Moser, 1998, Hippocampus; Bannerman et al., 2004, Neurosci Biobehav Rev; Bast, 2007, Rev Neurosci; Bast, 2011, Curr Opin Neurobiol; Fanselow and Dong, 2010, Neuron; Strange et al., 2014, Nature Rev Neurosci). Regarding the second statement, the authors may consider being more specific, as the inconsistencies demonstrated seem to relate mainly to the hippocampal representation of value information, instead of functional differentiation along the dorso-ventral hippocampal axis in general.

      We agree with the reviewer that the abovementioned statements need further clarification. The manuscript is now revised as follows:

      “Surprisingly, beyond the recognition of anatomical divisions, the available literature on the functional differentiation of subregions along the dorsoventral axis of the hippocampus, particularly in the context of value representation, is somewhat inconsistent.” (p.4)

      Lines 92 to 93: 'Thus, it has been thought that the dHP is more specialized for precise spatial representation than the iHP and vHP.'

      I think 'fine-grained' may be the more appropriate term here. Also, check throughout the manuscript when referring to the differences of spatial representations along the hippocampal dorso-ventral axis.

      Thank you for the insightful suggestion. We changed the term to ‘fine-grained’ throughout the manuscript, as follows:

      “Thus, it has been thought that the dHP is more specialized for fine-grained spatial representation than the iHP and vHP.” (p.4)

      “Consequently, the fine-grained spatial map present in the dHP…” (p.20)

      Line 217: well-'trained' rats?

      We initially used the term ‘well-learned’ to focus on the effect of learning, not training. Please note that the rats were already adapted to moving freely in the VR environment during the Shaping sessions, but the immediate counterclockwise body alignment only appeared after they acquired the reward locations for the main task. Nonetheless, we agree that the term might cause confusion, so we revised the manuscript as the reviewer suggested, as follows:

      “This implies that well-trained rats aligned their bodies more efficiently…” (p.8)

      Lines 309 to 311: 'Taken together, these results indicate that iHP inactivation severely damages normal goal-directed navigational patterns in our place preference task.'

      Consider to mention that dHP inactivation also causes impairments, albeit weaker ones.

      We thank the reviewer for the suggestion. We revised the manuscript by mentioning dHP inactivation as follows:

      “Taken together, these results indicate that iHP inactivation more severely damages normal goal-directed navigational patterns than dHP inactivation in our place-preference task.” (p.11-12)

      Lines 550 to 552: 'The involvement of the iHP in spatial value association has been reported in several studies. For example, Bast and colleagues reported that rapid place learning is disrupted by removing the iHP and vHP, even when the dHP remains undamaged (Bast et al., 2009).'

      Bast et al. (2009) did not directly show the role of iHP in 'spatial value associations'. They suggested that the importance of iHP for behavioral performance based on rapid, one-trial, place learning may reflect neuroanatomical features of the intermediate region, especially the combination of afferents that could convey the required fine-grained visuo-spatial information with relevant afferent and efferent connections that may be important to translate hippocampal place memory into appropriate behavioral performance (this may include afferents conveying value information). More recent theoretical and empirical research suggests that projections to the (ventral) striatum may be relevant (see Tessereau et al., 2021, BNA and Bauer et al., 2021, BNA).

      We appreciate the reviewer for this insightful comment. We agree with the reviewer that Bast et al. (2009) did not directly mention spatial value association; however, learning a new platform location needs an update of value information in the spatial environment. Therefore, we thought the study, though indirectly, suggested how the iHP contributes to spatial value associations. Nonetheless, to avoid confusion, we revised the manuscript, as follows:

      “The involvement of the iHP in spatial value association has been reported or implicated in several studies” (p.20)

      (2) Figures and legends:

      Figure 2B: What do the numbers after novice and expert indicate?

      The numbers indicate the rat ID, followed by the session number. We added the details to the Figure legend, as follows:

      “The numbers after ‘Novice’ and ‘Expert’ indicate the rat and session number of the example.” (p.34)

      Figure 2C: Please indicate units of the travel distance and latency measurements.

      The units are now described in the Figure legends, as follows:

      “Mean travel distance in meters and latency in seconds are shown below the VR arena trajectory.” (p.34)

      Figure 3Aii: Here and in other figures - do the vector lengths have a unit (degree?)?

      No, the mean vector length is an averaged value of the resultant vectors, thus having no specific unit.

      Figure 5A: Please explain what the numbers on top of the individual sample trajectories indicate.

      The numbers are IDs for rats, sessions, and trials of specific examples. We added the explanation to the Figure legends, as follows:

      “Numbers above each trajectory indicate the identification numbers for rat, session, and trial.” (p.35)

      (3) Additional comments on some methodological details:

      a. Why was the non-parametric Wilcoxon signed-rank test used for the planned comparison between intermediate and dorsal hippocampal PBS infusions, whereas parametric ANOVA and post-hoc comparisons were used for other analyses? This probably doesn't make a big difference for the interpretation of the present data (as a parametric pairwise comparison would also not have revealed any significant difference between intermediate and dorsal hippocampal PBS infusions), but it would nevertheless be good to clarify the rationale for this.

      We used the non-parametric statistics since our sample size was rather small (n=8) to use the parametric statistics, although we used the parametric ANOVA for some of the results because it is the most commonly known and widely used statistical test in such comparisons. However, we also checked the statistics with the alternatives (i.e., non-parametric Wilcoxon signed-rank test to parametric paired t-test and parametric One-way RM ANOVA with Bonferroni post hoc test to non-parametric Friedman’s test with Dunn’s post hoc test), and the statistical significance did not change with any of the tests. We now added the explanation in the manuscript, as follows:

      “Although most of our statistics were based on the non-parametric tests for the relatively small sample size (n=8), we used the parametric RM ANOVA for comparing three groups (i.e., PBS, dMUS, and iMUS) because it is the most commonly known and widely used statistical test in such comparison. However, we also performed statistical tests with the alternatives for reference, and the statistical significances were not changed with any of the results.” (p.26)

      b. Single housing of rats:

      Why was this chosen? Based on my experience, this is not necessary for studies involving cannula implants and food restriction. Group housing is generally considered to improve the welfare of rats.

      We chose single housing of rats because our training paradigm required precise restrictions on the food consumption of individual rats, which could be difficult in group housing.

      c. Anesthesia:

      Why was pentobarbital used, alongside isoflurane, to anesthetize rats for surgery (line 663)? The use of gaseous anesthesia alone offers very good control of anesthesia and reduces the risk of death from anesthesia compared to the use of pentobarbital.

      Why was anesthesia used for the drug infusions (line 674)? If rats are well-habituated to handling by the experimenter, manual restraint is sufficient for intra-cerebral infusions. Therefore, anesthesia could be omitted, reducing the risk of adverse effects on the experimental rats.

      I do not think that points b. and c. are relevant for the interpretation of the present findings, but the authors may consider these points for future studies to improve further the welfare of the experimental rats.

      We appreciate the reviewer’s careful suggestions. For both the use of pentobarbital during surgery and anesthesia for the drug infusion, we chose to do so to avoid any risk of rats being awake and becoming anxious and to ensure safety during the procedures. They might not be necessary, but they were helpful for the experimenters to proceed with sufficient time to maintain precision. Nonetheless, we agree with the reviewer’s concern, which was the reason why we monitored the rats’ behavior for 20 minutes in the cage after drug infusion to minimize any potential influence on the task performance. We updated the relevant details in the Methods section, as follows:

      “The rat was kept in a clean cage to recover from anesthesia completely and monitored for side effects for 20 minutes, then was moved to the VR apparatus for behavioral testing.” (p.25)

    1. Author response:

      The following is the authors’ response to the original reviews.

      eLife assessment 

      fMRI was used to address an important aspect of human cognition - the capacity for structured representations and symbolic processing - in a cross-species comparison with non-human primates (macaques); the experimental design probed implicit symbolic processing through reversal of learned stimulus pairs. The authors present solid evidence in humans that helps elucidate the role of brain networks in symbolic processing, however the evidence from macaques was incomplete (e.g., sample size constraints, potential and hard-to-quantify differences in attention allocation, motivation, and lived experience between species).

      Thank you very much for your assessment. We would like to address the potential issues that you raise point-by-point below.

      We agree that for macaque monkey physiology, sample size is always a constraint, due to both financial and ethical reasons. We addressed this concern by combining the results from two different labs, which allowed us to test 4 animals in total, which is twice as much as what is common practice in the field of primate physiology. (We discuss this now on lines 473-478.)

      Interspecies differences in motivation, attention allocation, task strategies etc. could also be limiting factors. Note that we did address the potential lack of attention allocation directly in Experiment 2 using implicit reward association, which was successful as evidenced by the activation of attentional control areas in the prefrontal cortex. We cannot guarantee that the strategies that the two species deploy are identical, but we tentatively suggest that this might be a less important factor in the present study than in other interspecies comparisons that use explicit behavioral reports. In the current study, we directly measured surprise responses in the brain in the absence of any explicit instructions in either species, which allowed us to  measure the spontaneous reversal of learned associations, which is a very basic element of symbolic representation. Our reasoning is that such spontaneous responses should be less dependent on attention allocation and task strategies. (We discuss this now in more detail on lines 478-485.)

      Finally, lived experience could be a major factor. Indeed, obvious differences include a lifetime of open-field experiences and education in our human adult subjects, which was not available to the monkey subjects, and includes a strong bias towards explicit learning of symbolic systems (e.g. words, letters, digits, etc). However, we have previously shown that 5-month-old human infants spontaneously generalize learning to the reversed pairs after a short learning in the lab using EEG (Kabdebon et al, PNAS, 2019). This indicates that also with very limited experience, humans spontaneously reverse learned associations. (We discuss this now in more detail on lines 478-485.) It could be very interesting to investigate whether spontaneous reversal could be present in infant macaque monkeys, as there might be a critical period for this effect. Although neurophysiology in awake infant monkeys is highly challenging, it would be very relevant for future work. (We discuss this in more detail on lines 493-498.)

      Public Reviews: 

      Reviewer #1 (Public Review): 

      Kerkoerle and colleagues present a very interesting comparative fMRI study in humans and monkeys, assessing neural responses to surprise reactions at the reversal of a previously learned association. The implicit nature of this task, assessing how this information is represented without requiring explicit decision-making, is an elegant design. The paper reports that both humans and monkeys show neural responses across a range of areas when presented with incongruous stimulus pairs. Monkeys also show a surprise response when the stimuli are presented in a reversed direction. However, humans show no such surprise response based on this reversal, suggesting that they encode the relationship reversibly and bidirectionally, unlike the monkeys. This has been suggested as a hallmark of symbolic representation, that might be absent in nonhuman animals. 

      I find this experiment and the results quite compelling, and the data do support the hypothesis that humans are somewhat unique in their tendency to form reversible, symbolic associations. I think that an important strength of the results is that the critical finding is the presence of an interaction between congruity and canonicity in macaques, which does not appear in humans. These results go a long way to allay concerns I have about the comparison of many human participants to a very small number of macaques. 

      We thank the reviewer for the positive assessment. We also very much appreciate the point about the interaction effect in macaque monkeys – indeed, we do not report just a negative finding. 

      I understand the impossibility of testing 30+ macaques in an fMRI experiment. However, I think it is important to note that differences necessarily arise in the analysis of such datasets. The authors report that they use '...identical training, stimuli, and whole-brain fMRI measures'. However, the monkeys (in experiment 1) actually required 10 times more training. 

      We agree that this description was imprecise. We have changed it to “identical training stimuli” (line 151), indeed the movies used for training were strictly identical. Furthermore, please note that we do report the fMRI results after the same training duration. In experiment 1, after 3 days of training, the monkeys did not show any significant results, even in the canonical direction. However, in experiment 2, with increased attention and motivation, a significant effect was observed on the first day of scanning after training, as was found in human subjects (see Figure 4 and Table 3).

      More importantly, while the fMRI measures are the same, group analysis over 30+ individuals is inherently different from comparing only 2 macaques (including smoothing and averaging away individual differences that might be more present in the monkeys, due to the much smaller sample size). 

      Thank you for understanding that a limited sampling size is intrinsic to macaque monkey physiology. We also agree that data analysis in humans and monkeys is necessarily different. As suggested by the reviewer, we added an analysis to address this, see the corresponding reply to the ‘Recommendations for the authors’ section below.

      Despite this, the results do appear to show that macaques show the predicted interaction effect (even despite the sample size), while humans do not. I think this is quite convincing, although had the results turned out differently (for example an effect in humans that was absent in macaques), I think this difference in sample size would be considerably more concerning. 

      Thank you for noting this. Indeed, the interaction effect is crucial, and the task design was explicitly made to test this precise prediction, described in our manuscript as the “reversibility hypothesis”. The congruity effect in the learned direction served as a control for learning, while the corresponding congruity effect in the reversed direction tested for spontaneous reversal. The reversibility hypothesis stipulates that in humans there should not be a difference between the learned and the reversed direction, while there should be for monkeys. We already wrote about that in the result section of the original manuscript and now also describe this more explicitly in the introduction and beginning of the result section.

      I would also note that while I agree with the authors' conclusions, it is notable to me that the congruity effect observed in humans (red vs blue lines in Fig. 2B) appears to be far more pronounced than any effect observed in the macaques (Fig. 3C-3). Again, this does not challenge the core finding of this paper but does suggest methodological or possibly motivational/attentional differences between the humans and the monkeys (or, for example, that the monkeys had learned the associations less strongly and clearly than the humans). 

      As also explained in response to the eLife assessment above, we expanded the “limitations” section of the discussion, with a deeper description of the possible methodological differences between the two species (see lines 478-485).

      With the same worry in mind, we did increase the attention and motivation of monkeys in experiment 2, and indeed obtained a greater activation to the canonical pairs and their violation, -notably in the prefrontal cortex – but crucially still without reversibility.

      In the end, we believe that the striking interspecies difference in size and extent of the violation effect, even for purely canonical stimuli, is an important part of our findings and points to a more efficient species-specific learning system, that our experiment tentatively relates to a symbolic competence.

      This is a strong paper with elegant methods and makes a worthwhile contribution to our understanding of the neural systems supporting symbolic representations in humans, as opposed to other animals. 

      We again thank the reviewer for the positive review.

      Reviewer #2 (Public Review): 

      In their article titled "Brain mechanisms of reversible symbolic reference: a potential singularity of the human brain", van Kerkoerle et al address the timely question of whether non-human primates (rhesus macaques) possess the ability for reverse symbolic inference as observed in humans. Through an fMRI experiment in both humans and monkeys, they analyzed the bold signal in both species while observing audio-visual and visual-visual stimuli pairs that had been previously learned in a particular direction. Remarkably, the findings pertaining to humans revealed that a broad brain network exhibited increased activity in response to surprises occurring in both the learned and reverse directions. Conversely, in monkeys, the study uncovered that the brain activity within sensory areas only responded to the learned direction but failed to exhibit any discernible response to the reverse direction. These compelling results indicate that the capacity for reversible symbolic inference may be unique to humans. 

      In general, the manuscript is skillfully crafted and highly accessible to readers. The experimental design exhibits originality, and the analyses are tailored to effectively address the central question at hand.

      Although the first experiment raised a number of methodological inquiries, the subsequent second experiment thoroughly addresses these concerns and effectively replicates the initial findings, thereby significantly strengthening the overall study. Overall, this article is already of high quality and brings new insight into human cognition. 

      We sincerely thank the reviewer for the positive comments. 

      I identified three weaknesses in the manuscript: 

      - One major issue in the study is the absence of significant results in monkeys. Indeed, authors draw conclusions regarding the lack of significant difference in activity related to surprise in the multidemand network (MDN) in the reverse congruent versus reverse incongruent conditions. Although the results are convincing (especially with the significant interaction between congruency and canonicity), the article could be improved by including additional analyses in a priori ROI for the MDN in monkeys (as well as in humans, for comparison). 

      First, we disagree with the statement about “absence of significant results in monkeys”. We do report a significant interaction which, as noted by the referee, is a crucial positive finding.

      Second, we performed the suggested analysis for experiment 2, using the bilateral ROIs of the putative monkey MDN from previous literature (Mitchell, et al. 2016), which are based on the human study by Fedorenko et al. (PNAS, 2013). 

      Author response table 1.

      Congruity effect for monkeys in Experiment 2 within the ROIs of the MDN (n=3). Significance was assessed with one-sided one-sample t-tests.

      As can be seen, none of the regions within the monkey MDN showed an FDR-corrected significant difference or interaction. Although the absence of a canonical congruity effect makes it difficult to draw strong conclusions, it did approach significance at an uncorrected level in the lateral frontal posterior region, similar to  the large prefrontal effect we report in Figures 4 and 5. Furthermore, for the reversed congruity effect there was never even a trend at the uncorrected level, and the crucial interaction of canonicity and congruity again approached significance in the lateral prefrontal cortex.  

      We also performed an ANOVA  in the human participants of the VV experiment on the average betas across the 7 different fronto-parietal ROIs as used by Mitchell et al to define their equivalent to the monkey brain (Fig 1a, right in Mitchell et al. 2016) with congruity, canonicity and hemisphere (except for the anterior cingulate which is a bilateral ROI) as within-subject factors. We confirmed the results presented in the manuscript (Figure 4C) with notably no significant interaction between congruity and canonicity in any of these ROIs (all F-values (except insula) <1). A significant main effect of congruity was observed in the posterior middle frontal gyrus (MFG) and inferior precentral sulcus at the FDR corrected level. Analyses restricted to the canonical trials found a congruity effect in these two regions plus the anterior insula and anterior cingulate/presupplementary motor area, whereas no ROIs were significant at a FDR corrected level for reverse trials. There was a trend in the middle MFG and inferior precentral region for reversed trials. Crucially, there was not even a trend for the interaction between congruity and canonicity at the uncorrected level. The difference in the effect size between the canonical and reversed direction can therefore be explained by the larger statistical power due to the larger number of congruent trials (70%, versus 10% for the other trial conditions), not by a significant effect by the canonical and the reversed direction. 

      Author response table 2.

      Congruity effect for humans in Experiment 2 within the ROIs of the MDN (n=23).

      These results support our contention that the type of learning of the stimulus pairs was very different in the two species. We thank the reviewer for suggesting these relevant additional analyses.

      - While the authors acknowledge in the discussion that the number of monkeys included in the study is considerably lower compared to humans, it would be informative to know the variability of the results among human participants. 

      We agree that this is an interesting question, although it is also very open-ended. For instance, we could report each subjects’ individual whole-brain results, but this would take too much space (and the interested reader will be able to do so from the data that we make available as part of this publication). As a step in this direction, we provide below a figure showing the individual congruity effects, separately for each experiment and for each ROI of table 5, and for each of the 52 participants for whom an fMRI localizer was available:

      Author response image 1.

      Difference in mean betas between congruent and incongruent conditions in a-priori linguistic and mathematical ROIs (see definition and analyses in Table 5) in both experiments (experiment 1 = AV, left panel; experiment 2= VV, right panel). Dots correspond to participants (red: canonical trials, green reversed trials).The boxplot notch is located at the median and the lower and upper box hinges at the 25th and 75th centiles. Whiskers extend to 1.5 inter-quartile ranges on either side of the hinges. ROIs are ranked by the median of the Incongruent-Congruent difference across canonical and reversed order, within a given experiment. For purposes of comparison between the two experiments, we have underlined with colors the top-five common ROIs between the two experiments. N.s.: non-significant congruity effect (p>0.05)

      Several regions show a rather consistent difference across subjects (see, for instance, the posterior STS in experiment 1, left panel). Overall, only 3 of the 52 participants did not show any beta superior to 2 in canonical or reversed in any ROIs. The consistency is quite striking, given the limited number of test trials (in total only 16 incongruent trials per direction per participant), and the fact that these ROIs were selected for their responses to spoken or written  sentences, as part of a subsidiary task quite different from the main task.

      - Some details are missing in the methods.  

      Thank you for these comments, we reply to them point-by-point below.

      Reviewer #3 (Public Review): 

      This study investigates the hypothesis that humans (but not non-human primates) spontaneously learn reversible temporal associations (i.e., learning a B-A association after only being exposed to A-B sequences), which the authors consider to be a foundational property of symbolic cognition. To do so, they expose humans and macaques to 2-item sequences (in a visual-auditory experiment, pairs of images and spoken nonwords, and in a visual-visual experiment, pairs of images and abstract geometric shapes) in a fixed temporal order, then measure the brain response during a test phase to congruent vs. incongruent pairs (relative to the trained associations) in canonical vs. reversed order (relative to the presentation order used in training). The advantage of neuroimaging for this question is that it removes the need for a behavioral test, which non-human primates can fail for reasons unrelated to the cognitive construct being investigated. In humans, the researchers find statistically indistinguishable incongruity effects in both directions (supporting a spontaneous reversible association), whereas in monkeys they only find incongruity effects in the canonical direction (supporting an association but a lack of spontaneous reversal). Although the precise pattern of activation varies by experiment type (visual-auditory vs. visual-visual) in both species, the authors point out that some of the regions involved are also those that are most anatomically different between humans and other primates. The authors interpret their finding to support the hypothesis that reversible associations, and by extension symbolic cognition, is uniquely human. 

      This study is a valuable complement to prior behavioral work on this question. However, I have some concerns about methods and framing. 

      We thank the reviewer for the careful summary of the manuscript, and the positive comments.

      Methods - Design issues: 

      The authors originally planned to use the same training/testing protocol for both species but the monkeys did not learn anything, so they dramatically increased the amount of training and evaluation. By my calculation from the methods section, humans were trained on 96 trials and tested on 176, whereas the monkeys got an additional 3,840 training trials and 1,408 testing trials. The authors are explicit that they continued training the monkeys until they got a congruity effect. On the one hand, it is commendable that they are honest about this in their write-up, given that this detail could easily be framed as deliberate after the fact. On the other hand, it is still a form of p-hacking, given that it's critical for their result that the monkeys learn the canonical association (otherwise, the critical comparison to the non-canonical association is meaningless). 

      Thank you for this comment. 

      Indeed, for experiment 1, the amount of training and testing was not equal for the humans and monkeys, as also mentioned by reviewer 2. We now describe in more detail how many training and imaging days we used for each experiment and each species, as well as the number of blocks per day and the number of trials per block (see lines 572-577). We also added the information on the amount of training receives to all of the legends of the Tables.

      We are sorry for giving the impression that we trained until the monkeys learned this. This was not the case. Based on previous literature, we actually anticipated that the short training would not be sufficient, and therefore planned additional training in advance. Specifically, Meyer & Olson (2011) had observed pair learning in the inferior temporal cortex of macaque monkeys after 816 exposures per pair. This is similar to the additional training we gave, about 80 blocks with 12 trials per pair per block. This is  now explained in more detail (lines 577-580).

      Furthermore, we strongly disagree with the pejorative term p-hacking. The aim of the experiment was not to show a congruency effect in the canonical direction in monkeys, but to track and compare their behavior in the same paradigm as that of humans for the reverse direction. It would have been unwise to stop after human-identical training and only show that humans learn better, which is a given. Instead, we looked at brain activations at both times, at the end of human-identical training and when the monkeys had learned the pairs in the canonical direction. 

      Finally, in experiment 2, monkeys were tested after the same 3 days of training as humans. We wrote: “Using this design, we obtained significant canonical congruity effects in monkeys on the first imaging day after the initial training (24 trials per pair), indicating that the animals had learned the associations” (lines 252-253).

      (2) Between-species comparisons are challenging. In addition to having differences in their DNA, human participants have spent many years living in a very different culture than that of NHPs, including years of formal education. As a result, attributing the observed differences to biology is challenging. One approach that has been adopted in some past studies is to examine either young children or adults from cultures that don't have formal educational structures. This is not the approach the authors take. This major confound needs to minimally be explicitly acknowledged up front. 

      Thank you for raising this important point. We already had a section on “limitations” in the manuscript, which we now extended (line 478-485). Indeed, this study is following a previous study in 5-month-old infants using EEG, in which we already showed that after learning associations between labels and categories, infants spontaneously generalize learning to the reversed pairs after a short learning period in the lab (Kabdebon et al, PNAS, 2019). We also cited preliminary results of the same paradigm as used in the current study but using EEG in 4-month-old infants (Ekramnia and Dehaene-Lambertz, 2019), where we replicated the results obtained by Kabdebon et al. 2019 showing that preverbal infants spontaneously generalize learning to the reversed pairs. 

      Functional MRI in awake infants remains a challenge at this age (but see our own work, DehaeneLambertz et al, Science, 2002), especially because the experimental design means only a few trials in the conditions of interest (10%) and thus a long experimental duration that exceed infants’ quietness and attentional capacities in the noisy MRI environment. (We discuss this on lines 493-496.)

      (3) Humans have big advantages in processing and discriminating spoken stimuli and associating them with visual stimuli (after all, this is what words are in spoken human languages). Experiment 2 ameliorates these concerns to some degree, but still, it is difficult to attribute the failure of NHPs to show reversible associations in Experiment 1 to cognitive differences rather than the relative importance of sound string to meaning associations in the human vs. NHP experiences. 

      As the reviewer wrote, we deliberately performed Experiment 2 with visual shapes to control for various factors that might have explained the monkeys' failure in Experiment 1. 

      (4) More minor: The localizer task (math sentences vs. other sentences) makes sense for math but seems to make less sense for language: why would a language region respond more to sentences that don't describe math vs. ones that do? 

      The referee is correct: our use of the word “reciprocally” was improper (although see Amalric et Dehaene, 2016 for significant differences in both directions when non-mathematical sentences concern specific knowledge). We changed the formulation to clarify this as follows: “In these ROIs, we recovered the subject-specific coordinates of each participant’s 10% best voxels in the following comparisons: sentences vs rest for the 6 language Rois ; reading vs listening for the VWFA ; and numerical vs non-numerical sentences for the 8 mathematical ROIs.” (lines 678-680).

      Methods - Analysis issues: 

      (5) The analyses appear to "double dip" by using the same data to define the clusters and to statistically test the average cluster activation (Kriegeskorte et al., 2009). The resulting effect sizes are therefore likely inflated, and the p-values are anticonservative. 

      It is not clear to us which result the reviewer is referring to. In Tables 1-4, we report the values that we found significant in the whole brain analysis, we do not report additional statistical tests for this data. For Table 5, the subject-specific voxels were identified through a separate localizer experiment, which was designed to pinpoint the precise activation areas for each subject in the domains of oral and written language-processing and math. Subsequently, we compared the activation at these voxel locations across different conditions of the main experiment. Thus, the two datasets were distinct, and there was no double dipping. In both interpretations of the comment, we therefore disagree with the reviewer.

      Framing: 

      (6) The framing ("Brain mechanisms of reversible symbolic reference: A potential singularity of the human brain") is bigger than the finding (monkeys don't spontaneously reverse a temporal association but humans do). The title and discussion are full of buzzy terms ("brain mechanisms", "symbolic", and "singularity") that are only connected to the experiments by a debatable chain of assumptions. 

      First, this study shows relatively little about brain "mechanisms" of reversible symbolic associations, which implies insights into how these associations are learned, recognized, and represented. But we're only given standard fMRI analyses that are quite inconsistent across similar experimental paradigms, with purely suggestive connections between these spatial patterns and prior work on comparative brain anatomy. 

      We agree with the referee that the term “mechanism” is ambiguous and, for systems neuroscientists, may suggest more than we are able to do here with functional MRI. We changed the title to “Brain areas for reversible symbolic reference, a potential singularity of the human brain”. This title better describes our specific contribution: mapping out the areas involved in reversibility in humans, and showing that they do not seem to respond similarly in macaque monkeys.

      Second, it's not clear what the relationship is between symbolic cognition and a propensity to spontaneously reverse a temporal association. Certainly, if there are inter-species differences in learning preferences this is important to know about, but why is this construed as a difference in the presence or absence of symbols? Because the associations aren't used in any downstream computation, there is not even any way for participants to know which is the sign and which is the signified: these are merely labels imposed by the researchers on a sequential task. 

      As explained in the introduction, the reversibility test addressed a very minimal core property of symbolic reference. There cannot be a symbol if its attachment doesn’t operate in both directions. Thus, this property is necessary – but we agree that it is not sufficient. Indeed, more tests are needed to establish whether and how the learned symbols are used in further downstream compositional tasks (as discussed in our recent TICS papers, Dehaene et al. 2022). We added a sentence in the introduction to acknowledge this fact:

      “Such reversibility is a core and necessary property of symbols, although we readily acknowledge that it is not sufficient, since genuine symbols present additional referential and compositional properties that will not be tested in the present work.” (lines 89-92).

      Third, the word "singularity" is both problematically ambiguous and not well supported by the results. "Singularity" is a highly loaded word that the authors are simply using to mean "that which is uniquely human". Rather than picking a term with diverse technical meanings across fields and then trying to restrict the definition, it would be better to use a different term. Furthermore, even under the stated definition, this study performed a single pairwise comparison between humans and one other species (macaques), so it is a stretch to then conclude (or insinuate) that the "singularity" has been found (see also pt. 2 above). 

      We have published an extensive review including a description of our use of the term “singularity” (Dehaene et al., TICS 2022). Here is a short except: “Humans are different even in domains such as drawing and geometry that do not involve communicative language. We refer to this observation using the term “human cognitive singularity”, the word singularity being used here in its standard meaning (the condition of being singular) as well as its mathematical sense (a point of sudden change). Hominization was certainly a singularity in biological evolution, so much so that it opened up a new geological age (the Anthropocene). Even if evolution works by small continuous change (and sometimes it doesn’t [4]), it led to a drastic cognitive change in humans.”

      We find the referee’s use of the pejorative term ”insinuate” quite inappropriate. From the title on, we are quite nuanced and refer only to a “potential singularity”. Furthermore, as noted above, we explicitly mention in the discussion the limitations of our study, and in particular the fact that only a single non-human species was tested (see lines 486-493). We are working hard to get chimpanzee data, but this is remarkably difficult for us, and we hope that our paper will incite other groups to collect more evidence on this point.

      (7) Related to pt. 6, there is circularity in the framing whereby the authors say they are setting out to find out what is uniquely human, hypothesizing that the uniquely human thing is symbols, and then selecting a defining trait of symbols (spontaneous reversible association) *because* it seems to be uniquely human (see e.g., "Several studies previously found behavioral evidence for a uniquely human ability to spontaneously reverse a learned association (Imai et al., 2021; Kojima, 1984; Lipkens et al., 1988; Medam et al., 2016; Sidman et al., 1982), and such reversibility was therefore proposed as a defining feature of symbol representation reference (Deacon, 1998; Kabdebon and DehaeneLambertz, 2019; Nieder, 2009).", line 335). They can't have it both ways. Either "symbol" is an independently motivated construct whose presence can be independently tested in humans and other species, or it is by fiat synonymous with the "singularity". This circularity can be broken by a more modest framing that focuses on the core research question (e.g., "What is uniquely human? One possibility is spontaneous reversal of temporal associations.") and then connects (speculatively) to the bigger conceptual landscape in the discussion ("Spontaneous reversal of temporal associations may be a core ability underlying the acquisition of mental symbols").

      We fail to understand the putative circularity that the referee sees in our introduction. We urge him/her to re-read it, and hope that, with the changes that we introduced, it does boil down to his/her summary, i.e. “What is uniquely human? One possibility is spontaneous reversal of temporal associations."

      Reviewer #1 (Recommendations For The Authors): 

      In general, the manuscript was very clear, easy to read, and compelling. I would recommend the authors carefully check the text for consistency and minor typos. For example: 

      The sample size for the monkeys kept changing throughout the paper. E.g., Experiment 1: n = 2 (line 149); n = 3 (line 205).  

      Thank you for catching this error, we corrected it. The number of animals was indeed 2  for experiment 1, and 3 for experiment 2. (Animals JD and YS participated in experiment 1 and JD, JC and DN in experiment 2. So only JD participated in both experiments.)

      Similarly, the number of stimulus pairs is reported inconsistently (4 on line 149, 5 pairs later in the paper). 

      We’re sorry that this was unclear. We used 5 sets of 4 audio-visual pairs each. We now clarify this, on line 157 and on lines 514-516.

      At least one case of p>0.0001, rather than p < 0.0001 (I assume). 

      Thank you once again, we now corrected this.

      Reviewer #2 (Recommendations For The Authors): 

      One major issue in the study is the absence of significant results in monkeys. Indeed, the authors draw conclusions regarding the lack of significant difference in activity related to surprise in the multidemand network (MDN) in the reverse congruent versus reverse incongruent conditions. Although the results are convincing (especially with the significant interaction between congruency and canonicity), the article could be improved by including additional analyses in a priori ROI for the MDN in monkeys (as well as in humans, for comparison). In other words: what are the statistics for the MDN regarding congruity, canonicity, and interaction in both species? Since the authors have already performed this type of analysis for language and Math ROIs (table 5), it should be relatively easy for them to extend it to the MDN. Demonstrating that results in monkeys are far from significant could further convince the reader. 

      Furthermore, while the authors acknowledge in the discussion that the number of monkeys included in the study is considerably lower compared to humans, it would be informative to know the variability of the results among human participants. Specifically, it would be valuable to describe the proportion of human participants in which the effects of congruency, canonicity, and their interaction are significant. Additionally, stating the variability of the F-values for each effect would provide reassurance to the reader regarding the distinctiveness of humans in comparison to monkeys. Low variability in the results would serve to mitigate concerns that the observed disparity is merely a consequence of testing a unique subset of monkeys, which may differ from the general population. Indeed, this would be a greater support to the notion that the dissimilarity stems from a genuine distinction between the two species. 

      We responded to both of these points above.

      In terms of methods, details are missing: 

      - How many trials of each condition are there exactly? (10% of 44 trials is 4.4) : 

      We wrote: “In both humans and monkeys, each block started with 4 trials in the learned direction (congruent canonical trials), one trial for each of the 4 pairs (2 O-L and 2 L-O pairs). The rest of the block consisted of 40 trials in which 70% of trials were identical to the training; 10% were incongruent pairs but the direction (O-L or L-O) was correct (incongruent canonical trials), thus testing whether the association was learned; 10% were congruent pairs but the direction within the pairs was reversed relative to the learned pairs (congruent reversed trials) and 10% were incongruent pairs in reverse (incongruent reversed trials).”(See lines 596-600.)

      Thus, each block comprised 4 initial trials, 28 canonical congruent trials, 4 canonical incongruent, 4 reverse congruent and 4 reverse incongruent trials, i.e. 4+28+3x4=40 trials.

      - How long is one trial? 

      As written in the method section: “In each trial, the first stimulus (label or object) was presented during 700ms, followed by an inter-stimulus-interval of 100ms then the second stimulus during 700ms. The pairs were separated by a variable inter-trial-interval of 3-5 seconds” i.e. 700+100+700=1500, plus 3 to 4.75 seconds of blank between the trials (see lines 531-533).

      - How are the stimulus presentations jittered? 

      See : “The pairs were separated by a variable inter-trial-interval randomly chosen among eight different durations between 3 and 4.75 seconds (step=250 ms). The series of 8 intervals was randomized again each time it was completed.”(lines 533-535).

      - What is the statistical power achieved for humans? And for monkeys? 

      We know of no standard way to define power for fMRI experiments. Power will depend on so many parameters, including the fMRI signal-to-noise ratio, the attention of the subject, the areas being considered, the type of analysis (whole-brain versus ROIs), etc.

      - Videos are mentioned in the methods, is it the image and sound? It is not clear. 

      We’re sorry that it was unclear. Video’s were only used for the training of the human subjects. We now corrected this in the method section (lines 552-554).

      Reviewer #3 (Recommendations For The Authors): 

      The main recommendations are to adjust the framing (making it less bold and more connected to the empirical evidence) and to ensure independence in the statistical analyses of the fMRI data. 

      See our replies to the reviewer’s comments on “Framing” above. In particular, we changed the title of the paper from “Brain mechanisms of reversible symbolic reference” to “Brain areas for reversible symbolic reference”.

      References cited in this response

      Dehaene, S., Al Roumi, F., Lakretz, Y., Planton, S., & Sablé-Meyer, M. (2022). Symbols and mental programs : A hypothesis about human singularity. Trends in Cognitive Sciences, 26(9), 751‑766. https://doi.org/10.1016/j.tics.2022.06.010.

      Dehaene-Lambertz, Ghislaine, Stanislas Dehaene, et Lucie Hertz-Pannier. Functional Neuroimaging of Speech Perception in Infants. Science 298, no 5600 (2002): 2013-15. https://doi.org/10.1126/science.1077066.

      Ekramnia M, Dehaene-Lambertz G. 2019. Investigating bidirectionality of associations in young infants as an approach to the symbolic system. Presented at the CogSci. p. 3449.

      Fedorenko E, Duncan J, Kanwisher N (2013) Broad domain generality in focal regions of frontal and parietal cortex. Proc Natl Acad Sci U S A 110:16616-16621.

      Kabdebon, Claire, et Ghislaine Dehaene-Lambertz. « Symbolic Labeling in 5-Month-Old Human Infants ». Proceedings of the National Academy of Sciences 116, no 12 (2019): 5805-10. https://doi.org/10.1073/pnas.1809144116.

      Mitchell, D. J., Bell, A. H., Buckley, M. J., Mitchell, A. S., Sallet, J., & Duncan, J. (2016). A Putative Multiple-Demand System in the Macaque Brain. Journal of Neuroscience, 36(33), 8574‑8585. https://doi.org/10.1523/JNEUROSCI.0810-16.2016

    1. Author Response

      Reviewer #1 (Public Review):

      Weaknesses:

      1) The authors should better review what we know of fungal Drosophila microbiota species as well as the ecology of rotting fruit. Are the microbiota species described in this article specific to their location/setting? It would have been interesting to know if similar species can be retrieved in other locations using other decaying fruits. The term 'core' in the title suggests that these species are generally found associated with Drosophila but this is not demonstrated. The paper is written in a way that implies the microbiota members they have found are universal. What is the evidence for this? Have the fungal species described in this paper been found in other studies? Even if this is not the case, the paper is interesting, but there should be a discussion of how generalizable the findings are.

      The reviewer inquires as to whether the microbial species described in this article are ubiquitously associated with Drosophila or not. Indeed, most of the microbes described in this manuscript are generally recognized as species associated with Drosophila spp. For example, species such as Hanseniaspora uvarum, Pichia kluyveri, and Starmerella bacillaris have been detected in or isolated from Drosophila spp. collected in European countries as well as the United States and Oceania (Chandler et al., 2012; Solomon et al., 2019). As for the bacteria, species belonging to the genera Pantoea, Lactobacillus, Leuconostoc, and Acetobacter have also previously been detected in wild Drosophila spp. (Chandler et al., 2011). These elucidations will be incorporated into our revised manuscript.

      Nevertheless, the term “core” in the manuscript title may lead to misunderstanding, as the generality does not ensure the ubiquitous presence of these microbial species in every individual fly. Considering this point, we will replace the term with an expression more appropriate to our context.

      2) Can the authors clearly demonstrate that the microbiota species that develop in the banana trap are derived from flies? Are these species found in flies in the wild? Did the authors check that the flies belong to the D. melanogaster species and not to the sister group D. simulans?

      Can the authors clearly demonstrate that the microbiota species that develop in the banana trap are derived from flies? Are these species found in flies in the wild?

      The reviewer asked whether the microbial species identified in the fermented banana samples were derived from flies. To address this question, additional experiments under more controlled conditions, such as the inoculation of specific species of wild flies onto fresh bananas, would be needed. Nevertheless, the microbes may potentially originate from wild flies, as supported by the literature cited in our response to the Weakness 1).

      Alternative sources for microbial provenance also merit consideration. For example, microbial entities may be inherently present in unfermented bananas through the infiltration of peel injuries (lines 1141-1142 of the original manuscript). In addition, they could be introduced by insects other than flies, given that both rove beetles (Staphylinidae) and sap beetles (Nitidulidae) were observed in some of the traps. These possibilities will be incorporated into the 'MATERIALS AND METHODS' and 'DISCUSSION' sections of our revised manuscript.

      Did the authors check that the flies belong to the D. melanogaster species and not to the sister group D. simulans?

      Our sampling strategy was designed to target not only D. melanogaster but also other domestic Drosophila species, such as D. simulans, that inhabit human residential areas. After adult flies were caught in each trap, we identified the species as shown in Table S1, thereby showing the presence of either or both D. melanogaster and D. simulans. We will provide these descriptions in MATERIALS AND METHODS and DISCUSSION.

      3) Did the microarrays highlight a change in immune genes (ex. antibacterial peptide genes)? Whatever the answer, this would be worth mentioning. The authors described their microarray data in terms of fed/starved in relation to the Finke article. They should clarify if they observed significant differences between species (differences between species within bacteria or fungi, and more generally differences between bacteria versus fungi).

      Did the microarrays highlight a change in immune genes (ex. antibacterial peptide genes)? Whatever the answer, this would be worth mentioning.

      Regarding the antimicrobial peptide genes, statistical comparisons of our RNA-seq data across different conditions were impracticable because most of them showed low expression levels (refer to Author response table 1, which exhibits the RNA-seq data of the yeast-fed larvae; similar expression profiles were observed in the bacteria-fed larvae). While a subset of genes exhibited significantly elevated expression in the non-supportive conditions relative to the supportive ones, this can be due to intra-sample variability rather than due to distinct nutritional environments. Therefore, it would be difficult to discuss a change in immune genes in the paper. Additionally, the previous study that conducted larval microarray analysis (Zinke et al., 2002) did not explicitly focus on immune genes.

      Author response table 1.

      Antimicrobial peptide genes are not up-regulated by any of the microbes. Antimicrobial peptides gene expression profiles of whole bodies of first-instar larvae fed on yeasts. TPM values of all samples and comparison results of gene expression levels in the larvae fed on supportive and non-supportive yeasts are shown. Antibacterial peptide genes mentioned in Hanson and Lemaitre, 2020 are listed. NA or na, not available.

      They should clarify if they observed significant differences between species (differences between species within bacteria or fungi, and more generally differences between bacteria versus fungi).

      We did not observe significant differences between species within bacteria or fungi, or between bacteria and fungi. For example, the gene expression profiles of larvae fed on the various supporting microbes showed striking similarities to each other, as evidenced by the heat map showing the expression of all genes detected in larvae fed either yeast or bacteria (Author response image 1). Similarities were also observed among larvae fed on distinct non-supporting microbes.

      Author response image 1.

      Gene expression profiles of larvae fed on the various supporting microbes show striking similarities to each other. Heat map showing the gene expression of the first-instar larvae that fed on yeasts or bacteria. Freshly hatched germ-free larvae were placed on banana agar inoculated with each microbe and collected after 15 h feeding to examine gene expression of the whole body. Note that data presented in Figures 3A and 4C in the original manuscript, which are obtained independently, are combined to generate this heat map. The labels under the heat map indicate the microbial species fed to the larvae, with three samples analyzed for each condition. The lactic acid bacteria (“LAB”) include Lactiplantibacillus plantarum and Leuconostoc mesenteroides, while the lactic acid bacterium (“AAB”) represents Acetobacter orientalis. “LAB + AAB” signifies mixtures of the AAB and either one of the LAB species. The asterisk in the label highlights a sample in a “LAB” condition (Leuconostoc mesenteroides), which clustered separately from the other “LAB” samples. Brown abbreviations of scientific names are for the yeast-fed conditions. H. uva, Hanseniaspora uvarum; K. hum, Kazachstania humilis; M. asi, Martiniozyma asiatica; S. cra, Saccharomycopsis crataegensis; P. klu, Pichia kluyveri; S. bac, Starmerella bacillaris; S. cer, S. cerevisiae BY4741 strain.

      Only a handful of genes showed different expression patterns between larvae fed on yeast and those fed on bacteria, without any enrichment for specialized gene functions. Thus, it is challenging to discuss the potential differential impacts, if any, of yeast and bacteria on larval growth.

      4) The whole paper - and this is one of its merits - points to a role of the Drosophila larval microbiota in processing the fly food. Are these bacterial and fungal species found in the gut of larvae/adults? Are these species capable of establishing a niche in the cardia of adults as shown recently in the Ludington lab (Dodge et al.,)? Previous studies have suggested that microbiota members stimulate the Imd pathway leading to an increase in digestive proteases (Erkosar/Leulier). Are the microbiota species studied here affecting gut signaling pathways beyond providing branched amino acids?

      The whole paper - and this is one of its merits - points to a role of the Drosophila larval microbiota in processing the fly food. Are these bacterial and fungal species found in the gut of larvae/adults? Are these species capable of establishing a niche in the cardia of adults as shown recently in the Ludington lab (Dodge et al.,)?

      Although we did not investigate the microbiota in the gut of either larvae or adults, we did compare the microbiota within surface-sterilized larvae or adults with those in food samples. We found that adult flies and early-stage food sources, as well as larvae and late-stage food sources, harbor similar microbial species (Figure 1F). Additionally, previous examinations of the gut microbiota in wild adult flies have identified microbial species or taxa congruent with those we isolated from our foods (Chandler et al., 2011; Chandler et al., 2012). We have elaborated on this in our response to Weakness 1).

      While we did not investigate whether these species are capable of establishing a niche in the cardia of adults, we will cite the study by Dodge et al., 2023 in our revised manuscript and discuss the possibility that predominant microbes in adult flies may show a propensity for colonization.

      Previous studies have suggested that microbiota members stimulate the Imd pathway leading to an increase in digestive proteases (Erkosar/Leulier). Are the microbiota species studied here affecting gut signaling pathways beyond providing branched amino acids?

      The reviewer inquires whether the supportive microbes in our study stimulate gut Imd signaling pathways and induce the expression of digestive protease genes, as demonstrated in a previous study (Erkosar et al., 2015). According to our RNA-seq data, it seems unlikely that the supportive microbes stimulate the signaling pathway. Figures contained in Author response image 2 provide the statistical comparisons of expression levels for seven protease genes between the supportive and the non-supportive conditions. These genes did not exhibit a consistent upregulation in the presence of the supportive microbes (H. uva or K. hum in Author response image 2A; Le mes + A. ori in Author response image 2B). Rather, they exhibited a tendency to be upregulated under the non-supportive microbes (St. bac or Pi. klu in Author response image 2A; La. pla in Author response image 2B).

      Author response image 2.

      Most of the peptidase genes reported by Erkosar et al., 2015 are more highly expressed under the non-supportive conditions than the supportive conditions. Comparison of the expression levels of seven peptidase genes derived from the RNA-seq analysis of yeast-fed (A) or bacteria-fed (B) first-instar larvae. A previous report demonstrated that the expression of these genes is upregulated upon association with a strain of Lactiplantibacillus plantarum, and that the PGRP-LE/Imd/Relish signaling pathway, at least partially, mediates the induction (Erkosar et al., 2015). H. uva, Hanseniaspora uvarum; K. hum, Kazachstania humilis; P. klu, Pichia kluyveri; S. bac, Starmerella bacillaris; La. pla, Lactiplantibacillus plantarum; Le. mes, Leuconostoc mesenteroides; A. ori, Acetobacter orientalis; ns, not significant.

      Reviewer #2 (Public Review):

      Weaknesses:

      The experimental setting that, the authors think, reflects host-microbe interactions in nature is one of the key points. However, it is not explicitly mentioned whether isolated microbes are indeed colonized in wild larvae of Drosophila melanogaster who eat bananas. Another matter is that this work is rather descriptive and a few mechanical insights are presented. The evidence that the nutritional role of BCAAs is incomplete, and molecular level explanation is missing in "interspecies interactions" between lactic acid bacteria (or yeast) and acetic acid bacteria that assure their inhabitation. Apart from these matters, the future directions or significance of this work could be discussed more in the manuscript.

      The experimental setting that, the authors think, reflects host-microbe interactions in nature is one of the key points. However, it is not explicitly mentioned whether isolated microbes are indeed colonized in wild larvae of Drosophila melanogaster who eat bananas.

      The reviewer asks whether the isolated microbes were colonized in the larval gut. Previous studies on microbial colonization associated with Drosophila have predominantly focused on adults (Pais et al. PLOS Biology, 2018), rather than larval stages. Developing larvae continually consume substrates which are already subjected to microbial fermentation and abundant in live microbes until the end of the feeding larval stage. Therefore, we consider it difficult to discuss microbial colonization in the larval gut. We will add this point in the DISCUSSION of the revised manuscript.

      Another matter is that this work is rather descriptive and a few mechanical insights are presented. The evidence that the nutritional role of BCAAs is incomplete, and molecular level explanation is missing in "interspecies interactions" between lactic acid bacteria (or yeast) and acetic acid bacteria that assure their inhabitation.

      While recognizing the importance of comprehensive mechanistic analysis, this study includes all experimentally feasible data. Elucidation of more detailed molecular mechanisms lies beyond the scope of this study and will be the subject of future research.

      Regarding the nutritional role of BCAAs, the incorporation of BCAAs enabled larvae fed with the non-supportive yeast to grow to the second instar. This observation suggests that consumption of BCAAs upregulates diverse genes involved in cellular growth processes in larvae. We have discussed the hypothetical interaction between lactic acid bacteria (LAB) and acetic acid bacteria (AAB) in the manuscript (lines 402-405): LAB may facilitate lactate provision to AAB, consequently enhancing the biosynthesis of essential nutrients such as amino acids. To test this hypothesis, future experiments will include the supplementation of lactic acid to AAB culture plates and the co-inoculating LAB mutant strains defective in lactate production with AABs, to assess both larval growth and continuous larval association with AABs. With respect to AAB-yeast interactions, metabolites released from yeast cells might benefit AAB growth, and this possibility will be investigated through the supplementation of AAB culture plates with candidate metabolites identified in the cell suspension supernatants of the late-stage yeasts.

      Apart from these matters, the future directions or significance of this work could be discussed more in the manuscript.

      We appreciate the reviewer's recommendations and will include additional descriptions regarding these aspects in the DISCUSSION section.

      Reviewer #3 (Public Review):

      Weaknesses:

      Despite describing important findings, I believe that a more thorough explanation of the experimental setup and the steps expected to occur in the exposed diet over time, starting with natural "inoculation" could help the reader, in particular the non-specialist, grasp the rationale and main findings of the manuscript. When exactly was the decision to collect early-stage samples made? Was it when embryos were detected in some of the samples? What are the implications of bacterial presence in the no-fly traps? These samples also harbored complex microbial communities, as revealed by sequencing. Were these samples colonized by microbes deposited with air currents? Were they the result of flies that touched the material but did not lay eggs? Could the traps have been visited by other insects? Another interesting observation that could be better discussed is the fact that adult flies showed a microbiome that more closely resembles that of the early-stage diet, whereas larvae have a more late-stage-like microbiome. It is easy to understand why the microbiome of the larvae would resemble that of the late-stage foods, but what about the adult microbiome? Authors should discuss or at least acknowledge the fact that there must be a microbiome shift once adults leave their food source. Lastly, the authors should provide more details about the metabolomics experiments. For instance, how were peaks assigned to leucine/isoleucine (as well as other compounds)? Were both retention times and MS2 spectra always used? Were standard curves produced? Were internal, deuterated controls used?

      When exactly was the decision to collect early-stage samples made? Was it when embryos were detected in some of the samples?

      We collected traps and early-stage samples 2.5 days after setting up the traps. This time frame was determined by pilot experiments. A shorter collection time resulted in a greater likelihood of obtaining no-fly traps, whereas a longer collection time caused larval overcrowding, as well as adults’ deaths from drowning in the liquid seeping out of fruits. These procedural details will be delineated in the MATERIALS AND METHODS section of the revised manuscript.

      What are the implications of bacterial presence in the no-fly traps? These samples also harbored complex microbial communities, as revealed by sequencing. Were these samples colonized by microbes deposited with air currents? Were they the result of flies that touched the material but did not lay eggs? Could the traps have been visited by other insects?

      We assume that the origins of the microbes detected in the no-fly trap foods vary depending on the species. For instance, Colletotrichum musae, the fungus that causes banana anthracnose, may have been present in fresh bananas before trap placement. The filamentous fungi could have originated from airborne spores, but they could also have been introduced by insects that feed on these fungi. We will include these possibilities in the DISCUSSION section of the revised manuscript.

      Another interesting observation that could be better discussed is the fact that adult flies showed a microbiome that more closely resembles that of the early-stage diet, whereas larvae have a more late-stage-like microbiome. It is easy to understand why the microbiome of the larvae would resemble that of the late-stage foods, but what about the adult microbiome? Authors should discuss or at least acknowledge the fact that there must be a microbiome shift once adults leave their food source.

      We are grateful for the reviewer's insightful suggestions regarding shifts in the adult microbiome. We plan to include in the DISCUSSION section of the revised manuscript the possibility that the microbial composition may change substantially during pupal stages and that microbes obtained after eclosion could potentially form the adult gut microbiota.

      Lastly, the authors should provide more details about the metabolomics experiments. For instance, how were peaks assigned to leucine/isoleucine (as well as other compounds)? Were both retention times and MS2 spectra always used? Were standard curves produced? Were internal, deuterated controls used?

      We appreciate the reviewer's advice. Detailed methods of the metabolomic experiments will be included in our revised manuscript.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1 (Public Review):

      The modeling approaches are very sophisticated, and clearly demonstrate the selective nature of acute ketamine to reduce the impact of trial losses on subsequent performance, relative to neutral or gain outcomes. The authors then, not unreasonably, suggest that this effect is important in the context of the negative bias in interpreting events that is prominent in depression, in that if ketamine reduces the ability of negative outcomes to alter behavior, this may be a mechanism for its rapid acting antidepressant effects.

      However, there is a very strong assumption in this regard, as shown by the first sentence of the discussion which implies this is a systematic study of ketamine's acute antidepressant effects. In actuality, this is a study of the acute effects of ketamine on reinforcement learning (RL) modeled parameters. A primary concern here is that an effect presented as a "robust antidepressant-like behavioral effect" should be more enduring than just an alteration during the acute administration. As it is, the link to an "anti-depressant effect" is based solely on the selective effects on losses. This is not to say this is not an interesting observation, worthy of exploration. It is noted that a similar lack of enduring effects on outcome evaluation is observed in humans, as shown in supplemental fig. S4, but there is not accompanying citation for the human work.

      We agree with the reviewer that the way we linked the study results to ketamine’s antidepressant action can be misleading and based on a rather strong assumption which was not systematically tested in the study. We made the following changes to the manuscript:

      (1) These results constitute a rare report of a robust antidepressant-like behavioral effect produced by therapeutic doses of ketamine during acute phase (<1 hour) after injection (Introduction, 3rd paragraph, line 8-9 in the original manuscript).

      Changed to: These results constitute a rare report of an acute effect of therapeutic dose of ketamine on the processing of affectively negative events during dynamic decision-making.

      (2) We clarified in the Discussion that our study is to gain insights into, but not a systematic investigation of ketamine’s antidepressant action as follows:

      (2.1) A sentence was added (1st paragraph of Discussion): Using a token-based decision task and extensive computational modeling, we examined the behavioral modulation induced by therapeutic doses of ketamine to gain insights into possible early signs of ketamine’s antidepressant activity.

      (2.2) Consistent with the findings from humans, ketamine’s effect on outcome evaluation was acute and did not last over subsequent days (Supplemental Figure S4) (Discussion, 2nd paragraph, line 6-7 in the original manuscript).

      Changed to: While ketamine’s antidepressant effect is reported to be sustained over a week of period (5), ketamine’s effect on outcome evaluation was acute and did not last over subsequent days (Supplemental Figure S4). This discrepancy might be attributable to the possible differences in the state of brain network between healthy subjects and those with depression as well as the type of measures taken to assess ketamine’s effect.

      (2.3) A sentence was added (Discussion, last sentence of the 2nd paragraph) : Nevertheless, systematic studies are required to understand whether the reduced aversiveness to loss in our task might share the same mechanisms that underlie ketamine’s antidepressant action.

      One question that comes to mind in terms of the selectivity observed is whether similar work has been done to examine the acute effects of any other drugs. If ketamine is unique in this regard, that would be quite interesting.

      We think this is an interesting idea. However, comparing ketamine’s effect to that of other drugs is not the scope of the current study. We hope that we will be able to answer this question with future studies.

      Reviewer #2 (Public Review):

      Oemisch and Seo set out to examine the effects of low-dose ketamine on reinforcement learning, with the idea that alterations in reinforcement learning and/or motivation might inform our understanding of what alterations co-occur with potential antidepressant effects. Macaques performed a reinforced/punished matching pennies task while under effects of saline or ketamine administration and the data were fit to a series of reinforcement learning models to determine which model described behavior under saline most closely and then what parameters of this best-fitting model were altered by ketamine. They found a mixed effect, with two out of three macaques primarily exhibiting an effect of ketamine on processing of losses and one out of three macaques exhibiting an effect of ketamine on processing of losses and perseveration. They found that these effects of ketamine appeared to be dissociable from the nystagmus effects of the ketamine.

      The findings are novel and the data suggesting that ketamine is primarily having its effects on processing of losses (under the procedures used) are solid. However, it is unclear whether the connection between processing of losses and the antidepressant effects of ketamine is justified and the current findings may be more useful for those studying reinforcement learning than those studying depression and antidepressant effects. In addition, the co-occurrence of different behavioral procedures with different patterns of ketamine effects, with one macaque tested with different parameters than the other two exhibiting effects of ketamine that were best fit with a different model than the other two macaques, suggests that there may be difficulty in generalizing these findings to reinforcement learning more generally.

      (1) First, the authors should be more explicit and careful in the connection they are trying to make about the link between loss processing and depression. The authors call their effect a "robust antidepressant-like behavioral effect" but there are no references to support this or discussion of how the altered loss processing would relate directly to the antidepressant effects.

      We agree with the reviewer’s point on the way we made the connection between the study results and ketamine’s antidepressant action. This concern overlaps with the reviewer #1’s concern. Please refer to our response 2, 2-1, 2-2 and 2-3.

      (2) It appears that the monkey P was given smaller rewards and punishers than the other two monkeys and this monkey had an effect of ketamine on perseveration that was not observed in the other two monkeys. Is this believed to be due to the different task, or was this animal given a different task because of some behavioral differences that preceded the experiment? The authors should also discuss what these differences may mean for the generality of their findings. For example, might there be some set of parameters where ketamine would only alter perseveration and not processing of losses?

      Although the best-fitting ketamine model for monkey P includes an additional element – perseveration, we believe that monkey P’s baseline behavior and ketamine’s effect are not significantly different from the other two monkeys for the following reasons.

      First, monkey P was the first animal that we tested ketamine’s effect, and therefore we aimed to match the other two monkeys’ baseline behavior similar to monkey P’s behavior in order to reduce variability in ketamine’s effect potentially attributable to the difference in baseline behavior before pharmacological manipulation. We had to adjust the payoff matrix for the subsequent animals (Y and B) because these monkeys were more sensitive to loss, and seldom chose “risky” target (yielding loss). In order to make the other two monkeys’ behavior similar to that of monkey P, we adjusted the asymmetry between the risky and the safe target in the way that loss (neutral) outcome occurred from the safe (risky) target as well. Eventually, this adjustment made the baseline behavior similar across all three monkeys. The goal of the study was to reliably measure the ketamine’s effect, and not to study individual differences that can naturally occur with the same task parameters. Therefore, we believe that the adjustment of payoff matrix helped to reliably detect ketamine’s effect starting from the common baseline behavior.

      Second, the best-fitting model for monkey P (K-model 7) and that for the other two monkeys (K-model 4) make very similar predictions both qualitatively and quantitatively as are seen in the revised Figure 4. The parameters for outcome values estimated from these two models in monkey P are very similar as is seen in the revised Table 3. In addition, the difference in BIC between the model which includes only perseveration modulation (K-model 6) and the model incorporating outcome value modulation as well (K-model 7) is 441, whereas the difference in BIC between K-model 7 and the model that includes only outcome value modulation (K-model 4) is as small as 4. These BIC results indicate that the variability explained by ketamine’s modulation of outcome evaluation is remarkably larger that that explained by its modulation of perseveration in monkey P.

      Therefore, we conclude that ketamine’s effect was not significantly different between monkey P and the other two monkeys. We clarified this in the revised manuscript by adding the following paragraph in the Result section:

      “Unlike monkey Y and B, the best-fitting model for monkey P indicated that ketamine increased overall tendency to switch choice in addition to outcome-dependent modulation of outcome evaluation. However, BIC differed only slightly (dBIC = 3.99) between the best-fitting (K-model 7) and the second-best model (K-model 4) and the model predictions for choice behavior were very similar both qualitatively and quantitatively (Table 3, Figure 4). We conclude that the behavioral effects of ketamine were consistent across all three monkeys.”

      (3) The authors should discuss whether the plasma ketamine levels they observed are similar to those seen with rapid antidepressant ketamine or are higher or lower.

      We added a sentence in the first paragraph of the Result section as follows with a reference.

      “Plasma concentration and its time course over 60 minutes were also comparable to those measured after 0.5mg/kg in human subjects (35).”

      (35) Zarate CA, Brutsche N, Laje G, Luckenbaugh DA, Venkata SLV, Ramamoorthy A, et al (2012): Relationship of ketamine’s plasma metabolites with response, diagnosis, and side effects in major depression. Biol Psychiatry, 72: 331-338.

      (4) For Figure 4 or S3, the authors should show the data fitted to model 7, which was the best for one of the animals.

      We added the parameters and model predictions from both K-model 7 and K-model 4 for monkey P to help comparison between two models in Table 3, and Figure 4. Revised Table 3 and Figure 4 are as follows:

      Author response table 1.

      Maximum likelihood parameter estimates of the best models for saline and ketamine sessions.

      In all three animals, the model incorporating valence-dependent change in outcome evaluation best fit the choice data from ketamine sessions with (K-model 7 in the parenthesis, P) or without (K-model 4, P and Y/B) additional change in the tendency of choice perseveration (Figure 3, Table 3).

      Author response image 1.

      ketamine-induced behavioral modulation simulated with differential forgetting model (for saline session) and best-fitting K-model (for ketamine session).

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      The study could also valuably explore what kinds of genes experienced what forms of expression evolution. A brief description of GO terms frequently represented in genes which showed strong patterns of expression evolution might be suggestive of which selective pressures led to the changes in expression in the C. bursa-pastoris lineage, and to what extent they related to adaptation to polyploidization (e.g. cell-cycle regulators), compensating for the initial pollen and seed inviability or adapting to selfing (endosperm- or pollen-specific genes), or adaptation to abiotic conditions. ”

      We did not include a gene ontology (GO) analysis in the first place as we did not have a clear expectation on the GO terms that would be enriched in the genes that are differentially expressed between resynthesized and natural allotetraploids. Even if we only consider adaptive changes, the modifications could occur in various aspects, such as stabilizing meiosis, adapting to the new cell size, reducing hybrid incompatibility and adapting to self-fertilization. And each of these modifications involves numerous biological processes and molecular functions. As we could make post-hoc stories for too many GO terms, extrapolating at this stage have limited implications and could be misleading.

      Nonetheless, we are not the only study that compared newly resynthesized and established allopolyploids. GO terms that were repeatedly revealed by this type of exploratory analysis may give a hint for future studies. For this reason, now we have reported the results of a simple GO analysis.

      Recommendations for the authors: please note that you control which, if any, revisions, to undertake

      The majority of concerns from reviewers and the reviewing editor are in regards to the presentation of the manuscript; that the framing of the manuscript does not help the general reader understand how this work advances our knowledge of allopolyploid evolution in the broad sense. The manuscript may be challenging to read for those who aren't familiar with the study system or the genetic basis of polyploidy/gene expression regulation. Further, it is difficult to understand from the introduction how this work is novel compared to the recently published work from Duan et al and compared to other systems. Because eLife is a journal that caters to a broad readership, re-writing the introduction to bring home the novelty for the reader will be key.

      Additionally, the writing is quite technical and contains many short-hands and acronyms that can be difficult to keep straight. Revising the full text for clarity (and additionally not using acronyms) would help highlight the findings for a larger audience.

      Reviewer #1 (Recommendations For The Authors):

      Most of my suggestions on this interesting and well-written study are minor changes to clarify the writing and the statistical approaches.

      The use of abbreviations throughout for both transcriptional phenomena and lines is logical because of word limits, but for me as a reader, it really added to the cognitive burden. Even though writing out "homoeolog expression bias" or "hybridization-first" every time would add length, I would find it easier to follow and suspect others would too.

      Thank you for this suggestion. Indeed, using less uncommon acronyms or short-hands should increase the readability of the text for broader audience. Now in most places, we refer to “Sd/Sh” and “Cbp” as “resynthesized allotetraploids” and “natural allotetraploids”, respectively. We have also replaced the most occurrences of the acronyms for transcriptional phenomena (ELD, HEB and TRE) with full phrases, unless there are extra attributes before them (such as “Cg-/Co-ELD” and “relic/Cbp-specific ELD”).

      It would be helpful to include complete sample sizes to either a slightly modified Figure 1 or the beginning of the methods, just to reduce mental arithmetic ("Each of the five groups was represented by six "lines", and each line had six individuals" so there were 180 total plants, of which 167 were phenotyped - presumably the other 13 died? - and 30 were sequenced).

      The number 167 only applied to floral morphorlogical traits (“Floral morphological traits were measured for all five groups on 167 plants…”), but the exact total sample size for other traits differed. Now the total sample sizes of other traits have also been added to beginning of the second paragraph of the methods.

      For this study 180 seedings have been transplanted from Petri dishes to soil, but 8 seedlings died right after transplanting, seemingly caused by mechanical damage and insufficient moistening. Later phenotyping (2020.02-2020.05) was also disrupted by the COVID-19 pandemic, and some individuals were not measured as we missed the right life stages. Specifically, 5 individuals were missing for floral morphological traits (sepal width, sepal length, petal width, petal length, pistil width, pistil length, and stamen length), 30 for pollen traits, 1 for stem length, and 2 for flowering time. As for seed traits, we only measured individuals with more than ten fruits, so apart from the reasons mentioned above, individuals that were self-incompatible and had insufficient hand-pollination were also excluded. We spotted another mistake during the revision: two individuals with floral morphological measurements had no positional information (tray ID). These measurements were likely mis-sampled or mislabeled, and were therefore excluded from analysis. We assumed most of these missing values resulted from random technical mistakes and were not directly related to the measured traits.

      In general, the methods did a thorough job of describing the genomics approaches but could have used more detail for the plant growth (were plants randomized in the growth chamber, can you rule out block/position effects) and basic statistics (what statistical software was used to perform which tests comparing groups in each section, after the categories were identified).

      When describing the methods, mention whether the plants; this should be straightforward as a linear model with position as a covariate.

      Data used in the present study and a previously published work (Duan et al., 2023) were different subsets of a single experiment. For this reason, we spent fewer words in describing shared methods in this manuscript but tried to summarize some methods that were essential for understanding the current paper. But as you have pointed out, we did miss many important details that should have been kept. Now we have added some description and a table (Supplementary file 1) in the “Plant material” section for explaining randomization, and added more information of the software used for performing statistic tests in the “Phenotyping” section.

      Although we did not mention in the present manuscript, we used a randomized block design for the experiment (Author response image 1).

      Author response image 1.

      Plant positions inside the growth chamber. Plants used in the present study and Duan et al. (2023) were different subsets of a single experiment. The entire experiment had eight plant groups, including the five plant groups used in the present study (diploid C. orientalis (Co2), diploid C. grandiflora (Cg2), “whole-genome-duplication-first” (Sd) and “hybridization-first”(Sh) resynthesized allotetraploids, and natural allotetraploids, C. bursa pastoris (Cbp), as well as three plant groups that were only used in Duan et al. (2023; tetraploid C. orientalis (Co4), tetraploid C. grandiflora (Cg4) and diploid hybrids (F)). Each of the eight plant groups had six lines and each line represented by six plants, resulting in 288 plants (8 groups x 6 lines x 6 individuals = 288 plants). The 288 plants were grown in 36 trays placed on six shelves inside the same growth chamber. Each tray had exactly one plant from each of the eight groups, and the position of the eight plants within each tray (A-H) were randomized with random.shuffle() method in Python (Supplementary file 1). The position of the 36 trays inside the growth room (1-36) was also random and the positions of all trays were shuffled once again 28 days after germination (randomized with RAND() and sorting in Microsoft Excel Spreadsheet). (a) Plant distribution; (b) An example of one tray; (c) A view inside the growth chamber, showing the six benches.

      With the randomized block design and one round of shuffling, positional effect is very unlikely to bias the comparison among the five plant groups. The main risk of not adding positions to the statistical model is increasing error variance and decreasing the statistical power for detecting group effect. As we had already observed significant among-group variation in all phenotypic traits (p-value <2.2e-16 for group effect in most tests), further increasing statistical power is not our primary concern. In addition, during the experiment we did not notice obvious difference in plant growth related to positions. Although we could have added more variables to account for potential positional effects (tray ID, shelf ID, positions in a tray etc.), adding variables with little effect may reduce statistical power due to the loss of degree of freedom.

      Due to one round of random shuffling, positions cannot be easily added as a single continuous variable. Now we have redone all the statistical tests on phenotypic traits and included tray ID as a categorical factor (Figure 2-Source Data 1). In general, the results were similar to the models without tray ID. The F-values of group effect was only slightly changed, and p-values were almost unchanged in most cases (still < 2.2e-16). The tray effect (df=35) was not significant in most tests and was only significant in petal length (p-value=0.0111), sepal length (p-value=0.0242) and the number of seeds in ten fruits (p-value=0.0367). As expected, positions (tray ID) had limited effect on phenotypic traits.

      Figure 2 - I assume the numbers at the top indicate sample sizes but perhaps add this to the figure caption.

      Statistical power depends on both the total sample size and the sample size of each group, especially the group with the fewest observations. We lost different number of measurements in each phenotypic trait, and for pollen traits we did have a notable loss, so we chose to show sample sizes above each group to increase transparency. Since we had five different sets of sample sizes (for floral morphological traits, stem length, days to flowering, pollen traits and seed traits, respectively), it would be cumbersome to introduce all 25 numbers in figure caption and could be hard for readers to match the sample sizes with results. For this reason, we would like to keep the sample sizes in the figure, and now we have modified the legend to clarify that the numbers above groups are sample sizes.

      ’The trend has been observed in a wide range of organisms, including ...’ - perhaps group Brassica and Raphanobrassica into one clause in the sentence, since separating them out undermines the diversity somewhat.

      Indeed, it is very strange to put “cotton” between two representatives from Brassicaceae. Now the sentence is changed to “… including Brassica (Wu et al., 2018; Li et al., 2020; Wei et al., 2021) and Raphanobrassica (Ye et al., 2016), cotton (Yoo et al., 2013)…”

      The diagrams under the graph in Figure 4B are particularly helpful for understanding the expression patterns under consideration! I appreciated them a lot!

      Thank you for the comment. We also feel the direction of expression level dominance is convoluted and hard to remember, so we adopted the convention of showing the directions with diagrams.

      Reviewer #2 (Recommendations For The Authors):

      The science is very interesting and thorough, so my comments are mostly meant to improve the clarity of the manuscript text:

      • I found it challenging to remember the acronyms for the different gene expression phenomena and had to consistently cross-reference different parts of the manuscript to remind myself. I think using the full phrase once or twice at the start of a paragraph to remind readers what the acronym stands for could improve readability.

      Thank you for this reasonable suggestion. Now we have replaced the most occurrence of acronyms with the full phrases.

      • There are some technical terms, such as "homoeologous synapsis" and "disomic inheritance", which I think are under-defined in the current text.

      Indeed these terms were not well-defined before using in the manuscript. Now we have added a brief explanation for each term.

      • Under the joint action of these forces, allopolyploid subgenomes are further coordinated and degenerated, and subgenomes are often biasedly fractionated" This sentence has some unclear terminology. Does "coordinated" mean co-adapted, co-inherited, or something else? Is "biasedly fractionated" referring to biased inheritance or evolution of one of the parental subgenomes?

      We apologize for not using accurate terms. With “coordinated” we emphasized the evolution of both homoeologs depends on the selection on total expression of both homoeologs, and on both relative and absolute dosages, which may have shifted away from optima after allopolyploidization. “Co-evolved” or “co-adapted” might be a better word.

      But the term "biasedly fractionation" has been commonly used for referring to the phenomenon that genes from one subgenome of polyploids are preferentially retained during diploidization (Woodhouse et al., 2014; Wendel, 2015). Instead of inventing a new term, we prefer to keep the same term for consistency, so readers could link our findings with numerous studies in this field. Now the sentence is changed to “Under the joint action of these forces, allopolyploid subgenomes are further co-adapted and degenerated, and subgenomes are often biasedly retained, termed biased fractionation”.

      • There are a series of paragraphs in the results, starting with "Resynthesized allotetraploids and the natural Cbp had distinct floral morphologies", which consistently reference Figure 1 where they should be referencing Figure 2.

      Thank you for spotting this mistake! Now the numbers have been corrected.

      • ‘The number of pollen grains per flower decreased in natural Cbp’ this wording implies it's the effect of some experimental treatment on Cbp, rather than just measured natural variation.

      Yes, it is not scientifically precise to say this in the Results section, especially when describing details of results. We meant that assuming resynthesized allopolyploids are good approximation of the initial state of natural allotetraploid C. bursa-pastoris, our results indicate that the number of pollen grains had decreased in natural C. bursa-pastoris. But this is an implication, rather than an observation, so the sentence is better rewritten as “Natural allotetraploids had less pollen grains per flower.”

      • ‘The percentage of genes showing complete ELD was altogether limited but doubled between resynthesized allotetraploid groups and natural allotetraploids’ for clarity, I would suggest revising this to something like "doubled in natural allotetraploids relative to resynthesized allotetraploids

      Thank you for the suggestion. The sentence has been revised as suggested.

      • I'm not sure I understand what the difference is between expression-level dominance and homeolog expression bias. It seems to me like the former falls under the umbrella of the latter.

      Expression-level dominance and homeolog expression bias are easily confused, but they are conceptually independent. One gene could have expression-level dominance without any homeolog expression bias, or strong homeolog expression bias without any expression-level dominance. The concepts were well explained in Grover et al., (2012) with nice figures.

      Expression level dominance compares the total expression level of both homoeologs in allopolyploids with the expression of the same gene in parental species, and judges whether the total expression level in allopolyploids is only similar to one of the parental species. The contributions from different homoeologs are not distinguished.

      While homoeolog expression bias compares the relative expression level of each homoeologs in allopolyploids, with no implication on the total expression of both homoeologs.

      Let the expression level of one gene in parental species X and Y be e(X) and e(Y), respectively. And let the expression level of x homoeolog (from species X) and y homoeolog (from species Y) in allopolyploids be e(x) and e(y), respectively.

      Then a (complete) expression level dominance toward species X means: e(x)+e(y)=e(X) and e(x)+e(y)≠e(Y);

      While a homoeolog expression bias toward species X means: e(x) > e(y), or e(x)/e(y) > e(X)/e(Y), depending on the definition of studies.

      Both expression-level dominance and homeolog expression bias have been widely studied in allopolyploids (Combes et al., 2013; Li et al., 2014; Yoo et al., 2014; Hu & Wendel, 2019). As the two phenomena could be in opposite directions, and may be caused by different mechanisms, we think adopting the definitions in Grover et al., (2012) and distinguishing the two concepts would facilitate communication.

      • Is it possible to split up the results in Figure 7 to show which of the two homeologs was lost (i.e. orientalis vs. grandiflora)? Or at least clarify in the legend that these scenarios are pooled together in the figure?

      Maybe using acronyms without explanation made the figure titles hard to understand, but in the original Figure 7 the loss of two homoeologs were shown separately. Figure 7a,c showed the loss of C. orientalis-homoeolog (“co-expession loss”), and Figure 7b,d showed the loss of C. grandiflora-homoeolog (“cg-expession loss”). Now the legends have been modified to explain the Figure.

      • The paragraph starting with "The extant diploid species" is too long, should probably be split into two paragraphs and edited for clarity.

      The whole paragraph was used to explain why the resynthesized allotetraploids could be a realistic approximation of the early stage of C. bursa-pastoris with two arguments:

      1) The further divergence between C. grandiflora and C. orientalis after the formation of C. bursa-pastoris should be small compared to the total divergence between the two parental species; 2) The mating systems of real parental populations were most likely the same as today. Now the two arguments were separated as two paragraphs, and the second paragraph has been shortened.

      • On the other hand, the number of seeds per fruit" implies this is evidence for an alternative hypothesis, when I think it's really just more support for the same idea.

      “On the other hand” was used to contrast the reduced number of pollen grains and the increased number of seeds in natural allotetraploids. As both changes are typical selfing syndrome, indeed the two support the same idea. We replaced the “On the other hand” with “Moreover”.

      • ‘has become self-compatible before the formation" "has become" should be "became".

      The tense of the word has been changed.

      • If natural C. bursa-pastoris indeed originated from the hybridization between C. grandiflora-like outcrossing plants and C. orientalis-like self-fertilizing plants, the selfing syndrome in C. bursa-pastoris does not reflect the instant dominance effect of the C. orientalis alleles, but evolved afterward.’ This sentence should be closer to the end of the paragraph, after the main morphological results are summarized.

      Thank you for the suggestion. The paragraph is indeed more coherent after moving the conclusion sentence.

      References

      Combes, M.C., Dereeper, A., Severac, D., Bertrand, B. & Lashermes, P. (2013) Contribution of subgenomes to the transcriptome and their intertwined regulation in the allopolyploid Coffea arabica grown at contrasted temperatures. New Phytologist, 200, 251–260.

      Grover, C.E., Gallagher, J.P., Szadkowski, E.P., Yoo, M.J., Flagel, L.E. & Wendel, J.F. (2012) Homoeolog expression bias and expression level dominance in allopolyploids. New Phytologist, 196, 966–971.

      Hu, G. & Wendel, J.F. (2019) Cis – trans controls and regulatory novelty accompanying allopolyploidization. New Phytologist, 221, 1691–1700.

      Li, A., Liu, D., Wu, J., Zhao, X., Hao, M., Geng, S., et al. (2014) mRNA and Small RNA Transcriptomes Reveal Insights into Dynamic Homoeolog Regulation of Allopolyploid Heterosis in

      Nascent Hexaploid Wheat. The Plant Cell, 26, 1878–1900. Wendel, J.F. (2015) The wondrous cycles of polyploidy in plants. American Journal of Botany, 102, 1753–1756.

      Woodhouse, M.R., Cheng, F., Pires, J.C., Lisch, D., Freeling, M. & Wang, X. (2014) Origin, inheritance, and gene regulatory consequences of genome dominance in polyploids. Proceedings of the National Academy of Sciences of the United States of America, 111, 5283–5288.

      Yoo, M.J., Liu, X., Pires, J.C., Soltis, P.S. & Soltis, D.E. (2014) Nonadditive Gene Expression in Polyploids. https://doi.org/10.1146/annurev-genet-120213-092159, 48, 485–517.

    1. Author response:

      The following is the authors’ response to the original reviews.

      As you will see, the main changes in the revised manuscript pertain to the structure and content of the introduction. Specifically, we have tried to more clearly introduce our paradigm, the rationale behind the paradigm, why it is different from learning paradigms, and why we study “relief”.

      In this rebuttal letter, we will go over the reviewers’ comments one-by-one and highlight how we have adapted our manuscript accordingly. However, because one concern was raised by all reviewers, we will start with an in-depth discussion of this concern.

      The shared concern pertained to the validity of the EVA task as a model to study threat omission responses. Specifically, all reviewers questioned the effectivity of our so-called “inaccurate”, “false” or “ruse” instructions in triggering an equivalent level of shock expectancy, and relatedly, how this effectivity was affected by dynamic learning over the course of the task.

      We want to thank the reviewers for raising this important issue. Indeed, it is a vital part of our design and it therefore deserves considerable attention. It is now clear to us that in the previous version of the manuscript we may have focused too little on why we moved away from a learning paradigm, and how we made sure that the instructions were successful at raising the necessary expectations; and how the instructions were affected by learning. We believe this has resulted in some misunderstandings, which consequently may have cast doubts on our results. In the following sections, we will go into these issues.

      The rationale behind our instructed design

      The main aim of our study was to investigate brain responses to unexpected omissions of threat in greater detail by examining their similarity to the reward prediction error axioms (Caplin & Dean, 2008), and exploring the link with subjective relief. Specifically, we hypothesized that omission-related responses should be dependent on the probability and the intensity of the expected-but-omitted aversive event (i.e., electrical stimulation), meaning that the response should be larger when the expected stimulation was stronger and more expected, and that fully predicted outcomes should not trigger a difference in responding.

      To this end, we required that participants had varying levels of threat probability and intensity predictions, and that these predictions would most of the time be violated. Although we fully agree with the reviewers that fear conditioning and extinction paradigms can provide an excellent way to track the teaching properties of prediction error responses (i.e., how they are used to update expectancies on future trials), we argued that they are less suited to create the varying probability and intensity-related conditions we required (see Willems & Vervliet, 2021). Specifically, in a standard conditioning task participants generally learn fast, rendering relatively few trials on which the prediction is violated. As a result, there is generally little intraindividual variability in the prediction error responses. This precludes an in-depth analysis of the probability-related effects. Furthermore, conditioning paradigms generally only include one level of aversive outcome: the electrical stimulation is either delivered or omitted. As a result, intensity-related effects cannot be tested. Finally, because CS-US contingencies change over the course of a fear conditioning and extinction study (e.g. from acquisition to extinction), there is never complete certainty about when the US will (not) follow. This precludes a direct comparison of fully predicted outcomes.

      Another added value of studying responses to the prediction error at threat omission outside a learning context is that it can offer a way to disentangle responses to the violation of threat expectancy, with those of subsequent expectancy updating.

      Also note that Rutledge and colleagues (2010), who were the first to show that human fMRI responses in the Nucleus Accumbens comply to the reward prediction error axioms also did not use learning experiences to induce expectancy. In that sense, we argued it was not necessary to adopt a learning paradigm to study threat omission responses.

      Adaptations in the revised manuscript: We included two new paragraphs in the introduction of the revised manuscript to elaborate on why we opted not to use a learning paradigm in the present study (lines 90-112).

      “However, is a correlation with the theoretical PE over time sufficient for neural activations/relief to be classified as a PE-signal? In the context of reward, Caplin and colleagues proposed three necessary and sufficient criteria all PE-signals should comply to, independent of the exact operationalizations of expectancy and reward (the socalled axiomatic approach24,25; which has also been applied to aversive PE26–28). Specifically, the magnitude of a PE signal should: (1) be positively related to the magnitude of the reward (larger rewards trigger larger PEs); (2) be negatively related to likelihood of the reward (more probable rewards trigger smaller PEs); and (3) not differentiate between fully predicted outcomes of different magnitudes (if there is no error in prediction, there should be no difference in the PE signal).”

      “It is evident that fear conditioning and extinction paradigms have been invaluable for studying the role of the threat omission PE within a learning context. However, these paradigms are not tailored to create the varying intensity and probability-related conditions that are required to evaluate the threat omission PE in the light of the PE axioms. First, conditioning paradigms generally only include one level of aversive outcome: the electrical stimulation is either delivered or omitted. As a result, the magnitude-related axiom cannot be tested. Second, in conditioning tasks people generally learn fast, rendering relatively few trials on which the prediction is violated. As a result, there is generally little intra-individual variability in the PE responses. Moreover, because of the relatively low signal to noise ratio in fMRI measures, fear extinction studies often pool across trials to compare omission-related activity between early and late extinction16, which further reduces the necessary variability to properly evaluate the probability axiom. Third, because CS-US contingencies change over the course of the task (e.g. from acquisition to extinction), there is never complete certainty about whether the US will (not) follow. This precludes a direct comparison of fully predicted outcomes. Finally, within a learning context, it remains unclear whether PErelated responses are in fact responses to the violation of expectancy itself, or whether they are the result of subsequent expectancy updating.”

      Can verbal instructions be used to raise the expectancy of shock?

      The most straightforward way to obtain sufficient variability in both probability and intensityrelated predictions is by directly providing participants with instructions on the probability and intensity of the electrical stimulation. In a previous behavioral study, we have shown that omission responses (self-reported relief and omission SCR) indeed varied with these instructions (Willems & Vervliet, 2021). In addition, the manipulation checks that are reported in the supplemental material provided further support that the verbal instructions were effective at raising the associated expectancy of stimulation. Specifically, participants recollected having received more stimulations after higher probability instructions (see Supplemental Figure 2). Furthermore, we found that anticipatory SCR, which we used as a proxy of fearful expectation, increased with increasing probability and intensity (see Supplemental Figure 3). This suggests that it is not necessary to have expectation based on previous experience if we want to evaluate threat omission responses in the light of the prediction error axioms.

      Adaptations in the revised manuscript: We more clearly referred to the manipulation checks that are presented in the supplementary material in the results section of the main paper (lines 135-141).

      “The verbal instructions were effective at raising the expectation of receiving the electrical stimulation in line with the provided probability and intensity levels. Anticipatory SCR, which we used as a proxy of fearful expectation, increased as a function of the probability and intensity instructions (see Supplementary Figure 3). Accordingly, post-experimental questions revealed that by the end of the experiment participants recollected having received more stimulations after higher probability instructions, and were willing to exert more effort to prevent stronger hypothetical stimulations (see Supplementary Figure 2).”

      How did the inconsistency between the instructed and experienced probability impact our results?

      All reviewers questioned how the inconsistency between the instructed and experienced probability might have impacted the probability-related results. However, judging from the way the comments were framed, it seems that part of the concern was based on a misunderstanding of the design we employed. Specifically, reviewer 1 mentions that “To ensure that the number of omissions is similar across conditions, the task employs inaccurate verbal instructions; I.e., 25% of shocks are omitted regardless of whether subjects are told that the probability is 100%, 75%, 50%, 25%, 0%.”, and reviewer 3 states that “... the fact remains that they do not get shocks outside of the 100% probability shock. So learning is occurring, at least for subjects who realize the probability cue is actually a ruse.” We want to emphasize that this was not what we did, and if it were true, we fully agree with the reviewers that it would have caused serious trust- and learning related issues, given that it would be immediately evident to participants that probability instructions were false. It is clear that under such circumstances, dynamic learning would be a big issue.

      However, in our task 0% and 100% instructions were always accurate. This means that participants never received a stimulus following 0% instructions and always received the stimulation of the given intensity on the 100% instructions (see Supplemental Figure 1 for an overview of the trial types). Only for the 25%, 50% and 75% trials an equal reinforcement rate (25%) was maintained, meaning that the stimulation followed in 25% of the trials, irrespective of whether a 25%, 50% or 75% instruction was given. The reason for this was that we wanted to maximize and balance the number of omission trials across the different probability levels, while also keeping the total number of presentations per probability instruction constant. We reasoned that equating the reinforcement rate across the 25%, 50% and 75% instructions should not be detrimental, because (1) in these trials there was always the possibility that a stimulation would follow; and (2) we instructed the participants that each trial is independent of the previous ones, which should have discouraged them to actively count the number of shocks in order to predict future shocks.

      Adaptations in the revised manuscript: We have tried to further clarify the design in several sections of the manuscript, including the introduction (lines 121-125), results (line 220) and methods (lines 478-484) sections:

      Adaptation in the Introduction section: “Specifically, participants received trial-by-trial instructions about the probability (0%, 25%, 50%, 75% and 100%) and intensity (weak, moderate, strong) of a potentially painful upcoming electrical stimulation, time-locked by a countdown clock (see Fig.1A). While stimulations were always delivered on 100% trials and never on 0% trials, most of the other trials (25%-75%) did not contain the expected stimulation and hence provoked an omission PE.”

      Adaptation in the Results section: “Indeed, the provided instructions did not map exactly onto the actually experienced probabilities, but were all followed by stimulation in 25% on the trials (except for the 0% trials and the 100% trials).”

      Adaptation in the Methods section: “Since we were mainly interested in how omissions of threat are processed, we wanted to maximize and balance the number of omission trials across the different probability and intensity levels, while also keeping the total number of presentations per probability and intensity instruction constant. Therefore, we crossed all non-0% probability levels (25, 50, 75, 100) with all intensity levels (weak, moderate, strong) (12 trials). The three 100% trials were always followed by the stimulation of the instructed intensity, while stimulations were omitted in the remaining nine trials. Six additional trials were intermixed in each run: Three 0% omission trials with the information that no electrical stimulation would follow (akin to 0% Probability information, but without any Intensity information as it does not apply); and three trials from the Probability x Intensity matrix that were followed by electrical stimulation (across the four runs, each Probability x Intensity combination was paired at least once, and at most twice with the electrical stimulation).”

      Could the incongruence between the instructed and experienced reinforcement rate have detrimental effects on the probability effect? We agree with reviewer 2 that it is possible that the inconsistency between instructed and experienced reinforcement rates could have rendered the exact probability information less informative to participants, which might have resulted in them paying less attention to the probability information whenever the probability was not 0% or 100%. This might to some extent explain the relatively larger difference in responding between 0% and 25% to 75% trials, but the relatively smaller differences between the 25% to 75% trials.

      However, there are good reasons to believe that the relatively smaller difference between 25% to 75% trials was not caused by the “inaccurate” nature of our instructions, but is inherent to “uncertain” probabilities.

      We added a description of these reasons to the supplementary materials in a supplementary note (supplementary note 4; lines 97-129 in supplementary materials), and added a reference to this note in the methods section (lines 488-490).

      “Supplementary Note 4: “Accurate” probability instructions do not alter the Probability-effect

      A question that was raised by the reviewers was whether the inconsistency between the probability instruction and the experienced reinforcement rate could have detrimental effects on the Probability-related results; especially because the effect of Probability was smaller when only including non-0% trials.

      However, there are good reasons to believe that the relatively smaller difference between 25% to 75% trials was not caused by the “inaccurate” nature of our instructions, but that they are inherent to “uncertain” probabilities.

      First, in a previously unpublished pilot study, we provided participants with “accurate” probability instructions, meaning that the instruction corresponded to the actual reinforcement rate (e.g., 75% instructions were followed by a stimulation in 75% of the trials etc.). In line with the present results and our previous behavioral study (Willems & Vervliet, 2021), the results of this pilot (N = 20) showed that the difference in the reported relief between the different probability levels was largest when comparing 0% and the rest (25%, 50% and 75%). Furthermore the overall effect size of Probability (excluding 0%) matched the one of our previous behavioral study (Willems & Vervliet, 2021): ηp2 = +/- 0.50.”

      Author response image 1.

      Main effect of Probability including 0% : F(1.74,31.23) = 53.94, p < .001, ηp2 = 0.75. Main effect of Probability excluding 0%: F(1.50, 28.43) = 21.03, p < .001, ηp2 = 0.53.

      Second, also in other published studies that used CSs with varying reinforcement rates (which either included explicit written instructions of the reinforcement rates or not) showed that the difference in expectations, anticipatory SCR or omission SCR was largest when comparing the CS0% to the other CSs of varying reinforcement rates (Grings & Sukoneck, 1971; Öhman et al., 1973; Ojala et al., 2022).

      Together, this suggests that when there is a possibility of stimulation, any additional difference in probability will have a smaller effect on the omission responses, irrespective of whether the underlying reinforcement rate is accurate or not.

      Adaptation to methods section: “Note that, based on previous research, we did not expect the inconsistency between the instructed and perceived reinforcement rate to have a negative effect on the Probability manipulation (see Supplementary Note 4).”

      Did dynamic learning impact the believability of the instructions?

      Although we tried to minimize learning in our paradigm by providing instructions that trials are independent from one another, we agree with the reviewers that this cannot preclude all learning. Any remaining learning effects should present themselves by downweighing the effect of the probability instructions over time. We controlled for this time-effect by including a “run” regressor in our analyses. Results of the Run regressor for subjective relief and omission-related SCR are presented in Supplemental Figure 5. These figures show that although there was a general drop in reported relief pleasantness and omission SCR over time, the effects of probability and intensity remained present until the last run. This indicates that even though some learning might have taken place, the main manipulations of probability and intensity were still present until the end of the task.

      Adaptations in the revised manuscript: We more clearly referred to the results of the Blockregressor which were presented in the supplementary material in the results section of the main paper (lines 159-162).

      Note that while there was a general drop in reported relief pleasantness and omission SCR over time, the effects of Probability and Intensity remained present until the last run (see Supplementary Figure 5). This further confirms that probability and intensity manipulations were effective until the end of the task.

      In the following sections of the rebuttal letter, we will go over the rest of the comments and our responses one by one.

      Reviewer #1 (Public Review):

      Summary:

      Willems and colleagues test whether unexpected shock omissions are associated with reward-related prediction errors by using an axiomatic approach to investigate brain activation in response to unexpected shock omission. Using an elegant design that parametrically varies shock expectancy through verbal instructions, they see a variety of responses in reward-related networks, only some of which adhere to the axioms necessary for prediction error. In addition, there were associations between omission-related responses and subjective relief. They also use machine learning to predict relief-related pleasantness, and find that none of the a priori "reward" regions were predictive of relief, which is an interesting finding that can be validated and pursued in future work.

      Strengths:

      The authors pre-registered their approach and the analyses are sound. In particular, the axiomatic approach tests whether a given region can truly be called a reward prediction error. Although several a priori regions of interest satisfied a subset of axioms, no ROI satisfied all three axioms, and the authors were candid about this. A second strength was their use of machine learning to identify a relief-related classifier. Interestingly, none of the ROIs that have been traditionally implicated in reward prediction error reliably predicted relief, which opens important questions for future research.

      Weaknesses:

      To ensure that the number of omissions is similar across conditions, the task employs inaccurate verbal instructions; i.e. 25% of shocks are omitted, regardless of whether subjects are told that the probability is 100%, 75%, 50%, 25%, or 0%. Given previous findings on interactions between verbal instruction and experiential learning (Doll et al., 2009; Li et al., 2011; Atlas et al., 2016), it seems problematic a) to treat the instructions as veridical and b) average responses over time. Based on this prior work, it seems reasonable to assume that participants would learn to downweight the instructions over time through learning (particularly in the 100% and 0% cases); this would be the purpose of prediction errors as a teaching signal. The authors do recognize this and perform a subset analysis in the 21 participants who showed parametric increases in anticipatory SCR as a function of instructed shock probability, which strengthened findings in the VTA/SN; however given that one-third of participants (n=10) did not show parametric SCR in response to instructions, it seems like some learning did occur. As prediction error is so important to such learning, a weakness of the paper is that conclusions about prediction error might differ if dynamic learning were taken into account.

      We thank the reviewer for raising this important concern. We believe we replied to all the issues raised in the general reply above.

      Lastly, I think that findings in threat-sensitive regions such as the anterior insula and amygdala may not be adequately captured in the title or abstract which strictly refers to the "human reward system"; more nuance would also be warranted.

      We fully agree with this comment and have changed the title and abstract accordingly.

      Adaptations in the revised manuscript: We adapted the title of the manuscript.

      “Omissions of Threat Trigger Subjective Relief and Prediction Error-Like Signaling in the Human Reward and Salience Systems”

      Adaptations in the revised manuscript: We adapted the abstract (lines 27-29).

      “In line with recent animal data, we showed that the unexpected omission of (painful) electrical stimulation triggers activations within key regions of the reward and salience pathways and that these activations correlate with the pleasantness of the reported relief.”

      Reviewer #2 (Public Review):

      The question of whether the neural mechanisms for reward and punishment learning are similar has been a constant debate over the last two decades. Numerous studies have shown that the midbrain dopamine neurons respond to both negative and salient stimuli, some of which can't be well accounted for by the classic RL theory (Delgado et al., 2007). Other research even proposed that aversive learning can be viewed as reward learning, by treating the omission of aversive stimuli as a negative PE (Seymour et al., 2004).

      Although the current study took an axiomatic approach to search for the PE encoding brain regions, which I like, I have major concerns regarding their experimental design and hence the results they obtained. My biggest concern comes from the false description of their task to the participants. To increase the number of "valid" trials for data analysis, the instructed and actual probabilities were different. Under such a circumstance, testing axiom 2 seems completely artificial. How does the experimenter know that the participants truly believe that the 75% is more probable than, say, the 25% stimulation? The potential confusion of the subjects may explain why the SCR and relief report were rather flat across the instructed probability range, and some of the canonical PE encoding regions showed a rather mixed activity pattern across different probabilities. Also for the post-hoc selection criteria, why pick the larger SCR in the 75% compared to the 25% instructions? How would the results change if other criteria were used?

      We thank the reviewer for raising this important concern. We believe the general reply above covers most of the issues raised in this comment. Concerning the post-hoc selection criteria, we took 25% < 75% as criterium because this was a quite “lenient” criterium in the sense that it looked only at the effects of interest (i.e., did anticipatory SCR increase with increasing instructed probability?). However, also when the criterium was more strict (e.g., selecting participants only if their anticipatory SCR monotonically increased with each increase in instructed probability 0% < 25% < 50% < 75% < 100%, N = 11 participants), the probability effect (ωp2 = 0.08), but not the intensity effect, for the VTA/SN remained.

      To test axiom 3, which was to compare the 100% stimulation to the 0% stimulation conditions, how did the actual shock delivery affect the fMRI contrast result? It would be more reasonable if this analysis could control for the shock delivery, which itself could contaminate the fMRI signal, with extra confound that subjects may engage certain behavioral strategies to "prepare for" the aversive outcome in the 100% stimulation condition. Therefore, I agree with the authors that this contrast may not be a good way to test axiom 3, not only because of the arguments made in the discussion but also the technical complexities involved in the contrast.

      We thank the reviewer for addressing this additional confound. It was indeed impossible to control for the delivery of shock since the delivery of the shock was always present on the 100% trials (and thus completely overlapped with the contrast of interest). We added this limitation to our discussion in the manuscript. In addition, we have also added a suggestion for a contrast that can test the “no surprise equivalence” criterium.

      Adaptations in the revised manuscript: We adapted lines 358-364.

      “Thus, given that we could not control for the delivery of the stimulation in the 100% > 0% contrast (the delivery of the stimulation completely overlapped with the contrast of interest), it is impossible to disentangle responses to the salience of the stimulation from those to the predictability of the outcome. A fairer evaluation of the third axiom would require outcomes that are roughly similar in terms of salience. When evaluating threat omission PE, this implies comparing fully expected threat omissions following 0% instructions to fully expected absence of stimulation at another point in the task (e.g. during a safe intertrial interval).”

      Reviewer #3 (Public Review):

      We thank the reviewer for their comments. Overall, based on the reviewer’s comments, we noticed that there was an imbalance between a focus on “relief” in the introduction and the rest of the manuscript and preregistration. We believe this focus raised the expectation that all outcome measures were interpreted in terms of the relief emotion. However, this was not what we did nor what we preregistered. We therefore restructured the introduction to reduce the focus on relief.

      Adaptations in the revised manuscript: We restructured the introduction of the manuscript. Specifically, after our opening sentence: “We experience a pleasurable relief when an expected threat stays away1” we only introduce the role of relief for our research in lines 79-89.

      “Interestingly, unexpected omissions of threat not only trigger neural activations that resemble a reward PE, they are also accompanied by a pleasurable emotional experience: relief. Because these feelings of relief coincide with the PE at threat omission, relief has been proposed to be an emotional correlate of the threat omission PE. Indeed, emerging evidence has shown that subjective experiences of relief follow the same time-course as theoretical PE during fear extinction. Participants in fear extinction experiments report high levels of relief pleasantness during early US omissions (when the omission was unexpected and the theoretical PE was high) and decreasing relief pleasantness over later omissions (when the omission was expected and the theoretical PE was low)22,23. Accordingly, preliminary fMRI evidence has shown that the pleasantness of this relief is correlated to activations in the NAC at the time of threat omission. In that sense, studying relief may offer important insights in the mechanism driving safety learning.”

      Summary:

      The authors conducted a human fMRI study investigating the omission of expected electrical shocks with varying probabilities. Participants were informed of the probability of shock and shock intensity trial-by-trial. The time point corresponding to the absence of the expected shock (with varying probability) was framed as a prediction error producing the cognitive state of relief/pleasure for the participant. fMRI activity in the VTA/SN and ventral putamen corresponded to the surprising omission of a high probability shock. Participants' subjective relief at having not been shocked correlated with activity in brain regions typically associated with reward-prediction errors. The overall conclusion of the manuscript was that the absence of an expected aversive outcome in human fMRI looks like a reward-prediction error seen in other studies that use positive outcomes.

      Strengths:

      Overall, I found this to be a well-written human neuroimaging study investigating an often overlooked question on the role of aversive prediction errors, and how they may differ from reward-related prediction errors. The paper is well-written and the fMRI methods seem mostly rigorous and solid.

      Weaknesses:

      I did have some confusion over the use of the term "prediction-error" however as it is being used in this task. There is certainly an expectancy violation when participants are told there is a high probability of shock, and it doesn't occur. Yet, there is no relevant learning or updating, and participants are explicitly told that each trial is independent and the outcome (or lack thereof) does not affect the chances of getting the shock on another trial with the same instructed outcome probability. Prediction errors are primarily used in the context of a learning model (reinforcement learning, etc.), but without a need to learn, the utility of that signal is unclear.

      We operationalized “prediction error” as the response to the error in prediction or the violation of expectancy at the time of threat omission. In that sense, prediction error and expectancy violation (which is more commonly used in clinical research and psychotherapy; Craske et al., 2014) are synonymous. While prediction errors (or expectancy violations) are predominantly studied in learning situations, the definition in itself does not specify how the “expectancy” or “prediction” arises: whether it was through learning based on previous experience or through mere instruction. The rationale why we moved away from a conditioning study in the present manuscript is discussed in our general reply above.

      We agree with the reviewer that studying prediction errors outside a learning context limits the ecological validity of the task. However, we do believe there is also a strength to this approach. Specifically, the omission-related responses we measure are less confounded by subsequent learning (or updating of the wrongful expectation). Any difference between our results and prediction error responses in learning situation can therefore point to this exact difference in paradigm, and can thus identify responses that are specific to learning situations.

      An overarching question posed by the researchers is whether relief from not receiving a shock is a reward. They take as neural evidence activity in regions usually associated with reward prediction errors, like the VTA/SN . This seems to be a strong case of reverse inference. The evidence may have been stronger had the authors compared activity to a reward prediction error, for example using a similar task but with reward outcomes. As it stands, the neural evidence that the absence of shock is actually "pleasurable" is limited-albeit there is a subjective report asking subjects if they felt relief.

      We thank the reviewer for cautioning us and letting us critically reflect on our interpretation. We agree that it is important not to be overly enthusiastic when interpreting fMRI results and to attribute carelessly psychological functions to mere activations. Therefore, we will elaborate on the precautions we took not to minimize detrimental reverse inference.

      First, prior to analyzing our results, we preregistered clear hypotheses that were based on previous research, in addition to clear predictions, regions of interest and a testing approach on OSF. With our study, we wanted to investigate whether unexpected omissions of threat: (1) triggered activations in the VTA/SN, putamen, NAc and vmPFC (as has previously been shown in animal and human studies); (2) represent PE signals; and (3) were related to self-reported relief, which has also been shown to follow a PE time-curve in fear extinction (Vervliet et al., 2017). Based on previous research, we selected three criteria all PE signals should comply to. This means that if omission-related activations were to represent true PE signals, they should comply to these criteria. However, we agree that it would go too far to conclude based on our research that relief is a reward, or even that the omission-related activations represent only PE signals. While we found support for most of our hypotheses, this does not preclude alternative explanations. In fact, in the discussion, we acknowledge this and also discuss alternative explanations, such as responding to the salience (lines 395-397; “One potential explanation is therefore that the deactivation resulted from a switch from default mode to salience network, triggered by the salience of the unexpected threat omission or by the salience of the experienced stimulation.”), or anticipation (line 425-426; “... we cannot conclusively dismiss the alternative interpretation that we assessed (part of) expectancy instead”).

      Second, we have deliberately opted to only use descriptive labels such as omission-related activations when we are discussing fMRI results. Only when we are talking about how the activations were related to self-reported relief, we talk about relief-related activations.

      I have some other comments, and I elaborate on those above comments, below:

      (1) A major assumption in the paper is that the unexpected absence of danger constitutes a pleasurable event, as stated in the opening sentence of the abstract. This may sometimes be the case, but it is not universal across contexts or people. For instance, for pathological fears, any relief derived from exposure may be short-lived (the dog didn't bite me this time, but that doesn't mean it won't next time or that all dogs are safe). And even if the subjective feeling one gets is temporary relief at that moment when the expected aversive event is not delivered, I believe there is an overall conflation between the concepts of relief and pleasure throughout the manuscript. Overall, the manuscript seems to be framed on the assumption that "aversive expectations can transform neutral outcomes into pleasurable events," but this is situationally dependent and is not a common psychological construct as far as I am aware.

      We thank the reviewer for their comment. We have restructured the introduction because we agree with the reviewer that the introduction might have set false expectations concerning our interpretation of the results. The statements related to relief have been toned down in the revised manuscript.

      Still, we want to note that the initial opening statement “unexpected absence of danger constitutes the pleasurable emotion relief” was based on a commonly used definition of relief that states that relief refers to “the emotion that is triggered by the absence of expected or previously experienced negative stimulation ” (Deutsch, 2015). Both aspects that it is elicited by the absence of an otherwise expected aversive event and that it is pleasurable in nature has received considerable empirical support in emotion and fear conditioning research (Deutsch et al., 2015; Leknes et al., 2011; Papalini et al., 2021; Vervliet et al., 2017; Willems & Vervliet, 2021).

      That said, the notion that the feeling of relief is linked to the (reward) prediction error underlying the learning of safety is included in several theoretical papers in order to explain the commonly observed dopaminergic response at the time of threat omission (both in animals and humans; Bouton et al., 2020; Kalisch et al., 2019; Pittig et al., 2020).

      Together, these studies indicate that the definition of relief, and its potential role in threat omission-driven learning is – at least in our research field – established. Still, we felt that more direct research linking feelings of relief to omission-related brain responses was warranted.

      One of the main reasons why we specifically focus on the “pleasantness” of the relief is to assess the hedonic impact of the threat omission, as has been done in previous studies by our lab and others (Leknes et al., 2011; Leng et al., 2022; Papalini et al., 2021; Vervliet et al., 2017; Willems & Vervliet, 2021). Nevertheless, we agree with the reviewer that the relief we measure is a short-lived emotional state that is subjected to individual differences (as are all emotions).

      (2) The authors allude to this limitation, but I think it is critical. Specifically, the study takes a rather simplistic approach to prediction errors. It treats the instructed probability as the subjects' expectancy level and treats the prediction error as omission related activity to this instructed probability. There is no modeling, and any dynamic parameters affected by learning are unaccounted for in this design . That is subjects are informed that each trial is independently determined and so there is no learning "the presence/absence of stimulations on previous trials could not predict the presence/absence of stimulation on future trials." Prediction errors are central to learning. It is unclear if the "relief" subjects feel on not getting a shock on a high-probability trial is in any way analogous to a prediction error, because there is no reason to update your representation on future trials if they are all truly independent. The construct validity of the design is in question.

      (3) Related to the above point, even if subjects veered away from learning by the instruction that each trial is independent, the fact remains that they do not get shocks outside of the 100% probability shock. So learning is occurring, at least for subjects who realize the probability cue is actually a ruse.

      We thank the reviewer for raising these concerns. We believe that the general reply above covers the issues raised in points 2 and 3.

      (4) Bouton has described very well how the absence of expected threat during extinction can create a feeling of ambiguity and uncertainty regarding the signal value of the CS. This in large part explains the contextual dependence of extinction and the "return of fear" that is so prominent even in psychologically healthy participants. The relief people feel when not receiving an expected shock would seem to have little bearing on changing the long-term value of the CS. In any event, the authors do talk about conditioning (CS-US) in the paper, but this is not a typical conditioning study, as there is no learning.

      We fully agree with the reviewer that our study is no typical conditioning study. Nevertheless, because our research mostly builds on recent advances in the fear extinction domain, we felt it was necessary to introduce the fear extinction procedure and related findings. In the context of fear extinction learning, we have previously shown that relief is an emotional correlate of the prediction error driving acquisition of the novel safety memory (CSnoUS; Papalini et al., 2021; Vervliet et al., 2017). The ambiguity Bouton describes is the result of extinguished CS holding multiple meanings once the safety memory is acquired. Does it signal danger or safety? We agree with Bouton that the meaning of the CS for any new encounter will depend on the context, and the passage of time, but also on the initial strength of the safety acquisition (which is dependent on the size of the prediction error, and hence the amount of relief; Craske et al., 2014). However, it was not our objective to directly study the relation of relief to subsequent CS value, and our design is not tailored to do so post hoc.

      (5) In Figure 2 A-D, the omission responses are plotted on trials with varying levels of probability. However, it seems to be missing omission responses in 0% trials in these brain regions. As depicted, it is an incomplete view of activity across the different trial types of increasing threat probability.

      We thank the reviewer for pointing out this unclarity. The betas that are presented in the figures represent the ROI averages from each non-0% vs 0% contrasts (i.e., 25%>0%; 50%>0%; and 75%>0% for the weak, moderate and strong intensity levels). Any positive beta therefore indicates a stronger activation in the given region compared to a fully predicted omission. Any negative beta indicates a weaker activation.

      Adaptations in the revised manuscript: We have adapted the figure captions of figures 2 and 3.

      “The extracted beta-estimates in figures A-D represent the ROI averages from each non0% > 0% contrast (i.e., 25%>0%; 50%>0%; and 75%>0% for the weak, moderate and strong intensity levels). Any positive beta therefore indicates a stronger activation in the given region compared to a fully predicted omission. Any negative beta indicates a weaker activation.”

      (6) If I understand Figure 2 panels E-H, these are plotting responses to the shock versus no-shock (when no-shock was expected). It is unclear why this would be especially informative, as it would just be showing activity associated with shocks versus no-shocks. If the goal was to use this as a way to compare positive and negative prediction errors, the shock would induce widespread activity that is not necessarily reflective of a prediction error. It is simply a response to a shock. Comparing activity to shocks delivered after varying levels of probability (e.g., a shock delivered at 25% expectancy, versus 75%, versus 100%) would seem to be a much better test of a prediction error signal than shock versus no-shock.

      We thank the reviewer for this comment. The purpose of this preregistered contrast was to test whether fully predicted outcomes elicited equivalent activations in our ROIs (corresponding to the third prediction error axiom). Specifically, if a region represents a pure prediction error signal, the 100% (fully predicted shocks) > 0% (fully predicted shock omissions) contrast should be nonsignificant, and follow-up Bayes Factors would further provide evidence in favor of this null-hypothesis.

      We agree with the reviewer that the delivery of the stimulation triggers widespread activations in our regions of interest that confounded this contrast. However, given that it was a preregistered test for the prediction error axioms, we cannot remove it from the manuscript. Instead, we have argued in the discussion that future studies who want to take an axiomatic stance should consider alternative tests to examine this axiom.

      Adaptations in the revised manuscript: We adapted lines 358-364.

      “Thus, given that we could not control for the delivery of the stimulation in the 100% > 0% contrast (the delivery of the stimulation completely overlapped with the contrast of interest), it is impossible to disentangle responses to the salience of the stimulation from those to the predictability of the outcome. A fairer evaluation of the third axiom would require outcomes that are roughly similar in terms of salience. When evaluating threat omission PE, this implies comparing fully expected threat omissions following 0% instructions to fully expected absence of stimulation at another point in the task (e.g. during a safe intertrial interval).”

      Also note that our task did not lend itself for an in-depth analysis of aversive (worse-thanexpected) prediction error signals, given that there was only one stimulation trial for each probability x intensity level (see Supplemental Figure 1). The most informative contrast that can inform us about aversive prediction error signals contrasts all non-100% stimulation trials with all 100% stimulation trials. The results of this contrast are presented in Supplemental Figure 16 and Supplemental Table 11 for completeness.

      (7) I was unclear what the results in Figure 3 E-H were showing that was unique from panels A-D, or where it was described. The images looked redundant from the images in A-D. I see that they come from different contrasts (non0% > 0%; 100% > 0%), but I was unclear why that was included.

      We thank the reviewer for this comment. Our answer is related to that of the previous comment. Figure 3 presents the results of the axiomatic tests within the secondary ROIs we extracted from a wider secondary mask based on the non0%>0% contrast.

      (8) As mentioned earlier, there is a tendency to imply that subjects felt relief because there was activity in "the reward pathway ."

      We thank the reviewer for their comment, but we respectfully disagree. Subjective relief was explicitly probed when the instructed stimulations stayed away. In the manuscript we only talk about “relief” when discussing these subjective reports. We found that participants reported higher levels of relief-pleasantness following omissions of stronger and more probable threat. This was an observation that matches our predictions and replicates our previous behavioral study (Willems & Vervliet, 2021).

      The fMRI evidence is treated separately from the “pleasantness” of the relief. Specifically, we refrain from calling the threat omission-related neural responses “relief-activity” as this would indeed imply that the activation would only be attributed to this psychological function. Instead, we talked about omission-related activity, and we assessed whether it complied to the prediction error criteria as specified by the axiomatic approach.

      Only afterwards, because we hypothesized that omission-related fMRI activation and selfreported relief-pleasantness were related, and because we found a similar response pattern for both measures, we examined how relief and omission-related fMRI activations within our ROIs were related on a trial-by-trial basis. To this end, we entered relief-pleasantness ratings as a parametric modulator to the omission regressor.

      By no means do we want to reduce an emotional experience (relief) to fMRI activations in isolated regions in the brain. We agree with the reviewer that this would be far too reductionist. We therefore also ran a pre-registered LASSO-PCR analysis in order to identify whether a whole-brain pattern of activations can predict subjective relief (independent from the exact instructions we gave, and independent of our a priori ROIs). This analysis used trialby-trial patterns of activation across all voxels in the brain as the predictor and self-reported relief as the outcome variable. It is therefore completely data-driven and can be seen as a preregistered exploratory analysis that is intended to inform future studies.

      (9) From the methods, it wasn't entirely clear where there is jitter in the course of a trial. This centers on the question of possible collinearity in the task design between the cue and the outcome. The authors note there is "no multicollinearity between anticipation and omission regressors in the firstlevel GLMs," but how was this quantified? b The issue is of course that the activity coded as omission may be from the anticipation of the expected outcome.

      We thank the reviewer for pointing out this unclarity. Jitter was introduced in all parts of the trial: i.e., the duration of the inter-trial interval (4-7s), countdown clock (3-7s), and omission window (4-8s) were all jittered (see fig. 1A and methods section, lines 499-507). We added an additional line to the method section.

      Adaptations in the revised manuscript: We added an additional line of to the methods section to further clarify the jittering (lines 498-500).

      “The scale remained on the screen for 8 seconds or until the participant responded, followed by an intertrial interval between 4 and 7 seconds during which only a fixation cross was shown. Note that all phases in the trial were jittered (i.e., duration countdown clock, duration outcome window, duration intertrial interval).”

      Multicollinearity between the omission and anticipation regressors was assessed by calculating the variance inflation factor (VIF) of omission and anticipation regressors in the first level GLM models that were used for the parametric modulation analyses.

      Adaptations in the revised manuscript: We replaced the VIF abbreviation with “variance inflation factor” (line 423-424).

      “Nevertheless, there was no multicollinearity between anticipation and omission regressors in the first-level GLMs (VIFs Variance Inflation Factor, VIF < 4), making it unlikely that the omission responses purely represented anticipation.”

      (10) I did not fully understand what the LASSO-PCR model using relief ratings added. This result was not discussed in much depth, and seems to show a host of clusters throughout the brain contributing positively or negatively to the model. Altogether, I would recommend highlighting what this analysis is uniquely contributing to the interpretation of the findings.

      The main added value of this analyses is that it uses a different approach altogether. Where the (mass univariate) parametric modulation analysis estimated in each voxel (and each ROI) whether the activity in this voxel/ROI covaried with the reported relief, a significant activation only indicated that this voxel was related to relief. However, given that each voxel/ROI is treated independently in this analysis, it remains unclear how the activations were embedded in a wider network across the brain, and which regions contributed most to the prediction of relief. The multivariate LASSO-PCR analysis approach we took attempts to overcome this limitation by examining if a more whole-brain pattern can predict relief. Because we use the whole-brain pattern (and not only our a priori ROIs), this analysis is completely data-driven and is intended to inform future studies. In addition, the LASSO-PCR model was cross-validated using five-fold cross-validation, which is also a difference (and a strength) compared to the mass univariate GLM approach.

      One interesting finding that only became evident when we combined univariate and multivariate approaches is that despite that the parametric modulation analysis showed that omission-related fMRI responses in the ROIs were modulated by the reported relief, none of these ROIs contributed significantly to the prediction of relief based on the identified signature. Instead, some of the contributing clusters fell within other valuation and errorprocessing regions (e.g. lateral OFC, mid cingulate, caudate nucleus). This suggests that other regions than our a priori ROIs may have been especially important for the subjective experience of relief, at least in this task. However, all these clusters were small and require further validation in out of sample participants. More research is necessary to test the generalizability and validity of the relief signature to new individuals and tasks, and to compare the signature with other existing signature models (e.g., signature of pain, fear, reward, pleasure). However, this was beyond the scope of the present study.

      Adaptations in the revised manuscript: We altered the explanation of the LASSO-PCR approach in the results section (lines 286-295) and the discussion (lines 399-402)

      Adaptations in the Results section: “The (mass univariate) parametric modulation analysis showed that omission-related fMRI activity in our primary and secondary ROIs correlated with the pleasantness of the relief. However, given that each voxel/ROI is treated independently in this analysis, it remains unclear how the activations were embedded in a wider network of activation across the brain, and which regions contributed most to the prediction of relief. To overcome these limitations, we trained a (multivariate) LASSO-PCR model (Least Absolute Shrinkage and Selection Operator-Regularized Principle Component Regression) in order to identify whether a spatially distributed pattern of brain responses can predict the perceived pleasantness of the relief (or “neural signature” of relief)31. Because we used the whole-brain pattern (and not only our a priori ROIs), this analysis is completely data driven and can thus identify which clusters contribute most to the relief prediction.”

      Adaptations in the Discussion section: “In addition to examining the PE-properties of neural omission responses in our a priori ROIs, we trained a LASSO-PCR model to establish a signature pattern of relief. One interesting finding that only became evident when we compared the univariate and multivariate approach was that none of our a priori ROIs appeared to be an important contributor to the multivariate neural signature, even though all of them (except NAc) were significantly modulated by relief in the univariate analysis.”

      In addition to the public peer review, the reviewers provided some recommendation on how to further improve our manuscript. We will reply to the recommendations below.

      Reviewer #1 (Recommendations For The Authors):

      Given that you do have trial-level estimates from the classifier analysis, it would be very informative to use learning models and examine responses trial-by-trial to test whether there are prediction errors that vary over time as a function of learning.

      We thank the reviewer for the suggestion. However, based on the results of the run-regressor, we do not anticipate large learning effects in our paradigm. As we mentioned in our responses above, we controlled for time-related drops in omission-responding by including a “run” regressor in our analyses. Results of this regressor for subjective relief and omission-related SCR showed that although there was a general drop in reported relief pleasantness and omission SCR over time, the effects of probability and intensity remained present until the last run. This suggests that even though some learning might have taken place, its effect was likely small and did not abolish our manipulations of probability and intensity. In any case, we cannot use the LASSO-PCR signature model to investigate learning, as this model uses the trial-level brain pattern at the time of US omission to estimate the associated level of relief. These estimates can therefore not be used to examine learning effects.

      Reviewer #2 (Recommendations For The Authors):

      The LASSO-PCR model feels rather disconnected from the rest of the paper and does not add much to the main theme. I would suggest to remove this part from the paper.

      We thank the reviewer for this suggestion. However, the LASSO-PCR analysis was a preregistered. We therefore cannot remove it from the manuscript. We hope to have clarified its added value in the revised version of the manuscript.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Reviewer #1

      Strengths:

      This study uses a carefully constructed experiment design and decision-making task that allows separation of multiple electroencephalographic (EEG) signals thought to track different stages of decision-making. For example, the steady-state visual evoked potential measures can be cleanly dissociated from more anterior beta-band activity over the motor cortex. They also allow evaluation of how cued expectancy effects may unfold over a number of testing sessions. This is important because the most consistent evidence of expectation-related modulations of electrophysiological measures (using EEG, local field potentials, or single neuron firing rates) is from studies of nonhuman primates that involved many days of cue-stimulus contingency learning, and there is a lack of similar work using several testing sessions in humans. Although there were several experimental conditions included in the study, careful trial-balancing was conducted to minimise biases due to incidental differences in the number of trials included for analyses across each condition. Performance for each individual was also carefully calibrated to maximise the possibility of identifying subtle changes in task performance by expectation and avoid floor or ceiling effects.

      We would like to thank Reviewer 1 for these very positive comments.

      Weaknesses:

      Although the experiment and analysis methods are cohesive and well-designed, there are some shortcomings that limit the inferences that can be drawn from the presented findings.

      Comment #1

      The first relates to the measures of SSVEPs and their relevance for decision-making in the task. In order to eliminate the influence of sporadic pulses of contrast changes that occurred during stimulus presentation, a time window of 680-975 ms post-stimulus onset was used to measure the SSVEPs. The mean response times for the valid and neutral cues were around 850-900 ms for correct responses, and within the same time window for errors in the invalid cue condition. In addition, a large portion of response times in perceptual decision-making tasks are substantially faster than the mean due to right-skewed response time distributions that are typically observed. As it has also been estimated to require 70-100 ms to execute a motor action (e.g., a keypress response) following the commitment to a decision. This raises some concerns about the proportion of trials in which the contrast-dependent visual responses (indexed by the SSVEPs) indexed visual input that was actually used to make the decision in a given trial. Additional analyses of SSVEPs that take the trial-varying pulses into account could be run to determine whether expectations influenced visual responses earlier in the trial.

      The reviewer raises a very valid point and, indeed, it is an issue that we grappled with in our analyses. Actually, in this study, the RT distributions were not right-skewed, but appear to be relatively normal (RT distributions shown below). This is something that we have previously observed when using tasks that involve an initial zero-evidence lead in at the start of each trial which means that participants cannot start accumulating at stimulus onset and must rely on their knowledge of the lead-in duration to determine when the physical evidence has become available (e.g. Kelly et al 2021, Nat Hum Beh). We agree that it is important to establish whether the reported SSVEP modulations occur before or after choice commitment. In our original submission we had sought to address this question through our analysis of the response-locked ‘difference SSVEP’. Figure 4D clearly indicates that the cue modulations are evident before as well as after response.

      However, we have decided to include an additional Bayesian analysis of the response-locked signal to offer more evidence that the cue effect is not a post-response phenomenon.

      Manuscript Changes

      To quantify the evidence that the cue effect was not driven by changes in the signal after the response, we ran Bayesian one-way ANOVAs on the SSVEP comparing the difference across cue conditions before and after the response. If the cue effect only emerged after the response, we would expect the difference between invalid and neutral or invalid and valid cues to increase in the post-response window. There was no compelling evidence of an increase in the effect when comparing invalid to neutral (BF10 = 1.58) or valid cues (BF10 = 0.32).

      Comment #2

      Presenting response time quantile plots may also help to determine the proportions of motor responses (used to report a decision) that occurred during or after the SSVEP measurement window.

      We agree that it may be helpful for the reader to be able to determine the proportion of responses occurring at different phases of the trial, so we have included the requested response time quantile plot (shown below) as a supplementary figure.

      Author response image 1.

      Reaction time quantiles across cue conditions. The plot illustrates the proportion of trials where responses occurred at different stages of the trial. The SSVEP analysis window is highlighted in purple.

      Comment #3

      In addition, an argument is made for changes in the evidence accumulation rate (called the drift rate) by stimulus expectancy, corresponding to the observed changes in SSVEP measures and differences in the sensory encoding of the stimulus. This inference is limited by the fact that evidence accumulation models (such as the Diffusion Decision Model) were not used to test for drift rate changes as could be determined from the behavioural data (by modelling response time distributions). There appear to be ample numbers of trials per participant to test for drift rate changes in addition to the starting point bias captured in earlier models. Due to the very high number of trials, models could potentially be evaluated for each single participant. This would provide more direct evidence for drift rate changes than the findings based on the SSVEPs, particularly due to the issues with the measurement window relating to the response times as mentioned above.

      The focus of the present study was on testing for sensory-level modulations by predictive cues, rather than testing any particular models. Given that the SSVEP bears all the characteristics of a sensory evidence encoding signal, we believe it is reasonable to point out that its modulation by the cues would very likely translate to a drift rate effect. But we do agree with the reviewer that any connection between our results and previously reported drift rate effects can only be confirmed with modelling and we have tried to make this clear in the revised text. We plan to comprehensively model the data from this study in a future project. While we do indeed have the benefit of plenty of trials, the modelling process will not be straightforward as it will require taking account of the pulse effects which could have potentially complicated, non-linear effects. In the meantime, we have made changes to the text to qualify the suggestion and stress that modelling would be necessary to determine if our hypothesis about a drift rate effect is correct.

      Manuscript Changes

      (Discussion): [...] We suggest that participants may have been able to stabilise their performance across task exposure, despite reductions in the available sensory evidence, by incorporating the small sensory modulation we detected in the SSVEP. This would suggest that the decision process may not operate precisely as the models used in theoretical work describe. Instead, our study tentatively supports a small number of modelling investigations that have challenged the solitary role of starting point bias, implicating a drift bias (i.e. a modulation of the evidence before or upon entry to the decision variable) as an additional source of prior probability effects in perceptual decisions (Dunovan et al., 2014; Hanks et al., 2011; Kelly et al., 2021; van Ravenzwaaij et al., 2012 Wyart et al., 2012) and indicates that these drift biases could, at least partly, originate at the sensory level. However, this link could only be firmly established with modelling in a future study.

      Recommendations For The Authors:

      Comment #4

      The text for the axis labels and legends in the figures is quite small relative to the sizes of the accompanying plots. I would recommend to substantially increase the sizes of the text to aid readability.

      Thank you for this suggestion. We have increased the size of the axis labels and made the text in the figure legends just 1pt smaller than the text in the main body of the manuscript.

      Comment #5

      It is unclear if the scalp maps for Figure 5 (showing the mu/beta distributions) are on the same scale or different scales. I assume they are on different scales (adjusted to the minimum/maximum within each colour map range), as a lack of consistent signals (in the neutral condition) would be expected to lead to a patchy pattern on the scalp as displayed in that figure (due to the colour range shrinking to the degree of noise across electrodes). I would recommend to include some sort of colour scale to show that, for example, in the neutral condition there are no large-amplitude mu/ beta fluctuations distributed somewhat randomly across the scalp.

      Thank you to the reviewer for pointing this out. They were correct, the original topographies were plotted according to their own scale. The topographies in Figure 5 have now been updated to put them on a common scale and we have included a colour bar (as shown below). The caption for Figure 5 has also been updated to confirm that the topos are on a common scale.

      Author response image 2.

      Manuscript Changes

      (Figure 5 Caption): [...] The topography of MB activity in the window - 200:0 ms before evidence onset is plotted on a common scale for neutral and cued conditions separately.

      Comment #6

      In Figure 2, the legend is split across the two panels, despite the valid/invalid/neutral legend also applying to the first panel. This gives an initial impression that the legend is incomplete for the first panel, which may confuse readers. I would suggest putting all of the legend entries in the first panel, so that all of this information is available to readers at once.

      We are grateful to the reviewer for spotting this. Figure 2 has been updated so that the full legend is presented in the first panel, as shown below.

      Author response image 3.

      Comment #7

      Although linear mixed-effects models (using Gaussian families) for response times are standard in the literature, they incorrectly specify the distributions of response times to be Gaussian instead of substantially right-skewed. Generalised linear mixed-effects models using gamma families and identity functions have been shown to more accurately model distributions of response times (see Lo and Andrews, 2015. Frontiers in Psychology). The authors may consider using these models in line with good practice, although it might not make a substantial difference relating to the patterns of response time differences.

      We appreciate this thoughtful comment from Reviewer 1. Although RT distributions are often right skewed, we have previously observed that RT distributions can be closer to normal when the trial incorporates a lead-in phase with no evidence (e.g. Kelly et al 2021, Nat Hum Beh). Indeed, the distributions we observed in this study were markedly Gaussian (as shown in the plot below). Given the shape of these distributions and the reviewer’s suggestion that adopting alternative models may not lead to substantial differences to our results, we have decided to leave the mixed effects models as they are in the manuscript, but we will take note of this advice in future work.

      Author response image 4.

      Reviewer #2

      Strengths:

      The work is executed expertly and focuses cleverly on two features of the EEG signals that can be closely connected to specific loci of the perceptual decision-making process - the SSVEP which connects closely to sensory (visual) encoding, and Mu-Beta lateralisation which connects closely to movement preparation. This is a very appropriate design choice given the authors' research question.

      Another advantage of the design is the use of an unusually long training regime (i.e., for humans) - which makes it possible to probe the emergence of different expectation biases in the brain over different timecourses, and in a way that may be more comparable to work with nonhuman animals (who are routinely trained for much longer than humans).

      We are very grateful for these positive comments from Reviewer 2.

      Weaknesses:

      In my view, the principal shortcoming of this study is that the experimental task confounds expectations about stimulus identity with expectations about to-be-performed responses. That is, cues in the task don't just tell participants what they will (probably) see, but what they (probably) should do.

      In many respects, this feature of the paradigm might seem inevitable, as if specific stimuli are not connected to specific responses, it is not possible to observe motor preparation of this kind (e.g., de Lange, Rahnev, Donner & Lau, 2013 - JoN).

      However, the theoretical models that the authors focus on (e.g., drift-diffusion models) are models of decision (i.e., commitment to a proposition about the world) as much as they are models of choice (i.e., commitment to action). Expectation researchers interested in these models are often interested in asking whether predictions influence perceptual processing, perceptual decision, and/ or response selection stages (e.g., Feuerriegel, Blom & Hoogendorn, 2021 - Cortex), and other researchers have shown that parameters like drift bias and start point bias can be shifted in paradigms where observers cannot possibly prepare a response (e.g., Thomas, Yon, de Lange & Press, 2020 - Psych Sci).

      The present paradigm used by Walsh et al makes it possible to disentangle sensory processing from later decisional processes, but it blurs together the processes of deciding about the stimulus and choosing/initiating the response. This ultimately limits the insights we can draw from this study - as it remains unclear whether rapid changes in motor preparation we see reflect rapid acquisition of new decision criterion or simple cue-action learning. I think this would be important for comprehensively testing the models the authors target - and a good avenue for future work.

      Thank you to Reviewer 2 for these observations. We adopted this paradigm because it is typical of the perceptual decision making literature and our central focus in this study was to test for a sensory-level modulation as a source of a decision bias. We are pleased that the Reviewer agrees that the paradigm successfully disentangles sensory encoding from later decisional processes since this was our priority. However, we agree with Reviewer 2 that because the response mapping was known to the participants, the cues predicted both the outcome of the perceptual decision (“Is this a left- or right-tilted grating?”) and the motor response that the participant should anticipate making (“It’s probably going to be a left click on this trial”). They are correct that this makes it difficult to know whether the changes in motor preparation elicited by the predictive cues reflect action-specific preparation or a more general shift in the boundaries associated with the alternate perceptual interpretations. We fully agree that it remains an interesting and important question and in our future work we hope to conduct investigations that better dissect the distinct components of the decision process during prior-informed decisions. In the interim, we have made some changes to the manuscript to reflect the Reviewer’s concerns and better address this limitation of the study design (these are detailed in the response to the comment below).

      Recommendations For The Authors:

      Comment #8

      As in my public review, my main recommendation to the authors is to think a bit more in the presentation of the Introduction and Discussion about the difference between 'perceiving', 'deciding', and 'responding'.

      The paper is presently framed in terms of the debates around whether expectations bias decision or bias perception - and these debates are in turn mapped onto different aspects of the driftdiffusion model. Biases in sensory gain, for instance, are connected to biases in the drift rate parameter, while decisional shifts are connected to parameters like start points.

      In line with this kind of typology, the authors map their particular EEG signals (SSVEP and MB lateralisation) onto perception and decision. I see the logic, but I think the reality of these models is more nuanced.

      In particular, strictly speaking, the process of evidence accumulation to bound is the formation of a 'decision' (i.e., a commitment to having seen a particular stimulus). Indeed, the dynamics of this process have been beautifully described by other authors on this paper in the past. Since observers in this task simultaneously form decisions and prepare actions (because stimuli and responses are confounded) it is unclear whether changes in motor preparation are reflecting changes in what perceivers 'decide' (i.e., changes in what crosses the decision threshold) or what they 'do' (i.e., changes in the motor response threshold). This is particularly important for the debate around whether expectations change 'perception' or 'decision' because - in some accounts - is the accumulation of evidence to the bound that is hypothesised to cause the perceptual experience observers actually have (Pereira, Perrin & Faivre, 2022 - TiCS). The relevant 'bound' here though is not the bound to push the button, but the bound for the brain to decide what one is actually 'seeing'.

      I completely understand the logic behind the authors' choices, but I would have liked more discussion of this issue. In particular, it seems strange to me to talk about the confounding of stimuli and responses as a particular 'strength' of this design in the manuscript - when really it is a 'necessary evil' for getting the motor preparation components to work. Here is one example from the Introduction:

      "While some have reported expectation effects in humans using EEG/MEG, these studies either measured sensory signals whose relevance to the decision process is uncertain (e.g. Blom et al., 2020; Solomon et al., 2021; Tang et al., 2018) and/or used cues that were implicit or predicted a forthcoming stimulus but not the correct choice alternative (e.g. Aitken et al., 2020; Feuerriegel et al., 2021b; Kok et al., 2017). To assess whether prior probabilities modulate sensory-level signals directly related to participants' perceptual decisions, we implemented a contrast discrimination task in which the cues explicitly predicted the correct choice and where sensory signals that selectively trace the evidence feeding the decision process could be measured during the process of deliberation."

      I would contend that this design allows you to pinpoint signals related to participant's 'choices' or 'actions' but not necessarily their 'decisions' in the sense outlined above.

      As I say though, I don't think this is fatal and I think the paper is extremely interesting in any case. But I think it would be strengthened if some of these nuances were discussed a bit more explicitly, as a 'perceptual decision' is more than pushing a button. Indeed, the authors might want to consider discussing work that shows the neural overlap between deciding and acting breaks down when Ps cannot anticipate which actions to use to report their choices ahead of time (Filimon, Philiastides, Nelson, Kloosterman & Heekeren, 2013 - JoN) and/or work which has combined expectations with drift diffusion modelling to show how expectations change drift bias (Yon, Zainzinger, de Lange, Eimer & Press, 2020 - JEP:General) and/or start bias (Thomas, Yon, de Lange & Press, 2020 - Psych Sci) even when Ps cannot prepare a motor response ahead of time.

      While our focus was on testing for sensory-level modulations, we think the question of whether the motor-level effects we observed are attributable to the task design or represents a more general perceptual bound adjustment is an important question for future research. In our previous work, we have examined this distinction between abstract, movement-independent evidence accumulation (indexed by the centro-parietal positivity, CPP) and response preparation in detail. The CPP has been shown to trace evidence accumulation irrespective of whether the sensory alternatives are associated with a specific response or not (Twomey et al 2016, J Neurosci). When speed pressure is manipulated in tasks with fixed stimulus-response mappings we have found that the CPP undergoes systematic adjustments in its pre-response amplitude that closely accord with the starting-level modulations observed in mu/beta, suggesting that motor-level adjustments do still translate to differences at the perceptual level under these task conditions (e.g. Kelly et al 2021, Nat Hum Beh; Steinemann et al., 2018, Nat Comms). We have also observed that the CPP and mu-beta exhibit corresponding adjustments in response to predictive cues (Kelly et al., 2021) that are consistent with both a starting-point shift and drift rate bias. However, the Kelly et al. study did not include a signature of sensory encoding and therefore could not test for sensory-level modulations.

      We have added some remarks to the discussion to acknowledge this issue with the interpretation of the preparatory shifts in mu-beta activity we observed when the predictive cues were presented, and we have included references to the papers that the reviewer helpfully provided. We have also offered some additional consideration of the features of the task design that may have influenced the SSVEP results.

      Manuscript Changes

      An implication of using cues that predict not just the upcoming stimulus, but the most likely response, is that it becomes difficult to determine if preparatory shifts in mu-beta (MB) activity that we observed reflect adjustments directly influencing the perceptual interpretation of the stimulus or simply preparation of the more probable action. When perceptual decisions are explicitly tied to particular modes of response, the decision state can be read from activity in motor regions associated with the preparation of that kind of action (e.g. de Lafuente et al., 2015; Ding & Gold, 2012; Shadlen & Newsome, 2001; Romo et al., 2004), but these modules appear to be part of a constellation of decision-related areas that are flexibly recruited based on the response modality (e.g. Filimon et al., 2013). When the response mapping is withheld or no response is required, MB no longer traces decision formation (Twomey et al., 2015), but an abstract decision process is still readily detectable (e.g. O’Connell et al., 2012), and modelling work suggests that drift biases and starting point biases (Thomas et al., 2020; Yon et al., 2021) continue to influence prior-informed decision making. While the design of the present study does not allow us to offer further insight about whether the MB effects we observed were inherited from strategic adjustments at this abstract level of the decision process, we hope to conduct investigations in the future that better dissect the distinct components of prior-informed decisions to address this question.

      Several other issues remain unaddressed by the present study. One, is that it is not clear to what extent the sensory effects may be influenced by features of the task design (e.g. speeded responses under a strict deadline) and if these sensory effects would generalise to many kinds of perceptual decision-making tasks or whether they are particular to contrast discrimination.

      Comment #9

      On a smaller, unrelated point - I thought the discussion in the Discussion section about expectation suppression was interesting, but I did not think it was completely logically sound. The authors suggest that they may see relative suppression (rather than enhancement) of their marginal SSVEP under a 'sharpening' account because these accounts suggest that there is a relative suppression of off-channel sensory units, and there are more off-channel sensory units than onchannel sensory units (i.e., there are usually more possibilities we don't expect than possibilities that we do, and suppressing the things we don't expect should therefore yield overall suppression).

      However, this strikes me as a non-sequitur given that the marginal SSVEP only reflects featurespecific visual activity (i.e., activity tuned to one of the two grating stimuli used). The idea that there are more off-channel than on-channel units makes sense for explaining why we would see overall signal drops on expected trials e.g., in an entire visual ROI in an fMRI experiment. But surely this explanation cannot hold in this case, as there is presumably an equal number of units tuned to each particular grating?

      My sense is that this possibility should probably be removed from the manuscript - and I suspect it is more likely that the absence of a difference in marginal SSVEP for Valid vs Neutral trials has more to do with the fact that participants appear to be especially attentive on Neutral trials (and so any relative enhancement of feature-specific activity for expected events is hard to detect against a baseline of generally high-precision sensory evidence on these highly attentive, neutral trials).

      We thank the reviewer for flagging that we did not clearly articulate our thoughts in this section of the manuscript. Our primary purpose in mentioning this sharpening account was simply to point out that, where at first blush our results seem to conflict with expectation suppression effects in the fMRI literature, the sharpening account provides an explanation that can reconcile them. In the case of BOLD data, the sharpening account proposes that on-channel sensory units are boosted and off-channel units are suppressed and, due to the latter being more prevalent, this leads to an overall suppression of the global signal. In the case of the SSVEP, the signal isolates just the onunits and so the sharpening account would predict that when there is a valid cue, the SSVEP signal associated with the high-contrast, expected stimulus should be boosted and the SSVEP signal associated with the low-contrast, unexpected stimulus should be weakened; this would result in a larger difference between these signals and therefore, a larger ‘marginal SSVEP’. Conversely, when there is an invalid cue, the SSVEP signal associated with the, now unexpected, high-contrast stimulus should be relatively weakened and the SSVEP signal associated with the expected, but low-contrast stimulus should be relatively boosted; this would result in a smaller difference between these signals and therefore, a lower amplitude marginal SSVEP. We do not think that this account needs to make reference to any channels beyond those feature-specific channels driving the two SSVEP signals. Again our central point is simply that the sharpening account offers a means of reconciling our SSVEP findings with expectation suppression effects previously reported in the fMRI literature.

      We suspect that this was not adequately explained in the discussion. We have adjusted the way this section is phrased to make it clear that we are not invoking off-channel activity to explain the SSVEP effect we observed and we thank the Reviewer for pointing out that this was unclear in the original text.

      Manuscript Changes

      An alternative account for expectation suppression effects, which is consistent with our SSVEP results, is that they arise, not from a suppression of expected activity, but from a ‘sharpening’ effect whereby the response of neurons that are tuned to the expected feature are enhanced while the responses of neurons tuned to unexpected features are suppressed (de Lange et al., 2018). On this account, the expectation suppression commonly reported in fMRI studies arises because voxels contain intermingled populations with diverse stimulus preferences and the populations tuned to the unexpected features outnumber those tuned to the expected feature. In contrast to these fMRI data, the SSVEP represents the activity of sensory units driven at the same frequency as the stimulus, and thus better isolates the feature-specific populations encoding the task-relevant sensory evidence. Therefore, according to the sharpening account, an invalid cue would have enhanced the SSVEP signal associated with the low contrast grating and weakened the SSVEP signal associated with the high contrast grating. As this would result in a smaller difference between these signals, and therefore, a lower amplitude marginal SSVEP compared to the neutral cue condition, this could explain the effect we observed. 

      Reviewer #3

      Observers make judgements about expected stimuli faster and more accurately. How expectations facilitate such perceptual decisions remains an ongoing area of investigation, however, as expectations may exert their effects in multiple ways. Expectations may directly influence the encoding of sensory signals. Alternatively (or additionally), expectations may influence later stages of decision-making, such as motor preparation, when they bear on the appropriate behavioral response.

      In the present study, Walsh and colleagues directly measured the effect of expectations on sensory and motor signals by making clever use of the encephalogram (EEG) recorded from human observers performing a contrast discrimination task. On each trial, a predictive cue indicated which of two superimposed stimuli would likely be higher contrast and, therefore, whether a left or right button press was likely to yield a correct response. Deft design choices allowed the authors to extract both contrast-dependent sensory signals and motor preparation signals from the EEG. The authors provide compelling evidence that, when predictive cues provide information about both a forthcoming stimulus and the appropriate behavioral response, expectation effects are immediately manifest in motor preparation signals and only emerge in sensory signals after extensive training.

      Future work should attempt to reconcile these results with related investigations in the field. As the authors note, several groups have reported expectation-induced modulation of sensory signals (using both fMRI and EEG/MEG) on shorter timescales (e.g. just one or two sessions of a few hundred trials, versus the intensive multi-session study reported here). One interesting possibility is that perceptual expectations are not automatic but demand the deployment of feature-based attention, while motor preparation is comparatively less effortful and so dominates when both sources of information are available, as in the present study. This hypothesis is consistent with the authors' thoughtful analysis showing decreased neural signatures of attention over posterior electrodes following predictive cues. Therefore, observing the timescale of sensory effects using the same design and methods (facilitating direct comparison with the present work), but altering task demands slightly such that cues are no longer predictive of the appropriate behavioral response, could be illuminating.

      We would like to thank Reviewer 3 for their positive comments and thoughtful suggestions for future work.

      Recommendations For The Authors:

      Comment #10

      In the methods, the term 'session' is used early on but only fleshed out at the end of the 'Procedure' subsection and never entirely explained (e.g., did sessions take place over multiple days?). A brief sentence laying this out early on, perhaps in 'Participants' after the (impressive) trial counts are reported, might be helpful.

      Thank you to Reviewer 3 for pointing out that this was not clear in the original draft. We have amended the text in the Methods section to better explain the relationship between sessions, days, and trial bins.

      Manuscript Changes

      (Methods - Participants): [...] All procedures were approved by the Trinity College Dublin School of Psychology Ethics Committee and were in accordance with the Declaration of Helsinki. Participants completed between 4 and 6 testing sessions, each on a different day. While the sample size was small, on average, participants completed 5750 (SD = 1066) trials each.

      (Methods - Data Analysis): [...] As there were two lengths of testing session and participants completed different numbers of sessions, we analysed the effect of task exposure by pooling trials within-subjects and dividing them into five ‘trial bins’. The first bin represents the participants’ earliest exposure to the task and the final bin represents trials at the end of their participation, when they had had substantial task exposure. All trials with valid responses and reaction times greater than 100 ms were included in the analyses of behavioural data and the SSVEP.

      Comment #11

      On a related note: participants completed a variable number of trials/sessions. To facilitate comparison across subjects, training effects are reported by dividing each subject's data into 5 exposure bins. This is entirely reasonable but does leave the reader wondering about whether you found any effects of rest or sleep between sessions.

      We agree with the reviewer that this is an interesting question that absolutely merits further investigation. As different participants completed different numbers of sessions, different session lengths, and had variable gaps between their sessions, we do not think a per-session analysis would be informative. We think it may be better addressed in a future study, perhaps one with a larger sample where we could collect data specifically about sleep and more systematically control the intervals between testing sessions.

      Comment #12

      Fig 2B: the 'correct' and 'neutral' labels in the legend are switched

      Thank you to the reviewer for spotting that error, the labels in Figure 2 have been corrected.

      Comment #13

      Fig 4B: it's a bit difficult to distinguish which lines are 'thick' and 'thin'

      We have updated Figure 4.B to increase the difference in line thickness between the thick and thin lines (as shown below).

      Author response image 5.

      Comment #14

      Fig 4C: missing (I believe?) the vertical lines indicating median reaction time

      We have updated Figure 4.C to include the median reaction times.

      Author response image 6.

    1. Author Response

      The following is the authors’ response to the original reviews.

      eLife assessment

      This important study enhances our understanding of the effects of landscape context on grassland plant diversity and biomass. Notably, the authors use a well-designed field sampling method to separate the effects of habitat loss and fragmentation per se. Most of the data and analyses provide solid support for the findings that habitat loss weakens the positive relationship between grassland plant richness and biomass.

      Response: Thanks very much for organizing the review of the manuscript. We are grateful to you for the recognition. We have carefully analyzed all comments of the editors and reviewers and revised our manuscript to address them. All comments and recommendations are helpfully and constructive for improving our manuscript. We have described in detail our response to each of comment below.

      In addition to the reviewers' assessments, we have the following comments on your paper.

      (1) Some of the results are not consistent between figures. The relationships between overall species richness and fragmentation per se are not consistent between Figs. 3 and 5. The relationships between aboveground biomass and habitat loss are not consistent between Figs. 4 and 5. How shall we interpret these inconsistent results?

      Response: Thanks for your insightful comments. The reason for these inconsistencies is that the linear regression model did not take into account the complex causal relationships (including direct and indirect effects) among the different influencing factors. The results in Figures 3 and 4 just represent the pairwise relationship pattern and relative importance, respectively. The causal effects of habitat loss and fragmentation per se on plant richness and above-ground biomass should be interpreted based on the structural equation model results (Figure 6). We have revised the data analysis to clear these inconsistent results. Line 225-228

      In the revised manuscript, we have added the interpretation for these inconsistent results. The inconsistent effects between Figures 3 and 6 suggest that fragmentation per se actually had a positive effect on plant richness after accounting for the effects of habitat loss and environmental factors simultaneously.

      The inconsistent effects between Figures 4 and 6 are because the effects of habitat loss and fragmentation per se on above-ground biomass were mainly mediated by plant richness and environmental factors, which had no significant direct effect (Figure 6). Thus, habitat loss and fragmentation per se showed no significant relative effects on above-ground biomass after controlling the effects of plant richness and environmental factors (Figure 4).

      (2) One of the fragmentation indices, mean patch area metric, seems to be more appropriate as a measure of habitat loss, because it represents "a decrease in grassland patch area in the landscape".

      Response: Thanks for your insightful comments. We apologize for causing this confusion. The mean patch area metric in our study represents the mean size of grassland patches in the landscape for a given grassland amount. Previous studies have often used the mean patch metric as a measure of fragmentation, which can reflect the processes of local extinction in the landscape (Fahrig, 2003; Fletcher et al., 2018). We have revised the definition of the mean patch area metric and added its ecological implication in the revised manuscript to clarify this confusion.

      (3) It is important to show both the mean and 95% CI (or standard error) of the slope coefficients regarding to Figs. 3 and 6.

      Response: Thanks for your suggestions. We have added the 95% confidence intervals to the Figure 3 and Figure 6 in the revised manuscript.

      (4) It would be great to clarify what patch-level and landscape-level studies are in lines 302-306. Note that this study assesses the effects of landscape context on patch-level variables (i.e., plot-based plant richness and plot-based grassland biomass) rather than landscape-level variables (i.e., the average or total amount of biomass in a landscape).

      Response: Thanks for your insightful comment. We agree with your point that our study investigated the effect of fragmented landscape context (habitat loss and fragmentation per se) on plot-based plant richness and plot-based above-ground biomass rather than landscape-level variables.

      Therefore, we no longer discussed the differences between the patch-level and landscape-level studies here, instead focusing on the different ecological impacts of habitat loss and fragmentation per se in the revised manuscript.

      Line 369-374:

      “Although habitat loss and fragmentation per se are generally highly associated in natural landscapes, they are distinct ecological processes that determine decisions on effective conservation strategies (Fahrig, 2017; Valente et al., 2023). Our study evaluated the effects of habitat loss and fragmentation per se on grassland plant diversity and above-ground productivity in the context of fragmented landscapes in the agro-pastoral ecotone of northern China, with our results showing the effects of these two facets to not be consistent.”

      (5) One possible way to avoid the confusion between "habitat fragmentation" and "fragmentation per se" could be to say "habitat loss and fragmentation per se" when you intend to express "habitat fragmentation".

      Response: Thanks for your constructive suggestions. To avoid this confusion, we no longer mention habitat fragmentation in the revised manuscript but instead express it as habitat loss and fragmentation per se.

      Reviewer #1 (Public Review):

      This is a well-designed study that explores the BEF relationships in fragmented landscapes. Although there are massive studies on BEF relationships, most of them were conducted at local scales, few considered the impacts of landscape variables. This study used a large dataset to specifically address this question and found that habitat loss weakened the BEF relationships. Overall, this manuscript is clearly written and has important implications for BEF studies as well as for ecosystem restoration.

      Response: We are grateful to you for the recognition and constructive comments. All the comments and suggestions are very constructive for improving this manuscript. We have carefully revised the manuscript following your suggestions. All changes are marked in red font in the revised manuscript.

      My only concern is that the authors should clearly define habitat loss and fragmentation. Habitat loss and fragmentation are often associated, but they are different terms. The authors consider habitat loss a component of habitat fragmentation, which is not reasonable. Please see my specific comments below.

      Response: We agree with your point. In the revised manuscript, we no longer consider habitat loss and fragmentation per se as two facets of habitat fragmentation. We have clearly defined habitat loss and fragmentation per se and explicitly evaluated their relative effects on plant richness, above-ground biomass, and the BEF relationship.

      Reviewer #1 (Recommendations For The Authors):

      Title: It is more proper to say habitat loss, rather than habitat fragmentation.

      Response: Thanks for your suggestion. We have revised the title to “Habitat loss weakens the positive relationship between grassland plant richness and above-ground biomass”

      Line 22, remove "Anthropogenic", this paper is not specifically discussing habitat fragmentation driven by humans.

      Response: Thanks for your suggestion. We have removed the “Anthropogenic” from this sentence.

      Line 26, revise to "we investigated the effects of habitat loss and fragmentation per se on plant richness... in grassland communities by using a structural equation model".

      Response: Thanks for your suggestion. We have revised this sentence.

      Line 25-28:

      “Based on 130 landscapes identified by a stratified random sampling in the agro-pastoral ecotone of northern China, we investigated the effects of landscape context (habitat loss and fragmentation per se) on plant richness, above-ground biomass, and the relationship between them in grassland communities using a structural equation model.”

      Line 58-60, habitat fragmentation generally involves habitat loss, but habitat loss is independent of habitat fragmentation, it is not a facet of habitat fragmentation.

      Response: Thanks for your insightful comment. We have no longer considered habitat loss and fragmentation per se as two facets of habitat fragmentation. In the revised manuscript, we consider habitat loss and fragmentation as two different processes in fragmented landscapes.

      Line 65-67, this sentence is not very relevant to this paragraph and can be deleted.

      Response: Thanks for your suggestion. We have deleted this sentence from the paragraph.

      Line 87-90, these references are mainly based on microorganisms, are there any references based on plants? These references are more relevant to this study. In addition, this is a key mechanism mentioned in this study, this section needs to be strengthened with more evidence and further exploration.

      Response: Thanks for your comment and suggestion. Thanks for your comment and suggestion. We have added some references based on plants here to strengthen the evidence and mechanism of habitat specialisation determines the BEF relationship.

      Line 89-95:

      “In communities, specialists with specialised niches in resource use may contribute complementary roles to ecosystem functioning, whereas generalists with unspecialised in resource use may contribute redundant roles to ecosystem functioning due to overlapping niches (Dehling et al., 2021; Denelle et al., 2020; Gravel et al., 2011; Wilsey et al., 2023). Therefore, communities composed of specialists should have a higher niche complementarity effect in maintaining ecosystem functions and a more significant BEF relationship than communities composed of generalists.”

      Denelle, P., Violle, C., DivGrass, C., Munoz, F. 2020. Generalist plants are more competitive and more functionally similar to each other than specialist plants: insights from network analyses. Journal of Biogeography 47: 1922-1933.

      Dehling, D.M., Bender, I.M.A., Blendinger, P.G., Böhning-Gaese, K., Muñoz, M.C., Neuschulz, E.L., Quitián, M., Saavedra, F., Santillán, V., Schleuning, M., Stouffer, D.B. 2021. Specialists and generalists fulfil important and complementary functional roles in ecological processes. Functional Ecology 35: 1810-1821.

      Wilsey, B., Martin, L., Xu, X., Isbell, F., Polley, H.W. 2023. Biodiversity: Net primary productivity relationships are eliminated by invasive species dominance. Ecology Letters.

      Line 129-130, Although you can use habitat loss in the discussion or the introduction, here preferably use habitat amount or habitat area, rather than habitat loss in this case. Habitat loss represents changes in habitat area, but the remaining grasslands could be the case of natural succession or other processes, rather than loss of natural habitat.

      Response: Thanks for your insightful comment. We agree with your point. In the revised manuscript, we have explicitly stated that habitat loss was represented by the loss of grassland amount in the landscape.

      Since the remaining grassland fragments in this region were mainly caused by grassland loss due to human activities such as cropland expansion (Chen et al., 2019; Yang et al., 2020), we used the percentage of non-grassland cover in the landscape to represent habitat loss in our study.

      Line 132-135:

      “Habitat loss was represented by the loss of grassland amount in the landscape. As the remaining grassland fragments in this region were mainly caused by grassland loss due to human activities such as cropland expansion (Chen et al., 2019; Yang et al., 2020), the percentage of non-grassland cover in the landscape was used in our study to represent habitat loss.”

      Lines 245-246, please also give more details of the statistical results, such as n, r value et al in the text.

      Response: Thanks for your suggestion. We have added the details of the statistical results in the revised manuscript.

      Line 283-290:

      “Habitat loss was significantly negatively correlated with overall species richness (R = -0.21, p < 0.05, Figure 3a) and grassland specialist richness (R = -0.41, p < 0.01, Figure 3a), but positively correlated with weed richness (R = 0.31, p < 0.01, Figure 3a). Fragmentation per se was not significantly correlated with overall species richness and grassland specialist richness, but was significantly positively correlated with weed richness (R = 0.26, p < 0.01, Figure 3b). Habitat loss (R = -0.39, p < 0.01, Figure 3c) and fragmentation per se (R = -0.26, p < 0.01, Figure 3d) were both significantly negatively correlated with above-ground biomass.”

      Fig. 5, is there any relationship between habitat amount and fragmentation per se in this study?

      Response: Thanks for your insightful comment. We have considered a causal relationship between habitat loss and fragmentation per se in the structural equation model. We have discussed this relationship in the revised manuscript.

      Line 290-293, how about the BEF relationships with different fragmentation levels? I may have missed something somewhere, but it was not shown here.

      Response: Thanks for your insightful comment. We have added the BEF relationships with different fragmentation per se levels here.

      Line 323-340:

      “The linear regression models showed that habitat loss had a significant positive modulating effect on the positive relationship between plant richness and above-ground biomass, and fragmentation per se had no significant modulating effect (Figure 5). The positive relationship between plant richness and above-ground biomass weakened with increasing levels of habitat loss, strengthened and then weakened with increasing levels of fragmentation per se.

      Author response image 1.

      Relationships between grassland plant richness and above-ground biomass at different levels of habitat loss and fragmentation per se from 130 landscapes in the Tabu River Basin, a typical agro-pastoral ecotone of northern China: (a) high habitat loss and low fragmentation per se, (b) high habitat loss and moderate fragmentation per se, (c) high habitat loss and high fragmentation per se, (d) moderate habitat loss and low fragmentation per se, (e) moderate habitat loss and moderate fragmentation per se, (f) moderate habitat loss and high fragmentation per se, (g) low habitat loss and low fragmentation per se, (h) low habitat loss and moderate fragmentation per se. The R2 values in each panel are from linear regression models. The n in each panel is the number of surveying sites used in the linear regression models. The blue solid and dashed trend lines represent the significant and not significant effects, respectively. The shaded area around the trend line represents the 95% confidence interval. * represent significance at the 0.05 level. ** represent significance at the 0.01 level.”

      Discussion

      The Discussion (Section 4.2) needs to be revised and focused on your key findings, it is habitat loss, not fragmentation per se, that weakens the BEF relationships.

      Response: Thanks for your insightful comment and suggestion. In the revised manuscript, we have rephrased the Discussion (Section 4.2) to mainly discuss the inconsistent effects of habitat loss and fragmentation per se on the BEF relationship.

      Line 414-416:

      “4.2 Habitat loss rather than fragmentation per se weakened the magnitude of the positive relationship between plant diversity and ecosystem function”

      The R2 in the results are low (e.g., Fig. 3), please also mention other variables that might influence the observed pattern in the Discussion, such as soil and topography, though I understand it is difficult to collect such data in this study.

      Response: Thanks for your insightful comment and suggestion. We agree with you and reviewer 3 that the impact of environmental factors should also be considered.

      Therefore, we have considered two environmental factors related to water and temperature (soil water content and land surface temperature) in the analysis and discussed their impacts on plant diversity and above-ground biomass in the revised manuscript.

      Lines 344-345, its relative importance was stronger in the intact landscape than that of the fragmented landscape?

      Response: We apologize for making this confusion. We have rephrased this sentence.

      Line 422-426:

      “Our study found grassland plant diversity showed a stronger positive impact on above-ground productivity than landscape context and environmental factors. This result is consistent with findings by Duffy et al. (2017) in natural ecosystems, indicating grassland plant diversity has an important role in maintaining grassland ecosystem functions in the fragmented landscapes of the agro-pastoral ecotone of northern China.”

      Reviewer #2 (Public Review):

      Summary:

      In this manuscript, Yan et al. assess the effect of two facets of habitat fragmentation (i.e., habitat loss and habitat fragmentation per se) on biodiversity, ecosystem function, and the biodiversity-ecosystem function (BEF) relationship in grasslands of an agro-pastoral ecotone landscape in northern China. The authors use stratified random sampling to select 130 study sites located within 500m-radius landscapes varying along gradients of habitat loss and habitat fragmentation per se. In these study sites, the authors measure grassland specialist and generalist plant richness via field surveys, as well as above-ground biomass by harvesting and dry-weighting the grass communities in each 3 x 1m2 plots of the 130 study sites. The authors find that habitat loss and fragmentation per se have different effects on biodiversity, ecosystem function and the BEF relationship: whereas habitat loss was associated with a decrease in plant richness, fragmentation per se was not; and whereas fragmentation per se was associated with a decrease in above-ground biomass, habitat loss was not. Finally, habitat loss, but not fragmentation per se was linked to a decrease in the magnitude of the positive biodiversity-ecosystem functioning relationship, by reducing the percentage of grassland specialists in the community.

      Strengths:

      This study by Yan et al. is an exceptionally well-designed, well-written, clear and concise study shedding light on a longstanding, important question in landscape ecology and biodiversity-ecosystem functioning research. Via a stratified random sampling approach (cf. also "quasi-experimental design" Butsic et al. 2017), Yan et al. create an ideal set of study sites, where habitat loss and habitat fragmentation per se (usually highly correlated) are decorrelated and hence, separate effects of each of these facets on biodiversity and ecosystem function can be assessed statistically in "real-world" (and not experimental, cf. Duffy et al. 2017) communities. The authors use adequate and well-described methods to investigate their questions. The findings of this study add important empirical evidence from real-world grassland ecosystems that help to advance our theoretical understanding of landscape-moderation of biodiversity effects and provide important guidelines for conservation management.

      Weaknesses:

      I found only a few minor issues, mostly unclear descriptions in the study that could be revised for more clarity.

      Response: Thanks very much for your review of the manuscript. We are grateful to you for the recognition. All the comments and suggestions are very insightful and constructive for improving this manuscript. We have carefully studied the literature you recommend and revised the manuscript carefully following your suggestions. All changes are marked in red font in the revised manuscript.

      Reviewer #2 (Recommendations For The Authors):

      Specific comments

      (1) Some aspects of the Methods section were not entirely clear to me, could you revise them for more clarity?

      (a) Whereas you describe 4 main facets of fragmentation per se that are used to create the PC1 as a measure of overall fragmentation per se, it looks as if this PC1 is mainly driven by 3 facets only (ED, PD and AREA_MN), and patch isolation (nearest neighbour distance, ENN) having a relatively low loading on PC1 (Figure A1). I think it would be good to discuss this fact and the consequences of it, that your definition of fragmentation is focused more on edge density, patch density and mean patch area, and less on patch isolation in your Discussion section?

      Response: Thanks for your insightful comment and suggestion. We agree with your point. We have discussed this fact and its implications for understanding the effects of fragmentation per se in our study.

      Line 384-389:

      “However, it is important to stress that the observed positive effect of fragmentation per se does not imply that increasing the isolation of grassland patches would promote biodiversity, as the metric of fragmentation per se used in our study was more related to patch density, edge density and mean patch area while relatively less related to patch isolation (Appendix Table A1). The potential threats from isolation still need to be carefully considered in the conservation of biodiversity in fragmented landscapes (Haddad et al., 2015).”

      (b) Also, from your PCA in Figure A1, it seems that positive values of PC1 mean "low fragmentation", whereas high values of PC1 mean "high fragmentation", however, in Figure A2, the inverse is shown (low values of PC1 = low fragmentation, high values of PC1 = high fragmentation). Could you clarify in the Methods section, if you scaled or normalized the PC1 to match this directionality?

      Response: We apologize for making this confusion. In order to be consistent with the direction of change in fragmentation per se, we took the inverse of the PC1 as a single fragmentation per se index, which was positively correlated with patch density, edge density, mean nearest-neighbor distance metric, and negatively with mean patch area (Appendix Figure A1 and Table A1). We have clarified this point in the Method section.

      Line 160-163:

      “We took the inverse of the PC1 as a single fragmentation per se index, which was positively correlated with patch density, edge density, mean nearest-neighbor distance metric, and negatively with mean patch area (Appendix Figure A1 and Table A1).”

      (c) On line 155 you describe that you selected at least 20 landscapes using stratified sampling from each of the eight groups of habitat amount and fragmentation combination. Could you clarify: 1) did you randomly sample within these groups with a minimum distance condition or was it a non-random selection according to other criteria? (I think you could move the "To prevent overlapping landscapes..." sentence up here to the description of the landscape selection process) 2) Why did you write "at least 20 landscapes" - were there in some cases more or less landscapes selected? 130 study landscapes divided by 8 groups only gives you 16.25, hence, at least for some groups there were less than 20 landscapes? Could you describe your final dataset in more detail, i.e. the number of landscapes per group and potential repercussions for your analysis?

      Response: Thanks for your insightful comments. In the revised manuscript, we have rephrased the method to provide more detail for the sampling landscape selection.

      (1) Line 169-172

      We randomly selected at least 20 grassland landscapes with a minimum distance condition using stratified sampling from each of the remaining eight grassland types as alternative sites for field surveys. The minimum distance between each landscape was at least 1000 m to prevent overlapping landscapes and potential spatial autocorrelation.

      (2) Line 184-191

      The reason for selecting at least 20 grassland landscapes of each type in this study was to ensure enough alternative sites for the field survey. This is because the habitat type of some selected sites was not the natural grasslands, such as abandoned agricultural land. Some of the selected sites may not be permitted for field surveys.

      Thus, we finally established 130 sites in the field survey. The types of the 130 sites were: 19 high-moderate, 14 high-low, 19 moderate-high, 16 moderate-moderate, 18 moderate-low, 16 low-high, 17 low-moderate, 11 low-low habitat amount and fragmentation per se.

      (d) On line 166, you describe that you established 130 sites of 30 m by 30 m - I assume they were located (more or less) exactly in the centre of the selected 500 m - radius landscapes? Were they established so that they were fully covered with grassland? And more importantly, how did you establish the 10 m by 10 m areas and the 1 m2 plots within the 30 m by 30 m sites? Did you divide the 30 m by 30 m areas into three rectangles of 10 m by 10 m and then randomly established 1 m2 plots? Were the 1 m2 plots always fully covered with grassland/was there a minimum distance to edge criterion? Please describe with more detail how you established the 1 m2 study sites, and how many there were per landscape.

      Response: Thanks for your insightful comments. In the revised manuscript, we have provided more detailed information on how to set up 130 sites of 30 m by 30 m and three plots of 1 m by 1 m.

      (1) As these 130 sites were selected based on the calculation of the moving window, they were located (more or less) exactly in the centre of the 500-m radius buffer.

      (2) These sites were fully covered with grassland because their size (30 m by 30 m) was the same as the size of the grassland cell (30 m by 30 m) used in the calculation of the moving window.

      (3) We randomly set up three 1 m * 1 m plots in a flat topographic area at the 10 m * 10 m centre of each site. Thus, there was a minimum distance of 10 m to the edge for each 1 m * 1 m plot.

      (4) There are three 1 m * 1 m plots per landscape.

      Line 182-191:

      “Based on the alternative sites selected above, we established 130 sites (30 m * 30 m) between late July to mid-August 2020 in the Tabu River Basin in Siziwang Banner, Inner Mongolia Autonomous Region (Figure 1). The types of the 130 sites were: 19 high-moderate, 14 high-low, 19 moderate-high, 16 moderate-moderate, 18 moderate-low, 16 low-high, 17 low-moderate, 11 low-low habitat amount and fragmentation per se. In order to exclude the impact of historical agricultural activities, the habitat type of the established sites was natural grasslands with regional vegetation characteristics. Each site was not abandoned agricultural land, and there was no sign of agricultural reclamation.

      At the 10 m * 10 m center of each site, we randomly set up three 1 m * 1 m plots in a flat topographic area to investigate grassland vascular plant diversity and above-ground productivity.”

      (e) Line 171: could you explain what you mean by reclaimed?

      Response: Thanks for your comment. The “reclaimed” means that historical agricultural activities. We have rephrased this sentence to make it more explicit.

      Line 186-189:

      “In order to exclude the impact of historical agricultural activities, the habitat type of the established sites was natural grasslands with regional vegetation characteristics. Each site was not abandoned agricultural land, and there was no sign of agricultural reclamation.”

      (f) Line 188 ff.: Hence your measure of productivity is average-above ground biomass per 1 m2. I think it would add clarity if you highlighted this more explicitly.

      Response: Thanks for your suggestion. We have highlighted that the productivity in our study was the average above-ground biomass per 1 m * 1 m plots in each site.

      Line 215-217:

      “For each site, we calculated the mean vascular plant richness of the three 1 m * 1 m plots, representing the vascular plant diversity, and mean above-ground biomass of the three 1 m * 1 m plots, representing the above-ground productivity.”

      (2) All figures are clear and well-designed!

      (a) Just as a suggestion: in Figures 3 and 6, you could maybe add the standard errors of the mean as well?

      Response: Thanks for your suggestion. In the revised manuscript, we have added the standard errors of the mean in Figures 3 and 6.

      (b) Figure 4: Could you please clarify: Which models were the optimal models on which these model-averaged standardized parameter estimates were based on? And hence, the optimal models contained all 4 predictors (otherwise, no standardized parameter estimate could be calculated)? Or do these model-averaged parameters take into account all possible models (and not only the optimal ones)?

      Response: Thanks for your suggestion. We selected the four optimal models based on the AICc value to calculate the model-averaged standardized parameter estimates. The four optimal models contained all predictors in Figure 4. We have added the four optimal models in Appendix Table A3.

      Appendix:

      Author response table 1.

      Four optimal models of landscape context, environment factors, and plant diversity affecting above-ground biomass.

      Note: AGB: above-ground biomass; HL: habitat loss; FPS: fragmentation per se; SWT: soil water content; LST: land surface temperature; GSR: grassland specialist richness; WR: weed richness; **: significance at the 0.01 level.”

      (c) Please add in all Figures (i.e., Figures 4, 5 and 6, Figure 6 per "high, moderate and low-class") the number of study units the analyses were based on.

      Response: Thanks for your suggestion. In the revised manuscript, we have added the number of study units the analyses were based on in all Figures.

      (d) Figure 6: I think it would be more consistent to add a second plot where the BEF-relationship is shown for low, moderate and high levels of habitat fragmentation per se. Could you also add a clearer description in the Methods and/or Results section of how you assessed if habitat amount or fragmentation per se affected the BEF-relationship? I.e. based on the significance of the interaction term (habitat amount x species richness) in a linear model?

      Response: Thanks for your insightful comment and suggestion. We have added a second plot in Figure 5 to show the BEF relationship at low, moderate and high levels of fragmentation per se.

      Line 328-340:

      Author response image 2.

      Relationships between grassland plant richness and above-ground biomass at different levels of habitat loss and fragmentation per se from 130 landscapes in the Tabu River Basin, a typical agro-pastoral ecotone of northern China: (a) high habitat loss and low fragmentation per se, (b) high habitat loss and moderate fragmentation per se, (c) high habitat loss and high fragmentation per se, (d) moderate habitat loss and low fragmentation per se, (e) moderate habitat loss and moderate fragmentation per se, (f) moderate habitat loss and high fragmentation per se, (g) low habitat loss and low fragmentation per se, (h) low habitat loss and moderate fragmentation per se. The R2 values in each panel are from linear regression models. The n in each panel is the number of surveying sites used in the linear regression models. The blue solid and dashed trend lines represent the significant and not significant effects, respectively. The shaded area around the trend line represents the 95% confidence interval. * represent significance at the 0.05 level. ** represent significance at the 0.01 level.”

      We determined whether habitat loss and fragmentation per se moderated the BEF relationship by testing the significance of their interaction term with plant richness. We have added a clearer description in the Methods section of the revised manuscript.

      Line 245-250:

      “We then assessed the significance of interaction terms between habitat loss and fragmentation per se and plant richness in the linear regression models to evaluate whether they modulate the relationship between plant richness and above-ground biomass. Further, we used a piecewise structural equation model to investigate the specific pathways in which habitat loss and fragmentation per se modulate the relationship between plant richness and above-ground biomass.”

      (3) While reading your manuscript, I missed a discussion on the potential non-linear effects of habitat amount and fragmentation per se. In your study, it seems that the effects of habitat amount and fragmentation per se on biodiversity and ecosystem function are quite linear, which contrasts previous research highlighting that intermediate levels of fragmentation/heterogeneity could maximise spatial asynchrony, biodiversity and ecosystem function (e.g. Redon et al. 2014, Thompson & Gonzalez 2016, Tscharntke et al. 2012, Wilcox et al. 2017). I think it would add depth to your study if you discussed your finding of linear effects of habitat amount and fragmentation on biodiversity, ecosystem functioning and BEF. For example:

      Response: Thanks for your constructive suggestions. We have carefully studied the literature (e.g. Redon et al. 2014, Thompson & Gonzalez 2016, Tscharntke et al. 2012, Wilcox et al. 2017), which highlights that intermediate levels of fragmentation/heterogeneity could maximise spatial asynchrony, biodiversity and ecosystem function.

      In the revised manuscript, we have added the discussion about the linear positive effects of fragmentation on plant diversity and above-ground productivity and discussed possible reasons for this linear effect.

      Line 402-413:

      “In our study, a possible mechanism for the positive impacts of fragmentation per se on plant diversity and above-ground productivity (indirect positive impact via plant diversity) is that fragmentation per se increases the habitat heterogeneity in the landscape, which can promote biodiversity through spatial asynchrony and spatial insurance effects (Tscharntke et al., 2012). Previous studies indicated that heterogeneity typically has nonlinear effects on biodiversity and ecosystem function, as moderate heterogeneity can maximise spatial asynchrony (Redon et al., 2014; Wilcox et al., 2017). However, our study did not observe nonlinear patterns between fragmentation per se and plant diversity and above-ground productivity. This may be due to the low spatial heterogeneity of this area as a result of agricultural intensification (Benton et al., 2003; Chen et al., 2019). The gradient of fragmentation per se in our study may not cover the optimal heterogeneity levels for maximising plant diversity and above-ground productivity (Thompson and Gonzalez, 2016).”

      Meanwhile, we also discussed the nonlinear pattern of the BEF relationship with increasing levels of fragmentation per se to add depth to the discussion.

      Line 442-451:

      “In addition, our study found that the BEF relationship showed a nonlinear pattern with increasing levels of fragmentation per se. For a given level of habitat loss, the positive BEF relationship was strongest at moderate fragmentation per se level and became neutral at high fragmentation per se level. This can be explained by the increased spatial asynchrony at moderate fragmentation per se level, which can promote niche complementary among species in the community and thus strengthen the BEF relationship (Gonzalez et al., 2020; Thompson and Gonzalez, 2016; Tscharntke et al., 2012). The neutral BEF relationship at high fragmentation per se level may be due to edge effects enhancing environmental filtering, thereby leading to functional redundancy among species and decoupling the BEF relationship (Fetzer et al., 2015; Hu et al., 2016; Zambrano et al., 2019).”

      (a) Line 74-75: I was wondering if you also thought of spatial insurance effects or spatial asynchrony effects that can emerge with habitat fragmentation, which could lead to increased ecosystem functioning as well? (refs. above).

      Response: Thanks for your constructive suggestions. In the revised manuscript, we have explicitly considered the spatial insurance effect or spatial asynchrony as the important mechanism for fragmentation per se to increase plant diversity, ecosystem function, and the BEF relationship.

      Line 74-77:

      “In theory, habitat loss and fragmentation per se can regulate ecosystem function and the BEF relationship by altering species composition, interactions, and spatial asynchrony regardless of changes in species richness (Liu et al., 2018; Thompson and Gonzalez, 2016; Tscharntke et al., 2012).”

      Line 402-408:

      “In our study, a possible mechanism for the positive impacts of fragmentation per se on plant diversity and above-ground productivity (indirect positive impact via plant diversity) is that fragmentation per se increases the habitat heterogeneity in the landscape, which can promote biodiversity through spatial asynchrony and spatial insurance effects (Tscharntke et al., 2012). Previous studies indicated that heterogeneity typically has nonlinear effects on biodiversity and ecosystem function, as moderate heterogeneity can maximise spatial asynchrony (Redon et al., 2014; Wilcox et al., 2017).”

      Line 442-451:

      “In addition, our study found that the BEF relationship showed a nonlinear pattern with increasing levels of fragmentation per se. For a given level of habitat loss, the positive BEF relationship was strongest at moderate fragmentation per se level and became neutral at high fragmentation per se level. This can be explained by the increased spatial asynchrony at moderate fragmentation per se level, which can promote niche complementary among species in the community and thus strengthen the BEF relationship (Gonzalez et al., 2020; Thompson and Gonzalez, 2016; Tscharntke et al., 2012). The neutral BEF relationship at high fragmentation per se level may be due to edge effects enhancing environmental filtering, thereby leading to functional redundancy among species and decoupling the BEF relationship (Fetzer et al., 2015; Hu et al., 2016; Zambrano et al., 2019).”

      (b) I was wondering, if this result of linear effects could also be the result of a fragmentation gradient that does not cover the whole range of potential values? Maybe it would be good to compare the gradient in habitat fragmentation in your study with a theoretical minimum maximum/considering that there might be an optimal medium degree of fragmentation.

      Response: Thanks for your insightful comment. We agree with your point that the linear effect of fragmentation per se in our study may be due to the fact that the gradient of fragmentation per se in this region may not cover the optimal heterogeneity levels for maximising spatial asynchrony. This is mainly because the agricultural intensification in the agro-pastoral ecotone of northern China could lead to lower spatial heterogeneity in this region. We have explicitly discussed this point in the revised manuscript.

      Line 406-413:

      “Previous studies indicated that heterogeneity typically has nonlinear effects on biodiversity and ecosystem function, as moderate heterogeneity can maximise spatial asynchrony (Redon et al., 2014; Wilcox et al., 2017). However, our study did not observe nonlinear patterns between fragmentation per se and plant diversity and above-ground productivity. This may be due to the low spatial heterogeneity of this area as a result of agricultural intensification (Benton et al., 2003; Chen et al., 2019). The gradient of fragmentation per se in our study may not cover the optimal heterogeneity levels for maximising plant diversity and above-ground productivity (Thompson and Gonzalez, 2016).”

      (4) Some additional suggestions:

      (a) Line 3: Maybe add "via reducing the percentage of grassland specialists in the community"?

      Response: Thanks for your suggestion. We have revised this sentence.

      Line 19:

      “Habitat loss can weaken the positive BEF relationship via reducing the percentage of grassland specialists in the community”

      (b) Lines 46-48: Maybe add "but see: Duffy, J.E., Godwin, C.M. & Cardinale, B.J. (2017). Biodiversity effects in the wild are common and as strong as key drivers of productivity. Nature."

      Response: Thanks for your suggestion. We have added this reference here.

      Line 47-49:

      “When research expands from experiments to natural systems, however, BEF relationships remain unclear in the natural assembled communities, with significant context dependency (Hagan et al., 2021; van der Plas, 2019; but see Duffy et al., 2017).”

      (c) Lines 82-87 and lines 90-93: Hence, your study actually is in contrast to these findings, i.e., fragmented landscapes do not necessarily have a lower fraction of grassland specialists? If yes, could you highlight this more explicitly?

      Response: Thanks for your insightful comment. We have explicitly highlighted this point in the revised manuscript.

      Line 434-439:

      “Meanwhile, our study demonstrates that habitat loss, rather than fragmentation per se, can decrease the degree of habitat specialisation by leading to the replacement of specialists by generalists in the community, thus weakening the BEF relationship. This is mainly because fragmentation per se did not decrease the grassland specialist richness in this region, whereas habitat loss decreased the grassland specialist richness and led to the invasion of more weeds from the surrounding farmland into the grassland community (Yan et al., 2022; Yan et al., 2023).”

      (d) Line 360: Could you add some examples of these multiple ecosystem functions you refer to?

      Response: Thanks for your suggestion. We have added some examples of these multiple ecosystem functions here.

      Line 456-457:

      “Therefore, future studies are needed to focus on multiple ecosystem functions, such as below-ground productivity, litter decomposition, soil carbon stocks, etc.”

      Reviewer #3 (Public Review):

      Summary:

      The authors aim to solve how landscape context impacts the community BEF relationship. They found habitat loss and fragmentation per se have inconsistent effects on biodiversity and ecosystem function. Habitat loss rather than fragmentation per se can weaken the positive BEF relationship by decreasing the degree of habitat specialization of the community.

      Strengths:

      The authors provide a good background, and they have a good grasp of habitat fragmentation and BEF literature. A major strength of this study is separating the impacts of habitat loss and fragmentation per se using the convincing design selection of landscapes with different combinations of habitat amount and fragmentation per se. Another strength is considering the role of specialists and generalists in shaping the BEF relationship.

      Response: We are grateful to you for the recognition and constructive comments. All the comments and suggestions are very constructive for improving this manuscript. We have carefully revised the manuscript following your suggestions. All changes are marked in red font in the revised manuscript.

      Weaknesses:

      (1) The authors used five fragmentation metrics in their study. However, the choice of these fragmentation metrics was not well justified. The ecological significance of each fragmentation metric needs to be differentiated clearly. Also, these fragmentation metrics may be highly correlated with each other and redundant. I suggest author test the collinearity of these fragmentation metrics for influencing biodiversity and ecosystem function.

      Response: Thanks for your constructive suggestion. The fragmentation metrics used in our study represent the different processes of breaking apart of habitat in the landscape, which are widely used by previous studies (Fahrig, 2003; Fahrig, 2017). In the revised manuscript, we have provided more detailed information about the ecological significance of these fragmentation indices.

      Line 142-148:

      “The patch density metric reflects the breaking apart of habitat in the landscape, which is a direct reflection of the definition of fragmentation per se (Fahrig et al., 2019). The edge density metric reflects the magnitude of the edge effect caused by fragmentation (Fahrig, 2017). The mean patch area metric and the mean nearest-neighbor distance metric are associated with the area and distance effects of island biogeography, respectively, reflecting the processes of local extinction and dispersal of species in the landscape (Fletcher et al., 2018).”

      Meanwhile, we have calculated the variance inflation factors (VIF) for each fragmentation metric to assess their collinearity. The VIF of these fragmentation metrics were all less than four, suggesting no significant multicollinearity for influencing biodiversity and ecosystem function.

      Author response table 2.

      Variance inflation factors of habitat loss and fragmentation per se indices for influencing plant richness and above-ground biomass.

      (2) I found the local environmental factors were not considered in the study. As the author mentioned in the manuscript, temperature and water also have important impacts on biodiversity and ecosystem function in the natural ecosystem. I suggest authors include the environmental factors in the data analysis to control their potential impact, especially the structural equation model.

      Response: Thanks for your constructive suggestion. We agree with you that environmental factors should be considered in our study. In the revised manuscript, we have integrated two environmental factors related to water and temperature (soil water content and land surface temperature) into the data analysis to control their potential impact. The main results and conclusions of the revised manuscript are consistent with those of the previous manuscript.

      Reviewer #3 (Recommendations For The Authors):

      (1) L60-63. The necessity to distinguish between habitat loss and fragmentation per se is not clearly stated. More information about biodiversity conservation strategies can be given here.

      Response: Thanks for your suggestion. In the revised manuscript, we have provided more evidence about the importance of distinguishing between habitat loss and fragmentation per se for biodiversity conservation.

      Line 62-67:

      “Habitat loss is often considered the major near-term threat to the biodiversity of terrestrial ecosystems (Chase et al., 2020; Haddad et al., 2015), while the impact of fragmentation per se remains debated (Fletcher Jr et al., 2023; Miller-Rushing et al., 2019). Thus, habitat loss and fragmentation per se may have inconsistent ecological consequences and should be considered simultaneously to establish effective conservation strategies in fragmented landscapes (Fahrig et al., 2019; Fletcher et al., 2018; Miller-Rushing et al., 2019).”

      (2) L73-77. The two sentences are hard to follow. Please rephrase to improve the logic. And I don't understand the "however" here. There is no twist.

      Response: Thanks for your suggestion. We have rephrased the two sentences to improve their logic.

      Line 74-79:

      “In theory, habitat loss and fragmentation per se can regulate ecosystem function and the BEF relationship by altering species composition, interactions, and spatial asynchrony regardless of changes in species richness (Liu et al., 2018; Thompson and Gonzalez, 2016; Tscharntke et al., 2012). This is because species in communities are not ecologically equivalent and may respond differently to habitat loss and fragmentation per se, and contribute unequally to ecosystem function (Devictor et al., 2008; Wardle and Zackrisson, 2005).”

      (3) L97. Are grasslands really the largest terrestrial ecosystem? Isn't it the forest?

      Response: We apologize for making this confusion. We have rephrased this sentence here.

      Line 101-104:

      “Grasslands have received considerably less attention, despite being one of the largest terrestrial ecosystems, and suffering severe fragmentation due to human activities, such as agricultural reclamation and urbanisation (Fardila et al., 2017).”

      (4) Fig.1, whether the four sample plots presented in panel b are from panel a. Please add the scale bar in panel b.

      Response: Thanks for your comment. The four sample plots presented in panel b are from panel a in Figure 1. We have also added the scale bar in panel b.

      (5) L105. This statement is too specific. Please remove and consider merging this paragraph with the next.

      Response: Thanks for your suggestion. We have removed this sentence and merged this paragraph with the next.

      (6) L157. The accuracy and kappa value of the supervised classification should be given.

      Response: Thanks for your suggestion. We have added the accuracy and kappa value of the supervised classification in the revised manuscript.

      Line 176-177:

      “The overall classification accuracy was 84.3 %, and the kappa coefficient was 0.81.”

      (7) I would recommend the authors provide the list of generalists and specialists surveyed in the supplementary. Readers may not be familiar with the plant species composition in this area.

      Response: Thanks for your suggestion. We agree with your point. We have provided the list of generalists and specialists surveyed in the Appendix Table A4.

      Line 282-283:

      “A total of 130 vascular plant species were identified in our study sites, including 91 grassland specialists and 39 weeds (Appendix Table A4).”

      (8) Fig.4, it is better to add the results of variation partition to present the relative contribution of habitat fragmentation, environmental factors, and plant diversity.

      Response: Thanks for your suggestion. We have integrated the landscape context, environmental factors, and plant diversity into the multi-model averaging analysis and redraw Figure 4 to present their relative importance for above-ground biomass.

      Line 313-319:

      Author response image 3.

      Standardised parameter estimates and 95% confidence intervals for landscape context, plant diversity, and environmental factors affecting above-ground biomass from 130 landscapes in the Tabu River Basin, a typical agro-pastoral ecotone of northern China. Standardised estimates and 95% confidence intervals are calculated by the multi-model averaging method based on the four optimal models affecting above-ground biomass (Appendix Table A3). ** represent significance at the 0.01 level.

      (9) Please redraw Fig.2 and Fig.5 to integrate the environmental factors. Add the R-square to Fig 5.

      Response: Thanks for your suggestion. We have integrated two environmental factors into the structural equation model and redraw Figure 2 and Figure 5 in the revised manuscript. And we have added the R-square to the Figure 5.

      (10) L354. The authors should be careful to claim that habitat loss could reduce the importance of plant diversity to ecosystem function. This pattern observed may depend on the type of ecosystem function studied.

      Response: Thanks for your suggestion. We have avoided this claim in the revised manuscript and explicitly discussed the importance of simultaneously focusing on multiple ecosystem functions, such as below-ground productivity, litter decomposition, soil carbon stocks, etc.

      Line 454-457:

      “This inconsistency can be explained by trade-offs between different ecosystem functions that may differ in their response to fragmentation per se (Banks-Leite et al., 2020). Therefore, future studies are needed to focus on multiple ecosystem functions, such as below-ground productivity, litter decomposition, soil carbon stocks, etc.”

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      Transcriptional readthrough, intron retention, and transposon expression have been previously shown to be elevated in mammalian aging and senescence by multiple studies. The current manuscript claims that the increased intron retention and readthrough could completely explain the findings of elevated transposon expression seen in these conditions. To that end, they analyze multiple RNA-seq expression datasets of human aging, human senescence, and mouse aging, and establish a series of correlations between the overall expression of these three entities in all datasets.

      While the findings are useful, the strength of the evidence is incomplete, as the individual analyses unfortunately do not support the claims. Specifically, to establish this claim there is a burden of proof on the authors to analyze both intron-by-intron and gene-by-gene, using internal matched regions, and, in addition, thoroughly quantify the extent of transcription of completely intergenic transposons and show that they do not contribute to the increase in aging/senescence. Furthermore, the authors chose to analyze the datasets as unstranded, even though strand information is crucial to their claim, as both introns and readthrough are stranded, and if there is causality, than opposite strand transposons should show no preferential increase in aging/senescence. Finally, there are some unclear figures that do not seem to show what the authors claim. Overall, the study is not convincing.

      Major concerns: 1) Why were all datasets treated as unstanded? Strand information seems critical, and should not be discarded. Specifically, stranded information is crucial to increase the confidence in the causality claimed by the authors, since readthrough and intron retention are both strand specific, and therefore should influence only the same strand transposons and not the opposite-strand ones.

      This is an excellent suggestion. Since only one of our datasets was stranded, we did not run stranded analyses for the sake of consistency. We would like to provide two analyses here that consider strandedness:

      First, we find that within the set of all expressed transposons (passing minimal read filtering), 86% of intronic transposons match the strand of the intron (3147 out of 3613). In contrast, the number is 51% after permutation of the strands. Similarly, when we randomly select 1000 intronic transposons 45% match the strandedness of the intron (here we select from the set of all transposons). This is consistent with the idea that most transposons are only detectable because they are co-expressed on the sense strand of other features that are highly expressed.

      As for the readthrough data, 287 out of 360 transposons (79%) within readthrough regions matched the strand of the gene and its readthrough.

      Second, in the model we postulate, the majority of transposon transcription occurs as a co-transcriptional artifact. This applies equally to genic transposons (gene expression), intronic (intron retention) and gene proximal (readthrough or readin) transposons. Therefore, we performed the following analysis for the set of all transposons in the Fleischer et al. fibroblast dataset.

      When we invert the strand annotation for transposons, before counting and differential expression, we would expect the counts and log fold changes to be lower compared to using the “correct” annotation file.

      Indeed, we show that out of 6623 significantly changed transposons with age only 226 show any expression in the “inverted run” (-96%). (Any expression is defined as passing basic read filtering.)

      Out of the 226 transposons that can be detected in both runs most show lower counts (A) and age-related differential expression converging towards zero (B) in the inverted run (Fig. L1).

      Author response image 1.

      Transposons with inverted strandedness (“reverse”) show lower expression levels (log counts; A) and no differential expression with age (B) when compared to matched differentially expressed transposons (“actual”). For this analysis we selected all transposons showing significant differential expression with age in the actual dataset that also showed at least minimal expression in the strand-inverted analysis (n=226). Data from Fleischer et al. (2018). (A) The log (counts) are clipped because we only used transposons that passed minimal read filtering in this analysis. (B) The distribution of expression values in the actual dataset is bimodal and positive since some transposons are significantly up- or downregulated. This bimodal distribution is lost in the strand-inverted analysis.

      2) "Altogether this data suggests that intron retention contributes to the age-related increase in the expression of transposons" - this analysis doesn't demonstrate the claim. In order to prove this they need to show that transposons that are independent of introns are either negligible, or non-changing with age.

      We would like to emphasize that we never claimed that intron retention and readthrough can explain all of the age-related increases in transposon expression. In fact, our data is compatible with a multifactorial origin of transposons expression. Age- and senescence-related transposon expression can occur due to: 1/ intron retention, 2/ readthrough, 3/ loss of intergenic heterochromatin. Specifically, we do not try to refute 3.

      However, since most transposons are found in introns or downstream of genes, this suggests that intron retention and readthrough will be major, albeit non-exclusive, drivers of age-related changes in transposons expression. Even if the fold-change for intergenic transposons with aging or senescence were higher this would not account for the broadscale expression patterns seen in RNAseq data.

      To further illustrate this, we analyzed transposons located in introns, genes, downstream (ds) or upstream (us) of genes (distance to gene < 25 kb) or in intergenic regions (distance to gene > 25 kb). Indeed, we find that although intergenic transposons show similar log-fold changes to other transposon classes (Fig. L2A), their total contribution to read counts is negligible (Fig. L2B, Fig. Fig. S15). We have also now added a more nuanced explanation of this issue to the discussion.

      Author response image 2.

      We analyzed transposons located in introns, genes, downstream (ds) or upstream (us) of genes (distance to gene < 25 kb) or in intergenic regions (distance to gene > 25 kb). Independent of their location, transposons show similar differential expression with aging or cellular senescence (A). In contrast, the expression of transposons (log counts) is highly dependent on their location and the median log(count) value decreases in the order: genic > intronic > ds > us > intergenic.

      Author response image 3.

      Total counts are the sum of all counts from transposons located in introns, genes, downstream (ds) or upstream (us) of genes (distance to gene < 25 kb) or in intergenic regions (distance to gene > 25 kb). Counts were defined as cumulative counts across all samples.

      3) Additionally, the correct control regions should be intronic regions other than the transposon, which overall contributed to the read counts of the intron.

      4) Furthermore, analysis of read spanning intron and partly transposons should more directly show this contribution.

      Thank you for this comment. To rephrase this, if we understand correctly, the concern is that an increase in transposon expression could bias the analysis of intron retention since transposons often make up a substantial portion of an intron. We would like to address this concern with the following three points:

      First, if the concern is the correlation between log fold-change of transposons vs log fold-change of their containing introns, we do not think that this kind of data is biased. While transposons make up much of the intron, a single transposon on average only accounts for less than 10% of an intron.

      Second, to address this more directly, we show here that even introns that do not contain expressed transposons are increased in aging fibroblasts and after induction of cellular senescence (Fig. S8). This shows that intron retention is universal and most likely not heavily biased by the presence or absence of expressed transposons.

      Author response image 4.

      We split the set of introns that significantly change with cellular aging (A) or cell senescence (B) into introns that contain at least one transposon (has_t) and those that do not contain any transposons (has_no_t). Intron retention is increased in both groups. In this analysis we included all transposons that passed minimal read filtering (n=63782 in A and n=124173 in B). Median log-fold change indicated with a dashed red line for the group of introns without transposons.

      Third, we provide an argument based on the distribution of transposons within introns (Fig. L3).

      Author response image 5.

      The 5’ and 3’ splice sites show the highest sequence conservation between introns, whereas the majority of the intronic sequence does not. This is because these sites contain binding sites for splicing factors such as U1, U2 and SF1 (A). Transposons could affect splicing and we present a biologically plausible mechanism and two ancillary hypotheses here (B). If transposons affect the splicing (retention) of introns the most likely mechanism would be via impairment of splice site recognition because a transposon close to the site forms a secondary structure, binds an effector protein or provides inadequate sequences for pairing. Hypothesis 1: Transposons impair splicing because they are close to the splice site. Hypothesis 2: Transposons do not impair splicing because they are located away from the splice junction. Retained introns should show a similar depletion of transposons around the junction. Image adapted from: Ren, Pingping, et al. "Alternative splicing: a new cause and potential therapeutic target in autoimmune disease." Frontiers in Immunology 12 (2021): 713540.

      Consistent with hypothesis 2 (“transposons do not impair splicing”), we show that the distribution of transposons within introns is similar for the set of all transposons and all significant transposons within significantly overexpressed introns (Fig. S7. A and B is similar in the case of aged fibroblasts; D and E is similar in the case of cellular senescence). If transposon expression was causally linked to changes in intron retention, the most likely mechanism would be via an impairment of splicing. We would expect transposons to be located close to the splice junction, which is not what we observed. Instead, the data is more consistent with intron retention as a driver of transposon expression.

      Author response image 6.

      Transposons are evenly distributed within introns except for the region close to splice junctions (A-E). Transposons appear to be excluded from the splice junction-adjacent region both in all introns (A, D) and in significantly retained introns (B, E). In addition, transposon density of all introns and significantly retained introns is comparable (C, F). We included only introns containing at least one transposon in this analysis. A) Distribution of 2292769 transposons within 163498 introns among all annotated transposons. B) Distribution of 195190 transposons within 14100 introns significantly retained with age. C) Density (transposon/1kb of intron) of transposons in all introns (n=163498) compared to significantly retained introns (n=14100). D) as in (A) E) Distribution of 428130 transposons within 13205 introns significantly retained with induced senescence. F) Density (transposon/1kb of intron) of transposons in all introns (n=163498) compared to significantly retained introns (n=13205).

      5) "This contrasts with the almost completely even distribution of randomly permuted transposons." How was random permutation of transposons performed? Why is this contract not trivial, and why is this a good control?

      Permutation was performed using the bedtools shuffle function (Quinlan et al. 2010). We use the set of all annotated transposons and all reshuffled transposons as a control. It is interesting to observe that these two show a very similar distribution with transposons evenly spread out relative to genes. In contrast, expressed transposons are found to cluster downstream of genes. This gave rise to our initial working hypothesis that readthrough should affect transposon expression.

      6) Fig 4: the choice to analyze only the 10kb-20kb region downstream to TSE for readthrough regions has probably reduced the number of regions substantially (there are only 200 left) and to what extent this faithfully represent the overall trend is unclear at this point.

      This is addressed in Suppl. Fig. 7, we repeated the analysis for every 10kb region between 0 and 100kb, showing similar results.

      Furthermore, we show below in a new figure that the results are comparable when we measure readthrough in the 0 to 10kb region, while the sample size of readthrough regions is increased.

      Finally, it is commonly accepted to remove readthrough regions overlapping genes, which while reducing sample size, increases accuracy for readthrough determination (Rosa-Mercado et al. 2021). Without filtering readthrough regions can overlap neighboring genes which is reflected in an elevated ratio of Readthrough_counts/Genic_counts (Fig. S9).

      Author response image 7.

      A) Readthrough was determined in a region 0 to 10 kb downstream of genes for a subset of genes that were at least 10 kb away from the nearest neighboring gene (n=684 regions). The log2 ratio of readthrough to gene expression is plotted across five age groups (adolescent n=32, young n=31, middle-aged n=22, old n=37 and very old n=21). B) As in (A) but data is plotted on a per sample basis. C) Readthrough was determined in a region 0 to 10 kb downstream of genes for a subset of genes that were at least 10 kb away from the nearest neighboring gene (n=1045 regions). The log2 ratio of readthrough to gene expression is plotted for the groups comprising senescence (n=12) and the non-senescent group (n=6). D) As in (D) but data is plotted on a per sample basis and for additional control datasets (serum-starved, immortalized, intermediate passage and early passage). N=3 per group.

      7) Fig. 5B shows the opposite of the authors claims: in the control samples there are more transposon reads than in the KCl samples.

      Thank you for pointing this out. During preparation of the manuscript the labels of Fig. 5B were switched (however, the color matching between Fig. 5A-C is correct). We apologize for this mistake, which we have now corrected.

      8) "induced readthrough led to preferential expression of gene proximal transposons (i.e. those within 25 kb of genes), when compared with senescence or aging". A convincing analysis would show if there is indeed preferential proximity of induced transposons to TSEs. Since readthrough transcription decays as a function of distance from TSEs, the expression of transposons should show the same trends if indeed simply caused by readthrough. Also, these should be compared to the extent of transposon expression (not induction) in intergenic regions without any readthrough, in these conditions.

      This is a very good suggestion. We now provide two new supplementary figures analyzing the distance-dependence of transposon expression.

      In the first figure (Fig. S13) we show that readthrough decreases with distance (A, B) and we show that transposon counts are higher for transposons close to genes, following a similar pattern to readthrough. This is true in fibroblasts isolated from aged donors (A) and with cellular senescence (B).

      Author response image 8.

      Readthrough counts (rt_counts) decrease exponentially downstream of genes, both in the aging dataset (A) and in the cellular senescence dataset (B). Although noisier, the pattern for transposon counts (transp_cum_counts) is similar with higher counts closer to gene terminals, both in the aging dataset (C) and in the cellular senescence dataset (D). Readthrough counts are the cumulative counts across all genes and samples. Readthrough was determined in 10 kb bins and the values are assigned to the midpoint of the bin for easier plotting. Transposon counts are the cumulative counts across all samples for each transposon that did not overlap a neighboring gene. n=801 in (C) and n=3479 in (D).

      In the second figure (Fig. S14) we show that transposons found downstream of genes with high readthrough show a more pronounced log-fold change (differential expression) than transposons downstream of genes with low readthrough (defined based on log-fold change). This is true in fibroblasts isolated from aged donors (A) and with cellular senescence (B). Furthermore, the difference between high and low readthrough region transposons is diminished for transposons that are more than 10 kb downstream of genes, as would be expected given that readthrough decreases with distance.

      Author response image 9.

      Transposons found downstream of genes with high readthrough (hi_RT) show a more pronounced log-fold change (transp_logfc) than transposons downstream of genes with low readthrough (low_RT). This is true in fibroblasts isolated from aged donors (A) and with cellular senescence (B). Furthermore, the difference between high and low readthrough region transposons is diminished for transposons that are more than 10 kb downstream of genes (“Transp > 10 kb”). Transposons in high readthrough regions were defined as those in the top 20% of readthrough log-fold change. Readthrough was measured between 0 and 10 kb downstream from genes. n=2124 transposons in (A) and n=6061 transposons in (B) included in the analysis.

      Reviewer #2 (Public Review):

      In this manuscript, the authors examined the role of transcription readout and intron retention in increasing transcription of transposable elements during aging in mammals. It is assumed that most transposable elements have lost the regulatory elements necessary for transcription activation. Using available RNA-seq datasets, the authors showed that an increase in intron retention and readthrough transcription during aging contributes to an increase in the number of transcripts containing transposable elements.

      Previously, it was assumed that the activation of transposable elements during aging is a consequence of a gradual imbalance of transcriptional repression and a decrease in the functionality of heterochromatin (de repression of transcription in heterochromatin). Therefore, this is an interesting study with important novel conclusion. However, there are many questions about bioinformatics analysis and the results obtained.

      Major comments:

      1) In Introduction the authors indicated that only small fraction of LINE-1 and SINE elements are expressed from functional promoters and most of LINE-1 are co-expressed with neighboring transcriptional units. What about other classes of mobile elements (LTR mobile element and transposons)?

      We thank the reviewer for this comment. Historically, most repetitive elements, e.g. DNA elements and retrotransposon-like elements, have been considered inactive, having accrued mutations which prevent them from transposition. On the other hand, based on recent data it is indeed very possible that certain LTR elements become active with aging as suggested in several manuscripts (Liu et al. 2023, Autio et al. 2020). However, these elements are not well annotated and our final analysis (Fig. 6) relies on a well-defined distinction between active and inactive elements. (See also question 2 for further discussion.)

      Finally, we would like to point out some of the difficulties with defining expression and re-activation of LTR/ERV elements based on RNAseq data that have been highlighted for the Liu manuscript and are concordant with several of our results: https://pubpeer.com/publications/364E785636ADF94732A977604E0256

      Liu, Xiaoqian, et al. "Resurrection of endogenous retroviruses during aging reinforces senescence." Cell 186.2 (2023): 287-304.

      Autio A, Nevalainen T, Mishra BH, Jylhä M, Flinck H, Hurme M. Effect of ageing on the transcriptomic changes associated with expression at the HERV-K (HML-2) provirus at 1q22. Immun Ageing. 2020;17(1):11.

      2) Results: Why authors considered all classes of mobile elements together? It is likely that most of the LTR containing mobile elements and transposons contain active promoters that are repressed in heterochromatin or by KRAB-C2H2 proteins.

      We do not consider LTR containing elements because there is uncertainty regarding their overall expression levels and their expression with aging (Nevalainen et al. 2018). Furthermore, we believe that substantial activity of LTR elements in human genomes should have been detectable through patterns of insertional mutagenesis. Yet studies generally show low to negligible levels of LTR (ERV) mutagenesis. Here, for example, at a 200-fold lower rate than for LINEs (Lee et al. 2012).

      Importantly, our analysis in Fig. 6 relies on well-annotated elements like LINEs, which is why we do not include LTR or SINE elements that could be potentially expressed. However, for other analyses we did consider element families independently as can be seen in Table S1, for example.

      Nevalainen, Tapio, et al. "Aging-associated patterns in the expression of human endogenous retroviruses." PLoS One 13.12 (2018): e0207407.

      Lee, Eunjung, et al. "Landscape of somatic retrotransposition in human cancers." Science 337.6097 (2012): 967-971.

      3) Fig. 2. A schematic model of transposon expression is not presented clearly. What is the purpose of showing three identical spliced transcripts?

      This is indeed confusing. There are three spliced transcripts to schematically indicate that the majority of transcripts will be correctly spliced and that intron retention is rare (estimated at 4% of all reads in our dataset). We have clarified the figure now, please see below:

      Author response image 10.

      A schematic model of transposon expression. In our model, represented in this schematic, transcription (A) can give rise to mRNAs and pre-mRNAs that contain retained introns when co-transcriptional splicing is impaired. This is often seen during aging and senescence, and these can contain transposon sequences (B). In addition, transcription can give rise to mRNAs and pre-mRNAs that contain transposon sequences towards the 3’-end of the mRNA when co-transcriptional termination at the polyadenylation signal (PAS) is impaired (C, D) as seen with aging and senescence. Some of these RNAs may be successfully polyadenylated (as depicted here) whereas others will be subject to nonsense mediated decay. Image created with Biorender.

      4) The study analyzed the levels of RNA from cell cultures of human fibroblasts of different ages. The annotation to the dataset indicated that the cells were cultured and maintained. (The cells were cultured in high-glucose (4.5mg/ml) DMEM (Gibco) supplemented with 15% (vol/vol) fetal bovine serum (Gibco), 1X glutamax (Gibco), 1X non-essential amino acids (Gibco) and 1% (vol/vol) penicillin-streptomycin (Gibco). How correct that gene expression levels in cell cultures are the same as in body cells? In cell cultures, transcription is optimized for efficient division and is very different from that of cells in the body. In order to correlate a result on cells with an organism, there must be rigorous evidence that the transcriptomes match.

      We agree and have updated the discussion to reflect this shortcoming. While we do not have human tissue data, we would like to draw the reviewer’s attention to Fig. S3 where we presented some liver data for mice. We now provide an additional supplementary figure (in a style similar to Fig. S2) showing how readthrough, transposon expression and intron retention changes in 26 vs 5-month-old mice (Fig. S4). Indeed, intron, readthrough and transposons increase with age in mice, although this is more pronounced for transposons and readthrough.

      Author response image 11.

      Intron, readthrough and transposon elements are elevated in the liver of aging mice (26 vs 5-month-old, n=6 per group). Readthrough and transposon expression is especially elevated even when compered to genic transcripts. The percentage of upregulated transcripts is indicated above each violin plot and the median log10-fold change for genic transcripts is indicated with a dashed red line.

      Finally, just to elaborate, we used the aging fibroblast dataset by Fleischer et al. for three reasons:

      1) Yes, aging fibroblasts could be a model of human aging, with important caveats as you correctly point out,

      2) it is one of the largest such datasets allowing us to draw conclusions with higher statistical confidence and do things such as partial correlations

      3) it has been analyzed using similar techniques before (LaRocca, Cavalier and Wahl 2020) and this dataset is often used to make strong statements about transposons and aging such as transposon expression in this dataset being “consistent with growing evidence that [repetitive element] transcripts contribute directly to aging and disease”. Our goal was to put these statements into perspective and to provide a more nuanced interpretation.

      LaRocca, Thomas J., Alyssa N. Cavalier, and Devin Wahl. "Repetitive elements as a transcriptomic marker of aging: evidence in multiple datasets and models." Aging Cell 19.7 (2020): e13167.

      5) The results obtained for isolated cultures of fibroblasts are transferred to the whole organism, which has not been verified. The conclusions should be more accurate.

      We agree and have updated the discussion accordingly.

      6) The full pipeline with all the configuration files IS NOT available on github (pabisk/aging_transposons).

      Thank you for pointing this out, we have now uploaded the full pipeline and configuration files.

      7) Analysis of transcripts passing through repeating regions is a complex matter. There is always a high probability of incorrect mapping of multi-reads to the genome. Things worsen if unpaired short reads are used, as in the study (L=51). Therefore, the authors used the Expectation maximization algorithm to quantify transposon reads. Such an option is possible. But it is necessary to indicate how statistically reliable the calculated levels are. It would be nice to make a similar comparison of TE levels using only unique reads. The density of reads would drop, but in this case it would be possible to avoid the artifacts of the EM algorithm.

      We thank the reviewer for this suggestion. We show here that mapping only unique alignments (outFilterMultimapNmax=1 in STAR) leads to similar results.

      For the aging fibroblast dataset:

      Author response image 12.

      For the induced senescence dataset:

      Author response image 13.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Public Reviews:

      Reviewer #1 (Public Review):

      The regulation of motor autoinhibition and activation is essential for efficient intracellular transport. This manuscript used biochemical approaches to explore two members in the kinesin-3 family. They found that releasing UNC-104 autoinhibition triggered its dimerization whereas unlocking KLP-6 autoinhibition is insufficient to activate its processive movement, which suggests that KLP-6 requires additional factors for activation, highlighting the common and diverse mechanisms underlying motor activation. They also identified a coiled-coil domain crucial for the dimerization and processive movement of UNC-104. Overall, these biochemical and single-molecule assays were well performed, and their data support their statements. The manuscript is also clearly written, and these results will be valuable to the field.

      Thank you very much!

      Ideally, the authors can add some in vivo studies to test the physiological relevance of their in vitro findings, given that the lab is very good at worm genetic manipulations. Otherwise, the authors should speculate the in vivo phenotypes in their Discussion, including E412K mutation in UNC-104, CC2 deletion of UNC-104, D458A in KLP-6.

      1. We have shown the phenotypes unc-104(E412K) mutation in C. elegans (Niwa et al., Cell Rep, 2016) and described about it in discussion (p.14 line 3-4). The mutant worm showed overactivation of the UNC-104-dependent axonal transport, which is consistent with our biochemical data showing that UNC-104(1-653)(E412K) is prone to form a dimer and more active than wild type.

      2. It has been shown that L640F mutation induces a loss of function phenotype in C. elegans (Cong et al., 2021). The amount of axonal transport is reduced in unc-104(L640F) mutant worms. L640 is located within the CC2 domain. To show the importance of CC2-dependent dimerization in the axonal transport in vivo, we biochemically investigated the impact of L640F mutation.

      By introducing L640F into UNC-104(1-653)(E412K), we performed SEC analysis. The result shows that UNC-104(1-653)(E412K,L640F) failed to form stable dimers despite the release of their autoinhibition (new Figure S8). This result strongly suggests the importance of the CC2 domain in the axonal transport in vivo. Based on the result, we discussed it in the revised manuscript (p.13 line 6-8).

      1. Regarding KLP-6(D458A), we need a genetic analysis using genome editing and we would like to reserve it for a future study. We speculate that the D458A mutation could lead to an increase in transport activity in vivo similar to unc-104(E412K). This is because the previous study have shown that wild-type KLP-6 was largely localized in the cell body, while KLP-6(D458A) was enriched at the cell periphery in the N2A cells (Wang et al., 2022). We described it in discussion (p.14 line 13-14).

      While beyond the scope of this study, can the author speculate on the candidate for an additional regulator to activate KLP-6 in C. elegans?

      The heterodimeric mechanoreceptor complex, comprising LOV-1 and PKD-2, stands as potential candidates for regulating KLP-6 dimerization. We speculate the heterodimerization property is suitable for the enhancement of KLP-6 dimerization. On the other hand, it's noteworthy that KLP-6 can undergo activation in Neuro 2a cells upon the release of autoinhibition (Wang et al., 2022). This observation implies the involvement of additional factors which are not present in sf9 cells may be able to induce dimerization. Post-translational modifications would be one of the candidates. We discussed it in p14 line 7-14.

      The authors discussed the differences between their porcine brain MTs and chlamydonomas axonemes in UNC-104 assays. However, the authors did not really retest UNC-104 on axonemes after more than two decades, thereby not excluding other possibilities.

      We thought that comparing different conditions used in different studies is essential for the advancement of the field of molecular motors. Therefore, we newly performed single-molecule assay using Chlamydomonas axonemes and compared the results with brain MTs (Fig. S6). Just as observed in the study by Tomoshige et al., we were also unable to observe the processive runs of UNC-104(1-653) on Chlamydomonas axonemes (Fig. S6A). Furthermore, we found that the landing rate of UNC-104(1-653) on Chlamydomonas axonemes was markedly lower in comparison to that on purified porcine microtubules (Fig. S6B).

      Reviewer #1 (Recommendations For The Authors):

      More discussion as suggested above would improve the manuscript.

      We have improved our manuscript as described above.

      Reviewer #2 (Public Review):

      The Kinesin superfamily motors mediate the transport of a wide variety of cargos which are crucial for cells to develop into unique shapes and polarities. Kinesin-3 subfamily motors are among the most conserved and critical classes of kinesin motors which were shown to be self-inhibited in a monomeric state and dimerized to activate motility along microtubules. Recent studies have shown that different members of this family are uniquely activated to undergo a transition from monomers to dimers.

      Niwa and colleagues study two well-described members of the kinesin-3 superfamily, unc104 and KLP6, to uncover the mechanism of monomer to dimer transition upon activation. Their studies reveal that although both Unc104 and KLP6 are both self-inhibited monomers, their propensities for forming dimers are quite different. The authors relate this difference to a region in the molecules called CC2 which has a higher propensity for forming homodimers. Unc104 readily forms homodimers if its self-inhibited state is disabled while KLP6 does not.

      The work suggests that although mechanisms for self-inhibited monomeric states are similar, variations in the kinesin-3 dimerization may present a unique form of kinesin-3 motor regulation with implications on the forms of motility functions carried out by these unique kinesin-3 motors.

      Thank you very much!

      Reviewer #2 (Recommendations For The Authors):

      The work is interesting but the process of making constructs and following the transition from monomers to dimers seems to be less than logical and haphazard. Recent crystallographic studies for kinesin-3 have shown the fold and interactions for all domains of the motor leading to the self-inhibited state. The mutations described in the manuscript leading to disabling of the monomeric self-inhibited state are referenced but not logically explained in relation to the structures. Many of the deletion constructs could also present other defects that are not presented in the mutations. The above issues prevent wide audience access to understanding the studies carried out by the authors.

      We appreciate this comment. We improved it as described bellow.

      Suggestions: Authors should present schematic, or structural models for the self-inhibited and dimerized states. The conclusions of the papers should be related to those models. The mutations should be explained with regard to these models and that would allow the readers easier access. Improving access to the readers in and outside the motor field would truly improve the impact of the manuscript on the field.

      The structural models illustrating the autoinhibited state have been included in new Figure S4, accompanied by an explanation of the correlation between the mutations and these structures in the figure legend. Additionally, schematic models outlining the dimerization process of both UNC-104 and KLP-6 have been provided in Figure S9 to enhance reader comprehension of the process.

      Reviewer #3 (Public Review):

      In this work, Kita et al., aim to understand the activation mechanisms of the kinesin-3 motors KLP-6 and UNC-104 from C. elegans. As with many other motor proteins involved in intracellular transport processes, KLP-6 and UNC-104 motors suppress their ATPase activities in the absence of cargo molecules. Relieving the autoinhibition is thus a crucial step that initiates the directional transport of intracellular cargo. To investigate the activation mechanisms, the authors make use of mass photometry to determine the oligomeric states of the full-length KLP-6 and the truncated UNC-104(1-653) motors at sub-micromolar concentrations. While full-length KLP-6 remains monomeric, the truncated UNC-104(1-653) displays a sub-population of dimeric motors that is much more pronounced at high concentrations, suggesting a monomer-to-dimer conversion. The authors push this equilibrium towards dimeric UNC-104(1-653) motors solely by introducing a point mutation into the coiled-coil domain and ultimately unleashing a robust processivity of the UNC-104 dimer. The authors find that the same mechanistic concept does not apply to the KLP-6 kinesin-3 motor, suggesting an alternative activation mechanism of the KLP-6 that remains to be resolved. The present study encourages further dissection of the kinesin-3 motors with the goal of uncovering the main factors needed to overcome the 'self-inflicted' deactivation.

      Thank you very much!

      Reviewer #3 (Recommendations For The Authors):

      126-128: It is surprising that surface-attachment does not really activate the full-length KLP6 motor (v=48 {plus minus} 42 nm/s). Can the authors provide an example movie of the gliding assay for the FL KLP6 construct? Gliding assays are done by attaching motors via their sfGFP to the surface using anti-GFP antibodies. Did the authors try to attach the full-length KLP-6 motor directly to the surface? If the KLP-6 motor sticks to the surface via its (inhibitory) C-terminus, this attachment would be expected to activate the motor in the gliding assay, ideally approaching the in vivo velocities of the activated motor.

      We have included an example kymograph showing the gliding assay of KLP-6FL (Fig. S1A). When we directly attached KLP-6FL to the surface, the velocity was 0.15 ± 0.02 µm/sec (Fig. S1B), which is similar to the velocity of KLP-6(1-390). While the velocity observed in the direct-attachment condition is much better than those observed in GFP-mediated condition, the observed velocity remains considerably slower than in vivo velocities. Firstly, we think this is because dimerization of KLP-6 is not induced by the surface attachment. Previous studies have shown that monomeric proteins are generally slower than dimeric proteins in the gliding assay (Tomishige et al., 2002). These are consistent with our observation that KLP-6 remains to be monomeric even when autoinhibition is released. Secondly, in vitro velocity of motors is generally slower than in vivo velocity.

      156-157: It seems that the GCN4-mediated dimerization induces aggregation of the KLP6 motor domains as seen in the fractions under the void volume in Figure 3B (not seen with the Sf9 expressed full-length constructs, see Figure 1B). Also, the artificially dimerized motor construct does not fully recapitulate the in vivo velocity of UNC-104. Did the authors analyze the KLP-6(1-390)LZ with mass photometry and is it the only construct that is expressed in E. coli?

      KLP-6::LZ protein is not aggregating. We have noticed that DNA and RNA from E. coli exists in the void fraction and they occasionally trap recombinant kinesin-3 proteins in the void fraction. To effectively remove these nucleic acids from our protein samples, we employed streptomycin sulfate as a purification method (Liang et al., Electrophoresis, 2009). Please see Purification of recombinant proteins in Methods. In the size exclusion chromatography analysis, we observed that KLP-6(1-393)LZ predominantly eluted in the dimer fraction (New Figure 3). Subsequently, we reanalyzed the motor's motility using a total internal reflection fluorescence (TIRF) assay, as shown in the revised Figure 3. Even after these efforts, the velocity was not changed significantly. The velocity of KLP-6LZ is about 0.3 µm/sec while that of cellular KLP-6::GFP is 0.7 µm/sec (Morsci and Barr, 2011). Similar phenomena, "slower velocity in vitro", has been observed in other motor proteins.

      169: In Wang et al., (2022) the microtubule-activated ATPase activities of the mutants were measured in vitro as well, with the relative activities of the motor domain and the D458A mutant being very similar. The D458A mutation is introduced into the full-length motor in Wang et al., while in the present work, the mutation is introduced into the truncated KLP-6(1-587) construct. Can the authors explain their reasoning for the latter?

      (1) Kinesins are microtubule-stimulated ATPases. i.e. The ATPase activity is induced by the binding with a microtubule.

      (2) Previous studies have shown that the one-dimensional movement of the monomeric motor domain of kinesin-3 depends on the ATPase activity even when the movement does not show clear plus-end directionality (Okada et al., Science, 1998).

      (3) While KLP-6(1-587) does not bind to microtubules, both KLP-6(1-390) (= the monomeric motor domain) and KLP-6(1-587)(D458A) similarly bind to microtubules and show one dimensional diffusion on microtubules (Fig. 4E and S2B).

      Therefore, the similar ATPase activities of the motor domain(= KLP-6(1-390)) and KLP-6(D458A) observed by Wang et al. is because both proteins similarly associate with and hydrolyze ATP on microtubules, which is consistent with our observation. On the other hand, because KLP-6(wild type) cannot efficiently bind to microtubules, the ATPase activity is low.

      Can the authors compare the gliding velocities of the KLP-6(1-390)LZ vs KLP-6(1-587) vs KLP-6(1-587)(D458A) constructs to make sure that the motors are similarly active?

      We conducted a comparative analysis of gliding velocities involving KLP-6(1-390), KLP-6(1-587), and KLP-6(1-587)(D458A) (Fig. S1C). We used KLP-6(1-390) instead of KLP-6(1-390)LZ, aligning with the protein used by Wang et al.. We demonstrated that both KLP-6(1-587) and KLP-6(1-587) (D458A) exhibited activity levels comparable to that of KLP-6(1-390). The data suggests that the motor of all recombinant proteins are similarly active.

      Please note that, unlike full length condition (Fig. 1D and S1A and S1B), the attachment to the surface using the anti-GFP antibody can activates KLP-6(1-587). The data suggests that, due to the absence of coverage by the MBS and MATH domain (Wang et al., Nat. Commun., 2022), the motor domain of KLP-6(1-587) to some extent permits direct binding to microtubules under gliding assay conditions.

      Are the monomeric and dimeric UNC-104(1-653) fractions in Figure 5B in equilibrium? Did the authors do a re-run of the second peak of UNC-104(1-653) (i.e. the monomeric fraction with ~100 kDa) to assess if the monomeric fraction re-equilibrates into a dimer-monomer distribution?

      We conducted a re-run of the second peak of UNC-104(1-653) and verified its re-equilibration into a distribution of dimers and monomers after being incubated for 72 hours at 4°C (Fig. S5).

      UNC-104 appears to have another predicted coiled-coiled region around ~800 aa (e.g. by NCoils) that would correspond to the CC3 in the mammalian homolog KIF1A. This raises the question if the elongated UNC-104(1-800) would dimerize more efficiently than UNC-104(1-653) (authors highlight the sub-population of dimerized UNC-104(1-653) at low concentrations in Figure 5C) and if this dimerization alone would suffice to 'match' the UNC-104(1-653)E412K mutant (Figure 5D). Did the authors explore this possibility? This would mean that dimerization does not necessarily require the release of autoinhibition.

      We have tried to purify UNC-104(1-800) and full-length UNC-104 using the baculovirus system. However, unfortunately, the expression level of UNC-104(1-800) and full length UNC-104 was too low to perform in vitro assays even though codon optimized vectors were used. Instead, we have analyzed full-length human KIF1A. We found that full-length KIF1A is mostly monomeric, not dimeric (Please look at the Author response image 1). The property is similar to UNC-104(1-653) (Figure 5A-C). Therefore, we think CC3 does not strongly affect dimerization of KIF1A, and probably its ortholog UNC-104. Moreover, a recent study has shown that CC2 domain, but not other CC domains, form a stable dimer in the case of KIF1A (Hummel and Hoogenraad, JCB, 2021). Given the similarity in the sequence of KIF1A and UNC-104, we anticipate that the CC2 domain of UNC-104 significantly contributes to dimerization, potentially more than other CC domains. We explicitly describe it in the Discussion in the revised manuscript.

      Author response image 1.

      Upper left, A representative result of size exclusion chromatography obtained from the analysis of full-length human KIF1A fused with sfGFP. Upper right, A schematic drawing showing the structure of KIF1A fused with sfGFP and a result of SDS-PAGE recovered from SEC analysis. Presumable dimer and monomer peaks are indicated. Lower left, Presumable dimer fractions in SEC were collected and analyzed by mass photometry. The result confirms that the fraction contains considerable amount of dimer KIF1A. Lower right, Presumable monomer fractions were collected and analyzed by mass photometry. The result confirms that the fraction mainly consists of monomer KIF1A. Note that these results obtained from full-length KIF1A protein are similar to those of UNC-104(1-653) protein shown in Figure 5A-C.

    1. Author Response

      The following is the authors’ response to the original reviews.

      Response to reviewer’s comments

      Reviewer #1 (Public Review):

      In this study, the structural characteristics of plant AlaDC and SerDC were analyzed to understand the mechanism of functional differentiation, deepen the understanding of substrate specificity and catalytic activity evolution, and explore effective ways to improve the initial efficiency of theanine synthesis.

      On the basis of previous solid work, the authors successfully obtained the X-ray crystal structures of the precursors of theanine synthesis-CsAlaDC and AtSerDC, which are key proteins related to ethylamine synthesis, and found a unique zinc finger structure on these two crystal structures that are not found in other Group II PLP-dependent amino acid decarboxylases. Through a series of experiments, it is pointed out that this characteristic zinc finger motif may be the key to the folding of CsAlaDC and AtSerDC proteins, and this discovery is novel and prospective in the study of theine synthesis.

      In addition, the authors identified Phe106 of CsAlaDC and Tyr111 of AtSerDC as key sites of substrate specificity by comparing substrate binding regions and identified amino acids that inhibit catalytic activity through mutation screening based on protein structure. It was found that the catalytic activity of CsAlaDCL110F/P114A was 2.3 times higher than that of CsAlaDC. At the same time, CsAlaDC and AtSerDC substrate recognition key motifs were used to carry out evolutionary analysis of the protein sequences that are highly homologous to CsAlaDC in embryos, and 13 potential alanine decarboxylases were found, which laid a solid foundation for subsequent studies related to theanine synthesis.

      In general, this study has a solid foundation, the whole research idea is clear, the experimental design is reasonable, and the experimental results provide strong evidence for the author's point of view. Through a large number of experiments, the key links in the theanine synthesis pathway are deeply studied, and an effective way to improve the initial efficiency of theanine synthesis is found, and the molecular mechanism of this way is expounded. The whole study has good novelty and prospectivity, and sheds light on a new direction for the efficient industrial synthesis of theanine

      Response: Thank you very much for taking time to review this manuscript. We appreciate all your insightful comments and constructive suggestions.

      Reviewer #1 (Recommendations For The Authors):

      (1) If some test methods are not original, references or method basis should be indicated.

      Response: Thank you very much for your careful reading of the manuscript and valuable suggestions. We have added references for the enzymatic activity experiments performed to measure the synthesis of theanine in the revised manuscript.

      (2) The conclusion is a little lengthy, and the summary of the whole study is not well condensed.

      Response: Thank you very much for your valuable suggestions. We have refined the conclusion in the revised manuscript, and it is as follows:

      In conclusion, our structural and functional analyses have significantly advanced understanding of the substrate-specific activities of alanine and serine decarboxylases, typified by CsAlaDC and AtSerDC. Critical amino acid residues responsible for substrate selection were identified—Tyr111 in AtSerDC and Phe106 in CsAlaDC—highlighting pivotal roles in enzyme specificity. The engineered CsAlaDC mutant (L110F/P114A) not only displayed enhanced catalytic efficiency but also substantially improved L-theanine yield in a synthetic biosynthesis setup with PsGS or GMAS. Our research expanded the repertoire of potential alanine decarboxylases through the discovery of 13 homologous enzyme candidates across embryophytic species and uncovered a special motif present in serine protease-like proteins within Fabale, suggesting a potential divergence in substrate specificity and catalytic functions. These insights lay the groundwork for the development of industrial biocatalytic processes, promising to elevate the production of L-theanine and supporting innovation within the tea industry.

      Reviewer #2 (Public Review)

      Summary:

      The manuscript focuses on the comparison of two PLP-dependent enzyme classes that perform amino acyl decarboxylations. The goal of the work is to understand the substrate specificity and factors that influence the catalytic rate in an enzyme linked to theanine production in tea plants.

      Strengths:

      The work includes x-ray crystal structures of modest resolution of the enzymes of interest. These structures provide the basis for the design of mutagenesis experiments to test hypotheses about substrate specificity and the factors that control catalytic rate. These ideas are tested via mutagenesis and activity assays, in some cases both in vitro and in plants.

      Weaknesses:

      The manuscript could be more clear in explaining the contents of the x-ray structures and how the complexes studied relate to the reactant and product complexes. The structure and mechanism section would also be strengthened by including a diagram of the reaction mechanism and including context about reactivity. As it stands, much of the structural results section consists of lists of amino acids interacting with certain ligands without any explanation of why these interactions are important or the role they play in catalysis. The experiments testing the function of a novel Zn(II)-binding domain also have serious flaws. I don't think anything can be said at this point about the function of the Zn(II) due to a lack of key controls and problems with experimental design.

      Response: Thank you very much for your thoughtful comments and feedback on our manuscript. We are pleased to hear that the work's strengths, such as the X-ray crystal structures and the mutagenesis experiments tied to the catalytic rate and substrate specificity, align with the goals of our research.

      We recognize the areas identified for improvement and appreciate the suggestions provided. We have emphasized how we use the structural information obtained to infer the roles of key amino acid residues in the reaction. Additionally, we have added a diagram of the reaction mechanism in the Supplementary figure to provide clearer context on reactivity and improve the overall understanding of the catalytic process. Regarding the structural results section, we have included a discussion that contextualizes the list of amino acids and their interactions with the ligands by explaining their significance and roles in catalysis. We acknowledge the weaknesses you've pointed out in the experiments concerning the novel Zn(II)-binding domain, but we would like to clarify that the focus of our study was not primarily on the zinc structure. While we agree that there may be limitations in the experimental design and controls for the zinc binding domain, we believe that these flaws do not significantly impact the overall findings of the study. The experiment served as a preliminary exploration of the potential functionality of the domain, and further studies are required to fully understand its role and mechanism.

      Reviewer #2 (Recommendations For The Authors):

      (1) In addition to the points raised in the public review, it would be ideal to provide some context for the enzymatic characterization. Why are the differences in kinetic parameters for AlaDC and SerDC significant?

      Response: Thank you for your comments and suggestions. The Km values for CsAlaDC and SerDCs are comparable, suggesting similar substrate affinities. However, CsAlaDC exhibits a significantly lower Vmax compared to AtSerDC and CsSerDC. This discrepancy implies that CsAlaDC and SerDCs may differ in the rates at which they convert substrate to product when saturated with substrate. SerDCs may have a faster turnover rate, meaning they convert substrate to product and release the enzyme more quickly, resulting in a higher Vmax. Differences in the stability or correct folding of the enzymes under assay conditions can also affect their Vmax. If SerDCs are more stable, they might maintain their catalytic activity better at higher substrate concentrations, contributing to a higher Vmax. We have added these to the part of “Enzymatic properties of CsAlaDC, AtSerDC, and CsSerDC” in our revised manuscript.

      (2) Why is Phe106/Tyr111 pair critical for substrate specificity? Does the amino acid contact the side chain? It might be helpful to a reader to formulate a hypothesis for this interaction.

      Response: Thank you for the question and comments. We conducted a comparison between the active sites of CsAlaDC and AtSerDC and observed a distinct difference in only two amino acids: F106 in CsAlaDC and Y111 in AtSerDC. The remaining amino acids were found to be identical. Expanding on previous research concerning Group II PLP-dependent amino acid decarboxylases, it was postulated and subsequently confirmed that these specific amino acids play a crucial role in substrate recognition. However, since we lack the structure of the enzyme-substrate complex, we are unable to elucidate the precise interactions occurring between the substrate and the amino acids at this particular site based solely on structural information.

      (3) Line 55 - Define EA again.

      Response: Thank you very much for your careful reading of the manuscript and valuable suggestions. We have redefined “EA” as the abbreviation for ethylamine in the revised manuscript.

      (4) Line 58 - The meaning of "determined by the quality formation of tea" is not clear.

      Response: Thank you very much for your careful reading of the manuscript and valuable suggestions. We have modified it in the revised manuscript.

      (5) Line 65 - Missing words between "despite they".

      Response: Thank you very much for your careful reading of the manuscript. We have corrected it in the revised manuscript.

      (6) Line 67 - Need a reference for the statement about lower activity?

      Response: Thank you for the question and comments. We have provided the following reference to support this statement in the revised manuscript.

      Reference: Bai, P. et al. (2021) Biochemical characterization of specific Alanine Decarboxylase (ADC) and its ancestral enzyme Serine Decarboxylase (SDC) in tea plants (Camellia sinensis). BMC Biotechnol. 21,17.

      (7) Line 100-101 - The meaning of "its closer relationship was Dicots plants." is not clear.

      Response: We have revised the sentence in the revised manuscript, as follows: “Phylogenetic analysis indicated that CsAlaDC is homologous with SerDCs in Dicots plants.”

      (8) Line 139 - Missing a word between "as well as" and "of".

      Response: Thank you very much for your careful reading of the manuscript and valuable suggestions. We have corrected it in the revised manuscript.

      (9) Line 142 - The usage of comprised here is not correct. It would be more correct to say "The overall architecture of CsAlaDC and AtSerDC is homodimeric with the two subunits...".

      Response: Thank you very much for your careful reading of the manuscript and valuable suggestions. We have corrected it in the revised manuscript.

      (10) Line 148-149 - I didn't understand the statement about the "N-terminal structures" Are these structures obtained from protein samples that have a truncated N-terminus?

      Response: Group II PLP-dependent amino acid decarboxylases are comprised of three distinct structural domains: the N-terminal domain, the large domain, and the C-terminal domain. Each of these domains possesses unique structural features. Similarly, CsAlaDC and AtSerDC can also be classified into three structural domains based on their specific characteristics. To achieve more stable proteins for further experiments, we conducted truncation on both of these proteins. The truncated section pertains to a subsection of the N-terminal domain and is truncated from the protein's N-terminus.

      (11) Line 153 - Say "is composed of" instead of "composes of".

      Response: Thank you very much for your careful reading of the manuscript and valuable suggestions. We have corrected it in the revised manuscript.

      (12) Line 156 - I didn't understand the statement about the cofactor binding process. What is the cofactor observed? And how can we say anything about the binding process from a single static structure of the enzyme? It might be better to say that the cofactor binding site is located at the subunit junction - but the identity of the cofactor still needs to be defined first.

      Response: Thank you for your comments and suggestions. The cofactor mentioned here is PLP. We aim to elucidate the binding state of PLP at the active site, excluding the binding process. The description has been revised in the revised manuscript.

      (13) Lines 157-158 - I didn't understand the conclusion about the roles of each monomer. In the images in Figure 3 - both monomers appear to bind PLP but the substrate is not present - so it's not clear how conclusions can be drawn about differential substrate binding in the two subunits.

      Response: Thank you very much for your careful reading and valuable suggestions. The main idea we want to convey is that this protein possesses two active sites. At each active site, the two monomers carry out distinct functions. Of course, our previous conclusion is inaccurate due to the non-existence of the substrate. So, we have made the necessary amendments in the revised manuscript.

      (14) Line 161 - I would say loop instead of ring.

      Response: Thank you very much for your careful reading of the manuscript and valuable suggestions. We have corrected it in the revised manuscript.

      (15) Line 165 - Please provide some references for this statement. It would also be ideal to state the proximity of the Zn-binding motif to the active site or otherwise provide some information about the role of the motif based on its location.

      Response: Thank you for your comments and suggestions. We have provided the following references to support this statement in the revised manuscript.

      Author response image 1.

      (A) Structure of histidine decarboxylase. (B) Structure of glutamate decarboxylase.

      Reference:

      30 Komori, H. et al. (2012) Structural study reveals that Ser-354 determines substrate specificity on human Histidine Decarboxylase. J Biol Chem. 287, 29175-83.

      31 Huang, J. et al. (2018) Lactobacillus brevis CGMCC 1306 glutamate decarboxylase: Crystal structure and functional analysis. Biochem Biophys Res Co. 503, 1703-1709

      In CsAlaDC, the zinc is positioned at a distance of 29.6 Å from the active center, whereas in AtSerDC, the zinc is situated 29 Å away from the active center. Hence, we hypothesize that this structure does not impact the enzyme's catalytic activity but might be correlated with its stability.

      (16) Lines 166-178 - This paragraph appears to be a list of all of the interactions between the protein, PLP, and the EA product. It would be ideal to provide some text to explain why these interactions are important and what we can learn from them.

      Response: Thank you very much for your careful reading of the manuscript and valuable suggestions. We have been conducting additional analysis on the functional roles of amino acid residues involved in the interaction between the active site and PLP. This analysis focuses on aiding PLP binding, determining its orientation, and understanding enzyme catalytic mechanisms. These details are mentioned in the revised manuscript.

      (17) Line 192 - Bond not bound.

      Response: Thank you very much for your careful reading of the manuscript and valuable suggestions. We have made corrections in the revised manuscript.

      (18) Lines 201-207 - It would be ideal to verify that the inclusion of 5 mM DTT affects Zn binding. It's not clear to me that this reagent would necessarily disrupt Zn binding. Under certain circumstances, it could instead promote Zn association. For example, if the Cys ligands are oxidized initially but then become reduced? I don't think the current experiment really provides any insight into the role of the Zn.

      Response: Thank you for your valuable insights regarding the role of DTT and its potential effects on Zn binding in our experiments. The main function of DTT is to protect or restore the reduced state of proteins and other biological molecules, particularly by disrupting the crosslinking formed by thiol (-SH) groups and disulfide bonds to maintain the function and structure of proteins. Therefore, the reason for DTT's inhibition of enzyme activity is unknown, and we cannot provide a reasonable explanation for this phenomenon. As a result, we have removed the section discussing the inhibition of enzyme activity by DTT in our revised manuscript.

      Reviewer #3 (Public Review):

      In the manuscript titled "Structure and Evolution of Alanine/Serine Decarboxylases and the Engineering of Theanine Production," Wang et al. solved and compared the crystal structures of Alanine Decarboxylase (AlaDC) from Camellia sinensis and Serine Decarboxylase (SerDC) from Arabidopsis thaliana. Based on this structural information, the authors conducted both in vitro and in vivo functional studies to compare enzyme activities using site-directed mutagenesis and subsequent evolutionary analyses. This research has the potential to enhance our understanding of amino acid decarboxylase evolution and the biosynthetic pathway of the plant-specialized metabolite theanine, as well as to further its potential applications in the tea industry. Response: Thank you very much for taking the time to review this manuscript. We appreciate all your insightful comments.

      Reviewer #3 (Recommendations For The Authors):

      Page 6, Figure 2, Page 23 (Methods)

      "The supernatants were purified with a Ni-Agarose resin column followed by size-exclusion chromatography."

      What kind of SEC column did the authors use? Can the authors provide the SEC elution profile comparison results and size standard curve?

      Response: We use a Superdex 200 (Hiload 16/600) column for size exclusion chromatography. The comparison results of SEC elution profiles for AtSerDC and CsAlaDC, along with the standard curve of SEC column, are presented below.

      Author response image 2.

      (A) Comparison of elution profiles of CsAlaDC and AtSerDC. (B) Elution profile of Blue Dextron 2000. (C) Elution profile of mixed protein (Aldolase, 158000 Da,71.765ml; Conalbumin, 75000 Da,79.391ml; Ovalbumin, 44000 Da,83.767ml; Carbonic anhydrase, 29000 Da,90.019ml; Ribonuclease A, 13700 Da,98.145ml). (D) Size standard curves of Superdex 200 (Hiload 16/600) column.

      Page 6 & Page 24 (Methods)

      "The 100 μL reaction mixture, containing 20 mM substrate (Ala or Ser), 100 mM potassium phosphate, 0.1 mM PLP, and 0.025 mM purified enzyme, was prepared and incubated at standard conditions (45 ℃ and pH 8.0 for CsAlaDC, 40 ℃ and pH 8.0 for AtSerDC for 30 min)."

      (1) The enzymatic activities of CsAldDC and AtSerDC were measured at two different temperatures (45 and 40 ℃, but their activities were directly compared. Is there a reason for experimenting at different temperatures?

      Response: We determined that the optimal reaction temperature for AtSerDC is 40°C and for CsAlaDC is 45°C through our verification process. Consequently, all subsequent experiments were performed at these specific temperatures.

      Author response image 3.

      (A) Relative activity of CsAlaDC at different temperatures. (B) Relative activity of AtSerDC at different temperatures.

      (2) Enzyme activities were measured at temperatures above 40℃, which is not a physiologically relevant temperature and may affect the stability or activity of the proteins. At the very least, the authors should provide temperature-dependent protein stability data (e.g., CD spectra analysis) or, if possible, temperature-dependent enzyme activities, to show that their experimental conditions are suitable for studying the activities of these enzymes.

      Response: Thank you very much for your careful reading. We have already validated that the experimental temperature we used did not significantly affect the stability of the protein before experimenting. The results are shown in the figure below:

      Author response image 4.

      Place the two proteins individually into water baths set at temperatures of 25°C, 37°C, 45°C, 60°C, and 80°C for 15 minutes. Subsequently, carry out enzymatic reactions utilizing a standard reaction system, with untreated enzymes serving as the experimental control within the said system. The experimental results suggest that the temperature at which we experimented does not have a significant impact on the stability of the enzyme.

      (3) The authors used 20 mM of substrate. What are the physiological concentrations of alanine and serine typically found in plants?

      Response: The content of alanine in tea plant roots ranges from 0.28 to 4.18 mg/g DW (Yu et al., 2021; Cheng et al., 2017). Correspondingly, the physiological concentration of alanine is 3.14 mM to 46.92 mM, in tea plant roots. The content of serine in plants ranges from 0.014 to 17.6 mg/g DW (Kumar et al., 2017). Correspondingly, the physiological concentration of serine is 0.13 mM to 167.48 mM in plants. In this study, the substrate concentration of 20 mM was close to the actual concentrations of alanine and serine in plants.

      Yu, Y. et al. (2021) Glutamine synthetases play a vital role in high accumulation of theanine in tender shoots of albino tea germplasm "Huabai 1". J. Agric. Food Chem. 69 (46),13904-13915.

      Cheng, S. et al. (2017) Studies on the biochemical formation pathway of the amino acid L-theanine in tea (Camellia sinensis) and other plants.” J. Agric. Food Chem. 65 (33), 7210-7216.

      Kumar, V. et al. (2017) Differential distribution of amino acids in plants. Amino Acids. 49(5), 821-869.

      Pages 6-7 & Table 1

      (1) Use the correct notation for Km and Vmax. Also, the authors show kinetic parameters and use multiple units (e.g., mmol/L or mM for Km).

      Response: Thank you very much for your careful reading of the manuscript and valuable suggestions. We have corrected this in the revised manuscript.

      (2) When comparing the catalytic efficiency of enzymes, kcat/Km (or Vmax/Km) is generally used. The authors present a comparison of catalytic activity from results to conclusion. A clarification of what results are being compared is needed.

      Response: Thank you for your comments and suggestions. The catalytic activity is assessed by comparing reaction rates.

      Page 7 & Figure 3

      In Figure 3A, the authors describe the overall structure, but a simple explanation or labeling within the figure should be added.

      Response: Thank you very much for your suggestions, we have made modifications to Figure 3A as follows:

      Author response image 5.

      Crystal structures of CsAlaDC and AtSerDC. (A) Dimer structure of CsAlaDC. The color display of the N-terminal domain, large domain, and C-terminal domains of chain A is shown in light pink, khaki and sky blue, respectively. Chain B is shown in spring green. The PLP molecule is shown as a sphere model. The zinc finger structure at the C-terminus of CsAlaDC is indicated by the red box. The gray spheres represent zinc ions, while the red dotted line depicts the coordination bonds formed by zinc ions with cysteine and histidine.

      Figures 3F & 4A

      In these figures, the two structures are overlaid and compared, but the colors are very similar to see the differences. The authors should use a different color scheme.

      Response: Thank you very much for your suggestions, we have made modifications to the Figure 3F & 4A as follows:

      Author response image 6.

      (Figure 3F) - The monomers of CsAlaDC and AtSerDC are superimposed. CsAlaDC is depicted in spring green, while AtSerDC is shown in plum. The conserved amino acid catalytic ring is indicated by the red box. (Figure 4A) - Superposition of substrate binding pocket amino acid residues in CsAlaDC and AtSerDC. The amino acid residues of CsAlaDC are shown in spring green, the amino acid residues of AtSerDC are shown in plum, with the substrate specificity-related amino acid residue highlighted in a red ellipse.

      Pages 7 & 8

      Figures 3 and 4 do not include illustrations of what the authors describe in the text. The reader will not be able to understand the descriptions until they download and view the structures themselves. The authors should create additional figures to make it easier for readers to understand the structures.

      Response: Thank you very much for your suggestions, we have included supplementary figure 1 in the revised manuscript, which presents more elaborate structural depictions of the two proteins.

      Pages 9 & 10

      "This result suggested this Tyr is required for the catalytic activity of CsAlaDC and AtSerDC."

      The author's results are interesting, but it is recommended to perform the experiments in a specific order. First, experiments should determine whether mutagenesis affects the protein's stability (e.g., CD, as discussed earlier), and second, whether mutagenesis affects ligand binding (e.g., ITC, SPR, etc.), before describing how site-directed mutagenesis alters enzyme activity. In particular, the authors' hypothesis would be much more convincing if they could show that the ligand binding affinity is similar between WT and mutants.

      Response: Thank you for your insightful feedback on our manuscript, which we greatly appreciate. Your suggestion to methodically sequence the experiments provides a clear pathway to bolster the strength and conclusiveness of our results.

      We agree that it is crucial to first assess the stability of the mutant proteins, as changes therein could inadvertently affect catalytic activity. To this end, we have employed circular dichroism (CD) to study the potential structural alterations in the proteins induced by mutations. The experimental results are shown in the following figure:

      Author response image 7.

      (A) Circular Dichroism Spectra of CsAlaDC (WT). (B) Circular Dichroism Spectra of CsAlaDC (Y336F). (C) Circular Dichroism Spectra of CD of AtSerDC (WT). (D) Circular Dichroism Spectra of AtSerDC (Y341F).

      The experimental results indicate that the secondary structure of the mutant proteins remains unchanged, which means the mutations do not alter the protein's stability.

      The ligand PLP forms a Schiff base structure with the ε-amino group of a lysine residue in the protein, with maximum absorbance around 420-430 nm. Since we have already added PLP during the protein purification process, as long as the absorbance of mutant proteins and wild-type proteins is the same at 420-430 nm at equivalent concentrations, it indicates that the mutant proteins do not affect the binding of the ligand PLP. Therefore, we scanned the UV-visible absorption spectra of both the wild-type and mutant proteins, and the results are as presented in the following figure:

      Author response image 8.

      (A) UV-Visible Absorption Spectra of CsAlaDC (WT) compared to CsAlaDC (Y336F). (B) UV-Visible Absorption Spectra of AtSerDC (WT) compared to AtSerDC (Y341F).

      The mutant protein and the wild-type protein exhibit similar absorbance at 420-430 nm, indicating that the mutation does not affect the binding of PLP to the protein.

      The above experiments have confirmed that the mutations do not significantly affect the stability of the protein or the affinity for the ligand, so we can more confidently attribute changes in enzyme activity to the specific role of the tyrosine residue in question. We believe this comprehensive approach will substantiate our hypothesis and illustrate the necessity of this Tyr residue for the catalytic activity of CsAlaDC and AtSerDC enzymes.

      Figure 3

      In the 3D structure figure provided by the authors, the proposed reaction mechanism of the enzyme and the involved amino acids are not included. Can the authors add a supplementary figure with a schematic drawing that includes more information, such as distances?

      Response: Thank you for your valuable feedback on our manuscript. We completely agree that a schematic drawing with additional details, including distances, would enhance the clarity and understanding of the enzymatic mechanism. In response to your suggestion, we have added a supplementary figure 2 in the revised manuscript that accurately illustrates the proposed reaction pathway, highlighting the key amino acids involved.

      Page 10

      "The results showed that 5 mM L-DTT reduced the relative activity of CsAlaDC and AtSerDC to 22.0% and 35.2%, respectively"

      The authors primarily use relative activity to compare WT and mutants. Can the authors specify the exact experiments, units, and experimental conditions? Is it Vmax or catalytic efficiency? If so, under what specific experimental conditions?

      Response: Thank you for your attention and review of our research paper, we appreciate your suggestions and feedback. The experimental protocol employed to evaluate the influence of DTT on protein catalytic efficiency is outlined as follows:

      The 100 μL reaction mixture, containing 20 mM substrate (Ala or Ser), 100 mM potassium phosphate, 0.1 mM PLP, 5 mM L-DTT, and 0.025 mM purified enzyme, was prepared and incubated at standard conditions (45 °C and pH 8.0 for CsAlaDC for 5 min, 40 °C and pH 8.0 for AtSerDC for 2 min). DTT is absent as a control in the reaction system. Then the reaction was stopped with 20 μL of 10% trichloroacetic acid. The product was derivatized with 6-aminoquinolyl-N-hydroxy-succinimidyl carbamate (AQC) and subjected to analysis by UPLC. All enzymatic assays were performed in triplicate.

      However, due to the unknown mechanism of DTT inhibition on protein activity, we have removed this part of the content in the revised manuscript.

      Pages 10-12

      The identification of 'Phe106 in CsAlaDC' and 'Tyr111 in AtSerDC,' along with the subsequent mutagenesis and enzymatic activity assays, is intriguing. However, the current manuscript lacks an explanation and discussion of the underlying reasons for these results. As previously mentioned, it would be helpful to gain insights and analysis from WT-ligand and mutant-ligand binding studies (e.g., ITC, SPR, etc.). Furthermore, the authors' analysis would be more convincing with accompanying structural analysis, such as steric hindrance analysis.

      Response: Thank you for your insightful comments and constructive feedback on our manuscript. We appreciate the interest you have expressed in the identification of 'Phe106 in CsAlaDC' and 'Tyr111 in AtSerDC' and their functional implications based on mutagenesis and enzymatic assays.

      In order to investigate the binding status of the mutant protein and the ligand PLP,we scanned the UV-visible absorption spectra of both the wild-type and mutant proteins, and the results are as presented in the following figure:

      Author response image 9.

      (A) UV-Visible Absorption Spectra of CsAlaDC (WT) compared to CsAlaDC (F106Y). (B) UV-Visible Absorption Spectra of AtSerDC (WT) compared to AtSerDC (Y111F).

      The mutant protein and the wild-type protein exhibit similar absorbance at 420-430 nm, indicating that the mutation does not affect the binding of PLP to the protein. Therefore, we can conclude that the change in activity of the mutant protein is caused by the substitution of the amino acid at that site, i.e., the amino acid at that site affects substrate specificity. By combining the structure of the two proteins, we can see that the Lys at position 111 of AtSerDC is a hydrophilic amino acid, which increases the hydrophilicity of the active site, and thus the substrate is the hydrophilic amino acid Ser. In contrast, the amino acid at the corresponding site in CsAlaDC is Phe, which, lacking a hydroxyl group compared to Lys, increases the hydrophobicity of the active site, making the substrate lean towards the hydrophobic amino acid Ala. We have added a discussion of the potential reasons for this result to the revised manuscript's discussion section.

      Page 5 & Figure 1B

      "As expected, CsSerDC was most closed to AtSerDC, which implies that they shared similar functions. However, CsAlaDC is relatively distant from CsSerDC."

      In Figure 1B, CsSerDC and AtSerDC are in different clades, and this figure does not show that the two enzymes are closest. To provide another quantitative comparison, please provide a matrix table showing amino acid sequence similarities as a supplemental table.

      Response: Many thanks for your constructive suggestion. We added a matrix table showing amino acid sequence similarities in the supplemental materials. The results showed that the similarity of amino acid sequences between CsSerDC and AtSerDC is 86.21%, which is higher than that between CsAlaDC and CsSerDC (84.92%). This data exactly supports the description of Figure 1B. We added the description of the amino acid sequence similarities analysis in the revised manuscript. The description of "As expected, CsSerDC was most closed to AtSerDC, which implies that they shared similar functions. " is not accurate enough, so we revised it to "As expected, CsSerDC was closer to AtSerDC, which implies that they shared similar functions.", in the revised manuscript.

      Page 5 & Figure 1C

      Figure 1C, which shows a multiple sequence alignment with the amino acid sequences of the 6 SerDCs and CsAlaDC, clearly shows the differences between the sequences of AlaDC and other SerDCs. However, the authors' hypothesis would be more convincing if they showed that this difference is also conserved in AlaDCs from other plants. Can the authors show a new multiple-sequence alignment by adding more amino acid sequences of other AlaDCs?

      Response: Thank you for your comments and suggestions. We aim to discover additional alanine decarboxylase. However, at present, the only experimentally confirmed alanine decarboxylase is CsAlaDC. No experimentally verified alanine decarboxylases have been found in other plant species.

      Figure 5A

      Figure 5A is missing the error bar.

      Response: Figure 5A serves as a preliminary screening for these mutants, without conducting repeated experiments. Subsequently, only the L110F and P114A mutants, which exhibited significantly improved activity, underwent further experimental verification to confirm their enhanced functionality.

    1. Author Response

      The following is the authors’ response to the original reviews.

      First, the authors would like to thank the reviewers and editors for their thoughtful comments. The comments were used to guide our revision, which is substantially improved over our initial submission. We have addressed all comments in our responses below, through a combination of clarification, new analyses and new experimental data.

      Reviewer #1 (Public Review):

      In this manuscript, the authors identified and characterized the five C-terminus repeats and a 14aa acidic tail of the mouse Dux protein. They found that repeat 3&5, but not other repeats, contribute to transcriptional activation when combined with the 14aa tail. Importantly, they were able to narrow done to a 6 aa region that can distinguish "active" repeats from "inactive" repeats. Using proximal labeling proteomics, the authors identified candidate proteins that are implicated in Dux-mediated gene activation. They were able to showcase that the C-terminal repeat 3 binds to some proteins, including Smarcc1, a component of SWI/SNF (BAF) complex. In addition, by overexpressing different Dux variants, the authors characterized how repeats in different combinations, with or without the 14aa tail, contribute to Dux binding, H3K9ac, chromatin accessibility, and transcription. In general, the data is of high quality and convincing. The identification of the functionally important two C-terminal repeats and the 6 aa tail is enlightening. The work shined light on the mechanism of DUX function.

      A few major comments that the authors may want to address to further improve the work:

      We thank the reviewer for their efforts and constructive comments, which have guided our revisions.

      1) The summary table for the Dux domain construct characteristics in Fig. 6a could be more accurate. For example, C3+14 clearly showed moderate weaker Dux binding and H3K9ac enrichment in Fig 3c and 3e. However, this is not illustrated in Fig. 6a. The authors may consider applying statistical tests to more precisely determine how the different Dux constructs contribute to DNA binding (Fig. 3c), H3K9ac enrichment (Fig. 3e), Smarcc1 binding (Fig. 5e), and ATAC-seq signal (Fig. 5f).

      We thank the reviewer for this comment, and agree that there were some modest differences in construct characteristics that were not captured in the Summary Table (6a). To better reflect the differences between constructs, we added additional dynamic range to our depiction/scoring, and believe that the new scoring system provides sufficient qualitative range to capture the difference without imposing a statistical approach.

      2) Another concern is that exogenous overexpressed Dux was used throughout the experiments. The authors may consider validating some of the protein-protein interactions using spontaneous or induced 2CLCs (where Dux is expressed).

      We agree that it would be helpful to determine endogenous DUX interaction with our BioID candidates. Here, we attempted co-IPs for endogenous DUX protein with the DUX antibody and were unsuccessful, which indicated that the DUX antibody is useful for detection but not efficient in the primary IP. This is why we utilized the mCherry tag for DUX IP experiments, which worked exceptionally well.

      3) It could be technically challenging, but the authors may consider to validate Dux and Smarcc1 interaction in a biologically more relevant context such as mouse 2-cell embryos where both proteins are expressed. Whether Smarcc1 binding will be dramatically reduced at 4-cell embryos due to loss of Dux expression?

      While we agree that it would be interesting to validate the in vivo interaction of DUX and SMARCC1 in the early embryo, it is not technically feasible for us to conduct the experiment, as the IP would require thousands of two-cell embryos, and we have the issue of poor co-IP quality with the DUX antibody.

      Reviewer #2 (Public Review):

      In this manuscript, Smith et al. delineated novel mechanistic insights into the structure-function relationships of the C-terminal repeat domains within the mouse DUX protein. Specifically, they identified and characterised the transcriptionally active repeat domains, and narrowed down to a critical 6aa region that is required for interacting with key transcription and chromatin regulators. The authors further showed how the DUX active repeats collaborate with the C-terminal acidic tail to facilitate chromatin opening and transcriptional activation at DUX genomic targets.

      Although this study attempts to provide mechanistic insights into how DUX4 works, the authors will need to perform a number of additional experiments and controls to bolster their claims, as well as provide detailed analyses and clarifications.

      We thank this reviewer for their constructive comments, and have conducted several new analyses, additional experiments and clarifications – which have strengthened the manuscript in several locations. Highlights include a statistical approach to the similarity of mouse repeats to themselves and to orthologs (Figure S1d) and clarified interpretations, a wider dynamic range to better reflect changes in DUX construct behaviors (Figure 6a), and additional data on construct behavior, including ‘inactive’ constructs (e.g C1+14aa in Figure 1a,d, new ATAC-seq in Figure S1g), and active constructs such as C3+C5+14aa and C3+C514aa (in Figure S1b).

      Reviewer #3 (Public Review):

      Dux (or DUX4 in human) is a master transcription factor regulating early embryonic gene activation and has garnered much attention also for its involvement in reprogramming pluripotent embryonic stem cells to totipotent "2C-like" cells. The presented work starts with the recognition that DUX contains five conserved c. 100-amino acid carboxy-terminal repeats (called C1-C5) in the murine protein but not in that of other mammals (e.g. human DUX4). Using state-of-the-art techniques and cell models (BioID, Cut&Tag; rescue experiments and functional reporter assays in ESCs), the authors dissect the activity of each repeat, concluding that repeats C3 and C5 possess the strongest transactivation potential in synergy with a short C-terminal 14 AA acidic motif. In agreement with these findings, the authors find that full-length and active (C3) repeat containing Dux leads to increased chromatin accessibility and active histone mark (H3K9Ac) signals at genomic Dux binding sites. A further significant conclusion of this mutational analysis is the proposal that the weakly activating repeats C2 and C4 may function as attenuators of C3+C5-driven activity.

      By next pulling down and identifying proteins bound to Dux (or its repeat-deleted derivatives) using BioID-LC/MS/MS, the authors find a significant number of interactors, notably chromatin remodellers (SMARCC1), a histone chaperone (CHAF1A/p150) and transcription factors previously (ZSCAN4D) implicated in embryonic gene activation.

      The experiments are of high quality, with appropriate controls, thus providing a rich compendium of Dux interactors for future study. Indeed, a number of these (SMARCC1, SMCHD1, ZSCAN4) make biological sense, both for embryonic genome activation and for FSHD (SMCHD1).

      A critical question raised by this study, however, concerns the function of the Dux repeats, apparently unique to mice. While it is possible, as the authors propose, that the weak activating C1, C2 C4 repeats may exert an attenuating function on activation (and thus may have been selected for under an "adaptationist" paradigm), it is also possible that they are simply the result of Jacobian evolutionary bricolage (tinkering) that happens to work in mice. The finding that Dux itself is not essential, in fact appears to be redundant (or cooperates with) the OBOX4 factor, in addition to the absence of these repeats in the DUX protein of all other mammals (as pointed out by the authors), might indeed argue for the second, perhaps less attractive possibility.

      In summary, while the present work provides a valuable resource for future study of Dux and its interactors, it fails, however, to tell a compelling story that could link the obtained data together.

      We appreciated the reviewer’s views regarding the high quality of the work and our generation of an important dataset of DUX interactors. We also appreciate the comments provided to improve the work, and have performed and included in the revised version a set of clarifications, additional analyses and additional experiments that have served to reinforce our main points and provide additional mechanistic links. We also agree that more remains to be done to understand the function and evolution of repeats C1, C2 and C4.

      Reviewer #1 (Recommendations For The Authors):

      1) For immuno-blots, authors may indicate the expected bands to help readers better understand the results.

      Agreed, and we have included the predicted molecular weight of proteins in the Figure Legends. We note that our work shows that the C-terminal domains confer anomalous migration in SDS-PAGE.

      2) Fig. 5b, a blot missing for the mCherry group?

      Figure 5b is a volcano blot, so we believe the reviewer is referring to Figure 5d, which is a coimmunoprecipitation experiment between SMARCC1 and mCherry-tagged DUX constructs. However, we are unsure of the comment as an anti mCherry sample is present in that panel.

      3) Line 99-100, Fig. S1d, it seems that repeat2, but not repeat3, is more similar to human DUX4 C-terminal region.

      This comment and one by another reviewer have prompted us to re-examine the similarities of the DUX repeats, and we have new analyses (Figure S1d) and an alternative framing in the manuscript as a result. We have expanded on this in our response to Reviewer #2, point #1 – and direct the reviewer there for our expanded treatment.

      4) There are a few references are misplaced. For example, line 48, the studies that reported the role of Dux in inducing 2CLCs should be from Hendrickson et al., 2017, De Iaco et al., 2017, and Whiddon et al., 2017. The authors may want to double check all references.

      Thanks for pointing these out. These issues have been corrected in the manuscript.

      5) In the materials & methods section, a few potential errors are noticed. For example, concentrations of PD0325901 and CHIR99021 in mESC medium appear ~1000-fold higher than standards.

      Thanks – corrected.

      Reviewer #2 (Recommendations For The Authors):

      Major Points

      1) Line 99 - The authors claimed that the "human DUX4 C-terminal region is most similar to the 3rd repeat of mouse DUX", but based on Supp. Fig. 1d, the human DUX4 C-term should be most similar to the 2nd repeat of mouse DUX. If this is indeed the case, it will undermine the rest of this study, since the authors claim that the 3rd repeat is transcriptionally active, whereas the 2nd repeat is transcriptionally inactive, and the bulk of this study largely focused on how the active repeats, not the inactive repeats, are critical in recruiting key transcriptional and chromatin regulators to induce the embryonic gene expression program.

      We thank the reviewer for their comments here. Since submission,and as mentioned above for reviewer #1 we have revisited the issue of similarity of the DUX4 C-terminal region to the mouse C-terminal repeats, with a BLAST-based approach that is more rigorous and informed by statistics – which is in Author response table 1 and now in the manuscript as Figure S1d, and has affected our interpretation. Our prior work involved a simple % identity comparison table and we now appreciate that some of the similarity analyses did not meet statistical significance, and therefore we are unable to draw certain conclusions. We make the appropriate modifications in the text. For example, we no longer state that the DUX4 C-terminus appears to be most similar to mouse repeats 3 and 5. This does not affect the main conclusions of the paper regarding interactions of the C-terminus with chromatin-related proteins, only our speculation on which repeat might have represented the original single repeat in the mouse – an issue we think of some interest, but did not rise to the level of mentioning in the original or current abstract.

      Author response table 1.

      Parameters: PAM250 matrix. Gap costs of existence: 15 and extension: 3. Numbers represent e-value of each pairwise comparison

      *No significant similarities found (>0.05).

      2) In Supp Fig 1d, it seems that the rat DUX4 C-terminal region is most similar to the 4th repeat of mouse DUX, which according to the author is supposedly transcriptionally inactive. This weakens the authors justification that the 3rd or 5th repeat is likely the "parental repeat for the other four", and further echoes my concern in point 1 where the human DUX4 C-term is most similar to the 2nd (inactive) repeat of mouse DUX.

      The reviewer’s point is well taken and is addressed in point #1 above.

      3) In Fig. 1d, the authors showed that DUX4-containing C3 and C5, but lacking acidic tail, can promote MERVL::GFP expression, albeit to a slightly lower extent compared to FL. However, in Fig. 2b, C3 or C5 alone (lacking acidic tail) completely failed to promote MERVL::GFP expression. However, in the presence of the acidic tail, both versions were able to promote MERVL::GFP expression, similar to that of FL. The latter would suggest that it is the acidic tail that is crucial for MERVL::GFP expression, and this does not quite agree with Fig 1b, where C12345 (lacking acidic tail) was able to promote MERVL::GFP expression. Although C12345 did not activate MERVL to a similar level as FL, it is clearly proficient, compared to C3 or C5 alone (lacking acidic tail) where there is no increase in MERVL at all. Additional constructs will be helpful to clarify these points. For example, 'C3+C5 minus acidic tail' and 'HD1+HD2+acidic tail only' constructs.

      We agree that constructs such as those mentioned would add to the work. First, we have done the additional construct HD1+HD2+14aa tail, which is presented as ΔC12345+14aa in Figure 2a and in S2a. Additionally, we performed experiments on the requested C3+C5+14aa and C3+C5Δ14aa (see samples 6 and 7 in Author response image 1, which are now included in Supplemental Figure 2b). The results reinforce our hypothesis of an additive effect toward DUX target gene activation by increasing C-terminal repeats and including the 14aa tail.

      Author response image 1.

      4) Related to the above, the flow cytometry data for the MERVL::GFP reporter as presented in Figures 1 and 2, as well as in Supp. Fig. 2, show a considerably large difference in the %GFP|mCherry for the FL construct, ranging from ~6-26%. This makes it difficult to convince the reader which of the different DUX domain constructs cannot or can partially induce GFP|mCherry signal when compared to FL, and hence it is tough to definitively ascertain the exact contribution of each of the 5 C-terminal repeats with high confidence, as it appears that there exists a significant amount of variability in this MERVL::GFP reporter system. The authors need to address this issue since this is their primary method to elucidate the transcriptional activity of each of the mouse DUX repeat domains.

      We note that with the Dux-/- cell lines we used throughout the timeline of the study, the percent of %GFP|mCherry expression progressively and slowly decreased – possibly due to slow/modest epigenetic silencing of the reporter. However, we always used the full-length DUX construct to establish the dynamic range. We emphasize that the relative differences between constructs over multiple cell line replicates remained relatively consistent. However, we elected to show absolute values in each experiment, rather than simply normalizing the full-length to 100% and showing relative.

      5) Lines 140-142 - The authors claimed that the functional difference between the transcriptionally active and inactive repeats could be narrowed down to a "6aa region which is conserved between repeats C3 and C5, but not conserved in C1, C2 and C4". Assuming the 6aa sequence is DPLELF, why does C1C3a elicit almost twice the intensity of GFP|mCherry signal compared to C3C1c, despite both constructs having the exact same 6aa sequence?

      Indeed, C1C3a and C3C1c both containing the ‘active’ DPL sequence but having different relative levels of %GFP|mCherry. This is consistent with these sequences having a positive role in DUX target gene regulation – but likely in combination with other other regions which potentiate its affect, possibly through interacting proteins or post-translational modifications.

      Why does DPLEPL (the intermediate C3C1b construct) induce a similar extent of GFP|mCherry signal as the FL construct, even though the former includes 3aa from a transcriptionally inactive repeat? In contrast, GSLELF (the other intermediate C1C3b construct) that also includes 3aa from a transcriptionally inactive repeat is almost completely deficient in inducing any GFP|mCherry signal. Why is that so? Is DPL the most crucial sequence? It will be important to mutate these 3 (or the above 6) residues on FL DUX4 to examine if its transcriptional activity is abolished.

      These are interesting points. DPL does appear to be the most important region in the mouse DUX repeats. However, DPL is not shared in the C-terminus of human DUX4. Notably, the DUX4 C-terminus is sufficient to activate the mouse MERVL::GFP reporter when cloned to mouse homeodomains (see Author response image 2, second sample) and other DUX target genes (initially published in Whiddon et al. 2017). One clear possibility is that the DPL region is helping to coordinate the additive effects of multiple DUX repeats, which only exist in the mouse protein.

      Author response image 2.

      6) Line 154 - The intermediate DUX domain construct C1C3b occupied a different position on the PCA plot from the C1C3c construct that does not contain any of the critical 6aa sequence, as shown in Fig. 2e. However, both these constructs appear to be similarly deficient in inducing any GFP|mCherry signal, as seen in Fig. 2c. Why is that so?

      The PCA plot assesses the impact on the whole transcriptome and not just the MERVL::GFP reporter, suggesting the 3aa region has transcriptional effects on the genome beyond what is detected in the MERVL::GFP reporter.

      7) To strengthen the claim that "Chromatin alterations at DUX bindings sites require a transcriptionally active DUX repeat", the authors should also perform CUT&Tag for constructs containing transcriptionally inactive DUX repeats (e.g. C1+14aa), and show that such constructs fail to occupy DUX binding sites, as well as are deficient in H3K9ac accumulation.

      This is a good comment. We elected to control this with constructs containing or lacking an active repeat. Although we have not pursued this by CUT&TAG, we have examined the impact of DUX constructs with inactive repeats (including the requested C1+14aa, new Figure S1g) by ATAC-seq (see #12, ATAC-seq section, below), and observe no chromatin opening, suggesting that the lack of transcriptional activity is rooted in the inability to open chromatin.

      8) It would be good if the authors could also include CUT&Tag data for some of the C1C3 chimeric constructs that were used in Fig. 2, since the authors argued that the minimal 6aa region is sufficient to activate many of the DUX target genes. This would also strengthen the authors’ case that the transcriptionally active, not inactive, repeats are critical for binding at DUX binding sites and ensuring H3K9ac occupancy.

      We agree that these would be helpful, and have examined the inactive repeats in transcription and ATAC-seq formats during revision (new data in Figures 1d and S1g), but not yet the CUT&TAG format.

      9) Line 213 - "SMARCA4" should have been "SMARCA5"? Based on Fig. 4d, SMARCA5 is picked up in the BirA*-DUX interactome, not SMARCA4.

      Thanks – corrected.

      10) Lines 250-252 - The authors compared the active BirA-C3 against the inactive BirA-C1 to elucidate the interactome of the transcriptionally active C3 repeat, as illustrated in Fig. 5c. They found 12 proteins more enriched in C1 and 154 proteins in C3. This information should be presented clearly as a separate tab in Supp Table 2. What are the proteins common to both constructs, i.e. enriched to a similar extent? Do they include chromatin remodellers too? Although the authors sought to identify differential interactors between the 2 constructs, it is also meaningful to perform 2 separate comparisons - active BirA-C3 against BirA alone control, and inactive BirA-C1 against BirA alone control - like in Fig. 4d, so as to more accurately define whether the active C3 repeat, and not the inactive C1 repeat, interacts with proteins involved in chromatin remodeling.

      We thank the reviewer for this comment, and we have modified the manuscript by adding a second sheet in Supplementary Table 2 including the results for enriched proteins in BirA-C1 vs. C3. Additionally, due to limitations of annotation between BirA alone and BirA*-C3 being sequenced in different mass spectrometry experiments, it is difficult to quantitatively compare the two datasets with pairwise comparisons.

      11) Fig 5d: The authors mentioned in the legend that endogenous IP was performed for SMARCC1. However, in line 266, they stated Flag-tagged SMARCC1. Is SMARCC1 overexpressed? The reciprocal IP should also be presented. More importantly, C1 constructs (e.g. C1+14aa and C1Δ14aa) should also be included.

      To clarify, Figure 4e used exogenously overexpressed FLAG-SMARCC1 in HEK-293T cells to confirm the results of the full-length DUX BioID experiment. Figure 5d was performed with overexpressed DUX construct, but involved endogenous SMARCC1 in mESCs. This has now been made clearer in the revised manuscript.

      12) For both the SMARCC1 CUT&Tag and ATAC-seq experiments shown in Figures 5e and 5f respectively, the authors need to include DUX derivatives that contain transcriptionally inactive repeats with and without the 14aa acidic tail, i.e. C1+14aa and C1Δ14aa, and show that these constructs prevent the binding/recruitment of SMARCC1 to DUX genomic targets, and correspondingly display a decrease in chromatin accessibility. Only then can they assert the requirement of the transcriptionally active repeat domains for proper DUX protein interaction, occupancy and target activation.

      We agree that examination of an inactive repeat in certain approaches would improve the manuscript. Importantly, we have now included C1+14 in our ATAC-seq experiments, and in Author response image 3 two individual replicates, which constitute a new Figure S1g. Compared to the transcriptionally active DUX constructs, which see opening at DUX binding sites, we do not see chromatin opening at DUX binding sites with transcriptionally inactive C1+14.

      Author response image 3.

      13) To prove that DUX-interactors are important for embryonic gene expression, it will be important to perform loss of function studies. For instance, will the knockdown/knockout of SMARCC1 in cells expressing the active DUX repeat(s) lead to a loss of DUX target gene occupancy and activation?

      We agree that it would be interesting to better understand SMARCC1 cooperation with DUX function in the embryo, but we believe this is beyond the scope of this paper.

      Minor Points

      1) Lines 124-126 - What is the reason/rationale for why the authors used one linker (GGGGS2) for constructs with a single internal deletion, but 2 different linkers (GGGGS2 and GAGAS2) for constructs with 2 internal deletions?

      With Gibson cloning, there are homology overhang arms for each PCR amplicon that are required to be specific for each overlap. Additionally, each PCR amplicon needs to be specific enough from one another so that all inserts (up to 5 in this manuscript) are included and oriented in the right order. The linker sequences were included in the homology arm overlaps, so the nucleotide sequences for each linker needed to be specific enough to include all inserts. This is a general rule to Gibson cloning. Additionally, both GGGGS2 and GAGAS2 are common linker sequences used in molecular biology and the amino acids structures are similar to one another, suggesting there is no functional difference between linkers.

      2) Line 704 - 705: In the figure legend, the authors stated that 'Constructs with a single black line have the linker GGGGS2 and constructs with two black lines have linkers with GGGGS2 and GAGAS2, respectively.'. This was not obvious in the figures.

      Constructs used for flow and genomics experiments that are depicted in Figure 2, Supplementary Figure 2, Figure 3, Figure 4, and Figure 5 have depicted black lines where deletions are present. Where these deletions are present, there are linkers in order to preserve spacing and mobility for the protein.

      3) Line 160 - Clusters #1 and #2 are likely written in the wrong order. It should have been "activating the majority of DUX targets in cluster #2, not cluster #1" and "failed to activate those in cluster #1, not cluster #2", based on the RNA-seq heatmap in Fig. 2f.

      We thank the reviewer for this comment, and the error has been corrected in the manuscript.

      4) Line 188 - Delete the word "of" in the following sentence fragment: "DUX binding sites correlating with the of transcriptional".

      Thanks – corrected.

      5) Line 191 - Delete the word "aids" in the following sentence fragment: "important for conferring H3K9ac aids at bound".

      Thanks – corrected.

      6) Line 711 - "C1-C3 a,b,d" should be "C1-C3 a,b,c".

      Thanks – corrected.

      7) Lines 711-712 - The colors "pink to blue" and "blue to pink" are likely written in the wrong order. Based on Fig. 2c, the blue to pink bar graphs should represent C1-C3 a,b,c in that order, and likewise the pink to blue bar graphs should represent C3-C1 a,b,c in that order.

      Thanks – corrected.

      8) There is an overload of data presented in Fig. 2c, such that it is difficult to follow which part of the figure represents each data segment as written in the figure legend. It is recommended that the data presented here is split into 2 sub-figures.

      Figure 2c has a supporting figure in Supplementary Figure 2b. While there is both a graphical depiction of the constructions and the data both in the main panel of Figure 2C, we have depicted it as so to be as clear as possible for the reader to interpret the complexity and presentence of amino acids in each of the constructs.

      9) Line 717 - "following" is misspelt.

      Thanks – corrected.

      10) Lines 720-721 - "(Top)" and "(Bottom)" should be replaced with "(Left)" and "(Right)", as the 2 bar graphs presented in Fig. 2d are placed side by side to each other, not on the top and bottom.

      Thanks – corrected.

      11) Lines 725 and 839 - "Principle" is misspelt. It should be "Principal".

      Thanks – corrected.

      12) In Figures 3d and 3e, the sample labeled "C3+14_1" should be re-labeled to "C3+14", in accordance with the other sub-figures. Additionally, for the sake of consistency, "aa" should be appended to the relevant constructs, e.g. "C3+14aa" and "C3Δ14aa".

      Thanks – corrected.

      13) Line 773 - Were the DUX domain constructs over-expressed for 12hr (as written in the figure legend) or 18hr (as labeled in Fig. 5d)?

      Thanks – corrected.

      14) Related to minor point 19 above, is there a reason/rationale for why some of the experiments used 12hr over-expression of DUX domain constructs (e.g. for CUT&TAG in Fig. 3), whereas in other experiments 18hr over-expression was chosen instead (e.g. flow cytometry for MERVL::GFP reporter in Figures 1 and 2, and co-IP validations of BirA*-DUX interactions in Fig. 4)?

      Thanks for the opportunity to explain. In this work, experiments that reported on proteins that are translated following DUX gene activation (e.g. MERVL:GFP via flow) were done at 18hr to allow for enough time for transcription and translation of GFP (or other DUX target genes). For experiments that report on the impact of DUX on chromatin and transcription, such as RNA-seq, CUT&Tag, and ATAC-seq, we induced DUX domain constructs for 12 hours.

      15) Line 804 - "ΔHDs" is missing between "C2345+14aa" and "ΔHD1".

      Thanks – corrected.

      16) In Fig. 5c, "Chromatin remodelers" is misspelt.

      Thanks – corrected.

      17) There is no reference in the manuscript to the proposed model that is presented in Fig. 6b.

      Thanks – corrected.

      Reviewer #3 (Recommendations For The Authors):

      Given the uncertainty of the function of the Dux peptide repeats in mice, could it not also be possible that the underlying repeated nature of the (coding) DNA? That is, could these DNA repeats exert a regulatory function on Dux transcription itself (also given the dire consequences of misregulated DUX4 expression as seen in FSHD, for example).

      Yes, it remains possible that the internal coding repeats within Dux are playing a role in locus regulation, and might be interesting to examine. However, we consider this question as being outside the scope of the current paper.

      Finally, it would be interesting to know whether these repeats are, in fact, present in all mouse species. Already no longer present in rat, do they exist, or not, in more "distant" mice, e.g. M. caroli?

      Determining whether all mouse strains contain C-terminal repeats in DUX is a question we also considered. However, Dux and its orthologs are present in long and very complex repeat arrays that are not present in the sequencing data or annotation in other mouse strains. Therefore, we are not unable to answer this question from existing sequencing data. Answering would require a considerable genome sequencing and bioinformatics effort, or alternatively a considerable effort aimed at cloning ortholog cDNAs from 2-cell embryos.

      Minor points:

      line 169: here it seems, in fact, that the 'inactive' C2, C4 repeats are more similar to each other (my calculation: 91 and 96% identity at the protein and DNA level, respectively) than the active C3 and C5 repeats (82 and 89% identity, resp.), the outlier being C1.

      Thanks for this comment, which was mentioned by other reviewers as well and has been addressed through new statistical analyses and interpretation (see new Figure S1d).

      line 191: I'm not sure this sentence parses correctly ("...14AA tail is important for conferring H3K9Ac aids at bound sites...")

      We thank the reviewer for this comment, and we have corrected the sentence in the manuscript.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Reply to the reviewers

      We would like to thank the reviewers for their comments, we see great value in the suggestions they made to strengthen our work. We are glad to see that they are in general positive about the manuscript. In the following, we include a point-by-point response to their comments, which are in general consistent with each other.


      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      In this manuscript, Sanchez-Cisneros and colleagues, examine how tracheal cell adhesion to the ECM underneath the epidermis helps shape the tracheal system. They show that if cell-ECM adhesion is perturbed the development of the tracheal system and the epidermis is disrupted. They also detect protrusions extending from the dorsal trunk cells towards the ECM. The work is novel, the figures are clear, and the questions are well addressed. However, I find that some of the claims are not completely supported by the data presented. I have some suggestions that will, I believe, clarify certain points.

      Major comments

      At the beginning of the results section as in the introduction the authors claim that "It is generally assumed that trunk displacement occurs due to tip cells pulling on the trunks so that they follow their path dorsally." This sentence is not referenced, and I do not know where it has been shown or proposed to be like this. In addition, the comparison with the ventral branches is also not referenced and the movie does not really show this. Forces generated by tracheal branch migration have been shown to drive intercalation (Caussinus E, Colombelli J, Affolter M. Tip-cell migration controls stalk-cell intercalation during Drosophila tracheal tube elongation. Curr Biol. 2008;18(22):1727-1734. doi:10.1016/j.cub.2008.10.062), but not dorsal trunk (DT) displacement.

      • *

      We agree that dorsal trunk displacement has not been discussed in previous works, just the fact that tip-cell migration influences stalk cell intercalation. We will rephrase this sentence, stating that dorsal trunk displacement has not been studied.

      However, to rule out the possibility that DT displacement and the phenotype observed in XXX is due to dorsal branch pulling forces, the authors should analyze what happens in the absence of dorsal branches (in condition of Dpp signalling inhibition as in punt mutants or Dad overexpression conditions).

      This is a great idea, and we thank the reviewer for suggesting this. We tried to achieve a similar goal by expressing a Dominant Negative FGFR (Breathless-DN) in the tracheal system, since its expression under btl-gal4 affects tip cell migration. However, the phenotype arises too late to have an effect in dorsal branch migration during the stages we were interested in analyzing. The alternative proposed by the reviewer should be more efficient, as blocking Dpp signalling prevents the formation of dorsal branches completely. We have just received flies carrying the UAS-Dad construct. We will express Dad under btl-gal4 and see how this affects dorsal trunk displacement.

      I am concerned about the TEM observations. The authors claim they can identify tracheal cells by their lumen (Fig. 2 C'). However, at stage 15, the tracheal lumen should be clearly identifiable, and the interluminal DT space should be wider relative to the size of the cells. In this case, there is nothing telling us that we are not looking at a dorsal branch or lateral trunk cell. Furthermore, at embryonic stage 15, the tracheal lumen is filled with a chitin filament, which is not visible in these micrographs. Also, there is quite a lot of tissue detachment and empty spaces between cells, which might be a sign of problems in sample fixing. Better images and more accurate identification of dorsal trunk cells is necessary to support the claim that "These experiments revealed a novel anatomical contact between the epidermis and tracheal trunks".

      The protocol that we use for TEM involves performing 1-μm sections that allow us to stage embryos and to identify the anatomical regions using light microscopy and then switch to ultra-thin sections for electron microscopy once we have found the right position within the sample. This approach also allows us to determine the integrity of the sample. We attach here a micrograph of the last section we analyzed before we decided to do the EM analysis. The asterisk (*) points to a region where the multicellular lumen of the trunk is visible. Due to its proximity to the posterior spiracles, we are confident this is the dorsal trunk and not the lateral trunk. We realize now, after comparing this image with an atlas of development (Campos-Ortega and Hartenstein, 2013), that the stage we chose to illustrate the interaction is a stage 14 embryo instead of the stage 15 we indicated in the manuscript. We will change the stage but given that dorsal closure has already started by stage 14, this does not affect our analysis. Still, we apologize for the mis-staging of the embryo.

      In the light-microscopy image, we have overlaid the EM section to the corresponding region of interest. We agree that the lumen should be thicker compared to the length of the cells, if the section would be cutting the trunk through its largest diameter. However, the protrusions we see do not emerge from the middle part of the trunk where the lumen is found but are seen towards the dorsal side of the trunk, where the lumen will no longer be visible in a longitudinal section as the ones we present. In the embryo shown in Figure 2A-C, our interpretation is that the section was done through a very shallow section of the lumen (represented below). We interpret this from the fact that we see abundant electron-dense areas which we think are adherens junctions from multiple cells. These junctions are visible in Figure 2C but are currently not labelled. We will add arrows to increase their visibility.

      Given that protruding cells lie at the base of dorsal branches, it would be expected that in some sections we would find the protrusions close to the dorsal branches. This is in fact what we show in the micrograph shown in Figure 2D, with a lower magnification overview image shown in Figure S2D. In this case, we see a cell in close proximity to the tendon cells on one side (Figure 2D), which is connected to a dorsal branch on the opposite side (shown in Figure S2D). This dorsal branch is clearly autocellular and chitin deposition is visible as expected for the developmental stage. Again, in Figure S2E we see an electron-dense patch near the lumen that corresponds to the adherens junctions that seal the lumen. We see that all this needs to be better explained in the manuscript, so we will elaborate on the descriptions, and incorporate the light microscopy micrograph to the supplemental figures. This should also aid with the anatomical descriptions requested by Reviewer #3. Nevertheless, we think these observations confirm that what we are describing are the contact points between the dorsal trunk and tendon cells.

      Timelapse imaging of the protrusions in DT cells is done with frames every 4 minutes (Video S3). This is not enough to properly show cellular protrusions and the images do not really show interaction with the epidermis. Video S4 has a better time resolution but it is very short and only shows the cut moment. Video S4, shows the cut, but the reported (and quantified recoil) is not clear. Nevertheless, the results are noteworthy and should be further analysed.

      We will acquire high temporal resolution time-lapse images using E-Cadherin::GFP and btl-gal4, UAS-PH::mCherry to show the behaviour of the protrusions on a short time scale.

      • *

      Provided these embryos survive, would it be possible to check if embryos after laser cutting will develop wavy DTs?

      We think it would be interesting to carry out this experiment, but the laser cut experiments were done under a collaborative visit and we would not be able to repeat it in a short-term period.

      What happens to the larvae under the genetic conditions presented in Fig.S3? Do they reach pupal stages? Do these animals reach adult stages?

      We have seen escapers out of these crosses, but we have not quantified the lethality of the experiment. We will analyse this and include it in the manuscript.

      The kayak phenotypes are very interesting and perhaps the authors could explore them more. As in inhibition of adhesion to the ECM, kay mutants display wavy dorsal trunks. Do they have defective adhesion? Fos being a transcription factor, this is a possibility. The authors should at least discuss the kay phenotypes more extensively and present a suitable hypothesis for the phenotype.

      We agree that the kayak experiments might bring more consequences than just preventing dorsal closure. We will complement this approach by blocking dorsal closure by other independent means. We will use pannier-gal4 (a lateral epidermis driver), engrailed-gal4 (a driver for epidermal posterior compartment), and 332-gal4 (an amnioserosa driver) to express dominant-negative Moesin. In our experience, this also delays dorsal closure and it should result in a similar tracheal phenotype as the one we see in kayak embryos.

      Minor comments

      Page 2 Line 9/10 The sentence "tracheal tubes branch and migrate over neighbouring tissues of different biochemical and mechanical properties to ventilate them." should be rewritten. Tracheal cells do not migrate over other tissues to ventilate them.

      We meant to say that tracheal cells migrate over other tissues at the same time as they branch and interconnect to allow gas exchange in their surroundings after tracheal morphogenesis is completed. Ventilation is used here as a synonym for gas exchange or breathing. We will rephrase this if the reviewer considers it confusing.

      Page 2 Line 24/25 The sentence "It has been generally assumed that trunks reach the dorsal side of the embryo because of the pulling forces of dorsal branch migration." needs to be backed up by a reference.

      As explained above, we will rephrase this sentence.

      Page 7 Line 32/23 In this sentence, the references are not related to dorsal closure "Similarly, the signals that regulate epidermal dorsal closure do not participate in tracheal development, or vice versa (Letizia et al., 2023; Reichman-Fried et al., 1994)."

      Our goal in this sentence was to explain that while JNK is required for proper epidermal dorsal closure, loss of JNK signaling in the trachea does not affect tracheal development (as shown by Letizia et al., 2023). At the same time, Reichman-Fried et al., 1994 described the phenotypes of loss of breathless (btl). We will remove this last reference as the work does not study the epidermis. We will rephrase the sentence as: “Similarly, the signals that regulate epidermal dorsal closure do not participate in tracheal development; namely, JNK signaling (Letizia et al., 2023).”

      Page 12 Line 1 "Muscles attach to epidermal tendon cells through a dense meshwork of ECM" this sentence must be referenced.

      We will add the corresponding references for this statement: (Fogerty et al., 1994; Prokop et al., 1998; Urbano et al., 2009). We will change “dense” for “specialized”.

      Fig. S1- Single channel images (A'-C' and A'-C') should be presented in grayscale.

      Fig. S4- Single channel images (A'-D' and A'-D') should be presented in grayscale.

      We will add the grayscale, single-channel images for these figures.

      Reviewer #1 (Significance (Required)):

      The findings shown in this manuscript shed light on the interactions and cooperation between two organs, the tracheal system and the epidermis. These interactions are mediated by cell-ECM contacts which are important for the correct morphogenesis of both systems. The strengths of the work lie on its novelty and live analysis of these interactions. However, its weaknesses are related to some claims not completely backed by the data, some technical issues regarding imaging and some over-interpreted conclusions.

      This basic research work will be of interest to a broad cell and developmental biology community as they provide a functional advance on the importance of cell-ECM interactions for the morphogenesis of a tubular organ. It is of specific interest to the specialized field of tubulogenesis and tracheal morphogenesis.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      Summary: In this paper, the authors explore the relationships between two Drosophila tissues - the epidermis and tracheal dorsal trunk (DT) - that get dorsally displaced during mid-late embryogenesis. The show a nice temporal correlation between the movements of the epithelia during dorsal closure and DT displacement. They also show a correlation between the movement of an endogenously tagged version of collagen and the DT, suggesting that the ECM may contribute to this coordinated movement. Through high magnification TEM, they show that tracheal cells make direct contact with the subset of epithelial cells, known as tendon cells, that also serve as muscle attachment sites. In between these contact sites, tracheae are separated from the epithelia by the muscles. Furthermore, the TEMs and confocal imaging of tracheal cells expressing a membrane marker at these contact sites show that the tracheal cells are extending filopodia toward the tendon cells. The authors then explore how a variety of perturbations to the ECM produced by the tendon and DT cells affect DT and epithelial movement. They find that expressing membrane-associated matrix metalloproteases (MMP1 or MMP2) in tendon cells as well as perturbations in integrin or integrin signaling components leads to delays in dorsal displacement as well as defective lengthening of the tracheal DT tubes. They find that defects in the association between the tracheal and epidermal ECM attachments affect dorsal displacement of the epidermis, disrupting dorsal closure.

      Major comments: I like the goals of this paper testing the idea that the ECM plays important roles in the coordination of tissue placement, and I think they have good evidence of that from this study. However, I disagree with the conclusions of the authors that disrupting contact between DT and the tendon cells has no effect on DT dorsal displacement. DT tracheal positioning is clearly delayed; the fact that it takes a lot longer indicates that the ECM does affect the process. It's just that there are likely backup systems in place - clearly not as good since the tracheal tubes end up being the wrong length.

      We agree with this view; in our deGradFP experiments we see a delayed DT displacement. We focused our analyses on the coordination with epidermal remodelling, which remained unaltered, but we in fact see a delayed progression in dorsal displacement of both tissues (Figure 5I-J). We will emphasize this in the corresponding section of the Results.

      It also seems important that the parts of the DT where the dorsal branches (DB) emanate are moving dorsally ahead of the intervening portions of the trachea. This suggests to me that the DB normally does contribute to DT dorsal displacement and that this activity may be what helps the DT eventually get into its final position. The authors should test whether the portions of the DT that contact the DB are under tension. If the DB migration is providing some dorsal pulling force on the DT, this may also contribute to the observed increases in DT length observed with the perturbations of the ECM between the tendon cells and the trachea - if tube lengthening is a consequence of the pulling forces that would be created by parts of the trachea moving dorsally ahead of the other parts. Here again, it would be good to test if the DT itself is under additional tension when the ECM is disrupted.

      • *

      We thank the reviewer for the suggested experiments. We agree with the fact that the dorsal branches should pull on the dorsal trunk and that this interaction should generate tension. Unfortunately, we are unable to test this with the experiments proposed by the reviewer, but we propose an alternative strategy to overcome this. We understand that the reviewer suggests we do laser cut experiments in dorsal branches to see if there is a recoil in the opposite direction of dorsal branch migration. We carried out our laser cut experiments using a 2-photon laser through a visit to the EMBL imaging facility, using funds from a collaborative grant. Funding a second visit would require us to apply for extra funding, which would delay the preparation of the experiments. We are aware of UV-laser setups within our university, however, UV-laser cuts would also affect the epidermis above the dorsal branches, which we think might contribute to recoil we would expect to see.

      Instead of doing laser cuts, we have designed an experiment based on the suggestion of reviewer #1 of blocking Dpp signaling (with UAS-Dad), which would prevent the formation of dorsal branches. We expect that in this experimental setup, the trunk will bend ventrally in response to thepulling forces of the ventral branches. We will also co-express UAS-Dad (to prevent dorsal branch formation) and UAS-Mmp2 (to ‘detach’ the dorsal trunk from the epidermis), and we would expect to at least partially rescue the wavy trunk phenotype.

      Minor comments: The authors need to do a much better job in the intro and in the discussion of citing the work of the people who made many of the original findings that are relevant to this study. Many citations are missing (especially in the introduction) or the authors cite their own review (which most people will not have read) for almost everything (especially in the discussion). This fails to give credit to decades of work by many other groups and makes it necessary for someone who would want to see the original work to first consult the review before they can find the appropriate reference. I know it saves space (and effort) but I think citing the original work is important.

      • *

      The reviewer is right; we apologize for falling into this practice. We will reference the original works wherever it is needed.

      Figure 7 is not a model. It is a cartoon depicting what they see with confocal and TEM images.

      We will change the figure; we will include our interpretations of the phenotypes we observed under different experimental manipulations.

      Reviewer #2 (Significance (Required)):

      Overall, this study is one of the first to focus on how the ECM affects coordination of tissue placement. The coordination of tracheal movement with that of the epidermis is very nicely documented here and the observation that the trachea make direct contact with the tendon cells/muscle attachment sites is quite convincing. It is less clear from the data how exactly the cells of the trachea and the ECM are affected by the different perturbations of the ECM. It seems like this could be better done with immunostaining of ECM proteins (collagen-GFP?), cell type markers, and super resolution confocal imaging with combinations of these markers. What happens right at the contact site between the tendon cell and the trachea with the perturbation? I think that at the level of analysis presented here, this study would be most appropriate for a specialized audience working in the ECM or fly embryo development field.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      Summary The manuscript by Sanchez-Cisneros et al provides a detailed description of the cellular interactions between cells of the Drosophila embryonic trachea and nearby tendon and epidermal cells. The researchers use a combination of genetic experiments, light sheet style live imaging and transmission electron microscopy. The live imaging is particularly clear and detailed, and reveals protruding cells. The results overall suggest that interactions mediated through the ECM contribute to development of trachea and dorsal closure of epidermis. One new aspect is the existence of dorsal trunk filipodia that are under tension and may impact tracheal morphogenesis through required integrin/ECM interactions.

      Major comments: - Are the key conclusions convincing? Generally, the key conclusions are well supported by the data, and the movies are very impressive. Interactions between the cell types are clearly shown, as is the correlations in their development. However, some of the images are challenging to decipher for a non-expert in Drosophila trachea, especially the EM images, and some of the data is indirect or a bit weak.

      We thank the reviewer for their observations. As mentioned above in response to Reviewer #1, we will add an overview image of the embryo we processed for TEM that is presented in Figure 2.

      The data related to failure of dorsal closure affecting trachea relies on one homozygous allele of one gene (kayak), and so this is somewhat weak evidence. Even though kay is not detected in trachea, there could be secondary effects of the mutation or another lesion on the mutant chromosome. The segments look a bit uneven in the mutant examples.

      • *

      The reviewer is right; as we proposed before, we will complement the kayak experiments with independent approaches that will delay dorsal closure.

      • Should the authors qualify some of their claims as preliminary or speculative, or remove them altogether? Some of the experiments have low n values, especially in imaging experiments, so these may be more preliminary, but they are in concordance with other data.

      The problem we face in our live-imaging experiments is related to the probability of finding the experimental embryos. In most of our experiments we combine double-tissue labelling plus the expression of genetic tools. This generally corresponds to a very small proportion of the progeny. We will aim to have at least 4 embryos per condition.

      • Would additional experiments be essential to support the claims of the paper? Request additional experiments only where necessary for the paper as it is, and do not ask authors to open new lines of experimentation. Higher n-values would substantiate the claims. To strengthen the argument that dorsal closure affects trachea morphogenesis mechanically, the authors might consider using of a combination of kay mutant alleles or other mutant genes in this pathway to provide stronger evidence. Or they could try a rescue experiment in epidermis and trachea separately for the kay mutants.

      We think our experiments delaying dorsal closure using the Gal4/UAS system and a variety of drivers should address the point of the possible indirect effects of kay in tracheal development.

      • Are the suggested experiments realistic in terms of time and resources? It would help if you could add an estimated cost and time investment for substantial experiments. Imaging data can take awhile to obtain, but the genetic experiments could be done in a couple of months, and the authors should be able to obtain any needed lines within a few weeks.

      The reviewer is correct, we will be able to plan our crosses for the proposed experiments within a couple of months.

      • Are the data and the methods presented in such a way that they can be reproduced? Generally, yes. For the deGrad experiments, it is not clear how the fluorescent intensity was normalized - was this against a reference marker?

      Briefly, we used signals from within the embryo as internal controls. In the case of en-gal4, we normalized the signal to the sections of the embryo where en is not expressed and therefore, beta-integrin levels should not be affected. In the case of btl-gal4, we normalized against the signal surrounding the trunks which should also not be affected by the deGradFP system. We will elaborate on these analyses in the methods section.

      Are the experiments adequately replicated and statistical analysis adequate? There are several experiments with low n values, so this could fall below statistical significance. For example, data shown in Fig 1G: n=3; Fig 4D n=4, n=3; Fig 6J n=4

      As mentioned above, we will increase our sample sizes.

      Minor comments: - Specific experimental issues that are easily addressable. To make the TEM images more easily interpreted, it would be helpful to provide a fluorescent image of all the relevant cell types (especially trachea, epidermis, muscle, and tendon cells, plus segmental boundaries) labelled accordingly, so that reader can correlate them more easily with the TEM images. They might also include a schematic of an embryo to show where the TEM field of view is.

      We believe this should be addressed by adding the light microscopy section of the embryo with the TEM image overlaid as illustrated above.

      It is hard to be confident that the EM images reflect the cells they claim and that the filopodia are in fact that, at least for people not used to looking at these types of images.

      As we explained in the response to Reviewer #1, we will elaborate on the descriptions of our TEM data. We think that adding the reference micrograph will aid with the interpretations of the TEM images.

      • Are prior studies referenced appropriately? yes
      • Are the text and figures clear and accurate? yes

      • Do you have suggestions that would help the authors improve the presentation of their data and conclusions? The writing could be revised to be a bit clearer. Since the results of the experiments do not support the initial hypothesis, I found it a bit confusing as I read along. It may help to introduce an alterative hypothesis earlier to make the paper more logical and easy to follow. To be more specific, On page 3, the authors say they "show that dorsal trunk displacement is mechanically coupled to the remodelling of the epidermis" and also in the results comment that "With two opposing forces pulling the trunks other factors likely participate in their dorsal displacement, but so far these have remained unstudied." But that doesn't end up being what they find. The results from figure 5 and related interpretation on page 17 says "cell-ECM interactions are important for proper trunk morphology, but not for its displacement." So this was confusing to read and I would encourage the authors to frame the issues a bit differently in terms of tube morphogenesis.

      We see how this might be confusing. We will rewrite the introduction so that the work is easier to follow. To achieve this, we will state from the beginning the mechanisms we anticipate that regulate trunk displacement: 1) adhesion to the epidermis, 2) pulling forces from the dorsal branches and 3) a combination of both.

      Some minor presentation issues: What orientation is the cross-sectional view in figure 1C and movie 1?

      We will add a dotted box that indicates the region that we turned 90° to show the cross-section.

      On page 12, the authors say the "Electron micrographs also suggested high filopodial activity" but activity suggests dynamics that are not clear from EM. This could be re-phrased.

      As the reviewer indicates, we cannot conclude dynamics from a static image. We will replace “suggested high filopodial activity” with “revealed filopodial abundance”.

      Reviewer #3 (Significance (Required)):

      • Describe the nature and significance of the advance (e.g. conceptual, technical, clinical) for the field. The results of the paper are significant in that they characterize a mechanical interaction between two tissue types in development, which are linked by the extracellular matrix that sits between them. It is not clear to me that this describes a "novel mechanism for tissue coordination" as stated in the abstract, but it does characterize this type of interaction in a detailed cellular way.

      • Place the work in the context of the existing literature (provide references, where appropriate). For specialists, the work identifies a novel protruding cell type in the fly embryonic trachea, and provides beautiful and detailed imaging data on tracheal development. The "wavy" trachea phenotype is also uncommon and very interesting, so this result could be linked to the few papers that also describe this phenotype and be built up.

      • State what audience might be interested in and influenced by the reported findings. As it stands, this is most interesting for a specialized audience because it requires some understanding of the development of this system in particular. As it characterizes this to a new level of detail, it could be influential to those in the field. Some addition clarification of the results and re-framing could make the manuscript more clear and interesting for non-specialists.

      • Define your field of expertise with a few keywords to help the authors contextualize your point of view. Indicate if there are any parts of the paper that you do not have sufficient expertise to evaluate. I work with Drosophila and have studied embryonic and adult cell types, although not trachea specifically. I am familiar with all the genetic techniques and imaging techniques used here.

    1. Author response:

      The following is the authors’ response to the original reviews

      List of major changes

      (1) We have emphasized the assumptions underlying our modeling approach in the third paragraph of the Introduction section.

      (2) We have included a new paragraph in the Discussion section to compare our model with a molecular mechanism-oriented model.

      (3) We have included a new paragraph at the end of the Introduction section to outline the main content of each subsection in Results and the logical connections between them. Correspondingly, the chapter hierarchy and section titles have been adjusted.

      (4) The Supplementary Material includes an additional table (Table S2) that provides detailed explanations of the symbols used in the model.

      (5) We have included a new paragraph in the Introduction section to explicitly emphasize the phenomenological nature of our model and its broad applicability.

      (6) In the Osmoregulation subsection, we have added a discussion on how our model can be directly generalized to scenarios involving the environmental uptake of osmolytes.

      (7) We have included a more detailed examination of the limitations inherent in our modeling approach in the second last paragraph of the Discussion section.

      (8) In the third last paragraph of the Discussion section, we have explicitly demonstrated that our model does not conflict with the observation that, in E. coli, cell wall synthesis is not directly regulated by the turgor pressure.

      Reviewer #1 (Public review):

      Summary:

      A theoretical model for microbial osmoresponse was proposed. The model assumes simple phenomenological rules: (i) the change of free water volume in the cell due to osmotic imbalance based on pressure balance, (ii) osmoregulation that assumes change of the proteome partitioning depending on the osmotic pressure that affects the osmolyte-producing protein production, (iii) the cell-wall synthesis regulation where the change of the turgor pressure to the cell-wall synthesis efficiency to go back to the target turgor pressure, (iv) effect of Intracellular crowding assuming that the biochemical reactions slow down for more crowding and stops when the protein density (protein mass divided by free water volume) reaches a critical value. The parameter values were found in the literature or obtained by fitting to the experimental data. The authors compare the model behavior with various microorganisms (E. coli, B. subtils, S. Cerevisiae, S. pombe), and successfully reproduced the overall trend (steady state behavior for many of them, dynamics for S. pombe). In addition, the model predicts non-trivial behavior such as the fast cell growth just after the hypoosmotic shock, which is consistent with experimental observation. The authors further make experimentally testable predictions regarding mutant behavior and transient dynamics.

      Strength:

      The theory assumes simple mechanistic dependence between core variables without going into specific molecular mechanisms of regulations. The simplicity allows the theory to apply to different organisms by adjusting the time scales with parameters, and the model successfully explains broad classes of observed behaviors. Mathematically, the model provides analytical expressions of the parameter dependences and an understanding of the dynamics through the phase space without being buried in the detail. This theory can serve as a base to discuss the universality and diversity of microbial osmoresponse.

      We would like to thank Reviewer 1 for thoroughly reading our work and appreciating our theoretical approach to investigating microbial osmotic response.

      Weakness:

      The core part of this model is that everything is coupled with growth physiology, and, as far as I understand, the assumption (iv) (Eq. 8) that imposes the global reaction rate dependence on crowding plays a crucial role. I would think this is a strong and interesting assumption. However, the abstract or discussion does not discuss the importance of this assumption. In addition, the paper does not discuss gene regulation explicitly, and some comparison with a molecular mechanismoriented model may be beneficial to highlight the pros and cons of the current approach

      We thank Reviewer 1 for their very helpful feedback. We have significantly revised the manuscript as suggested by Reviewer 1. See the detailed answers in the following.

      Reviewer #1 (Recommendations for the authors)

      (1) Explicitly stating the assumption (iv) in the abstract and discussing its role would help readers understand.

      In the revised manuscript, we have significantly rewritten the third paragraph of the Introduction section to emphasize our key assumptions as suggested by Reviewer 1, including the relationship between global reaction rate and crowding:

      “Our model assumes the following phenomenological rules: (1) the change in free water volume within the cell is driven by osmotic imbalance (Cadart et al., Nature Physics, 2019; Rollin et al., Elife, 2023), while the remaining volume changes in proportion to protein production; (2) osmoregulation influences the production of osmolyte-producing protein, governed by intracellular protein density (Scott et al., Science, 2010); (3) cell-wall synthesis is regulated through a feedback mechanism, wherein turgor pressure modulates the efficiency of cell-wall synthesis, enabling the cell to maintain a relatively stable turgor pressure; and (4) intracellular crowding slows down biochemical reactions as cytoplasmic density increases, with reactions ceasing entirely when protein density reaches a critical threshold.”

      We have also modified the abstract to mention the crowding effects explicitly. Additionally, we have added a few sentences in the first and second paragraphs of the Discussion section to emphasize the importance of crowding effects to our conclusions regarding the growth rate reduction in steady states and the non-monotonic dependence of the growth rate peak on the shock amplitude after a hyperosmotic shock.

      (2) I found [Shen W , Gao Z, Chen K, Zhao A, Ouyang Q, Luo C. The regulatory mechanism of the yeast osmoresponse under different glucose concentrations. Iscience. 2023 Jan 20;26(1)], which discusses the medium glucose concentration dependence of the response, focused on the gene regulatory circuit and the metabolic flux. As far as I understood, this paper considers the effect of the reallocation of resources but not the mechanical part of the osmoresponse such as pressure explicitly. It will be interesting to discuss the pros and cons in comparison with such a model. In principle, I will not be surprised if the current model does not differentiate the different glucose concentrations much since it is a more coarse-grained model, and I don't think it is a problem, but it will be good to have an explicit discussion.

      We appreciate Reviewer 1's insightful comment regarding the work by Shen et al. (iScience, 2023), which elucidates the two distinct osmoresponse strategies in yeast. By quantifying Hog1 nuclear translocation dynamics and downstream protein expression, the study reveals that in a rich medium, cells can leverage surplus glycolytic products as defensive reserves, reallocating metabolic flux to facilitate rapid adaptation to osmotic changes. Conversely, limited glycolytic intermediates in low-glucose environments necessitate increased enzyme synthesis for osmotic adaptation. 

      The paper highlighted by Reviewer 1 studies yeast's adaptive strategies under two stresses— nutrient limitation and osmotic pressure and provides an important complement to our study.

      In our simplified model, we did not include the interaction between cell growth and osmolyte production, assuming a constant fraction of ribosomes translating ribosomal proteins, supported by the experiments of E. coli (Dai et al., mBio, 2018). We remark that incorporating competitive dynamics for translational resources into our framework can be achieved by modifying the proportion of ribosomes translating themselves (X<sub>r</sub>), from a constant to a function related to the translation strategy of the osmolyte-producing enzyme ((X<sub>a</sub>).

      In the revised manuscript, we have included a new discussion in the third paragraph of the Discussion section to compare our approach with the molecular mechanism-oriented model:

      “We remark that our model is intrinsically a coarse-grained model with many molecular details regarding gene expression regulation neglected, which allows us to gain more analytical insights. In [Shen et al., iScience, 2023], the authors studied the responses to osmotic stress in glucose-limited environments and found that cells exhibited stronger osmotic gene expression response under glucose-limited conditions than under glucose-rich conditions. Using a computational model based on molecular mechanisms combined with experimental measurements, the authors demonstrated that in a glucose-limited environment, glycolysis intermediates were limited, which required cells to express more glycerol-production enzymes for stress adaptation. In the current version of our model, we do not account for the interaction between cell growth and osmolyte production; instead, we assume a constant fraction of ribosomes dedicated to translating ribosomal proteins. Our model can be further generalized to include the more complex interactions, including the coupling between biomass and osmolyte production, e.g., by allowing the fraction of ribosomes translating ((X<sub>r</sub>) to depend on the translation strategy of the osmolyte-producing enzyme ((X<sub>a</sub>).”

      (3) A minor comment: The authors call assumption (iii) (eq. 7) "positive feedback from turgor pressure to the cell-wall synthesis efficiency" (line 204). I have a hard time seeing this as positive feedback. It regulates the cell wall synthesis so that turgor pressure returns to the desired value; hence, isn't it negative feedback?

      We apologize for this confusion. We have removed the term "positive feedback" in the revised manuscript.

      Reviewer #2 (Public review):

      Summary:

      In this study, Ye et al. have developed a theoretical model of osmotic pressure adaptation by osmolyte production and wall synthesis.

      Strengths:

      They validate their model predictions of a rapid increase in growth rate on osmotic shock experimentally using fission yeast. The study has several interesting insights which are of interest to the wider community of cell size and mechanics.

      Weaknesses:

      Multiple aspects of this manuscript require addressing, in terms of clarity and consistency with previous literature. The specifics are listed as major and minor comments.

      Major comments:

      (1) The motivation for the work is weak and needs more clarity.

      We thank Reviewer 2 for this very helpful comment, which we believe has significantly improved our manuscript. We would like to clarify the two major motivations of our study. 

      First, we aim to construct a systems-level and coarse-grained model capable of elucidating the complex processes underlying microbial osmoresponse. By leveraging the separation of timescales associated with mechanical equilibrium, cell-wall synthesis regulation, and osmoregulation, our model facilitates in-depth analytical and numerical analysis of how these various processes interact during cellular adaptation. In particular, we demonstrate the key physiological functions of osmoregulation and cell-wall synthesis regulation.

      Second, we seek to apply this model to interpret the phenomenon of supergrowth observed in fission yeast Schizosaccharomyces pombe (Knapp et al., Cell Systems, 2019). This application addresses an essential challenge in experimental studies: exclusive knockout experiments can be difficult, and mechanistic interpretations of experimental observations are often lacking. Our theoretical framework offers a valuable tool for understanding such phenomena, contributing to the fundamental knowledge of microbial physiology and developing predictive models for microbial behavior under osmotic stress.

      In the revised manuscript, we have included a new paragraph at the end of the Discussion section to emphasize our motivations better:

      “In this work, we construct a systems-level and coarse-grained model capable of elucidating the complex processes underlying microbial osmoresponse. By leveraging the separation of timescales associated with mechanical equilibrium, cell-wall synthesis regulation, and osmoregulation, our model facilitates in-depth analytical and numerical analysis of how these various processes interact during cellular adaptation. In particular, we demonstrate the key physiological functions of osmoregulation and cell-wall synthesis regulation. We then apply this model to interpret the unusual phenomenon of supergrowth observed in fission yeast. This application addresses an essential challenge in experimental studies: exclusive knockout experiments can be difficult, and mechanistic interpretations of experimental observations are often lacking. Our theoretical framework offers a valuable tool for understanding such phenomena, contributing to the fundamental knowledge of microbial physiology and developing predictive models for microbial behavior under osmotic stress.”

      (2) The link between sections is very frequently missing. The authors directly address the problem that they are trying to solve without any motivation in the results section.

      We are grateful to Reviewer 2 for their valuable feedback. In the revised manuscript, we have included a new paragraph at the end of the Introduction section to outline the main content of each subsection in Results and the logical connections between them:

      “In the following “Results” section, we begin by outlining the primary assumptions and equations of our model in the subsection "Model Description," which includes four parts, each addressing one of the four phenomenological rules. Additional details can be found in Methods. We then proceed to the subsection “Steady states in constant environments”, where we employ our theoretical framework to analyze steady-state growth and examine how the growth rate varies with external osmolarity. In the “Transient dynamics after a constant osmotic shock” subsection, we investigate the time-dependent osmoresponse after a constant hyperosmotic and hypoosmotic shock. Finally, in “Comparison with experiments: supergrowth phenomena after osmotic oscillation”, we address the supergrowth phenomena observed in S. pombe, utilizing our model to elucidate these experimental observations.”

      (3) The parameters used in the models (symbols) need to be explained better to make the paper more readable.

      We apologize for this confusion. In the revised Supplementary Material, we have included an additional table (Table S2) to explain the meanings of the symbols employed in the model to help the reader better understand.

      (4) Throughout the paper, the authors keep switching between organisms that they are modelling. There needs to be some consistency in this aspect where they mention what organism they are trying to model, since some assumptions that they make may not be valid for both yeast as well as bacteria.

      We thank Reviewer 2 for this very helpful comment. We would like to clarify that our model is coarse-grained without including detailed molecular mechanisms; therefore, it presumably applies to various species of microorganisms. Indeed, the predicted steady-state growth curves derived from our model and the experimental data obtained from various organisms agree reasonably well (Figure 2A of the main text). 

      In the revised manuscript, we have explicitly emphasized the nature of our phenomenological model and its broad applicability in the fourth paragraph of the Introduction section:

      “We remark that our model is coarse-grained, without including detailed molecular mechanisms, and is therefore applicable across diverse microbial species. Notably, the predicted steady-state growth rate as a function of internal osmotic pressure from our model aligns well with experimental data from diverse organisms. This alignment allows us to quantify the sensitivities of translation speed and regulation of osmolyte-producing protein in response to intracellular density. Additionally, we demonstrate that osmoregulation and cellwall synthesis regulation enable cells to adapt to a wide range of external osmolarities and prevent plasmolysis. Our model also predicts a non-monotonic time dependence of growth rate and protein density as they approach steady-state values following a constant osmotic shock, in concert with experimental observations (Rojas et al., PNAS, 2014; Rojas et al., Cell systems, 2017). Moreover, we show that a supergrowth phase can arise following a sudden decrease in external osmolarity, driven by cell-wall synthesis regulation, either through the direct application of a hypoosmotic shock or the withdrawal of an oscillatory stimulus. Remarkably, the predicted amplitudes of supergrowth (i.e., growth rate peaks) quantitatively agree with multiple independent experimental measurements.”

      Furthermore, we have also included a comparison with a detailed molecular mechanism model in the third paragraph of the Discussion section:

      “We remark that our model is intrinsically a coarse-grained model with many molecular details regarding gene expression regulation neglected, which allows us to gain more analytical insights. In [Shen et al., iScience, 2023], the authors studied the responses to osmotic stress in glucose-limited environments and found that cells exhibited stronger osmotic gene expression response under glucose-limited conditions than under glucose-rich conditions. Using a computational model based on molecular mechanisms combined with experimental measurements, the authors demonstrated that in a glucose-limited environment, glycolysis intermediates were limited, which required cells to express more glycerol-production enzymes for stress adaptation. In the current version of our model, we do not account for the interaction between cell growth and osmolyte production; instead, we assume a constant fraction of ribosomes dedicated to translating ribosomal proteins. Our model can be further generalized to include the more complex interactions, including the coupling between biomass and osmolyte production, e.g., by allowing the fraction of ribosomes translating ((X<sub>r</supb) to depend on the translation strategy of the osmolyte-producing enzyme ((X<sub>a</sub>).”

      (5) The extent of universality of osmoregulation i.e the limitations are not very well highlighted.

      The osmoregulation mechanism described in our model primarily addresses changes in cytoplasmic osmolarity through the de-novo synthesis of compatible solutes, widely observed across bacteria, archaea, and eukaryotic microorganisms. This review article (GundeCimerman et al., FEMS microbiology reviews, 2018) provides an extensive summary and exploration of the primary compatible solutes utilized by organisms from all three domains of life, underscoring the prevalence of this osmoregulatory strategy. Furthermore, our model can be directly generalized to scenarios involving the direct uptake of osmolytes from the environment. One only needs to change the interpretation of the parameter, 𝑘<sub>𝑎</sub> in the production of osmolyte molecule, , from the synthesis rate to the uptake rate, and all the results are equally applicable. In the revised manuscript, we have briefly discussed this point in the subsection “Osmoregulation.”

      We agree with Reviewer 2 that our model's coarse-grained nature makes it broadly applicable to diverse microbial taxa; however, more specialized adaptations are beyond our model. In the revised manuscript, we have included a more detailed examination of the limitations inherent in our modeling approach in the second last paragraph of the Discussion section:

      “We remark several limitations of our current coarse-grained model. First, the high membrane tension that inhibits transmembrane flux of peptidoglycan precursors, leading to a growth inhibition before the supergrowth peak (Rojas et al., Cell systems 2017) is beyond our model. Second, in our current framework, the osmoregulation and cell-wall synthesis regulation rely on the instantaneous cellular states. However, microorganisms can exhibit memory effects to external stimuli by adapting to their temporal order of appearance (Mitchell et al., Nature 2009). Notably, in the osmoregulation of yeast, a short-term memory, facilitated by post-translational regulation of the trehalose metabolism pathway, and a long-term memory, orchestrated by transcription factors and mRNP granules, have been identified (Jiang et al., Science signaling 2020). Besides, our model does not account for the role of osmolyte export in osmoregulation (Tamas et al., Molecular microbiology, 1999) and the interaction between biomass and osmolyte production (Shen et al., Iscience 2023). Extending our model to include more realistic biological processes will be interesting.”

      (6) Line 198-200: It is not clear in the text what organisms the authors are writing about here. "Experiments suggested that the turgor pressure induce cell-wall synthesis, e.g., through mechanosensors on cell membrane [45, 46], by increasing the pore size of the peptidoglycan network [5], and by accelerating the moving velocity of the cell-wall synthesis machinery [31]". This however is untrue for bacteria as shown by the study (reference 22 is this paper: E. Rojas, J. A. Theriot, and K. C. Huang, Response of escherichia coli growth rate to osmotic shock, Proceedings of the National Academy of Sciences 111, 7807 (2014).

      We thank Reviewer 2 for pointing out this very important issue and apologize for the confusion. References 45 and 46 (Dupres et al., Nature Chemical Biology 2009; Neeli-Venkata et al., Developmental Cell 2021) discuss how Wsc1 acts as a mechanosensor in S. pombe, detecting turgor pressure and activating pathways that reinforce the cell wall. Reference 5 (Typas et al., Cell 2010) explains the role of LpoA and LpoB, the two outer membrane lipoprotein regulators in E. coli, which modulate peptidoglycan synthesis in an extracellular manner. Reference 31 (Amir and Nelson, PNAS 2012) is a theoretical paper showing that turgor pressure may accelerate the moving velocity of the cell wall synthesis machinery in E. coli. In the revised manuscript, we have been more explicit about the organisms we refer to in the subsection “Cell-wall synthesis regulation.”

      Meanwhile, we agree with Reviewer 2 that cell wall synthesis may not be directly regulated by turgor pressure in E. coli (Rojas et al., PNAS 2014). We would like to clarify that this scenario is also included in our model corresponding to H<sub>cw</sub> = 0 (Eq. (7) in the main text): the turgor pressure does not affect the cell-wall synthesis. Therefore, the supergrowth phenomenon observed in S. pombe does not manifest under hypotonic stimulation in E. coli.

      In the revised manuscript, we have emphasized this point more explicitly in the third last paragraph of the Discussion section:

      “Reference 22 (Rojas et al., PNAS, 2014) showed that the expansion of E. coli cell wall is not directly regulated by turgor pressure, and this scenario is also included in our model as the case of H<sub>cw</sub> \= 0. According to our model, the supergrowth phase is absent if H<sub>cw</sub> = 0 (Figure S8), consistent with the absence of a growth rate peak after a hypoosmotic shock in the experiments of E. coli (Rojas et al., PNAS, 2014). Meanwhile, our predictions are consistent with the growth rate peak after a hypoosmotic shock observed for B. subtilis (Rojas et al., Cell systems, 2017).”

      (7) The time scale of reactions to hyperosmotic shocks does not agree with previous literature (reference 22). Therefore defining which organism you are looking at is important. Hence the statement " Because the timescale of the osmoresponse process, which is around hours (Figure 3B), is much longer than the timescale of the supergrowth phase, which is about 20 minutes, the turgor pressure at the growth rate peak can be well approximated by its immediate value after the shock." from line 447 does not seem to make sense. The authors need to address this.

      We apologize for this confusion. In the revised manuscript, we have clarified that the cited time scales are for the fission yeast S. pombe after Eq. (13) in the main text.

      Reviewer #2 (Recommendations for the authors):

      (1) Inconsistency in nomenclature: On line 117, the equation reads V<sub>b</sub> = αm<sub>p where V<sub>b</sub> is the bound volume. Whereas bound volume has been referred to as V<sub>bd</sub> previously and in Figure 1.

      Answer: We apologize for this confusion. In our model, the total bound volumeV<sub>b</sub> comprises the volume of dry mass and bound water, V<sub>b</sub> \= V<sub>bd</sub> + V<sub>bw</sub>, where V<sub>bd</sub> is the volume occupied by dry mass and V<sub>bw</sub> is the volume of bound water. In the revised manuscript, we have added a brief discussion of this point in the caption of Figure 1.

      (2) Line 180: Please define 𝜌𝜌 for equation 4.

      We apologize for this confusion. In the text, the symbol 𝜌<sub>p</sub> denotes the mass of a given substance per unit volume of free water, and its unit is g/ml. The specific substance in consideration is indicated by a subscript. For example, 𝜌<sub>p</sub> in Eq. (4) represents the protein density, and 𝜌<sub>c</sub> stands for the critical protein density, above which intracellular chemical reactions cease according to Eq. (8) of the main text. In the revised manuscript, we have clarified the meaning of 𝜌<sub>c</sub> after Eq. (4).

      (3) Line 187: Equation 5 also needs to be explained better. Hence there is a need to be more specific while stating the assumptions.

      The elastic modulus 𝐺 defined in Eq. (5) of the main text is a measure of the cell wall's resistance to volume expansion. We assume a constant 𝐺 for simplicity, which is reasonable when the cell wall deformation is mild. In the revised manuscript, we have been more explicit about our assumptions regarding the turgor pressure in the subsection “Cell-wall synthesis regulation.”

      (4) Line 225: For a biological audience some elaboration on "glass transition" may be required- either as a reference to a review or to a 1 sentence statement of relevance.

      We appreciate Reviewer 2’s helpful comment. In the revised manuscript, we have added a brief introduction to the glass transition and a citation to a review paper (Hunter and Weeks, Rep. Prog. Phys. 2012) at the beginning of the subsection “Intracellular crowding.”

      (5) Line 247: "All growth rates in steady states of cell growth are the same: 𝜇<sub>𝑓</sub> \= 𝜇<sub>r</sub> \= 𝜇<sub>cw</sub>". The authors need to explain in a line or two why this is true. Since the processes are independent, it is safe to assume that all 𝜇's are constant, but it is not obvious why they should all be equal.

      We apologize for the lack of a clear explanation regarding the equality of steady-state growth rates in our previous manuscript. In the revised manuscript, we have added a brief explanation of the equality of the three growth rates at the beginning of the subsection “Steady states in constant environments”:

      “When cell growth reaches a steady state, the proportions of all components, including free water volume, cell mass, and cell wall volume, must be constant relative to the total cell volume to ensure homeostasis. Therefore, all growth rates in steady states of cell growth must be the same: 𝜇<sub>𝑓</sub> \= 𝜇<sub>r</sub> \= 𝜇<sub>cw</sub>.”

      (6) Line 264: "Because the typical doubling times of microorganisms are around hours, we can estimate 𝜇<sub>𝑓</sub>/k<sub>w</sub> ∼ 10 Pa [51, 52] ..." since the authors are generalizing for yeast and bacteria, specifically E. coli, this is not a valid assumption to make. There is also a need to explain the basis of "𝜇<sub>𝑓</sub>/k<sub>w</sub> ∼ 10 Pa".  

      We appreciate the need for clarity in the estimation and its implications. The rough estimation of 𝜇<sub>𝑓</sub>/k<sub>w</sub> ~ 10 Pa in the main text is given by:

      Here, the typical value of 𝜇<sub>𝑓</sub> (which equals to 𝜇<sub>r</sub> in steady state) is approximated by the inverse of the cell cycle, which is around hours. The estimation above is employed to justify the assumption that 𝜇<sub>𝑓</sub>/k<sub>w</sub> is much smaller than the cytoplasmic osmotic and turgor pressures, which can be several atmospheric pressures.

      For the case of E. coli, based on the experimental results from Boer et al. (Boer et al., Biochemistry 2011), an 800mM hypoosmotic shock leads to a rapid expansion of cell volume accomplished within a time scale of 0.1s, from which we obtain:

      .

      Therefore, our assumption that 𝜇<sub>𝑓</sub>/k<sub>w</sub> is much smaller than the cytoplasmic osmotic and turgor pressures is still valid. 

      In the revised manuscript, we have increased the estimation ranges to include the case of E. coli in the first paragraph of the subsection “Steady states in constant environments.”

      (7) Lines 279-283 need to be explained better.  

      We apologize for the confusion. In the revised manuscript, we have explained more explicitly the meaning of the growth curve in the second paragraph of the subsection “Steady states in constant environments”:

      “Intriguingly, the relationship between the normalized growth rate () and the normalized cytoplasmic osmotic pressure (), which we refer to as the growth curve in the following, has only one parameter 𝐻<sub>r</sub>/(𝐻<sub>𝑎</sub>) . Therefore, the growth curves of different organisms can be unified by a single formula, Eq. (10b), and different organisms may have different values of 𝐻<sub>r</sub>/(𝐻<sub>𝑎</sub> + 1).”

      (8) In Figure 3, an arrow representing the onset of osmotic shock would make the figure more intuitive to understand.

      We appreciate Reviewer 2 for this helpful suggestion. We have modified Figure 3 as suggested.

      (9) It is unclear to me if the growth rate 𝜇𝜇𝑟𝑟 is representative of the growth of total protein. This can be motivated better.

      We would like to clarify that the growth rate 𝜇𝜇𝑟𝑟 is defined as the changing rate of total protein mass divided by the total protein mass:

      Here, 𝑚<sub>𝑝,𝑟</sub> is the total mass of ribosomal proteins and 𝑘𝑘𝑟𝑟 is a constant proportional to the elongation speed of ribosome. The expression of 𝜇<sub>𝑟</sub> is a direct consequence of ribosomes being responsible for producing all proteins. In the revised manuscript, we have added more details in the introduction of the variable 𝜇<sub>𝑟</sub> in the last paragraph of the subsection “Cell growth”:

      “In this work, we assume that the dry-mass growth rate is proportional to the fraction of ribosomal proteins within the total proteome for simplicity, 𝜇<sub>𝑟</sub> \= 𝑘<sub>r</sub>𝑚<sub>𝑝,𝑟</sub>/𝑚<sub>𝑝</sub> \= 𝑘<sub>r</sub>𝜙<sub>𝑟</sub>. This assumption leverages the fact that ribosomes are responsible for producing all proteins. The proportionality coefficient 𝑘<sub>𝑟</sub> encapsulates the efficiency of ribosomal activity, being proportional to the elongation speed of the ribosome. We remark that 𝑘𝑘𝑟𝑟 is influenced by the crowding effect, which we address later.”

    1. Reviewer #3 (Public review):

      In a characteristically bold fashion, Lee Berger and colleagues argue here that markings they have found in a dark isolated space in the Rising Star Cave system are likely over a quarter of a million years old and were made intentionally by Homo naledi, whose remains nearby they have previously reported. As in a European and much later case they reference ('Neanderthal engraved 'art' from the Pyrenees'), the entangled issues of demonstrable intentionality, persuasive age and likely authorship will generate much debate among the academic community of rock art specialists. The title of the paper and the reference to 'intentional designs', however, leave no room for doubt as to where the authors stand, despite an avoidance of the word art, entering a very disputed terrain. Iain Davidson's (2020) 'Marks, pictures and art: their contributions to revolutions in communication', also referenced here, forms a useful and clearly articulated evolutionary framework for this debate. The key questions are: 'are the markings artefactual or natural?', 'how old are they?' and 'who made them?, questions often intertwined and here, as in the Pyrenees, completely inseparable. I do not think that these questions are definitively answered in this paper and I guess from the language used by the authors (may, might, seem etc) that they do not think so either.

      Before considering the specific arguments of the authors to justify the claims of the title, we should recognise the shift in the academic climate of those concerned with 'ancient markings' that has taken place over the past two or three decades. Before those changes, most specialists would probably have expected all early intentional markings to have been made by Homo sapiens after the African diaspora as part of the explosion of innovative behaviours thought to characterise the 'origins of modern humans'. Now, claims for earlier manifestations of such innovations from a wider geographic range are more favourably received, albeit often fiercely challenged as the case for Pyrenean Neanderthal 'art' shows (White et al. 2020). This change in intellectual thinking does not, however, alter the strict requirements for a successful assertion of earlier intentionality by non-sapiens species. We should also note that stone, despite its ubiquity in early human evolutionary contexts, is a recalcitrant material not easily directly dated whether in the form of walling, artefact manufacture or potentially meaningful markings. The stakes are high but the demands no less so.

      Why are the markings not natural? Berger and co-authors seem to find support for the artefactual nature of the markings in their location along a passage connecting chambers in the underground Rising Star Cave system. The presumption is that the hominins passed by the marked panel frequently. I recognise the thinking but the argument is weak. More confidently they note that "In previous work researchers have noted the limited depth of artificial lines, their manufacture from multiple parallel striations, and their association into clear arrangement or pattern as evidence of hominin manufacture (Fernandez-Jalvo et al. 2014)". The markings in the Rising Star Cave are said to be shallow, made by repeated grooving with a pointed stone tool that has left striations within the grooves, and to form designs that are "geometric expressions" including crosshatching and cruciform shapes. "Composition and ordering" are said to be detectable in the set of grooved markings. Readers of this and their texts will no doubt have various opinions about these matters, mostly related to rather poorly defined or quantified terminology. I reserve judgement, but would draw little comfort from the similarities among equally unconvincing examples of early, especially very early, 'designs'. Two or even three half convincing arguments do not add up to one convincing one.

      The authors draw our attention to one very interesting issue: given the extensive grooving into the dolomite bedrock by sharp stone objects, where are these objects? Only one potential 'lithic artefact' is reported, a "tool-shaped rock [that] does resemble tools from other contexts of more recent age in southern Africa, such as a silcrete tool with abstract ochre designs on it that was recovered from Blombos Cave (Henshilwood et al. 2018)", also figured by Berger and colleagues. A number of problems derive from this comparison. First, 'tool-shaped rock' is surely a meaningless term: in a modern toolshed 'tool-shaped' would surely need to be refined into 'saw-shaped', 'hammer-shaped' or 'chisel-shaped' to convey meaning? The authors here seem to mean that the Rising Star Cave object is shaped like the Blombos painted stone fragment? But the latter is a painted fragment not a tool and so any formal similarity is surely superficial and offers no support to the 'tool-ness' of the Rising Star Cave object. Does this mean that Homo naledi took (several?) pointed stone tools down the dark passsageways, used them extensively and, whether worn out or still usable, took them all out again when they left? Not impossible, of course. And the lighting?

      The authors rightly note that the circumstance of the markings "makes it challenging to assess whether the engravings are contemporary with the Homo naledi burial evidence from only a few metres away" and more pertinently, whether the hominins did the markings. Despite this honest admission, they are prepared to hypothesise that the hominin marked, without, it seems, any convincing evidence. If archaeologists took juxtaposition to demonstrate authorship, there would be any number of unlikely claims for the authorship of rock paintings or even stone tools. The idea that there were no entries into this Cave system between the Homo naledi individuals and the last two decades is an assertion not an observation and the relationship between hominins and designs no less so. In fact the only 'evidence' for the age of the markings is given by the age of the Homo naledi remains, as no attempt at the, admittedly very difficult, perhaps impossible, task of geochronological assessment, has been made.

      The claims relating to artificiality, age and authorship made here seem entangled, premature and speculative. Whilst there is no evidence to refute them, there isn't convincing evidence to confirm them.

      References:

      Davidson, I. 2020. Marks, pictures and art: their contribution to revolutions in communication. Journal of Archaeological Method and Theory 27: 3 745-770.

      Henshilwood, C.S. et al. 2018. An abstract drawing from the 73,000-year-old levels at Blombos Cave, South Africa. Nature 562: 115-118.

      Rodriguez-Vidal, J. et al. 2014. A rock engraving made by Neanderthals in Gibralter. Proceedings of the National Academy of Sciences.

      White, Randall et al. 2020. Still no archaeological evidence that Neanderthals created Iberian cave art.

      Comments on latest version:

      The authors have not modified their stance or the authority of their arguments since the original paper.

    2. Author response:

      The following is the authors’ response to the original reviews

      We thank the reviewers for their very constructive and helpful comments on the previous version of this manuscript. They have focused on some important issues and have raised many valuable questions that we expect to answer as research begins on these markings. As has been often the case with preprints, a number of experts beyond the four reviewers and editor have provided comments, questions, and suggestions, and we have taken these on board in our revision of the manuscript. In particular, Martinón-Torres et al. (2024) focused several comments upon this manuscript and raise some points that were not considered by the reviewers, and so we discuss those points here in addition to the reviewer comments.

      Some of us have been engaged in other aspects of the possible cultural activities of Homo naledi. After the discovery of these markings we considered it indefensible to publish further research on the activity of H. naledi within this part of the cave system without making readers aware that the H. naledi skeletal remains occur in a spatial context near markings on cave walls. Of course, the presence of markings leaves many questions open. A spatial context does not answer all questions about the temporal context. The situation of the Dinaledi Subsystem does entail some constraints that would not apply to markings within a more open cave or rock wall, and we discuss those in the text.

      We find ourselves in agreement with most of the reviewers on many points. As reflected by several of the reviewers, and most pointedly in the remarks by reviewer 1, the purpose of this preprint is a preliminary report on the observation of the markings in a very distinctive location. This initial report is an essential step to enable further research to move forward. That research requires careful planning due to the difficulty of working within the Dinaledi Subsystem where the markings are located. This pattern of initial publication followed by more detailed study is common with observations of rock art and other markings identified in South Africa and elsewhere. We appreciate that the reviewers have understood the role of this initial study in that process of research.

      Because of this, the revised manuscript represents relatively minimal changes, and all those at the advice of reviewers. Many thanks to all the reviewers for noting various typographic errors, missed references and other issues that we have done our best to fix in the revised manuscript.

      Expertise of authors. Reviewer 4 mentions that the expertise of the authors does not include previous publication history on the identification of rock art, and other reviewers briefly comment that experts in this area would enhance the description. AF does have several publications on ancient engravings and other markings; LRB has geological training and field experience with rock art. Notwithstanding this, we do take on board the advice to include a wider array of subject experts in this research, and this is already underway.

      Image enhancement. We appreciate the suggestions of some reviewers for possible strategies to use software filters to bring out details that may not be obvious even with our cross-polarization lighting and filtering. These are great ideas to try. In this manuscript we thought that going very far into software editing or image enhancement might be perceived by some readers as excessive manipulation, particularly in an age of AI. In future work we will experiment with the suggested approaches. 

      Natural weathering. In the process of review and commentary by experts and the public there has been broad acceptance that many of the markings illustrated in this paper are artificial and not a product of natural weathering of the dolomite rock. We deeply appreciate this. At the same time, we accept the comments from reviewers that some markings may be difficult to differentiate from natural weathering, and that some natural features that were elaborated or altered may be among the markings we recognize. On pages 3 and 4 we present a description of the process of natural subaerial weathering of dolomite, which we have rooted in several references as well as our own observations of the natural weathering visible on dolomite cave walls in the Rising Star cave system. This includes other cave walls within the Dinaledi Subsystem. We discuss the “elephant skin” patterning of natural dolomite surface weathering, how that patterning emerges, and how that differs from the markings that are the subject of this manuscript.

      Animal claw marks. Martinón-Torres et al. 2024 accept that some of the markings illustrated on Panel A are artificial, but they offer the hypothesis that some of those markings may be consistent with claw marks from carnivores or other mammals. They provide a photo of claw marks within a limestone cave in Europe to illustrate this point. On pages 5 and 6 of the revised manuscript we discuss the hypothesis of claw marks. We discuss the presence of animals in southern Africa that may dig in caves or mark surfaces. However the key aspect of the Malmani dolomite caves is that the hardness of dolomitic limestone rock is much greater than many of the limestone caves in other regions such as Europe and Australia, where claw marks have been noted in rock walls. As we discuss, we have not been able to find evidence of claw marks within the dolomite host bedrock of caves in this region, although carnivores, porcupines, and other animals dig into the soft sediments within and around caves. The form of the markings themselves also counter-indicates the hypothesis that they are claw marks. 

      Recent manufacture. One comment that occurs within the reviews and from other readers of the preprint is that recent human visitors to the cave, either in historic or recent prehistoric times, may have made these marks. We discuss this hypothesis on page 6 of the revised manuscript. The simple answer is that no evidence suggests that any human groups were in the Dinaledi Subsystem between the presence of H. naledi and the entry of explorers within the last 25 years. The list of all explorers and scientific visitors to have entered this portion of the cave system is presented in a table. We can attest that these people did not make the marks. More generally, such marks have not been known to be made by cavers in other contexts within southern Africa.

      Panels B and C. We have limited the text related to these areas, other than indicating that we have observed them. The analysis of these areas and quantification of artificial lines does not match what we have done for the Panel A area and we leave these for future work. 

      Presence of modern humans. We have observed no evidence of modern humans or other hominin populations within the Dinaledi Subsystem, other than H. naledi. Several reviewers raise the question of whether the absence of evidence is evidence of absence of modern humans in this area. This is connected by two of the reviewers to the observation that the investigation of other caves in recent years has shown that markings or paintings were sometimes made by different groups over tens of thousands of years, in some cases including both Neanderthals and modern humans. We have decided it is best for us not to attempt to prove a negative. It is simple enough to say that there is no evidence for modern humans in this area, while there is abundant evidence of H. naledi there.

      Association with H. naledi. Reviewer 2 made an incisive point that the previous version contained some text that appeared contradictory: on the one hand we argued that modern humans were not present in the subsystem due to the absence of evidence of them, yet we accepted that H. naledi may have been present for a longer time than currently established by geochronological methods.

      We appreciate this comment because it helped us to think through the way to describe the context and spatial association of these markings and the skeletal remains, and how it may relate to their timeline. Other reviewers also raised similar questions, whether the context by itself demonstrates an association with H. naledi. We have revised the text, in particular on pages 5 and 7, to simply state that we accept as the most parsimonious alternative at present the hypothesis that the engravings were made by H. naledi, which is the only hominin known to be present in this space.

      Age of H. naledi in the system. At one place in the previous manuscript we indicated that we cannot establish that H. naledi was only active in the cave system within the constraints of the maximum and minimum ages for the Dinaledi Subsystem skeletal remains (viz., 335 ka – 241 ka), because some localities with skeletal material are undated. We have adjusted this paragraph on page 7 to be clear that we are discussing this only to acknowledge uncertainty about the full range of H. naledi use of the cave system.

      Geochronological methods. Several reviewers discuss the issue of geochronology as applied to these markings. This is an area of future investigation for us after the publication of this initial report. As some reviewers note, the prospects for successful placement of these engraved features and other markings with geochronological methods depends on factors that we cannot predict without very high-resolution investigation of the surfaces. We have included greater discussion of the challenges of geochronological placement of engravings on page 6, including more references to previous work on this topic. We also briefly note the ethical problems that may arise as we go further with potentially  invasive, destructive or contact studies of these engravings, which must be carefully considered by not just us, but the entire academy.

      Title. Some reviewers suggested that the title should be rephrased because this paper does not use chronological methods to derive date constraints for the markings. We have rephrased the title to reflect less certainty while hopefully retaining the clear hypothesis discussed in the paper.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      This work employs both in vitro and in vivo/transplant methods to investigate the contribution of BDNF/TrkB signaling to enhancing differentiation and dentin-repair capabilities of dental pulp stem cells in the context of exposure to a variety of inflammatory cytokines. A particular emphasis of the approach is the employment of dental pulp stem cells in which BDNF expression has been enhanced using CRISPR technology. Transplantation of such cells is said to improve dentin regeneration in a mouse model of tooth decay.

      The study provides several interesting findings, including demonstrating that exposure to several cytokines/inflammatory agents increases the quantity of (activated) phospho-Trk B in dental pulp stem cells.

      However, a variety of technical issues weaken support for the major conclusions offered by the authors. These technical issues include the following:

      Thank you for your keen observation and evaluation, which helped us significantly improve our manuscript. We have addressed the concerns and comments point by point in detail and substantially revised the manuscript and Figures. We hope that the manuscript is acceptable in the current improvised version.

      Detailed response to your comments/concerns is as follows:

      (1) It remains unclear exactly how the cytokines tested affect BDNF/TrkB signaling. For example, in Figure 1C, TNF-alpha increases TrkB and phospho-TrkB immunoreactivity to the same degree, suggesting that the cytokine promotes TrkB abundance without stimulating pathways that activate TrkB, whereas in Figure 2D, TNF-alpha has little effect on the abundance of TrkB, while increasing phospho-TrkB, suggesting that it affects TrkB activation and not TrkB abundance.

      Thank you for your kind concern. Recently, we have demonstrated the effect and interaction of TNF-alpha and Ca2+/calmodulin-dependent protein kinase II on the regulation of the inflammatory hDPSCs dentino-differentiation via BDNF/TrkB receptor signaling using TrkB inhibitor (Ref. below, and Figure 9). Moreover, we agree with your concern, and we have re-analyzed our replicates and found a better trend and significant abundance of TrkB as well (please refer to revised Figure 2D).

      Ref.: Kim, Ji Hyun, et al. (2025) "Ca 2+/calmodulin-dependent protein kinase II regulates the inflammatory hDPSCs dentino-differentiation via BDNF/TrkB receptor signaling." Frontiers in Cell and Developmental Biology 13: 1558736.

      (2) I find the histological images in Figure 3 to be difficult to interpret. I would have imagined that DAPI nuclear stains would reveal the odontoblast layer, but this is not apparent. An adjacent section labeled with conventional histological stains would be helpful here. Others have described Stro-1 as a stem cell marker that is expressed on a minority of cells associated with vasculature in the dental pulp, but in the images in Figure 3, Stro-l label is essentially co-distributed with DAPI, in both control and injured teeth, indicating that it is expressed in nearly all cells. Although the authors state that the Stro-1-positive cells are associated with vasculature, but I see no evidence that is true.

      Thank you for your concern. STRO-1 is a mesenchymal stem cell marker also expressed in dental pulp stem cells; both populations are distributed in the pulp. DPSCs can contribute to tissue repair and regeneration in inflamed pulp by differentiating into odontoblasts and forming reparative dentin. Moreover, in the case of carious and inflamed pulp, they are disorganized depending on the extent of infection/injury. Our purpose here was to point out DPSCs presence, not vasculature, which will differentiate into odontoblasts in such a scenario. We have revised Figure 3 by adding magnified images and dotted lines to indicate the boundary between the pulp and dentin.

      Ref. Volponi A. A., Pang Y., Sharpe P. T. Stem cell-based biological tooth repair and regeneration. Trends in Cell Biology. 2010;20(12):715–722.

      (3) The data presented convincingly demonstrate that they have elevated BDNF expression in their dental pulp stem cells using a CRISPR-based approach I have a number of questions about these findings. Firstly, nowhere in the paper do they describe the nature of the CRISPR plasmid they are transiently transfecting. Some published methods delete segments of the BDNF 3'-UTR while others use an inactivated Cas9 to position an active transactivator to sequences in the BDNF promoter. If it is the latter approach, transient transfection will yield transient increases in BDNF expression. Also, as BDNF employs multiple promoters, it would be helpful to know which promoter sequence is targeted, and finally, knowing the identity of the guide RNAs would allow assessment for the potential of off-target effects I am guessing that the investigators employ a commercially obtained system from Santa Cruz, but nowhere is this mentioned. Please provide this information.

      Dear Reviewer, yes, you are right. We have used a commercially obtained system from Santa Cruz, i.e., BDNF CRISPR Activation Plasmid (h): sc-400029-ACT and UltraCruz® Transfection Reagent (sc-395739), and they have been mentioned in Chemicals and Reagents section of Materials and Methods as follows.

      “BDNF CRISPR Activation Plasmid (h) is a synergistic activation mediator (SAM) transcription activation system designed to upregulate gene expression specifically BDNF CRISPR Activation Plasmid (h) consists of three plasmids at a 1:1:1 mass ratio: a plasmid encoding the deactivated Cas9 (dCas9) nuclease (D10A and N863A) fused to the transactivation domain VP64, and a blasticidin resistance gene; a plasmid encoding the MS2-p65-HSF1 fusion protein, and a hygromycin resistance gene; a plasmid encoding a target-specific 20 nt guide RNA fused to two MS2 RNA aptamers, and a puromycin resistance gene.”

      The resulting SAM complex binds to a site-specific region approximately 200-250 nt upstream of the transcriptional start site and provides robust recruitment of transcription factors for highly efficient gene activation

      Following transfection, gene activation efficiency could be assayed by WB, IF, or IHC using antibody: pro-BDNF Antibody (5H8): sc-65514

      Author response image 1.

      (4) Another question left unresolved is whether their approach elevated BDNF, proBDNF, or both. Their 28 kDa western blot band apparently represents proBDNF exclusively, with no mature BDNF apparent, yet only mature BDNF effectively activates TrkB receptors. On the other hand, proBDNF preferentially activates p75NTR receptors. The present paper never mentions p75NTR, which is a significant omission, since other investigators have demonstrated that p75NTR controls odontoblast differentiation.

      Dear reviewer, thank you for your noticing the error.

      Pro-BDNF is produced as a 32-kDa precursor that undergoes N-glycosylation and glycosulfation on residues located within the pro-domain of the precursor. N-terminal cleavage of the precursor generates mature BDNF as well as a minor truncated form of the precursor (28 kDa) that arises by a different processing mechanism than mature BDNF. The precursor undergoes N-terminal cleavage within the trans-Golgi network and/or immature secretory vesicles to generate mature BDNF (14 kDa).

      We checked our data and band size, and it shows a little mistake (Thank you for your keen observation and pointing out). The CRISPR protocol required verification of gene activation by checking pro-BDNF, as mentioned in the methodology. The labeling has been revised in the figure as pro-BDNF, and the actual blot with a ladder has been shown below for clarification.

      (5) In any case, no evidence is presented to support the conclusion that the artificially elevated BDNF expression has any effect on the capability of the dental pulp stem cells to promote dentin regeneration. The results shown in Figures 4 and 5 compare dentin regeneration with BDNF-over-expressing stem cells with results lacking any stem cell transplantation. A suitable control is required to allow any conclusion about the benefit of over-expressing BDNF.

      We have tested the presence of BDNF overexpressing cells by the higher expression of GFP here. Moreover, a significant increment in the dentin mineralization volume indicates the advantage of BDNF-over-expressing stem cells. Recently, we published the in vitro effects of BDNF/TrkB on DPSCs odontoblastic differentiation strongly supporting our in vivo data. Currently, we are in a difficult position to conduct the animal study within a short period of time. We would definitely consider using positive control in our future studies.

      Ref.: Kim, Ji Hyun, et al. (2025) "Ca 2+/calmodulin-dependent protein kinase II regulates the inflammatory hDPSCs dentino-differentiation via BDNF/TrkB receptor signaling." Frontiers in Cell and Developmental Biology 13: 1558736.

      (6) Whether increased BDNF expression is beneficial or not, the evidence that the BDNF-overexpressing dental pulp stem cells promote dentin regeneration is somewhat weak. The data presented indicate that the cells increase dentin density by only 6%. The text and figure legend disagree on whether the p-value for this effect is 0.05 or 0.01. In either case, nowhere is the value of N for this statistic mentioned, leaving uncertainty about whether the effect is real.

      A significant increment in the dentin mineralization volume by about 7.76% indicates the advantage of BDNF-over-expressing stem cells, and we believe this could be a breakthrough to advance stem cell engineering and therapy further to get this percentage higher in the future. The text in the result section shows that the p-value for this effect is 0.05. While N was 3 previously, we analyzed two more samples by CT scan and revised results, taking N = 5, which improved the results a little more to about 8.53%. Thank you for noticing; the figure legend has been corrected to 0.05.

      Similarly, our in vitro data in the current study supports the notion that it adds up to mineralization and odontoblastic differentiation. We recently published that BDNF/TrkB significantly enhances calcium deposits and mineralization using a battery of in vitro experiments.

      Ref.: Kim, Ji Hyun, et al. (2025) "Ca 2+/calmodulin-dependent protein kinase II regulates the inflammatory hDPSCs dentino-differentiation via BDNF/TrkB receptor signaling." Frontiers in Cell and Developmental Biology 13: 1558736.

      (7) The final set of experiments applies transcriptomic analysis to address the mechanisms mediating function differences in dental pulp stem cell behavior. Unfortunately, while the Abstract indicates " we conducted transcriptomic profiling of TNFα-treated DPSCs, both with and without TrkB antagonist CTX-B" that does not describe the experiment described, which compared the transcriptome of control cells with cells simultaneously exposed to TNF-alpha and CTX-B. Since CTX-B blocks the functional response of cells to TNF-alpha, I don't understand how any useful interpretation can be attached to the data without controls for the effect of TNF alone and CTX-B alone.

      Dear reviewer, yes, we did it alone and together as well. Earlier, we showed only the combined results and mentioned the interaction between TNFα and TrkB. We have included the results from TNFα alone and combined them with CTX-B for better comparison (Please refer to Figure 8). Figure 8C1 clearly shows the reversal of certain factors with the treatment of TrkB inhibitor compared to figure 8C with TNFα alone treated group.

      Reviewer #2 (Public review):

      Summary:

      In this manuscript, the authors investigate the potential for overexpressing BDNF in dental pulp stem cells to enhance dentin regeneration. They suggest that in the inflammatory environment of injured teeth, there is increased signaling of TrkB in response to elevated levels of inflammatory molecules.

      Strengths:

      The potential application to dentin regeneration is interesting.

      Weaknesses:

      There are a number of concerns with this manuscript to be addressed.

      Thank you for your compliments, keen observation, and evaluation, which helped us significantly improve our manuscript. We have addressed the concerns and comments point by point in detail and substantially revised the manuscript and Figures. We hope that the manuscript is acceptable in the current improvised version.

      Detailed response to your comments/concerns is as follows:

      (1) Insufficient citation of the literature. There is a vast literature on BDNF-TrkB regulating survival, development, and function of neurons, yet there is only one citation (Zhang et al 2012) which is on Alzheimer's disease.

      More references have been cited accordingly.

      (2) There are several incorrect statements. For example, in the introduction (line 80) TrkA is not a BDNF receptor.

      Thank you for noticing the typo; the sentence has been corrected.

      (3) Most important - Specific antibodies must be identified by their RRID numbers. To state that "Various antibodies were procured:... from BioLegend" is unacceptable, and calls into question the entire analysis. Specifically, their Western blot in Figure 4B indicates a band at 28 kDa that they say is BDNF, however the size of BDNF is 14 kDa, and the size of proBDNF is 32 and 37 kDa, therefore it is not clear what they are indicating at 28 kDa. The validation is critical to their analysis of BDNF-expressing cells.

      Dear reviewer, thank you for your kind concern. Sorry for the inconvenience; we have added RRID numbers of antibodies.

      Pro-BDNF is produced as a 32-kDa precursor that undergoes N-glycosylation and glycosulfation on residues located within the pro-domain of the precursor. N-terminal cleavage of the precursor generates mature BDNF as well as a minor truncated form of the precursor (28 kDa) that arises by a different processing mechanism than mature BDNF. The precursor undergoes N-terminal cleavage within the trans-Golgi network and/or immature secretory vesicles to generate mature BDNF (14 kDa).

      We checked our data and band size, and it shows a mistake in recognizing ladder size. It is actually a 14kDa band which has been shown. The labeling has been revised in the figure, and the actual blot with a ladder has been shown below for clarification. Similarly, our data focused on the fact that the observed cellular effects are more consistent with BDNF/TrkB-mediated pathways, which are known to promote survival and differentiation.

      (4) Figure 2 indicates increased expression of TrkB and TrkA, as well as their phosphorylated forms in response to inflammatory stimuli. Do these treatments elicit increased secretion of the ligands for these receptors, BDNF and NGF, respectively, to activate their phosphorylation? Or are they suggesting that the inflammatory molecules directly activate the Trk receptors? If so, further validation is necessary to demonstrate that.

      Thank you for your kind concern. TNF-α increases the number of TrkB receptors. The enhanced TrkB activation may result from a greater number of receptors and/or increased activation of individual receptors. In either case, inflammatory agents enhance the TrkB receptor signaling pathway.

      Recently, we have demonstrated the effect and interaction of TNF-alpha and Ca2+/calmodulin-dependent protein kinase II on the regulation of the inflammatory hDPSCs dentino-differentiation via BDNF/TrkB receptor signaling using TrkB inhibitor (Ref. below, and Figure 9). For now, we have added figure 9 for the proposed mechanism of action based on our recent and current study.

      Ref.: Kim, Ji Hyun, et al. (2025) "Ca 2+/calmodulin-dependent protein kinase II regulates the inflammatory hDPSCs dentino-differentiation via BDNF/TrkB receptor signaling." Frontiers in Cell and Developmental Biology 13: 1558736.

      (5) Figure 7 - RNA-Seq data, what is the rationale for treatment with TNF+ CTX-B? How does this identify any role for TrkB signaling? They never define their abbreviations, but if CTX-B refers to cholera toxin subunit B, which is what it usually refers to, then it is certainly not a TrkB antagonist.

      Thank you for your concern. Cyclotraxin-B (CTX-B) is a TrkB antagonist (mentioned in the revised manuscript). In order to identify the underlying mechanism, we ought to locate certain transcriptional factors interacting with the TrkB/BDNF signaling, leading to differentiation and dentinogenesis. Therefore, we treated it with a TrkB inhibitor.

      Earlier, we showed only the combined results and mentioned the interaction between TNFα and TrkB. We have included the results from TNFα alone and combined them with CTX-B for better comparison (Please refer to Figure 8). Figure 8C1 clearly shows the reversal of certain factors with the treatment of TrkB inhibitor compared to figure 8C with TNFα alone treated group. We agree that the precise role of CTX-B in modulating TrkB signaling requires further clarification and have now included this point in the revised discussion while we are currently working on this aspect.

      Reviewer #3 (Public review):

      In general, although the authors interpret their results as pointing towards a possible role of BDNF in dentin regeneration, the results are over-interpreted due to the lack of proper controls and focus on TrkB expression, but not its isoforms in inflammatory processes. Surprisingly, the authors do not study the possible role of p75 in this process, which could be one of the mechanisms intervening under inflammatory conditions.

      Thank you for your compliments, keen observation, and evaluation, which helped us significantly improve our manuscript. We have addressed the concerns and comments point by point in detail and substantially revised the manuscript and Figures. We hope that the manuscript is acceptable in the current improvised version.

      Detailed response to your comments/concerns is as follows:

      (1) The authors claim that there are two Trk receptors for BDNF, TrkA and TrkB. To date, I am unaware of any evidence that BDNF binds to TrkA to activate it. It is true that two receptors have been described in the literature, TrkB and p75 or NGFR, but the latter is not TrkA despite its name and capacity to bind NGF along with other neurotrophins. It is crucial for the authors to provide a reference stating that TrkA is a receptor for BDNF or, alternatively, to correct this paragraph.

      Dear reviewer, we apologize for the inconvenience; it was an error. BDNF binds to TrkB, and the sentence has been corrected.

      (2) The authors discuss BDNF/TrkB in inflammation. Is there any possibility of p75 involvement in this process?

      Mature BDNF binds to the high-affinity receptor tyrosine kinase B (TrkB), activating signaling cascades, while pro-BDNF binds to the p75 neurotrophin receptor (p75NTR). So, we don’t think there’s a possibility, as our data shows mature BDNF production. Here, we initially screened the TrkA and TrkB involvement in dentinogenesis and chose to work with BDNF and its receptor TrkB. Future studies can be directed to elucidate its mechanism of action in the context of dentinogenesis.

      (3) The authors present immunofluorescence (IF) images against TrkB and pTrkB in the first figure. While they mention in the materials and methods section that these antibodies were generated for this study, there is no proof of their specificity. It should be noted that most commercial antibodies labeled as anti-TrkB recognize the extracellular domain of all TrkB isoforms. There are indications in the literature that pathological and excitotoxic conditions change the expression levels of TrkB-Fl and TrkB-T1. Therefore, it is necessary to demonstrate which isoform of TrkB the authors are showing as increased under their conditions. Similarly, it is essential to prove that the new anti-p-TrkB antibody is specific to this Trk receptor and, unlike other commercial antibodies, does not act as an anti-phospho-pan-Trk antibody.

      Thank you for your kind concern.

      Human TrkB has 7 isoforms and predicted Mw ranges from 35 to 93kDa. It has 11 potential N-glycosylation sites. The given antibody (isotype: Mouse IgG2a, κ) has been shown to interact with SHC1, PLCG1 and/or PLCG2, SH2B1 and SH2B2, NGFR, SH2D1A, SQSTM1 and KIDINS220, FRS2.

      And, sorry for the misunderstanding and text mistake. We procured all the antibodies from the market using proven products, and didn’t check any specific isoform. We have mentioned the details of antibodies and reagents in the chemicals section of the methodology.

      (4) I believe this initial conclusion could be significantly strengthened, without opening up other interpretations of the results, by demonstrating the specificity of the antibodies via Western blot (WB), both in the presence and absence of BDNF and other neurotrophins, NGF, and NT-3. Additionally, using WB could help reinforce the quantification of fluorescence intensity presented by the authors in Figure 1. It's worth noting that the authors fixed the cells with 4% PFA for 2 hours, which can significantly increase cellular autofluorescence due to the extended fixation time, favoring PFA autofluorescence. They have not performed negative controls without primary antibodies to determine the level of autofluorescence and nonspecific background. Nor have they indicated optimizing the concentration of primary antibodies to find the optimal point where the signal is strong without a significant increase in background. The authors also do not mention using reference markers to normalize specific fluorescence or indicating that they normalized fluorescence intensity against a standard control, which can indeed be done using specific signal quantification techniques in immunocytochemistry with a slide graded in black-and-white intensity controls. From my experience, I recommend caution with interpretations from fluorescence quantification assays without considering the aforementioned controls.

      Thank you for your insightful comments. We have now included a negative control image in the revised Figures. This control confirms that the observed fluorescence signal is specific and not due to autofluorescence or nonspecific background. In our lab, we have been using these antibodies and already optimized the concentration to use in certain cell types. Additionally, we followed the manufacturer’s recommended antibody concentration and protocol throughout our experiments to ensure an optimal signal-to-noise ratio.

      We agree that extended fixation with 4% PFA may increase autofluorescence; however, including negative controls helps account for this effect. We also ensured consistent imaging parameters and applied the same exposure settings across all samples to allow for a valid comparison of fluorescence intensity. We appreciate your emphasis on careful quantification and have clarified these methodological details in the revised Methods section.

      (5) In Figure 2, the authors determine the expression levels of TrkA and TrkB using qPCR. Although they specify the primers used for GAPDH as a control in materials and methods, they do not indicate which primers they used to detect TrkA and TrkB transcripts, which is essential for determining which isoform of these receptors they are detecting under different stimulations. Similarly, I recommend following the MIQE guidelines (Minimum Information for Publication of Quantitative Real-Time PCR experiments), so they should indicate the amplification efficiency of their primers, the use of negative and positive controls to validate both the primer concentration used, and the reaction, the use of several stable reference genes, not just one.

      We appreciate the reviewer’s suggestion regarding the specificity of primers and the amplification efficiency. In response, we have now included the primer sequences used for detecting TrkA and TrkB transcripts in the revised Materials and Methods section (Quantitative real-time PCR analysis of odontogenic differentiation marker gene expression in dental pulp stem cells). This ensures clarity on which isoforms of these receptors were assessed under different conditions. We also acknowledge the importance of following MIQE guidelines, and we got the primer provided by Integrated DNA Technologies with standard desalting purification and guaranteed yield.

      (6) Moreover, the authors claim they are using the same amounts of cDNA for qPCRs since they have quantified the amounts using a Nanodrop. Given that dNTPs are used during cDNA synthesis, and high levels remain after cDNA synthesis from mRNA, it is not possible to accurately measure cDNA levels without first cleaning it from the residual dNTPs. Therefore, I recommend that the authors clarify this point to determine how they actually performed the qPCRs. I also recommend using two other reference genes like 18S and TATA Binding Protein alongside GAPDH, calculating the geometric mean of the three to correctly apply the 2^-ΔΔCt formula.

      Thank you for your kind concern. We agree that residual dNTPs from cDNA synthesis could impact the accuracy of cDNA quantification. To address this, we have used the commercially available and guaranteed kit. The kit used is mentioned in Materials and Methods. We will definitely consider using 18S and TATA Binding Protein alongside GAPDH in our future studies. For now, we request you consider the results generated against GAPDH control.

      (7) Similarly, given that the newly generated antibodies have not been validated, I recommend introducing appropriate controls for the validation of in-cell Western assays.

      We apologize for the text mistake. Antibodies were procured commercially and not generated. We have corrected the sentence.

      (8) The authors' conclusion that TrkB levels are minimal (Figure 2E) raises questions about what they are actually detecting in the previous experiments might not be the TrkB-Fl form. Therefore, it is essential to demonstrate beyond any doubt that both the antibodies used to detect TrkB and the primers used for qPCR are correct, and in the latter case, specify at which cycle (Ct) the basal detection of TrkB transcripts occurs. Treatment with TNF-alpha for 14 days could lead to increased cell proliferation or differentiation, potentially increasing overall TrkB transcript levels due to the number of cells in culture, not necessarily an increase in TrkB transcripts per cell.

      Thank you for your comments. We appreciate your kind concerns. Here, we are trying to demonstrate that TrkB gets activated in inflammatory conditions. We have also provided the details on primers and antibodies. We have used commercial antibodies and qPCR primers, and they have been extensively validated with previous publications. The efficiency and validation of qPCR primers were provided by a company.

      Moreover, we used the minimal concentration of TNF-alpha twice a week, and before using it, we did preliminary experiments to determine whether it affected any experimental condition.

      (9) Overall, there are reasonable doubts about whether the authors are actually detecting TrkB in the first three images, as well as the phosphorylation levels and localization of this receptor in the cells. For example, in Figure 3 A to J, it is not clear where TrkB is expressed, necessitating better resolution images and a magnified image to show in which cellular structure TrkB is expressed.

      Thank you for your comment. Here, we aimed to show the expression of TrkB receptors in inflamed/infected pulp, especially in minority-distributed DPSCs. TrkB is present on the cell membrane and perinuclear region. We have provided a single-cell (magnified) image in the figure for better clarification.

      (10) In Figure 4, the authors indicate they have generated cells overexpressing BDNF after recombination using CRISPR technology. However, the WB they show in Figure 4B, performed under denaturing conditions, displays a band at approximately 28kDa. This WB is absolutely incorrect with all published data on BDNF detection via this technique. I believe the authors should demonstrate BDNF presence by showing a WB with appropriate controls and BDNF appearing at 14kDa to assume they are indeed detecting BDNF and that the cells are producing and secreting it. What antibodies have been used by the authors to detect BDNF? Have the authors validated it? There are some studies reporting the lack of specificity of certain commercial BDNF antibodies, therefore it is necessary to show that the authors are convincingly detecting BDNF.

      Dear reviewer, thank you for your kind concern. Firstly, we apologize for the inconvenience.

      Pro-BDNF is produced as a 32-kDa precursor that undergoes N-glycosylation and glycosulfation on residues located within the pro-domain of the precursor. N-terminal cleavage of the precursor generates mature BDNF and a minor truncated form of the precursor (28 kDa) that arises by a different processing mechanism than mature BDNF. The precursor undergoes N-terminal cleavage within the trans-Golgi network and/or immature secretory vesicles to generate mature BDNF (14 kDa).

      We checked our data and band size, and it shows a mistake in recognizing ladder size. It is actually a 14kDa band which has been shown. The labeling has been revised in the figure, and the actual blot with a ladder has been shown below for clarification. Similarly, our data focused on the fact that the observed cellular effects are more consistent with BDNF/TrkB-mediated pathways, which are known to promote survival and differentiation.

      (11) While the RNA sequencing data indicate changes in gene expression in cells treated with TNFalpha+CTX-B compared to control, the authors do not show a direct relationship between these genetic modifications with the rest of their manuscript's argument. I believe the results from these RNA sequencing assays should be put into the context of BDNF and TrkB, indicating which genes in this signaling pathway are or are not regulated, and their importance in this context.

      Thank you for your concern. In order to identify the underlying mechanism, we ought to locate certain transcriptional factors interacting with the TrkB/BDNF signaling, leading to differentiation and dentinogenesis. Therefore, we treated it with a TrkB inhibitor.

      Earlier, we showed only the combined results and mentioned the interaction between TNFα and TrkB. We have included the results from TNFα alone and combined them with CTX-B for better comparison (Please refer to Figure 8). Figure 8C1 clearly shows the reversal of certain factors with the treatment of TrkB inhibitor compared to figure 8C with TNFα alone treated group. We agree that the precise role of CTX-B in modulating TrkB signaling requires further clarification. We have now included this point in the revised discussion while working on this aspect. In a parallel study, we are trying to dig deep, especially the TCF family, as they have been documented to interact indirectly with BDNF and TrkB.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      Some minor textual issues

      Line 120: It is obvious that TNFα stimulation caused significant phosphorylation of TrkB (p < 0.01) compared to TrkA (p < 0.05).

      Thank you for noticing the typo. The sentence has been corrected.

      The authors should consider rewording this sentence - I do not understand the intended meaning.

      Line 126: pronounced peak at 10 ng/mL. I am not convinced there is a peak. Looks like a plateau to me. To call it a peak one would have to show that the values at 10 ng/ml and 20 ng/ml are statistically different.

      We meant here the peak compared to 0.1 and 1ng/mL concentration and not compared to 20 ng/mL. The sentence has been elaborated accordingly.

      Reviewer #3 (Recommendations for the authors):

      The authors should show how they have validated the specificity of all the used antibodies as well as the efficiency and specificity of their qPCR data.

      We procured the commercially available antibodies (all of them have been extensively validated with previous publications) and also performed negative controls (provided in revised figures). We frequently used Western blot and validate it with band size. Primer sequences are also provided in the revised manuscript. We checked its specificity with R<sup>2</sup> of Standard Curve ≥ 0.98 and the single peak of melting curves. We edited accordingly in line 263.

      Once again, we thank all of you for your efforts in evaluating our study. It really helped us improve the quality of the manuscript. We hope all the queries have been answered and the revised manuscript is acceptable.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      1.1. It would be helpful if the authors could discuss whether there is any correlation between cryptic sites and the extent of experimental validation in the Phosphosite database (e.g. those that were only identified in one or a few MS experiments). It is difficult to determine stoichiometry of phosphorylation experimentally, but can any inference be made on the extent of phosphorylation of cryptic sites vs. more conventional sites located in IDRs or on the surface of globular domains?

      We thank the reviewer for this valuable suggestion. To investigate the extent of the experimental validation of phosphosites, we examined the number of supporting studies for each site reported in the PhosphoSitePlus database. Specifically, we summed the values of the LT_LIT (literature-based experiments), MS_LIT (mass spectrometry literature), and MS_CST (Cell Signaling Technology mass spectrometry) fields to count the number of independent studies supporting each phosphorylation site, either cryptic or non-cryptic. To visualize the results, we plotted the number of supporting references vs the relative solvent accessibility (RSA) distribution of phosphosites (Figure R1). The analysis revealed a direct correlation between the RSA of phosphosites and the number of studies supporting their phosphorylation. This observation may arise from an intrinsic difficulty in studying cryptic phosphosites due to their destabilizing effects on native proteins. Notably, no differences were observed in the number of supporting studies within cryptic phosphosites (Figure R1B). We have not mentioned these analyses in the new version of the manuscript. However, we would gladly add it if the editor or the reviewer advises accordingly.

      1.2. The authors note that a larger percentage of tyrosine phosphorylation sites are cryptic compared with serine/threonine sites. I assume that tyrosine itself is more highly enriched in the hydrophobic cores of proteins relative to serine or threonine, due to its bulky hydrophobic side chain. Is the increased proportion of cryptic tyrosine phosphorylation sites more, less, or the same as the proportion of tyrosine in hydrophobic cores relative to serine and threonine?

      We thank the reviewer for this insightful comment. As correctly noted, tyrosine residues tend to be enriched in the hydrophobic cores of proteins, as reflected by their generally lower relative solvent accessibility (RSA) values, regardless of phosphorylation state. This enrichment is likely due to the tyrosine side chain's bulky and partially hydrophobic nature. To address the reviewer's question, we compared the RSA distributions of phosphorylated tyrosine, serine, and threonine residues with that of the same residues non-phosphorylated in the human proteome (Figure R2). In order to statistically compare the two distributions, we employed the Mann-Whitney test. The large sample size inevitably yields very low p-values, even when the distributions differ mildly (pThr, pSer vs non-p Thr, Ser, p 1.3. Fig. 5D and E: I had some trouble interpreting these figures. Indicating where the native state is in the plots would be helpful (stated in text as lower right, but a rectangle on the plot would make this more obvious). The text discusses three metastable intermediates, but what is the fourth one shown on the figures (well A, close to the native state)? This could be more explicitly explained.

      We added the missing rectangles into the original Fig. 5D and E (see below Figure R3 and R4). The three metastable intermediates discussed in the original text reflect protein conformers in which the cryptic site is exposed to the solvent. Conversely, the fourth state, and the final native state, are conformations in which the site is already partially or fully cryptic. The observation that the masking of cryptic sites coincides with the latest folding steps allows us to hypothesize a mechanism by which cryptic phosphorylation may regulate protein folding. Following the reviewer's suggestion, we now specify more explicitly each conformation in the new version of the legends of the relative figures (text file with track changes, lines 950 and 1017).

      1.4. The fact that phosphomimetic mutations of cyptic sites in SMAD2 and CHK1 lead to lower expression levels and shorter half-lives is not surprising, given the expected disruption of the hydrophobic core by introduction of a charged residue. The results certainly show that if phosphorylated, these sites would decrease expression and half-life. With respect to half-life, however, if the authors are correct and cryptic sites are predominately phosphorylated co-translationally, one would expect that the half-life curves for the wt protein would not be a simple exponential, but would instead reflect two distinct populations: those that are phosphorylated during translation, and are almost immediately degraded, and those that escape phosphorylation and have the same half-life as the non-phosphorylatable mutant. Are the actual experimental results consistent with this two-population model? If not, this would be evidence that some of these cryptic sites can be exposed post-translation, either by thermal fluctuation or biological interactions.

      We thank the reviewer for this insightful point. The readout employed in our study (i.e., western blotting) measures the aggregate signal from the total protein population in the cell culture. It thus reflects average protein levels rather than the dynamics of individual molecules. As such, it is not well-suited to resolving coexisting populations with distinct half-lives. We agree that if phosphorylation of cryptic sites occurs strictly co-translationally, one might expect a biphasic decay curve. However, due to methodological constraints, our assay provides only a single exponential fit to the global turnover kinetics. While we cannot entirely exclude the possibility that cryptic sites may become exposed post-translationally (e.g., due to thermal fluctuations or interactions), our molecular dynamics simulations did not reveal such exposure events within the simulated timescales. Therefore, while the two-population model remains plausible in principle, our results are consistent with a co-translational phosphorylation and degradation model. Forthcoming experiments aimed at characterizing the phosphorylation of ribosome-associated nascent chains in the human proteome may further validate this conclusion.

      1.5. The authors make a point that cryptic phosphosites are more highly conserved than non-cryptic phosphosites, but it is not clear to me whether it is the side chain itself or its ability to be phosphorylated that is conserved. Supplemental Fig. 9, if I am interpreting it correctly, would suggest it is the residue itself and not its phosphorylation that is conserved. If so, wouldn't this suggest that phosphorylation of these cryptic sites is just an inevitable consequence of the conservation of serine, threonine, and tyrosine residues in hydrophobic core regions? If the authors have evidence that argues against this simple hypothesis, they should discuss it (e.g., cryptic phosphosites are more highly conserved in some cases than non-phosphorylated tyrosine, serine, and threonine residues that are not solvent accessible).

      We agree with the reviewer's interpretation. The higher conservation of cryptic phosphosites likely reflects the evolutionary constraint on hydrophobic core residues, which tend to be more conserved due to their role in structural stability. This conservation does not imply phosphorylation at those sites is functionally selected across species. Instead, when such residues are phosphorylated, as we observe in the human proteome, the effect is often destabilizing and associated with protein degradation. Our analysis does not establish that the phosphorylation of cryptic residues is conserved across species, only that the residues themselves are. We appreciate the reviewer's suggestion and now explicitly discuss this point in the revised manuscript to clarify the distinction between residue conservation and phosphorylation conservation (text file with track changes, line 618)

      1.6. Regarding the evolutionary conservation of cryptic sites, have the authors taken into consideration that tyrosine-specific kinases, phosphatases, and reader domains first appeared in the first metazoans, and are for the most part not seen in non-metazoan eukaryotes? I notice some of the proteomes used for the conservation analysis include plants and yeast, which lack most tyrosine phosphorylation.

      We thank the reviewer for this insightful comment. In response to the suggestion, we have recalculated the entropic conservation score by restricting the analysis to metazoan species. This analysis ensures that the evolutionary context more accurately reflects the presence and functional relevance of tyrosine-specific kinases, phosphatases, and reader domains. The comparison between the entropic score distribution calculated by including or not non-metazoan orthologues show statistically significant differences for both serine and threonine, and tyrosine. However, the large sample sizes translate inevitably into statistically significant p-values, even when the differences in mean are minimal and the standard deviations relatively small. To better assess the practical relevance of these differences, we calculated Cohen's d as a measure of effect size (Table R1). The coefficient helps assess the size and biological significance of a difference (>0.2 = small effect; >0.5 = medium effect; >0.8 = large effect). The analysis indicates a very modest deviation in entropic scores by including or not non-metazoan orthologues.

      1.7. I find the argument that phosphorylation of exposed core residues is part of normal protein quality control/proteostasis to be convincing. Can the authors provide any experimental evidence to support this model (for example, greater phosphorylation of cryptic sites under stress conditions)? I don't think these experiments are necessary, but would seem to be a logical next step and could be done quite easily through collaboration.

      We appreciate the reviewer's suggestion and fully agree that showing more significant phosphorylation of cryptic sites under stress conditions could represent an exciting future direction. We are conducting experiments on individual tumor suppressors such as p53 and PTEN, which harbor cryptic phosphosites, to test whether cellular stress conditions enhance phosphorylation at these positions. These studies assess whether such modifications contribute to altered protein stability or function in stress or disease contexts, particularly cancer. We plan to communicate these results in forthcoming publications and are currently open to collaborations to broaden this line of investigation.

      1.8. The authors note at the end of the discussion that targeting cryptic phosphosites might be a strategy to selectively degrade some proteins in cancer. Practically, how would this work? I can't think of how, but perhaps the authors can provide more specific suggestions.

      We thank the reviewer for raising this important point. One promising approach to therapeutically exploit cryptic phosphosites builds on the PPI-FIT principles (Pharmacological Protein Inactivation by Folding Intermediate Targeting). This strategy targets transient structural pockets appearing only in folding intermediates (Spagnolli et al., Comm Biology 2021). In this context, kinases that phosphorylate cryptic sites could be modulated, either inhibited or redirected, so that misfolded or oncogenic proteins are selectively marked for degradation. For example, selectively enhancing the phosphorylation of a cryptic site on an oncogenic protein could destabilize it and promote its degradation via the proteasome. Conversely, preventing phosphorylation at a cryptic site on a tumor suppressor (e.g., by inhibiting the specific kinase) could enhance protein stability and restore function. While this concept is still emerging, it offers an exciting therapeutic avenue that complements our findings. We added a paragraph addressing this point in the discussion section of the new version of the manuscript (text file with track changes, line 716).

      1.9. Introduction: "It involves the addition of a phosphate to an hydroxyl group found in the side chain of specific amino acids, typically serine, threonine or tyrosine residues." Of course serine, threonine, and tyrosine are the only standard amino acids with a simple hydroxyl group, so "typically" is not needed here.

      We have removed the word "typically" to reflect the accurate chemical specificity of phosphorylation events (text file with track changes, line 82).

      1.10. In my view this is an important study, bringing rigor and a broad proteomic perspective to a phenomenon that (to my knowledge) had not been carefully examined previously. In terms of the big picture, I am of two minds. On the one hand, showing that phosphorylation of hydrophobic core residues exposed during translation or the early stages of folding can regulate steady state levels of some proteins provides an intriguing new mechanism to control the complement of proteins in the cell, and is potentially an area of regulation in normal physiology or in disease. On the other hand, if this is just part of the normal proteostatic mechanisms (hydrophobic core residues exposed for too long consign the protein to degradation, before it can lead to aggregation and other problems), that is a little less interesting to me. I think future work to tease out whether this mechanism is actually regulated and used by the cell to transmit information will be key. But the first step is showing that the phenomenon is real and widespread, and in my view this preprint accomplishes that goal very well.

      We appreciate the reviewer's thoughtful summary and agree that distinguishing between passive proteostatic clearance and active regulatory function is essential. Toward this goal, we plan to carry out a phosphoproteomic analysis of ribosome-associated nascent chains. By mapping phosphorylation events during translation, we aim to validate our cryptic phosphosite dataset in a co-translational context and potentially identify novel regulatory modifications. This approach will also help us assess whether phosphorylation at cryptic sites is modulated context-dependently, thereby supporting a role in regulated protein expression rather than solely quality control.

      2.1. Evolutionary comparison whether cryptic and non-cryptic sites are differently conserved. Two distinct distributions for cryptic and non-cryptic phospho-sites are observed and Figure 6 shows two entropy distributions of cryptic v non-cryptic. Here it is unclear whether this is significant given the different distributions of the two types when non modified.

      We thank the reviewer for raising this critical point. Due to the large sample sizes in our analysis, statistical tests inevitably yield very low p-values, even when differences in mean are minimal and the standard deviations relatively small. To better assess the practical relevance of these differences, we calculated Cohen's d as a measure of effect size (Table R2). The comparison between cryptic and non-cryptic phosphosites yielded an effect size (Cohen's d = 0.4028) slightly lower than the one obtained for residues lying within protein cores or exposed on protein surfaces (Cohen's d = 0.5126), both indicating a modest but meaningful shift in entropic scores. In contrast, the comparisons between cryptic phosphosites and all core residues, as well as non-cryptic phosphosites and all surface residues, showed negligible effect sizes (Cohen's d = 0.0245 and 0.1326, respectively). These findings suggest that while statistical significance is achieved in all cases, only the difference between cryptic and non-cryptic phosphosites, or core and surface residues, reflects a meaningful biological signal. We have now included these data in the new version of the manuscript (text file with track changes, line 544).

      2.2. The identification of buried modification sites and what the biological meaning / implications are is a very interesting topic. However PTM distribution on proteins is very skewed (many papers have identified ____clusters, hot spots, structural dependencies etc...) and therefore comparing modified sites on different residues and in different protein regions and with non-modified residues has to be very stringently controlled.

      We fully agree with the reviewer that PTM distribution is non-random and influenced by structural and functional constraints, making comparative analyses challenging. To ensure rigor, we implemented a robust computational pipeline. Unlike other PTMs found almost exclusively on solvent-exposed residues, phosphorylation uniquely showed a distinct subset of sites with extremely low solvent accessibility. This pattern held even after applying stringent structural and dynamical filters. Specifically, we excluded low-confidence residues, small or unstructured domains, and sites that become exposed due to thermal fluctuations, using the SPECTRUS-based dynamic analysis. While we cannot entirely rule out context-specific exposure in fully folded proteins (e.g., during protein-protein interactions), we validated selected cryptic sites experimentally, and our findings were consistent with the computational predictions. We believe this multilayered approach strengthens the reliability of our classification and distinguishes cryptic phosphosites from the broader PTM landscape.

      2.3. Very basic question: How do you assessed the RSA value of the residues from the alphafold structure. If it is sequence based, then it is unclear what the alpha fold structure actually contributes in this step? Although I assume it is structure based, it is not well described, only a reference.

      We calculated the RSA values using the Shrake-Rupley algorithm implemented in the MDTraj Python library. This is a structure-based metric: for each PTM-carrying residue, we evaluated the absolute SASA from the 3D AlphaFold structure and normalized it against the theoretical maximum exposure for that residue in a Gly-X-Gly tripeptide, as defined in Tien et al. (2013). Thus, AlphaFold structures directly provide the atomic coordinates necessary for solvent accessibility estimation. We have now revised the Methods section to describe this process more explicitly (text file with track changes, lines 110 and 113).

      2.4. Given that the different residues S,T,Y but also K for glycosylations etc. have a very different baseline RSA distribution, the distributions of modified residues as such are not so informative. Are the distributions of residues with the alpha fold LOD 0.65 different between modified and non-modified?

      2.5. Same point: it is very clear that "tyrosine presenting a larger proportion of cryptic phosphor-sites", as they mainly are within folded domains to begin with. The pattern of phosphorylation and clustering is very different between the modified amino acid residue T,S,Y and needs consideration, given the large number of PTMs, a simple distribution is not sufficient to argue.

      As already discussed in point 1.2 above, and correctly noted also by this reviewer, tyrosine residues are generally enriched in the hydrophobic cores of proteins, which is reflected by their typically low RSA, regardless of phosphorylation status. This tendency likely arises from the bulky and partially hydrophobic nature of the tyrosine side chain. To address the reviewer's question, we compared the RSA distributions of phosphorylated tyrosine, serine, and threonine residues with those of all these amino acids in the human proteome. We found that phosphorylated residues consistently exhibit higher RSA values than the overall averages for their respective amino acids. This is expected, as phosphorylation within protein cores would likely be destabilizing. Indeed, the existence of low-RSA phosphorylated residues, represents a significant deviation from the intrinsic tendency of tyrosine, serine, and threonine residues and suggests that cryptic sites may become accessible only transiently along protein folding pathways.

      2.6. Figure 3E (proteins need names in the figure ): the cryptic site T222 (Chk1) is not in the quasi ridged domain, it is in a light color region. What is actually the SPECTRUS cutoff? The Pidc is only one sentence in the main text? It says fewer than 80% intradomain contacts in rigid domains i.e. >0.8, right, but is the domain rigid?

      We have revised the original figure in the new version of the manuscript to include protein names, and clarified the domain assignments. The cryptic phosphosite T222 in Chk1 lies within a quasi-rigid domain, as identified by SPECTRUS. The color of the image does not reflect any structural property but instead it is used to distinguish different quasi-rigid domains. In particular, black regions identify unstructured domains, whereas shadows from dark grey to white identify quasi rigid domains. We apologize for the lack of clarity. We have corrected the figure legend accordingly (text file with track changes, line 912).

      There is no cutoff in SPECTRUS' identification of quasi-rigid domain. Non quasi-rigid domains are simply regions of the protein that SPECTRUS cannot process properly. Meaning regions that, due to the large degree of intrinsic fluctuations, cannot be modelled as quasi-rigid.

      We also expanded the description of Pidc in the main text to clarify that it quantifies the proportion of intra-domain contacts made by the phosphosite's side chain, and that a cutoff of {greater than or equal to}0.8 was used to retain only residues well-integrated within rigid domains (text file with track changes, line 243).

      We hope these updates will resolve the ambiguities noted and more clearly define the criteria used in our filtering pipeline.

      2.7. The evolutionary comparison (which is not my core expertise), seems again like comparing different things. Why not comparing cryptic and non-cryptic sites in the same protein regions? Also p-Y are, evolutionarily speaking, very different to p-S and p-T. How is this possibly considered in one distribution. p-Y analysis needs to be separated from the p-T and p-S analyses here.

      We want to clarify that our evolutionary analyses compare residues at the aligned positions in orthologous proteins across multiple species. This approach ensures that each cryptic or non-cryptic phosphosites is assessed in its native structural and sequence context. Therefore, the comparison is not between different regions but evaluates the evolutionary conservation of specific sites across species, allowing for a direct and meaningful comparison of cryptic and non-cryptic phosphosites. In order to address the second point, we report below the entropic score distributions for serine/threonine and tyrosine, separately (Figure R5).

      2.8. Have the authors thought of randomization of their data to see whether the distributions are significant?

      We are unsure we fully understand what the referee means by randomizing the data in this case.

      However, according to the mathematical definition of entropic score, the limit case in which, within each orthogroup, the phosphorylated amino acid is replaced by a completely random residue yields an entropic score of 1. The opposite limit, in which all members of the orthogroups have the same amino acid in the position of the phosphorylated amino acid, yields an ES of 0. We have added a paragraph in the methods to stress this point (text file with track changes, line 354).

      2.9. Labeling in Suppl Figures is insufficient. E.g. In S6 what are the various WT, A and D numbering, are this independent stable transfections/clones? Figure S7 what is R? Thank you for pointing this out. We have now corrected the missing information in the revised version of the manuscript (text file with track changes, from line 992 to 1008)

      2.10. Whether or not findings are "impressive" should be up to the reader, please remove these attributes in the text.

      We agree with the reviewer's suggestion. We have removed subjective language such as "impressive" from the revised manuscript to ensure an objective and neutral tone, allowing readers to independently evaluate the significance of our findings (text file with track changes, line 454).

      3.1. Residues with pLDDT scores below 65 were excluded from the analysis. The high-confidence measure applies to individual residues, regardless of whether the domains they belong to are also predicted with high confidence. Identifying the number of domains containing PTMs with overall high-confidence predictions could provide better insights into the orientation of modified residues within domain structures. To assess the relationship between residue-specific confidence and domain stability, we can analyze the correlation between high-confidence modified residues and the overall prediction accuracy of their domains. This could be quantified using the average error scores of domain residues. Additionally, using the average pLDDT score would indicate how many individual residues were predicted with high local structural confidence. In contrast, the average PAE (Predicted Aligned Error) score would provide insights into how well each residue's position is predicted relative to others within the domain, reflecting overall domain structural confidence.

      Our analysis excluded residues with pLDDT scores below 65 to ensure high local confidence. While pLDDT provides residue-level structural confidence, assessing domain-wide prediction quality offers additional insights into modified residues' spatial organization and exposure. However, a domain-level interpretation is currently limited by the format of AlphaFold structural predictions. Specifically, AlphaFold does not provide Predicted Aligned Error (PAE) matrices for sequences split into overlapping fragments, a method used for proteins longer than 2,700 amino acids. These fragment predictions are only available in the downloadable AlphaFold proteome archives, not through the web interface, and lack the global alignment metrics (such as PAE) necessary for analyzing domain stability or inter-residue confidence within the domain context.

      3.2. "Approximately 65% of proteins with cryptic phosphosites contained only one or two such residues, while less than 10% had five or more sites (Supp. Figure 3)." To better interpret this trend, it would be useful to analyze the total number of cryptic PTMs on proteins part of this study, including all modification types-not just phosphorylation. This would help determine whether the observed pattern is specific to phosphorylation or if it extends to other post-translational modifications as well.

      To compare the occurrence of different cryptic PTMs, we extended our analysis to include all cryptic post-translational modifications annotated in PhosphoSitePlus, including phosphorylation, glycosylation, methylation, sumoylation, and ubiquitination. The approach allowed us to assess whether the observed distribution of cryptic phosphosites is unique or represents a more general feature of all cryptic PTMs. We observed extensive variation among the different PTMs in the proportion of proteins carrying 1, 2, or more of the same cryptic PTM (see Table R3). However, it must be noted that the relatively low number of cryptic PTMs, excluding phosphorylation, could make it difficult to determine whether these patterns reflect actual biological trends or are simply influenced by the sample size. We have not included these data in the new version of the manuscript, but we would be willing to add them if the editor or the reviewer advises us accordingly.

      3.3. For the validation of cryptic sites, selecting domains under 200 amino acids was mentioned. However, was there also a minimum length threshold applied, similar to the filtering criteria used for false positives (less than 40 ignored)?

      The 40-residue threshold was applied because protein domains that are too small cannot be reliably subdivided into quasi-rigid domains. Trying to run SPECTRUS on structures with fewer than 40 residues inevitably returns a warning, reflecting the intrinsic cooperative nature of quasi-rigid domains. In fact, entities composed of too few amino acids cannot properly arrange themselves into 3D structures and tend to be disordered. The same reasoning was applied when choosing the proteins to simulate. In particular, for the refolding simulations, we selected protein domains possessing the following properties:

      1. Shorter than 200 amino acids to limit the computational demands.
      2. Long enough to fold into an ordered 3-dimensional conformation reliably.
      3. Have an experimentally determined NMR or X-ray crystal structure 3.4. To test their hypothesis that phosphorylation affects protein expression, they selected candidates for serine and threonine but excluded tyrosine. What were the reasons for not including tyrosine-related PTMs in their analysis?

      Our experimental assays relied on phosphomimetic substitutions to mimic the effect of phosphorylation. While serine/threonine phosphorylation can be reasonably mimicked by E or D substitutions, there is no reliable single-residue mimic for phosphotyrosine. Indeed, E or D substitutions do not recapitulate the structural or electronic features of pTyr. Given these limitations, we excluded tyrosine phosphosites from experimental validation to avoid generating inconclusive or misleading data.

      3.5. Do we know that the regulatory role of S300 on PYST1 is associated with the dual specificity of the phosphatase, and is this why it was selected as a negative regulator? While the regulatory roles of the other analyzed phosphosites on SMAD and CHK1 are discussed, there is limited mention of the specific role of S300 on PYST1 within the scope of the study.

      S300 of PYST1 was selected not due to known regulatory relevance, but for technical convenience. PYST1 is a relatively small protein, facilitating computational simulations. We also had suitable reagents for detection (i.e., expression vector), and importantly, S300 was identified as a false-positive cryptic phosphosite removed by our dynamic filtering. It was a practical and structurally matched negative control for validating our computational pipeline.

      3.6. When comparing the entropic scores between cryptic and non-cryptic residues, the medians are 0.43 and 0.52, respectively. Although this difference is not very high, they do observe that cryptic residues have lower scores than non-cryptic ones. The distributions also show greater overlap (Figure 6). I'm wondering if any statistical testing would help assess how distinct these two groups really are.

      We thank the reviewer for the comment raised by reviewer #2, for which we provide an answer above. Briefly, given our large sample sizes, statistical tests often yield very low p-values even for minor differences. To assess the biological significance, we calculated Cohen's d (Table R2 above). The effect size between cryptic and non-cryptic phosphosites (d = 0.4028) was modest but meaningful, and slightly lower than between core and surface residues (d = 0.5126).

      3.7. Why did the authors choose to rely on AlphaFold data instead of examining PDB structures? I didn't see any explanation or rationale provided for preferring AlphaFold predictions over experimentally determined structures from the PDB.

      We appreciate the value of this comment. We focused on AlphaFold to maximize proteome-wide coverage. Indeed, although PDB structures offer experimentally validated conformations, their sparse and uneven proteome coverage (particularly for membrane proteins, low-abundance factors, and intrinsically disordered regions) precludes a truly global analysis. AlphaFold2 models, by contrast, deliver accurate, full-length structures for nearly the entire human proteome, enabling unbiased, large-scale mapping of cryptic phosphosites. Nonetheless, we performed the same analysis using high-resolution structures from the Protein Data Bank (PDB). The results were fully consistent with those based on AlphaFold predictions, indicating that our findings are consistent across the two databases (see Figure R6 below).

      3.8. Novelty - The concept that cryptic site modifications can dysregulate signaling in cancer and other diseases is known, but systematically categorizing PTM sites into cryptic and non-cryptic to generate hypotheses for a wide range of identified PTMs remains an underdeveloped approach. This study establishes a framework for classifying PTMs based on their structural accessibility, integrating AlphaFold predictions, molecular dynamics simulations, solvent accessibility analysis, and phylogenetic conservation metrics. This approach not only enhances our understanding of PTM-mediated regulatory mechanisms but also provides a foundation for exploring how cryptic modifications contribute to protein function, stability, and disease progression.

      We appreciate the reviewer's comment. To our knowledge, this is the first study to introduce and define "cryptic phosphosites" as a structurally distinct and functionally relevant subset of phosphorylation sites. While some individual cases of buried amino acids influencing cancer-related proteins have been reported, no previous study has systematically mapped, filtered, and analyzed these sites across the human proteome using integrated structural, dynamical, evolutionary, and experimental criteria.

      3.9. The study relies primarily on predicted protein structures (e.g., AlphaFold), without exploring experimentally derived structures, which could provide more accurate and physiologically relevant insights.

      We have addressed this point above (see reply to #3.7).

      3.10. While the research demonstrates the impact of cryptic PTMs on protein function, it would be valuable to also investigate non-cryptic sites from their annotated data. By examining the effects of modifications on these non-cryptic sites, the study could further validate the importance of the cryptic versus non-cryptic classifications and help clarify the functional relevance of both types of sites.

      We thank the referee for this thoughtful suggestion. We compared the proportion of cryptic or non-cryptic phosphosites associated with cancer- and disease-related mutations in each group from the COSMIC and PTMVar datasets. The percentage of phosphosites associated with the two repositories is essentially the same for cryptic and non-cryptic sites. This observation suggests that, despite their different structural and regulatory features, both site types occur similarly in disease contexts (see Table R4). We have included these data in the new version of the manuscript (text file with track changes, line 1067; and new Supp. Table 3).

    2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

      Learn more at Review Commons


      Referee #2

      Evidence, reproducibility and clarity

      Review on Gasparotto et al "Mapping Cryptic Phosphorylation Sites in the Human Proteome"

      Gasparotte et al assess the solvent accessibility of 87,138 post-translationally modified amino acids in the human proteome (from phosphosite plus). There initial observation is that a large fraction of modified sites are buried, a finding that is pronounced for phosphorylation but not other modifications. Their approach is using alpha fold 3D structures (0.65 cut off) and RSA prediction to get a set of buried sites. Further refinement includes the removing of low-confidence segments (such as loops, linkers, or short disordered regions) and to use SPECTRUS to identified quasi-rigid domains. The idea is that quasi rigid domains may not breathe and thus will be modified during the synthesis or folding.

      They generated a final dataset of 10,606 cryptic T, S and Y phosphor-sites in 5,496 proteins and state that: "These data indicate that ~5% of all known phospho-sites are cryptic. Impressively, the number translates to ~33% of phosphorylated proteins in the human proteome presenting at least one cryptic phospho-site." They focus on S417 of the SMAD2, T382 of Chk1, known to be associated with loss of function effects or proteasomal degradation and S300 of PYST1 negative control. They stably express these proteins as phospho-mimicry or alanine substitution in HEK293. Expression levels were reduced in the phosphor-D- mutant versions and upon cycloheximide treatment a reduction of the turnover time for the phospho-D CHK1 was observed. I think we are looking a large clonal difference in the supplemental figures.

      The examples are supported by MD simulations that suggest that cryptic phospho-sites can occur during the folding process and affect protein homeostasis by drastically increasing degradation rate and leading to rapid turnover; Essentially the phospho-versions show a solvent exposure. Evolutionary comparison whether cryptic and non-cryptic sites are differently conserved. Two distinct distributions for cryptic and non-cryptic phospho-sites are observed and Figure 6 shows two entropy distributions of cryptic v non-cryptic. Here it is unclear whether this is significant given the different distributions of the two types when non modified. Finally, overlay of the sites with cancer mutations lists 221 mutations in COSMIC associated with cryptic phosphosites that have been annotated as cancer-related and 138 mutations in PTMVar linked to cancer and other human pathologies. The identification of buried modification sites and what the biological meaning / implications are is a very interesting topic. However PTM distribution on proteins is very skewed (many papers have identified cluster, hot spots, structural dependencies etc...) and therefore comparing modified sites on different residues and in different protein regions and with non-modified residues has to be very stringently controlled.

      Points for consideration

      • Very basic question: How do you assessed the RSA value of the residues from the alphafold structure. If it is sequence based, then it is unclear what the alpha fold structure actually contributes in this step? Although I assume it is structure based, it is not well described, only a reference.
      • Given that the different residues S,T,Y but also K for glycosylations etc. have a very different baseline RSA distribution, the distributions of modified residues as such are not so informative. Are the distributions of residues with the alpha fold LOD 0.65 different between modified and non-modified?
      • Same point: it is very clear that "tyrosine presenting a larger proportion of cryptic phosphor-sites", as they mainly are within folded domains to begin with. The pattern of phosphorylation and clustering is very different between the modified amino acid residue T,S,Y and needs consideration, given the large number of PTMs, a simple distribution is not sufficient to argue.
      • Figure 3 E (proteins need names in the figure ): the cryptic site T222 (Chk1) is not in the quasi ridged domain, it is in a light color region. What is actually the SPECTRUS cutoff? The Pidc is only one sentence in the main text? It says fewer than 80% intradomain contacts in rigid domains i.e. >0.8, right, but is the domain rigid?
      • The evolutionary comparison (which is not my core expertise), seems again like comparing different things. Why not comparing cryptic and non-cryptic sites in the same protein regions? Also p-Y are, evolutionarily speaking, very different to p-S and p-T. How is this possibly considered in one distribution. p-Y analysis needs to be separated from the p-T and p-S analyses here.
      • Have the authors thought of randomization of their data to see whether the distributions are significant?
      • Labeling in Suppl Figures is insufficient. E.g. In S6 what are the various WT, A and D numbering, are this independent stable transfections/clones? Figure S7 what is R?
      • Whether or not findings are "impressive" should be up to the reader, please remove these attributes in the text.

      Significance

      The identification of buried modification sites and what the biological meaning / implications are is a very interesting topic. However PTM distribution on proteins is very skewed (many papers have identified cluster, hot spots, structural dependencies etc...) and therefore comparing modified sites on different residues and in different protein regions and with non-modified residues has to be very stringently controlled.

      main conclusion: 5% of all known phospho-sites are cryptic, at least one in 1/3 of structured protein regions.

    1. Reviewer #1 (Public review):

      Bredenberg et al. aim to model some of the visual and neural effects of psychedelics via the Wake-Sleep algorithm. This is an interesting study with findings that go against certain mainstream ideas in psychedelic neuroscience (that I largely agree with). I cannot speak to the math in this manuscript, but it seems like quite a conceptual leap to set a parameter of the model in between wake and sleep and state that this is a proxy to acute psychedelic effects (point #20). My other concerns below are related to the review of the psychedelic literature:

      (1) Page 1, Introduction, "...they are agonists for the 5-HT2a serotonin receptor commonly expressed on the apical dendrites of cortical pyramidal neurons..." It is a bit redundant to say "5-HT2A serotonin receptor," as serotonin is already captured by its abbreviation (i.e., 5-HT).

      While psychedelic research has focused on 5-HT2A expression on cortical pyramidal cells, note that the 5-HT2A receptor is also expressed on interneurons in the medial temporal lobe (entorhinal cortex, hippocampus, and amygdala) with some estimates being >50% of these neurons (https://doi.org/10.1016/j.brainresbull.2011.11.006, https://doi.org/10.1007/s00221-013-3512-6, https://doi.org/10.7554/eLife.66960, https://doi.org/10.1016/j.mcn.2008.07.005, https://doi.org/10.1038/npp.2008.71, https://doi.org/10.1038/s41386-023-01744-8, https://doi.org/10.1016/j.brainres.2004.03.016, https://doi.org/10.1016/S0022-3565(24)37472-5, https://doi.org/10.1002/hipo.22611, https://doi.org/10.1016/j.neuron.2024.08.016). However, with ~1:4 ratio of inhibitory to excitatory neurons in the brain (https://doi.org/10.1101/2024.09.24.614724), this can make it seem as if 5-HT2A expression is negligible in the MTL. I think it might be important to mention these receptors, as this manuscript discusses replay.

      I see now that Figure 1 mentions that PV cells also express 5-HT2A receptors. This should probably be mentioned earlier.

      (2) Page 1, Introduction, "They have further been used for millennia as medicine and in religious rituals..." This might be a romanticization of psychedelics and indigenous groups, as anthropological evidence suggests that intentional psychedelic use might actually be more recent (see work by Manvir Singh and Andy Letcher).

      (3) When discussing oneirogens, it could be worth differentiating psychedelics from kappa opioid agonists such as ibogaine and salvinorin A, another class of hallucinogens that some refer to as "oneirogens" (similar to how "psychedelic" is the colloquial term for 5-HT2A agonists). Note that studies have found the effects of Salvia divinorum (which contains salvinorin A) to be described more similarly to dreams than psychedelics (https://doi.org/10.1007/s00213-011-2470-6). This makes me wonder why the present study is more applicable to 5-HT2A psychedelics than other kappa opioid agonists or other classes of hallucinogens (e.g., NMDA antagonists, muscarinic antagonists, GABAA agonists).

      (4) Page 2, Introduction, "Replay sequences have been shown to be important for learning during sleep [14, 15, 16, 17, 18]: we propose that mechanisms supporting replay-dependent learning during sleep are key to explaining the increases in plasticity caused by psychedelic drug administration." I'm not sure I follow the logic of this point. Dreams happen during REM sleep, whereas replay is most prominent during non-REM sleep. Moreover, while it's not clear what psychedelics do to hippocampal function, most evidence would suggest they impair it. As mentioned, most 5-HT2A receptors in the hippocampus seem to be on inhibitory neurons, and human and animal work finds that psychedelics impair hippocampal-dependent memory encoding (https://doi.org/10.1037/rev0000455, https://doi.org/10.1037/rev0000455, https://doi.org/10.3389/fnbeh.2014.00180, https://doi.org/10.1002/hipo.22712). One study even found that psilocin impairs hippocampal-dependent memory retrieval (https://doi.org/10.3389/fnbeh.2014.00180). Note that this is all in reference to the acute effects (psychedelics may post-acutely enhance hippocampal-dependent memory, https://doi.org/10.1007/s40265-024-02106-4).

      (5) Page 2, Introduction, "In total, our model of the functional effect of psychedelics on pyramidal neurons could provide a explanation for the perceptual psychedelic experience in terms of learning mechanisms for consolidation during sleep..." In contrast to my previous point, I think this could be possible. Three datasets have found that psychedelics may enhance cortical-dependent memory encoding (i.e., familiarity; https://doi.org/10.1037/rev0000455, https://doi.org/10.1037/rev0000455), and two studies found that post-encoding administration of psychedelics retroactively enhanced memory that may be less hippocampal-dependent/more cortical-dependent (https://doi.org/10.1016/j.neuropharm.2012.06.007, https://doi.org/10.1016/j.euroneuro.2022.01.114). Moreover, and as mentioned below, 5 studies have found decoupling between the hippocampus and the cortex (https://doi.org/10.3389/fnhum.2014.00020, https://doi.org/10.1002/hbm.22833, https://doi.org/10.1016/j.celrep.2021.109714, https://doi.org/10.1162/netn_a_00349, https://doi.org/10.1038/s41586-024-07624-5), something potentially also observed during REM sleep that is thought to support consolidation (https://doi.org/10.1073/pnas.2123432119). These findings should probably be discussed.

      (6) Page 2, Introduction, "In this work, we show that within a neural network trained via Wake-Sleep, it is possible to model the action of classical psychedelics (i.e. 5-HT2a receptor agonism)..." Note that 5-HT2A agonism alone is not sufficient to explain the effects of psychedelics, given that there are 5-HT2A agonists that are non-hallucinogenic (e.g., lisuride).

      (7) Page 2, Introduction, "...by shifting the balance during the wake state from the bottom-up pathways to the top-down pathways, thereby making the 'wake' network states more 'dream-like'." I could have included this in the previous point, but I felt that this idea deserved its own point. There has been a rather dogmatic assertion that psychedelics diminish top-down processing and/or enhance bottom-up processing, and I appreciate that the authors have not accepted this as fact. However, because this is an unfortunately prominent idea, I think it ought to be fleshed out more by first mentioning that it's one of the tenets of REBUS. REBUS has become a popular model of psychedelic drug action, but it's largely unfalsifiable (it's based on two unfalsifiable models, predictive processing and integrated information theory), so the findings from this study could tighten it up a bit. Second, there have now been a handful of studies that have attempted to study directionality in information flow under psychedelics, and the findings are rather mixed including increased bottom-up/decreased top-down effects (https://doi.org/10.7554/eLife.59784, https://doi.org/10.1073/pnas.1815129116; note that the latter "bottom-up" effect involves subcortical-cortical connections in which it's less clear what's actually "higher-/lower-level"), increased top-down/decreased bottom-up effects (https://doi.org/10.1038/s41380-024-02632-3, https://doi.org/10.1016/j.euroneuro.2016.03.018), or both (https://doi.org/10.1016/j.neuroimage.2019.116462, https://doi.org/10.1016/j.neuropharm.2017.10.039), though most of these studies are aggregating across largely inhomogeneous states (i.e., resting-state). Lastly, and somewhat problematically, facilitated top-down processing is also an idea proposed in psychosis that's based partially on findings with acute ketamine administration (note that all hallucinations to some degree might rely on top-down facilitation, as a hallucination involves a high-level concept that impinges on lower-level sensory areas; see work by Phil Corlett). While psychosis and the effects of ketamine have some similarities with psychedelics, there are certainly differences, and I think the goal of this manuscript is to uniquely describe 5-HT2A psychedelics (again, I'm left wondering why tweaking alpha in the Wake-Sleep algorithm is any more applicable to psychedelics than other hallucinogenic conditions).

      (8) Figure 2 equates alpha with a "psychedelic dose," but this is a bit misleading, as neither the algorithm nor an individual was administered a psychedelic. Alpha is instead a hypothetical proxy for a psychedelic dose. Moreover, if the model were recapitulating the effects of psychedelics, shouldn't these images look more psychedelic as alpha increases (e.g., they may look like images put through the DeepDream algorithm).

      (9) Page 11, Methods, "...and the gate α ensures that learning only occurs during sleep mode... The (1 − α) gate in this case ensures that plasticity only occurs during the Wake mode." Much of the math escapes me, so perhaps I'm misunderstanding these statements, but learning and plasticity certainly happen during both wake and sleep, making me wonder what is meant by these statements. Moreover, if plasticity is simply neural changes, couldn't plasticity be synonymous with neural learning? Perhaps plasticity and learning are meant to refer to different types of neural changes. It might be worth clarifying this, as a general problem in psychedelic research is that psychedelics are described as facilitating plasticity when brains are changing at every moment (hence not experiencing every moment as the same), and psychedelics don't impact all forms of plasticity equally. For example, psychedelics may not necessarily enhance neurogenesis or the addition of certain receptor types, and they impair certain forms of learning (i.e., episodic memory encoding). What is typically meant by plasticity enhancements induced by psychedelics (and where there's the most evidence) is dendritic plasticity (i.e., the growth of dendrites and spines). Whatever is meant by "plasticity" should be clarified in its first instance in this manuscript.

      (10) Page 12, Methods, "During training, neural network activity is either dominated entirely by bottom-up inputs (Wake, α = 0) or by top-down inputs (Sleep, α = 1)." Again, I could be misunderstanding the mathematical formulation, but top-down inputs operate during wake, and bottom-up inputs can operate during sleep (people can wake up or even incorporate noise from their environments into sleep.

      (11) Page 4, Results, "Thus, we can capture the core idea behind the oneirogen hypothesis using the Wake-Sleep algorithm, by postulating that the bottom-up basal synapses are predominantly driving neural activity during the Wake phase (when α is low)." However, several pieces of evidence (and the first circuit model of psychedelic drug action) suggest that psychedelics enhance functional connectivity and potentially even effective connectivity from the thalamus to the cortex (https://doi.org/10.1093/brain/awab406). Note that psychedelics may not equally impact all subcortical structures. REBUS proposes the opposite of the current study, that psychedelics facilitate bottom-up information flow, with one of the few explicit predictions being that psychedelics should facilitate information flow from the hippocampus to the default mode network. However, as mentioned earlier, 5 studies have found that psychedelics diminish functional connectivity between the hippocampus and cortex (including the DMN but also V1).

      (12) Page 4, Results, "...and have an excitatory effect that positively modulates glutamatergic transmission..." Note that this may not be brainwide. While psychedelics were found to increase glutamatergic transmission in the cortex, they were also found to decrease hippocampal glutamate (consistent with inhibition of the hippocampus, https://doi.org/10.1038/s41386-020-0718-8).

      (13) Page 5, "...which are similar to the 'breathing' and 'rippling' phenomena reported by psychedelic drug users at low doses..." Although it's sometimes unclear what is meant by "low doses," the breathing/rippling effect of psychedelics occurs at moderate and high doses as well.

      (14) I watched the videos, and it's hard for me to say there was some stark resemblance to psychedelic imagery. In contrast, for example, when the DeepDream algorithm came out, it did seem to capture something quite psychedelic.

      (15) Page 5, "This form of strongly correlated tuning has been observed in both cortex and the hippocampus." If this has been observed under non-psychedelic conditions, what does this tell us about this supposed model of psychedelics?

      (16) Page 6, with regards to neural variability, "...but whether this phenomenon [increased variability] is general across tasks and cortical areas remains to be seen." First, is variability here measured as variance? In fMRI datasets that have been used to support the Entropic Brain Hypothesis, note that variance tends to decrease, though certain measures of entropy increase (e.g., Figure 4A here https://doi.org/10.1073/pnas.1518377113 shows global variance decreases, and this reanalysis of those data https://doi.org/10.1002/hbm.23234 finds some entropy increases). Thus, variance and entropy should not be confused (in theory, one could cycle through several more brain states that are however, similar to each other, which would produce more entropy with decreased variance). Second, and perhaps more problematically for the EBH, is that the entropy effects of psychedelics completely disappear when one does a task, and unfortunately, the authors of these findings have misinterpreted them. What they'll say is that engaging in boring cognitive tasks or watching a video decreases entropy under psychedelics, but what you can see in Figure 1b of https://doi.org/10.1021/acschemneuro.3c00289 and Figure 4b of https://doi.org/10.1038/s41586-024-07624-5 is that entropy actually increases under sober conditions when you do a task. That is, it's a rather boring finding. Essentially, when resting in a scanner while sober, many may actually rest (including falling asleep, especially when subjects are asked to keep their eyes closed), and if you perform a task, brain activity should become more complex relative to doing nothing/falling asleep. When under a psychedelic, one can't fall asleep and thus, there's less change (though note that both of the above studies found numerical increases when performing tasks). Lastly, again I should note that the findings of the present study actually go against EBH/REBUS, given that the findings are increased top-down effects when EBH/REBUS predicts decreased top-down/increased bottom-up effects.

      (17) Page 6, "Because psychedelic drug administration increases influence of apical dendritic inputs on neural activity in our model, we found that silencing apical dendritic activity reduced across stimulus neural variability more as the psychedelic drug dose increases." I again want to point out that alpha is not the equivalent of a psychedelic dose here, but rather a parameter in the model that is being proposed as a proxy.

      (18) Page 8, "Experimentally, plasticity dynamics which could, theoretically, minimize such a prediction error have been observed in cortex [66, 67], and it has also been proposed that behavioral timescale plasticity in the hippocampus could subserve a similar function [68]. We found that plasticity rules of this kind induce strong correlations between inputs to the apical and basal dendritic compartments of pyramidal neurons, which have been observed in the hippocampus and cortex [55, 56]." Note that the plasticity effects of psychedelics are sometimes not observed in the hippocampus or are even observed as decreases (reviewed in https://doi.org/10.1038/s41386-022-01389-z).

      (19) Page 9, as is mentioned, REBUS proposes that there should be a decrease in top-down effects under psychedelics, which goes against what is found here, but as I describe above, the effects of psychedelics on various measures of directionality have been quite mixed.

      (20) Unless I'm misunderstanding something, it seems to be a bit of a jump to infer that simply changing alpha in your model is akin to psychedelic dosing. Perhaps if the model implemented biologically plausible 5-HT2A expression and/or its behavior were constrained by common features of a psychedelic experience (e.g., fractal-like visuals imposed onto perception, inability to fall asleep, etc.), I'd be more inclined to see the parallels between alpha and psychedelics dosing. However, it would still need to recapitulate unique effects of psychedelics (e.g., impairments in hippocampal-dependent memory with sparing/facilitation of cortical memory). At the moment, it seems like whatever the model is doing is applicable to any hallucinogenic drug or even psychosis.

    2. Author response:

      We thank the reviewers for the valuable and constructive reviews. Thanks to these, we believe the article will be considerably improved. We have organized our response to address points that are relevant to both reviewers first, after which we address the unique concerns of each individual reviewer separately. We briefly paraphrase each concern and provide comments for clarification, outlining the precise changes that we will make to the text.

      Common Concerns (Reviewer 1 & Reviewer 2):

      Can you clarify how NREM and REM sleep relate to the oneirogen hypothesis?

      Within the submission draft we tried to stay agnostic as to whether mechanistically similar replay events occur during NREM or REM sleep; however, upon a more thorough literature review, we think that there is moderately greater evidence in favor of Wake-Sleep-type replay occurring during REM sleep which is related to classical psychedelic drug mechanisms of action.

      First, we should clarify that replay has been observed during both REM and NREM sleep, and dreams have been documented during both sleep stages, though the characteristics of dreams differ across stages, with NREM dreams being more closely tied to recent episodic experience and REM dreams being more bizarre/hallucinatory (see Stickgold et al., 2001 for a review). Replay during sleep has been studied most thoroughly during NREM sharp-wave ripple events, in which significant cortical-hippocampal coupling has been observed (Ji & Wilson, 2007). However, it is critical to note that the quantification methods used to identify replay events in the hippocampal literature usually focus on identifying what we term ‘episodic replay,’ which involves a near-identical recapitulation of neural trajectories that were recently experienced during waking experimental recordings (Tingley & Peyrach, 2020). In contrast, our model focuses on ‘generative replay,’ where one expects only a statistically similar reproduction of neural activity, without any particular bias towards recent or experimentally controlled experience. This latter form of replay may look closer to the ‘reactivation’ observed in cortex by many studies (e.g. Nguyen et al., 2024), where correlation structures of neural activity similar to those observed during stimulus-driven experience are recapitulated. Under experimental conditions in which an animal is experiencing highly stereotyped activity repeatedly, over extended periods of time, these two forms of replay may be difficult to dissociate.

      Interestingly, though NREM replay has been shown to couple hippocampal and cortical activity, a similar study in waking animals administered psychedelics found hippocampal replay without any obvious coupling to cortical activity (Domenico et al., 2021). This could be because the coupling was not strong enough to produce full trajectories in the cortex (psychedelic administration did not increase ‘alpha’ enough), and that a causal manipulation of apical/basal influence in the cortex may be necessary to observe the increased coupling. Alternatively, as Reviewer 1 noted, it may be that psychedelics induce a form of hippocampus-decoupled replay, as one would expect from the REM stage of a recently proposed complementary learning systems model (Singh et al., 2022). 

      Evidence in favor of a similarity between the mechanism of action of classical psychedelics and the mechanism of action of memory consolidation/learning during REM sleep is actually quite strong. In particular, studies have shown that REM sleep increases the activity of soma-targeting parvalbumin (PV) interneurons and decreases the activity of apical dendrite-targeting somatostatin (SOM) interneurons (Niethard et al., 2021), that this shift in balance is controlled by higher-order thalamic nuclei, and that this shift in balance is critical for synaptic consolidation of both monocular deprivation effects in early visual cortex (Zhou et al., 2020) and for the consolidation of auditory fear conditioning in the dorsal prefrontal cortex (Aime et al., 2022). These last studies were not discussed in the present manuscript–we will add them, in addition to a more nuanced description of the evidence connecting our model to NREM and REM replay.

      Can you explain how synaptic plasticity induced by psychedelics within your model relates to learning at a behavioral level?

      While the Wake-Sleep algorithm is a useful model for unsupervised statistical learning, it is not a model of reward or fear-based conditioning, which likely occur via different mechanisms in the brain (e.g. dopamine-dependent reinforcement learning or serotonin-dependent emotional learning). The Wake-Sleep algorithm is a ‘normative plasticity algorithm,’ that connects synaptic plasticity to the formation of structured neural representations, but it is not the case that all synaptic plasticity induced by psychedelic administration within our model should induce beneficial learning effects. According to the Wake-Sleep algorithm, plasticity at apical synapses is enhanced during the Wake phase, and plasticity at basal synapses is enhanced during the Sleep phase; under the oneirogen hypothesis, hallucinatory conditions (increased ‘alpha’) cause an increase in plasticity at both apical and basal sites. Because neural activity is in a fundamentally aberrant state when ‘alpha’ is increased, there are no theoretical guarantees that plasticity will improve performance on any objective: psychedelic-induced plasticity within our model could perhaps better be thought of as ‘noise’ that may have a positive or negative effect depending on the context.

      In particular, such ‘noise’ may be beneficial for individuals or networks whose synapses have become locked in a suboptimal local minimum. The addition of large amounts of random plasticity could allow a system to extricate itself from such local minima over subsequent learning (or with careful selection of stimuli during psychedelic experience), similar to simulated annealing optimization approaches. If our model were fully validated, this view of psychedelic-induced plasticity as ‘noise’ could have relevance for efforts to alleviate the adverse effects of PTSD, early life trauma, or sensory deprivation; it may also provide a cautionary note against repeated use of psychedelic drugs within a short time frame, as the plasticity changes induced by psychedelic administration under our model are not guaranteed to be good or useful in-and-of themselves without subsequent re-learning and compensation.

      We should also note that we have deliberately avoided connecting the oneirogen hypothesis model to fear extinction experimental results that have been observed through recordings of the hippocampus or the amygdala (Bombardi & Giovanni, 2013; Jiang et al., 2009; Kelly et al., 2024; Tiwari et al., 2024). Both regions receive extensive innervation directly from serotonergic synapses originating in the dorsal raphe nucleus, which have been shown to play an important role in emotional learning (Lesch & Waider, 2012); because classical psychedelics may play a more direct role in modulating this serotonergic innervation, it is possible that fear conditioning results (in addition to the anxiolytic effects of psychedelics) cannot be attributed to a shift in balance between apical and basal synapses induced by psychedelic administration. We will provide a more detailed review of these results in the text, as well as more clarity regarding their relation to our model.

      Reviewer 1 Concerns:

      Is it reasonable to assign a scalar parameter ‘alpha’ to the effects of classical psychedelics? And is your proposed mechanism of action unique to classical psychedelics? E.g. Could this idea also apply to kappa opioid agonists, ketamine, or the neural mechanisms of hallucination disorders?

      We will clarify that within our model ‘alpha’ is a parameter that reflects the balance between apical and basal synapses in determining the activity of neurons in the network. For the sake of simplicity we used a single ‘alpha’ parameter, but realistically, each neuron would have its own ‘alpha’ parameter, and different layers or individual neurons could be affected differentially by the administration of any particular drug; therefore, our scalar ‘alpha’ value can be thought of as a mean parameter for all neurons, disregarding heterogeneity across individual neurons.

      There are many different mechanisms that could theoretically affect this ‘alpha’ parameter, including: 5-HT2a receptor agonism, kappa opioid receptor binding, ketamine administration, or possibly the effects of genetic mutations underlying the pathophysiology of complex developmental hallucination disorders. We focused exclusively on 5-HT2a receptor agonism for this study because the mechanism is comparatively simple and extensively characterized, but similar mechanisms may well be responsible for the hallucinatory symptoms of a variety of drugs and disorders.

      Can you clarify the role of 5-HT2a receptor expression on interneurons within your model?

      While we mostly focused on the effects of 5-HT2a receptors on the apical dendrites of pyramidal neurons, these receptors are also expressed on soma-targeting parvalbumin (PV) interneurons. This expression on PV interneurons is consistent with our proposed psychedelic mechanism of action, because it could lead to a coordinated decrease in the influence of somatic and proximal dendritic inputs while increasing the influence of apical dendritic inputs. We will elaborate on this point, and will move the discussion earlier in the text.

      Discussions of indigenous use of psychedelics over millenia may amount to over-romanticization.

      We will take great care to conduct a more thorough literature review to reevaluate our statement regarding indigenous psychedelic use (including the citations you suggested), and will either provide a more careful statement or remove this discussion from our introduction entirely, as it has little bearing on the rest of the text. The Ethics Statement will also be modified accordingly.

      You isolate the 5-HT2a agonism as the mechanism of action underlying ‘alpha’ in your model, but there exist 5-HT2a agonists that do not have hallucinatory effects (e.g. lisuride). How do you explain this?

      Lisuride has much-reduced hallucinatory effects compared to other psychedelic drugs at clinical doses (though it does indeed induce hallucinations at high doses; Marona-Lewicka et al., 2002), and we should note that serotonin (5-HT) itself is pervasive in the cortex without inducing hallucinatory effects during natural function. Similarly, MDMA is a partial agonist for 5-HT2a receptors, but it has much-reduced perceptual hallucination effects relative to classical psychedelics (Green et al., 2003) in addition to many other effects not induced by classical psychedelics.

      Therefore, while we argue that 5-HT2a agonism induces an increase in influence of apical dendritic compartments and a decrease in influence of basal/somatic compartments, and that this change induces hallucinations, we also note that there are many other factors that control whether or not hallucinations are ultimately produced, so that not all 5-HT2a agonists are hallucinogenic. We will discuss two such factors in our revision: 5-HT receptor binding affinity and cellular membrane permeability.

      Importantly, many 5-HT2a receptor agonists are also 5-HT1a receptor agonists (e.g. serotonin itself and lisuride), while MDMA has also been shown to increase serotonin, norepinephrine, and dopamine release (Green et al., 2003). While 5-HT2a receptor agonism has been shown to reduce sensory stimulus responses (Michaiel et al., 2019), 5-HT1a receptor agonism inhibits spontaneous cortical activity (Azimi et al., 2020); thus one might expect the net effect of administering serotonin or a nonselective 5-HT receptor agonist to be widespread inhibition of a circuit, as has been observed in visual cortex (Azimi et al., 2020). Therefore, selective 5-HT2a agonism is critical for the induction of hallucinations according to our model, though any intervention that jointly excites pyramidal neurons’ apical dendrites and inhibits their basal/somatic compartments across a broad enough area of cortex would be predicted to have a similar effect. Lisuride has a much higher binding affinity for 5-HT1a receptors than, for instance, LSD (Marona-Lewicka et al., 2002).

      Secondly, it has recently been shown that both the head-twitch effect (a coarse behavioral readout of hallucinations in animals) and the plasticity effects of psychedelics are abolished when administering 5-HT2a agonists that are impermeable to the cellular membrane because of high polarity, and that these effects can be rescued by temporarily rendering the cellular membrane permeable (Vargas et al., 2023). This suggests that the critical hallucinatory effects of psychedelics (apical excitation according to our model) may be mediated by intracellular 5-HT2a receptors. Notably, serotonin itself is not membrane permeable in the cortex.

      Therefore, either of these two properties could play a role in whether a given 5-HT2a agonist induces hallucinatory effects. We will provide a considerably extended discussion of these nuances in our revision.

      Your model proposes that an increase in top-down influence on neural activity underlies the hallucinatory effects of psychedelics. How do you explain experimental results that show increases in bottom-up functional connectivity (either from early sensory areas or the thalamus)?

      Firstly, we should note that our proposed increase in top-down influence is a causal, biophysical property, not necessarily a statistical/correlative one. As such, we will stress that the best way to test our model is via direct intervention in cortical microcircuitry, as opposed to correlative approaches taken by most fMRI studies, which have shown mixed results with regard to this particular question. Correlative approaches can be misleading due to dense recurrent coupling in the system, and due to the coarse temporal and spatial resolution provided by noninvasive recording technologies (changes in statistical/functional connectivity do not necessarily correspond to changes in causal/mechanistic connectivity, i.e. correlation does not imply causation).

      There are two experimental results that appear to contradict our hypothesis that deserve special consideration in our revision. The first shows an increase in directional thalamic influence on the distributed cortical networks after psychedelic administration (Preller et al., 2018). To explain this, we note that this study does not distinguish between lower-order sensory thalamic nuclei (e.g. the lateral and medial geniculate nuclei receiving visual and auditory stimuli respectively) and the higher-order thalamic nuclei that participate in thalamocortical connectivity loops (Whyte et al., 2024). Subsequent more fine-grained studies have noted an increase in influence of higher order thalamic nuclei on the cortex (Pizzi et al., 2023; Gaddis et al., 2022), and in fact extensive causal intervention research has shown that classical psychedelics (and 5-HT2a agonism) decrease the influence of incoming sensory stimuli on the activity of early sensory cortical areas, indicating decoupling from the sensory thalamus (Evarts et al., 1955; Azimi et al., 2020; Michaiel et al. 2019). The increased influence of higher-order thalamic nuclei is consistent with both the cortico-striatal-thalamo-cortical (CTSC) model of psychedelic action as well as the oneirogen hypothesis, since higher-order thalamic inputs modulate the apical dendrites of pyramidal neurons in cortex (Whyte et al., 2024).

      The second experimental result notes that DMT induces traveling waves during resting state activity that propagate from early visual cortex to deeper cortical layers (Alamia et al., 2020). There are several possibilities that could explain this phenomenon: 1) it could be due to the aforementioned difficulties associated with directed functional connectivity analyses, 2) it could be due to a possible high binding affinity for DMT in the visual cortex relative to other brain areas, or 3) it could be due to increases in apical influence on activity caused by local recurrent connectivity within the visual cortex which, in the absence of sensory input, could lead to propagation of neural activity from the visual cortex to the rest of the brain. This last possibility is closest to the model proposed by (Ermentrout & Cowan, 1979), and which we believe would be best explained within our framework by a topographically connected recurrent network architecture trained on video data; a potentially fruitful direction for future research.

      Shouldn’t the hallucinations generated by your model look more ‘psychedelic,’ like those produced by the DeepDream algorithm?

      We believe that the differences in hallucination visualization quality between our algorithm and DeepDream are mostly due to differences in the scale and power of the models used across these two studies. We are confident that with more resources (and potentially theoretical innovations to improve the Wake-Sleep algorithm’s performance) the produced hallucination visualizations could become more realistic, but we believe this falls outside the scope of the present study.

      We note that more powerful generative models trained with backpropagation are able to produce surreal images of comparable quality (Rezende et al., 2014; Goodfellow et al., 2020; Vahdat & Kautz, 2020), though these have not yet been used as a model of psychedelic hallucinations. However, the DeepDream model operates on top of large pretrained image processing models, and does not provide a biologically mechanistic/testable interpretation of its hallucination effects. When training smaller models with a local synaptic plasticity rule (as opposed to backpropagation), the hallucination effects are less visually striking due to the reduced quality of our trained generative model, though they are still strongly tied to the statistics of sensory inputs, as quantified by our correlation similarity metric (Fig. 5b). We will provide a more detailed explanation of this phenomenon when we discuss our model limitations in our revised manuscript.

      Your model assumes domination by entirely bottom-up activity during the ‘wake’ phase, and domination entirely by top-down activity during ‘sleep,’ despite experimental evidence indicating that a mixture of top-down and bottom-up inputs influence neural activity during both stages in the brain. How do you explain this?

      Our use of the Wake-Sleep algorithm, in which top-down inputs (Sleep) or bottom-up inputs (Wake) dominate network activity is an over-simplification made within our model for computational and theoretical reasons. Models that receive a mixture of top-down and bottom-up inputs during ‘Wake’ activity do exist (in particular the closely related Boltzmann machine (Ackley et al., 1985)), but these models are considerably more computationally costly to train due to a need to run extensive recurrent network relaxation dynamics for each input stimulus. Further, these models do not generalize as cleanly to processing temporal inputs. For this reason, we focused on the Wake-Sleep algorithm, at the cost of some biological realism, though we note that our model should certainly be extended to support mixed apical-basal waking regimes. We will make sure to discuss this in our ‘Model Limitations’ section.

      Your model proposes that 5-HT2a agonism enhances glutamatergic transmission, but this is not true in the hippocampus, which shows decreases in glutamate after psychedelic administration.

      We should note that our model suggests only compartment specific increases in glutamatergic transmission; as such, our model does not predict any particular directionality for measures of glutamatergic transmission that includes signaling at both apical and basal compartments in aggregate, as was measured in the provided study (Mason et al., 2020).

      You claim that your model is consistent with the Entropic Brain theory, but you report increases in variance, not entropy. In fact, it has been shown that variance decreases while entropy increases under psychedelic administration. How do you explain this discrepancy?

      Unfortunately, ‘entropy’ and ‘variance’ are heavily overloaded terms in the noninvasive imaging literature, and the particularities of the method employed can exert a strong influence on the reported effects. The reduction in variance reported by (Carhart-Harris et al., 2016) is a very particular measure: they are reporting the variance of resting state synchronous activity, averaged across a functional subnetwork that spans many voxels; as such, the reduction in variance in this case is a reduction in broad, synchronous activity. We do not have any resting state synchronous activity in our network due to the simplified nature of our model (particularly an absence of recurrent temporal dynamics), so we see no reduction in variance in our model due to these effects.

      Other studies estimate ‘entropy’ or network state disorder via three different methods that we have been able to identify. 1) (Carhart-Harris et al., 2014) uses a different measure of variance: in this case, they subtract out synchronous activity within functional subnetworks, and calculate variability across units in the network. This measure reports increases in variance (Fig. 6), and is the closest measure to the one we employ in this study. 2) (Lebedev et al., 2016) uses sample entropy, which is a measure of temporal sequence predictability. It is specifically designed to disregard highly predictable signals, and so one might imagine that it is a measure that is robust to shared synchronous activity (e.g. resting state oscillations). 3) (Mediano et al., 2024) uses Lempel-Ziv complexity, which is, similar to sample entropy, a measure of sequence diversity; in this case the signal is binarized before calculation, which makes this method considerably different from ours. All three of the preceding methods report increases in sequence diversity, in agreement with our quantification method. Our strongest explanation for why the variance calculation in (Carhart-Harris et al., 2016) produces a variance reduction is therefore due to a reduction in low-rank synchronous activity in subnetworks during resting state.

      As for whether the entropy increase is meaningful: we share Reviewer 1’s concern that increases in entropy could simply be due to a higher degree of cognitive engagement during resting state recordings, due to the presence of sensory hallucinations or due to an inability to fall asleep. This could explain why entropy increases are much more minimal relative to non-hallucinating conditions during audiovisual task performance (Siegel et al., 2024; Mediano et al., 2024). However, we can say that our model is consistent with the Entropic Brain Theory without including any form of ‘cognitive processing’: we observe increases in variability during resting state in our model, but we observe highly similar distributions of activity when averaging over a wide variety of sensory stimulus presentations (Fig. 5b-c). This is because variability in our model is not due to unstructured noise: it corresponds to an exploration of network states that would ordinarily be visited by some stimulus. Therefore, when averaging across a wide variety of stimuli, the distribution of network states under hallucinating or non-hallucinating conditions should be highly similar.

      One final point of clarification: here we are distinguishing Entropic Brain Theory from the REBUS model–the oneirogen hypothesis is consistent with the increase in entropy observed experimentally, but in our model this entropy increase is not due to increased influence of bottom-up inputs (it is due instead to an increase in top-down influence). Therefore, one could view the oneirogen hypothesis as consistent with EBT, but inconsistent with REBUS.

      You relate your plasticity rule to behavioral-timescale plasticity (BTSP) in the hippocampus, but plasticity has been shown to be reduced in the hippocampus after psychedelic administration. Could you elaborate on this connection?

      When we were establishing a connection between our ‘Wake-Sleep’ plasticity rule and BTSP learning, the intended connection was exclusively to the mathematical form of the plasticity rule, in which activity in the apical dendrites of pyramidal neurons functions as an instructive signal for plasticity in basal synapses (and vice versa): we will clarify this in the text. Similarly, we point out that such a plasticity rule tends to result in correlated tuning between apical and basal dendritic compartments, which has been observed in hippocampus and cortex: this is intended as a sanity check of our mapping of the Wake-Sleep algorithm to cortical microcircuitry, and has limited further bearing on the effects of psychedelics specifically.

      Reduction in plasticity in the hippocampus after psychedelic administration could be due to a complementary learning systems-type model, in which the hippocampus becomes partly decoupled from the cortex during REM sleep (Singh et al., 2022); were this to be the case, it would not be incompatible with our model, which is mostly focused on the cortex. Notably, potentiating 5HT-2a receptors in the ventral hippocampus does not induce the head-twitch response, though it does produce anxiolytic effects (Tiwari et al., 2024), indicating that the hallucinatory and anxiolytic effects of classical psychedelics may be partly decoupled. 

      Reviewer 2 Concerns:

      Could you provide visualizations of the ‘ripple’ phenomenon that you’re referring to?

      We will do this! For now, you can get a decent understanding of what the ‘ripple effect’ looks like from the ‘eyes closed’ hallucination condition for networks trained on CIFAR10 (Fig. 2d). The ripple effect that we are referring to is very similar, except it is superimposed on a naturalistic image under ordinary viewing conditions; to give a higher quality visualization of the ripple phenomenon itself, we will subtract out the static contribution of the image itself, leaving only the ripple phenomenon.

      Could you provide a more nuanced description of alternative roles for top-down feedback, beyond being used exclusively for learning as depicted in your model?

      For the sake of simplicity, we only treat top-down inputs in our model as a source of an instructive teaching signal, the originator of generative replay events during the Sleep phase, and as the mechanism of hallucination generation. However, as discussed in a response to a previous question, in the cortex pyramidal neurons receive and respond to a mixture of top-down and bottom-up processing.

      There are a variety of theories for what role top-down inputs could play in determining network activity. To name several, top-down input could function as: 1) a denoising/pattern completion signal (Kadkhodaie & Simoncelli, 2021), 2) a feedback control signal (Podlaski & Machens, 2020), 3) an attention signal (Lindsay, 2020), 4) ordinary inputs for dynamic recurrent processing that play no specialized role distinct from bottom-up or lateral inputs except to provide inputs from higher-order association areas or other sensory modalities (Kar et al., 2019; Tugsbayar et al., 2025). Though our model does not include these features, they are perfectly consistent with our approach.

      In particular, denoising/pattern completion signals in the predictive coding framework (closely related to the Wake-Sleep algorithm) also play a role as an instructive learning signal (Salvatori et al., 2021); and top-down control signals can play a similar role in some models (Gilra & Gerstner, 2017; Meulemans et al., 2021). Thus, options 1 and 2 are heavily overlapping with our approach, and are a natural consequence of many biologically plausible learning algorithms that minimize a variational free energy loss (Rao & Ballard, 1997; Ackley et al., 1985). Similarly, top-down attentional signals can exist alongside top-down learning signals, and some models have argued that such signals can be heavily overlapping or mutually interchangeable (Roelfsema & van Ooyen, 2005). Lastly, generic recurrent connectivity (from any source) can be incorporated into the Wake-Sleep algorithm (Dayan & Hinton, 1996), though we avoided doing this in the present study due to an absence of empirical architecture exploration in the literature and the computational complexity associated with training on time series data.

      To conclude, there are a variety of alternative functions proposed for top-down inputs onto pyramidal neurons in the cortex, and we view these additional features as mutually compatible with our approach; for simplicity we did not include them in our model, but we believe that these features are unlikely to interfere with our testable predictions or empirical results.

    1. Reviewer #3 (Public review):

      Summary:

      In this study, the authors were looking at neurocorrelates of behavioural differences within the genus Macaca. To do so, they engaged in real-world dissection of dead animals (unconnected to the present study) coming from a range of different institutions. They subsequently compare different brain areas, here the amygdala and the hippocampus, across species. Crucially, these species have been sorted according to different levels of social tolerance grades (from 1 to 4). 12 species are represented across 42 individuals. The sampling process has weaknesses ("only half" of the species contained by the genus, and Macaca mulatta, the rhesus macaque, representing 13 of the total number of individuals), but also strengths (the species are decently well represented across the 4 grades) for the given purpose and for the amount of work required here. I will not judge the dissection process as I am not a neuroanatomist, and I will assume that the different interventions do not alter volume in any significant ways / or that the different conditions in which the bodies were kept led to the documented differences across species.

      There are two main results of the study. First, in line with their predictions, the authors find that more tolerant macaque species have larger amygdala, compared to the hippocampus, which remains undifferentiated across species. Second, they also identify developmental effects, although with different trends: in tolerant species, the amygdala relative volume decreases across the lifespan, while in intolerant species, the contrary occurs. The results look quite strong, although the authors could bring up some more clarity in their replies regarding the data they are working with. From one figure to the other, we switch from model-calculated ratio to model-predicted volume. Note that if one was to sample a brain at age 20 in all the grades according to the model-predicted volumes, it would not seem that the difference for amygdala would differ much across grades, mostly driven with Grade 1 being smaller (in line with the main result), but then with Grade 2 bigger than Grade 3, and then Grade 4 bigger once again, but not that different from Grade 2.

      Overall, despite this, I think the results are pretty strong, the correlations are not to be contested, but I also wonder about their real meaning and implications. This can be seen under 3 possible aspects:

      (1) Classification of the social grade

      While it may be familiar to readers of Thierry and collaborators, or to researchers of the macaque world, there is no list included of the 18 behavioral traits used to define the three main cognitive requirements (socio-cognitive demands, predictability of the environment, inhibitory control). It would be important to know which of the different traits correspond to what, whether they overlap, and crucially, how they are realized in the 12 study species, as there could be drastic differences from one species to the next. For now, we can only see from Table S1 where the species align to, but it would be a good addition to have them individually matched to, if not the 18 behavioral traits, at least the 3 different broad categories of cognitive requirements.

      (2) Issue of nature vs nurture

      Another way to look at the debate between nature vs nurture is to look at phylogeny. For now, there is no phylogenetic tree that shows where the different grades are realized. For example, it would be illuminating to know whether more related species, independently of grades, have similar amygdala or hippocampus sizes. Then the question will go to the details, and whether the grades are realized in particular phylogenetic subdivisions. This would go in line with the general point of the authors that there could be general species differences.

      With respect to nurture, it is likely more complicated: one needs to take into account the idiosyncrasies of the life of the individual. For example, some of the cited literature in humans or macaques suggests that the bigger the social network, the bigger the brain structure considered. Right, but this finding is at the individual level with a documented life history. Do we have any of this information for any of the individuals considered (this is likely out of the scope of this paper to look at this, especially for individuals that did not originate from CdP)?

      (3) Issue of the discussion of the amygdala's function

      The entire discussion/goal of the paper, states that the amygdala is connected to social life. Yet, before being a "social center", the amygdala has been connected to the emotional life of humans and non-humans alike. The authors state L333/34 that "These findings challenge conventional expectations of the amygdala's primary involvement in emotional processes and highlight the complexity of the amygdala's role in social cognition". First, there is no dichotomy between social cognition and emotion. Emotion is part of social cognition (unless we and macaques are robots). Second, there is nowhere in the paper a demonstration that the differences highlighted here are connected to social cognition differences per se. For example, the authors have not tested, say, if grade 4 species are more afraid of snakes than grade 1 species. If so, one could predict they would also have a bigger amygdala, and they would probably also find it in the model. My point is not that the authors should try to correlate any kind of potential aspect that has been connected to the amygdala in the literature with their data (see for example the nice review by Domínguez-Borràs and Vuilleumier, https://doi.org/10.1016/B978-0-12-823493-8.00015-8), but they should refrain from saying they have challenged a particular aspect if they have not even tested it. I would rather engage the authors to try and discuss the amygdala as a multipurpose center, that includes social cognition and emotion.

      Strengths:

      Methods & breadth of species tested.

      Weaknesses:

      Interpretation, which can be described as 'oriented' and should rather offer additional views.

    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1 (Public review):

      We thank reviewer 1 for the helpful comments. As indicated in the responses below, we have taken all comments and suggestions into consideration in this revised version of the manuscript.

      Weaknesses:

      While this study convincingly describes the phenotype seen upon Drp1 loss, my major concern is that the mechanism underlying these defects in zygotes remains unclear. The authors refer to mitochondrial fragmentation as the mechanism ensuring organelle positioning and partitioning into functional daughters during the first embryonic cleavage. However, could Drp1 have a role beyond mitochondrial fission in zygotes? I raise these concerns because, as opposed to other Drp1 KO models (including those in oocytes) which lead to hyperfused/tubular mitochondria, Drp1 loss in zygotes appears to generate enlarged yet not tubular mitochondria. Lastly, while the authors discard the role of mitochondrial transport in the clustering observed, more refined experiments should be performed to reach that conclusion.

      It would be difficult to answer from this study whether Drp1 plays a role beyond mitochondrial fission in zygotes. However, the reasons why Drp1 KO zygotes differ from the somatic Drp1 KO model can be discussed as follows.

      First, the reviewer mentioned that the loss of Drp1 in oocytes leads to hyperfused/tubular mitochondria, but in fact, unlike in somatic cells, the EM images in Drp1 KO oocytes show enlarged mitochondria rather than tubular structures (Udagawa et al., Curr Biol. 2014, PMID: 25264261, Fig. 2C and Fig. S1B-D), as in the case of zygotes in this study. Mitochondria in oocytes/zygotes have the shape of a small sphere with an irregular cristae located peripherally. These structural features may be the cause of insensitivity or resistance to inner membrane fusion the resultant failure to form tubular mitochondria as seen in somatic cell models. Nonetheless, quantitative analysis of EM images in the revised version confirmed that the mitochondria of Drp1-depleted embryos were not only enlarged but also significantly elongated (Figure 2J-2M). Therefore, in Drp1-depleted embryos, significant structural and functional (e.g., asymmetry between daughters) changes in mitochondria were observed, and these are expected to lead to defects in the embryonic development.

      As for mitochondrial transport, we do not fully understand the intent of this question, but we do not entirely rule out mitochondrial transport. At least clustered mitochondria did not disperse again, but how mitochondria behave through the cytoskeleton within clusters will require further study, as the reviewer pointed out.

      Reviewer #1 (Recommendations For The Authors):

      (1) The authors show no effect of Myo19 Trim-Away, yet it remains unclear whether myo19 is involved in the positioning of mitochondria around the spindle. Judging by their co-localization during that stage, it might be. Therefore, in the absence of myo19, mitochondria might remain evenly distributed throughout mitosis, thus passively resulting in equal partitioning to daughter cells, with no severe developmental defects. Could the authors show a video of the whole process and discuss it?

      We have newly performed live imaging of mitochondria and chromosomes in Myo19 Trim-Away zygotes (n=13). As shown in Figure 1-figure supplement 2 and Figure 1-Video 2, there were no obvious changes in mitochondrial (and chromosomal) dynamics throughout the first cleavage and no significant mitochondrial asymmetry was observed, Therefore, we conclude that depletion of Myo19 does not cause mitochondrial asymmetry during embryonic cleavage. These results are described in the revised manuscript (Line 218-221).

      (2) Mitochondrial aggregation upon Drp1 depletion should be characterized in more detail: for example, % of mitochondria free, % in small clusters (> X diameter), and % in big clusters (>Y diameter).

      In the revised version, mitochondrial aggregation has been quantified by comparing the cluster size and number in control, Drp1 Trim-Away and Drp1 Trim-Away embryos expressing exogenous Drp1 (mCh-Drp1) (Figure 2G, 2H). In control embryos, mitochondria were interspersed in a large number of small clusters, while in Drp1-depleted embryos, mitochondria became highly aggregated into a small number of large clusters that was reversed by expression of mCh-Drp1. These results are described in the revised manuscript (Line 242-245).

      (3) The discrepancies with parthenogenetic embryos derived from Drp1 (-/-) parthenotes should be commented on. Quantification of the dimensions of the clusters would help establish the degree of similarity/difference. Could the authors comment on their hypothesis as to why the clusters are remarkably larger in Drp1 depleted zygotes?

      In the revised version, we have quantified the mitochondrial aggregation in Drp1 KO parthenotes (Figure 2-figure supplement 1; the data for Drp1 KO parthenotes has been reorganized into the supplemental figure, due to lack of space in figure 2 caused by the addition of quantitative data for Drp1 Trim-Away embryos). The size of mitochondrial clusters in Drp1 KO parthenotes was significantly increased compared to controls, but as the reviewer noted, mitochondrial aggregation appears to be moderate compared to that in Drp1-depleted embryos. The phenotypic discrepancies in two Drp1-deficient embryo models is discussed below.

      First, it is clear that phenotypic severity of Drp1 KO oocytes is dependent on the age of the female. Indeed, oocytes collected from 8-week-old female arrested meiosis after NEB, mainly due to marked mitochondrial aggregation (Udagawa et al., Curr Biol. 2014, PMID: 25264261), whereas oocytes from juvenile female completed meiosis (Adhikari et al., Sci Adv. 2022, PMID: 35704569), and thus Drp1 KO pathenotes were obtained from juvenile female in the present study. Comparison of mitochondrial morphology in Drp1 KO oocytes in both papers also suggests that mitochondrial aggregation in adult mice is more intense (Udagawa et al., Curr Biol. Fig. 2A) than in juvenile mice (Adhikari et al., Sci Adv. 2022: Fig. 1G, 1H), and appears to be similar to Drp1-depleted embryos in this study (Figure 2E). There may be differences in the level of Drp1 depletion in these Drp1-deficient oocytes/zygotes. Similar results occurring between juvenile and adult KO female have been reported in a previous paper (Yueh et al., Development 2021, PMID: 34935904), as adult-derived Smac3<sup>Δ/Δ<?sup> zygotes arrested at the 2-cell stage, whereas juvenile-derived Smac3<sup>Δ/Δ<?sup> zygotes have developmental competence comparable to the wild type. Remarkably, the SMC3 protein levels in juvenile Smac3<sup>Δ/Δ<?sup> oocytes was also comparable to Smc3<sup>fl/fl</sup>. The authors surmised that the decline maternal SMC3 between juvenile and sexual maturity is probably due to the continuous induction of the promoter-Cre driver, suggesting that similar induction may also occur in Drp1 KO oocytes. In addition, we also observed not only age differences but also batch differences in Drp1 KO oocytes (and resulting embryos) such that little mitochondrial aggregation was observed in oocytes collected from some juvenile KO colonies. Therefore, for KO models showing age (sexual maturation)-dependent gradual phenotypic changes, Trim-way may be an approach that provides more reproducible results as it induces acute degradation of maternal proteins.

      (4) Mitochondrial clusters in Drp1 trim-away zygotes resemble those seen when defects in mitochondrial positioning are obtained by TRAK2 induction (PMID: 38917013), pointing again to a role of actin in the clustering process. Could the authors explore the role of actin further?

      TRAK2 and microtubule-dependent mechanisms may also be involved in mitochondrial dynamics during the first cleavage division, possibly in association with migration of two pronuclei. Although the mitochondrial aggregation induced by TRAK2 overexpression is similar to that in Drp1-depleted embryos, it is unlikely that changes at the EM level occurred as seen in Drp1-depleted embryos (enlarged mitochondria, etc.). In addition, in TRAK2-overexpressing embryos, rather than uneven partitioning of mitochondria, the daughter blatomeres themselves were uneven in size after cleavage, making it difficult to precisely assess the similarity between the two models.

      Regarding the role of F-actin, we show that the subcellular distribution of cytoplasmic actin overlaps with that of mitochondria throughout the first cleavage and seems to accumulate in aggregated mitochondria, particularly during the mitotic phase, as higher correlation was observed (Figure 1E). Although it was not observed that actin and the myo19 motor regulate mitochondrial partitioning, as reported in somatic cell-based studies, it is possible that actin accumulated in mitochondria may be indirectly involved in mitochondrial dynamics via mitochondrial fission. For example, inverted formin 2 (INF2) enhance actin polymerization and is required for efficient mitochondrial fission as an upstream function of Drp1 (Korobova et al., Science 2013, PMID: 23349293). In the revised manuscript, we have added the description on this point. (Line 452-456)

      (5) Electron microscopy images showed indeed aberrant morphology of the mitochondria, yet not a hyperfused morphology. Aspect ratio (long/short axis) quantification should be included, besides the current measurement, since mitochondria in Drp1 trim-away look bigger yet as round as in the control.

      In the revised version, detailed quantitative data on EM images has been added (Figure 2J-2M). In Drp1 depleted embryos, significant increases were observed in both the major and minor axes of mitochondria. As the reviewer noted, we also assumed that mitochondria in depleted embryos were enlarged rather than elongated, but the quantification of aspect ratio shows that significant elongation occurred. These results has been described in the revised manuscript (Line 252-256).

      (6) Why are mitochondria in golgi-mcherry-expressing cells showing a different morphology of the clusters?

      As noted by the reviewer, compared to other mitochondrial images, Drp1-depleted embryos expressing Golgi-mCherry appear to have less mitochondrial aggregation. The exact reason is not known, but may be due to inter-lot variation of Trim21 mRNA used in this experiment. Nevertheless, substantial mitochondrial aggregation was observed compared to the control, which does not seem to affect the conclusion.

      (7) Authors comment on ROS being enriched (highly accumulated) in mitochondria. However, while quantification is missing, it might seem that ROS are equally distributed in control or Drp1 Trim-Away embryos. Could the authors quantify ROS signal inside and outside of the mitochondria, perhaps using a mask drawn by mitotracker? Furthermore, it would make these data more convincing to artificially induce/deplete ROS to validate the sensitivity of the technique to variations. Also, why is ROS pattern referred to as ectopic?

      Thank you for your useful suggestions. In the revised version, masked binary images were created from mitochondrial images to quantify ROS levels inside and outside mitochondria (Line 734-741). The result shows the accumulation of ROS to mitochondria in Drp1-depleted embryos (Figure 4-figure supplement 1E). The term ectopic was used to mean excessive accumulation of ROS in the mitochondria compared to normal embryos, but has been deleted as it is not very accurate.

      Minor comments:

      (A) Video 1: images at t=-00:20 and t=00:00 of the mtGFP are actually the same images as H2B-mCherry.

      Probably a faulty filter/shutter control failed to capture GFP fluorescence at these times. It appears that the autocontrast function detected a small amount of mCherry fluorescence leakage. It would be possible to replace it with another video, but as the relevant frame were unrelated to the analysis, the previous video was used as is. The same problem also occurs in the newly added Myo19-depleted zygote movie (Figure 1-Video 2, 03:15).

      (B) Could you calculate the degree of colocalization between mt-GFP and ER-mCherry in ctrl and Drp1 trim-away? While it is apparent that ER is somehow more associated with mitochondrial clusters, it would be informative to quantify it.

      Since the ER is partially confined to the mitochondrial aggregation site, it was difficult to calculate correlation coefficients from fluorescence images of mt-GFP and ER-mCherry to quantitatively assess colocalization. Instead, line scan analysis of whole mitochondrial clumps showed that the peak of the ER-mCherry signal overlaps with that of mt-GFP, but this is not the case for Golgi-mCherry or peroxisome-mCherry (Figure 2-figure supplement 2A-2C).

      (C) Regarding the developmental arrest: The quantification of the different stages at each developmental time could be more informative. For example, at E4.5 how many embryos are at each stage (2-cell, 4-cell, ... blastocyst)? Also, could the authors comment on the reduction in developmental competence in Figure 4C, regarding the blastocyst stage?

      Many arrested embryos do not maintain their morphologies and undergo a unique degenerative process over time, known as cell fragmentation. Therefore, it is difficult to accurately determine the number of each developmental stage at, for example, E4.5 days. In this study, the 2-cell stage was observed at E1.5, the 4-8 cell at E2.5-E3.0, morula at E3.5 and the blastocyst at E4.5.

      Although the rate of embryos reaching the blastocyst stage was reduced compared to that of normal embryos, the overexpression of mCh-Drp1 may explain the failure of complete restoration of developmental competence, since embryos injected solely with mCh-Drp1 mRNA also showed reduced developmental competence. For rescue experiments, the comparison with internal controls is more important and therefore we described below. This is a specific effect of Drp1 deletion because none of the internal control conditions increased arrest at the 2-cell stage and arrest was completely reversed by microinjecting Trim-away insensitive exogenous mCh-Drp1 mRNA (Line 337-340).

      (D) In lines 103 to 105, proliferation should be changed to division or development.

      In the revised version, proliferation has been changed to division (Line 103).

      (E) Could the authors reference the statement in lines 168-169?

      The following 3 references have been added (Hardy et al., 1993, PMID: 8410824; Meriano et al., 2004, PMID: 15588469; Seikkula et al., 2018, PMID: 29525505).

      (F) Line 448: "Cells lacking Drp1 have highly elongated mitochondria that cannot be divided into transportable units,..." This is clearly not the case for zygotes, so why are then these mitochondria still clustering and not transported elsewhere?

      Although it is difficult to answer this reviewer's question precisely, EM images of Drp1-depleted embryos suggest that individual mitochondria appear not only to be enlarged but also to have increased outer membrane attachment due to excessive aggregation. Thus, these large mitochondrial clumps may therefore be preventing transport.

      Reviewer #2 (Public review):

      We thank reviewer 2 for the helpful comments. As indicated in the responses below, we have taken all comments and suggestions into consideration in this revised version of the manuscript.

      Weaknesses:

      The authors first describe the redistribution of mitochondria during normal development, followed by alterations induced by Drp1 depletion. It would be useful to indicate the time post-hCG for imaging of fertilised zygotes (first paragraph of the results/Figure 1) to compare with subsequent Drp1 depletion experiments.

      In the revised version, the time after hCG has been indicated (Line 176-182). In subsequent Drp1 depletion experiments, the revised version notes that “no significant delay in cell cycle progression was observed following Drp1 depletion (data not shown) compared to control embryos (Figure 1A)” (Line 291-193). There was a slight discrepancy in the time post-hCG between live imaging and immunofluorescence analysis (Figure 1-figure supplement 1A), which may be due to manipulation of zygotes outside incubator during the microinjection of mRNA.

      It is noted that Drp1 protein levels were undetectable 5h post-injection, suggesting earlier times were not examined, yet in Figure 3A it would seem that aggregation has occurred within 2 hours (relative to Figure 1).

      As the reviewer pointed out, the depletion of Drp1 is likely to have occurred at an earlier stage. In this study, due to the injection of various mRNAs to visualize organelles such as mitochondria and chromosomes, observations were started after about 5 h of incubation for their fluorescent proteins to be sufficiently expressed. Therefore, for the Western blot analysis, samples were prepared according to the time of the start of the observation.

      Mitochondria appear to be slightly more aggregated in Drp1 fl/fl embryos than in control, though comparison with untreated controls does not appear to have been undertaken. There also appears to be some variability in mitochondrial aggregation patterns following Drp1 depletion (Figure 2-suppl 1 B) which are not discussed.

      In the revised version, mitochondrial aggregation has been quantified by comparing the cluster size and number in control, Drp1 Trim-Away and Drp1 Trim-Away embryos expressing exogenous Drp1 (mCh-Drp1) (Figure 2G, 2H). We have also quantified the mitochondrial aggregation in Drp1<sup>fl/fl</sup> and Drp1<sup>Δ/Δ</sup> parhenotes (Figure 2-figure supplement 1; note that the data for Drp1 KO parthenotes has been reorganized into the supplemental figure, due to lack of space in figure 2 caused by the addition of quantitative data for Drp1 Trim-Away embryos). Mitochondria appear to be slightly more aggregated in Drp1<sup>fl/fl</sup> embryos than in control, but no significant differences in cluster size or number were observed (data not shown). On the other hand, mitochondrial clusters in Drp1 Trim-Away embryos were remarkably larger than Drp1<sup>Δ/Δ</sup> parhenotes, Please refer to the response to reviewer 1's comment (3) for discussion of this discrepancy.

      As noted by the reviewer, compared to other mitochondrial images, Drp1-depleted embryos expressing Golgi-mCherry appear to have less mitochondrial aggregation. The exact reason is not known, but may be due to inter-lot variation of Trim21 mRNA used in this experiment. Nevertheless, substantial mitochondrial aggregation was observed compared to the control, which does not seem to affect the conclusion.

      The authors use western blotting to validate the depletion of Drp1, however do not quantify band intensity. It is also unclear whether pooled embryo samples were used for western blot analysis.

      In the revised version, the band intensities in Western blot analysis were quantified and validated the previous results (Figure 1H for Myo19 depletion, Figure 2B for Drp1 expression during preimplantation development, Figure 2D for Drp1 depletion). The number of embryos analyzed was described in Figure legends (Pooled samples ranging from 20 to 100 were used).

      Likewise, intracellular ROS levels are examined however quantification is not provided. It is therefore unclear whether 'highly accumulated levels' are of significance or related to Drp1 depletion.

      In the revised version, masked binary images were created from mitochondrial images to quantify ROS levels inside and outside mitochondria (Line 734-741). The result shows the accumulation of ROS to mitochondria in Drp1-depleted embryos (Figure 4-figure supplement 1E).

      In previous work, Drp1 was found to have a role as a spindle assembly checkpoint (SAC) protein. It is therefore unclear from the experiments performed whether aggregation of mitochondria separating the pronuclei physically (or other aspects of mitochondrial function) prevents appropriate chromosome segregation or whether Drp1 is acting directly on the SAC.

      In the revised manuscript, we have discussed this reference (Zhou et al., Nature Communications, PMID: 36513638) (Line 482-483).

      Reviewer #2 (Recommendations For The Authors):

      The authors report that disruption of F-actin organization led to asymmetry in mitochondrial inheritance, however depletion of Myo19 does not impact inheritance. The authors note in the discussion that loss of another mitochondrial motor protein, Miro, has been shown to affect mitochondrial inheritance. They suggest this may be due to reduced levels of Myo19, despite data from the present study suggesting a lack of involvement of Myo19. Given that Miro1 also interacts with microtubules, and crosstalk between actin filaments and microtubules has been reported, have the authors considered whether other motor proteins, such as KIF5, may be involved in mitochondrial movement in the zygote and therefore inheritance? Myo19 also plays a role in mitochondrial architecture. Were any differences noted at the EM level?

      During oocyte meiosis and early embryonic cleavage, kinesin-5 has been reported to be important for the formation of bipolar spindles (Fitzharris, Curr Biol., 2009, PMID: 19465601) and may have some involvement in mitochondrial dynamics. Given that the migration of two pronuclei towards the zygotic centre is dynein-dependent manner (Scheffler Nat Commun. 2021PMID: 33547291), dynein may also be involved in the process of mitochondrial accumulation around the pronuclei. Nevertheless, whether microtubule-dependent mechanisms regulate mitochondrial partitioning remains controversial. Mitochondria basically diverge from microtubules at the onset of mitosis, and indeed Miro1-deleted zygotes did not show the asymmetric mitochondrial partitioning (Lee et al., Front Cell Dev Biol. 2022, PMID: 36325364). More recently, it was reported that overexpression of TRAK2 causes significant mitochondrial aggregation in embryos (Lee et al., Proc Natl Acad Sci U S A. 2024, PMID: 36325364), but since overexpression might disrupt a regulatory balance by other motors/adaptor complexes, further investigation using TRAK2-deficient embryos is expected.

      As noted by the reviewer, myo19 seems to be important for the maintenance of mitochondrial cristae architecture and, consequently, for the regulation of mitochondrial function (Shi et al., Nat Commun. 2022, PMID: 35562374). We have not observed the EM images in myo19-depleted embryos, but we examined their membrane potential and ROS by TMRM and H2DCF staining, respectively, and confirmed that they were comparable to control embryos (data not shown). The loss of myo19 in zygotes/embryos did not cause any functional changes in mitochondria, suggesting that mitochondrial architecture may not be substantially affected either.

      Transcriptomic analysis would be useful to identify alterations in cell cycle checkpoint regulators, as well as immunofluorescence to identify changes in spindle assembly checkpoint protein recruitment.

      The present results showed that the majority of Drp1-depleted embryos arrest at the G2 stage, possibly due to cell cycle checkpoint mechanisms. Transcriptome analysis would certainly be beneficial, but eventually more detailed analysis of proteins and their phosphorylation modifications, etc. is needed for accurate assessment. These studies will be the subject of future work.

      Minor comments:

      There are many instances where the English could be improved, particularly the overuse of the word 'the'.

      We have checked the manuscript again carefully and hopefully it has been improved some.

      Line 144: replace 'took' with 'take'.

      We have corrected this in the revised version (Line 140).

      Line 157: it is unclear what is meant by 'hinders the functional importance of Drp1 in mature oocytes and embryos'.

      This description has been corrected to “complicates the functional analysis of Drp1 in mature oocytes and embryos” (Line 152-153)

      Line 198: replace with 'displayed a mitochondrial distribution pattern closely associated with'

      We have corrected this in the revised version (Line 195-196).

      Line 200: provide a time to clarify when the cytoplasmic meshwork was 'subsequently reorganized'

      In the revised version, “at the metaphase” has been added (Line 198).

      Line 204: replace 'to' with 'for'

      We have corrected this in the revised version (Line 203).

      Lines 285-87: consider rearranging the text to improve the flow.

      To improve the flow of text before and after, the following sentence has been added; We postulated that this asymmetry was due to non-uniformity in the distribution of mitochondria around the spindle (Line 295-297)

      Line 418: replace 'central' with 'centre'

      We have corrected this in the revised version (Line 430).

      Line 427: replace 'pertaining' with 'partitioning'

      We have corrected this in the revised version (Line 438).

      Line 574: clarify to what '1-5% of that of the oocytes' refers

      We have corrected it to “1-5% of the total volume of the zygote.” (Line 587-588).

      Line 619: indicate the dilution used

      We apologize for the previous incorrect description. We used a part of the extract as the template, not a dilution, and have corrected it to be accurate (Line 631-632).

      Line 634: replace 'on' with 'in' and detail in which medium embryos were mounted.

      We have corrected this in the revised version (Line 647).

      Please check all spelling in the figures.

      Figure 1J - inheritance is spelt incorrectly.

      Figure-Suppl 1, D: Interphase (PN) and (2-cell) is spelt incorrectly. G: inheritance is spelt incorrectly.

      Figure 5F - bottom section prior to cytokinesis, spindle is spelt 'spincle'

      Ensure consistency in abbreviation use (e.g. use of NEB and NEBD).

      Thank you for your careful correction of typographical errors. In the revised version, all points raised by the reviewers have been corrected.

      Reviewer #3 (Public review):

      We thank reviewer 2 for the helpful comments. As indicated in the responses below, we have taken all comments and suggestions into consideration in this revised version of the manuscript.

      Seemingly, there are few apparent shortcomings. Following are the specific comments to activate the further open discussion.

      Line 246: Comments on cristae morphology of mitochondria in Drp1-depleted embryos would better be added.

      In the revised manuscript, we have added the following comment; swollen or partially elongated mitochondria with lamella cristae structures in the inner membrane were observed in Drp1 depleted embryos. In addition, the quantification of aspect ratio (long/short axis) shows that significant mitochondrial elongation was occurred (Figure 2M). These results has been described in the revised manuscript (Line 251-256).

      - Regarding Figure 2H: If possible, a representative picture of Ateam would better be included in the figure. As the authors discussed in line 458, Ateam may be able to detect whether any alterations of local energy demand occurred in the Drp1-depleted embryos.

      Thank you for your very useful comments. Although it would be interesting to investigate whether alterations in ATP levels occurred in localized areas (e.g., around the spindle), the present study used conventional fluorescence microscope instead of confocal laser microscopy to observe ATeam fluorescence in order to quantify the fluorescence intensity in the whole embryo (or whole blastomere) and thus we currently cannot provide the images that reviewer expected. As shown in Figure-figure supplement 1C, the ATP levels tend to be higher at the cell periphery in control and at the mitochondrial aggregation areas in Drp1-depleted embryos, but it would need high resolution images using confocal microscopy to show it clearly.

      - Line 282: In Figure 3-Video 1, mitochondria were seemingly more aggregated around female pronucleus. Is it OK to understand that there is no gender preference of pronuclei being encircled by more aggregated mitochondria?

      Review of multiple videos shows that aggregated mitochondria were localized toward the cell center, but did not exhibit the behavior of preferentially concentrating near the female pronucleus.

      - Line 317: A little more explanation of the "variability" would be fine. Does that basically mean that the Ca<sup>2+</sup> response in both Drp1-depleted blastomeres were lower than control and blastomere with more highly aggregated mitochondria show severer phenotype compared to the other blastomere with fewer mito?

      We think that the reviewer's comments are mostly correct. It is clear that there is a bias in Ca<sup>2+</sup> store levels between blastomeres of Drp1 depleted embryos, However, since mitochondria were not stained simultaneously in this experiment, we cannot draw conclusions in detail, such that daughter blastomere that inherit more mitochondria have higher Ca<sup>2+</sup> stores, or that blastomere with more aggregated mitochondria have lower Ca<sup>2+</sup> stores.

      - Regarding Figure 5B (& Figure 1-figure supplement 1B): Do authors think that there would be less abnormalities in the embryos if Drp1 is trim-awayed after 2-cell or 4-cell, in which mitochondria are less involved in the spindle?

      The marked centration of mitochondrial clusters in Drp1-depleted embryos appears to be associated with migration of the pronuclei toward the cell center, which is unique to the first embryonic cleavage. Since the assembly of the male and female pronuclei at the cell center is also unique to the first cleavage, binucleation due to mitochondrial misplacement was observed only in the first cleavage. Therefore, if Drp1 is depleted at the 2-cell or 4-cell stage, chromosome segregation errors may be less frequent. However, since unequal partitioning of mitochondria is thought to occur, some abnormalities in embryonic development is likely to be observed.

      Reviewer #3 (Recommendations For The Authors):

      Specific comments

      - Line 262: "Since mitochondrial dynamics are spatially coordinated at the ER-mitochondria MCSs," adequate ref. would better be added.

      We have added an adequate reference to the revised manuscript (Friedman et al., 2011, PMID: 21885730).

      - Line 333-336: "...as assessed by the presence of the nuclear envelope." Do authors show the data? In Figure 4-figure supplement 1A, the difference of the phosphoH3-ser10 signal between control and Trim-Away group might be weak. For clarity, it would be helpful if authors indicate the different points to note in the figure.

      Although the data is not shown, nuclear staining of arrested 2-cell stage embryos exhibited clear nuclear membranes, similar to the DAPI image in Figure 4-figure supplement 1A. We have indicated that the data is not shown in the revised version (Line 345). Based on a report that phosphorylated histone H3 (Ser10) localizes in pericentromeric heterochromatin that hat can be visualized by DAPI staining in late G2 interphase cell (Hendzel et al., 1997, Chromosoma, PMID: 9362543), this study qualitatively estimated the G2 phase from the phosphorylated histone H3 signal and the DAPI counterstained images. We have noted this point in the revised figure legend (Line 1012-1014).

      Typos or points for reword/rephrase

      - Line 149: "molecular identification" may better be " molecular characteristics".

      We have corrected this in the revised version (Line 145).

      - Line 157: "hinders the functional importance" would be "implies the functional importance" or "complicates the functional analysis".

      We have corrected this in the revised version (Line 152-153).

      - Line 208: "Since the role of F-actin in many cellular events, such as cytokinesis, preclude them as targets for experimentally manipulating mitochondrial distribution, " may better be "Given many cellular roles, disruption of F-actin per se was unsuitable as a strategy for manipulating mitochondrial distribution", for example.

      We have corrected this in the revised version (Line 207-208).

      - Line 260: "with MCSs with the plasma.." may better be "with MCSs such as with the plasma..".

      We have corrected this in the revised version (Line 267-268).

      - Line 312: "distribution and segregation" may better be "distribution and the resulting segregation of the inter-organelle contacts".

      We have corrected this in the revised version (Line 324-325).

      - Line 427: "pertaining" might be "partitioning".

      We have corrected this in the revised version (Line 438).

      Line 463: "loss of Drp1 induced mitochondrial aggregation disturbs" may better be "mitochondrial aggregation induced by the loss of Drp1 disturbs".

      We have corrected this in the revised version (Line 478-479).

      - Line 752: "endoplasmic reticulum (pink) " would be " endoplasmic reticulum (aqua) ".

      We have corrected this in the revised version (Line 780).

      - Figure 5E: "(Noma 2-cell embryos)" would be "(Nomal 2-cell embryos)".

      - Figure 5F: "Mitochondrial centration prevents dual spincle assembly" would be "Mitochondrial centration prevents dual spindle assembly".

      Thank you for your careful correction of typographical errors. We have corrected all the words/expressions the reviewer pointed out in the revised version.

    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1 (Public review):

      Weaknesses:

      (1) The selection of inactivated conformations based on AlphaFold modeling seems a bit biased. The authors base their selection of the “most likely” inactivated conformation on the expected flipping of V625 and the constriction at G626 carbonyls. This follows a bit of the “Streetlight effect”. It would be better to have selection criteria that are independent of what they expect to find for the inactivated state conformations. Using cues that favour sampling/modeling of the inactivated conformation, such as the deactivated conformation of the VSD used in the modeling of the closed state, would be more convincing. There may be other conformations that are more accurately representing the inactivated state. I see no objective criteria that justify the non-consideration of conformations from cluster 3 of the inactivated state modeling. I am not sure whether pLDDT is a good selection criterion. It reports on structural confidence, but that may not relate to functional relevance.

      We sincerely thank the reviewer for their perceptive critique highlighting potential bias in selecting the inactivated conformation. We recognize that over-relying on preconceived traits could limit exploration of diverse inactivated states, and we appreciate the opportunity to address this concern.

      Although we selected the model with the flipped V625 in the selectivity filter (SF) from the first round of inactivated-state sampling as the template for the second round, the resulting models still exhibited substantial diversity in their SF conformations. This selection primarily served to steer predictions away from the open-state configuration observed in the PDB 5VA2 SF, and we have clarified this rationale in the Methodology section. To assess conformational variability, we examined backbone dihedral angles (phi φ and psi ψ) at key residues in the selectivity filter (S624 – G628) and drugbinding region on the pore-lining S6 segment (Y652, F656), of all 100 models sampled in the subsequent inactivatedstate-sampling attempt. By overlaying the φ and ψ dihedral angles from different models, including the open state (PDB 5VA2-based), the closed state, and representative models from AlphaFold inactivated-state-sampling Cluster 2 and Cluster 3, we found that these conformations consistently fall within or near high-probability regions of the dihedral angle distributions. This indicates that these structural states are well represented within the ensemble of conformations sampled by AlphaFold within the scope of this study, particularly at functionally critical positions.

      Following the analysis above and consistent with the reviewer’s suggestion, we evaluated the top representative model from inactivated-state-sampling Cluster 3 (named “AF ic3”), which we had initially excluded. This model demonstrated SF residue G626 carbonyl oxygen flipped away from the conduction pathway, hinting at potential impact on ion conduction, yet its pore region structurally resembled the open state (Figure S9a, b). To test this objectively, we ran molecular dynamics (MD) simulations (2 runs, 1 μs long each, with applied 750 mV voltage) with varied initial ion/water configurations in the SF, finding it consistently open and conducting throughout (Figure S9c, d), consistent with our previous observations in Figure S11 that ion conduction can still occur when the upper SF is dilated. Drug docking (Figure S12) further revealed that the model exhibited binding affinities similar to those for the PDB 5VA2-based openstate structure. These findings combined led us to classify it as a possible alternative open-state conformation.

      Models from Cluster 4 were not tested due to extensive steric clashes, where residues in the SF overlapped with neighboring residues from adjacent subunits. The remaining models displayed SF conformations that combined features from earlier clusters. However, due to subunit-to-subunit variability, where individual subunits adopted differing conformations, they were classified as outliers. This combination of features may be valuable to investigate further in a follow-up study.

      We acknowledge that our approach is just one of many ways to sample different states, and alternative strategies, such as generating more models, varying multiple sequence alignment (MSA) subsampling, or testing different templates, might reveal improved models. Given that hERG channel inactivation likely spans a spectrum of conformations, our resource limitations may have restricted us to exploring and validating only part of this diversity. Nevertheless, the putative inactivated (AlphaFold Cluster 2) model’s non-conductivity and improved affinity for drugs targeting the inactivated state observed in our study suggests that this approach may be capturing relevant features of the inactivated-state conformation. We look forward to investigating deeper other possibilities in a future study and are grateful for the reviewer’s feedback.

      (2) The comparison of predicted and experimentally measured binding affinities lacks an appropriate control. Using binding data from open-state conformations only is not the best control. A much better control is the use of alternative structures predicted by AlphaFold for each state (e.g. from the outlier clusters or not considered clusters) in the docking and energy calculations. Using these docking results in the calculations would reveal whether the initially selected conformations (e.g. from cluster 2 for the inactivated state) are truly doing a better job in predicting binding affinities. Such a control would strengthen the overall findings significantly.

      We appreciate the reviewer’s insightful suggestion. To address this, we extended our analysis by incorporating an alternative AlphaFold2-predicted model from inactivated-state-sampling cluster 3 as a structural control. This model was established in a previously discussed analysis to be open and conducting as a follow up to comment #1, so we will call it Open (AF ic3) to differentiate it from Open (PDB 5VA2). We evaluated this new model in single-state and multi-state contexts alongside our original open-state model based on the experimental PDB 5VA2 structure. Additionally, we expanded the drug docking procedure to explore a broader region around the putative drug binding site by increasing the sampling space, and we adopted an improved approach for selecting representative docking poses to better capture relevant binding modes.

      Shown in Figure 7 are comparisons of experimental drug potencies with the binding affinities from the molecular docking calculations under the following conditions:

      (a) Single-state docking using the experimentally derived open-state structure (PDB 5VA2)

      (b) Multi-state docking incorporating open (PDB 5VA2), inactivated, and closed-state conformations weighted by experimentally observed state distributions

      (c) Single-state docking using an alternative AlphaFold-predicted open-state (inactivated-state-sampling cluster 3, AF ic3)

      (d) Multi-state docking combining the AlphaFold-predicted open-state (inactivated-state-sampling cluster 3, AF ic3)

      Using only the open-state model (PDB 5VA2) yielded a moderate correlation with experimental data (R<sup>2</sup> = 0.43, r = 0.66, Figure 7a). Incorporating multi-state binding (weighted by their experimental distributions) improved the correlation substantially (R<sup>2</sup> = 0.63, r = 0.79, Figure 7b), boosting predictive power by 47% and underscoring the value of multi-state modeling. Importantly, this improvement was achieved without considering potential drug-induced allosteric effects on the hERG channel conformation and gating, which will be addressed in future work.

      Next, we substituted the PDB 5VA2-based open-state model with the AF ic3 open-state model. Docking to this alternative model alone produced similar performance (R<sup>2</sup> = 0.44, r = 0.66, Figure 7c), and incorporating it into the multi-state ensemble further improved the correlation with experiments (R<sup>2</sup> = 0.64, r = 0.80, Figure 7d), representing a 45% gain in R<sup>2</sup> and matching the performance of multi-state docking results based on the PDB 5VA2-derived model.

      These findings suggest that the predictive power of computational drug docking is enhanced not merely by the accuracy of individual models, but by the structural diversity and complementarity provided by an ensemble of protein conformations. Rather than relying solely on a single experimentally determined protein structure, the ensemble benefits from incorporating AlphaFold-predicted models that capture alternative conformations identified through our state-specific sampling approach. These diverse protein models reflect different structural features, which together offer a more comprehensive representation of the ion channel’s binding landscape and enhance the predictive performance of computational drug docking. Overall, these results reinforce that multi-state modeling offers a more realistic and predictive framework for understanding drug – ion channel interactions than traditional single-state approaches, emphasizing the value of both individual model evaluation and their collective integration. We are grateful for the reviewer’s suggestion.

      (3) Figures where multiple datapoints are compared across states generally lack assessment of the statistical significance of observed trends (e.g. Figure 3d).

      We appreciate the reviewer’s comment on the statistical significance assessment in Figure 3d. To clarify, the comparisons shown in the subpanels are based on three selected representative models for each state, rather than a broader population sample (similarly for Figure 3b). In the closed-state predicted models, the strong convergence of the voltagesensing domain (VSD), with an all-atom RMSD of 0.36 Å between cluster 1 and 2 closed-state sampling models and 0.95 Å to the outlier cluster, indicates minimal structural variation. Those RMSD values shown in the manuscript text demonstrates good convergence and by themselves represent statistical significance assessment of those models. This trend extends to open-state and inactivated-state AlphaFold models with similarly limited differences in the VSD regions among them. This convergence suggests that population-based statistical analysis may not reveal meaningful deviations, as the low variability among models limits the insights beyond those obtained from comparing representative structures.

      Nonetheless, we acknowledge this limitation. In future studies, we plan to explore alternative modeling approaches to introduce greater variability, enabling a more robust statistical evaluation of state-specific trends in the predictions.

      (4) Figure 3 and Figures S1-S4 compare structural differences between states. However, these differences are inferred from the initial models. The collection of conformations generated via the MD runs allow for much more robust comparisons of structural differences.

      We have explored these conformational state dynamics through MD simulations for the Open (5VA2-based), Inactivated (AlphaFold Cluster 2), and Closed-state models, as presented in Figures S7, S8, S10, S11. These figures provide detailed insights: Figure S7-S8 analyzes SF and pore conformation dynamics, including averaged pore radii with and without voltage and superimposed conformational ensembles; Figure S10 tracks cross-subunit distances between protein backbone carbonyl oxygens, revealing sequential SF dilation steps near residues F627 an G628; and Figure S11 illustrates this SF dilation process over time, highlighting residue F627 carbonyl flipping and SF expansion. We appreciate the opportunity to clarify our approach.

      Reviewer #2 (Recommendations for the authors):

      Major concerns:

      (1) Protein fragments are used to model the closed and inactivated states of hERG, but the choices of fragments are not well justified. For instance, in Figure 1a, helices from 8EP1 (deactivated voltage-sensing domain) and a helix+loop from 5VA2 (selectivity filter) are used. Why just the selectivity filter and not the cytosolic domain, for instance? Why not some parts of the helices attached to the selectivity filter, or the whole membrane inserted domain of 8EP1? Same for the inactivated conformation in Figure 1c: why the cytosolic domain only?

      We thank the reviewer for their thoughtful questions regarding our choice of protein fragments for modeling the closed and inactivated states of hERG in Figures 1a and 1c, and we appreciate the opportunity to justify these selections more clearly. Our approach to template selection was guided by our experience that providing AlphaFold2 with larger templates often leads it to overly constrain predictions to the input structure, reducing its flexibility to explore alternative conformations. In contrast, smaller, targeted fragments increase the likelihood that AlphaFold2 will incorporate the desired structural features while predicting the rest of the protein. We have provided a more detailed discussion of this in the methodology section.

      For the closed state (Figure 1a), we chose the deactivated voltage-sensing domain (VSD) from the rat EAG channel (PDB 8EP1) to inspire AlphaFold2 to predict a similarly deactivated VSD conformation characteristic of hERG channel closure, as this domain’s downward shift is a hallmark of potassium channel closure. We paired this with the selectivity filter (SF) and adjacent residues from the open-state hERG structure (PDB 5VA2) to maintain its conductive conformation, as it is generally understood that K<sup>+</sup> channel closure primarily involves the intracellular gate rather than significant SF distortion. Including additional helices (e.g., S5–S6) or the entire membrane domain from PDB 8EP1 risked biasing the model toward the EAG channel’s pore structure, which differs from hERG’s, while omitting the cytosolic domain ensured focus on the VSD-driven closure without over-constraining cytoplasmic domain interactions.

      For the inactivated state (Figure 1c), we initially used only the cytosolic domain from PDB 5VA2 to anchor the prediction while allowing AlphaFold2 to freely sample transmembrane domain conformations, particularly the SF, where the inactivation occurs via its distortion. Excluding the SF or attached helices at this stage avoided locking the model into the open-state SF, and the cytosolic domain alone provided a minimal scaffold to maintain hERG’s intracellular architecture without dictating pore dynamics. Following the initial prediction, we initiated more extensive sampling by using one of the predicted SFs that differs from the open-state SF (PDB 5VA2) as a structural seed, aiming to guide predictions away from the open-state configuration. The VSD and cytosolic domain were also included in this state to discourage pore closure during prediction. Using larger fragments, like the full membrane-spanning domains or additional cytosolic regions from the open-state structure might reduce AlphaFold2’s ability to deviate from the open-state conformation, undermining our goal of capturing more diverse, state-specific features.

      It is worth noting that multiple strategies could potentially achieve the predicted models in our study, and here we only present examples of the paths we took and validated. It is likely that many of the steps may be unnecessary and could be skipped, and future work building on our approach can further explore and streamline this process. A consistent theme underlies our choices: for the closed state, we know the VSD should adopt a deactivated (“down”) conformation, so we provide AlphaFold2 with a specific fragment to guide this outcome; for the inactivated state, we recognize that the SF must change to a non-conductive conformation, so we grant AlphaFold2 flexibility to explore diverse conformations by minimizing initial constraints on the transmembrane region.

      With greater sampling and computational resources, it is possible we could identify additional plausible, non-conductive conformations that might better represent an inactivated state, as hERG inactivation may encompass a spectrum of states. In this study, due to resource limitations, we focused on generating and validating a subset of conformations. Still, we acknowledge that broader exploration could further refine these models, which could be pursued in future studies. We updated the Methods and Discussion sections to reflect this perspective, and we are grateful for the reviewer’s input, which encourages us to clarify our rationale and highlight the adaptability of our approach.

      To demonstrate the broader feasibility of this approach, we applied it to another ion channel system, voltage-gated sodium channel Na<sub>V</sub> 1.5, as illustrated in Figure S14. In this example, a deactivated VSD II from the cryo-EM structure of a homologous ion channel Na<sub>V</sub>1.7 (PDB 6N4R) (DOI: 10.1016/j.cell.2018.12.018), which was trapped in a deactivated state by a bound toxin, was used as a structural template. This guided AlphaFold to generate a Na<sub>V</sub>1.5 model in which all four voltage sensor domains (VSD I–IV) exhibit S4 helices in varying degrees of deactivation. Compared to the cryo-EM openstate Na<sub>V</sub>1.5 structure (PDB 6LQA) (DOI: 10.1002/anie.202102196), the predicted model displays a visibly narrower pore, representing a plausible closed state. This example underscores the versatility of our strategy in modeling alternative conformational states across diverse ion channels.

      (2) While the authors rely on AF2 (ColabFold) for the closed and inactivated states, they use Rosetta to model loops of the open state. Why not just supply 5VA2 as a template to ColabFold and rebuild the loops that way? Without clear explanations, these sorts of choices give the impression that the authors were looking for specific answers that they knew from their extensive knowledge of the hERG system. While the modeling done in this paper is very nice, its generalizability is not obvious.

      We appreciate the reviewer’s question about our use of Rosetta to model loops in the open-state hERG channel (PDB

      5VA2) rather than rebuilding it entirely with ColabFold. In the study, we conducted a control experiment supplying parts of PDB 5VA2 to ColabFold to rebuild the loops, generating 100 models (Figure 2a: predicted open state). The top-ranked model (by pLDDT) differed from our Rosetta-modelled structure by only 0.5 Å RMSD, primarily due to the flexible extracellular loops as expected, with the pore and selectivity filter (our areas of focus) remaining nearly identical. We chose the Rosetta-refined cryo-EM structure as this structure and approach have been widely used as an open-state reference in our other hERG channel studies, such as by Miranda et al. (DOI: 10.1073/pnas.1909196117) and Yang et al. (DOI: 10.1161/CIRCRESAHA.119.316404), to ensure that our results are more directly comparable to prior work in the field. Nonetheless, as both models (with loops modeled by Rosetta or AlphaFold) were virtually identical, we would expect no significant differences if either were used to represent the open state in our study. We have incorporated this clarification into the main text.

      (3) pLDDT scores were used as a measure of reliable and accurate predictions, but plDDT is not always reliable for selecting new/alternative conformations (see https://doi.org/10.1038/s41467-024-515072 and https://www.nature.com/articles/s41467-024-51801-z).

      We acknowledge that while pLDDT is a valuable indicator of structural confidence in AlphaFold2 predictions, its limitations warrant consideration. In our revision, we mitigated this by not relying solely on pLDDT, but we also performed protein backbone dihedral angle analysis of the protein regions of focus in all predicted models to ensure comprehensive coverage of conformational variations. From our AlphaFold modeling results, we tested a model from cluster 3 of the inactivated-state sampling process, which exhibited lower pLDDT scores, and included these results in our revised analysis. We included a note in the revised manuscript’s Discussion section: “As noted in recent studies, pLDDT scores are not reliable indicators for selecting alternative conformations (DOI: 10.1038/s41467-024-51507-2 and DOI: 10.1038/s41467-024-51801-z). To address this, we performed a protein backbone dihedral angle analysis in the regions of interest to ensure that our evaluation captured a representative range of sampled conformations.”

      (4) Extensive work has been done using AF2 to model alternative protein conformations (https://www.biorxiv.org/content/10.1101/2024.05.28.596195v1.abstract, along with some references the authors cite, such as work by McHaourab); another group recently modeled the ion channel GLIC (https://www.biorxiv.org/content/10.1101/2024.09.05.611464v1.abstract). Therefore, this work, though generally solid and thorough, seems more like a variation on a theme than a groundbreaking new methodology, especially because of the generalizability issues mentioned above.

      We sincerely thank the reviewer for acknowledging the solidity of our study and for drawing our attention to the impressive recent efforts using AlphaFold2 to explore alternative protein conformations. These studies are valuable contributions that highlight the versatility of AlphaFold2, and we are grateful for their context in evaluating our work.

      Building on these efforts, our approach not only enhances the prediction of conformational diversity but also introduces a twist by incorporating structural templates to guide AlphaFold2 toward specific functional protein states. More significantly, our study advances beyond mere structural modeling by integrating these conformations with their rigorous validation by incorporating multiple simulation results tested against experimental data to reveal that AlphaFold-predicted conformations can align with distinct physiological ion channel states. A key finding is that drug binding predictions using AlphaFold-derived hERG channel states substantially improve correlation with experimental data, which is a longstanding challenge in computational screening of multi-state proteins like the hERG channel, for which previous structural models have been mostly limited to the open state based on the cryo-EM structures. Our approach not only captures this critical state dependence but also reveals potential molecular determinants underlying enhanced drug binding during hERG channel inactivation, a phenomenon observed experimentally but poorly understood. These insights advance drug safety assessment by improving predictive screening for hERG-related cardiotoxicity, a major cause of drug attrition and withdrawal.

      We view our methodology as a natural evolution of the advancements cited by the reviewer, offering an approach that predicts diverse hERG channel conformational states and links them to meaningful functional and pharmacological outcomes. To address the reviewer’s concern about generalizability, we have expanded the methodology section to make it easier to follow and include additional details. As an example, we show how our approach can be applied to model another ion channel system, Na<sub>V</sub>1.5, in Figure S14.

      Furthermore, to enhance the applicability of our methodology, we have uploaded the scripts for analyzing AlphaFoldpredicted models to GitHub (https://github.com/k-ngo/AlphaFold_Analysis), ensuring they are adaptable for a wide range of scenarios with extensive documentation. This enables users, even those not focused on ion channels, to effectively apply our tools to analyze AlphaFold predictions for their own projects and produce publication-ready figures.

      While it is likely that multiple modeling approaches could lead AlphaFold to model alternative protein conformations, the key challenge lies in validating the physiological relevance of those predicted states. This study is intended to support other researchers in applying our template-guided approach to different protein systems, and more importantly, in rigorously in silico testing and validation of the biological significance of the conformation-specific structural models they generate.

      Minor concerns:

      (1) The authors mention in the Introduction section that capturing conformational states, especially for membrane proteins that may be significant as drug targets, is crucial. It would be helpful to relate their work to the NMR studies domains of the hERG channel, particularly the N-terminal “eag” domain, which is crucial for channel function and can provide insights into conformational changes associated with different channel states (https://doi.org/10.1016/j.bbrc.2010.10.132 ).

      We appreciate the reviewer’s insightful comment regarding the PAS domain and the potential influence of other regions, such as the N-linker and distal C-region, on drug binding and state transitions.

      The PAS domain did appear in the starting templates used for initial structural modeling (as shown in Figure 1a, b, c), but it was not included in the final models used for subsequent analyses. The omission was primarily due to hardwareimposed constraints, as including these additional regions would exceed the memory capacity of our current graphics processing unit (GPU) card, leading to failures during the prediction step.

      The PAS domain, even if not serving as a conventional direct drug-binding site, can influence the gating kinetics of hERG channels. By altering the probability and duration with which channels occupy specific states, it can indirectly affect how well drugs bind. For example, if the presence of the PAS domain shifts hERG channel gating so that more channels enter (and remain in) the inactivated state as was shown previously (e.g., DOI: 10.1085/jgp.201210870), drugs with a higher affinity for that state would appear to bind more potently, as observed in previous electrophysiological experiments (e.g., DOI: 10.1111/j.1476-5381.2011.01378.x). It is also plausible that the PAS domain could exert allosteric effects that alter the conformational landscape of the hERG channel during gating transitions, potentially impacting drug accessibility or binding stability. This is an intriguing hypothesis and an important avenue for future research.

      With access to more powerful computational resources, it would be valuable to explore the full-length hERG channel, including the PAS domain and associated regions, to assess their potential contributions to drug binding and gating dynamics. We incorporated a discussion of these points into the main text, acknowledging the limitations of our current models and highlighting the need for future studies to explore these regions in greater detail. The addition reads: “…Our models excluded the N-terminal PAS domain due to GPU memory limitations, despite its inclusion in initial templates. This omission may overlook its potential roles in gating kinetics and allosteric effects on drug binding (e.g., PMID: 21449979, PMID: 23319729, PMID: 29706893, PMID: 30826123, DOI:10.4103/jpp.JPP_158_17). Future research will explore the full-length hERG channel with enhanced computational resources to assess these regions’ contributions to conformational state transitions and pharmacology.”

      (2) In the second-to-last paragraph of the Introduction, the authors describe how AlphaFold2 works. They write, “AlphaFold2 primarily requires the amino acid sequence of a protein as its input, but the method utilizes other key elements: in addition to the amino acid sequence, AlphaFold2 can also utilize multiple sequence alignments (MSAs) of similar sequences from different species, templates of related protein structures when available, and/or homologous proteins (Jumper et al., 2021a). Evolutionarily conserved regions over multiple isoforms and species indicated that the sequence is crucial for structural integrity”. The last sentence is confusing; if the authors mean that all information required to fold the protein into its 3D structure is present in its primary sequence, that has been the paradigm. It is unclear from this paragraph what the authors wanted to convey.

      We apologize for any confusion caused by this phrasing. Our intent was not to restate the well-established paradigm that a protein’s primary sequence contains the information needed for its 3D structure, but rather to emphasize how

      AlphaFold2 leverages evolutionary conservation, via multiple sequence alignments (MSAs), to infer structural constraints beyond what a single sequence alone might reveal. Specifically, we aimed to highlight that conserved regions across species and isoforms provide additional context that AlphaFold2 uses to enhance the accuracy of its predictions, complementing the use of templates and homologous structures as described in Jumper et al. (2021). To clarify this, we revised the sentence in the manuscript to read: “AlphaFold2 primarily requires a protein's amino acid sequence as input, but it also leverages other critical data sources. In addition to the sequence, it incorporates multiple sequence alignments (MSAs) of related proteins from different species, available structural templates, and information on homologous proteins. While the primary sequence encodes the 3D structure, AlphaFold2 harnesses evolutionary conservation from MSAs to reveal structural insights that extend beyond what a single sequence can provide.” We thank the reviewer for pointing out this ambiguity.

      (3) In the Results section, the authors state that the predictions generated by their method are evaluated by standard accuracy metrics, please elaborate - what standard metrics were used to judge the predictions and why (some references would be a nice addition). Further, on Page 6, the sentence “There are fewer differences between the open- and closed-state models (Figure S2b, d)” is confusing, fewer differences than what? or there are a few differences between the two states/models? Please clarify.

      The original sentence referring to “standard accuracy metrics” is somewhat misplaced, as our intent was not to apply any conventional “benchmarking” to judge the predictions, but rather to evaluate functional and structural relevance in a physiologically meaningful context. Specifically, we assessed drug binding affinities from molecular docking simulations (in Rosetta Energy Units, R.E.U.) against experimental drug potency data (e.g., IC<sub>50</sub> values converted to free energies in kcal/mol, Figure 7), analyzed differences in interaction networks across states in relation to known mutations affecting hERG inactivation (Figure 4, Table 2), validated ion conduction properties through MD simulations with the applied voltage against expected state-dependent hERG channel behavior (Figure 5), and compared predicted structural models to available experimental cryo-EM structures (Figure 3). We clarified in the text that our assessment emphasized the physiological plausibility of the generated conformations, drawing on evidence from existing computational and experimental studies at each step of the analysis above.

      As for the sentence on page 6, “There are fewer differences between the open- and closed-state models,” we apologize for the ambiguity; we meant that the hydrogen bond networks in the selectivity filter region exhibit fewer differences between the open and closed states compared to the more pronounced variations seen between the open and inactivated states. We revised this sentence to read: “The open- and closed-state models show fewer differences in their selectivity filter hydrogen bond networks compared to those between the open and inactivated states,” to enhance readability.

      (4) In the Discussion, the authors reiterate that this methodology can be extended to sample multiple protein conformations, and their system of choice was hERG potassium channel. I think this methodology can be applied to a system when there is enough knowledge of static structures, and some information on dynamics (through simulations) and mutagenesis analysis available. A well-studied system can benefit from such a protocol to gauge other conformational states.

      We agree that this approach is well-suited to systems with sufficient static structures, dynamic insights from simulations, and mutagenesis data, as seen with the hERG channel. We appreciate the reviewer’s implicit concern about generalizability to less-characterized systems and addressed this in the Discussion as a limitation, noting that the method’s effectiveness may depend on prior knowledge. Future studies can explore whether the advent of AlphaFold3 and other deep learning approaches can enhance its applicability to systems with more limited data. We have added this comment to the Discussion: “…A limitation of our methodology is its reliance on well-characterized systems with ample static structures, molecular dynamics simulation data, and mutagenesis insights, as demonstrated with the hERG channel, which may limit its applicability to less-studied proteins.”

      (5) The Methods section must be broken down into steps to make it easier to follow for the reader (if they want to implement these steps for themselves on their system of choice).

      a. Is possible to share example scripts and code used to piece templates together for AF2. Also, since the AF3 code is now available, the authors may comment on how their protocol can be applicable there or have plans to implement their protocol using AF3 (which is designed to work better for binding small molecules). Please see https://github.com/google-deepmind/alphafold3 for the recently released code for AF3.

      We appreciate the reviewer’s suggestion to improve the Methods section and their comments on scripts and AlphaFold3 (AF3). We revised the Methods to separate it into clear steps (e.g., template preparation, AF2 setup, clustering, and refinement) for better readability and reproducibility, and uploaded the sample scripts along with the instructions to GitHub (https://github.com/k-ngo/AlphaFold_Analysis).

      Regarding AF3’s recent code release, we plan to explore the applicability of our methodology to AF3 in a follow-up study, leveraging its advanced features to refine conformational predictions and state-specific drug docking, and added a brief comment to the Discussion to reflect this future direction: “…Following the recent release of AlphaFold3’s source code, we plan to explore the applicability of our template-guided methodology in a follow-up study, leveraging AF3’s advanced diffusion-based architecture to enhance protein conformational state predictions and state-specific drug docking, particularly given its improved capabilities for modeling small molecule – protein interactions…”

      b. The authors modified the hERG protein by removing a segment, the N-terminal PAS domain (residues M1 - R397) because of graphics card memory limitation. Would the removal of the PAS domain affect the structure and function of the channel protein? HERG and other members of the “eag K<sup>+</sup> channel” family contain a PAS domain on their cytoplasmic N terminus. Removal of this domain alters a physiologically important gating transition in HERG, and the addition of the isolated domain to the cytoplasm of cells expressing truncated HERG reconstitutes wild-type gating. (see https://doi.org/10.1371/journal.pone.0059265). Please elaborate on this.

      We thank the reviewer for raising an important point about the removal of the N-terminal PAS domain and for highlighting its physiological role in hERG channel gating transitions. In our study, unlike experimental settings where PAS removal alters gating, we believe this omission has minimal impact on our key analyses.

      The drug docking procedure focuses on optimizing drug binding poses with minor protein structural refinement around the putative drug binding site, which in our case is the hERG channel pore region, where hERG-blocking drugs predominantly bind. The cytoplasmic PAS domain, located distally from this site, remains outside the protein structure refinement zone during drug docking simulations. However, one aspect we have not yet considered is the potential effect of drug modulation of the hERG channel gating and vice versa particularly given the PAS domain’s role in gating. This interplay could be significant but requires investigation beyond our current drug docking framework. We plan to explore this in future studies using alternative simulation methodologies, such as extended MD simulations or enhanced sampling techniques, to comprehensively capture these dynamic protein - ligand interactions.

      Similarly, in our 1 μs long MD simulations assessing ion conductivity (Figure 4), the timescale is too short for PASmediated gating changes to propagate through the protein and meaningfully influence ion conduction and channel activation dynamics, which occurs on a millisecond time scale (see e.g., DOI: 10.3389/fphys.2018.00207). To fully address this limitation, we plan to explore the inclusion of the PAS domain in a follow-up study with enhanced computational resources, allowing us to investigate its structural and functional contributions more comprehensively.

      (6) The first paragraph of the Methods reads as though AF2 has layers that recycle structures. We doubt that the authors meant it that way. Please update the language to clarify that recycling is an iterative process in which the pairwise representation, MSA, and predicted structures are passed (“recycled”) through the model multiple times to improve predictions.

      We agree that the phrasing might suggest physical layers recycling structures, which was not our intent. Instead, we meant to describe AlphaFold2’s iterative refinement process, where intermediate outputs, such as the pairwise residue representations, multiple sequence alignments (MSAs), and predicted structures, are iteratively passed (or “recycled”) through the model to enhance prediction accuracy. To clarify this, we revised the relevant sentence to read: “A critical feature of AlphaFold2 is its iterative refinement, where pairwise residue representations, MSAs, and initial structural predictions are recycled through the model multiple times, improving accuracy with each iteration.”

      Reviewer #3 (Recommendations for the authors):

      The authors should integrate the very recently published CryoEM experimental data of hERG inhibition by several drugs (Miyashita et al., Structure, 2024; DOI: 10.1016/j.str.2024.08.021).

      We thank the reviewer for the suggestion. Here, we compare drug binding in our open-states (PDB 5VA2-derived and an additional AlphaFold-predicted model from Cluster 3 of inactivated-state-sampling attempt named “AF ic3”) and inactivated-state models, using the cationic forms of astemizole and E-4031, with the corresponding experimental structures (Figure S13). Drug binding in the closed state is excluded as the pore architecture deviates too much from those in the cryo-EM structures. Experimental data (DOI: 10.1124/mol.108.049056) indicate that both astemizole and E4031 bind more potently to the inactivated state of the hERG channel.

      Astemizole (Figure S13a):

      - In the PDB 5VA2-derived open-state model, astemizole binds centrally within the pore cavity, adopting a bent conformation that allows both aromatic ends of the molecule to engage in π–π stacking with the side chains of Y652 from two opposing subunits. Hydrophobic contacts are observed with S649 and F656 residues.

      - In the AF ic3 open-state model, the ligand is stabilized through multiple π–π stacking interactions with Y652 residues from three subunits, forming a tight aromatic cage around its triazine and benzimidazole rings. Hydrophobic interactions are observed with hERG residues T623, S624, Y652, F656, and S660.

      - In the inactivated-state model, astemizole adopts a compact, horizontally oriented pose deeper in the channel pore, forming the most extensive interaction network among all the states. The ligand is tightly stabilized by multiple π–π stacking interactions with Y652 residues across three subunits, and forms hydrogen bonds with residues S624 and Y652. Additional hydrophobic contacts are observed with residues F557, L622, S649, and Y652.

      - Consistent with our findings, electrophysiology study by Saxena et al. identified hERG residues F557 and Y652 as crucial for astemizole binding, as determined through mutagenesis (DOI: 10.1038/srep24182).

      - In the cryo-EM structure (PDB 8ZYO) (DOI: 10.1016/j.str.2024.08.021), astemizole is stabilized by π–π stacking with Y652 residues. However, no hydrogen bonds are detected which may reflect limitations in cryo-EM resolution rather than true absence of contacts. Additional hydrophobic interacts are observed with L622 and G648 residues.

      E-4031 (Figure S13b):

      - In the PDB 5VA2-derived open-state model, E-4031 binds within the central cavity primarily through polar interactions. It forms a π–π stacking interaction with residue Y652, anchoring one end of the molecule. Polar interactions are observed with residues A653 and S660. Additional hydrophobic contacts are observed with residues A652 and Y652.

      - In the AF ic3 open-state model, E-4031 adopts a slightly deeper pose within the central cavity stabilized by dual π–π stacking interactions between its aromatic rings and hERG residue Y652. Additional hydrogen bonds are observed with residues S624 and Y652, and hydrophobic contacts are observed with residues T623 and S624.

      - In the inactivated-state model, E-4031 adopts its deepest and most stabilized binding pose, consistent with its experimentally observed preference for this state. The ligand is stabilized by multiple π–π stacking interactions between its aromatic rings and hERG residues Y652 from opposing subunits. The sulfonamide nitrogen engages in hydrogen bonding with residue S649, while the piperidine nitrogen hydrogen bonds with residue Y652. Hydrophobic contacts with residues S624, Y652, and F656 further reinforce the binding, enclosing the ligand in a densely packed aromatic and polar environment.

      - Previous mutagenesis study showed that mutations involving hERG residues F557, T623, S624, Y652, and F656 affect E-4031 binding (DOI: 10.3390/ph16091204).

      - In the cryo-EM structure (PDB 8ZYP) (DOI: 10.1016/j.str.2024.08.021), E-4031 engages in a single π–π stacking interaction with hERG residue Y652, anchoring one end of the molecule. The remainder of the ligand is stabilized predominantly through hydrophobic contacts involving residues S621, L622, T623, S624, M645, G648, S649, and additional Y652 side chains, forming a largely nonpolar environment around the binding pocket.

      In both cryo-EM structures, astemizole and E-4031 adopt binding poses that closely resembles the inactivated-state model in our docking study, consistent with experimental evidence that these drugs preferentially bind to the inactivated state (DOI: 10.1124/mol.108.049056). This raises the possibility that the cryo-EM structures may capture an inactivatedlike channel state. However, closer examination of the SF reveals that the cryo-EM conformations more closely resemble the open-state PDB 5VA2 structure (DOI: 10.1016/j.cell.2017.03.048), which has been shown to be conductive here and in previous studies (DOI: 10.1073/pnas.1909196117, 10.1161/CIRCRESAHA.119.316404).

      The conformational differences between the cryo-EM and open-state docking results may reflect limitations of the docking protocol itself, as GALigandDock assumes a rigid protein backbone and cannot account for ligand-induced large conformational changes. In our open-state models, the hydrophobic pocket beneath the selectivity filter is too small to accommodate bulky ligands (Figure 3a, b), whereas the cryo-EM structures show a slight outward shift in the S6 helix that expands this space (Figure S13).These allosteric rearrangements, though small, falls outside the scope of the current docking protocol, which lacks flexibility to capture these local, ligand-induced adjustments (DOI: 10.3389/fphar.2024.1411428).

      In contrast, docking to the AlphaFold-predicted inactivated-state model reveals a reorganization beneath the selectivity filter that creates a larger cavity, allowing deeper ligand insertion. Notably, neither our inactivated-state docking nor the available cryo-EM structures show strong interactions with F656 residues. However, in the AlphaFold-predicted inactivated model, the more extensive protrusion of F656 into the central cavity may further occlude the drug’s egress pathway, potentially trapping the ligand more effectively. This could explain why mutation of F656 significantly reduces the binding affinity of E-4031 (DOI: 10.3390/ph16091204). These findings suggest that inactivation may trigger a series of modular structural rearrangements that influence drug access and binding affinity, with different aspects potentially captured in various computational and experimental studies, rather than resulting from a single, uniform conformational change.

      Discussion of the original Wang and Mackinnon finding, DOI: 10.1016/j.cell.2017.03.048 regarding C-inactivation, pore mutation S631A and F627 rearrangement is likely warranted. Since hERG inactivation is present at 0 mV in WT channels (the likely voltage for the CryoEM study) please discuss how this might affect interpretations of starting with this structure as a template for models presented here, perhaps as part of Figure S1.

      We sincerely thank the reviewer for bringing up the insightful findings from Wang and MacKinnon regarding hERG C-type inactivation as well as the voltage context of their cryo-EM structure (PDB 5VA2). We recognize that WT hERG exhibits inactivation at 0 mV, likely the condition of the cryo-EM study, raising the possibility that PDB 5VA2, while classified as an open state, might subtly reflect features of inactivation. Notably, PDB 5VA2 has been widely adopted in numerous studies and consistently found to represent a conducting state, such as in Yang et al. (DOI: 10.1161/CIRCRESAHA.119.316404) and Miranda et al. (DOI: 10.1073/pnas.1909196117). Our MD simulations further support this, showing K<sup>+</sup> conduction in the 5VA2-based open-state model (Figure 4a, c), consistent with its selectivity filter conformation (Figure S1a). Although we used PDB 5VA2 as a starting template for predicting inactivated and closed states, our AlphaFold2 predictions did not rigidly adhere to this structure, as evidenced by distinct differences in hydrogen bond networks, drug binding affinities, pore radii, and ion conductivity between our state-specific hERG channel models (Figures S2, 5, 3b, 4). Nevertheless, this does not preclude the possibility that PDB 5VA2’s certain potential inactivated-like traits at 0 mV could subtly influence our predictions elsewhere in the model, which warrants further exploration in future studies. In our revised analysis, we also tested an alternative AlphaFold-predicted conformation, referred to as Open (AlphaFold cluster 3), which, while sharing some similarities with PDB 5VA2, exhibits subtle differences in the selectivity filter and pore conformations. This structure was also found to be conducting ions and showed a drug binding profile similar to that of the PDB 5VA2-based open-state model. We greatly appreciate this feedback which helped us refine and strengthen our analysis.

      Page 8, the significance of 750 and 500 mV in terms of physiological role?

      We appreciate this opportunity to clarify the methodological rationale. Although these voltages significantly exceed typical physiological membrane potentials, their use in MD simulations is a well-established practice to accelerate ion conduction events. This approach helps overcome the inherent timescale limitations of conventional MD simulations, as demonstrated in previous studies of hERG and other ion channels. For instance, Miranda et al. (DOI: 10.1073/pnas.1909196117), Lau et al. (DOI: 10.1038/s41467-024-51208-w), Yang et al. (DOI: 10.1161/CIRCRESAHA.119.316404) applied similarly high voltages (500~750 mV) to study hERG K<sup>+</sup> conduction, which is notably small under physiological conditions at ~2 pS (DOI: 10.1161/01.CIR.94.10.2572), necessitating amplification to observe meaningful permeation within nanosecond-to-microsecond timescales. Likewise, studies of other K<sup>+</sup> ion channels, such as Woltz et al. (DOI: 10.1073/pnas.2318900121) on small-conductance calcium-activated K<sup>+</sup> channel SK2 and Wood et al. (DOI: 10.1021/acs.jpcb.6b12639) on Shaker K<sup>+</sup> channel, have used elevated voltages (250~750 mV) to probe ion conduction mechanisms via MD simulations. In addition, the typical timescale of these simulations (1 μs) is too short to capture major structural effects such as those leading to inactivation or deactivation which occur over milliseconds in physiological conditions.

      The abstract could be edited a bit to more clearly state the novel findings in this study.

      We thank the reviewer for their suggestion. We have revised the abstract to read: “To design safe, selective, and effective new therapies, there must be a deep understanding of the structure and function of the drug target. One of the most difficult problems to solve has been resolution of discrete conformational states of transmembrane ion channel proteins. An example is K<sub>V</sub>11.1 (hERG), comprising the primary cardiac repolarizing current, I<sub>kr</sub>. hERG is a notorious drug antitarget against which all promising drugs are screened to determine potential for arrhythmia. Drug interactions with the hERG inactivated state are linked to elevated arrhythmia risk, and drugs may become trapped during channel closure. While prior studies have applied AlphaFold to predict alternative protein conformations, we show that the inclusion of carefully chosen structural templates can guide these predictions toward distinct functional states. This targeted modeling approach is validated through comparisons with experimental data, including proposed state-dependent structural features, drug interactions from molecular docking, and ion conduction properties from molecular dynamics simulations. Remarkably, AlphaFold not only predicts inactivation mechanisms of the hERG channel that prevent ion conduction but also uncovers novel molecular features explaining enhanced drug binding observed during inactivation, offering a deeper understanding of hERG channel function and pharmacology. Furthermore, leveraging AlphaFold-derived states enhances computational screening by significantly improving agreement with experimental drug affinities, an important advance for hERG as a key drug safety target where traditional single-state models miss critical state-dependent effects. By mapping protein residue interaction networks across closed, open, and inactivated states, we identified critical residues driving state transitions validated by prior mutagenesis studies. This innovative methodology sets a new benchmark for integrating deep learning-based protein structure prediction with experimental validation. It also offers a broadly applicable approach using AlphaFold to predict discrete protein conformations, reconcile disparate data, and uncover novel structure-function relationships, ultimately advancing drug safety screening and enabling the design of safer therapeutics.”

      Many of the Supplemental figures would fit in better in the main text, if possible, in my opinion. For instance, the network analysis (Fig. S2) appears to be novel and is mentioned in the abstract so may fit better in the main text. The discussion section could be focused a bit more, perhaps with headers to highlight the key points.

      Yes, we agree with the reviewer and made the suggested changes. We moved Figure S2 as a new main-text figure.

      Additionally, we revised the Discussion section to improve focus and clarity.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      In this study, Hama et al. explored the molecular regulatory mechanisms underlying the formation of the ULK1 complex. By employing the AlphaFold structural prediction tool, they showed notable differences in the complex formation mechanisms between ULK1 in mammalian cells and Atg1 in yeast cells. Their findings revealed that in mammalian cells, ULK1, ATG13, and FIP200 form a complex with a stoichiometry of 1:1:2. These predicted interaction regions were validated through both in vivo and in vitro assays, enhancing our understanding of the molecular mechanisms governing ULK1 complex formation in mammalian cells. Importantly, they identified a direct interaction between ULK1 and FIP200, which is crucial for autophagy. However, some aspects of this manuscript require further clarification, validation, and correction by the authors.

      Thank you for your thorough evaluation of our manuscript. We have carefully revised the manuscript to address your concerns by performing extra experiments and providing additional clarifications, validations, and corrections as written below.

      Reviewer #2 (Public review):

      Summary:

      This is important work that helps to uncover how the process of autophagy is initiated - via structural analyses of the initiating ULK1 complex. High-resolution structural details and a mechanistic insight of this complex have been lacking and understanding how it assembles and functions is a major goal of a field that impacts many aspects of cell and disease biology. While we know components of the ULK1 complex are essential for autophagy, how they physically interact is far from clear. The work presented makes use of AlphaFold2 to structurally predict interaction sites between the different subunits of the ULK1 complex (namely ULK1, ATG13, and FIP200). Importantly, the authors go on to experimentally validate that these predicted sites are critical for complex formation by using site-directed mutagenesis and then go on to show that the three-way interaction between these components is necessary to induce autophagy in cells.

      Strengths:

      The data are very clear. Each binding interface of ATG13 (ATG13 with FIP300/ATG13 with ULK1) is confirmed biochemically with ITC and IP experiments from cells. Likewise, IP experiments with ULK1 and FIP200 also validate interaction domains. A real strength of the work in in their analyses of the consequences of disrupting ATG13's interactions in cells. The authors make CRISPR KI mutations of the binding interface point mutants. This is not a trivial task and is the best approach as everything is monitored under endogenous conditions. Using these cells the authors show that ATG13's ability to interact with both ULK1 and FIP200 is essential for a full autophagy response.

      Thank you for your thoughtful review and for highlighting the importance of our approach.

      Weaknesses:

      I think a main weakness here is the failure to acknowledge and compare results with an earlier preprint that shows essentially the same thing (https://doi.org/10.1101/2023.06.01.543278). Arguably this earlier work is much stronger from a structural point of view as it relies not only on AlphaFold2 but also actual experimental structural determinations (and takes the mechanisms of autophagy activation further by providing evidence for a super complex between the ULK1 and VPS34 complexes). That is not to say that this work is not important, as in the least it independently helps to build a consensus for ULK1 complex structure. Another weakness is that the downstream "functional" consequences of disrupting the ULK1 complex are only minimally addressed. The authors perform a Halotag-LC3 autophagy assay, which essentially monitors the endpoint of the process. There are a lot of steps in between, knowledge of which could help with mechanistic understanding. Not in the least is the kinase activity of ULK1 - how is this altered by disrupting its interactions with ATG13 and/or FIP200?

      Thank you for this valuable feedback. In response, we performed a detailed structural comparison between the cryo-EM structure reported in the referenced preprint and our AlphaFold-based model. We have summarized both the similarities and differences in newly included figures (revised Figure 2A, B, 3B, S1F) and provided an in-depth discussion in the main text. Furthermore, to address the downstream consequences of ULK1 complex disruption, we have investigated the impact on ULK1 kinase activity, specifically examining how mutations affecting ATG13 or FIP200 interaction alter ULK1’s phosphorylation of a key substrate ATG14. In addition, we analyzed the effect on ATG9 vesicle recruitment. We provide the corresponding data as Figure S3C-E and detailed discussions in the revised manuscript.

      Reviewer #3 (Public review):

      In this study, the authors employed the protein complex structure prediction tool AlphaFold-Multimer to obtain a predicted structure of the protein complex composed of ULK1-ATG13-FIP200 and validated the structure using mutational analysis. This complex plays a central role in the initiation of autophagy in mammals. Previous attempts at resolving its structure have failed to obtain high-resolution structures that can reveal atomic details of the interactions within the complex. The results obtained in this study reveal extensive binary interactions between ULK1 and ATG13, between ULK1 and FIP200, and between ATG13 and FIP200, and pinpoint the critical residues at each interaction interface. Mutating these critical residues led to the loss of binary interactions. Interestingly, the authors showed that the ATG13-ULK1 interaction and the ATG13-FIP200 interaction are partially redundant for maintaining the complex.

      We are grateful for your high evaluation of our work.

      The experimental data presented by the authors are of high quality and convincing. However, given the core importance of the AlphaFold-Multimer prediction for this study, I recommend the authors improve the presentation and documentation related to the prediction, including the following:

      (1) I suggest the authors consider depositing the predicted structure to a database (e.g. ModelArchive) so that it can be accessed by the readers.

      We have deposited the AlphaFold model to ModelArchive with the accession code ma-jz53c, which is indicated in the revised manuscript.

      (2) I suggest the authors provide more details on the prediction, including explaining why they chose to use the 1:1:2 stoichiometry for ULK1-ATG13-FIP200 and whether they have tried other stoichiometries, and explaining why they chose to use the specific fragments of the three proteins and whether they have used other fragments.

      We appreciate your suggestion. As we noted in the original manuscript, previous studies have shown that the C-terminal region of ULK1 and the C-terminal intrinsically disordered region of ATG13 bind to the N-terminal region of the FIP200 homodimer (Alers, Loffler et al., 2011; Ganley, Lam du et al., 2009; Hieke, Loffler et al., 2015; Hosokawa, Hara et al., 2009; Jung, Jun et al., 2009; Papinski and Kraft, 2016; Wallot-Hieke, Verma et al., 2018). We relied on these findings when determining the specific regions to include in our complex prediction and when selecting a 1:1:2 stoichiometry for ULK1–ATG13–FIP200 which was reported previously (Shi et al., 2020). We also used AlphaFold2 to predict the structures of the full-length ULK1–ATG13 complex and the complex of the FIP200N dimer with full-length ATG13, confirming that there were no issues with our choice of regions (revised Figure S1A-C). In the revised manuscript, we have provided a more detailed explanation of our rationale based on the previous reports and additional AlphaFold predictions.

      (3) I suggest the authors present the PAE plot generated by AlphaFold-Multimer in Figure S1. The PAE plot provides valuable information on the prediction.

      We provided the PAE plot in the revised Figure S1C.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      (1) In Figure 1D, the labels for the input and IP of ATG13-FLAG should be corrected to ATG13-FLAG FIP3A.

      We thank the reviewer for pointing out these labeling mistakes. We revised the labels based on the suggestions.

      (2) In the discussion section, the authors should address why ATG13-FLAG ULK1 2A in Fig. 2D leads to a significantly lower expression of ULK1 and provide possible explanations for this observation.

      ATG13 and ATG101, both core components of the ULK1 complex, are known to stabilize each other through their mutual interaction. Loss or reduction of one protein typically leads to the destabilization of the other. In this context, ULK1 is similarly stabilized by binding to ATG13. Therefore, ATG13-FLAG ULK2A mutant, which has reduced binding to ULK1, likely loses this stabilizing activity and ULK1 becomes destabilized, resulting in the lower expression levels of ULK1. We added these discussions in the revised manuscript.

      (3) In Figure 4B, the authors should explain why Atg13-FLAG KI significantly affects the expression of endogenous ULK1. Could Atg13-FLAG KI be interfering with its binding to ULK1? Experimental evidence should be provided to support this. Additionally, does Atg13-FLAG KI affect autophagy? Wild-type HeLa cells should be included as a control in Figure 4C and 4D to address this question.

      Thank you for your constructive suggestion. We found a technical error in the ULK1 blot of Figure 4B. Therefore, we repeated the experiment. The results show that ULK1 expression did not significantly change in the ATG13-FLAG KI. These findings are consistent with Figure S3A. We have replaced Figure 4B with this new data.

      We agree that including wild-type HeLa cells as a control is essential to determine whether ATG13-FLAG KI affects autophagy. We performed the same experiments in wild-type HeLa cells and found that ATG13-FLAG KI does not significantly impact autophagic flux. Accordingly, we have replaced Figures 4D and 4E with these new data.

      (4) In Figure 3C, the authors used an in vitro GST pulldown assay to detect a direct interaction between ULK1 and FIP200, which was also confirmed in Figure 3E. However, since FLAG-ULK1 FIP2A affects its binding with ATG13 (Fig. 3E), it is possible that ULK1 FIP2A inhibits autophagy by disrupting this interaction. The authors should therefore use an in vitro GST pulldown assay to determine whether GST-ULK1 FIP2A affects its binding with ATG13. Additionally, the authors should investigate whether the interaction between ULK1 and FIP200 in cells requires the involvement of ATG13 by using ATG13 knockout cells to confirm if the ULK1-FIP200 interaction is affected in the absence of ATG13.

      Thank you for the valuable suggestion. We examined the effect of the FIP2A mutation on the ULK1–ATG13 interaction using isothermal titration calorimetry (ITC) to obtain quantitative binding data. The results showed that the FIP2A mutation does not markedly alter the affinity between ULK1 and ATG13 (revised Figure S2B), suggesting that FIP2A mainly weakens the ULK1–FIP200 interaction. Regarding experiments in ATG13 knockout cells, ULK1 becomes destabilized in the absence of ATG13, making it technically difficult to assess how the ULK1–FIP200 interaction is affected under those conditions.

      Reviewer #2 (Recommendations for the authors):

      I feel the manuscript would benefit from a more detailed comparison with the Hurely lab paper - are the structural binding interfaces the same, or are there differences?

      We appreciate the suggestion to compare our results more closely with the work from the Hurley lab. We performed a detailed structural comparison between the cryo-EM structure reported in the referenced preprint and our AlphaFold-based model (revised Figure 2A, B, 3B, S1F) and provided an in-depth discussion in the main text.

      As mentioned, what happens downstream of disrupting the ULK1 complex? How is ULK1 activity changed, both in vitro and in cells? Does disruption of the ULK1 complex binding sites impair VPS34 activity in cells (for example by looking at PtdIns3P levels/staining)?

      Thank you for your insightful comments. We focused on elucidating how disrupting the ULK1 complex leads to impaired autophagy. To assess ULK1 activity, we measured ULK1-dependent phosphorylation of ATG14 at Ser29 (PMID: 27046250; PMID: 27938392). In FIP3A and FU5A knock-in cells, ATG14 phosphorylation was significantly reduced, indicating decreased ULK1 activity (revised Figure S3D, E). This observation is consistent with previous work showing that FIP200 recruits the PI3K complex. Notably, in ATG13 knockout cells, ATG14 phosphorylation became almost undetectable, though the underlying mechanism remains to be fully investigated. Altogether, these data point to reduced ULK1 activity as a key factor explaining the autophagy deficiency observed in FU5A knock-in cells.

      We also explored possible downstream mechanisms. One well-established function of ATG13 is to recruit ATG9 vesicles (PMID: 36791199). These vesicles serve as an upstream platform for the PI3K complex, providing the substrate for phosphoinositide generation (PMID: 38342428). To clarify how our mutations impact this step, we starved ATG13-FLAG knock-in cells and observed ATG9 localization. Unexpectedly, even in FU5A knock-in cells where ATG13 is almost completely dissociated from the ULK1 complex, ATG9A still colocalized with FIP200 (revised Figure S3C). These puncta also overlapped with p62, likely because p62 bodies recruit both FIP200 and ATG9 vesicles. Although we suspect that ATG9 recruitment is nonetheless impaired under these conditions, we were unable to definitively demonstrate this experimentally and consider it an important avenue for future study.

      Reviewer #3 (Recommendations for the authors):

      Here are some additional minor suggestions:

      (1) The UBL domains are only mentioned in the abstract but not anywhere else in the manuscript. I suggest the authors add descriptions related to the UBL domains in the Results section.

      We thank the reviewer for pointing out the lack of description of UBL domains, which we added in Results in the revised manuscript.

      (2) The authors may want to consider adding a diagram in Figure 1A to show the domain organization of the three full-length proteins and the ranges of the three fragments in the predicted structure.

      We have added a proposed diagram as Figure 1A.

      (3) I suggest the authors consider highlighting in Figure 1A the positions of the binding sites shown in Figure 1B, for example, by adding arrows in Figure 1A.

      We have added arrows in the revised Figure 1B (which was Figure 1A in the original submission).

      (4) In Figure 1D, "Atg13-FLAG" should be "Atg13-FLAG FIP3A".

      We have revised the labeling in Figure 1D.

      (5) "the binding of ATG13 and ULK1 to the FIP200 dimer one by one" may need to be re-phrased. "One by one" conveys a meaning of "sequential", which is probably not what the authors meant to say.

      We have revised the sentence as “the binding of one molecule each of ATG13 and ULK1 to the FIP200 dimer”.

      (6) In "Wide interactions were predicted between the four molecules", I suggest changing "wide" to "extensive".

      We have changed “wide” to “extensive” in the revised manuscript.

      (7) In "which revealed that the tandem two microtubule-interacting and transport (MIT) domains in Atg1 bind to the tandem two MIT interacting motifs (MIMs) of ATG13", I suggest changing the two occurrences of "tandem two" to "two tandem" or simply "tandem".

      We simply used "tandem" in the revised manuscript.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      General Statements

      We sincerely thank all three reviewers for their thoughtful and constructive feedback. Your comments were invaluable in improving the clarity and quality of our work.

      In this study, we revisit a previously overlooked lipophilic dye, demonstrating its utility for live-cell imaging that transport in a non-vesicular pathway and label autophagy related structures. Against the backdrop of increasing attention to membrane contact sites (MCSs), bridge-like lipid transfer proteins (BLTPs), and organelle biogenesis, we aim to propose the possibility of a reversible one-way phospholipid transfer activity that really takes place in living cells.

      As Reviewer #1 noted, recent cryo-EM studies (e.g., Oikawa et al.) have highlighted the importance of lipids in autophagosome formation. And there are some existed in vitro studies. However, we believe that we have to think about the consistence of simplified in vitro reconstitution and the complex real cellular environment. In addition, to our knowledge, no studies have directly tracked lipid flow dynamics over time in living cells. We believe our work contributes to this gap by combining three interesting technical approaches: (a) R18 as a lipid-tracing dye, (b) FRAP analysis on the isolation membrane, and (c) the use of Ape1 overexpression to stall autophagosome closure, enabling us to visualize reversible lipid flow in vivo. While these techniques may not appear "fancy," we hope they offer new insights that can inspire further exploration in lipid dynamics story in a real cellular environment.

      We appreciate Reviewer #2's comments on our high imaging quality and Reviewer #3's recognition of our approach as an elegant way to study lipid transfer. We have revised the manuscript accordingly and included additional explanations, figure clarifications, and planned experiments to address remaining concerns.

      As two key concerns were raised repeatedly by all reviewers, we would like to address them here:

      1. Regarding the concern that the evidence for reversible lipid transfer from the IM to the ER is not sufficiently strong:

      We are deeply grateful to Reviewer #2 for the insightful suggestion to compare the fluorescence recovery of the adjacent bleached ER to that of the ER-IM MCS, to exclude the possibility that recovery at the ER-IM MCS originates from nearby ER rather than from the IM. Following this suggestion, we performed a quantitative analysis using unbleached ER as a background. Interestingly, in every sample, the adjacent bleached ER consistently showed a significantly lower fluorescence recovery than the ER-IM MCS. We also used the IM as a background for normalization, the difference became even more pronounced, further supporting the idea that the adjacent ER could not be the source of the recovery signal at the ER-IM MCS. These findings strengthen our conclusion that phospholipid recovery at the MCS could be derived from the IM. The updated analysis and corresponding figure panels (Figure 5K, 5L, and 5M), along with the relevant text (lines 384-396), have been revised accordingly.

      Regarding the concern that the evidence for R18 transfer via Atg2 as a bridge-like lipid transfer protein is not sufficiently direct:

      In addition to the evidence presented in this manuscript, we have now cited our parallel study currently under revision (Sakai et al., bioRxiv 2025.05.24.655882v1), where we provide direct evidence that Atg2 indeed functions as a bridge-like lipid transfer protein, rather than a shuttle. Importantly, we also show in that study that R18 transfer requires the bridge-like structure of Atg2. This new reference has been cited in the revised manuscript, and relevant textual explanations have been added to provide further support.

      We hope that the revisions and our revision plan can address the reviewers key concerns. Please find our detailed point-by-point responses below.

      Response to the Reviewer ____#____1

      In their study, Hao and colleagues exploited the fluorescent fatty acid R18 to follow phospholipid (PL) transfer in vivo from the endoplasmic reticulum to the IM during autophagosome formation. Although the results are interesting, especially the retrograde transport of PLs, based on the provided data, additional control experiments are needed to firmly support the conclusions.

      We sincerely thank the reviewer for the positive assessment and agree that additional controls are necessary to support our conclusion. Detailed responses and corresponding revisions are provided below.

      An additional point is that the authors also study the internalization of R18 into cells and found a role of lipid flippases and oxysterol binding proteins. While this information could be useful for researchers using this dye, these analyses/findings have no specific connection with the topic of the manuscript, i.e. the PL transfer during autophagosome formation. Therefore, they must be removed.

      We thank the reviewer for the thoughtful comment. We understand the concern that the R18 internalization analysis may appear peripheral to the manuscript's main focus on phospholipid transfer during autophagosome formation. However, we respectfully believe that this section is critical for establishing the mechanistic basis as this study represents the first detailed in vivo application of R18 for tracing lipid dynamics. We believe it is interesting that R18 entry is not due to chemically passive diffusion or non-specific adsorption, but occurs through a biologically regulated, non-vesicular lipid transport pathway. This mechanistic context underpins the reliability of using R18 to monitor ER-to-IM lipid transport in the autophagy pathway.

      To improve clarity and coherence, we have added explanatory text in the Introduction and at the start of the Results section to explicitly link the internalization assay to the subsequent autophagy-related experiments (line 94-98, 185-187). We hope this helps guide the reader through the rationale and relevance of this part of the study.

      Major points:

      1) In general, the quality of the microscopy images are quite poor and this make it difficult to assert some of the authors' conclusions.

      We thank the reviewer for the feedback. To better address this concern, we would appreciate clarification regarding which specific images or figure panels were found to be of low quality. Overall, we believe the microscopy data presented are of sufficient resolution and clarity to support our main conclusions, as also noted by Reviewer #2 ("the high-quality images and FRAP experiments").

      We acknowledge that certain phenomena-such as occasional R18 labeling of the vacuole-were not clearly explained in the original manuscript. We have now included additional clarification in the results section and mentioned this limitation in the discussion (lines 170-171, 436-438), along with a note on ongoing experiments to further investigate this point.

      2) It would be important to perform some lipidomics analysis to determine in which PLs and other lipids or lipid intermediates R18 is incorporated. First, it will be important to know which the major PL species are are labelled under the conditions of the experiments done in this study. Second, the authors assume that all the R18 is exclusively incorporated into PLs and this is what they follow in their in vivo experiments. What about acyl-CoA, which has been shown to be a key player in the IM elongation (Graef lab, Cell)?

      We thank the reviewer for raising this point. However, we believe this is based on a misunderstanding of the chemical nature of R18. R18 is not a free fatty acid analog and cannot be incorporated into phospholipids or acyl-CoA via metabolic pathways. Due to its chemical structure-a bulky rhodamine headgroup attached to a long alkyl chain-it cannot undergo enzymatic conjugation or incorporation into membrane lipids. This is why we did not pursue lipidomics analysis. Instead, we focused on characterizing the biological behavior of R18 through a range of live-cell assays, including temperature and ATP dependency, involvement of flippases, OSBP proteins, and Atg2, all of which support a regulated, non-vesicular lipid transport pathway. Additionally, the AF3 structural model presented in this study is consistent with this interpretation, showing no evidence of R18 forming chemical bonds with phospholipids.

      3) Figure 1A and 1B. The authors conclude that Atg2 is involved in the lipid transfer since R18 does not localize to the PAS/ARS in the atg2KO cells. However, another possible explanation is that in those cells the IM is not formed and does not expand, and con sequetly R18 is present in low amounts not detectable by fluorescence microscopy. To support their conclusion, the authors must assess PAS-labelling with R18 in cells lacking another ATG gene in which Atg2 is still recruited to the PAS.

      We thank the reviewer for this important suggestion. As noted, the absence of R18 at the PAS in atg2Δ cells may reflect a lack of membrane formation rather than impaired lipid transfer. However, in support of our interpretation, our previous work (Hirata E, Ohya Y, Suzuki K, 2017) has shown that R18 accumulates at PAS-like structures in delipidation mutants, where the IM fails to expand but Atg2 is still recruited (please refer to the attached revision plan for further details). This suggests that the presence of Atg2, rather than the mere existence of a mature IM, contributes to R18 localization.

      To address this, we revised our statement to the more cautious: "R18 was undetectable at the PAS in atg2Δ cells," to avoid overinterpretation (lines 119-120). 4)

      4) Figure 2. As written, the paragraph this figure seems to indicate that flippases are directly involved in the translocation of R18 from the PM to the ER. As correctly indicated by the authors, flippases flip PLs, not fatty acids. Moreover, there are no PL synthesizing at the PM and thus probably R18 is not flipped upon incorporation into PL. As a result, the relevance of flippase in R18 internalization is probably indirect. This must be explained clearly to avoid confusion/misunderstandings.

      We thank the reviewer for this important clarification. We fully agree that flippases act on phospholipids, not fatty acids, and that R18 is not metabolically incorporated into phospholipids at the plasma membrane. However, our ongoing work (Rev. Figure 1) shows that R18 preferential labeling affinity for PS and PE in vivo (yeast phospholipid synthesis mutants), consistent with its flippase-dependent localization. Flippases are known to specifically flip PS and PE. While R18 itself is not enzymatically modified or incorporated into phospholipids, its membrane distribution may thus depend on the lipid environment and the activity of lipid-translocating proteins.

      Preliminary data supporting this observation are included in the "Supplementary Figures for reviewer reference only" and are not part of the public submission.

      5) A couple of manuscript has shown a (partial) role of Drs2 in autophagy. The authors must explain the discrepancy between their own results and what published, especially because they use the GFP-Atg8 processing assay, which is less sensitive than the Pho8delta60 used in the other studies.

      We thank the reviewer for raising this important point. We are aware of prior reports implicating Drs2 in autophagy and in fact discussed this work directly with the authors during the course of our experiments, who kindly provided helpful suggestions. While our GFP-Atg8 processing assay did not show significant defects upon Drs2 deletion, strain background differences may explain this discrepancy. We also appreciate the suggestion to use the Pho8Δ60 assay and plan to include it in future experiments.

      Additionally, authors should check whether the Atg2 and Atg18 proteins are present at the IM-ER membrane contact sites in the same rates after nutrient replenished than when cells are nitrogen-starved, since this complex would determine the lipid transfer dynamics at this membrane contact site.

      We thank the reviewer for the helpful suggestion. We plan to perform additional experiments to monitor Atg18 localization during the nutrient replenishment assay.

      6) Authors used a predicted Atg2 lipid-transfer mutant (Srinivasan et al, J Cel Biol, 2024), but not direct prove that this mutant is defective for this activity. As previously done for other Atg2/ATG2-related manuscripts (Osawa et al, Nat Struct Mol Biol, 2019; Valverde et al, J Cel Biol, 2019), this must be measure in vitro. Moreover, they do not show whether other known functions of Atg2 are unaffected when expressing this Atg2 mutant, e.g. formation of the IM-ER MCSs, Atg2 interaction with Atg9 and localization at the extremity of the IM...

      We thank the reviewer for this concern. The lipid-transfer-deficient Atg2 mutant used here is based on the same structural rationale as in our recent parallel study (Sakai et al., bioRxiv 2025; https://www.biorxiv.org/content/10.1101/2025.05.24.655882v1, currently under revision). In that study, we addressed whether Atg2 indeed functions as a bridge-like lipid transfer protein, and also used R18 to directly demonstrate the lipid transfer defect of this Atg2 mutant in vivo.

      We therefore believe that referencing this study provides mechanistic support for the use of this Atg2 mutant in the current manuscript. A citation and brief explanation have now been added to the revised text (line 315-316, 439-441). We also plan to perform the lipid transfer assay in vitro.

      7) The mNG-Atg8 signal is not recovered in the fluorescent recovery assays. Based on the observation that R18 signal comes back after photobleaching, authors suggest that the supply of Atg8 is not required for IM expansion. This idea is opposite to data where the levels of Atg8 and deconjugation of lipidated Atg8 determines the size of the forming autophagosomes (e.g., Xie et al, Mol Biol Cell, 2008; Nair et al, Autophagy, 2012). Similar results have also been obtained in mammalian cells (Lazarou and Mizushima results in cell lacking components of the two ubiquitin-like conjugation systems). This discrepancy requires an explanation.

      We thank the reviewer for pointing out this imprecise interpretation, and we sincerely apologize for the confusion it may have caused. We fully agree that Atg8 is essential for the expansion of the isolation membrane (IM), as supported by previous studies. In our FRAP data, mNG-Atg8 showed gradual recovery at the later timepoints, indicating that Atg8 can be replenished over time. The reason why R18 recovery appears much more rapid is likely due to the inherently fast lipid transfer activity of Atg2, the bridge-like lipid transport protein. In contrast, Atg8 signal recovery may have been delayed for two reasons: (1) slower recruitment kinetics to the IM, and (2) partial depletion of the available mNG-Atg8 protein pool due to photobleaching during the experiment.

      We have revised the relevant paragraph in the manuscript (line 326-330) to clarify these points and avoid potential misinterpretation.

      8) Although authors claim that there is a retrograde lipid transfer from the IM to the ER, based on the data, it quite difficult to extract these conclusions as they show a decrease in the lipid flow dynamics rather to an inversion of the lipid flow per se. Can the authors exclude that ER microdomains are formed at the ERES in contact with the IM, and consequently what they measure is a slow diffusion of R18-labeled lipid from other part of the ER to these ERES?

      We appreciate the reviewer's insightful comment. Indeed, we are also considering the possibility that lipid-enriched microdomains may form in the ER and contribute to complex lipid dynamics at contact sites. However, direct visualization of such domains in cells remains technically challenging, this remains one of the important directions we aim to pursue in future studies. While our current data do not allow us to definitively state that all recovered lipids originate from the IM, our FRAP experiments provide indirect yet strong support for the possibility that at least a substantial portion of the recovered lipid signal in the ER derives from the IM. Moreover, following Reviewer 2's major point No.4, we performed a direct comparison of R18 fluorescence recovery between the photobleached ER-IM MCS region and the adjacent bleachedER region (Figure 5K and 5M). Interestingly, each sample consistently showed lower fluorescence recovery in the adjacent bleached ER near the ER-IM MCS (mean = 0.20), compared to the ER-IM MCS region (mean = 0.28). To further validate this observation, we also used the IM as a background reference for normalization. This analysis revealed a more significant difference, with the adjacent bleached ER near the ER-IM MCS showing a lower recovery (mean = 0.47) than the ER-IM MCS (mean = 0.80).

      As the Reviewer2 pointed out, these results support our reversible lipid transfer model by demonstrating that fluorescence recovery at the ER-IM MCS is due to the signal coming from the IM, rather than from the adjacent bleached ER, which recovers more slowly and less efficiently. We have incorporated this new analysis into Figure 5, and accordingly revised the figure legend and main text (lines 384-396).

      9) The retrograde PL transfer is studied in cells overexpressing Ape1, in which IM elongation is stalled. This is a non-physiological experimental setup and consequently it is unclear whether what observed applies to normal IM/autophagosomes. This event should be shown to occur in WT cells as well.

      We thank the reviewer for this point. Indeed, it remains technically difficult to visualize lipid flow during normal IM expansion in vivo, as this process is rapid and transient. And to date, there are no reports directly addressing lipid flow in this process.

      But the Ape1 overexpression system provides a strategic advantage by temporally extending the IM elongation phase and spatially enlarging the IM, thus offering a unique opportunity to capture membrane behavior that would otherwise be transient and difficult to resolve. Importantly, this system arrests autophagosome closure, which we leveraged to investigate the potential reversibility of phospholipid transfer in a controlled and prolonged context. Without this system, it would be exceedingly difficult for reaserchers to examine the lipid flow directionality in living cells.

      Furthermore, the use of Ape1 overexpression has been widely employed in previous high-impact autophagy studies. We emphasize that our aim is to understand Atg2-mediated lipid transfer, and in this context, the Ape1 system provides a valuable and informative tool without compromising the validity of our conclusions.

      10) From the images provided, it appears that R18 also labels the vacuole. The vacuole form MCSs with the IM. Can the author exclude a passage of R18 from the vacuole to the IM?

      We thank the reviewer for the insightful comment. Our data suggest that R18 traffics from the plasma membrane to the ER, then to autophagy-related structures. Actually, following that, as we kown, autophagosomes will eventually reaches and fused with the vacuole. This explains the occasional weak R18 signals at the vacuole membrane, particularly in late-stage cells. We have revised the figure and clarified this point in the text to avoid oversimplification of R18 localization (lines 169-171, 426-428)

      Here we also added the results of our onging work (in preparation). R18 tends to accumulate in a dot-like compartment after prolonged rapamycin treatment and incubation (Rev. Figure 2). And the vacuolar labeling of R18 correlates with the degradation status of autophagosomes, rather than reverse lipid transport from the vacuole to the IM (Rev. Figure 2). Taken together, we believe that R18 transport from the vacuole back to the IM is unlikely.

      Preliminary data supporting this response are included in the "Supplementary Figures for reviewer reference only" and are not part of the public submission.

      Minor points:

      1) L66. One report has indicated that Vps13 may also play a role in the transfer of lipids from the ER to the IM (Graef lab, J. Cell Biol).

      Thank you for pointing this out. Their excellent work also suggested that the inherent lipid transfer activity of Atg2 is required for IM expansion. We have revised the sentence (lines 67-68, 312-314) and included the appropriate citation at these two places.

      2) L70. It must be indicated that IM is also called phagophore.

      We have revised the sentence (line 70-71). Thank you for pointing this out.

      3) L74. It is mentioned "Additionally, a hydrophobic cavity in the N-terminal region of Atg2 directly tethers Atg2 to the ER, particularly the ER exit site (ERES), which is considered a key hub for autophagosome biogenesis", but there is no experimental evidence supporting that Atg2 is involved in the tethering with the ERES.

      Thank you for pointing this out. We have removed the N-terminal region part and revised the sentence accordingly (line 79-81) to avoid overstatement.

      4) L90. PAS must be listed between the ARS.

      We have revised the sentence (line 97-98). Thank you for pointing this out.

      5) Upon deletion of ATG39 and ATG40, there is a pronounced reduction of mNG-Atg8 labelled with R18. This would suggest that these two ER-phagy receptors are required for the PL transfer from the ER to the IM, which is not the case as autophagy is mildly affected by the absence of them (e.g., Zhang et al, Autophagy, 2020).

      We thank the reviewer for the important comment and agree that Atg39 and Atg40 are not required for phospholipid transfer from the ER to the IM. We have revised the text (lines 155-157). We appreciate if the reviewer could provide the DOI or PubMed ID for this paper.

      6) Authors referred that "no direct evidence has been found to confirm lipid transfer at the ER-IM MCS in living cells" (lines 282-283). However, a recent paper has shown that de novo-synthesized phosphatidylcholine is incorporated from the ER to the autophagosomes and autophagic bodies (Orii et al, J Cel Biol, 2021). This reference should be mentioned in the manuscript.

      Thank you for your insightful reminder. This paper beautifully demonstrated the importance of de novo-synthesized phosphatidylcholine in autophagy using electron microscopy. We have now included its citation and brief discussion in the revised manuscript (lines 74-76, 297-298). However, we respectfully note that direct observation of lipid transfer at the ER-IM MCS in living cells still remains unproven.

      7) In lines 252-253, the sentence "R18 transport from the PM to the ER was partially impaired in osh1Δ osh2Δ, osh6Δ osh7Δ, and oshΔ osh4-1 cells (Figure S3). These results suggest that Osh proteins participate in transferring R18 from the PM to the ER" does not recapitulate what is observed in Fig. S3. Moreover, the Emr lab has generate a tertadeletion mutant in which the PM-ER MCSs are abolished. The authors could examine this mutant.

      We thank the reviewer for this helpful comment and sincerely apologize for the lack of clarity in our original description. Our conclusion was primarily based on the partial PM accumulation of R18 observed in some osh mutant strains shown in Figure S3, which motivated us to further investigate this pathway using the OSW-1 inhibitor. We have revised the corresponding text to improve the logic and clarity of this section.

      We appreciate the recommendation of the tether∆ mutant. Our preliminary tests indicate that R18 still properly labels the ER in tether∆ cells, suggesting that its localization is not due to passive diffusion at membrane contact sites, but rather involves specific transport mechanisms. As this is an initial observation, we plan to confirm the result and include it in a future revision.

      Reviewer #1 (Significance (Required)):

      General assistent: Strength: potential new system to monitor lipid flow Limitations: Indirect evidences and in the case of the retrograde transport of phospholipids, it could be an artefact of the employed experimental approach. Advance: Little advances because something in part already shown in vitro. No new mechanisms uncovered. Audience: Autophagy and membrane contact site fields.

      We sincerely thank the reviewer for the overall evaluation. We agree that our current system offers indirect but promising evidence for lipid transfer events at ER-IM contact sites in vivo. While Atg2-mediated lipid transport has been proposed in vitro, our study adds value by (1) establishing a live-cell imaging way to monitor lipid flow in a non-vesicular transport pathway, (2) proposing a model of reversible one-way lipid transfer activity, and (3) addressing whether findings from simplified in vitro reconstitution accurately reflect the dynamics in the more complex real cellular environment.

      We recognize the limitations of our current approach and plan to include additional analyses to more cautiously interpret the observed retrograde movement. Although we do not claim to identify a new mechanism, we believe our work provides an interesting framework to inspire future efforts aimed at directly probing lipid flow at membrane contact sites in vivo.

      We also sincerely appreciate the reviewer's recognition of the potential value of this system for the autophagy and membrane contact site communities.

      Response to the Reviewer ____#2

      Non-vesicular lipid transfer plays an essential role in organelle biogenesis. Compared to vesicular lipid transfer, it is faster and more efficient to maintain proper lipid levels in organelles. In this study, Hao et al. introduced a high lipophilic dye octadecyl rhodamine B (R18), which specifically labels the ER structures and autophagy-related structures in yeast and mammalian cells. They characterised its distinct lipid entry into yeast cells via lipid flippase Neo1 and Drs2 on the plasma membrane, rather than through the endocytic pathway. They then demonstrated that R18 intracellular trafficking through plasma membrane to ER depends on "box-like" lipid transfer Osh proteins. They further looked into the "bridge-like" lipid transfer protein Atg2, using R18 as a lipid probe to track lipid transfer from ER to the isolation membrane (IM) during membrane expansion and reversible lipid transfer through IM to the ER-IM membrane contact sites (MCS) when autophagy is terminated by nutrient replenishment. The authors provide an interesting model of reversible directionality of Atg2 lipid transfer during autophagy induction and termination.

      We sincerely thank the reviewer for the thoughtful and constructive summary of our work. We are grateful for the recognition of the novelty of using R18 to visualize non-vesicular lipid transfer in vivo and for highlighting the conceptual contribution of our proposed model of reversible Atg2-mediated transport during autophagy.

      In response to the reviewer's valuable suggestions, we have revised key parts of the manuscript and prepared a detailed revision plan to address the specific concerns. We truly appreciate the reviewer's insights, which have been instrumental in improving the clarity of our study.

      Major points:

      1. Line 299-309: The FRAP assays were interesting and well performed. The authors photobleached R18 and Atg8 signal, and found R18 fluorescence recovery but not Atg8, which suggests lipid transfer occurs between ER and the IM and faster than Atg8 lipidation process during IM expansion. These results gave clear evidence that R18 can be transferred during IM expansion. The supply of Atg8 may not be not able to track within this time frame or the recovered amount of Atg8 may not be able to visualized due to the threshold limitation with confocal microcopy. This does not imply the supply of Atg8 to the IM is not required during IM expansion. This should be clarified.

      We thank the reviewer for this valuable comment and fully agree that Atg8 is essential for IM expansion. We apologize for any ambiguity that may have suggested otherwise.

      As pointed out, the lack of mNG-Atg8 recovery in our FRAP assay likely reflects the slower turnover of lipidated Atg8, limited observation time, and photobleaching of the existing protein pool. Notably, we observed a weak but gradual signal recovery at later time points, supporting this view. We have revised the relevant paragraph in the manuscript (line 326-330) to clarify these points and avoid potential misinterpretation.

      Please clarify how the length of the IM is measured and determined in Figure 4H and Figure 5D.

      We thank the reviewer for the vaulable comment. We have now clarified the method for quantifying IM length in the revised manuscript. Specifically, we modified the Statistical Analysis section of the Methods (line 642-643).

      Line 336-342: The description of the results should be clarified. Based on Figure 5H, the authors observed a significant decrease in the mNG-Atg8 signal during photobleaching of the R18 signal.

      We thank the reviewer for pointing out the ambiguity. We have now clarified the description in the revised manuscript. The sentence has been modified (line 360-362) as follows: "To determine whether nutrient replenishment terminates autophagy, we selectively photobleached the R18 signal and monitored the R18 (photobleached) and mNG-Atg8 (without photobleaching) signal following nutrient replenishment."

      The authors photobleached ER-IM MCS and the ER region (boxed region in Figure 5J) and quantified fluorescence recovery, normalized to the IM region and an ER control. The ER control was taken from the other cell. It would be helpful to compare and analyse the fluorescence recovery of R18 in the bleached ER region near the ER-IM MCS to that in the ER-IM MCS. This would help to confirm the ER-IM MCS fluorescence recovery is due to signal coming from the IM.

      We sincerely thank the reviewer for this insightful suggestion. We have now performed the suggested comparison. Interestingly, each sample consistently showed lower fluorescence recovery in the adjacent bleached ER near the ER-IM MCS (mean = 0.20), compared to the ER-IM MCS region (mean = 0.28). To further validate this observation, we also used the IM as a background reference for normalization. This analysis revealed a more significant difference, with the adjacent bleached ER near the ER-IM MCS showing a lower recovery (mean = 0.47) than the ER-IM MCS (mean = 0.80).

      As the reviewer pointed out, these results support our reversible lipid transfer model by demonstrating that fluorescence recovery at the ER-IM MCS is due to the signal coming from the IM, rather than from the adjacent bleached ER, which recovers more slowly and less efficiently. We have incorporated this new analysis into Figure 5, and accordingly revised the figure legend and main text (lines 384-396). Again, we appreciate this constructive and helpful suggestion.

      In figure 5K, the autophagic structure or IM labelled by R18 seems to be maintained when the mNG-Atg8 signal decreases or dissociates from the IM. Could the authors comment on that how they interpret the termination of the prolonged IM structure and IM shrinkage?

      We thank the reviewer for this insightful observation. Based on our live-cell imaging, we speculate that following the initial dissociation of Atg8, the IM membrane undergoes a relatively slow disassembly process, potentially retracting toward the ER-IM MCS, which often localizes near ER exit sites (ERES). This suggests that IM shrinkage may proceed via Atg8-independent mechanisms. Although the precise pathway remains unclear, we occasionally observed vesiculation events during this phase, supporting the idea that membrane remodeling continues even in the absence of Atg8. In response to this comment, we have revised our manuscript to reflect these interpretations (line 494-496).

      The author has shown that Atg2Δ and Atg2LT lipid transfer mutant impair R18 labelling of autophagic structures in Figure 4C. However, the evidence supporting that R18 fluorescence recovery at ER-IM MCS is mediated by reversible Atg2 lipid transfer is not direct. It would be helpful to clarify whether Atg2 stays on the enlarged autophagic membranes when the membrane has reached to its maximum length and no longer grows.

      We thank the reviewer for this important suggestion. As noted in our response to Reviewer 1 (Major Point 8-2), clarifying whether Atg2/Atg18 remains at the ER-IM contact sites after IM expansion is indeed important for supporting the reversible lipid transfer model. We plan to monitor the localization of Atg18 during the nutrient replenishment assay.

      Minor points:

      1. Figure 2A "Dpm-GFP" is missing. The experiment replicates in Figure 2M should be indicated.

      We thank the reviewer for pointing out these issues. The label for "Dpm-GFP" has been added in Figure 2A, and the number of experimental replicates for Figure 2M is now indicated in the figure legend.

      Figure S2, the magenta panel should be "R18".

      We thank the reviewer for catching this labeling error. We have corrected the magenta panel label in Figure S2 to "R18" in the revised version of the figure.

      Line 341-342: "Figure 5H and 5J" should be "Figure 5H and 5I"

      We thank the reviewer for pointing out this error. The citation has been corrected from "Figure 5H and 5J" to "Figure 5H and 5I" in the revised manuscript.

      Please describe how the lipid docking model of Atg2 is generated.

      We thank the reviewer for this question. We have added a description of the modeling approach in the Methods section of the revised manuscript (lines 640-646). We also added the configuration files of AlphaFold3 to the supplementary information.

      Reviewer #2 (Significance (Required)):

      Currently, lipid probes are emerging as powerful tools to understand membrane dynamics, integrity, and the lipid-mediated cellular functions. In this manuscript, the authors performed a detailed characterisation of octadecyl rhodamine B (R18) as a potential lipid probe, which specifically labels ER and autophagic membranes. They present high quality imaging data and performed FRAP experiments to monitor the membrane dynamics and investigate the lipid transfer directionality between the ER and autophagic structure. However, the evidence of Atg2-mediated reversible lipid transfer may not be direct and sufficient. The proposed reversible lipid transfer model is interesting and provides an explanation of lipid level regulation during autophagosome formation.

      We sincerely thank the reviewer for the positive assessment of our work and for acknowledging the potential of R18 as a lipid probe, as well as the quality of our imaging and FRAP experiments. We are particularly grateful that the reviewer found the proposed model of reversible lipid transfer both interesting and relevant to the broader question of lipid regulation during autophagosome formation.

      Regarding the reviewer's concern that the evidence for Atg2-mediated reversible lipid transfer may not be sufficiently direct, we agree this is a critical point. While technical limitations currently prevent direct visualization of lipid flow reversal at single-molecule resolution in vivo, we hope our revision plan strengthen the proposed model and better convey its biological relevance, while also acknowledging the current limitations and the need for further mechanistic work.

      Response to the ____Reviewer #3

      The authors address the question of how autophagic membrane seeds expand into autophagosomes. After nucleation, IMs expand in dependence of the bridge-like lipid transfer protein Atg2, which has been shown to tether the IM to the ER. Several studies have shown in vitro evidence for direct lipid transfer by Atg2 between tethered membranes, and previous evidence has shown that the hydrophobic groove of Atg2 implicated in lipid transfer is required for autophagosome biogenesis in vivo in yeast and mammalian cells.

      In this manuscript, the authors take advantage of the dye R18, which they show accumulates mainly in the ER after a few minutes. They show specifically that the import of R18 into cells and transfer to the ER depends on the activity of flippases in the plasma membrane and OSPB-related lipid transporter. Using different sets of FRAT experiments, the authors track the fluorescence recovery of R18 in the IM, the IM-ER membrane contact site and the neighboring ER. From these experiments the authors conclude that (a) R18 is transferred to IM from the ER when IMs expand and (b) can be transferred from IMs back to the ER when autophagy is deactivated.

      The use of a lipophilic dye to monitor lipid dynamics during IM expansion or dissolution is an elegant way to probe the mechanisms of lipid transfer across ER-IM contact sites. Quantitative in vivo data is critically needed to address this fundamental question in autophagy and contact site biology. However, the study remains limited in providing direct evidence that it is indeed the lipid transfer activity of Atg2, which underlies the R18 dynamics in IMs in vivo.

      We sincerely thank the reviewer for this thoughtful and encouraging summary. We appreciate the recognition of our approach using R18 to visualize lipid dynamics at ER-IM contact sites, and agree that in vivo quantitative data are critically needed to advance our understanding of autophagic membrane expansion.

      We also fully agree with the reviewer that our current study provides indirect-but conceptually informative-support for Atg2-mediated reversible one way lipid transfer. While prior in vitro studies have demonstrated the lipid transfer capability of Atg2, our goal here was to develop a live-cell system that allows the dynamic tracking of lipid flow in vivo, and to explore the possibility of reversible transport during autophagy termination. We hope our story will offer unique insights for future studies aiming to directly probe lipid transfer mechanisms in live cells.

      Regarding the reviewer's concern about the lack of direct evidence that Atg2's lipid transfer activity underlies the observed R18 dynamics, we fully acknowledge this limitation. To address this point, we would like to cite our parallel study currently under revision (Sakai et al., bioRxiv 2025.05.24.655882v1), which provides additional mechanistic evidence linking R18 dynamics to the lipid transfer function of Atg2. Further details and planned revisions are described in the responses below.

      Major points:

      (1) The authors use R18in FRAP experiments to follow its transfer from the ER into IMs. However, whether this transfer is mediated by Atg2 via its inherent lipid transfer activity remains indirect. The only evidence that implicates Atg2 directly is the observation that a lipid transfer deficient Atg2 variant fails to support IM expansion and autophagosome biogenesis. A similar full-length Atg2 mutant has previously been shown to block autophagosome formation in Dabrowski et al. 2023 in yeast, which the authors do not cite or discuss, suggesting the inherent lipid transfer activity of Atg2 is required for IM expansion. However, aside from this experiment, the mechanisms underlying R18 transfer remain unclear and, while they likely depend on or are at least partially mediated by Atg2, they may involve alternative mechanisms including vesicle transport or continuous membrane contacts. Moreover, for the assays with stalled or dissolving IM, it is essential for the authors to test whether Atg2 is still associated with these IMs. It is quite possible that Atg2 dissociates from maximally expanded or dissolving IMs, which would make their interpretation of the data very unlikely. Thus, it will be critical to provide consistent evidence that lipid transfer from the IM to the ER is mediated by Atg2. Ideally, the authors would label IM with BFP-Atg8, R18, and Atg2-GFP and perform their in vivo analysis.

      We sincerely thank the reviewer for the critical comments and valuable suggestions. To further support the link between R18 transfer and Atg2, we would like to highlight two complementary findings. As noted in our response to Reviewer 1 (Major Point 3), R18 can still label the PAS even when Atg2 is recruited but IM expansion is impaired, suggesting that R18 trafficking occurs in an Atg2-dependent manner. In addition, in our parallel study (bioRxiv, 2025.05.24.655882v1), we demonstrated that Atg2 acts as a bridge-like lipid transfer protein. Notably, when we mutated the bridge-forming region of Atg2, R18 transport to the IM was also disrupted.

      We greatly appreciate the reviewer's reminder regarding the study by Dabrowski et al., 2023, which we have now cited and discussed in the revised manuscript (lines 66-68, 312-314). Their findings that the inherent lipid transfer activity of Atg2 is required for autophagosome formation in vivo strongly reinforce our model.

      Regarding the possibility of vesicle transport, we consider this contribution minimal based on R18's preferential labeling of continuous membranes and its divergence from FM4-64 staining. As for the role of continuous membrane contacts, as also mentioned in our response to Reviewer 1, our preliminary tests indicate that R18 still properly labels the ER in tether∆ cells, suggesting that its localization is not due to passive diffusion at membrane contact sites, but rather involves specific transport mechanisms. As this is an initial observation, we plan to confirm the result and include it in a future revision.

      We also thank the reviewer for the suggestion to monitor Atg2 localization at the dissolving IM. As similarly pointed out by two other reviewers, we plan to track Atg18 during the nutrient replenishment assay.

      Finally, we appreciate the idea of triple-labeling with BFP-Atg8, R18, and Atg2-GFP. While our preliminary attempts encountered technical difficulties such as abnormal BFP-Atg8 localization and severe bleaching during long-term imaging in yeast, we plan to optimize this approach in future experiments.

      (2) Given the ER forms contact sites with many organelles using bridge-like lipid transfer proteins, how do the authors explain the preferential accumulation of R18 in ARS and not in for example PM (Fmp27), mitochondria, endosomes or vacuole (Vps13)? Why should R18 specifically transferred by Atg2 and not or to a much lower rate by Fmp27 or Vps13?

      We sincerely thank the reviewer for raising this insightful question. Indeed, we have carefully considered this point. Our data indicate that R18 labeling of autophagy-related structures (ARS) depends on Atg2, as demonstrated in the present manuscript and supported by our parallel study currently under revision (bioRxiv, 2025.05.24.655882v1).

      We speculate that the preferential accumulation of R18 in ARS may arise from structural and contextual differences among bridge-like LTPs, such as Atg2, Vps13, and Fmp27. Although all are capable of mediating lipid transfer, these proteins differ in their membrane tethering modes, cargo specificity, and spatial regulation. For example, Atg2 localizes specifically to ER-IM contact sites during autophagosome formation, where membrane expansion requires rapid lipid supply. In contrast, Vps13 and Fmp27 may function at more stable or less dynamic contacts, where lipid turnover or probe accessibility is more limited. We have added a brief discussion of this point in the revised manuscript to reflect this important consideration (lines 439-444).

      (3) Does R18 label autophagic bodies after they are formed. Could the authors add R18 after autophagic bodies have formed in atg15 or pep4 cells?

      We thank the reviewer for this excellent suggestion. To address whether R18 can label autophagic bodies post-formation, we plan to perform additional experiments by adding R18 after autophagic bodies have accumulated in atg15Δ or pep4Δ cells. This will help clarify whether R18 incorporates into pre-formed autophagic bodies or requires earlier membrane dynamics for its labeling.

      (4) Since Neo1- or OSBP-defective cells do not transfer R18 from the PM to the ER or other membranes, the authors should include these strains as controls for ER-dependent R18 transfer to ARSs.

      We thank the reviewer for this insightful suggestion. To further validate the ER-dependency of R18 transfer to autophagy-related structures, we plan to include Neo1- and OSBP-deficient strains as additional controls.

      Comments:

      The authors neglect to mention or discuss important recent literature directly related to their study:

      Schutter et al., Cell (2020); Orii et al., JCB (2021); Polyansky et al., EMBOJ (2022); Dabrowski et al., JCB (2023); Shatz et al., Dev Cell (2024)

      We sincerely thank the reviewer for pointing out these important and highly relevant studies. We apologize for our oversight in not citing them earlier. Each of these works has provided valuable insights that are directly related to and have greatly informed our current study. We have now cited and discussed these references in appropriate sections of the revised manuscript.

      Figure 1A and B: The authors need to describe how these cells were stained with R18 in the figure legend or text to help the reader to understand how these experiments were performed. Figure legends need to indicate at which time point after rapamycin treatment cells were analyzed.

      Thank you for the helpful suggestion. We have now added the corresponding information to the figure legends to clarify the staining procedure and time points.

      The authors need to clarify whether mNG-Atg8 colocalization with R18 was included for dot- and ring-like structures for WT cells as shown separately in 1A but not in 1B.

      Thank you for the comment. The quantification in Figure 1B includes both dot- and ring-like structures of mNG-Atg8 colocalized with R18 in WT cells, as shown in Figure 1A. We have now clarified this point in the revised figure legend.

      Figure 1C: The figure legend needs to describe the conditions cells were treated with and when cells were analyzed after rapamycin treatment (presumably).

      Thank you for the helpful suggestion. We have now added the corresponding information to the figure legends.

      Figure 1C: The authors should combine atg15 and pep4 deletions with atg2 or atg7 as controls in which autophagic bodies are not formed.

      Thank you for the valuable suggestion. We plan to perform these experiments that combine atg15 and pep4 deletions with atg2 or atg7 as controls.

      Figure 1E and F: R18 stains more than just the ER in the cells shown. In addition to atg39 and atg40, authors should include atg11 to inhibit all forms of selective autophagy.

      Thank you very much for the insightful comment. We agree and plan to include the atg11Δ mutant to inhibit all forms of selective autophagy.

      Figure S2A and B: The figures are mislabeled. Instead of FM4-64 it should say R18. In addition to the ER, in several images it is obvious to see R18 staining the vacuole membrane (for example Figure 2A 30 degrees) and others. Thus, the strong thresholding in S2 may give the reader an oversimplified view on R18 localization. This needs to be corrected.

      Thank you very much for pointing this out. We have corrected the labeling error in Figure S2A and B. Regarding the observation that R18 occasionally labels the vacuole membrane, we agree with the reviewer's comment. Based on our data, we believe that this signal likely reflects autophagosomes that have reached and fused with the vacuole, as expected in the later stages of autophagy. We have clarified this point in the text to avoid oversimplification of R18 localization (lines 169-171, 426-428).

      Figure 1G and H: In 1G, there are number of R18-stained patches not co-labeled by GFP-ER. What are these patches and which organelles to they represent? In 1H, given the tight association of the ER (omegasome) with forming IMs, it is difficult to discern whether R18 labels surrounding ER membrane or the IM itself. This needs to be more closely analyzed. The authors need to quantify these data similar to the yeast data.

      Thank you for the suggestion. We plan to perform additional quantification and colocalization analysis to clarify the identity of R18-positive signals in 1G and 1H.

      Figure 4A-C: A full-length PLT-deficient variant of Atg2 has been analyzed by Dabrowski et al, JCB 2023 in vivo. This work needs to be cited and discussed. The analysis needs to include punctate Atg8 structures for WT cells to exclude effects due to expansion defects.

      Thank you for the suggestion. We have now cited and discussed the work by Dabrowski et al., JCB 2023 in the revised manuscript (lines 67-68, 312-314). In addition, we have included an analysis of punctate Atg8 structures in WT cells to address the concern regarding potential expansion defects.

      Figure 4F-H: To measure the size changes in IMs, the authors would need to perform these experiments without bleaching the mNG-Atg8 signals.

      We apologize for the lack of clarity. The method for measuring IM size has now been added to the revised manuscript. In Figure 4, we note that mNG-Atg8 fluorescence actually shows a slow recovery over time. This limited recovery likely reflects both the slower turnover of Atg8 and the fact that the pre-existing Atg8 pool at the IM was partially photobleached. We have now revised the main text to clarify this point and included additional explanation (line 326-330).

      Figure 5C: The authors need to indicate the bleached areas in the mNG-Atg8 image for easier orientation. It looks to me that the area that the authors mark as IM-ER MCS is really the IM in proximity to the ER. Thus, if lipid transfer to the IM has ceased, I would not expect recovery here. If the IM-ER MCS area includes IM and the ER to similar extent, I would expect exactly what the authors show: IM does not recover while ER quickly recovers. On average, we would observe reduced recovery as shown in 5D.

      Thank you for the helpful suggestion, and we apologize for the oversight during figure preparation. We have now clearly indicated the bleached areas in the merged image in Figure 5C for better orientation. Additionally, we have carefully re-examined the defined ER-IM MCS region and confirm that the quantified area indeed corresponds to the contact site between the ER and the IM. And double checked the measurements shown in the figure remain correct.

      Figure 5L: Since mNG-Atg8 signal homogenously disappears from the IM, it is meaningless to measure size. How do the authors measure the size of something they cannot detect?

      Thank you for pointing this out. We agree with the reviewer's comment and have removed the panel from the revised version accordingly.

      Figure 5K: The authors need to show the whole bleached area overtime for the reader to be able to see where the recovered R18 signal might be coming from. Currently, it is impossible to discern whether the signal comes from the IM or from slow recovery from neighboring ER.

      We appreciate this insightful comment. To address the concern and following the suggestion from Reviewer 2 (Major Point No.4), we have now revised the figure to include an additional measurement of fluorescence recovery in the adjacent bleached ER (Figure 5K and 5M) (lines 384-396). These results further support our reversible lipid transfer model by demonstrating that fluorescence recovery at the ER-IM MCS originates from the IM, rather than from the adjacent bleached ER, which shows slower and less efficient recovery.

      We have also added time-lapse videos to the supplementary information due to space limitations in the main figure.

      Reviewer #3 (Significance (Required)):

      The use of a lipophilic dye to monitor lipid dynamics during IM expansion or dissolution is an elegant way to probe the mechanisms of lipid transfer across ER-IM contact sites. Quantitative in vivo data is critically needed to address this fundamental question in autophagy and contact site biology. However, the study remains limited in providing direct evidence that it is indeed the lipid transfer activity of Atg2, which underlies the R18 dynamics in IMs in vivo.

      We sincerely thank the reviewer for this encouraging and thoughtful comment. We appreciate the recognition that our live-cell approach using a lipophilic dye provides a valuable framework to visualize lipid dynamics during autophagosome biogenesis. As the reviewer pointed out, quantitative in vivo evidence is critically needed in this field, and we hope our study contributes meaningfully toward that goal.

      We also fully acknowledge the limitation. While our current data offer indirect evidence for Atg2-mediated lipid transfer, we would like to support this by our revision plan and also our parallel study (bioRxiv, 2025.05.24.655882v1) that shows Atg2 is indeed a bridge-like LTP and R18 transfer is lost in the bridge-structure defective strain. Together, we hope these can suggest that the lipid transfer activity of Atg2 underlies the observed R18 dynamics in vivo.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      Recent work has demonstrated that the hummingbird hawkmoth, Macroglossum stellatarum, like many other flying insects, use ventrolateral optic flow cues for flight control. However, unlike other flying insects, the same stimulus presented in the dorsal visual field elicits a directional response. Bigge et al., use behavioral flight experiments to set these two pathways in conflict in order to understand whether these two pathways (ventrolateral and dorsal) work together to direct flight and if so, how. The authors characterize the visual environment (the amount of contrast and translational optic flow) of the hawkmoth and find that different regions of the visual field are matched to relevant visual cues in their natural environment and that the integration of the two pathways reflects a priortiziation for generating behavior that supports hawkmoth safety rather than than the prevalence for a particular visual cue that is more prevalent in the environment.

      Strengths:

      This study creatively utilizes previous findings that the hawkmoth partitions their visual field as a way to examine parallel processing. The behavioral assay is well-established and the authors take the extra steps to characterize the visual ecology of the hawkmoth habitat to draw exciting conclusions about the hierarchy of each pathway as it contributes to flight control.

      Weaknesses:

      The work would be further clarified and strengthened by additional explanation included in the main text, figure legends, and methods that would permit the reader to draw their own conclusions more feasibly. It would be helpful to have all figure panels referenced in the text and referenced in order, as they are currently not. In addition, it seems that sometimes the incorrect figure panel is referenced in the text, Figure S2 is mislabeled with D-E instead of A-C and Table S1 is not referenced in the main text at all. Table S1 is extremely important for understanding the figures in the main text and eliminating acronyms here would support reader comprehension, especially as there is no legend provided for Table S1. For example, a reader that does not specialize in vision may not know that OF stands for optic flow. Further detail in figure legends would also support the reader in drawing their own conclusions. For example, dashed red lines in Figures 3 and 4 A and B are not described and the letters representing statistical significance could be further explained either in the figure legend or materials to help the reader draw their own conclusions.

      We appreciate the suggestions to improve the clarity of the manuscript. We have extensively re-structured the entire manuscript. Among others, we have referenced all figure panels in the text in the order they appear. To do so, we combined the optic flow and contrast measurements of our setup with the methods description of the behavioural experiments (formerly Figs. 5 and 2, respectively). This new figure 2 now introduces the methods of the study, while the remainder of Fig. 2, which presented the experiments that investigated the vetrolateral and dorsal response in more detail, is now a separate figure (Fig. 3). This arrangement also balances the amount of information contained  in each figure better.

      Reviewer #2 (Public review):

      Summary:

      Bigge and colleagues use a sophisticated free-flight setup to study visuo-motor responses elicited in different parts of the visual field in the hummingbird hawkmoth. Hawkmoths have been previously shown to rely on translational optic flow information for flight control exclusively in the ventral and lateral parts of their visual field. Dorsally presented patterns, elicit a formerly completely unknown response - instead of using dorsal patterns to maintain straight flight paths, hawkmoths fly, more often, in a direction aligned with the main axis of the pattern presented (Bigge et al, 2021). Here, the authors go further and put ventral/lateral and dorsal visual cues into conflict. They found that the different visuomotor pathways act in parallel, and they identified a 'hierarchy': the avoidance of dorsal patterns had the strongest weight and optic flow-based speed regulation the lowest weight.

      Strengths:

      The data are very interesting, unique, and compelling. The manuscript provides a thorough analysis of free-flight behavior in a non-model organism that is extremely interesting for comparative reasons (and on its own). These data are both difficult to obtain and very valuable to the field.

      Weaknesses:

      While the present manuscript clearly goes beyond Bigge et al, 2021, the advance could have perhaps been even stronger with a more fine-grained investigation of the visual responses in the dorsal visual field. Do hawkmoths, for example, show optomotor responses to rotational optic flow in the dorsal visual field?

      We thank the reviewer for the feedback, and the suggestions for improvement of the manuscript (our implementations are detailed below). We fully agree that this study raises several intriguing questions regarding the dorsal visual response, including how the animals perceive and respond to rotational optic flow in their dorsal visual field, particularly since rotational optic flow may be processed separately from translational optic flow.

      In our free-flight setup, it was not possible to generate rotational optic flow in a controlled manner. To explore this aspect more systematically, a tethered-flight setup would be ideal, or alternatively, a free-flight setup integrated with virtual reality. This would be a compelling direction for a follow-up study.

      Reviewer #3 (Public review):

      The central goal of this paper as I understand it is to extract the "integration hierarchy" of stimulus in the dorsal and ventrolateral visual fields. The segregation of these responses is different from what is thought to occur in bees and flies and was established in the authors' prior work. Showing how the stimuli combine and are prioritized goes beyond the authors' prior conclusions that separated the response into two visual regions. The data presented do indeed support the hierarchy reported in Figure 5 and that is a nice summary of the authors' work. The moths respond to combinations of dorsal and lateral cues in a mixed way but also seem to strongly prioritize avoiding dorsal optic flow which the authors interpret as a closed and potentially dangerous ecological context for these animals. The authors use clever combinations of stimuli to put cues into conflict to reveal the response hierarchy.

      My most significant concern is that this hierarchy of stimulus responses might be limited to the specific parameters chosen in this study. Presumably, there are parameters of these stimuli that modulate the response (spatial frequency, different amounts of optic flow, contrast, color, etc). While I agree that the hierarchy in Figure 5 is consistent for the particular stimuli given, this may not extend to other parameter combinations of the same cues. For example, as the contrast of the dorsal stimuli is reduced, the inequality may shift. This does not preclude the authors' conclusions but it does mean that they may not generalize, even within this species. For example, other cue conflict studies have quantified the responses to ranges of the parameters (e.g. frequency) and shown that one cue might be prioritized or up-weighted in one frequency band but not in others. I could imagine ecological signatures of dorsal clutter and translational positioning cues could depend on the dynamic range of the optic flow, or even having spatial-temporal frequency-dependent integration independent of net optic flow.

      We absolutely agree that in principle, an observed integration hierarchy is only valid for the stimuli tested. Yet, we do believe that we provide good evidence that our key observations are robust also for related stimuli to the ones tested:

      Most importantly, we found that both pathways act in parallel (and are not mutually exclusive, or winner-takes-all, for example), when the animals can enact the locomotion induced by the dorsal and ventrolateral pathway. We tested this with the same dorsal cue (the line switching direction), but different behavioural paradigms (centring vs unilateral avoidance), and different ventrolateral stimuli (red gratings of one spatial frequency, and 100% nominal contrast black-and-white checkerboard stimuli which comprised a range of spatial frequencies) – and found the same integration strategy.

      Certainly, if the contrast of the visual cues was reduced to the point that the dorsal or ventrolateral responses became weaker, we would expect this to be visible in the combined responses, with the respective reduction in response strength for either pathway, to the same degree as they would be reduced when stimuli were shown independently in the dorsal and ventrolateral visual field.

      For testing whether the animals would show a weighting of responses when it was not possible to enact locomotion to both pathways, we felt it was important to use similar external stimuli to be able to compare the responses. So we can confidently interpret their responses in terms of integration. Indeed, how this is translated to responses in the two pathways depends a) on the spatiotemporal tuning, contrast sensitivity and exact receptive fields of the two systems, b) the geometry of the setup and stimulus coverage, and therefore the ability of the animals to enact responses to both pathways independently and c) on the integration weights.

      It would indeed be fascinating to obtain this tuning and the receptive fields, and having these, test a large array of combinations of stimuli and presentation geometries, so that one could extract integration weights for different presentation scenarios from the resulting flight responses in a future study.

      We also expanded the respective discussion section to reflect these points: l. 391-417. We also updated the former Fig. 5, now Fig. 6 to reflect this discussion.

      The second part of this concern is that there seems to be a missed opportunity to quantify the integration, especially when the optic flow magnitude is already calculated. The discussion even highlights that an advantage of the conflict paradigm is that the weights of the integration hierarchy can be compared. But these weights, which I would interpret as stimulus-responses gains, are not reported. What is the ratio of moth response to optic flow in the different regions? When the moth balances responses in the dorsal and ventrolateral region, is it a simple weighted average of the two? When it prioritizes one over the other is the response gain unchanged? This plays into the first concern because such gain responses could strongly depend on the specific stimulus parameters rather than being constant.

      Indeed, we set up stimuli that are comparable, as they are all in the visual domain, and since we can calculate their external optic flow and contrast magnitudes, to control for imbalances in stimulus presentation, which is important for the interpretation of the resulting data.

      As we discussed above, we are confident that we are observing general principles of the integration of the two parallel pathways. However, we refrained from calculating integration weights, because these might be misleading for several reasons:

      (1) In situations where the animals can enact responses to both pathways, we show that they do so at the full original magnitudes. So there are no “weights” of the hierarchy in this case.

      (2) Only when responses to both systems are not possible in parallel, do we see a hierarchy. However, combined with point (1), this hierarchy likely depends on the geometry of the moths’ environment: it will be more pronounced the less both systems can be enacted in parallel.

      (3) The hierarchy also does not affect all features of the dorsal or ventrolateral pathway equally. The hawkmoths still regulate their perpendicular distance to ventral gratings with dorsal gratings present, to same degree as with only ventral grating - because perpendicular distance regulation is not a feature of the dorsal response. And while the hawkmoths show a significant reduction in their position adjustment to dorsal contrast when it is in conflict with lateral gratings (Fig. 4C), they show exactly the same amount of lateral movement and speed adjustment as for dorsal gratings alone, when not combined with lateral ones (Fig. 4D and Fig. S3A). So even for one particular setup geometry and stimulus combination, there clearly is not one integration weight for all features of the responses.

      We extended the discussion section to clarify these points “The benefit of our study system is that the same cues activate different control pathways in different regions of the visual field, so that the resulting behaviour can directly be interpreted in terms of integration weights” (l. 448-451)

      l. 391-417, we also updated the former Fig. 5, now Fig. 6 to reflect this discussion.

      The authors do explain the choice of specific stimuli in the context of their very nice natural scene analysis in Fig. 1 and there is an excellent discussion of the ecological context for the behaviors. However, I struggled to directly map the results from the natural scenes to the conclusions of the paper. How do they directly inform the methods and conclusions for the laboratory experiments? Most important is the discussion in the middle paragraph of page 12, which suggests a relationship with Figure 1B, but seems provocative but lacking a quantification with respect to the laboratory stimuli.

      We show that contrast cues and translational optic flow are not homogeneously distributed in the natural environments of hawkmoths. This directly related to our laboratory findings, when it comes to responses to these stimuli in different parts of their visual field. In order to interpret the results of these behavioural experiments with respect to the visual stimuli, we did perform measurements of translational optic flow and contrast cues in the laboratory setup. As a result, we make several predictions about the animals’ use of translational optic flow and contrast cues in natural settings:

      a) Hawkmoths in the lab responded strongest to ventral optic flow, even though it was not stronger in magnitude, given our measurements, than lateral optic flow. Thus, we propose that the stronger response to ventral optic flow might be an evolutionary adaptation to the natural distribution of translational optic flow cues.

      b) In the natural habitats of hawkmoths, dorsal coverage is much less frequent that ventrolateral structures generating translational optic flow, yet the hawkmoths responded with a much higher weight to the former. Moreover, in our flight tunnel experiments, the animals responded with the same or higher weights to dorsal cues, which had a lower magnitude of translational optic flow and contrast than the same cues in the ventrolateral visual field. So we showed, combining behavioural experiments and stimulus measurements in the lab that the weighting of dorsal and ventrolateral cues did not follow their stimulus magnitude in the lab. Moreover, comparing to the natural cue distributions, we suggest that the integration weights also did not evolve to match the prevalence of these cues in natural habitats.

      We integrated the measurements of natural visual scene statistics in the new Fig. 6, to relate the behavioural findings to the natural context also in the figure structure, and sequence logic of the text, as they are discussed here.

      The central conclusion of the first section of the results is that there are likely two different pathways mediating the dorsal and the ventrolateral response. This seems reasonable given the data, however, this was also the message that I got from the authors' prior paper (ref 11). There are certainly more comparisons being done here than in that paper and it is perfectly reasonable to reinforce the conclusion from that study but I think what is new about these results needs to be highlighted in this section and differentiated from prior results. Perhaps one way to help would be to be more explicit with the open hypotheses that remain from that prior paper.

      We appreciate the suggestion to highlight more clearly what the open questions that are addressed in this study are. As a result, we have entirely restructured the introduction, added sections to the discussion and fundamentally changed the graphical result summary in Fig. 6, to reflect the following new findings (and differences to the previous paper):

      The previous paper demonstrated that there are two different pathways in hummingbird hawkmoths that mediate visual flight guidance, and newly described one of them, the dorsal response. This established flight guidance in hummingbird hawkmoths as a model for the questions asked in the current study, which are very different in nature from the previous paper.  

      The main question addressed in the current study is how these two flight guidance pathways interact to generate consistent behaviour? Throughout the literature of parallel sensory and motor pathways guiding behaviour, there are different solutions – from winner-takes-all to equal mixed responses. We tested this fundamental question using the hummingbird hawkmoth flight guidance systems as a model.

      This is the main question addressed in the various conflict experiments in this study, and we show that indeed, the two systems operate in parallel. As long as the animals can enact both dorsal and optic-flow responses, they do so at the original strengths of the responses. Only when this is not possible, hierarchies become visible. We carefully measured the optic flow and contrast cues generated by the different stimuli to ensure that the hierarchies we observed were not generated by imbalances of the external stimuli.

      - Does the interaction hierarchy of the two pathways follow the statistics of natural environments?  We did show qualitatively previously how optic flow and contrast cues are distributed across the visual field in natural habitats of the hummingbird hawkmoth. In this study, we quantitatively analysed the natural image data, including a new analysis for the contrast edges, and statistically compared the results across conditions. This quantitative analysis supported the previous qualitative assessment that the prevalence of translational optic flow was highest in the ventral and lowest in the dorsal visual field in all natural habitat types. The distribution of contrast edges across the visual field did depend on habitat type much stronger than visible in the qualitative analysis in the previous paper. When compared to the magnitude of the behavioural responses, and considering that the hummingbird hawkmoth is predominantly found in open and semi-open habitats, the natural distributions of optic flow and contrast edges did not align with the response hierarchy observed in our laboratory experiments. Dorsal cues elicited much stronger responses relative to ventrolateral optic flow responses than would be expected.

      To provide a more complete picture of the dorsal pathway, which will be important to understand its nature, and also compare to other species, we conducted additional experiments that were specifically set up to test for response features known from the translational optic flow response. To compare and contrast the two systems. These experiments here allowed us to show that the dorsal response is not simply a translational optic flow reduction response that creates much stronger output than the ventrolateral optic flow response. We particularly show that the dorsal response was lacking the perpendicular distance regulation of the optic flow response, while it did provide alignment with prominent contrasts (possibly to reduce the perceived translational optic flow), which is not observed in the ventrolateral optic flow response. The strong avoidance of any dorsal contrast cues, not just those inducing translational optic flow, is another feature not found in the ventrolateral pathway.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      Many comparisons between visual conditions are made and it was confusing at times to know which conditions the authors were comparing. Thinking of a way to label each condition with a letter or number so that the authors could specify which conditions are specifically being compared would greatly enhance comprehension and readability.

      We appreciate this concern. To be able to refer to the individual stimulus conditions in the analysis and results description, we gave each stimulus a unique identifier (see table S1), and provided these identifiers in the respective figures and throughout the text. We hope that this makes the identification of the individual stimuli easier.

      Consider adding in descriptive words to the y-axis labels for the position graphs that would help the reader quickly understand what a positive or negative value means with respect to the visual condition.

      We did now change the viewpoint on the example tracks in Figs. 2-5, to take a virtual viewpoint from the top, not as the camera recorded from below, which requires some mental rotation to reconcile the left and right sides. Moreover, we noticed that the example track axes were labelled in mm, while the axes for the plots showing median position in the tunnel were labelled in cm. We reconciled the units as well. This will make it easier to see the direct equivalent of the axis (as well as positive and negative values) in the example tracks in those figures, and the median positions, as well as the cross-index.

      There are no line numbers provided so it is a bit challenging to provide feedback on specific sentences but there are a handful of typos in the manuscript, a few examples:

      (1) Cue conflict section, first paragraph: "When both cues were presented to in combination, ..." (remove to)

      (2) The ecological relevance section, first paragraph, first sentence: "would is not to fly"

      (3) Figure S3 legend: explanation for C is labeled as B and B is not included with A

      We apologise for the missing line numbers. We added these and resolved the issues 1-3.

      Reviewer #2 (Recommendations for the authors):

      - The pictograms in Fig. 1a were at first glance not clear to me, maybe adding l, r, d, v to the first pictogram could make the figure more immediately accessible.

      We added these labels to make it more accessible.

      - I would suggest noting in the main text that the red patterns were chosen for technical reasons (see Methods), if this is correct.

      We added this information and a reference to the methods in the main text (lines 100-102).

      - "Thus, hawkmoths are currently the only insect species for which a partitioning of the visual field has been demonstrated in terms of optic-flow-based flight control [33-35]." I think that is a bit too strong and maybe it would be more interesting to connect the current data to connected data in other insects to perhaps discuss important similarities. Ref 32 for example shows that fruit flies weigh ventral translational optic flow considerably more than dorsal translational optic flow. Reichardt 1983 (Naturwissenschaften) showed that stripe fixation in large flies (a behaviour relying in part on the motion pathway) is confined to the ventral visual field, etc...

      We have changed this sentence to acknowledge partitioning in other insects, and motivating the use of our model species for this study: While fruit flies weight ventral translational optic flow stronger than dorsal optic flow, the most extreme partitioning of the visual field in terms of  optic-flow-based flight control has been observed in hawkmoths [33-35]. (lines 60-62)

      - I think the statistical differences group mean differences could be described in more detail at least in Fig. 2 (to me the description was not immediately clear, in particular with the double letters).

      We added an explanation of the letter nomenclature to all respective figure legends:

      Black letters show statistically significant differences in group means or median, depending on the normality of the test residuals (see Methods, confidence level: 5%). The red letters represent statistically significant differences in group variance from pairwise Brown–Forsythe tests (significance level 5%). Conditions with different letters were significantly different from each other. The white boxplots depict the median and 25% to 75% range, the whiskers represent the data exceeding the box by more than 1.5 interquartile ranges, and the violin plots indicate the distribution of the individual data points shown in black.

      - "When translational optic flow was presented laterally" I would use a more wordy description, since it is the hawkmoth that is controlling the optic flow and in addition to translational optic flow, there might also be rotational components, retinal expansion etc.

      We extended the description to explain that the moths were generating the optic flow percept based on stationary gratings in different orientations, by way of their flight through the tunnel. Lines 127-129

      - While it is clearly stated that the measure of the perpendicular distance from the ventral and dorsal pattern via the size of the insect as seen by the camera is indirect, I would suggest to determine the measurement uncertainty of distance estimate.

      - Connected to above - is the hawkmoth area averaged over the entire flight and is the variance across frames similar in all the stimuli conditions? Is it, in principle, conceivable that the hawkmoths' pitch (up or down) is different across conditions, e.g. with moths rising and falling more frequently in a certain condition, which could influence the area in addition to distance?

      There are a number of sources that generate variance in the distance estimate (which was based on the size of the moth in each video frame, after background subtraction): the size of the animal, the contrast with which the animal was filmed (which also depended on the type of pattern in the tunnel – it was lower with ventral or dorsal patterns as a background than with lateral ones), and the speed of the animal, as motion blur could impact the moth’s image on the video. The latter is hard to calibrate, but the uncertainty related to animal size and pattern types could theoretically be estimated. However, since we moved between finishing the data acquisition for this study and publishing the paper, the original setup has been dismantled. We could attempt to recreate it as faithfully as possible, but would be worried to introduce further noise. We therefore decided to not attempt to characterise the uncertainty, to not give a false impression of quantifiability of this measure. For the purpose of this study, it will have to remain a qualitative, rather than a quantitative measure. If we should use a similar measure again, we will make sure to quantify all sources of uncertainty that we have access to.

      The variance in area is different between conditions. Most likely, the animals vary their flight height different for different dorsal and ventral patterns, as they vary their lateral flight straightness with different lateral visual input. For the reasons mentioned above, we cannot disentangle the effects of variations in flight height and other sources of uncertainty relating to animal size in the video frames. We therefore averaged the extracted area across the entire flight, to obtain a coarse measure of their flight height. Future studies focusing specifically on the vertical component or filming in 3D will be required to determine the exact amount of vertical flight variation.

      - Results second paragraph, suggestion: pattern wavelength or spatial frequency instead of spatial resolution.

      - Same paragraph, suggestion: For an optimal wavelength/spatial frequency of XX

      We corrected these to spatial frequency.

      - Above Fig 3- "this strongly suggests a different visual pathway". In my opinion it would be better to say sensory-motor /visuomotor pathway or to more clearly define visual pathway? Could one in principle imagine a uniform set of local motion sensitive neurons across the entire visual field that connect differentially to descending/motor neurons.

      We appreciate this point and changed this, and further instances in the manuscript to visuomotor pathway.

      - If I understood correctly, you calculated the magnitude of optic flow in the different tunnel conditions based on the image of a fisheye camera moving centrally in the tunnel, equidistant from all walls. I did not understand why the magnitude of optic flow should differ between the four quadrants showing the same squarewave patterns. Apologies if I missed something, but maybe it is worth explaining this in more detail in the manuscript.

      We recognize that this point may not have been immediately clear and have therefore provided additional clarification in the Methods and results section (lines 106-111, 543-549). We anticipated differences in the magnitude of optic flow due to potential contrast variations arising from the way the stimuli were generated—being mounted on the inner surfaces of different tunnel walls while the light source was positioned above. On the dorsal wall, light from the overhead lamps passed through the red material. For laterally mounted patterns, the animals perceived mainly reflected light, as these tunnel walls were not transparent.

      A similar principle applied to the background, which consisted of a white diffuser allowing light to pass through dorsally, but white non-transmissive paper laterally, with a 5% contrast random checkerboard patterns. The ventral side presented a more complex scenario, as it needed to be partially transparent for the ventrally mounted camera. Consequently, the animals perceived a combination of light reflections from the red patterns and the white gauze covering the ventral tunnel side, against the much darker background of the surrounding room.

      To ensure that the observed flight responses were not artifacts of deviations in visual stimulation from an ideal homogeneous environment, we used the camera to quantify the magnitude of optic flow and contrast patterns under these real experimental conditions. This approach also allowed us to directly relate the optic flow measurements taken indoors to those recorded outdoors, as we employed the same camera and analytical procedures for both datasets.

      Reviewer #3 (Recommendations for the authors):

      In addition to the considerations above I had a few minor points:

      There are so many different directions of stimuli and response that it is quite challenging to parse the results. Can this be made a little easier for the reader?

      We appreciate this concern. To be able to refer to the individual stimulus conditions in the analysis and results description, we gave each stimulus a unique identifier (see table S1), and provided these identifiers in the respective figures and throughout the text. We hope that this makes the identification of the individual stimuli easier.

      One suggestion (only a suggestion): I found myself continuously rotating the violin plots in my head so that the lateral position axis lined up with the lateral position of the tunnel icons below. Consider if rotating the plots 90 degs would help interpretability. It was challenging to keep track of which side was side.

      We did discuss this with a number of test-readers, and tried multiple configurations. They all have advantages and drawbacks, but we decided that the current configuration for the majority of testers was the current one. To help the mental transformations from the example flight tracks in the figures, we now present the example flight tracks in Figs. 2-5 in the same reference frame as the figures showing median position (so positive and negative values on those axes correspond directly), and changed the view from a below the tunnel to an above the tunnel view, as this is the more typical depiction. We hope that this enhances readability.

      Are height measurements sensitive to the roll and pitch of the animal? I suspect this is likely small but worth acknowledging.

      They are indeed. These effects are likely small but contribute to the overall inaccuracy, which we could not quantify in this particular setup (see also response to reviewer 2 on that point), which is why the height measurements have to be considered a qualitative approximation rather than a quantification of flight height. We added text to acknowledge the effects of roll and pitch specifically (lines 657-658)

      The Brown-Forsythe test was reported as paired but this seems odd because the same moths were not used in each condition. Maybe the authors meant something different by "paired" than a paired statistical design?

      Indeed, the data was not paired in the sense that we could attribute individual datapoints to individual moths across conditions. We applied the Brown-Forsythe test in a pairwise manner, comparing the variance of each condition with another one in pairs each, to test if the variance in position differed across conditions. We did phrase this misleadingly, and have corrected it to „The variance in the median lateral position (in other words, the spread of the median flight position) was statistically compared between the groups using the pairwise Brown–Forsythe tests“ l. 187-188

      There is some concern about individual moth preferences and bias due to repeated measures. I appreciate that the individual moth's identity was not likely known in most cases, but can the authors provide an approximate breakdown of how many individual moths provided the N sample trajectories?

      This is a very valid concern, and indeed one we did investigate in a previous study with this setup. We confirmed that the majority of animals (70%, 68% and 53% out of 40 hawkmoths, measured on three consecutive days) crossed the tunnel within a randomly picked window of 3h (Stöckl et al. 2019). We now state this explicitly in the methods section (lines 594-597). Thus, for the sample sizes in our study, statistically, each moth would have contributed a small number of tracks compared to the overall number of tracks sampled.

      The statistics section of the methods said that both Tukey-Kramer (post-hoc corrected means) and Kruskal-Wallis (non-parametric medians) were done. It is sometimes not clear which test was done for which figure, and where the Kruskal-Wallis test was done there does not seem to be a corrected statistical significance threshold for the many multiple comparisons (Fig. 2). It is quite possible I am just missing the details and they need to be clarified. I think there also needs to be a correction for the Brown-Forsythe tests but I don't know this method well.

      We first performed an ANOVA, and if the test residuals were not normally distributed, we used a Kruskal-Wallis test instead. For the post-hoc tests of both we used Tukey-Kramer to correct for multiple comparisons. The figure legends did indeed miss this information. We added it to clarify our statistical analysis strategy and refer to the methods section for more details (i.e. l. 185-186). All statistical results, including the type of statistical test used, have been uploaded to the data repository as well.

      The connection to stimulus reliability in the discussion seems to conflate reliability with prevalence or magnitude.

      We have rephrased the respective discussion sections to clearly separate the prevalence and magnitude of stimuli, which was measured, from an implied or hypothesized reliability (lines 510-511).

      Line numbers would be helpful for future review.

      We apologize for missing the line numbers and have added them to the revised manuscript.

    1. Author response:

      The following is the authors’ response to the previous reviews

      Reviewer #1:

      Reviewer #1 (Recommendations For The Authors):

      (1) At several places in the reply to reviewers and the manuscript, when discussing the new simulations conducted, the authors mention they break the 180 trials into a train/test split of 108/108 - is this value correct? If so, how? (pg 19 of updated manuscript)  

      Thank you for pointing this out; it was not clearly explained. We have now added the explanation to the Methods section: 

      “For each iteration, we randomly selected 108 responses from the full set of 180 for training, and then independently sampled another 108 from the same full set for testing. This ensured that the same orientation could appear in both sets, consistent with the structure of the original experiment.”

      (2) I appreciate the authors have added the variance explained of principal components to the axes of Fig. 3, though it took me a while to notice this, and this isn't described in the figure caption at all. It would likely help readers to directly explain what the % means on each axis of Fig. 3.

      Thank you, we have now added a description in both Fig. 2 and 3:

      “The axes represent the first two principal components, with labels indicating the percent of total explained variance.”

      (3) I believe there is a typo/missing word in the new paragraph on pg 15: "neural visual WM representations in the early visual cortices are [[biased]] towards distractors" (I think the bracketed word may be omitted as a typo)

      Thank you - fixed.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      Prior research indicates that NaV1.2 and NaV1.6 have different compartmental distributions, expression timelines in development, and roles in neuron function. The lack of subtype-specific tools to control Nav1.2 and Nav1.6 activity however has hampered efforts to define the role of each channel in neuronal behavior. The authors attempt to address the problem of subtype specificity here by using aryl sulfonamides (ASCs) to stabilize channels in the inactivated state in combination with mice carrying a mutation that renders NaV1.2 and/or NaV1.6 genetically resistant to the drug. Using this innovative approach, the authors find that action potential initiation is controlled by NaV1.6 while both NaV1.2 and NaV1.6 are involved in backpropagation of the action potential to the soma, corroborating previous findings. Additionally, NaV1.2 inhibition paradoxically increases the firing rate, as has also been observed in genetic knockout models. Finally, the potential anticonvulsant properties of ASCs were tested. NaV1.6 inhibition but not NaV1.2 inhibition was found to decrease action potential firing in prefrontal cortex layer 5b pyramidal neurons in response to current injections designed to mimic inputs during seizure. This result is consistent with studies of loss-of-function Nav1.6 models and knockdown studies showing that these animals are resistant to certain seizure types. These results lend further support for the therapeutic promise of activity-dependent, NaV1.6-selective, inhibitors for epilepsy.

      Strengths:

      (1) The chemogenetic approaches used to achieve selective inhibition of NaV1.2 and NaV1.6 are innovative and help resolve long-standing questions regarding the role of Nav1.2 and Nav1.6 in neuronal electrogenesis.

      (2) The experimental design is overall rigorous, with appropriate controls included.

      (3) The assays to elucidate the effects of channel inactivation on typical and seizure-like activity were well selected.

      Weaknesses:

      (1) The potential impact of the YW->SR mutation in the voltage sensor does not appear to have been sufficiently assessed. The activation/inactivation curves in Figure 1E show differences in both activation and inactivation at physiologically relevant membrane voltages, which may be significant even though the V1/2 and slope factors are roughly similar.

      We have performed new experiments testing how YW->SR mutations affect spiking on their own. The reviewer’s intuition was correct; the small changes in voltage-dependence in NaV1.6 identified in heterologous expression systems translated into a ~2 mV hyperpolarization in threshold in neurons.

      (2) Additional discussion of the fact that channels are only partially blocked by the ASC and that ASCs act in a use-dependent manner would improve the manuscript and help readers interpret these results.

      We have updated text extensively to address this concern. Details are found in the author suggestions below.

      (3) NaV1.6 was described as being exclusively responsible for the change in action potential threshold, but when NaV1.6 alone was inactivated, the effect was significantly reduced from the condition in which both channels were inactivated (Figure 4E). Similarly, Figure 6C shows that blockade of both channels causes threshold depolarization prior to the seizure-like event, but selective inactivation of NaV1.6 does not. As NaV1.2 does not appear to be involved in action potential initiation and threshold change, what is the mechanism of this dissimilarity between the NaV1.6 inactivation and combined NaV1.6/ NaV1.2 inactivation?

      We believe the dissimilarity is due to interactions between NaV1.2 and other channel classes (e.g., potassium channels) throughout the cell, including the somatodendritic domain. NaV1.6 that initiates APs, localized to the AIS, do not live in isolation, and AP threshold can be affected by the recent membrane potential history. Loss of NaV1.2-mediated depolarization in the dendrites begets less potassium channel-mediated repolarization, as described in Figure 4.

      (4) The idea that use-dependent VGSC-acting drugs may be effective antiseizure medications is well established. Additional discussion or at least acknowledgement of the existing, widely used, use-dependent VGSC drugs should be included (e.g. Carbamazepine, Lamotrigine, Phenytoin). Also, the idea that targeting NaV1.6 may be effective for seizures is established by studies using genetic models, knockdown, and partially selective pharmacology (e.g. NBI-921352). Additional discussion of how the results reported here are consistent with or differ from studies using these alternative approaches would improve the discussion

      We agree; the concept of use-dependent block as a means to treat seizure is not new, and we have updated the discussion to include commentary on other medications currently in use. What is new here is our ability to explore the role of NaV1.2 and NaV1.6 in electrogenesis with a level of drug selectivity that could not be achieved without the addition of the YW->SR mutations. This approach in itself will not be useful in the clinic, but it may help guide drug design in the future. One major interpretation of this work is that NaV1.6 block is more effective than NaV1.2 block in general, and may even be effective for non-SCN8A genetic conditions. This is indeed one of the reasons that we believe that drugs like NBI-921352, itself an aryl-sulfonamide, is being tested in seizure models.

      Reviewer #2 (Public review):

      The authors used a clever and powerful approach to explore how Nav1.2 and Nav1.6 channels, which are both present in neocortical pyramidal neurons, differentially control firing properties of the neurons. Overall, the approach worked very well, and the results show very interesting differences when one or the other channel is partially inhibited. The experimental data is solid and the experimental data is very nicely complemented by a computational model incorporating the different localization of the two types of sodium channels.

      In my opinion the presentation and interpretation of the results could be improved by a more thorough discussion of the fact that only incomplete inhibition of the channels can be achieved by the inhibitor under physiological recording conditions and I thought the paper could be easier to digest if the figures were re-organized. However, the key results are well-documented.

      This is a concern raised by multiple reviewers, and we thank you all for your help in improving the way in which we discuss the results. We have revised the manuscript extensively, moving figures around per your advice and the advice of R1 in their comments to authors.

      Reviewer #3 (Public review):

      Summary:

      The authors used powerful and novel reagents to carefully assess the roles of the voltage gated sodium channel (NaV) isoforms in regulating the neural excitability of principal neurons of the cerebral cortex. Using this approach, they were able to confirm that two different isoforms, NaV1.2 and NaV1.6 have distinct roles in electrogenesis of neocortical pyramidal neurons.

      Strengths:

      Development of very powerful transgenic mice in which NaV1.2 and/or NaV1.6 were modified to be insensitive to ASCs, a particular class of NaV blocker. This allowed them to test for roles of the two isoforms in an acute setting, without concerns of genetic or functional compensation that might result from a NaV channel knockout.

      Careful biophysical analysis of ASC effects on different NaV isoforms.

      Extensive and rigorous analysis of electrogenesis - action potential production - under conditions of blockade of either NaV1.2 or NaV1 or both.

      Weaknesses:

      Some results are overstated in that the representative example records provided do not directly support the conclusions.

      We have swapped out example records to better capture the median effect observed and to better capture our discussion of these results. Please see below, in recommendations for authors, for details.

      Results from a computational model are provided to make predictions of outcomes, but the computational approach is highly underdeveloped.

      Modeling has been elaborated upon extensively, with more detail in methods, a new sensitivity analysis supplemental figure, and a deposition into ModelDB.  Please see below, in recommendations for authors, for details.

      Reviewer #1 (Recommendations for the authors):

      Regarding the concern about the potential impact of the YWàSR mutation: All results in Figures 2-6 report only within-subject changes before and after drug-activating protocols. These results show that the drug has no effect on the mutant channel, but whether the mutant channel itself has any effect on neuronal properties is not clear. This deficiency could be rectified by reporting raw values for AP threshold, spike rate, etc. in the pre-drug condition and statistically analyzing the apparent differences in the activation/inactivation curves.

      Data in our original submission only included data in the presence of GNE-4076. We now present new data showing how the YWàSR mutation affects baseline activity of neurons. These data are in Supplemental Figure 1. Compared to wildtype (no drug control) neurons, we observe no change in peak dV/dt. However, threshold is hyperpolarized by approximately 2 mV in dual knockin neurons (median values: -57.4 mV for dual knockin and -55 mV for wildtype). This is consistent with measures from heterologously expressed channels, where we observed somewhat subtle shifts in voltage-dependence of inactivation and activation in NaV1.6 as a result of YWàSR incorporation. 

      In addition to these data, we also include the baseline dataset from Figure 3, where GNE-4076 is present throughout recording, and report that neither threshold nor peak dV/dt are influenced by the presence of GNE at baseline. This suggests that any drug binding at baseline (i.e., before firing APs via somatic current injection) is negligible, consistent with the concept that GNE-4076 has low affinity for the closed channel state.

      Minor Comments:

      While the single-cell response to "seizure-like" input aptly demonstrates the change in action potential threshold and firing rate induced by NaV1.6 inhibition, this component of the paper could be enhanced by a network-level assay that assesses the impact of this drug on an actual seizure-like event in acute slices or on seizure susceptibility in vivo.

      This is an excellent thought, and the work near the end of this manuscript is an effort to mimic network-like activity in a controlled way in single cells. To expand this to bona fide seizure-like activity in acute slices or in vivo is something that we are considering for future studies. To do this properly requires extensive validation of dosing and seizure induction that will require several years’ effort.

      Fig 1e caption says "circles" but the markers are squares

      This has been corrected, thank you for catching it.

      Color scheme in S2B is not intuitive to me

      We’ve now updated the caption to better describe the color scheme used within.

      Fig S2: graph or show change in threshold

      Empirical threshold data are in main figure 3D. Changes in threshold related to modeling are now included in a new sensitivity analysis that is in a new Supplemental Figure 2.

      Fig 3A example of NaV1.6 inhibition does not show change in AP threshold apparent in the aggregate data

      We have updated the representative example to better illustrate the change in AP threshold for NaV1.6 inhibition.

      "AP initiation is mediated exclusively by NaV1.6" not corroborated by data; APs still occur when NaV1.6 is inhibited

      This was an over-interpretation of our data, indeed. We have updated the language to be more accurate to the following: “AP threshold and AP initiation appears to be initiated in an NaV1.6-rich region in control conditions; when NaV1.6 is inhibited, APs can occur at more depolarized potentials, likely mediated predominately by NaV1.2.”

      Fig S3C missing WT/Scn8aSR/SR significance marking. Chosen example makes it look like there is a small decrease.

      Please note that there is no difference between these two conditions when in delta dV/dt for AIS inflection point (p = 0.4344).

      Reviewer #2 (Recommendations for the authors):

      This manuscript presents a clever and powerful approach to examining differential roles of Nav1.2 and Nav1.6 channels in excitability of pyramidal cell excitability, by engineering mice in which a sulfonamide inhibitor of both channels has reduced affinity for one or the other. Overall, the results in the manuscript are interesting and give important information about differential roles of Nav1.6 and Nav1.2 channels.

      The paper makes an important contribution to better understanding distinct roles of Nav1.2 and Nav1.6 channels. This improved understanding could help guide design of anti-seizure drugs targeted to sodium channels.

      Having made it clear that I think this is an important and impressive piece of work for which the authors should be congratulated, I found reading and interpreting the manuscript a frustrating experience. I will be blunt about the ways in which I found the presentation and discussion to be frustrating and even annoying, in the spirit of frank feedback by one interested and appreciative reader that the authors can consider or reject as they wish.

      From the start, I had the feeling that the authors were presenting and discussing the results in a sanitized "never-mind-about the details" fashion such as might be appropriate for a seminar to a general audience not interested in details, but not appropriate for a research paper.

      Our intent certainly was not to frustrate or annoy readers. We are very grateful that you have provided these comments, which have certainly improved the manuscript, hopefully mitigating some of the frustration for future readers. We appreciate that there are complex drug and voltage effects occurring within these studies, and in an effort to distill these effects into digestible prose, we appear to have been too earnest. We have expanded on the requested topics below and please note that, for the aficionados, every figure displays individual data. Further, we have made a special effort to ensure that features of excitability are presented throughout the drug and manipulation timecourse, including time-points before and after periods subject to statistical comparison, so that the reader may draw their own conclusions.

      General:

      There were two major ways in which I found the presentation and discussion frustrating and even annoying: First, not clearly discussing early in the presentation the fact that it is impossible to achieve complete inhibition with this agent during measurements of physiological firing and second, presenting so much of the effects as deltas of various parameters rather than showing effects on absolute values of the parameters.

      Our response to the first issue will follow the next comment, as it relates to this statement. Regarding use of deltas and absolute values for changes in threshold and dV/dt across figures. Every cell has a unique AP threshold and peak dV/dt, and we found that displaying data zeroed to baseline values best illustrated the effects of GNE-4076. Without this, GNE-based effect could be buried within the cell-to-cell variability. This helped most when trying to make the case that threshold was unaffected in 2a/8a YWàSR knockin animals. We continue to believe that this is the best way to display the data in the primary figures, but to provide a more complete account, we now present absolute values in supplemental tables and supplemental figures.

      The first issue, the incomplete inhibition by the agent, was the most annoying because the authors obviously thought a lot about this and even closed the paper by proposing this as a positive feature of this class of inhibitors, yet discussed it only piecemeal - and with most of the key experimental data in the Supplement. There are two fundamental characteristics of this (and other) sulfonamide inhibitors that complicate interpretation of experiments, especially when applied in a slice experiment: they only bind to the channel when the channel is depolarized, and even when the channel is depolarized for many seconds, bind very slowly to the channel.

      That makes it almost impossible to know exactly what fraction of channels is being inhibited during measurements of firing. Obviously, the authors are well-aware of this issue and they allude to it and even make use of it in some of the protocols, but they never really discuss it in a very clear manner.

      We agree that it is impossible to know the precise fraction of channels inhibited in acute slice preparations. But the reason for this is likely different than what has been interpreted by this reviewer. To state that ASMs “only bind to the channel when the channel is depolarized, and even when the channel is depolarized for many seconds, bind very slowly to the channel.” is not consistent with prior data on ASM–channel interactions. Clarification on these points may help the reviewer and a broader audience better understand the effects occurring here, and we appreciate being able to both address this concept here and by revising the manuscript.

      First, ASMs bind activated channels and stabilize the inactivated state. It is correct that channels are more likely to enter these states when subject to voltage depolarization, but channel state is stochastic and can enter activated states near resting membrane potentials. The on-rate is fast enough that channels are blocked immediately in recordings in heterologous systems (Figure 1C). It is more likely that channel biophysical state stochasticity, along with drug concentration used herein, are likely dictating the rate at which channels accumulate block during repetitive spiking.

      To address this in text, we have revised the 3rd paragraph of the introduction to better incorporate these ideas. This also helps with comments in the reviewer paragraph below.

      The key experimental data on this is relegated to the Supplemental Figures. When the reader is first shown results of the effects of the inhibitor on firing in Fig 2, the presentation has been set up as if everything is perfect, and the inhibitor will be completely inhibiting either both or only one channel according to the mouse. With this presentation, it is then exceptionally striking that the cell in the middle panel of Fig 2A, labeled "Nav1.2/1.6 Inhibited" is firing action potentials very nicely even with both channels "inhibited". For a reader not already aware that there is likely only partial inhibition of each channel, the reaction will be "Huh? Shouldn't blocking both channels simply completely block excitability?". The authors do preface Fig 2 by a very brief allusion to the incomplete inhibition: "In spiking neurons, ASCs would therefore be predicted to exhibit use-dependence, progressively blocking channels in proportion to a neuron's activity rate" but this comes out of nowhere after the over-simplified picture of complete inhibition up to that point, and without any estimation of how much inhibition there is likely to be before activity, or how much induction of inhibition there is likely to be during the activity. Without this, interpreting the data in Fig 2 is basically impossible.

      The key experimental data on this issue is really in Supplemental Figures 1-2 and Fig 4, and I found myself immediately ping-ponging back and forth between the Supplemental figures and the main text trying to understand what is going on with the partial inhibition. This was frustrating.

      Thank you for these suggestions; they help with readability appreciably. We have re-organized the figures presented in the manuscript and emphasized details about ASCs to ensure readers can discern between near-complete blockade of channels (Figures 1-4) and activity-dependent ASC onboarding (Figures 5-7). We now present near-complete block experiments first, detailing the current clamp-> voltage clamp (-12 mV)-> current clamp experiments. We incorporated Supp. Fig. 1 into main Figure 1 and moved Supp. Fig. 2 into main Fig. 2.

      As the reviewer notes, there are clear time-dependent effects on channel function when stepping to -12 mV, independent of GNE-4076 block. As stated previously, “We therefore focused on the 12-20 sec after voltage-clamp offset for subsequent analysis, as it is a period in which most channel-intrinsic recovery has occurred, but also a period in which we would still expect significant block from GNE-4076.” We hope that reordering the manuscript as suggested and placing these results near the beginning will help with discerning between near-complete block and activity depending onboarding. By beginning with these experiments, which underscore that 100% block cannot be studied without “contamination” from native slow inactivation, we hope that the readers can better understand why data was done as presented.

      In my opinion, the paper would be greatly improved by a detailed discussion of the voltage- and time-dependence of the inhibitor at the very beginning of the paper. For me, reading and digesting the paper would have been far easier if Fig 1 included a discussion of the voltage- and time-dependence of inhibition, and next Figs were then Supplemental Figs 1-2, and main Fig 4. The key questions are: how much inhibition is there before a 10-s current injection from the resting potential, and how much additional inhibition is there produced during either the 10-s bout of firing or the "on-boarding" depolarization protocol, and how long does that additional inhibition last? The most direct information on that is in the plots in Fig. 4D and Fig 4F in combination with Supplemental Fig 1, which shows that the on-boarding depolarization reduces current to about 30% of current before on-boarding. This is so central to the interpretation of all the results that I think Supp Fig 1 should be in the main paper as the first piece of data in neurons.

      We originally had the nucleated patch data in supplement due to space constraints in an already large figure 1. Based on your recommendation we have moved it to the main figure. We have also changed the ordering of the paper and related figures to present data as suggested. Hopefully this better guides readers through the questions you are raising above, which are addressed in the (now reordered) figures mentioned above.

      Specific:

      (1) Fig.1 I can find no information on the voltage protocol used to generate the dose-response curves. In the literature characterizing sulfonamide blockers, most protocols use very unphysiological strong, long depolarization to induce inhibition, usually with equally unphysiological short hyperpolarizations to produce recovery from inactivation. One assumes something like that was used here. Obviously, the protocol needs to be explained.

      We updated the methods section to better describe the voltage protocol used to generate the dose response curves. In contrast to the literature characterizing sulfonamide blockers, we used pulses that closely mimic physiological activation from -80 mV (rest) to 0 mV (depolarized) for 20 msec. GNE-4076 was perfused onto cells at increasing concentrations throughout the experiment. At each successive dose, cells were held at 0 mV to allow adequate GNE-4076 onboarding.

      (2) Supp Fig1. This shows the effect of depolarization to enhance inhibition, but not how much inhibition there was before the depolarization. Presumably, there were measurements during the application of drug? How much inhibition is there before the depolarization? Why does the time only go to 20-s, when the times in Figs 4 go to 10 minutes?

      Nucleated patch recordings are notoriously difficult to maintain for long durations, especially when subjecting the patch to large voltage deflections. These recordings extend to 20s recovery periods because that is the duration for which we maintained all recordings, though some exhibited rather impressive longevity and allowed for several minutes of recording thereafter. Regardless, the goal here was to assess block within the 12-20 sec recovery window we utilized in current clamp recordings from intact neurons. This was achieved.

      Please note that GNE-4076 was present throughout all recordings. This was in part due to time constraints, as we could not maintain patches long enough to also perform wash-in. The degree of inhibition can be inferred by comparing peak dV/dt and threshold of cells in the absence and presence of GNE-4076. These data are presented in a new Supplemental figure 1, showing no difference in threshold or peak dV/dt.

      (3) Fig. 4. Similar question here - this is a very nice and informative figure, but we see only the delta in threshold and dv/dt, but how were the initial absolute values different in the drug compared to control?

      These data are presented in a new Supplemental Figure 1, showing no difference in threshold or peak dV/dt.

      (4) Fig 2. As far as I can tell, we have no idea how much inhibition there is at rest, before the current injection -what is the dv/dt in the drug compared to in the control? Were there experiments in which the current injections were delivered before and after applying drug? If not, at least it would be useful to see population data on dv/dt of the first spike in control and with drug.

      These data are presented in a new Supplemental Figure 1, showing no difference in threshold or peak dV/dt.

      (5). Fig. 2. Do the authors have any quantitative information on how much extra inhibition would be produced at 200 nM drug using physiological waveforms of firing?

      These types of analyses are part of later figures using EPSC-like waveforms to evoke spiking.

      I was unconvinced that the changes in threshold and dv/dt during the firing in the drug necessarily represent time-dependent use-dependent effects of drug. Partial inhibition by TTX would probably produce greater progressive changes in spike shape and reduced ability to fire robustly.

      TTX is not use-dependent, so it is a good contrast to GNE-4076. We experimented with a few cells at 2 and 10 nM TTX concentrations and found that concentrations required to mimic the block of spiking that occurs with 200 nM GNE-4076 in WT cells was associated with a marked use-independent elevation in AP threshold, with an inability to maintain ~10 Hz spiking rates with the baseline EPSC-like stimulation pattern. These effects are very different from those produced by GNE-4076, but were expected given the use-independence of TTX. We did not pursue this line of inquiry fully, so we present these data only as individual examples in the reviewer figure below:

      Author response image 1.

      Data from Figure 6B, D, E are replicated here with individual lines of 2 nM and 10 nM TTX shown in dashed lines. Note marked changes in threshold not observed with GNE-4076. TTX sourced from Alomone Labs.

      Minor:

      p. 5 and elsewhere: it seems unnecessary to give values of threshold and dv/dt to three decimal places, especially when the precision is not better than a single decimal place.

      We have reduced unnecessary precision throughout.

      Reviewer #3 (Recommendations for the authors):

      The computational model is highly underdeveloped. Without more rigorous development the results of the computational model appear to provides little additional insight beyond that expected from the known axodendritic localizations of NaV 1.2 and 1.6. If the authors wish to use the computational results to make rigorous predictions, then this section needs to be either be expanded to be more complete and promoted to a regular figure, with full details of the model, and how it was evaluated for accuracy. Alternatively, this point regarding computational insight could be de-emphasized and or removed from the paper.

      Modeling:

      (1) I don't see any methods describing the precise model parameters that were used.

      Apologies, this is a model that we have built and tested extensively over the years (PMID: 38290518, 35417922, 34348157, 31995133, 31230762, 28256214), though there have been some small updates over these works. We have deposited this model at ModelDB and provide data there regarding model construction (access #2019342).

      (2) There appears to be no robustness test to assess whether the particular results/conclusions were unduly dependent on particular model construction decisions.

      We have now generated a new supplemental figure 2 that explores the robustness of these observations to changes in NaV1.2 and NaV1.6 position within the AIS and changes in relative density of NaV1.2 and NaV1.6. As shown there, the model is tolerant to all but extreme, non-physiological manipulations to these parameters.

      (3) Figure S2 does not really provide convincing evidence of a biologically relevant model. Probably the model itself needs to be redesigned to better replicate the biological response and be validated by testing parameter sensitivity.

      a) All of the results in S2C show that there is a huge reduction in the first action potential (black?) followed by relatively little change in subsequent spikes. This is not seen in any of the models. The progressive changes in threshold as predicted by the model for dual and NaV1.6 block are not at all evident in the results of C, except perhaps for the the very first and the very last spikes.

      b) The baseline action potential in B is different than the recorded action potentials. In particular, the somatic depolarization occurs much later and over a more extended time frame than the real neuron, and the phase plot shows an actual dip in depolarization at the transition to the somatic spike, which is not representative of naturally occurring action potentials.

      To address both (a) and (b), please note that in empirical experiments there are two parallel processes occurring: block by GNE-4076 and channel recovery from inactivation. In the model we can isolate the effects of block to test that parameter fully and in isolation. This is something that we could never achieve biologically. The important take home here in both cases is to observe that with NaV1.6 block there is a change in threshold, whereas with NaV1.2 block there is none.

      (4) The one finding that seems to be robust is that the changes in NaV1.2 have little effect on threshold.

      Yes! This is a major take-home message from both the model and the use of these knockin mice in combination with GNE-4076. In mature pyramidal cells, NaV1.6 is the major determinant of AP threshold. And to editorialize on this observation, changes in threshold are a useful metric to test if other pharmacology are truly selective for NaV1.2 over NaV1.6. We note that phrixotoxin-3, which is described as NaV1.2 specific in multiple papers, was never tested for specificity over NaV1.6 in its original description, and we find that it fails this test in our hands.

      Data presentation:

      (1) The phase plots in Figure 3B (left and right) appear to be visually identical, and as such don't strongly support any particular conclusion.

      We changed the representative example record (specifically for Fig. 3A-B) to more directly support the conclusions.

      (2) It is unclear to me what is meant by AP speed (title of Figure 3 legend). Do the authors mean propagation speed along the axon, or perhaps the rate of action potential firing?

      Apologies, we are referencing dV/dt when we mention AP speed. We updated AP speed to AP velocity throughout the manuscript.

  4. social-media-ethics-automation.github.io social-media-ethics-automation.github.io
    1. https://en.wikipedia.org/w/index.php?title=Luddite&oldid=1189255462 (visited on 2023-12-10). [u3] Ted Chiang. Will A.I. Become the New McKinsey? The New Yorker, May 2023. URL:

      This article argues that AI is more beneficial for the bourgeoise and the corporate world, rather than the working class. It even makes a comparison to McKinsey in order to further its argument. I think this post makes a really good point as we can see a lot of entry level job being more competitive or downright replaced by AI so corporate can cut cost, making the rich even richer.

    1. Multivariate predictive models play a crucial role in enhancing our understanding of complex biological systems and in developing innovative, replicable tools for translational medical research. However, the complexity of machine learning methods and extensive data pre-processing and feature engineering pipelines can lead to overfitting and poor generalizability. An unbiased evaluation of predictive models necessitates external validation, which involves testing the finalized model on independent data. Despite its importance, external validation is often neglected in practice due to the associated costs. Here we propose that, for maximal credibility, model discovery and external validation should be separated by the public disclosure (e.g. pre-registration) of feature processing steps and model weights. Furthermore, we introduce a novel approach to optimize the trade-off between efforts spent on training and external validation in such studies. We show on data involving more than 3000 participants from four different datasets that, for any “sample size budget”, the proposed adaptive splitting approach can successfully identify the optimal time to stop model discovery so that predictive performance is maximized without risking a low powered, and thus inconclusive, external validation. The proposed design and splitting approach (implemented in the Python package “AdaptiveSplit”) may contribute to addressing issues of replicability, effect size inflation and generalizability in predictive modeling studies.

      A version of this preprint has been published in the Open Access journal GigaScience (see paper (https://doi.org/10.1093/gigascience/giaf036), where the paper and peer reviews are published openly under a CC-BY 4.0 license.

      Original version

      Reviewer 1: Qingyu Zhao

      The manuscript discusses an interesting approach that seeks optimal data split for the pre-registration framework. The approach adaptively optimizes the balance between predictive performance of discovery set and sample size of external validation set. The approach is showcased on 4 applications, demonstrating advantage over traditional fixed data split (e.g., 80/20). I generally enjoyed reading the manuscript. I believe pre-registration is one important tool for reproducible ML analysis and the ideology behind the proposed framework (investigating the balance between discovery power and validation power) is urgently needed. My main concerns are all around Fig. 3, which represents the core quantitative analysis but lacks many details.

      1. Fig. 3 is mostly about external validation. What about training? For each n_total, which stopping rule is activated? What is the training accuracy? What does l_act look like? What is \hat{s_total}?
      2. Results section states "the proposed adaptive splitting strategy always provided equally good or better predictive performance than the fixed splitting strategies (as shown by the 95% confidence intervals on Figure 3)". I'm confused by this because the blue curve is often below other methods in accuracy (e.g., comparing with 90/10 split in ABIDE and HCP).
      3. Why does the half split have the lowest accuracy but the highest statistical power?
      4. How was the range of x-axis (n_total) selected? E.g., HCP has 1000 subjects, why was 240-380 chosen for analysis?
      5. The lowest n_total for BCW and IXI is approximately 50. If n_act starts from 10% of n_total, how is it possible to train (nested) cross-validation on 5 samples or so?

      Two other general comments are: 1. How can this be applied to retrospective data or secondary data analysis where the collection is finished? 2. Is there a guidance on the minimum sample size that is required to perform such an auto-split analysis? It is surprising that the authors think the two studies with n=35 and n=38 are good examples of training generalizable ML models. It is generally hard to believe any ML analysis can be done on such low sample sizes with thousands of rs-fMRI features. By the way, I believe n=25 in Kincses 2024 if I read it correctly.

      Reviewer 2: Lisa Crossman

      External validation of machine learning models - registered models and adaptive sample splitting Gallito et al. The Manuscript describes a methodology and algorithm aimed at better choosing a train-test validation split of data for scikit-learn models. A python package, adaptivesplit, was built as part of this MS as a tool for others to use. The package is proposed to be used together with a suggested workflow to integrate an approach invoking registered models as a full design for better prospective modelling studies. Finally, the work is evaluated on four alternative publicly available datasets of health research data and comprehensive results are presented. There is a trade-off in the split between the amount of sample data to be used for training and the amount of data to use for validation. Ideally the content of each must be balanced in order for the trained model to be representative and equally for the validation set to be representative. This manuscript is therefore very timely due to the large increase in the use of AI models and provides important information and methodology.

      This reviewer does not have the specific expertise to provide detailed comments on the statistical rule methods.

      Main Suggested Revision: 1. The Python implementation of the "adaptivesplit" package is described as available on GitHub (Gallitto et al., n.d.). One of the major points of the paper is to provide the python package "adaptivesplit", however, this package does not have a clear hyperlink, and is not found by simple google searches, and it appears is not yet available. It is therefore not possible to evaluate it at present. There is a website found available with a preprint of this MS after further google searches, https://pnilab.github.io/adaptivesplit/ however, adaptive split is here shown as an interactivate jupyter-type notebook example and not as a python library code. Therefore, it is not clear how available the package is for others' use. Can the authors comment on the code availability?

      Minor comments: 1. Apart from the 80:20 Pareto split of train-test data, other splits are commonly used in ratios such as 75:25 (the scikit-learn default split if ratio is unspecified), and 70:30. Also the cross-validation strategy with train-test-validation split 60:20:20, yet these strategies have not been mentioned or included in the figures such as Fig 3. The splits provided in the figure and discussed are 50:50, 80:20 and 90:10 only. Could the authors discuss alternative split ratios?

    1. I think that the students’ voice is not always heard entirely, even through dialogue. I feel that by doing this journal we can make a difference with our personal experience and touch the heart of someone who is willing to stand by us. I also wanted to get the attention of other students who may be feel-ing the same frustration I have felt

      Rashida’s words remind me that being asked to speak is not the same as being truly heard. Even when dialogue happens, students’ insights can be filtered or dismissed by adults who hold more power. Her hope that personal experience can move someone to take action reveals a quiet kind of strength. It’s thoughtful and brave—she’s using her voice not just to describe injustice, but to change who listens and how they respond

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public Review):

      Summary:

      The manuscript by Hussain and collaborators aims at deciphering the microtubule-dependent ribbon formation in zebrafish hair cells. By using confocal imaging, pharmacology tools, and zebrafish mutants, the group of Katie Kindt convincingly demonstrated that ribbon, the organelle that concentrates glutamate-filled vesicles at the hair cell synapse, originates from the fusion of precursors that move along the microtubule network. This study goes hand in hand with a complementary paper (Voorn et al.) showing similar results in mouse hair cells.

      Strengths:

      This study clearly tracked the dynamics of the microtubules, and those of the microtubule-associated ribbons and demonstrated fusion ribbon events. In addition, the authors have identified the critical role of kinesin Kif1aa in the fusion events. The results are compelling and the images and movies are magnificent.

      Weaknesses:

      The lack of functional data regarding the role of Kif1aa. Although it is difficult to probe and interpret the behavior of zebrafish after nocodazole treatment, I wonder whether deletion of kif1aa in hair cells may result in a functional deficit that could be easily tested in zebrafish?

      We have examined functional deficits in kif1aa mutants in another paper that was recently accepted: David et al. 2024. https://pubmed.ncbi.nlm.nih.gov/39373584/

      In David et al., we found that in addition to a subtle role in ribbon fusion during development, Kif1aa plays a major role in enriching glutamate-filled synaptic vesicles at the presynaptic active zone of mature hair cells. In kif1aa mutants, synaptic vesicles are no longer enriched at the hair cell base, and there is a reduction in the number of synaptic vesicles associated with presynaptic ribbons. Further, we demonstrated that kif1aa mutants also have functional defects including reductions in spontaneous vesicle release (from hair cells) and evoked postsynaptic calcium responses. Behaviorally, kif1aa mutants exhibit impaired rheotaxis, indicating defects in the lateral-line system and an inability to accurately detect water flow. Because our current paper focuses on microtubule-associated ribbon movement and dynamics early in hair-cell development, we have only discussed the effects of Kif1aa directly related to ribbon dynamics during this time window. In our revision, we have referenced this recent work. Currently it is challenging to disentangle how the subtle defects in ribbon formation in kif1aa mutants contribute to the defects we observe in ribbon-synapse function.

      Added to results:

      “Recent work in our lab using this mutant has shown that Kif1aa is responsible for enriching glutamate-filled vesicles at the base of hair cells. In addition this work demonstrated that loss of Kif1aa results in functional defects in mature hair cells including a reduction in evoked post-synaptic calcium responses (David et al., 2024). We hypothesized that Kif1aa may also be playing an earlier role in ribbon formation.”

      Impact:

      The synaptogenesis in the auditory sensory cell remains still elusive. Here, this study indicates that the formation of the synaptic organelle is a dynamic process involving the fusion of presynaptic elements. This study will undoubtedly boost a new line of research aimed at identifying the specific molecular determinants that target ribbon precursors to the synapse and govern the fusion process.

      Reviewer #2 (Public Review):

      Summary:

      In this manuscript, the authors set out to resolve a long-standing mystery in the field of sensory biology - how large, presynaptic bodies called "ribbon synapses" migrate to the basolateral end of hair cells. The ribbon synapse is found in sensory hair cells and photoreceptors, and is a critical structural feature of a readily-releasable pool of glutamate that excites postsynaptic afferent neurons. For decades, we have known these structures exist, but the mechanisms that control how ribbon synapses coalesce at the bottom of hair cells are not well understood. The authors addressed this question by leveraging the highly-tractable zebrafish lateral line neuromast, which exhibits a small number of visible hair cells, easily observed in time-lapse imaging. The approach combined genetics, pharmacological manipulations, high-resolution imaging, and careful quantifications. The manuscript commences with a developmental time course of ribbon synapse development, characterizing both immature and mature ribbon bodies (defined by position in the hair cell, apical vs. basal). Next, the authors show convincing (and frankly mesmerizing) imaging data of plus end-directed microtubule trafficking toward the basal end of the hair cells, and data highlighting the directed motion of ribbon bodies. The authors then use a series of pharmacological and genetic manipulations showing the role of microtubule stability and one particular kinesin (Kif1aa) in the transport and fusion of ribbon bodies, which is presumably a prerequisite for hair cell synaptic transmission. The data suggest that microtubules and their stability are necessary for normal numbers of mature ribbons and that Kif1aa is likely required for fusion events associated with ribbon maturation. Overall, the data provide a new and interesting story on ribbon synapse dynamics.

      Strengths:

      (1) The manuscript offers a comprehensive Introduction and Discussion sections that will inform generalists and specialists.

      (2) The use of Airyscan imaging in living samples to view and measure microtubule and ribbon dynamics in vivo represents a strength. With rigorous quantification and thoughtful analyses, the authors generate datasets often only obtained in cultured cells or more diminutive animal models (e.g., C. elegans).

      (3) The number of biological replicates and the statistical analyses are strong. The combination of pharmacology and genetic manipulations also represents strong rigor.

      (4) One of the most important strengths is that the manuscript and data spur on other questions - namely, do (or how do) ribbon bodies attach to Kinesin proteins? Also, and as noted in the Discussion, do hair cell activity and subsequent intracellular calcium rises facilitate ribbon transport/fusion?

      These are important strengths and as stated we are currently investigating what other kinesins and adaptors and adaptor’s transport ribbons. We have ongoing work examining how hair-cell activity impacts ribbon fusion and transport!

      Weaknesses:

      (1) Neither the data or the Discussion address a direct or indirect link between Kinesins and ribbon bodies. Showing Kif1aa protein in proximity to the ribbon bodies would add strength.

      This is a great point. Previous immunohistochemistry work in mice demonstrated that ribbons and Kif1a colocalize in mouse hair cells (Michanski et al, 2019). Unfortunately, the antibody used in study work did not work in zebrafish. To further investigate this interaction, we also attempted to create a transgenic line expressing a fluorescently tagged Kif1aa to directly visualize its association with ribbons in vivo. At present, we were unable to detect transient expression of Kif1aa-GFP or establish a transgenic line using this approach. While we will continue to work towards understanding whether Kif1aa and ribbons colocalize in live hair cells, currently this goal is beyond the scope of this paper. In our revision we discuss this caveat.

      Added to discussion:

      “In addition, it will be useful to visualize these kinesins by fluorescently tagging them in live hair cells to observe whether they associate with ribbons.”

      (2) Neither the data or Discussion address the functional consequences of loss of Kif1aa or ribbon transport. Presumably, both manipulations would reduce afferent excitation.

      Excellent point. Please see the response above to Reviewer #1 public response weaknesses.

      (3) It is unknown whether the drug treatments or genetic manipulations are specific to hair cells, so we can't know for certain whether any phenotypic defects are secondary.

      This is correct and a caveat of our Kif1aa and drug experiments. In our recently published work, we confirmed that Kif1aa is expressed in hair cells and neurons, while kif1ab is present just is neurons. Therefore, it is likely that the ribbon formation defects in kif1aa mutants are restricted to hair cells. We added this expression information to our results:

      “ScRNA-seq in zebrafish has demonstrated widespread co-expression of kif1ab and kif1aa mRNA in the nervous system. Additionally, both scRNA-seq and fluorescent in situ hybridization have revealed that pLL hair cells exclusively express kif1aa mRNA (David et al., 2024; Lush et al., 2019; Sur et al., 2023).”

      Non-hair cell effects are a real concern in our pharmacology experiments. To mitigate this in our pharmacological experiments, we have performed drug treatments at 3 different timescales: long-term (overnight), short-term (4 hr) and fast (30 min) treatments. The fast experiments were done after 30 min nocodazole drug treatment, and after this treatment we observed reduced directional motion and fusions. This fast drug treatment should not incur any long-term changes or developmental defects as hair-cell development occurs over 12-16 hrs. However, we acknowledge that drug treatments could have secondary phenotypic effects or effects that are not hair-cell specific. In our revision, we discuss these issues.

      Added to discussion:

      “Another important consideration is the potential off-target effects of nocodazole. Even at non-cytotoxic doses, nocodazole toxicity may impact ribbons and synapses independently of its effects on microtubules. While this is less of a concern in the short- and medium-term experiments (30-70 min and 4 hr), long-term treatments (16 hrs) could introduce confounding effects. Additionally, nocodazole treatment is not hair cell-specific and could disrupt microtubule organization within afferent terminals as well. Thus, the reduction in ribbon-synapse formation following prolonged nocodazole treatment may result from microtubule disruption in hair cells, afferent terminals, or a combination of the two.”

      Reviewer #3 (Public Review):

      Summary:

      The manuscript uses live imaging to study the role of microtubules in the movement of ribeye aggregates in neuromast hair cells in zebrafish. The main findings are that

      (1) Ribeye aggregates, assumed to be ribbon precursors, move in a directed motion toward the active zone;

      (2) Disruption of microtubules and kif1aa increases the number of ribeye aggregates and decreases the number of mature synapses.

      The evidence for point 2 is compelling, while the evidence for point 1 is less convincing. In particular, the directed motion conclusion is dependent upon fitting of mean squared displacement that can be prone to error and variance to do stochasticity, which is not accounted for in the analysis. Only a small subset of the aggregates meet this criteria and one wonders whether the focus on this subset misses the bigger picture of what is happening with the majority of spots.

      Strengths:

      (1) The effects of Kif1aa removal and nocodozole on ribbon precursor number and size are convincing and novel.

      (2) The live imaging of Ribeye aggregate dynamics provides interesting insight into ribbon formation. The movies showing the fusion of ribeye spots are convincing and the demonstrated effects of nocodozole and kif1aa removal on the frequency of these events is novel.

      (3) The effect of nocodozole and kif1aa removal on precursor fusion is novel and interesting.

      (4) The quality of the data is extremely high and the results are interesting.

      Weaknesses:

      (1) To image ribeye aggregates, the investigators overexpressed Ribeye-a TAGRFP under the control of a MyoVI promoter. While it is understandable why they chose to do the experiments this way, expression is not under the same transcriptional regulation as the native protein, and some caution is warranted in drawing some conclusions. For example, the reduction in the number of puncta with maturity may partially reflect the regulation of the MyoVI promoter with hair cell maturity. Similarly, it is unknown whether overexpression has the potential to saturate binding sites (for example motors), which could influence mobility.

      We agree that overexpression of transgenes under using a non-endogenous promoter in transgenic lines is an important consideration. Ideally, we would do these experiments with endogenously expressed fluorescent proteins under a native promoter. However, this was not technically possible for us. The decrease in precursors is likely not due to regulation by the myo6a promoter. Although the myo6a promoter comes on early in hair cell development, the promoter only gets stronger as the hair cells mature. This would lead to a continued increase rather than a decrease in puncta numbers with development.

      Protein tags such as tagRFP always have the caveat of impacting protein function. This is in partly why we complemented our live imaging with analyses in fixed tissue without transgenes (kif1aa mutants and nocodazole/taxol treatments).

      In our revision, we did perform an immunolabel on myo6b:riba-tagRFP transgenic fish and found that Riba-tagRFP expression did not impact ribbon synapse numbers or ribbon size. This analysis argues that the transgene is expressed at a level that does not impact ribbon synapses. This data is summarized in Figure 1-S1.

      Added to the results:

      “Although this latter transgene expresses Riba-TagRFP under a non-endogenous promoter, neither the tag nor the promoter ultimately impacts cell numbers, synapse counts, or ribbon size (Figure 1-S1A-E).”

      Added to methods:

      Tg(myo6b:ctbp2a-TagRFP)<sup>idc11Tg</sup> reliably labels mature ribbons, similar to a pan-CTBP immunolabel at 5 dpf (Figure 1-S1B). This transgenic line does not alter the number of hair cells or complete synapses per hair cell (Figure 1-S1A-D). In addition, myo6b:ctbp2a-TagRFP does not alter the size of ribbons (Figure 1-S1E).”

      (2) The examples of punctae colocalizing with microtubules look clear (Figures 1 F-G), but the presentation is anecdotal. It would be better and more informative, if quantified.

      We did attempt a co-localization analysis between microtubules and ribbons but did not move forward with it due to several issues:

      (1) Hair cells have an extremely crowded environment, especially since the nucleus occupies the majority of the cell. All proteins are pushed together in the small space surrounding the nucleus and ultimately, we found that co-localization analyses were not meaningful because the distances were too small.

      (2) We also attempted to segment microtubules in these images and quantify how many ribbons were associated with microtubules, but 3D microtubule segmentation was not accurate in hair cells due to highly varying filament intensities, filament dynamics and the presence of diffuse cytoplasmic tubulin signal.

      Because of these challenges we concluded the best evidence of ribbon-microtubule association is through visualization of ribbons and their association with microtubules over time (in our timelapses). We see that ribbons localize to microtubules in all our timelapses, including the examples shown (Movies S2-S10). The only instance of ribbon dissociation it when ribbons switch from one filament to another. We did not observe free-floating ribbons in our study.

      (3) It appears that any directed transport may be rare. Simply having an alpha >1 is not sufficient to declare movement to be directed (motor-driven transport typically has an alpha approaching 2). Due to the randomness of a random walk and errors in fits in imperfect data will yield some spread in movement driven by Brownian motion. Many of the tracks in Figure 3H look as though they might be reasonably fit by a straight line (i.e. alpha = 1).

      (4) The "directed motion" shown here does not really resemble motor-driven transport observed in other systems (axonal transport, for example) even in the subset that has been picked out as examples here. While the role of microtubules and kif1aa in synapse maturation is strong, it seems likely that this role may be something non-canonical (which would be interesting).

      Yes, it is true, that directed transport of ribbon precursors is relatively rare. Only a small subset of the ribbon precursors moves directionally (α > 1, 20 %) or have a displacement distance > 1 µm (36 %) during the time windows we are imaging. The majority of the ribbons are stationary. To emphasize this result we have added bar graphs to Figure 3I,K to illustrate this result and state the numbers behind this result more clearly.

      “Upon quantification, 20.2 % of ribbon tracks show α > 1, indicative of directional motion, but the majority of ribbon tracks (79.8 %) show α < 1, indicating confinement on microtubules (Figure 3I, n = 10 neuromasts, 40 hair cells, and 203 tracks).

      To provide a more comprehensive analysis of precursor movement, we also examined displacement distance (Figure 3J). Here, as an additional measure of directed motion, we calculated the percent of tracks with a cumulative displacement > 1 µm. We found 35.6 % of tracks had a displacement > 1 µm (Figure 3K; n = 10 neuromasts, 40 hair cells, and 203 tracks).”

      We cannot say for certain what is happening with the stationary ribbons, but our hypothesis is that these ribbons eventually exhibit directed motion sufficient to reach the active zone. This idea is supported by the fact that we see ribbons that are stationary begin movement, and ribbons that are moving come to a stop during the acquisition of our timelapses (Movies S4 and S5). It is possible that ribbons that are stationary may not have enough motors attached, or there may be a ‘seeding’ phase where Ribeye aggregates are condensing on the ribbon.

      We also reexamined our MSD a values as the a values we observed in hair cells were lower than those seen canonical motor-driven transport (where a approaches 2). One reason for this difference may arise from the dynamic microtubule network in developing hair cells, which could affect directional ribbon movement. In our revision we plotted the distribution of a values which confirmed that in control hair cells, the majority of the a values we see are typically less than 2 (Figure 7-S1A). Interestingly we also compared the distribution a values between control and taxol-treated hair cells, where the microtubule network is more stable, and found that the distribution shifted towards higher a values (Figure 7-S1A). We also plotted only ‘directional’ tracks (with a > 1) and observed significantly higher a values in taxol-treated hair cells (Figure 7-S1B). This is an interesting result which indicates that although the proportion of directional tracks (with a > 1) is not significantly different between control and taxol-treated hair cells (which could be limited by the number of motor/adapter proteins), the ribbons that move directionally do so with greater velocities when the microtubules are more stable. This supports our idea that the stability of the microtubule network could be why ribbon movement does not resemble canonical motor transport. This analysis is presented as a new figure (Figure 7-S1A-B) and is referred to in the text in the results and the discussion.

      Results:

      “Interestingly, when we examined the distribution of α values, we observed that taxol treatment shifted the overall distribution towards higher α a values (Figure 7-S1A). In addition, when we plotted only tracks with directional motion (α > 1), we found significantly higher α values in hair cells treated with taxol compared to controls (Figure 7-S1B). This indicates that in taxol-treated hair cells, where the microtubule network is stabilized, ribbons with directional motion have higher velocities.”

      Discussion:

      “Our findings indicate that ribbons and precursors show directed motion indicative of motor-mediated transport (Figure 3 and 7). While a subset of ribbons moves directionally with α values > 1, canonical motor-driven transport in other systems, such as axonal transport, can achieve even higher α values approaching 2 (Bellotti et al., 2021; Corradi et al., 2020). We suggest that relatively lower α values arise from the highly dynamic nature of microtubules in hair cells. In axons, microtubules form stable, linear tracks that allow kinesins to transport cargo with high velocity. In contrast, the microtubule network in hair cells is highly dynamic, particularly near the cell base. Within a single time frame (50-100 s), we observe continuous movement and branching of these networks. This dynamic behavior adds complexity to ribbon motion, leading to frequent stalling, filament switching, and reversals in direction. As a result, ribbon transport appears less directional than the movement of traditional motor cargoes along stable axonal filaments, resulting in lower α values compared to canonical motor-mediated transport. Notably, treatment with taxol, which stabilizes microtubules, increased α values to levels closer to those observed in canonical motor-driven transport (Figure 7-S1). This finding supports the idea that the relatively lower α values in hair cells are a consequence of a more dynamic microtubule network. Overall, this dynamic network gives rise to a slower, non-canonical mode of transport.”

      (5) The effect of acute treatment with nocodozole on microtubules in movie 7 and Figure 6 is not obvious to me and it is clear that whatever effect it has on microtubules is incomplete.

      When using nocodazole, we worked to optimize the concentration of the drug to minimize cytotoxicity, while still being effective. While the more stable filaments at the cell apex remain largely intact after nocodazole treatment, there are almost no filaments at the hair cell base, which is different from the wild-type hair cells. In addition, nocodazole-treated hair cells have more cytoplasmic YFP-tubulin signal compared to wild type. We have clarified this in our results. To better illustrate the effect of nocodazole and taxol we have also added additional side-view images of hair cells expressing YFP-tubulin (Figure 4-S1F-G), that highlight cytoplasmic YFP-tubulin and long, stabilized microtubules after 3-4 hr treatment with nocodazole and taxol respectively. In these images we also point out microtubules at the apical region of hair cells that are very stable and do not completely destabilize with nocodazole treatment at concentrations that are tolerable to hair cells.

      “We verified the effectiveness of our in vivo pharmacological treatments using either 500 nM nocodazole or 25 µM taxol by imaging microtubule dynamics in pLL hair cells (myo6b:YFP-tubulin). After a 30-min pharmacological treatment, we used Airyscan confocal microscopy to acquire timelapses of YFP-tubulin (3 µm z-stacks, every 50-100 s for 30-70 min, Movie S8). Compared to controls, 500 nM nocodazole destabilized microtubules (presence of depolymerized YFP-tubulin in the cytosol, see arrows in Figure 4-S1F-G) and 25 µM taxol dramatically stabilized microtubules (indicated by long, rigid microtubules, see arrowheads in Figure 4-S1F,H) in pLL hair cells. We did still observe a subset of apical microtubules after nocodazole treatment, indicating that this population is particularly stable (see asterisks in Figure 4-S1F-H).”

      To further address concerns about verifying the efficacy of nocodazole and taxol treatment on microtubules, we added a quantification of our immunostaining data comparing the mean acetylated-a-tubulin intensities between control, nocodazole and taxol-treated hair cells. Our results show that nocodazole treatment reduces the mean acetylated-a-tubulin intensity in hair cells. This is included as a new figure (Figure 4-S1D-E) and this result is referred to in the text. To better illustrate the effect of nocodazole and taxol we have also added additional side-view images of hair cells after overnight treatment with nocodazole and taxol (Figure 4-S1A-C).

      “After a 16-hr treatment with 250 nM nocodazole we observed a decrease in acetylated-a-tubulin label (qualitative examples: Figure 4A,C, Figure 4-S1A-B). Quantification revealed significantly less mean acetylated-a-tubulin label in hair cells after nocodazole treatment (Figure 4-S1D). Less acetylated-a-tubulin label indicates that our nocodazole treatment successfully destabilized microtubules.”

      “Qualitatively more acetylated-a-tubulin label was observed after treatment, indicating that our taxol treatment successfully stabilized microtubules (qualitative examples: Figure 4-S1A,C). Quantification revealed an overall increase in mean acetylated-a-tubulin label in hair cells after taxol treatment, but this increase did not reach significance (Figure 4-S1E).”

      Recommendations for the authors:

      Reviewer #1 (Recommendations For The Authors):

      (1) The manuscript is fairly dense. For instance, some information is repeated (page 3 ribbon synapses form along a condensed timeline in zebrafish hair cells: 12-18 hrs, and on .page 5. These hair cells form 3-4 ribbon synapses in just 12-18 hrs). Perhaps, the authors could condense some of the ideas? The introduction could be shortened.

      We have eliminated this repeated text in our revision. We have shortened the introduction 1275 to 1038 words (with references)

      (2) The mechanosensory structure on page 5 is not defined for readers outside the field.

      Great point, we have added addition information to define this structure in the results:

      “We staged hair cells based on the development of the apical, mechanosensory hair bundle. The hair bundle is composed of actin-based stereocilia and a tubulin-based kinocilium. We used the height of the kinocilium (see schematic in Figure 1B), the tallest part of the hair bundle, to estimate the developmental stage of hair cells as described previously…”

      (3) Figure 1E is quite interesting but I'd rather show Figure S1 B/C as they provide statistics. In addition, the authors define 4 stages : early, intermediate, late, and mature for counting but provide only 3 panels for representative examples by mixing late/mature.

      We were torn about which ribbon quantification graph to show. Ultimately, we decided to keep the summary data in Figure 1E. This is primarily because the supplementary Figure will be adjacent to the main Figure in the Elife format, and the statistics will be easy to find and view.

      Figure 1 now provides a representative image for both late and mature hair cells.

      (4.) The ribbon that jumps from one microtubule to another one is eye-catching. Can the authors provide any statistics on this (e.g. percentage)?

      Good point. In our revision, we have added quantification for these events. We observe 2.8 switching events per neuromast during our fast timelapses. This information is now in the text and is also shown in a graph in Figure 3-S1D.

      “Third, we often observed that precursors switched association between neighboring microtubules (2.8 switching events per neuromast, n= 10 neuromasts; Figure 3-S1C-D, Movie S7).”

      (5) With regard to acetyl-a-tub immunocytochemistry, I would suggest obtaining a profile of the fluorescence intensity on a horizontal plane (at the apical part and at the base).

      (6) Same issue with microtubule destruction by nocodazole. Can the authors provide fluorescence intensity measurements to convince readers of microtubule disruption for long and short-term application.

      Regarding quantification of microtubule disruption using nocodazole and taxol. We did attempt to create profiles of the acetylated tubulin or YFP-tubulin label along horizontal planes at the apex and base, but the amount variability among cells and the angle of the cell in the images made this type of display and quantification challenging. In our revision we as stated above in our response to Reviewer #1’s public comment, we have added representative side-view images to show the disruptions to microtubules more clearly after short and long-term drug experiments (Figure 4-S1A-C, F-H). In addition, we quantified the reduction in acetylated tubulin label after overnight treatment with nocodazole and found the signal was significantly reduced (Figure 3-S1D-E). Unfortunately, we were unable to do a similar quantification due to the variability in YFP-tubulin intensity due to variations in mounting. The following text has been added to the results:

      “Quantification revealed significantly less mean acetylated-a-tubulin label in hair cells after nocodazole treatment (Figure 4-S1D).”

      “Quantification revealed an overall increase in mean acetylated-a-tubulin label in hair cells after taxol treatment, but this increase did not reach significance (Figure 4-S1A,C,E).”

      (7) It is a bit difficult to understand that the long-term (overnight) microtubule destabilization leads to a reduction in the number of synapses (Figure 4F) whereas short-term (30 min) microtubule destabilization leads to the opposite phenotype with an increased number of ribbons (Figure 6G). Are these ribbons still synaptic in short-term experiments? What is the size of the ribbons in the short-term experiments? Alternatively, could the reduction in synapse number upon long-term application of nocodazole be a side-effect of the toxicity within the hair cell?

      Agreed-this is a bit confusing. In our revision, we have changed our analyses, so the comparisons are more similar between the short- and long-term experiments–we examined the number of ribbons and precursor per cells (apical and basal) in both experiments (Changed the panel in Figure 4G, Figure 4-S2G and Figure 5G). In our live experiments we cannot be sure that ribbons are synaptic as we do not have a postsynaptic co-label. Also, we are unable to reliably quantify ribbon and precursor size in our live images due to variability in mounting. We have changed the text to clarify as follows:

      Results:

      “In each developing cell, we quantified the total number of Riba-TagRFP puncta (apical and basal) before and after each treatment. In our control samples we observed on average no change in the number of Riba-TagRFP puncta per cell (Figure 6G). Interestingly, we observed that nocodazole treatment led to a significant increase in the total number of Riba-TagRFP puncta after 3-4 hrs (Figure 6G). This result is similar to our overnight nocodazole experiments in fixed samples, where we also observed an increase in the number of ribbons and precursors per hair cell. In contrast to our 3-4 hr nocodazole treatment, similar to controls, taxol treatment did not alter the total number of Riba-TagRFP puncta over 3-4 hrs (Figure 6G). Overall, our overnight and 3-4 hr pharmacology experiments demonstrate that microtubule destabilization has a more significant impact on ribbon numbers compared to microtubule stabilization.”

      Discussion:

      “Ribbons and microtubules may interact during development to promote fusion, to form larger ribbons. Disrupting microtubules could interfere with this process, preventing ribbon maturation. Consistent with this, short-term (3-4 hr) and long-term (overnight) nocodazole increased ribbon and precursor numbers (Figure 6AG; Figure 4G), suggesting reduced fusion. Long-term treatment (overnight) resulted in a shift toward smaller ribbons (Figure 4H-I), and ultimately fewer complete synapses (Figure 4F).”

      Nocodazole toxicity: in response to Reviewer # 2’s public comment we have added the following text in our discussion:

      Discussion:

      “Another important consideration is the potential off-target effects of nocodazole. Even at non-cytotoxic doses, nocodazole toxicity may impact ribbons and synapses independently of its effects on microtubules. While this is less of a concern in the short- and medium-term experiments (30 min to 4 hr), long-term treatments (16 hrs) could introduce confounding effects. Additionally, nocodazole treatment is not hair cell-specific and could disrupt microtubule organization within afferent terminals as well. Thus, the reduction in ribbon-synapse formation following prolonged nocodazole treatment may result from microtubule disruption in hair cells, afferent terminals, or a combination of the two.”

      (8) Does ribbon motion depend on size or location?

      It is challenging to reliability quantify the actual area of precursors in our live samples, as there is variability in mounting and precursors are quite small. But we did examine the location of ribbon precursors (using tracks > 1 µm as these tracks can easily be linked to cell location in Imaris) with motion in the cell. We found evidence of ribbons with tracks > 1 µm throughout the cell, both above and below the nucleus. This is now plotted in Figure 3M. We have also added the following test to the results:

      “In addition, we examined the location of precursors within the cell that exhibited displacements > 1 µm. We found that 38.9 % of these tracks were located above the nucleus, while 61.1 % were located below the nucleus (Figure 3M).”

      Although this is not an area or size measurement, this result suggests that both smaller precursors that are more apical, and larger precursors/ribbons that are more basal all show motion.

      (9) The fusion event needs to be analyzed in further detail: when one ribbon precursor fuses with another one, is there an increase in size or intensity (this should follow the law of mass conservation)? This is important to support the abstract sentence "ribbon precursors can fuse together on microtubules to form larger ribbons".

      As mentioned above it is challenging accurately estimate the absolute size or intensity of ribbon precursors in our live preparation. But we did examine whether there is a relative increase in area after ribbon fuse. We have plotted the change in area (within the same samples) for the two fusion events in shown in Figure 8-S1A-B. In these examples, the area of the puncta after fusion is larger than either of the two precursors that fuse. Although the areas are not additive, these plots do provide some evidence that fusion does act to form larger ribbons. To accompany these plots, we have added the following text to the results:

      “Although we could not accurately measure the areas of precursors before and after fusion, we observed that the relative area resulting from the fusion of two smaller precursors was greater than that of either precursor alone. This increase in area suggests that precursor fusion may serve as a mechanism for generating larger ribbons (see examples: Figure 8-S1A-B).”

      Because we were unable to provide more accurate evidence of precursor fusion resulting in larger ribbons, we have removed this statement from our abstract and lessened our claims elsewhere in the manuscript.

      (10) The title in Figure 8 is a bit confusing. If fusion events reflect ribbon precursors fusion, it is obvious it depends on ribbon precursors. I'd like to replace this title with something like "microtubules and kif1aa are required for fusion events"

      We have changed the figure title as suggested, good idea.

      Reviewer #2 (Recommendations For The Authors):

      (1) Figure 1C. The purple/magenta colors are hard to distinguish.

      We have made the magenta color much lighter in the Figure 1C to make it easier to distinguish purple and magenta.

      (2) There are places where some words are unnecessarily hyphenated. Examples: live-imaging and hair-cell in the abstract, time-course in the results.

      In our revision, we have done our best to remove unnecessary hyphens, including the ones pointed out here.

      (3) Figure 4H and elsewhere - what is "area of Ribeye puncta?" Related, I think, in the Discussion the authors refer to "ribbon volume" on line 484. But they never measured ribbon volume so this needs to be clarified.

      We have done best to clarify what is meant by area of Ribeye puncta in the results and the methods:

      Results:

      “We also observed that the average of individual Ribeyeb puncta (from 2D max-projected images) was significantly reduced compared to controls (Figure 4H). Further, the relative frequency of individual Ribeyeb puncta with smaller areas was higher in nocodazole treated hair cells compared to controls (Figure 4I).”

      Methods:

      “To quantify the area of each ribbon and precursor, images were processed in a FIJI ‘IJMacro_AIRYSCAN_simple3dSeg_ribbons only.ijm’ as previously described (Wong et al., 2019). Here each Airyscan z-stack was max-projected. A threshold was applied to each image, followed by segmentation to delineate individual Ribeyeb/CTBP puncta. The watershed function was used to separate adjacent puncta. A list of 2D objects of individual ROIs (minimum size filter of 0.002 μm2) was created to measure the 2D areas of each Ribeyeb/CTBP puncta.”

      We did refer to ribbon volume once in the discussion, but volume is not reflected in our analyses, so we have removed this mention of volume.

      (4) More validation data showing gene/protein removal for the crispants would be helpful.

      Great suggestion. As this is a relatively new method, we have created a figure that outlines how we genotype each individual crispant animal analyzed in our study Figure 6-S1. In the methods we have also added the following information:

      “fPCR fragments were run on a genetic analyzer (Applied Biosystems, 3500XL) using LIZ500 (Applied Biosystems, 4322682) as a dye standard. Analysis of this fPCR revealed an average peak height of 4740 a.u. in wild type, and an average peak height of 126 a.u. in kif1aa F0 crispants (Figure 6-S1). Any kif1aa F0 crispant without robust genomic cutting or a peak height > 500 a.u. was not included in our analyses.”

      Reviewer #3 (Recommendations For The Authors):

      Lines 208-209--should refer to the movie in the text.

      Movie S1 is now referenced here.

      It would be helpful if the authors could analyze and quantify the effect of nocodozole and taxol on microtubules (movie 7).

      See responses above to Reviewer #1’s similar request.

      Figure 7 caption says "500 mM" nocodozole.

      Thank you, we have changed the caption to 500 nM.

      One problem with the MSD analysis is that it is dependent upon fits of individual tracks that lead to inaccuracies in assigning diffusive, restricted, and directed motion. The authors might be able to get around these problems by looking at the ensemble averages of all the tracks and seeing how they change with the various treatments. Even if the effect is on a subset of ribeye spots, it would be reassuring to see significant effects that did not rely upon fitting.

      We are hesitant to average the MSD tracks as not all tracks have the same number of time steps (ribbon moving in and out of the z-stack during the timelapse). This makes it challenging for us to look at the ensembles of all averages accurately, especially for the duration of the timelapse. This is the main reason why added another analysis, displacements > 1µm as another readout of directional motion, a measure that does not rely upon fitting.

      The abstract states that directed movement is toward the synapse. The only real evidence for this is a statement in the results: "Of the tracks that showed directional motion, while the majority move to the cell base, we found that 21.2 % of ribbon tracks moved apically." A clearer demonstration of this would be to do the analysis of Figure 2G for the ribeye aggregates.

      If was not possible to do the same analysis to ribbon tracks that we did for the EB3-GFP analysis in Figure 2. In Figure 2 we did a 2D tracking analysis and measured the relative angles in 2D. In contrast, the ribbon tracking was done in 3D in Imaris not possible to get angles in the same way. Further the MSD analysis was outside of Imaris, making it extremely difficult to link ribbon trajectories to the 3D cellular landscape in Imaris. Instead, we examined the direction of the 3D vectors in Imaris with tracks > 1µm and determined the direction of the motion (apical, basal or undetermined). For clarity, this data is now included as a bar graph in Figure 3L. In our results, we have clarified the results of this analysis:

      “To provide a more comprehensive analysis of precursor movement, we also examined displacement distance (Figure 3J). Here, as an additional measure of directed motion, we calculated the percent of tracks with a cumulative displacement > 1 µm. We found 35.6 % of tracks had a displacement > 1 µm (Figure 3K; n = 10 neuromasts, 40 hair cells and 203 tracks). Of the tracks with displacement > 1 µm, the majority of ribbon tracks (45.8 %) moved to the cell base, but we also found a subset of ribbon tracks (20.8 %) that moved apically (33.4 % moved in an undetermined direction) (Figure 3L).”

      Some more detail about the F0 crispants should be provided. In particular, what degree of cutting was observed and what was the criteria for robust cutting?

      See our response to Reviewer 2 and the newly created Figure 6-S1.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      1. General Statements [optional]

      *We would like to thank all the reviewers for their positive comments and valuable feedback. In addition, we would like to address reviewer 1 query on novelty, which was not questioned by the other 2 reviewers. Our study uncovered two main aspects of hypoxia biology: first we addressed the role of NF-kappaB contribution towards the transcriptome changes in hypoxia, and second, this revealed a previously unknown aspect, that NF-kappaB is required for gene repression in hypoxia. While we know a lot about gene induction in hypoxia, much less is known about repression of genes. In times of energy preservation, gene repression is as important as gene induction. *

      .

      2. Point-by-point description of the revisions

      This section is mandatory. *Please insert a point-by-point reply describing the revisions that were already carried out and included in the transferred manuscript. *

      • *

      Reviewer #1 (Evidence, reproducibility and clarity (Required)):

      The work from Shakir et al uses different cell line models to investigate the role of NF-kB in the transcriptional adaptation of cells to hypoxia, which is relevant. In addition, the manuscript contains a large amount of data that could be of interest and even useful for researchers in the field of hypoxia and NF-kB. However, in my opinion, there are several concerns that should be revised and additional experiments that could be included to strengthen the relevance of the work.

      We thank this reviewer for their positive comments.

      Specific issues: In Figure 1A, the authors examine which of the genes induced by hypoxia require NF-kB by RNA sequencing analysis of cells knocked down for specific NF-kB subunits and exposed to hypoxia for 24 hours. The knockdown is about 40-60% at the RNA level, but it would be helpful to show the effect of knockdown at the protein level.

      We agree with this and have added Western blot data (Sup. Figure S1F), which shows the effects of the siRNA are much more pronounced at the protein level.

      All the data regarding genes induced by hypoxia in control or NF-kB siRNA-treated cells are somewhat confusing. If I understand correctly, when the data from the three different siRNAs are crossed, only 1070 genes are upregulated and 295 are downregulated in an NF-kB-independent manner. If this is the case, I think it would be easier to use this information in Figure 2 to define the hypoxia-induced genes that are NF-kB-dependent by simply considering those induced in the control that are not in the NF-kB-independent subset (rather than repeating the integration of the data without additional explanation). If the authors do this simple analysis, are the resulting genes the same or similar? In any case, the way these numbers are obtained should be shown more clearly (i.e., a new Venn diagram showing genes up- or down-regulated in the siRNA control that are not up- or down-regulated in any of the siRNA-NF-kB treatments).

      Figure 1 shows the effects on gene expression of hypoxia in control and NF-____k____B ____subunit____-depleted cells compared to normoxia control cells. Figures 1F/1G compares genes up/downregulated in hypoxia when RelA, RelB, and cRel are depleted, compared to normoxia control. Figure 1 does not display N____F-____k____B____-dependent/independent hypoxia-responsive genes____, but rather the overall effect of siRNA control and siNF-____k____B treatments in hypoxia, compared to siRNA control in normoxia. Figure 2 then defines NF-____k____B-dependent ____and independent hypoxia-responsive genes. We actually define these exactly as the reviewer suggested and agree that we should show the way these numbers are obtained more clearly. We have added the suggested Venn diagrams (Sup. Figure S2) and added extra information to the methods section (page 5 of revised manuscript). We felt it was important to show all the data upfront in Figure 1 and then integrate and focus on NF-____k____B-dependent ____hypoxia-induced genes in Figure 2.

      Figure 2H shows that approximately 80% of the NF-kB-dependent genes up- or down-regulated in hypoxia were identified as RelA targets, which is statistically significant compared to RelB or cRel targets. However, what is the proportion of genes identified as RelA targets in the subset of NF-kB-independent hypoxia-induced genes? And in a randomly selected set of 500-600 genes? In my opinion, this statistical analysis should be included to demonstrate a relationship between NF-kB recruitment and hypoxia-induced upregulation (expected) and downregulation (unexpected). In this context, it is surprising that HIF consensus sites are preferentially detected in the genes that are supposed to be NF-kB dependent instead of RelA consensus.

      We thank the reviewer for this question, which is really helpful. The way we have displayed the stars on the graph for Figure 2H was slightly misleading we realize now. As such, we have amended the graph. RelA, RelB, and cRel bound genes (from the ChIP atlas) are all significantly enriched within our N____F-____k____B-dependent hypoxia-responsive genes, there is no statistical testing between RelA bound vs RelB bound or cRel bound. We have also performed this analysis on the NF-____k____B____-independent hypoxia-responsive genes ____and see the same trend (Sup. Figure S5B). This indicates that the enrichment of Rel binding sites from the ChIP atlas is not specific to NF-____k____B____-dependent hypoxia-responsive genes____. We have moved Figure 2H to (Sup. Figure S5A) and amended our description of the finding. This showcases how DNA binding does not necessarily mean functionality. We have amended our description of this result and limitation of the study.

      Figure 3 is just a confirmation by qPCR of the data obtained in the RNA-seq analysis, which in my opinion should be included as supplementary information. Moreover, both the effects of hypoxia and reversion by RelB siRNA are modest in several of the genes tested. The same is true for Figures 4 and 5 with very modest and variable results across cell types and genes.

      We appreciate this comment; we would like to keep this as a main figure for full transparency and show validation of our RNA-sequencing results.

      Figure 6 shows the effect of NF-kB knockdown on the induction of ROS in response to hypoxia. In the images provided, the effect of hypoxia is minimal in control cells, with the only clear differences shown in RelA-depleted cells.

      The quantification of the IF data (Figure 6B) shows ROS induction in hypoxia which is reduced in Rel-depleted cells, with RelA depletion having the strongest effect. ROS generation in hypoxia, although counterintuitive, is well documented and used for important signalling events. We believe our data supports the previously reported levels of ROS induction (reviewed in {Alva, 2024}) in hypoxia and importantly, that NF-____k____B depletion can at least partially____ reverse this.

      In 6B it is not clear what the three asterisks in the normoxia control represent (compared to the hypoxia siRNA control?). This should be clarified in the figure legend or text.

      We apologize for the lack of clarity we have now added this information to the figure legend.

      In the Western blot of 6C, there are no differences in the levels of SOD1 after RelA depletion. Again, there is no reason not to include the NF-kB subunits in the Western blot analysis.

      We have added the Western blot analysis to this figure. We were trying to simplify it. Although depletion of RelA does not rescue the hypoxia-induced repression of SOD1, depletion of RelB does. Furthermore, cRel although not statistically significant, has a trend for the rescue of this effect, see Figure 6C-D.

      Finally, regarding Figure 7, the authors mention that "we confirmed that hypoxia led to a reduction in several proteins represented in this panel (of proteins involved in oxidative phosphorylation), such as UQCRC2 and IDH1 (Figure 7A-B)". The authors cannot say this because it is not seen in the Western blot in 7A or in the quantification shown in 7B. In my personal opinion, stating something that is not even suggested in the experiments is very negative for the credibility of the whole message.

      We really do not agree with this comment. We do see reductions in the levels of the proteins we mentioned. We have made the figure less complex given that some proteins are very abundant while others are not. We hope the changes are now clear and apparent. We have changed the quantification normalisation to reflect this as well and modified our description of the results, see Figure 7 and Sup. Figure S18.

      In conclusion, this paper contains a large amount of relevant information, but i) non-essential data should be moved to Supplementary, ii) protein levels of relevant players need to be shown in addition to RNA, iii) minimal or undetectable differences need to be considered as no-differences, and iv) a model showing what is the interpretation of the data provided is needed to better understand the message of the paper. I mean, is it p65 or RelB binding to some of these genes leading to their activation or repression, or is it RelA or RelB inducing HIF1beta leading to NF-kB-dependent gene activation by hypoxia? If this were the case, experimental evidence that NF-kB regulates a subset of hypoxia genes through HIF1beta would make the story more understandable.

      We apologise but we do not know why the reviewer mentions HIF1beta. For gene induction, there is cooperation with the HIF system in some genes but not all. The most interesting and unexpected finding is that NF-kappaB is required for gene repression in hypoxia. We have added a new figure, investigating how HDAC inhibition could reverse the repression. A mechanism known to be employed by NF-kappaB when repressing genes. We have added all the blots for NF-kB, clarified the quantification and included other approaches including a CRISPR KO cell lines for both IKKs. We hope this is now clear.

      Reviewer #1 (Significance (Required)):

      The work presented here is interesting but does not provide a major advance over previous publications, the main message being that a subset of hypoxia-regulated genes are NF-kB dependent. However, there is no mechanistic explanation of how this regulation is achieved and several data that are not clearly connected. A more comprehensive analysis of the data and additional experimental validation would greatly enhance the significance of the work.

      We politely disagree with the reviewer. Our main finding is that NF-____k____B____ does play an important role in gene regulation in hypoxia but unexpectedly, this occurs mostly via gene repression. While there is vast knowledge on gene induction in hypoxia, gene repression, which typically does not occur directly via HIF, is virtually unknown. A previous study had identified Rest as a transcriptional repressor {PMID: 27531581} but this could only account for 20% of gene repression. Our findings reveal up to 60% of genes repressed in hypoxia require NF-____k____B____, hence this is a significant finding and a major advance over previous knowledge. Furthermore, we feel this paper is an excellent data resource for the field, as it is, to our knowledge, the first study characterising the extent to which NF-____k____B is required for hypoxia-induced gene changes, on a transcriptome-wide scale. Furthermore, we have validated this across multiple cell types and also used different approaches to investigate the role of NF-kB in the hypoxia transcriptional response. We are happy that the other reviewers agree with our novel findings.

      Reviewer #2 (Evidence, reproducibility and clarity (Required)):

      In this study, the authors have interrogated the role of NF-kappaB in the cellular transcriptional response to hypoxia. While HIF is considered the master regulator of the cellular response to hypoxia, it has long been known that mutliple transcription factors also play a role both independently of HIF and through the regulation of HIF-1alpha levels. Chief amongst these is NF-kappaB, a regulator of cell death and inflammation amongst other things. While NF-kappB has been known to be activated in hypoxia through altered PhD activity, the impact of this on global gene expression has remained unclear and this study addresses this important question. Of particular interest, genes downregulated in hypoxia appear to be repressed in a NF-kappaB-dependent manner. Overall, this nice study reveals an important role for NF-kappaB in the control of the global cellular transcriptional response to hypoxia.

      We thank this reviewer for their positive comments.

      Reviewer #2 (Significance (Required)):

      Some questions for the authors to consider with experiments or discussion: -One caveat of the current study which should be discussed is that while interesting and extensive, the analysis is restricted to cancer cell lines which have dysfunctional gene expression systems which may differ from "normal" cells. This should be discussed.

      We thank the reviewer for these comments. This is indeed an important aspect, which we now expand on in the discussion section. We also took advantage of RNA-seq datasets for HUVECs (a non-transformed cell lines) in response to hypoxia (Sup. Figure S15), TNF-alpha with and without RelA depletion (Sup. Figure S16). These data support our findings that in hypoxia NF-kB is important for transcriptional repression, with some contributions to gene induction, even in a non-transformed cell system.

      In the publicly available data sets analyzed, were the same hypoxic conditions used as in this study. This information should be included.

      We apologize if this was not clear, the hypoxia RNA-seq studies are the same oxygen level and time (1%, 24 hours), this is in the legend of Figure 4A and Sup. Figure S9 and in Sup. Table S2. We have added this information to the main text also.

      • What is known about NF-kappaB as a transcriptional repressor in other systems such as the control of cytokine or infection driven inflammation? This is briefly discussed but should be expanded. This is important as a key question in the study of hypoxia is what regulates gene repression.

      We have included this in the discussion and also analysed available data in HUVECs in response to cytokine stimulation with and without RelA depletion (Sup. Figure S16). This analysis revealed equal importance of RelA for activation and repression of genes upon TNF-alpha stimulation. Around 40% of genes require RelA for their induction or repression in response to TNF-a. In the discussion we have also included other references where NF-kappaB has been found to repress genes.

      NF-kappaB has previously been shown to regulate HIF-1alpha transcription. What are the effects of NF-kappaB subunit siRNAs on basal HIF-1alpha transcription? In figure 7, it appears that NF-kappaB subunit siRNA is without effect on hypoxia-induced HIF protein expression. Could this account for some of the effects of NF-kappaB depletion on the hypoxic gene signature? This point needs to be clarified in light of the data presented.

      We have included data for HIF-1α RNA levels in HeLa cells with/without NF-____k____B____ depletion followed by 24 hours of hypoxia (Sup. Figure S20) and we see a small reduction (~10-20%). The reviewer is correct, there was not much effect of NF-____k____B____ depletion on HIF-1α protein levels following 24 hours hypoxia in HeLa cells. Effects of NF-kappaB depletion can be found usually with lower times of hypoxia exposure or when more than one subunit is depleted at the same time. We have added this as a discussion point in the revised manuscript.

      NRF-2 is a key cellular sensor of oxidative stress in a similar way to HIF being a hypoxia sensor. The authors demonstrate using a dye that ROS are paradoxically increased in hypoxia (a more controversial finding than the authors present). It would be of interest to know if NFR-2 is induced in hypoxia as a marker of cellular oxidative stress. Similarly, it would be interesting to determine by metabolic analysis whether oxidative phosphorylation (O2 consumption) is decreased as the transcriptional signature would suggest (although the difficulty of performing metabolic analysis in hypoxia is acknowledged).

      To investigate if NRF2 is induced, we performed a western blot at 0, 1, and 24 hours 1% oxygen, but didn’t see any induction of NRF2 protein levels (____Sup. Figure S17A). We also overlapped our hypoxia upregulated genes with NRF2 target genes from {PMID:24647116 and PMID: 38643749} (Sup. Figure S17B) and found limited evidence of NRF2 target genes being induced. Based on these findings, it seems that NRF2 is not being induced in hypoxia, at least not at the hypoxia level/time point we have analysed. We also agree it would be ideal to measure oxygen consumption in hypoxia, but unfortunately, we do not have the technical ability to do this at present.

      Reviewer #3 (Evidence, reproducibility and clarity (Required)):

      Strengths This manuscript attempts to integrate multiple strands of data to determine the role of NFkB in hypoxia -induced gene expression. This analysis looks at multiple NFkB subunits in multiple cell lines to convincingly demonstrate that NFkB does indeed play a central role in the regulation of hypoxia-induced gene expression. This broad approach integrates new experimental data with findings from the published literature.

      A significant amount of work has been performed both experimentally and bioinformatically to test experimental hypotheses.

      We thank this reviewer for their positive comments.

      Limitations

      The main analysis in the paper involves comparing the impact of knocking down different NFkB family members in hypoxia and comparing transcriptional responses. I am surprised that the authors did not include the impact of knockdown of the NFkB family members in normoxia too. The absence of these control experiments allows us to understand the role of NFkB in hypoxia, but does not give us information as to how many of those impacts are specific/ induced in hypoxic conditions. i.e. many of the observed effects of NFkB knockdown could be due to basal suppression of NFkB target genes that happen to be hypoxia sensitive. This finding is obviously important, but it would be nice to know how many of those genes are only / preferentially regulated by NFkB in hypoxia. This would give a much deeper insight into the role of NFkB in hypoxia induced gene expression.

      We agree this would have been ideal. For financial reasons we limited our analysis to hypoxia samples. We have performed qPCR analysis depleting RelA, RelB and cRel under normal oxygen conditions in HeLa (Sup. Figure S8). We find that the majority of the validated genes in HeLa cells which require____ NF-____k____B for gene changes in hypoxia, are not regulated by N____F-____k____B under normal oxygen conditions____. We have also added this limitation into our discussion section.

      The broad experimental approach while a strength of the paper in many ways also has its limitations e.g. Motif analysis revealing e.g. HIF-1a binding site enrichment in RelA and RelB-dependent DEGs is correlative observation and does not prove HIF involvement in NFkB-dependent hypoxia induced gene activation. Comparing responses with responses seen in one cell type with responses that have been described in a database comprised of many studies in a variety of different cells also has some limitations. These points can be described more fully in the discussion

      We agree these are mere correlations and hence a limitation and we have not formerly tested the involvement of HIF. We have included this in the discussion as suggested. For HIF binding site correlation, we do also compare to HIF ChIP-seq in HeLa cells exposed to 1% oxygen, albeit at 8 hours and not 24 hours (Sup. Figure S4).

      For siRNA transfections, single oligonucleotide sequences were used for RelA, RelB and cRel. This increases the potential likelihood of 'off targets' compared to pooled oligos delivered at lower concentrations. This limitation should at least be mentioned.

      We agree and have now included this as a limitation in the discussion section. We have now also included analysis using wild type and 2 different IKK____________ double KO CRISPR cell lines generated in the following publication {PMID: 35029639}. Out of the 9 genes we identified as NF-____k____B-dependent hypoxia upregulated genes from HeLa cell RNA-seq and validated by qPCR, which are also hypoxia-responsive in HCT116 cells (Sup. Figure S11D), 6 displayed ____NF-____k____B dependence in HCT116 cells (Sup. Figure S14). We also provide new protein data in this cell system for oxidative phosphorylation markers, which show as with the siRNA depletion, rescue of repression of these proteins when NF-____k____B is inactivated.

      RNA-seq experiments are performed on n=2 data which means relatively low statistical power. How has the statistical analysis been performed on normalised counts (corresponding to 2 n- numbers) to yield statistical significance? I am not familiar with hypergeometric tests - please justify their use here.

      __*We use DESeq2 for differential expression analysis and filter for effect size (> -/+ 0.58 log2 fold change) and statistical significance (FDR I am not familiar with hypergeometric tests - please justify their use here.

      The hypergeometric test (equivalent to a one-sided Fisher's exact test) is routinely used to determine whether the observed overlap between two gene lists is statistically significant compared to what would be expected by chance. It is also the statistical test of choice for popular bioinformatics tools which perform over representation analysis (ORA) to see which gene sets/groups/pathways/ontologies are over-represented in a gene list, examples include Metascape, clusterProfiler, WebGestalt (used in this study), and gProfiler.

      P14 RelB is described as having the most widespread impact of hypoxia dependent gene changes across all cell systems tested. Could this be due to a more potent silencing of RelB and / or due to particularly high/ low expression of RelB in these cells in general?

      This is an excellent point, at the RNA level the RelB depletion is slightly more efficient (Sup. Figure S1), at the protein level, silencing is highly potent with all 3 siRNAs (Sup. Figure S1). We looked at the RNA levels of RelA, RelB and cRel in HeLa cells at basal conditions, and RelA shows the highest abundance compared to RelB and cRel, while RelB and cRel have similar expression levels (see below). However, RelB is very dynamic in response to hypoxia, something we have observed but have not published yet.

      P18 For western blot analysis best practise is to have 2 MW markers per blot presented

      We have and have added the second MW markers suggested.

      For quantification, I suggest avoiding performing statistical analysis on semi-quantitative data unless a dynamic range of detection (with standards) has been fully established.

      We agree this has many limitations, we will keep the quantification but moved into supplementary information.

      P19 There is clearly an effect of reciprocal silencing with the NFkB knockdown experiments ie. siRelA affects RelB levels in hypoxia and vice versa. The implications of this for data interpretation should be discussed.

      Indeed, it is well known that RelB and cRel are RelA targets. Less is known about RelA as it is not a known NF-____k____B____ target. We have added a discussion in the revised manuscript.

      P20 The literature can be better cited in relation RelB and hypoxia A brief search reveals a few papers that should be mentioned/ discussed. Oliver et al. 2009 Patel et al. 2017 Riedl et al. 2021

      We have looked into these suggestions. Oliver et al, refer to hypercapnia, not hypoxia and the other two only briefly mentioned RelB with no effects toward the goals of their studies. We have tried to incorporate what is currently known as much as possible.

      I suggest leaving out mention of IkBa sumoylation and supplementary figure 10. I'm not sure the data in the paper as a whole merits focus on this very specific point.

      We thank the reviewer for this suggestion and we have removed this aspect from the manuscript.

      There is a very strong reliance on mRNA and TPM data. Some additional protein data in support of key findings will enhance

      We have added additional protein level analysis where we could obtain antibodies, see Figures 6, 7 and Sup. Figures S17, S18, and S19 for our protein level analysis.

      A graphical abstract summarising key findings with exemplar genes highlighted will enhance.

      We have added a model to summarise our findings as suggested.

      Both HIF and NFKB are ancient evolutionarily conserved pathways. Can lessons be learned from evolutionary biology as to how NFkB regulation of hypoxia induced genes occured. Does the HIF pathway pre-date the NFkB pathway or vice versa. This approach could be valuable in supporting the findings from this study.

      We have investigated this. Unfortunately, there are very little available data on hypoxia gene expression in lower organisms. However, we have added a few sentences on the evolution of NF-____k____B____ and HIF.

      Minor comments P2 please briefly explain how 5 genes give rise to 7 proteins

      We have added this to the introduction as requested.

      P2 there seems to be some recency bias in the studies cited as being associated with NFkB activation in response to hypoxia. Mention of Koong et al (1994) and Taylor et al (1999) and other early papers in the field will enhance

      We have added these as suggested.

      P3 The role of PHD enzymes in the regulation of NFkB in hypoxia can be introduced and / or discussed

      We have added a reference to this aspect as suggested.

      P8 I suggest use of proportional Venn diagrams to demonstrate the patterns more clearly

      We have added these as suggested.

      P11 To what extent might NFkB and Rest co-operate/ co-regulate gene repression in hypoxia?

      This is a good question. We have overlapped our datasets with Rest-dependent hypoxia-regulated genes identified by Cavadas et al., (Figure below), and find that these appear to act independently of each other for the most part, with very few genes co-regulated by both.

      Reviewer #3 (Significance (Required)):

      Shakir et al. present a manuscript titled 'NFkB is a central regulator of hypoxia-induced gene expression'.

      The research group are experts in both NFkB and hypoxia signaling and are the ideal group to perform these studies.

      Hypoxia and inflammation are co-incident in many physiological and pathophysiological conditions, where the microenvironment affects disease severity and patient outcome. The cross talk between inflammatory and hypoxia signaling pathways is not fully described. Thus, this manuscript takes a novel approach to an established question and concludes clearly that NFkB is a central regulator of hypoxia-induced gene expression.

      We thank the reviewer for these positive comments.

    1. Author response:

      The following is the authors’ response to the previous reviews

      Response to the reviewer #2 (Public review):

      We greatly appreciate the reviewer’s high evaluation of our paper and helpful comments and suggestions.

      Regarding in vivo Treg homing assay, we did not exclude doublets and dead cells from the analysis of Kaede-expressing Tregs migrated to the aorta, which may affect the results. We described this issue as the limitation of this study in the revised manuscript. Nonetheless, we believe the reliability of our findings because we repeated this experiment three times and obtained similar results.

      There is no evidence to support the clinical relevance of our findings. Future clinical research on this topic is highly desired.

      Response to the reviewer #3 (Public review):

      We greatly appreciate the reviewer’s high evaluation of our paper and helpful comments and suggestions.

      Despite the controversial role of Th17 cells in atherosclerosis, we understand the possible involvement of Th17 cells and the Th1 cell/Th17 cell balance in lymphoid tissues and aortic lesions in accelerated inflammation and atherosclerosis in Ccr4<sup>-/-</sup>Apoe<sup>-/-</sup> mice. Although we could not completely evaluate the changes in these immune responses in detail, future study may elucidate interesting mechanisms mediated by Th17 cell responses.

      As the reviewer suggested, we understand that it is necessary to provide in vivo evidence for the Treg suppressive effects on DC activation. Based on the results of in vitro experiments, we described the discussion on the in vivo evidence in the revised manuscript.

      We understand methodological limitations for flow cytometric analysis of immune cells in the aorta and in vivo Treg homing assay. We described this issue as the limitation of this study in the revised manuscript. Regarding in vivo Treg homing assay, we statistically re-analyzed the combined data from multiple experiments and observed a tendency toward reduction in the proportion of CCR4-deficient Kaede-expressing Tregs in the aorta of recipient Apoe<sup>-/-</sup> mice, though there was no statistically significant difference in the migratory capacity of CCR4-intact or CCR4-deficient Kaede-expressing Tregs. Accordingly, we toned down our claim that CCR4 expression on Tregs plays a critical role in mediating Treg migration to the atherosclerotic aorta under hypercholesterolemia.

      The reviewer requested us to evaluate aortic inflammation in Ccr4<sup>-/-</sup>Apoe<sup>-/-</sup> mice injected with CCR4-intact or CCR4-deficient Tregs. However, we think that this experiment will provide marginal information because Treg transfer experiments in Apoe<sup>-/-</sup> mice have already shown the protective role of CCR4 in Tregs against aortic inflammation and early atherosclerosis.

      Recommendations for the authors:

      Reviewer #2 (Recommendations for the authors):

      (1) #1 and #2: CD103 and CD86 expression should be discussed on the text and not only in the response to reviewer.

      In accordance with the reviewer’s suggestion, we added a discussion on the downregulated CD103 expression in peripheral LN Tregs and upregulated CD86 expression on DCs in Ccr4<sup>-/-</sup>Apoe<sup>-/-</sup> mice in the discussion section in the revised manuscript.

      (2) #5: Authors response is not satisfactory. No gate percentage is shown. As it currently is, the difference in the number of cells shown in the figure could be due to differences in events recorded. Furthermore, the gate strategy is not thorough. Considering the very low frequency of Kaede + cells detected, it is crucial to properly exclude doublets and dead cells.

      Authors reported a dramatic difference in Kaede + Tregs cells in the aorta across experiments. This could be addressed by normalization followed by appropriate statistical analysis (One sample t-test).

      The data shown is not strong enough to conclude that there is a reduced migration to the aorta.

      We understand the importance of reviewer’s suggestion. We described the percentage of Kaede+ Tregs in the aorta of Apoe<sup>-/-</sup> mice receiving transfer of Kaede-expressing CCR4-intact or CCR4-deficient Tregs in Figure 5I.

      As the reviewer pointed out, we understand that it would be important to properly exclude doublets and dead cells in in vivo Treg homing assay. However, it is difficult for us to resolve this issue because we need to perform the same experiments again which will require a great number of additional mice and substantial amount of time. We deeply regret that these important experimental procedures were not performed. We described this issue as the limitation of this study.

      In accordance with the reviewer’s suggestion, we re-analyzed the combined data from multiple experiments using one-sample t-test. We observed a tendency toward reduction in the proportion of CCR4-deficient Kaede-expressing Tregs in the aorta of recipient Apoe<sup>-/-</sup> mice, though there was no statistically significant difference in the migratory capacity of CCR4-intact or CCR4-deficient Kaede-expressing Tregs. By modifying the corresponding descriptions in the manuscript, we toned down our claim that CCR4 expression on Tregs plays a critical role in mediating Treg migration to the atherosclerotic aorta under hypercholesterolemia.

      (3) #8: There are still several not shown data

      In accordance with the reviewer’s suggestion, we showed the data on the responses of Tregs and effector memory T cells in 8-week-old wild-type or Ccr4<sup>-/-</sup> mice and Ccr4 mRNA expression in Tregs and non-Tregs from Apoe<sup>-/-</sup> or Ccr4<sup>-/-</sup>Apoe<sup>-/-</sup> mice in Supplementary Figures 4 and 7.

      Reviewer #3 (Recommendations for the authors):

      (1) Issue 1. For future studies, I recommend not omitting viability controls during cell staining. Removal of dead cells and doublets should always be included during the gating strategy to avoid undesirable artefacts, especially when analysing less-represented cell populations. According to your previous report (ref #40), I agree that isotype controls were unnecessary using the same staining protocol. FMO controls should always be included in flow cytometry analysis (not mentioned in the methodology description and ref#40).

      As the reviewer suggested, we understand that it would be important to properly exclude dead cells and doublets and to prepare FMO controls in flow cytometric analysis. We deeply regret that these important experimental procedures were not performed. We described this issue as the limitation of this study.

      (2) Issue 3. Although Th17's role in atherosclerosis remains controversial, the data obtained in this work could provide valuable insights if discussed appropriately. As noted in my public review, I found it noteworthy that ROR γ t+ cells represented around 13% of effector TCD45+CD3+CD4+ lymphocytes in the aorta of Apoe<sup>-/-</sup> mice while Th1 less than 5% (Fig 4H and F, respectively). I recognise that differences in cell staining sensibility and robustness for different transcription factors may influence these percentages. However, analysing how CCR4 deficiency influences the Th1/TI h17 balance would yield interesting data, similar to what was done for the Th1/Treg ratio.

      Considering the higher proportion of Th17 cells than Th1 or Th2 cells in atherosclerotic aorta, we understand the importance of reviewer’s suggestion. However, we could not evaluate the effect of CCR4 deficiency on the Th1/Th17 balance in aorta because we did not perform flow cytometric analysis of aortic Th1 and Th17 cells in the same mice. Meanwhile, we could examine the Th1/Th17 balance in peripheral lymphoid tissues by flow cytometry. We found a significant increase in the Th1/Th17 ratio in the peripheral LNs of Ccr4<sup>-/-</sup>Apoe<sup>-/-</sup> mice, while there were no changes in its ratio in the spleen or para-aortic LNs of these mice, which limits the contribution of the Th1/Th17 balance to exacerbated atherosclerosis. We showed these data below.

      Author response image 1.

      (3) Issue 4. I appreciate the authors for sharing data on the flow cytometry analysis of Tregs in para-aortic LNs of Apoe<sup>-/-</sup> and Ccr4<sup>-/-</sup> Apoe<sup>-/-</sup> mice, which would have been included as a Supplementary figure. These results reinforce the notion that Treg dysfunction in CCR4-deficient mice may not be due to the downregulation of regulatory cell surface receptors.

      We showed the data on the expression of CTLA-4, CD103, and PD1 in Tregs in the para-aortic LNs of Apoe<sup>-/-</sup> and Ccr4<sup>-/-</sup>Apoe<sup>-/-</sup> mice in Supplementary Figure 8.

      (4) Issue 5. I agree that CD4+ T cell responses are substantially regulated by DCs. While CD80 and CD86 on DC primarily serve as costimulatory signals for T-cell activation, cytokines secreted by DCs are primordial signals for determining the differentiation phenotype of effector Th cells. Since the analysis of DC phenotype in lymphoid tissues of Apoe<sup>-/-</sup> and Ccr4<sup>-/-</sup> Apoe<sup>-/-</sup> mice could not be addressed in this study, it is not possible to differentiate which processes may be mainly affected by CCR4-deficiency during CD4+ T cell activation. In this scenario, and considering in vitro studies, the results suggest a possible role of CCR4 in controlling the extent of activation of CD4+T cells rather than shifting the CD4+T cell differentiation profile in peripheral lymphoid tissues, where a predominant Th1 profile was already established in Apoe<sup>-/-</sup> mice. Therefore, I advise caution when concluding about shifts in CD4+ T cell responses.

      We thank the reviewer for providing us thoughtful comments. As the reviewer pointed out, we understand that we should carefully interpret the mechanisms for the shift of CD4+ T cell responses by CCR4 deficiency.

      (5) Regarding migration studies in the revised manuscript. I fully understand that Treg transference assays are challenging. The results do not suggest that CCR4 was critical for Treg migration to lymphoid tissues in the conditions assayed. Concerning migration to the aorta, I found the results inconclusive since the authors mention that: i) there was a dramatic difference in the absolute numbers of Kaede-expressing Tregs that migrated to the aorta impairing statistical analysis; ii) the number of Kaede-expressing Tregs that migrated to the aorta was extremely low; iii) dead cells and doublets were not removed in the flow cytometry analysis. In this context, I do not agree with the following statements and recommend revising them:

      - "CCR4 deficiency in Tregs impaired their migration to the atherosclerotic aorta" (lines 36-7),

      - "…we found a significant reduction in the proportion of CCR4 deficient Kaede-expressing Tregs in the aorta of recipient Apoe<sup>-/-</sup> mice" (lines 356-7),

      - "CCR4 expression on Tregs regulates the development of early atherosclerosis by....... mediating Treg migration to the atherosclerotic aorta" (lines 409-411),

      - "…we found that CCR4 expression on Tregs is critical for regulating atherosclerosis by mediating their migration to the atherosclerotic aorta" (lines 437-438),

      - "CCR4 protects against early atherosclerosis by mediating Treg migration to the aorta.... (lines 464-465),

      - "We showed that CCR4 expression on Tregs is critical for ...... mediating Treg migration to the atherosclerotic aorta" (503-505).

      We understand the importance of the reviewer’s suggestion. We described this issue as the limitation of this study. In accordance with the reviewer’s suggestion, we modified the above descriptions and toned down our claim that CCR4 expression on Tregs plays a critical role in mediating Treg migration to the atherosclerotic aorta under hypercholesterolemia.

      (6) Line 206: Mention the increased expression of CD86 by DCs

      We mentioned this result in the revised manuscript. We also added a discussion on the upregulated CD86 expression on DCs in Ccr4<sup>-/-</sup>Apoe<sup>-/-</sup> mice in the discussion section in the revised manuscript.

      (7) Lines 304-305. According to Fig 4F-H, a selective accumulation of Th1 cells seems to have occurred only in the aorta, coinciding with a higher Th1/Treg ratio. No selective accumulation of Th1 cells was observed in para-aortic lymph nodes. These results could be clarified.

      We modified the above description in the revised manuscript.

    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1:

      (1) I miss some treatment of the lack of behavioural correlate. What does it mean that metamine benefits EEG classification accuracy without improving performance? One possibility here is that there is an improvement in response latency, rather than perceptual sensitivity. Is there any hint of that in the RT results? In some sort of combined measure of RT and accuracy? 

      First, we would like to thank the reviewer for their positive assessment of our work and for their extremely helpful and constructive comments that helped to significantly improve the quality of our manuscript.  

      The reviewer rightly points out that, to our surprise, we did not obtain a correlate of the effect of memantine in our behavioral data, neither in the reported accuracy data nor in the RT data. We do not report RT results as participants were instructed to respond as accurately as possible, without speed pressure. We added a paragraph in the discussion section to point to possible reasons for this surprising finding:

      “There are several possible reasons for this lack of behavioral correlate.  For example, EEG decoding may be a more sensitive measure of the neural effects of memantine, in particular given that perceptual sensitivity may have been at floor (masked condition, experiment 1) or ceiling (unmasked condition, experiment 1, and experiment 2). It is also possible that the present decoding results are merely epiphenomenal, not mapping onto functional improvements (e.g., Williams et al., 2007). However, given that we found a tight link between these EEG decoding markers and behavioral performance in our previous work (Fahrenfort et al., 2017; Noorman et al., 2023), it is possible that the effect of memantine was just too subtle to show up in changes in overt behavior.”

      (2) An explanation is missing, about why memantine impacts the decoding of illusion but not collinearity. At a systems level, how would this work? How would NMDAR antagonism selectively impact long-range connectivity, but not lateral connectivity? Is this supported by our understanding of laminar connectivity and neurochemistry in the visual cortex?

      We have no straightforward or mechanistic explanation for this finding. In the revised discussion, we are highlighting this finding more clearly, and included some speculative explanations:

      “The present effect of memantine was largely specific to illusion decoding, our marker of feedback processing, while collinearity decoding, our marker of lateral processing, was not (experiment 1) or only weakly (experiment 2) affected by memantine. We have no straightforward explanation for why NMDA receptor blockade would impact inter-areal feedback connections more strongly than intra-areal lateral connections, considering their strong functional interdependency and interaction in grouping and segmentation processes (Liang et al., 2017). One possibility is that this finding reflects properties of our EEG decoding markers for feedback vs. lateral processing: for example, decoding of the Kanizsa illusion may have been more sensitive to the relatively subtle effect of our pharmacological manipulation, either because overall decoding was better than for collinearity or because NMDA receptor dependent recurrent processes more strongly contribute to illusion decoding than to collinearity decoding.”

      (3) The motivating idea for the paper is that the NMDAR antagonist might disrupt the modulation of the AMPA-mediated glu signal. This is in line with the motivating logic for Self et al., 2012, where NMDAR and AMPAR efficacy in macacque V1 was manipulated via microinfusion. But this logic seems to conflict with a broader understanding of NMDA antagonism. NMDA antagonism appears to generally have the net effect of increasing glu (and ACh) in the cortex through a selective effect on inhibitory GABAergic cells (eg. Olney, Newcomer, & Farber, 1999). Memantine, in particular, has a specific impact on extrasynaptic NMDARs (that is in contrast to ketamine; Milnerwood et al, 2010, Neuron), and this type of receptor is prominent in GABA cells (eg. Yao et al., 2022, JoN). The effect of NMDA antagonists on GABAergic cells generally appears to be much stronger than the effect on glutamergic cells (at least in the hippocampus; eg. Grunze et al., 1996).

      This all means that it's reasonable to expect that memantine might have a benefit to visually evoked activity. This idea is raised in the GD of the paper, based on a separate literature from that I mentioned above. But all of this could be better spelled out earlier in the paper, so that the result observed in the paper can be interpreted by the reader in this broader context.

      To my mind, the challenging task is for the authors to explain why memantine causes an increase in EEG decoding, where microinfusion of an NMDA antagonist into V1 reduced the neural signal Self et al., 2012. This might be as simple as the change in drug... memantine's specific efficacy on extrasynaptic NMDA receptors might not be shared with whatever NMDA antagonist was used in Self et al. 2012. Ketamine and memantine are already known to differ in this way. 

      We addressed the reviewer’s comments in the following way. First, we bring up our (to us, surprising) result already at the end of the Introduction, pointing the reader to the explanation mentioned by the reviewer:

      “We hypothesized that disrupting the reentrant glutamate signal via blocking NMDA receptors by memantine would impair illusion and possibly collinearity decoding, as putative markers of feedback and lateral processing, but would spare the decoding of local contrast differences, our marker of feedforward processing. To foreshadow our results, memantine indeed specifically affected illusion decoding, but enhancing rather than impairing it. In the Discussion, we offer explanations for this surprising finding, including the effect of memantine on extrasynaptic NMDA receptors in GABAergic cells, which may have resulted in boosted visual activity.”

      Second, as outlined in the response to the first point by Reviewer #2, we are now clear throughout the title, abstract, and paper that memantine “improved” rather than “modulated” illusion decoding.

      Third, and most importantly, we restructured and expanded the Discussion section to include the reviewer’s proposed mechanisms and explanations for the effect. We would like to thank the reviewer for pointing us to this literature. We also discuss the results of Self et al. (2012), specifically the distinct effects of the two NMDAR antagonists used in this study, more extensively, and speculate that their effects may have been similar to ketamine and thus possibly opposite of memantine (for the feedback signal):

      “Although both drugs are known to inhibit NMDA receptors by occupying the receptor’s ion channel and are thereby blocking current flow (Glasgow et al., 2017; Molina et al., 2020), the drugs have different actions at receptors other than NMDA, with ketamine acting on dopamine D2 and serotonin 5-HT2 receptors, and memantine inhibiting several subtypes of the acetylcholine (ACh) receptor as well as serotonin 5HT3 receptors. Memantine and ketamine are also known to target different NMDA receptor subpopulations, with their inhibitory action displaying different time courses and intensity (Glasgow et al., 2017; Johnson et al., 2015). Blockade of different NMDA receptor subpopulations can result in markedly different and even opposite results. For example, Self and colleagues (2012) found overall reduced or elevated visual activity after microinfusion of two different selective NMDA receptor antagonists (2-amino-5phosphonovalerate and ifendprodil) in macaque primary visual cortex. Although both drugs impaired the feedback-related response to figure vs. ground, similar to the effects of ketamine (Meuwese et al., 2013; van Loon et al., 2016) such opposite effects on overall activity demonstrate that the effects of NMDA antagonism strongly depend on the targeted receptor subpopulation, each with distinct functional properties.”

      Finally, we link these differences to the potential mechanism via GABAergic neurons:

      “As mentioned in the Introduction, this may be related to memantine modulating processing at other pre- or post-synaptic receptors present at NMDA-rich synapses, specifically affecting extrasynaptic NMDA receptors in GABAergic cells (Milnerwood et al, 2010; Yao et al., 2022). Memantine’s strong effect on extrasynaptic NMDA receptors in GABAergic cells leads to increases in ACh levels, which have been shown to increase firing rates and reduce firing rate variability in macaques (Herrero et al., 2013, 2008). This may represent a mechanism through which memantine (but not ketamine or the NMDA receptor antagonists used by Self and colleagues) could boost visually evoked activity.”

      (4) The paper's proposal is that the effect of memantine is mediated by an impact on the efficacy of reentrant signaling in visual cortex. But perhaps the best-known impact of NMDAR manipulation is on LTP, in the hippocampus particularly but also broadly.

      Perception and identification of the kanisza illusion may be sensitive to learning (eg. Maertens & Pollmann, 2005; Gellatly, 1982; Rubin, Nakayama, Shapley, 1997); what argues against an account of the results from an effect on perceptual learning? Generally, the paper proposes a very specific mechanism through which the drug influences perception. This is motivated by results from Self et al 2012 where an NMDA antagonist was infused into V1. But oral memantine will, of course, have a whole-brain effect, and some of these effects are well characterized and - on the surface - appear as potential sources of change in illusion perception. The paper needs some treatment of the known ancillary effects of diffuse NMDAR antagonism to convince the reader that the account provided is better than the other possibilities. 

      We cannot fully exclude an effect based on perceptual learning but consider this possibility highly unlikely for several reasons. First, subjects have performed more than a thousand trials in a localizer session before starting the main task (in experiment 2 even more than two thousand) containing the drug manipulation. Therefore, a large part of putative perceptual learning would have already occurred before starting the main experiment. Second, the main experiment was counterbalanced across drug sessions, so half of the participants first performed the memantine session and then the placebo session, and the other half of the subjects the other way around. If memantine would have improved perceptual learning in our experiments, one may actually expect to observe improved decoding in the placebo session and not in the memantine session. If memantine would have facilitated perceptual learning during the memantine session, the effect of that facilitated perceptual learning would have been most visible in the placebo session following the memantine session. Because we observed improved decoding in the memantine session itself, perceptual learning is likely not the main explanation for these findings. Third, perceptual learning is known to occur for several stimulus dimensions (e.g., orientation, spatial frequency or contrast). If these findings would have been driven by perceptual learning one would have expected to see perceptual learning for all three features, whereas the memantine effects were specific to illusion decoding. Especially in experiment 2, all features were equally often task relevant and in such a situation one would’ve expected to observe perceptual learning effects on those other features as well.  

      To further investigate any potential role of perceptual learning, we analyzed participants’ performance in detecting the Kanizsa illusion over the course of the experiments. To investigate this, we divided the experiments’ trials into four time bins, from the beginning until the end of the experiment. For the first experiment’s first target (T1), there was no interaction between the factors bin and drug (memantine/placebo; F<sub>3,84</sub>=0.89, P\=0.437; Figure S6A). For the second target (T2), we performed a repeatedmeasures ANOVA with the factors bin, drug, T1-T2 lag (short/long), and masks (present/absent). There was only a trend towards a bin by drug interaction (F<sub>3,84</sub>=2.57, P\=0.064; Figure S6B), reflecting worse performance under memantine in the first three bins and slightly better performance in the fourth bin. The other interactions that include the factors bin and drug factors were not significant (all P>0.117). For the second experiment, we performed a repeated-measures ANOVA with the factors bin, drug, masks, and task-relevant feature (local contrast/collinearity/illusion). None of the interactions that included the bin and drug factors were significant (all P>0.219; Figure S6C). Taken together, memantine does not appear to affect Kanizsa illusion detection performance through perceptual learning. Finally, there was no interaction between the factors bin and task-relevant feature (F<sub>6,150</sub>=0.76, P\=0.547; Figure S6D), implying there is no perceptual learning effect specific to Kanizsa illusion detection. We included these analyses in our revised Supplement as Fig. S6.

      (5) The cross-decoding approach to data analysis concerns me a little. The approach adopted here is to train models on a localizer task, in this case, a task where participants matched a kanisza figure to a target template (E1) or discriminated one of the three relevant stimuli features (E2). The resulting model was subsequently employed to classify the stimuli seen during separate tasks - an AB task in E1, and a feature discrimination task in E2. This scheme makes the localizer task very important. If models built from this task have any bias, this will taint classifier accuracy in the analysis of experimental data. My concern is that the emergence of the kanisza illusion in the localizer task was probably quite salient, respective to changes in stimuli rotation or collinearity. If the model was better at detecting the illusion to begin with, the data pattern - where drug manipulation impacts classification in this condition but not other conditions - may simply reflect model insensitivity to non-illusion features.

      I am also vaguely worried by manipulations implemented in the main task that do not emerge in the localizer - the use of RSVP in E1 and manipulation of the base rate and staircasing in E2. This all starts to introduce the possibility that localizer and experimental data just don't correspond, that this generates low classification accuracy in the experimental results and ineffective classification in some conditions (ie. when stimuli are masked; would collinearity decoding in the unmasked condition potentially differ if classification accuracy were not at a floor? See Figure 3c upper, Figure 5c lower).

      What is the motivation for the use of localizer validation at all? The same hypotheses can be tested using within-experiment cross-validation, rather than validation from a model built on localizer data. The argument may be that this kind of modelling will necessarily employ a smaller dataset, but, while true, this effect can be minimized at the expense of computational cost - many-fold cross-validation will mean that the vast majority of data contributes to model building in each instance. 

      It would be compelling if results were to reproduce when classification was validated in this kind of way. This kind of analysis would fit very well into the supplementary material.

      We thank the reviewer for this excellent question. We used separate localizers for several reasons, exactly to circumvent the kind of biases in decoding that the reviewer alludes to. Below we have detailed our rationale, first focusing on our general rationale and then focusing on the decisions we made in designing the specific experiments.  

      Using a localizer task in the design of decoding analysis offers several key advantages over relying solely on k-fold cross-validation within the main task:

      (1) Feature selection independence and better generalization: A separate localizer task allows for independent feature selection, ensuring that the features used for decoding are chosen without bias from the main task data. Specifically, the use of a localizer task allows us to determine the time-windows of interest independently based on the peaks of the decoding in the localizer. This allows for a better direct comparison between the memantine and placebo conditions because we can isolate the relevant time windows outside a drug manipulation. Further, training a classifier on a localizer task and testing it on a separate experimental task assesses whether neural representations generalize across contexts, rather than simply distinguishing conditions within a single dataset. This supports claims about the robustness of the decoded information.

      (2) Increased sensitivity and interpretability: The localizer task can be designed specifically to elicit strong, reliable responses in the relevant neural patterns. This can improve signal-to-noise ratio and make it easier to interpret the features being used for decoding in the test set. We facilitate this by having many more trials in the localizer tasks (1280 in E1 and 5184 in E2) than in the separate conditions of the main task, in which we would have to do k-folding (e.g., 2, mask, x 2 (lag) design in E1 leaves fewer than 256 trials, due to preprocessing, for specific comparisons) on very low trial numbers. The same holds for experiment 2 which has a 2x3 design, but also included the base-rate manipulation. Finally, we further facilitate sensitivity of the model by having the stimuli presented at full contrast without any manipulations of attention or masking during the localizer, which allows us to extract the feature specific EEG signals in the most optimal way.

      (3) Decoupling task-specific confounds: If decoding is performed within the main task using k-folding, there is a risk that task-related confounds (e.g., motor responses, attention shifts, drug) influence decoding performance. A localizer task allows us to separate the neural representation of interest from these taskrelated confounds.

      Experiment 1 

      In experiment 1, the Kanizsa was always task relevant in the main experiment in which we employed the pharmacological manipulation. To make sure that the classifiers were not biased towards Kanizsa figures from the start (which would be the case if we would have done k-folding in the main task), we used a training set in which all features were equally relevant for task performance. As can be seen in figure 1E, which plots the decoding accuracies of the localizer task, illusion decoding as well as rotation decoding were equally strong, whereas collinearity decoding was weaker. It may be that the Kanizsa illusion was quite salient in the localizer task, which we can’t know at present, but it was at least less salient and relevant than in the main task (where it was the only task-relevant feature). Based on the localizer decoding results one could argue that the rotation dimension and illusion dimension were most salient, because the decoding was highest for these dimensions. Clearly the model was not insensitive to nonillusory features. The localizer task of experiment 2 reveals that collinearity decoding tends to be generally lower, even when that feature is task relevant.  

      Experiment 2 

      In experiment 2, the localizer task and main task were also similar, with three exceptions: during the localizer task no drug was active, and no masking and no base rate manipulation were employed. To make sure that the classifier was not biased towards a certain stimulus category (due to the bias manipulation), e.g. the stimulus that is presented most often, we used a localizer task without this manipulation. As can be seen in figure 4D decoding of all the features was highly robust, also for example for the collinearity condition. Therefore the low decoding that we observe in the main experiment cannot be due to poor classifier training or feature extraction in the localizer. We believe this is actually an advantage instead of a disadvantage of the current decoding protocol.

      Based on the rationale presented above we are uncomfortable performing the suggested analyses using a k-folding approach in the main task, because according to our standards the trial numbers are too low and the risk that these results are somehow influenced by task specific confounds cannot be ruled out.  

      Line 301 - 'Interestingly, in both experiments the effect of memantine... was specific to... stimuli presented without a backward mask.' This rubs a bit, given that the mask broadly disrupted classification. The absence of memantine results in masked results may simply be a product of the floor ... some care is needed in the interpretation of this pattern. 

      In the results section of experiment 1, we added:

      “While the interaction between masking and memantine only approached significance (P\=0.068), the absence of an effect of memantine in the masked condition could reflect a floor effect, given that illusion decoding in the masked condition was not significantly better than chance.”

      While floor is less likely to account for the absence of an effect in the masked condition in experiment 2, where illusion decoding in the masked condition was significantly above chance, it is still possible that to obtain an effect of memantine, decoding accuracy needed to be higher. We therefore also added here:

      “For our time window-based analyses of illusion decoding, the specificity of the memantine effect to the unmasked condition was supported by a significant interaction between drug and masking (note, however, given overall much lower decoding accuracy in the masked condition, the lack of a memantine effect could reflect a floor effect).”

      In the discussion, we changed the sentence to read “…the effect of memantine on illusion decoding tended to be specific to attended, task-relevant stimuli presented without a backward mask.”

      Line 441 - What were the contraindications/exclusion parameters for the administration of memantine? 

      Thanks for spotting this. We have added the relevant exclusion criteria in the revised version of the supplement. See also below.

      – Allergy for memantine or one of the inactive ingredients of these products;

      – (History of) psychiatric treatment;

      – First-degree relative with (history of) schizophrenia or major depression;

      – (History of) clinically significant hepatic, cardiac, obstructive respiratory, renal, cerebrovascular, metabolic or pulmonary disease, including, but not limited to fibrotic disorders;

      – Claustrophobia;

      –  Regular usage of medicines (antihistamines or occasional use of paracetamol);

      – (History of) neurological disease;

      –  (History of) epilepsy;

      –  Abnormal hearing or (uncorrected) vision;

      –  Average use of more than 15 alcoholic beverages weekly;

      – Smoking

      – History of drug (opiate, LSD, (meth)amphetamine, cocaine, solvents, cannabis, or barbiturate) or alcohol dependence;

      – Any known other serious health problem or mental/physical stress;

      – Used psychotropic medication, or recreational drugs over a period of 72 hours prior to each test session,  

      – Used alcohol within the last 24 hours prior to each test session;

      – (History of) pheochromocytoma.

      – Narrow-angle glaucoma;

      – (History of) ulcer disease;

      – Galactose intolerance, Lapp lactase deficiency or glucose­galactose malabsorption.

      – (History of) convulsion;

      Line 587 - The localizer task used to train the classifier in E2 was collected in different sessions. Was the number of trials from separate sessions ultimately equal? The issue here is that the localizer might pick up on subtle differences in electrode placement. If the test session happens to have electrode placement that is similar to the electrode placement that existed for a majority of one condition of the localizer... this will create bias. This is likely to be minor, but machine classifiers really love this kind of minor confound.

      Indeed, the trial counts in the separate sessions for the localizer in E2 were equal. We have added that information to the methods section.  

      Experiment 1: 1280 trials collected during the intake session.

      In experiment 2: 1728 trials were collected per session (intake, and 2 drug sessions), so there were 5184 trials across three sessions.

      Reviewer #2:

      To start off, I think the reader is being a bit tricked when reading the paper. Perhaps my priors are too strong, but I assumed, just like the authors, that NMDA-receptors would disrupt recurrent processing, in line with previous work. However, due to the continuous use of the ambiguous word 'affected' rather than the more clear increased or perturbed recurrent processing, the reader is left guessing what is actually found. That's until they read the results and discussion finding that decoding is actually improved. This seems like a really big deal, and I strongly urge the authors to reword their title, abstract, and introduction to make clear they hypothesized a disruption in decoding in the illusion condition, but found the opposite, namely an increase in decoding. I want to encourage the authors that this is still a fascinating finding.

      We thank the reviewer for the positive assessment of our manuscript, and for many helpful comments and suggestions.  

      We changed the title, abstract, and introduction in accordance with the reviewer’s comment, highlighting that “memantine […] improves decoding” and “enhances recurrent processing” in all three sections. We also changed the heading of the corresponding results section to “Memantine selectively improves decoding of the Kanizsa illusion”.

      Apologies if I have missed it, but it is not clear to me whether participants were given the drug or placebo during the localiser task. If they are given the drug this makes me question the logic of their analysis approach. How can one study the presence of a process, if their very means of detecting that process (the localiser) was disrupted in the first place? If participants were not given a drug during the localiser task, please make that clear. I'll proceed with the rest of my comments assuming the latter is the case. But if the former, please note that I am not sure how to interpret their findings in this paper.

      Thanks for asking this, this was indeed unclear. In experiment 1 the localizer was performed in the intake session in which no drugs were administered. In the second experiment the localizer was performed in all three sessions with equal trial numbers. In the intake session no drugs were administrated. In the other two sessions the localizer was performed directly after pill intake and therefore the memantine was not (or barely) active yet. We started the main task four hours after pill intake because that is the approximate peak time of memantine. Note that all three localizer tasks were averaged before using them as training set. We have clarified this in the revised manuscript.

      The main purpose of the paper is to study recurrent processing. The extent to which this study achieves this aim is completely dependent to what extent we can interpret decoding of illusory contours as uniquely capturing recurrent processing. While I am sure illusory contours rely on recurrent processing, it does not follow that decoding of illusory contours capture recurrent processing alone. Indeed, if the drug selectively manipulates recurrent processing, it's not obvious to me why the authors find the interaction with masking in experiment 2. Recurrent processing seems to still be happening in the masked condition, but is not affected by the NMDA-receptor here, so where does that leave us in interpreting the role of NMDA-receptors in recurrent processing? If the authors can not strengthen the claim that the effects are completely driven by affecting recurrent processing, I suggest that the paper will shift its focus to making claims about the encoding of illusory contours, rather than making primary claims about recurrent processing.

      We indeed used illusion decoding as a marker of recurrent processing. Clearly, such a marker based on a non-invasive and indirect method to record neural activity is not perfect. To directly and selectively manipulate recurrent processing, invasive methods and direct neural recordings would be required. However, as explained in the revised Introduction,

      “In recent work we have validated that the decoding profiles of these features of different complexities at different points in time, in combination with the associated topography, can indeed serve as EEG markers of feedforward, lateral and recurrent processes (Fahrenfort et al., 2017; Noorman et al., 2023).”  

      The timing and topography of the decoding results of the present study were consistent with our previous EEG decoding studies (Fahrenfort et al., 2017; Noorman et al., 2023). This validates the use of these EEG decoding signatures as (imperfect) markers of distinct neural processes, and we continue to use them as such. However, we expanded the discussion section to alert the reader to the indirect and imperfect nature of these EEG decoding signatures as markers of distinct neural processes: “Our approach relied on using EEG decoding of different stimulus features at different points in time, together with their topography, as markers of distinct neural processes. Although such non-invasive, indirect measures of neural activity cannot provide direct evidence for feedforward vs. recurrent processes, the timing, topography, and susceptibility to masking of the decoding signatures obtained in the present study are consistent with neurophysiology (e.g., Bosking et al., 1997; Kandel et al., 2000; Lamme & Roelfsema, 2000; Lee & Nguyen, 2001; Liang et al., 2017; Pak et al., 2020), as well as with our previous work (Fahrenfort et al., 2017; Noorman et al., 2023).” 

      The reviewer is also concerned about the lack of effect of memantine on illusion decoding in the masked condition in experiment 2. In our view, the strong effect of masking on illusion decoding (both in absolute terms, as well as when compared to its effect on local contrast decoding), provides strong support for our assumption that illusion decoding represents a marker of recurrent processing. Nevertheless, as the reviewer points out, weak but statistically significant illusion decoding was still possible in the masked condition, at least when the illusion was task-relevant. As the reviewer notes, this may reflect residual recurrent processing during masking, a conclusion consistent with the relatively high behavioral performance despite masking (d’ > 1). However, rather than invalidating the use of our EEG markers or challenging the role of NMDA-receptors in recurrent processing, this may simply reflect a floor effect. As outlined in our response to reviewer #1 (who was concerned about floor effects), in the results section of experiment 1, we added:

      “While the interaction between masking and memantine only approached significance (P\=0.068), the absence of an effect of memantine in the masked condition could reflect a floor effect, given that illusion decoding in the masked condition was not significantly better than chance.”

      And for experiment 1:

      “For our time window-based analyses of illusion decoding, the specificity of the memantine effect to the unmasked condition was supported by a significant interaction between drug and masking (note, however, given overall much lower decoding accuracy in the masked condition, the lack of a memantine effect could reflect a floor effect).”

      An additional claim is being made with regards to the effects of the drug manipulation. The authors state that this effect is only present when the stimulus is 1) consciously accessed, and 2) attended. The evidence for claim 1 is not supported by experiment 1, as the masking manipulation did not interact in the cluster-analyses, and the analyses focussing on the peak of the timing window do not show a significant effect either. There is evidence for this claim coming from experiment 2 as masking interacts with the drug condition. Evidence for the second claim (about task relevance) is not presented, as there is no interaction with the task condition. A classical error seems to be made here, where interactions are not properly tested. Instead, the presence of a significant effect in one condition but not the other is taken as sufficient evidence for an interaction, which is not appropriate. I therefore urge the authors to dampen the claim about the importance of attending to the decoded features. Alternatively, I suggest the authors run their interactions of interest on the time-courses and conduct the appropriate clusterbased analyses.

      We thank the reviewer for pointing out the importance of key interaction effects. Following the reviewer’s suggestion, we dampened our claims about the role of attention. For experiment 1, we changed the heading of the relevant results section from “Memantine’s effect on illusion decoding requires attention” to “The role of consciousness and attention in memantine’s effect on illusion decoding”, and we added the following in the results section:

      “Also our time window-based analyses showed a significant effect of memantine only when the illusion was both unmasked and presented outside the AB (t_28\=-2.76, _P\=0.010, BF<sub>10</sub>=4.53; Fig. 3F). Note, however, that although these post-hoc tests of the effect of memantine on illusion decoding were significant, for our time window-based analyses we did not obtain a statistically significant interaction between the AB and memantine, and the interaction between masking and memantine only approached significance (P\= 0.068). Thus, although these memantine effects were slightly less robust than for T1, probably due to reduced trial counts, these results point to (but do not conclusively demonstrate) a selective effect of memantine on illusion-related feedback processing that depends on the availability of attention. In addition to the lack of the interaction effect, another potential concern…”

      For experiment 2, we added the following in the results section:

      “Note that, for our time window-based analyses of illusion decoding, although the specificity of the memantine effect to the unmasked condition was supported by a significant interaction between drug and masking, we did not obtain a statistically significant interaction between memantine and task-relevance. Thus, although the memantine effect was significant only when the illusion was unmasked and taskrelevant, just like for the effect of temporal attention in experiment 1, these results do not conclusively demonstrate a selective effect of memantine that depends attention (task-relevance).”

      In the discussion, we toned down claims about memantine’s effects being specific to attended conditions, we are highlighting the “preliminary” nature of these findings, and we are now alerting the reader explicitly to be careful with interpreting these effects, e.g.:

      “Although these results have to be interpreted with caution because the key interaction effects were not statistically significant, …”

      How were the length of the peak-timing windows established in Figure 1E? My understanding is that this forms the training-time window for the further decoding analyses, so it is important to justify why they have different lengths, and how they are determined. The same goes for the peak AUC time windows for the interaction analyses. A number of claims in the paper rely on the interactions found in these posthoc analyses, so the 223- to 323 time window needs justification.

      Thanks for this question. The length of these peak-timing windows is different because the decoding of rotation is temporarily very precise and short-lived, whereas the decoding of the other features last much longer and is more temporally variable. In fact, we have followed the same procedure as in a previously published study (Noorman et al., elife 2025) for defining the peak-timing and length of the windows. We followed the same procedure for both experiments reported in this paper, replicating the crucial findings and therefore excluding the possibility that these findings are in any way dependent on the time windows that are selected. We have added that information to the revised version of the manuscript.

      Reviewer #3:

      First, despite its clear pattern of neural effects, there is no corresponding perceptual effect. Although the manipulation fits neatly within the conceptual framework, and there are many reasons for not finding such an effect (floor and ceiling effects, narrow perceptual tasks, etc), this does leave open the possibility that the observation is entirely epiphenomenal, and that the mechanisms being recorded here are not actually causally involved in perception per se.

      We thank the reviewer for the positive assessment of our work. The reviewer rightly points out that, to our surprise, we did not obtain a correlate of the effect of memantine in our behavioral data. We agree with the possible reasons for the absence of such an effect highlighted by the reviewer, and expanded our discussion section accordingly:

      “There are several possible reasons for this lack of behavioral correlate.  For example, EEG decoding may be a more sensitive measure of the neural effects of memantine, in particular given that perceptual sensitivity may have been at floor (masked condition, experiment 1) or ceiling (unmasked condition, experiment 1, and experiment 2). It is also possible that the present decoding results are merely epiphenomenal, not mapping onto functional improvements (e.g., Williams et al., 2007). However, given that in our previous work we found a tight link between these EEG decoding markers and behavioral performance (Fahrenfort et al., 2017; Noorman et al., 2023), it is possible that the effect of memantine in the present study was just too subtle to show up in changes in overt behavior.”

      Second, although it is clear that there is an effect on decoding in this particular condition, what that means is not entirely clear - particularly since performance improves, rather than decreases. It should be noted here that improvements in decoding performance do not necessarily need to map onto functional improvements, and we should all be careful to remain agnostic about what is driving classifier performance. Here too, the effect of memantine on decoding might be epiphenomenal - unrelated to the information carried in the neural population, but somehow changing the balance of how that is electrically aggregated on the surface of the skull. *Something* is changing, but that might be a neurochemical or electrical side-effect unrelated to actual processing (particularly since no corresponding behavioural impact is observed.)

      We would like to refer to our reply to the previous point, and we would like to add that in our previous work (Fahrenfort et al., 2017; Noorman et al., 2023) similar EEG decoding markers were often tightly linked to changes in behavioral performance. This indicates that these particular EEG decoding markers do not simply reflect some sideeffect not related to neural processing. However, as stated in the revised discussion section, “it is possible that the effect of memantine in the present study was just too subtle to show up in changes in overt behavior.”

    1. Author response:

      The following is the authors’ response to the original reviews

      Reviewer #1 (Public Review):

      (…) In my view, the part about NF-YA1 is less strong - although I realize this is a compelling candidate to be a regulator of cell cycle progression, the experimental approaches used to address this question falls a bit short, in particular, compared to the very detailed approaches shown in the rest of the manuscript. The authors show that the transcription factor NF-YA1 regulates cell division in tobacco leaves; however, there is no experimental validation in the experimental system (nodules). All conclusions are based on a heterologous cell division system in tobacco leaves. The authors state that NF-YA1 has a nodule-specific role as a regulator of cell differentiation. I am concerned the tobacco system may not allow for adequate testing of this hypothesis.

      Reviewer #1 makes a valid point by asking to focus the manuscript more explicitly on the role of NF-YA1 as a differentiation factor in a symbiotic context. We have now addressed this formally and experimentally.

      The involvement of A-type NF-Y subunits in the transition to the early differentiation of nodule cells has been documented in model legumes through several publications that we refer to in the revised version of the discussion (lines 617/623). We fully agree that the CDEL system, because it is heterologous, does not allow us more than to propose a parallel explanation for these observations - i.e_., that the Medicago NF-YA1 subunit presumably acts in post-replicative cell-cycle regulation at the G2/M transition. Considering your recommendations and those of reviewer #2, we sought to support this conclusion by testing the impact of localized over-expression of _NF-YA1 on cortical cell division and infection competence at an early stage of root colonization. The results of these experiments are now presented in the new Figure 9 and Figure 9-figure supplement 1-5 and described from line 435 to 495.

      With the fluorescent tools the authors have at hand (in particular tools to detect G2/M transition, which the authors suggest is regulated by NF-YA1), it would be interesting to test what happens to cell division if NF-YA1 is over-expressed in Medicago roots?

      To limit pleiotropic effects of an ectopic over-expression, we used the symbiosis-induced, ENOD11 promoter to increase NF-YA1 expression levels more specifically along the trajectory of infected cells. We chose to remain in continuity with the experiments performed in the CDEL system by opting for a destabilized version of the KNOLLE transcriptional reporter to detect the G2/M transition. The results obtained are presented in Figure 9B (quantification of split infected cells), in Figure 9-figure supplement 1B (ENOD11 expression profile), in Figure 9-figure supplement 3B (representative confocal images) and Figure 9-figure supplement 4D (quantification of pKNOLLE reporter signal). There, we show that mitosis remains inhibited in cells accommodating infection threads, but is completed in a higher proportion of outer cortical cells positioned on the infection trajectory, where ENOD11 gene transcription is active before their physical colonization.

      Based on NF-YA1 expression data published previously and their results in tobacco epidermal cells, the authors hypothesize that NF-YA regulates the mitotic entry of nodule primordial cells. Given that much of the manuscript deals with earlier stages of the infection, I wonder if NF-YA1 could also have a role in regulating mitotic entry in cells adjacent to the infection thread?

      The expression profile of NF-YA1 at early stages of cortical infection (Laporte et al., 2014) is indeed similar to the one of ENOD11 (as shown in Figure 9-figure supplement 1C) in wild-type Medicago roots, with corresponding transcriptional reporters being both activated in cells adjacent to the infection thread. Under our experimental conditions, additional expression of NF-YA1 (driven by the ENOD11 promoter) in these neighbouring cells did not impact their propensity to enter mitosis and to complete cell division. These results are presented in Figure 9-figure supplement 4D (quantification of pKNOLLE reporter signal) and Figure 9-figure supplement 5 (quantification of split neighbouring cells).

      Reviewer #1 (Recommendations For The Authors):

      - In the first part, images show the qualitative presence/absence of H3.1 or H3.3 histones.

      Upon closer inspection, many cells seem to have both histones. In Fig1-S1 for example (root meristem), it is evident that there are many cells with low but clearly present H3.1 content in the green channel; however, in the overlay, the green is lost and H3.3 (pink) is mainly visible. What does this mean in terms of the cell cycle? 

      We fully agree with reviewer #1 on these points. Independent of whether they have low or high proliferation potential, most cells retain histone H3.1 particularly in silent regions of the genome, while H3.3 is constitutively produced and enriched at transcriptionally active regions. When channels are overlaid, cells in an active proliferation or endoreduplication state (in G1, S or G2, depending on the size of their nuclei) will appear mainly "green" (H3.1-eGFP positive). Cells with a low proliferation potential (e.g., in the QC), G2-arrested (e.g., IT-traversed) or terminally differentiating (e.g., containing symbiosomes or arbuscules) will appear mainly "magenta" (H3.1-low, medium to high H3.3-mCherry content).

      Furthermore, all nodule images only display the overlay image, and individual fluorescence channels are not shown. Does the same masking effect happen here? It may be helpful to quantify fluoresce intensity not only in green but also in red channels as done for other experiments.

      Quantifying fluorescence intensity in the mCherry channel may indeed help to highlight the likely replacement of H3.1-eGFP by H3.3-mCherry in infected cells, as described by Otero and colleagues (2016) at the onset of cellular differentiation. However, the quantification method as established (i.e., measuring the corrected total nuclear fluorescence at the equatorial plane) cannot be applied, most of the time, to infected cells' nuclei due to the overlapping presence of mCherry-producing S. meliloti in the same channel (e.g., in Figure 2B). Nevertheless, and to avoid this masking effect when the eGFP and mCherry channels are overlaid, we now present them as isolated channels in revised Figures 1-3 and associated figure supplements. As the cell-wall staining is regularly included and displayed in grayscale, we assigned to both of them the Green Fire Blue lookup table, which maps intensity values to a multiple-colour sequential scheme (with blue or yellow indicating low or high fluorescence levels, respectively). We hope that this will allow a better appreciation of the respective levels of H3.1- and H3.3-fusions in our confocal images.

      - Fig 1 B - it is hard to differentiate between S. meliloti-mCherry and H3.3-mCherry. Is there a way to label the different structures?

      In the revised version of Figure 1B, we used filled or empty arrowheads to point to histone H3-containing nuclei. To label rhizobia-associated structures, we used dashed lines to delineate nodule cells hosting symbiosomes and included the annotation “IT” for infection threads. We also indicated proliferating, endoreduplicating and differentiating tissues and cells using the following annotations: “CD” for cell division, “En” for endoreduplication and “TD” for terminal differentiation. All annotations are explained in the figure legend.

      - Fig 1 - supplement E and F - no statistics are shown.

      We performed non-parametric tests using the latest version of the GraphPad Prism software (version 10.4.1). Stars (Figure 1-figure supplement 1F) or different letters (Figure 1-figure supplement 1G) now indicate statistically significant differences. Results of the normality and non-parametric tests were included in the corresponding Source Data Files (Figure 1 – figure supplement 1 – source data 1 and 2). We have also updated the compact display of letters in other figures as indicated by the new software version. The raw data and the results of the statistical analyses remain unchanged and can be viewed in the corresponding source files.

      - Fig 2 A - overview and close-up image do not seem to be in the same focal plane. This is confusing because the nuclei position is different (so is the infection thread position).

      We fully agree that our former Figure may have confused reviewers #1 and #2 as well as readers. Figure 2A was designed to highlight, from the same nodule primordium, actively dividing cells of the inner cortex (optical section z 6-14) and cells of the outer cortex traversed, penetrated by or neighbouring an infection thread (optical section z 11-19). We initially wanted to show different magnification views of the same confocal image (i.e_._, a full-view of the inner cortex and a zoomed-view of the outer layers) to ensure that audiences can identify these details. In the revised version of Figure 2A, we displayed these full- and zoomed-views in upper and lower panels, respectively and we removed the solid-line inset to avoid confusion. 

      - Fig 1A and Fig 2E could be combined and shown at the beginning of the manuscript. Also, consider making the cell size increase more extreme, as it is important to differentiate G2 cells after H3.1 eviction and cells in G1. You have to look very closely at the graph to see the size differences.

      We have taken each of your suggestions into account. A combined version of our schematic representation with more pronounced nuclei size differences is now presented in Figure 1A.

      - Fig. 3 C is difficult to interpret. Can this be split into different panels?

      We realized that our previous choice of representation may have been confusing. Each value corresponds only to the H3.1-eGFP content, measured in an infected cell and reported to that of the neighbouring cell (IC / NC) within individual root samples. Therefore, we removed the green-magenta colour code and changed the legend accordingly. We hope that these slight modifications will facilitate the interpretation of the results - namely, that the relative level of H3.1 increases significantly in infected cells in the selected mutants compared to the wild-type. This mode of representation also highlights that in the mutants, there are more individual cases where the H3.1 content in an infected cell exceeds that of the neighbouring cell by more than two times. These cases would be masked if the couples of infected cells and associated neighbours would be split into different panels as in Figure 3B.

      - Line 357/359. I assume you mean ...'through the G2 phase can commit to nuclear division'.

      We have edited this sentence according to your suggestion, which now appears in line 370. 

      Reviewer #2 (Recommendations For The Authors):

      Cell cycle control during the nitrogen-fixing symbiosis is an important question but only poorly understood. This manuscript uses largely cell biological methods, which are always of the highest quality - to investigate host cell cycle progression during the early stages of nodule formation, where cortical infection threads penetrate the nodule primordium. The experiments were carefully conducted, the observations were detail oriented, and the results were thought-provoking. The study should be supported by mechanistic insights. 

      (1) One thought provoked by the authors' work is that while the study was carried out at an unprecedented resolution, the relationship between control of the cell cycle and infection thread penetration remains correlative. Is this reduced replicative potential among cells in the infection thread trajectory a consequence of hosting an infection thread, or a prerequisite to do so?

      We understand and share the point of view of reviewer #2. At this stage, we believe that our data won’t enable us to fully answer the question, thus this relationship remains rather correlative. The reasons are that 1) the access to the status of cortical cells below C2 is restricted to fixed material and therefore only represents a snapshot of the situation, and 2) we are currently unable to significantly interfere with mechanisms as intertwined as cell cycle control and infection control. What we can reasonably suggest from our images is that the most favorable window of the cell cycle for cells about to be crossed by an infection thread is post-replicative, i.e., the G2 phase. Typical markers of the G2 phase were recurrently observed at the onset of physical colonization – enlarged nucleus, containing less histone H3.1 than neighbouring cells in S phase (e.g., in Figure 2A). Reaching the G2 phase could therefore be a prerequisite for infection (and associated cellular rearrangements), while prolonged arrest in this same phase is likely a consequence of transcellular passage towards a forming nodule primordium.

      More importantly, in either scenario, what is the functional significance of exiting the cell cycle or endocycle? By stating that "local control of mitotic activity could be especially important for rhizobia to timely cross the middle cortex, where sustained cellular proliferation gives rise to the nodule meristem" (Line 239), the authors seem to believe that cortical cells need to stop the cell cycle to prepare for rhizobia infection. This is certainly reasonable, but the current study provides no proof, yet. To test the functional importance of cell cycle exit, one would interfere with G2/M transition in nodule cells,  and examine the effect on infection.

      We fully agree with reviewer #2 that the functional importance of a cell-cycle arrest on the infection thread trajectory remains to be demonstrated. Interfering with cell-cycle progression in a system as complex and fine-tuned as infected legume roots certainly requires the right timing – at the level of the tissue and of individual cells; the right dose; and the right molecular player(s) (i.e., bona fide activators or repressors of the G2/M transition). Using the symbiosis-specific NPL promoter, activated in the direct vicinity of cortical infection threads (Figure 9-figure supplement 1B), we tried to force infectable cells to recruit the cell division program by ectopically over-expressing the Arabidopsis CYCD3.1, “mimicking” the CDEL system. So far, this strategy has not resulted in a significant increase in the number of uninfected nodules in transgenic hairy roots - though the effect on symbiosome release remains to be investigated. Provided that a suitable promoter-cell cycle regulator combination is identified, we hope to be able to answer this question in the future.

      Given that the authors have already identified a candidate, and showed it represses cell division in the CDEL system, not testing the same gene in a more relevant context seems a lost opportunity. If one ectopically expressed NY-YA1 in hairy roots, thus repressing mitosis in general, would more cells become competent to host infection threads? This seems a straightforward experiment and readily feasible with the constructs that the authors already have. If this view is too naive, the authors should explain why such a functional investigation does not belong in this manuscript.

      Reviewer #2's point is entirely valid, and we decided to address it through additional experiments. To avoid possible side effects on development by affecting cell division in general, we placed NF-YA1 under control of the symbiosis-induced ENOD11 promoter. Based on the results obtained in the CDEL system, the pENOD11::FLAG-NF-YA1 cassette was coupled to a destabilized version of the KNOLLE transcriptional reporter to detect the G2/M transition. Competence for transcellular infection was maintained upon local NFYA1 overexpression, the latter leading to a slight (non-significant) increase in the number of infected cells per cortical layer. These results are presented in Figure 9-figure supplement 3A-B (representative confocal images) and in Figure 9-figure supplement 4A-

      G.

      (1b) A related comment: on Line 183, it was stated that "The H3.1-eGFP fusion protein was also visible in cells penetrated but not fully passed by an infection thread". Presumably, the authors were talking about the cell marked by the arrowhead. But its H3.1-GFP signal looks no different from the cell immediately to its left. It is hard to say which cells are ones "preparing for intracellular infection pass through S-phase", and which ones are just "regularly dividing cortical cells forming the nodule primordium". What can be concluded is that once a cell has been fully transversed by an infection thread, its H3.1 level is low. Whether this is the cause or consequence of infection cannot be resolved simply by timing the appearance or disappearance of H3.1-GFP.

      We basically agree with comment 1b. In an unsynchronized system such as infected hairy roots, it is challenging to detect the event where a cell is penetrated, but not yet completely crossed by an infection thread. What we wanted to emphasize in Figure 2A, is that host cells in the path of an infection thread re-enter the cell cycle and pass through S-phase just as their neighbours do (as pointed out by reviewer #2 in his summary). The larger nucleus with slightly lower H3.1-eGFP signal than the neighbouring cell (as indicated by the use of the Green Fire Blue lookup table) suggests that the infected cell marked by the arrowhead in Figure 2A is actually in the G2 phase. The main difference is indeed that cells allowing complete infection thread passage exit the cell cycle and largely evict H3.1 while their neighbours proceed to cell division (as exemplified by PlaCCI reporters in Figure 4CD and the new Figure 5-figure supplement 2). Whether cell-cycle exit in G2 is a cause, or a consequence of cortical infection is a question that cannot be easily answered from fixed samples, which is a limitation of our study.

      (2) The authors have convincingly demonstrated that cortical cells accommodating infection threads exit the cell cycle, inhibit cell division, and down-regulate KNOLLE expression. How do these observations reconcile with the feature called the pre-infection thread? The authors devoted one paragraph to this question in the Discussion, but this does seem sufficient given that the pre-infection thread is a prominent concept. Is the resemblance to the cell division plane superficial, or does it reflect a co-option of the normal cytokinesis machinery for accommodating rhizobia?

      From our point of view, cortical cells forming pre-infection threads are likely in an intermediate state. PIT structures undoubtedly share many similarities with cells establishing a cell division plane. The recruitment of at least some of the players normally associated with cytokinesis has been demonstrated and is consistent with the maintenance of infectable cells in a pre-mitotic phase in Medicago, as discussed in lines 558 to 568. We nevertheless think that the arrest of the cell cycle in the G2 phase, presumably occurring in crossed cortical cells, constitutes an event of cellular differentiation and specialization in transcellular infection. 

      The following are mainly points of presentation and description: 

      (3) Line 158: I can't see "subnuclear foci" in Figure 1-figure supplement 1C-E. However, they are visible in Fig. 1C.

      We hope that presenting the eGFP and mCherry channels in separate panels and assigning them the Green Fire Blue colour scheme provides better visibility and contrast of these detailed structures. We now refer to Figure 1C in addition to Figure 1–figure supplement 1E in the main text (line 161). 

      (4) Line 160: The authors should outline a larger region containing multiple QC cells, rather than pointing to a single cell, as there are other areas in the image containing cells with the same pattern.

      We updated Figure 1-figure supplement 1E accordingly.

      (5) Fig. 1B should include single channels, since within a single plant cell, the nucleus, the infection thread, and sometimes symbiosomes all have the same color. This makes it hard to see whether the nuclei in these cells are less green, or are simply overwhelmed by the magenta color.

      To improve the readability of Figure 1B and to address suggestions from individual reviewers, we now include separate channels and have annotated the different structures labeled by mCherry.

      (6) Fig. 2A: the close-up does not match the boxed area in the left panel. Based on the labeling, it seems that the two panels are different optical sections. But why choose a different optical depth for the left panel? This can be disorienting to the author, because one expects the close-up to be the same image, just under higher magnification.

      We fully agree that our previous choice of representation may have been confusing. As we also specified to reviewer #1, we wanted to show a full-view of proliferating cells in the inner cortex and a zoomed-view of infected cells in the outer layers of the same nodule primordium. In the revised version of Figure 2A, we displayed these full- and zoomedviews in separate panels and removed the boxed area to avoid confusion. 

      (7) Figure 2-figure supplement 1B: the cell indicated by the empty arrowhead has a striking pattern of H3.1 and H3.3 distribution on condensed chromosomes. Can you comment on that?

      Reviewer #2 may be referring to the apparent enrichment of H3.3 at telomeres, previously described in Arabidopsis, while pericentromeric regions are enriched in H3.1. This distribution is indeed visible on most of the condensed chromosomes shown in Figure 2-figure supplement 1B. We included this comment in the corresponding caption.

      (8) Fig. 4: It is not very easy to distinguish M phase. Can the authors describe how each phase is supposed to look like with the reporters?

      We agree with reviewer #2 and attempted to improve Figure 4, which is now dedicated to the Arabidopsis PlaCCI reporter. ECFP, mCherry, and YFP channels were presented separately and the corresponding cell-cycle phases (in interphase and mitosis) were annotated. The Green Fire Blue lookup table was assigned to each reporter to provide the best visibility of, for example, chromosomes in early prophase. We included a schematic representation corresponding to the distribution of each reporter, using the colors of the overlaid image to facilitate its interpretation.

      (9) Line 298: what is endopolyploid? This term is used at least three times throughout the manuscript. How is it different from polyploid?

      In the manuscript, we aimed to differentiate the (poly)ploidy of an organism (reflecting the number of copies of the basic genome and inherited through the germline) from endopolyploidy produced by individual somatic cells. As reviewed by Scholes and Paige, polyploidy and endopolyploidy differ in important ways, including allelic diversity and chromosome structural differences. In the Medicago truncatula root cortex for example, a tetraploid cell generated via endoreduplication from the diploid state would contain at most two alleles at any locus. The effects of endopolyploidy on cell size, gene expression, cell metabolism and the duration of the mitotic cell cycle are not shared among individual cells or organs, contrasting to a polyploid individual (Scholes and Paige, 2015).

      See Scholes, D. R., & Paige, K. N. (2015). Plasticity in ploidy : A generalized response to stress. Trends in Plant Science, 20(3), 165‑175. https://doi.org/10.1016/j.tplants.2014.11.007

      (10) Line 332: "chromosomes on mitotic figures" - what does this mean?

      Reviewer #2 is right to point out this redundant wording. Mitotic “figures” are recognized, by definition, based on chromosome condensation. We now use the term "mitotic chromosomes" (line 344).

      (11) Fig. 6A: could the authors consider labeling the doublets, at least some of them? I understand that this nucleus contains many doublets. However, this is the first image where one is supposed to recognize these doublets, and pointing out these features can facilitate understanding. Otherwise, a reader might think the image is comparable to nuclei with no doublets in the rest of the figure.

      Following this suggestion, five of these doublets are now labeled in Figure 7A (formerly Figure 6A).

  5. May 2025
    1. Act I is the Introduction, also known as the exposition. Here we are introduced to the “normal world.” Now, the normal world may exist in a far future on an interstellar starship, or it may be set in a suburban ranch house with a swing set in the back yard, but the audience will give us great latitude as we establish the definition of “normal.” In this act, we learn the rules that govern this world, and something about the characters that inhabit it. In the Hegelian dialectic, this is the “thesis.” Act II is the Conflict. This conflict is introduced through an “inciting incident,” an act that disrupts the normal world outlined in act I. The tension introduced during this incident grows throughout the second act. In the Hegelian dialectic, the second act is the “antithesis.” Act III is the Resolution. The conflict is resolved, and the world and the characters in it are revealed to have been changed. In the Hegelian dialectic, the third act is the “synthesis.”

      This also fits the logic of essay/article writing. I think the author forgot to mention that logical structure also contributes to the tension in writings as an important role. You should write something understandable with the tension to attract audience/keep them focused/ask questions spontaneously.

    1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

      Learn more at Review Commons


      Reply to the reviewers

      Response to Review

      Manuscript number: RC-2024-02391

      Corresponding author(s): John Varga

      Dibyendu Bhattacharyya

      [Please use this template only if the submitted manuscript should be considered by the affiliate journal as a full revision in response to the points raised by the reviewers.

      If you wish to submit a preliminary revision with a revision plan, please use our "Revision Plan" template. It is important to use the appropriate template to clearly inform the editors of your intentions.]

      1. General Statements [optional]

      This section is optional. Insert here any general statements you wish to make about the goal of the study or about the reviews.

      Dear editor,

      We are pleased to submit a full revised version of the manuscript that addresses all the points raised by the reviewers. We have included new experiments and modified the text and figures based on the reviewers’ suggestions. We thank all the reviewers for their insightful feedback, which has significantly enhanced the quality of the manuscript. We are confident and optimistic that our improved manuscript will be accepted by the journal of our choice.

      This document is supposed to contain a few images, which were somehow missing after the processing through the manuscript submission path. For convenience we also included a PDF version of the response to reviewers.

      2. Point-by-point description of the revisions

      This section is mandatory. *Please insert a point-by-point reply describing the revisions that were already carried out and included in the transferred manuscript. *

      Reviewer #1

      • To reliably quantify the ciliary length in different cell types, and in independent ciliary marker needs to be included for comparison and the ciliary base needs to be labeled (e.g., g-TUBULIN). This needs to combined with a non-biased, high-throughput analysis, e.g., CiliaQ, Response: As suggested, we compared primary cilia length measurements using antibodies against Arl13b and γ-tubulin. The comparison between healthy controls (HC) and systemic sclerosis (SSc) is presented in Supplementary Figure S1. No significant differences in primary cilia length were observed compared to our previous measurements. Cilia length was quantified using ImageJ version 1.48v (http://imagej.nih.gov/ij) with the maximum intensity projection (MIP) method and visualized through 3D reconstruction using the ImageJ 3D Viewer.

      • As mentioned in the study, TGFbhas been implicated to drive myofibroblast transition. Thus TGFb stimulate ciliary signaling in the presented primary cells? The authors should provide a read-out for TGFb signaling in the cilium (ICC for protein phosphorylation etc.). Furthermore, canonical ciliary signaling pathways have been suggested to act as fibrotic drivers, such as Hedgehog and Wnt signaling - does stimulation of these pathways evoke a similar effect? Response: Yes, TGF-β1 stimulates ciliary signaling in growth-arrested foreskin fibroblasts. Clement et al. (2013) showed that TGF-β1 induces p-SMAD2/3 at the ciliary base, followed by the nuclear translocation of p-SMAD2/3 after 90 minutes. To assess whether canonical ciliary signaling pathways influence primary cilia length, we treated foreskin fibroblasts with Wnt (#908-SH, R&D) and a Shh agonist (#5036-WN, R&D) at 100 ng/mL each for 24 hours. We did not observe any changes in primary cilia length under either condition. These data are shown here for reference but are not included in the manuscript.

      Clement, Christian Alexandro, et al. "TGF-β signaling is associated with endocytosis at the pocket region of the primary cilium." Cell reports 3.6 (2013): 1806-1814.

      • Does TGFbinduce cell proliferation? If yes, this would force cilium disassembly and, thereby, reduce ciliary length, which is independent of a "shortening" mechanism proposed by the authors. Response: Yes, TGF-β induces cell proliferation in fibroblasts (Lee et al., 2013; Liu et al., 2016). However, we did serum starvation to stop proliferation. In our study, we observed a few percentage of Ki67-positive cells under TGF-β treatment at 24 hours (Supplementary Figure S2C). However, cell proliferation mainly stopped after 48 hours. Typically, proliferating cells rarely display any PC or show very small puncta. In our case, we observe a significantly elongated PC structure (although shorter than that of untreated cells) under TGF-beta-treated conditions. Our results display that a majority of cells are not proliferating but still display PC shortening under TGF-β treatment, suggesting that PC shortening is not due to cell division-induced PC disassembly. TGF beta-induced PC shortening is also reported in another fibroblast type previously (Kawasaki et al., 2024).

      Kawasaki, Makiri, et al. "Primary cilia suppress the fibrotic activity of atrial fibroblasts from patients with atrial fibrillation in vitro." Scientific Reports 14.1 (2024): 12470.

      Lee, J., Choi, JH. & Joo, CK. TGF-β1 regulates cell fate during epithelial–mesenchymal transition by upregulating survivin. Cell Death Dis 4, e714 (2013). https://doi.org/10.1038/cddis.2013.244.

      Liu, Y. et al. TGF-β1 promotes scar fibroblasts proliferation and transdifferentiation via up-regulating MicroRNA-21. Sci. Rep. 6, 32231; doi: 10.1038/srep32231 (2016).

      • As PGE2 has been shown to signal through EP4 receptors in the cilium, is the restoration of primary cilia length due to ciliary signaling? Response: As per your suggestion, we measured cilia length in the presence and absence of the EP4 receptor antagonist (#EP4 Receptor Antagonist 1; #32722; Cayman Chemicals; 500 nM) with PGE2. Interestingly, we did not observe a change in cilia length between the PGE2 and TGFβ (with EP4 receptor antagonist) treatment groups, as shown in supplementary figure S3. We believe that PGE2 works with the EP2 receptor under our experimental conditions. Kolodsick et al., 2003, also observed that PGE2 inhibits myofibroblast differentiation via activation of EP2 receptors and elevations in cAMP levels in healthy lung fibroblasts.

      Kolodsick, Jill E., et al. "Prostaglandin E2 inhibits fibroblast to myofibroblast transition via E. prostanoid receptor 2 signaling and cyclic adenosine monophosphate elevation." American journal of respiratory cell and molecular biology 29.5 (2003): 537-544.

      • Primary cilia length is regulated by cAMP signaling in the cilium vs. cytoplasm - does cAMP signaling play a role in this context? PGE2 is potent stimulator of cAMP synthesis - does this underlie the rescue of primary cilia length? Response: Yes, cAMP levels are important for both myofibroblast dedifferentiation and cilia length elongation. Kolodsick et al., 2003 observed that PGE2 inhibits myofibroblast differentiation via activation of EP2 receptors and elevations in cAMP levels in healthy lung fibroblasts. In a parallel set of experiments, treatment with forskolin (a cAMP activator) also reduced α-SMA protein levels by 40%. Forskolin is also known to increase PC length.

      Kolodsick, Jill E., et al. "Prostaglandin E2 inhibits fibroblast to myofibroblast transition via E. prostanoid receptor 2 signaling and cyclic adenosine monophosphate elevation." American journal of respiratory cell and molecular biology 29.5 (2003): 537-544.

      • The authors describe that they wanted to investigate how aSMA impacted primary cilia length. They only provide a knock-down experiment and measured ciliary length, but the mechanistic insight is missing. How does loss of aSMA expression control ciliary length? Response: We measured acetylated α-tubulin levels in ACTA2 siRNA-treated cells compared to control-treated cells. Acetylated α-tubulin levels increased under ACTA2 siRNA-treated conditions, as shown in Figure 4D, and TPPP3 levels were also elevated (Figure S8A). Interestingly, TPPP3 levels negatively correlated with disease severity in SSc fibroblasts (r = -0.2701, p = 0.0183), and TPPP3 expression significantly reduced in SSc skin biopsies, as shown in Figures 6C and 6D. These results strengthen our hypothesis that microtubule polymerization and actin polymerization, while they counterbalance each other, also contrarily affect PC length. We agree that a much more detailed study is needed to extensively delineate the intricate homeostasis of the actin network and microtubule network in conjunction with fibrosis and primary cilia length. We have mentioned this in the discussion.

      • The authors used LiCl in their experiments, which supposedly control Hh signaling. Coming back to my second questions, is this Hh-dependent? And what is the common denominator with respect to TGFbsignaling? And how is this mechanistically connected to actin and microtubule polymerization? Response: We used Shh inhibitor (Cyclopamine hydrate #C4116 Sigma-Aldrich) in both SSc and foreskin fibroblasts (with and without TGFβ). We found that PC length is significantly increased and αSMA intensity is reduced in the Shh inhibitor treated group (data not included in the Manuscript)

      • How was the aSMA Mean intensity determined? Response: We quantified aSMA mean intensity using ImageJ, and the procedure has been added to the respective figure legend and materials and methods section under ‘Quantification of immunofluorescence’ (each point represents mean intensity from three randomly selected hpf/slide was performed using ImageJ).

      • Fig: 1D: Statistical test is missing in Figure Legend and presentation of the p-values for the left graph is confusing Response: We added statistical test information in Figure Legend.

      • Some graphs are presented {plus minus} SD and some {plus minus} SEM, but this is not correctly stated in the Material & Methods Part __Response: __We added information to the figure legend as well as in the Material & Methods section.

        • 4D&E: Statistical test is missing in Figure Legend* Response: We added it now.
      • In general, text should be checked again for spelling mistakes and sentences may be re-written to promote readability. In particular, this applies to the discussion. __Response: __We checked and corrected.

      • Figure Legends are not written consistently, information is missing (e.g., statistical tests, see above). __Response: __We carefully checked and added information accordingly.

      • Figures should be checked again, and all text should be the same size and alignment of images should be improved. __Response: __We checked and corrected.

      Significance

      The authors present a novel connection between the regulation of primary cilia length and fibrogenesis. However, the study generally lacks mechanistic insight, in particular on how TGFb signaling, aSMA expression, and ciliary length control are connected. The spatial organization of the proposed signaling components is also not clear - is this a ciliary signaling pathway? If so, how does it interact with cytoplasmic signaling and vice versa?

      Response: Thank you for your thoughtful and constructive feedback. We appreciate your recognition of the novelty of our study linking primary cilia length regulation to fibrogenesis. In our revised manuscript, we did provide a mechanistic insight, though. Our results suggest that during the fibrotic response, higher-order actin polymerization, along with microtubule destabilization resulting from tubulin deacetylation, drives the shortening of PC length. In contrast, PC length elongation via stabilization of microtubule polymerization mitigates the fibrotic phenotype in fibrotic fibroblasts. We agree that a deeper mechanistic understanding particularly regarding how TGFβ signaling, αSMA expression, and ciliary length control intersect is essential for fully elucidating the pathway. We also acknowledge the importance of clarifying the spatial organization of the signaling components and plan to incorporate such analyses in future studies.

      Reviewer #2

      *I found the paper to be rather muddled and its presentation made if somewhat difficult to follow. For example, the Figures are disorganised (Fig 1 is a great example of this) and there was reference to Sup data that appeared out of order (eg Sup Fig 2 appeared before Sup Fig 1 in the text). *

      Response: We carefully revised the manuscript and arranged the figures.

      *Images in a single figure should be the same size. Currently they are almost random and us different magnifications. Overall, the paper needs to be better organized. *

      Response: We carefully revised the manuscript and figures provided with same magnification.

      *I have some significant concerns about how the PC length data was generated. To my mind the length may be hard to determine from the type of images shown in the paper (which may represent the best images?). Some of the images presented appear to show shorter, fatter PCs in the cells from fibrosis cases. Is this real or is it some kind of artefact? Would a shorter, fatter PCs have a similar or larger surface area? What would be the consequence of this? *

      Response: Primary cilia length was measured with ImageJ1.48v (using maximum intensity projection (MIP) method and visualized by 3D reconstruction with the ImageJ 3D viewer. Each small dot represents the PC length from an individual cell, and each large dot represents the average of the small dots for one cell line.

      *I am confused as to exactly what is meant by matched healthy controls. Age, sex and ethnicity, where stated seem to be very variable? What are CCL210 fibroblasts? *

      Response: We appreciate this comment. This is correct. The age, sex, and ethnicity are not matched for the available healthy controls. We have corrected that in the text. CCL210 is a commercially available fibroblast cell line that was isolated from the lung of a normal White, 20-year-old, female patient.

      *What does a change in PC length signify? DO shot PC foe a cellular transition or are they a consequence of it? What would happen is you targeted PCs with a drug and that influenced the length on all cell types? Is the effect on PC fibroblast specific? *

      __Response: __Significance and regulation of PC length are greatly debated and investigated still. It appears that PC length signify different features in different cell types. Although these are very interesting questions but such experiments are beyond the scope of our present work.

      Minor concerns

      *Page 4 second paragraph. I think it should be clarified that it is this group who have suggested a link between PCs and myofibroblast transition? *

      __Response: __We agree with the reviewer and clarified it.

      *Page 4 second paragraph. The use of the word "remarkably' is a bit subjective. *

      __Response: __We agree with the reviewer and have removed it.

      *Reference 27 is a paper on multiciliogenesis rather than primary ciliogenesis. *

      __Response: __We agree with the reviewer and have removed it.

      Figure 1 panel D. Make the image with the same sized vertical scale

      __Response: __We have replaced it with a new Figure 1.

      Significance

      Reviewer #2 (Significance (Required)):

      To my mind this is a novel paper and the data presented in it may be of interest to the cilia community as well as to the fibrosis field. This could be considered to be a significant advance and I am unaware that other groups are actively working in this area.

      Presentation of the data in the current form does not instil confidence in the work.

      Response: ____Thank you for recognizing the novelty and potential significance of our work. We appreciate your comments and fully acknowledge the concern regarding the presentation of the data. We have carefully revised the manuscript and reorganized the figures to improve clarity and overall presentation.

      Reviewer #3

      Major comments:

      • Need to demonstrate if the fibrotic phenotypes seen are produced through a ciliary-dependent mechanism. For example, to see if LiCl effects on Cgn1 are through ciliary expression or by other mechanisms. To achieve that objective, The authors should repeat the experiments in cells with a knockdown or knockout of ciliary proteins such as IFT20, IFT88, etc. The same approach should be applied to the tubacin experiments. Response: We silenced foreskin fibroblasts with IFT88/IFT20, both in the presence and absence of TGF-β1, followed by treatment with LiCl and Tubacin. Both LiCl and Tubacin can rescue cilia length and mitigate the myofibroblast phenotype in the presence of silenced IFT88/IFT20 gene, as shown in supplementary figure S9. Our result suggests that LiCl and Tubacin functions are both independent of the IFT-mediated ciliary mechanism. Regulation of PC length is still an enigma and highly debated. Moreover, PC length can be affected in multiple ways and is not solely dependent on IFTs (Avasthi and Marshall, 2012). One such method is the direct modification of the axoneme by altering microtubule stability through the acetylation state (Avasthi and Marshall, 2012), a pathway most likely the case for Tubacin. Another mode of PC length regulation is through a change in Actin polymerization. The remodeling of actin between contractile stress fibers and a cortical network alters conditions that are hospitable to basal body docking and maintenance at the cell surface (Avasthi and Marshall, 2012), causing PC length variation. Our results suggest that PC length functions as a sensor of the status of the fibrotic condition, as evidenced by the aSMA levels of the cells.

      Avasthi, P., and W.F. Marshall. 2012. Stages of ciliogenesis and regulation of ciliary length. Differentiation. 83:S30-42.

      • The use of LiCl to increase ciliary length is complicated. What are the molecular mechanisms underlying this effect? It is known that it may be affecting GSK-3b, which can have other ciliary-independent effects. Therefore, using ciliary KO/KD cells (IFT88 or IFT20) as controls may help assess the specificity of the proposed treatments. Response: As explained in the previous paragraph, PC length regulations are dependent on multiple factors and many of them are not IFT dependent. One such method is directly modifying the axoneme by altering microtubule stability/polymerization through the acetylation state(Avasthi and Marshall, 2012), a pathway most likely the case for Tubacin. Another mode of PC length regulation is through a change in Actin polymerization. The remodeling of actin between contractile stress fibers and a cortical network alters conditions that are hospitable to basal body docking and maintenance at the cell surface (Avasthi and Marshall, 2012), causing PC length variation. Higher order microtubule polymerization inhibit actin polymerization. By interrogating RNA-seq data we determined that several PC-disassembly related genes (KIF4A, KIF26A, KIF26B, KIF18A), as well as microtubule polymerization protein genes (TPPP, TPPP3, TUBB, TUBB2A etc), were differentially expressed in LiCl-treated SSc fibroblasts (Suppl. Fig. S6D). Altogether, these findings suggest that microtubule polymerization/depolymerization mechanisms may regulate PC elongation and attenuation of fibrotic responses after either LiCl or Tubacin treatment.

      • Also, assessing the frequency of ciliary-expressing cells is important. That may give another variable important to predict fibrotic phenotypes. Or do 100% of the cultured cells express cilia in those conditions? Response: We carefully checked and observed almost 95% cells express cilia in cultured conditions.

      • Have the authors evaluated if TGF-b1 treatments induce cell cycle re-entry and proliferation in these experimental conditions? This is important to exclude ciliary resorption due to cell cycle re-entry instead of the myofibroblast activation process. __Response:__Yes, TGF-β induces cell proliferation in fibroblasts (Lee et al., 2013; Liu et al., 2016). However, we did serum starvation to stop proliferation. In our study, we observed a few percentage of Ki67-positive cells under TGF-β treatment at 24 hours (Supplementary Figure S2C). However, cell proliferation mainly stopped after 48 hours. Typically, proliferating cells rarely display any PC or show very small puncta. In our case, we observe a significantly elongated PC structure (although shorter than that of untreated cells) under TGF-beta-treated conditions. Our results display that a majority of cells are not proliferating but still display PC shortening under TGF-β treatment, suggesting that PC shortening is not due to cell division-induced PC disassembly. TGF beta-induced PC shortening is also reported in another fibroblast type previously (Kawasaki et al., 2024).

      Kawasaki, Makiri, et al. "Primary cilia suppress the fibrotic activity of atrial fibroblasts from patients with atrial fibrillation in vitro." Scientific Reports 14.1 (2024): 12470.

      Lee, J., Choi, JH. & Joo, CK. TGF-β1 regulates cell fate during epithelial–mesenchymal transition by upregulating survivin. Cell Death Dis 4, e714 (2013). https://doi.org/10.1038/cddis.2013.244.

      Liu, Y. et al. TGF-β1 promotes scar fibroblasts proliferation and transdifferentiation via up-regulating MicroRNA-21. Sci. Rep. 6, 32231; doi: 10.1038/srep32231 (2016).

      • The authors described that they focused on the genes that are affected in opposite ways (supp table 4), but TEAD2, MICALL1, and HDAC6 are not listed in that table. Response: The list in Supplementary Table S3 includes common genes defined as differentially expressed based on a fold change >1 or Minor comments:

      • Figure 1A,B,C should also show lower magnification images where several cells/field are visualized. Response: We have replaced it with a new Figure 1.

      • The number of patients analyzed is not clear. For example, M&M describes 5 healthy and 8 SSc, but only 3 and 4 are shown in the figure. Furthermore, for orbital fibrosis, 2 healthy vs. 2 TAO are mentioned in the figure legend, but only one of each showed. Finally, the healthy control for lung fibroblast seems to be 3 independent experiments of the CCL210 cell line; please show the three independent controls and clarify on the X-axis and in the figure legend that these are CCL210 cells. Response: A total of 5 healthy and 8 SSc skin explanted fibroblast cell lines were used, as described in the Materials and Methods. Since these are patient-derived skin fibroblasts, maintaining equal numbers in each experiment is challenging. Revised graphs for orbital fibroblasts and CCL210 have been added in the new Figures 1B and 1C.

      • For the same set of experiments, please clarify and consistently describe the conditions that promote PC: 12hs serum starvation as described in M&M? Or 24hs as described in the text? Or 16 as described in figure legend 1? Or 24hs as described in supp figure 2? Response: We serum-starved the cells overnight, and this is also mentioned in the manuscript.

      • Please confirm in figure legends and M&M that 100 cells per group were counted. Response: We measured only 100 cells per cell line in Supplementary Figure S1B. To eliminate any confusion, we have now created a superplot for cilia analysis. Each small dot represents the PC length from an individual cell, and each large dot represents the average of the small dots for one cell line. An unpaired two-tailed t-test was performed on the small dots (mean ± SD).

      • Figure 2 should also provide lower magnification to show several cells per field. Response: Foreskin fibroblasts treated with TGF-β1 are added in S2A.

      • How do you explain that the increase in length of primary cilia after siACTA2 doesn't change COL1A1? Wouldn't it be a good approach to also check by Western Blot? Response: We believe that depletion of aSMA was sufficient to reduce the PC length for the reason described earlier (Avasthi and Marshall, 2012), but was not sufficient enough to change COL1A1 level. We added the western blot in Supplementary Figure S8B.

      • Once more, figure 5 will benefit from low mag images. How consistent is the effect of LiCl in the cultured cells? What is the percentage of rescued cells? Response: LiCl treatment was consistent for almost all the cells (~95%) as shown below and added in S4A.

      • Figure 5, panels F and G need better explanation in the results text as well as in the figure legend. Response: We added now.

      • 9) Some figures/supp figures are wrongly referenced in the text. *

      __ Response:__ We carefully revised the manuscript and corrected the references.

      10) Figure 6, panel A is confusing. Is it a comparison between SSC skin fibroblasts and foreskin fibroblasts? Maybe show labels on the panel.

      __ Response:__ We updated the figure legend for Panel A in Figure 6.

      11) Where is Figure 8 mentioned in the text?

      __ Response:__ In the discussion section.

      12) The work will benefit from an initial paragraph in the discussion enumerating the findings and a summary of the conclusion at the end.

      Response: We agree and modified the discussion accordingly.

      13) The nintedanib experiments are not described in the results section at all.

      Response: All nintedanib experiments are now included in Figure S5C-F and are described in the Results section.

      Significance

      Reviewer #3 (Significance (Required)): Beyond the lack of in situ ciliary expression assessment, the work is exciting, and the potential implications of treating/preventing fibrosis with small molecules to modulate ciliary length could be transformative in the field. Furthermore, there are a few HDAC6 inhibitors already in clinical trials for different tumors, which increases the significance of the work.

      Response: Thank you for your encouraging comments regarding the potential impact of our findings. We agree that the therapeutic implications of modulating ciliary length, particularly using small molecules such as HDAC6 inhibitors already in clinical trials, could be transformative in the context of fibrosis. We also acknowledge the importance of in situ assessment of ciliary expression and plan to incorporate such analyses in future studies to further strengthen our findings.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary:

      The study by Deng et al reports single-cell expression analysis of developing mouse hearts and examines the requirements for cardiac fibroblasts in heart maturation. Much of this work is overlapping with previous studies, but the single-cell gene expression data may be useful to investigators in the field. The significance and scope of new findings are limited and major conclusions are largely based on correlative data.

      Strengths:

      The strengths of the manuscript are the new single-cell datasets and comprehensive approach to ablating cardiac fibroblasts in pre and postnatal development in mice.

      Weaknesses:

      There are several major weaknesses in the analysis and interpretation of the results.

      (1) The major conclusions regarding collagen signaling and heart maturation are based on gene expression patterns and are not functionally validated. The potential downstream signaling pathways were not examined and known structural contributions of fibrillar collagen to heart maturation are not discussed.

      We thank the reviewer for the comment. In this study, we mainly focused on the functional analysis of fibroblasts in heart development at embryonic and neonatal stages by using cell ablation system and single cell mRNA sequencing analysis. The further functional analysis of collagen pathway is interesting but out of the scope of this study. We will continue this line of research and share the results in the future. Moreover, through the analysis of single cell mRNA-sequencing data, we have predicted the downstream genes that are regulated by the collagen pathway in Fig 5C. We have also added sentences to highlight the structural role of collagen in affecting the related heart developmental processes.

      (2) The heterogeneity of fibroblast populations and contributions to multiple structures in the developing heart are not well-considered in the analysis. The developmental targeting of fibroblasts will likely affect multiple structures in the embryonic heart and other organs. Lethality is described in some of these studies, but additional analysis is needed to determine the effects on heart morphogenesis or other organs beyond the focus on cardiomyocyte maturation being reported. In particular, the endocardial cushions and developing valves are likely to be affected in the prenatal ablations, but these structures are not included in the analyses.

      We thank the reviewer for the comment. We have included a new figure presenting the fibroblast heterogeneity in developing hearts (Fig S3). We have also compared the valve structural differences at E18.5 (Fig S11).

      (3) ECM complexity and extensive previous work on specific ECM proteins in heart development and maturation are not incorporated into the current study. Different types of collagen (basement membrane Col4, filamentous Col6, and fibrillar Col1) are known to be expressed in fibroblast populations in the developing heart and have been studied extensively. Much also has been reported for other ECM components mentioned in the current work.

      We thank the reviewer for the comment. We agree that the ECM is complex, and the functions of many of its components have been previously reported, as mentioned in the introduction. In this study, our focus is to analyze the spatial and temporal expression patterns of various ECM genes in fibroblasts throughout developmental progression (Fig. S5–7). To further acknowledge previous work, we have added additional sentences and cited relevant literature on the role of collagen genes in developing hearts (page 4).

      Reviewer #2 (Public review):

      This study aims to elucidate the role of fibroblasts in regulating myocardium and vascular development through signaling to cardiomyocytes and endothelial cells. This focus is significant, given that fibroblasts, cardiomyocytes, and vascular endothelial cells are the three primary cell types in the heart. The authors employed a Pdgfra-CreER-controlled diphtheria toxin A (DTA) system to ablate fibroblasts at various embryonic and postnatal stages, characterizing the resulting cardiac defects, particularly in myocardium and vasculature development. scRNA-seq analysis of the ablated hearts identified collagen as a crucial signaling molecule from fibroblasts that influences the development of cardiomyocytes and vascular endothelial cells. This is an interesting manuscript; however, there are several major issues, including an over-reliance on the scRNA-seq data, which shows inconsistencies between replicates. Some of the major issues are described below.

      The comments are the same as the comments for “Recommendations for the authors”. Please see the responses below.

      Reviewer #3 (Public review):

      The authors investigated fibroblasts' communication with key cell types in developing and neonatal hearts, with a focus on the critical roles of fibroblast-cardiomyocyte and fibroblast-endothelial cell networks in cardiac morphogenesis. They tried to map the spatial distribution of these cell types and reported the major pathways and signaling molecules driving the communication. They also used Cre-DTA system to ablate Pdgfra labeled cells and observed myocardial and endothelial cell defects at development. They screened the pathways and genes using sequencing data of ablated hearts. Lastly, they reported compensatory collagen expression in long-term ablated neonate hearts. Overall, this study provides us with important insight into fibroblasts' roles in cardiac development and will be a powerful resource for collagens and ECM-focused research.

      Strengths:

      The authors utilized good analyzing tools to investigate multiple databases of single-cell sequencing and Multiseq. They identified significant pathways and cellular and molecular interactions of fibroblasts. Additionally, they compared some of their analytic findings with a human database, and identified several groups of ECM genes with varying roles in mice.

      Weaknesses:

      This study is majorly based on sequencing data analysis. At the bench, they used a very strident technique to study fibroblast functions by ablating one of the major cell populations of the heart. Considering the importance of the fibroblast population, intriguing in vivo findings were expected. Also, they analyzed the downstream genes in ablated hearts, but did not execute any experimental validation for any of the targets.

      Recommendations for the authors:

      Reviewing Editor Comments:

      All three reviewers found the large amount of scRNA-Seq data compelling and valuable, and they noted that the study's conclusions based on the scRNA Seq and fibroblast ablating align closely with previously published studies. Therefore, a more thorough discussion and integration of the current findings with prior studies are recommended. Each reviewer provided specific feedback to improve the manuscript, correct errors, and strengthen the overall presentation, and please edit the manuscript accordingly. Additionally, further validation of the scRNA-Seq data through more data analysis, reference comparisons, or additional experiments is encouraged.

      Reviewer #1 (Recommendations for the authors):

      (1) The heterogeneity of fibroblasts and ECM components in the developing heart needs to be considered in the analysis and description of results. There are extensive reports in both of these areas that would inform the gene expression and ablation studies being reported.

      We thank the reviewer for the comment. We have added a supplemental figure (Fig. S3) analyzing the heterogeneity of fibroblasts during development and described the results on page 3 and 4. Through the analysis of single-cell mRNA sequencing data, we identified four distinct populations of fibroblasts and further performed RNA scope to examine their spatial locations. Additionally, we agree with the reviewer that there are many types of ECM components, which we have addressed in the introduction (page 2). Furthermore, we have conducted a detailed analysis of the spatial and temporal expression patterns of ECM genes throughout developmental progression (Figs. S5–7).

      (2) One of the novel aspects of the work is the prenatal ablation of cardiac fibroblasts. Embryonic lethality was observed in some cases, but the specific cardiac structural anomalies or potential vascular effects were not described. The contributing role of cardiac fibroblasts to valvuloseptal development, which was likely affected in these studies, was not described.

      We thank the reviewer for the comment. Since the heart sections were not initially prepared to compare valve differences between control and ablation conditions, most sections do not include valve structures. However, in the small subset of sections that do contain valves, we have compared valve structures in control and ablated hearts at E18.5 following three doses of tamoxifen treatment from E15.5 to E17.5. In mutants, the valves appear shorter compared to controls. Specifically, we observed that in control hearts, the mitral valve was already connected to the papillary muscle, whereas in ablated hearts, the valve leaflet at similar position was not. We have included these images as a new supplemental figure (Fig. S11). Regarding vascular defects, we have described them in Fig. 3C and 3F.

      (3) The major conclusions regarding collagen signaling and heart development are based on correlations in gene expression and are not validated by functional data. What are the downstream signaling pathways affected and are they affected during development or with ablation? The main conclusions of the study do not take into account well-known structural functions of collagen in the developing heart.

      We thank the reviewer for the comment. Through regulatory prediction analysis, we identified the collagen ligands Col1a1, Col5a1, and Col4a1 from the collagen family (Fig. 5C), which regulate multiple genes in cardiomyocytes, including Masp1. Masp1 is a member of the lectin complement pathway and potentially regulates cardiomyocyte migration during development. These collagen ligands also regulate multiple mitochondria-related genes, such as Etfa, Ndufb10, Ndufs6, and Slc25a4, which are potentially important for cardiomyocyte development and maturation. Moreover, we agree with the reviewer that collagen is an important structural ECM protein, and its deletion or reduction could cause heart developmental defects due to its structural role. We have added a discussion on this possibility (page 8).

      (4) The postnatal ablation studies are very similar to studies with the same mouse lines reported by Kurabara et al 2022 in JMCC (PMID 35569524) which came to similar conclusions and was not cited in the current work.

      We thank the reviewer for the comment and apologize for overlooking this study. We have now included the citation on page 8.

      (5) The discussion of a regenerative response with DTA ablation of fibroblasts is confusing. Proliferation was examined in cardiomyocytes which lose their regenerative capacity after birth in mice. However, cardiac fibroblasts can proliferate in response to injury throughout life which is not really a regenerative process.

      We appreciate the reviewer’s comment. To avoid confusion, we have replaced the term "regeneration" with "response to cell loss" and "compensation."

      (6) Some of the descriptions of single-cell expression data are overstated (Page 7). Regulatory interactions, signaling pathway activation, or function cannot be determined from gene expression data alone.

      We thank the reviewer for the comment. We agree that these conclusions rely on results from multiple assays. We have weakened the description of the analysis by emphasizing that the findings are predictive results from scRNA-seq analysis.

      (7) In the last paragraph of the discussion "data not shown" should be shown or this information should be deleted. As written, the discussion does not present a clear description of what major new findings are being reported or why they are significant. The new insights into heart development are not specified.

      We thank the reviewer for the comment. We have added the data as a supplemental figure (Fig. S19). Since this paragraph is part of the discussion, we believe the results are not conclusive at this stage and require further research to explore the potential protective role of fibroblast ablation in neonatal hearts.

      Minor comments.

      (1) Figure legends are missing information needed to understand what is being shown. For example, in Figure 2, collagen is visualized using CHP staining.

      Thanks. We have gone through all figure legends to ensure that all necessary information has been provided.

      (2) The hearts in Figure S15 are upside down.

      Thanks. We have updated the figure.

      (3) In Figure S16A, "brian" should be "brain".

      Thanks. We have updated it.

      Reviewer #2 (Recommendations for the authors):

      This is an interesting manuscript; however, there are several major issues, including an overreliance on the scRNA-seq data, which shows inconsistencies between replicates. Some of the major issues are described below.

      (1) The CD31 immunostaining data (Figures 3B-G) indicate a reduction in endothelial cell numbers following fibroblast deletion using PdgfraCreER+/-; RosaDTA+/- mice. However, the scRNA-seq data show no percentage change in the endothelial cell population (Figure 4D). Furthermore, while the percentage of Vas_ECs decreased in ablated samples at E16.5, the results at E18.5 were inconsistent, showing an increase in one replicate and a decrease in another, raising concerns about the reliability of the RNA-seq findings.

      We thank the reviewer for the comment. We believe that measuring cell proportions in scRNA-seq results is sensitive and relies on a high number of total and target cells, similar to other cell counting assays such as FACS. As the reviewer pointed out, the proportions of Vas_EC in E18.5 replicates are inconsistent. Specifically, Col_4 at E18.5 showed a relatively low proportion of Vas_EC. Upon examining the cell numbers in each sample, we found that Col_4 had the lowest number of recovered cells, with approximately 760 in total, whereas the other samples had more than 920 cells each. Additionally, since immunofluorescence staining for CD31 marks both Vas_EC and Endo_EC, we combined these two cell types to increase the number of targeted cells. This analysis consistently showed that the ablated samples had lower proportions. However, given that the quantifications have also produced inconsistent results for other cell types, such as Ven_CM, as mentioned in the reviewer’s next question, we have decided to delete this plot to avoid confusion.

      Author response image 1.

      (2) Similarly, while the percentage of Ven_CMs increased at E18.5, it exhibited differing trends at E16.5 (Figure 4E), further highlighting the inconsistency of the scRNA-seq analysis with the other data.

      We thank the reviewer for the comment. Please see the response above.

      (3) Furthermore, the authors noted that the ablated samples had slightly higher percentages of cardiomyocytes in the G1 phase compared to controls (Figures 4H, S11D), which aligns with the enrichment of pathways related to heart development, sarcomere organization, heart tube morphogenesis, and cell proliferation. However, it is unclear how this correlates with heart development, given that the hearts of ablated mice are significantly smaller than those of controls (Figure 3E). Additionally, the heart sections from ablated samples used for CD31/DAPI staining in Figure 3F appear much larger than those of the controls, raising further inconsistencies in the manuscript.

      We thank the reviewer for the comment. We observed changes in G1-phase cardiomyocytes at both E16.5 and E18.5, with pathway enrichment primarily identified in E16.5 cardiomyocytes. At E16.5, the ablated hearts exhibited myocardial defects, including an increased trabecular-to-compact myocardium ratio and reduced vascular density. By E18.5, the ablated embryos had smaller hearts with reduced vascular density, although the trabecular-to-compact myocardium ratio showed no obvious changes. Regarding the larger section size in the ablated hearts compared to the control hearts, there are two reasons contributing to this discrepancy. First, the control and ablated heart sections have different scale bars. The ablated hearts were enlarged compared to control section. Secondly, the heart sections vary in size depending on their position. Sections taken from the middle of the heart are larger than those from the edges. In our initial comparison, we used an edge-positioned section from the control hearts and a middle-positioned section from the ablated hearts. To avoid confusion, we have now updated the control section to match the position of the ablated embryos more closely and used the same size of scale bars in the two images (Fig 3F).

      (4) The manuscript relies heavily on the scRNA-seq dataset, which shows inconsistencies between the two replicates. Furthermore, the morphological and histological analyses do not align with the scRNA-seq findings.

      We respectfully disagree with this comment from the reviewer. As shown in Figure 4B, the scRNAseq data from the two replicates are highly consistent. For inconsistencies in cell proportions and tissue section sizes, please refer to our responses above.

      (5) There is a lack of mechanistic insight into how collagen, as a key signaling molecule from fibroblasts, affects the development of cardiomyocytes and vascular endothelial cells.

      We thank the reviewer for the comment. In this study, we primarily focused on analyzing fibroblast function in heart development using cell ablation and single-cell mRNA sequencing. While further mechanistic analysis of the collagen pathway is intriguing, it falls outside the scope of this study. Additionally, our scRNAseq analysis identified multiple collagen ligands derived from fibroblasts that may regulate gene expression in Ven_CM and influence their development, as shown in Figure 5C. Although validating these predictions would be valuable, it is beyond the scope of this study. We will continue this line of research and share our findings in the future.

      (6) In Figure 1B, Col1a1 expression is observed in the epicardial cells (Figure 1A, E11.5), but this is not represented in the accompanying cartoon.

      We thank the reviewer for the comment. As stated in the main text (page 3), based on scRNA-seq and IF staining results, we observed that Col1a1 is also expressed in epicardial cells. In the cartoon, we depicted the pattern of fibroblasts rather than Col1a1-positive cells, which is why we did not include epicardial cells.

      (7) What is the genotype of the control animals used in the study?

      We thank the reviewer for the comment. We have added the genotype information for the control embryos in the legends of the relevant figures.

      (8) Do the PdgfraCreER+/-; RosaDTA+/- mice survive after birth when induced at E15.5, and do they exhibit any cardiac defects?

      We thank the reviewer for the comment. This is an interesting question; however, we did not perform the experiment because administering tamoxifen to pregnant mice from E15.5 to E18.5 causes delivery complications, as reported in the literature (PMID: 23139287). Unfortunately, this prevents us from exploring this question further.

      Reviewer #3 (Recommendations for the authors):

      Overall, this is a comprehensive study substantiated by the evidence the authors provided in their findings. However, I have a few concerns to be addressed.

      (1) The claim by the authors that "at E17.5 and P3, each FB was in contact with approximately one Vas_EC and four CMs at both stages" is not fully convincing. RNA scope images for Actn2 are not clear enough to lead the quantification (RNA scope images for Cdh5 look better). I suggest performing imaging at higher magnification and the Z stack technique to provide a better understanding of their localization. Also, no changes in FBs adjacent cell numbers (CM&EC) with ages (P3) compared to E17.5? Any thoughts on the explanation?

      We thank the reviewer for the comment. We imaged the staining results using a confocal microscope at 20X resolution. We also considered imaging them at 40X; however, due to the large areas that need to be imaged in these sections, it was challenging to do so. Additionally, we identified each CM based on Actn2 and DAPI staining information and are confident in the accuracy of our quantification results. Moreover, since each FB interacts with multiple CMs and Vas_ECs in 3D projections, but our calculations are based only on 2D imaging sections, there may be discrepancies compared to a true 3D environment. We have added a sentence to address this limitation (page 9). Regarding the similar number of interactions observed at E17.5 and P3, we think there are two possibilities. First, the three cell types may proliferate in a synchronized manner, maintaining a consistent number of interactions. Second, these cell types may exhibit minimal proliferation during late embryonic and early neonatal stages. Instead, heart growth primarily occurs through CM hypertrophy, which does not significantly alter the number of interactions.

      (2) Fix the Capitalized font of RNA markers in Figure S2.

      Thanks. We have updated them.

      (3) I appreciate the visualization of ligand-receptor interactions in collagen network comparison between FB to CM and FB to EC, and predictive analysis on the FB ligands that regulate differentially expressed genes in ablated heart CM and ECs.

      We appreciate the reviewer for the comment.

      (4) The authors depleted Pdgfra-Cre cells at E10.5, and reported 100% DTA+ lethality after 3 days. Induction at E13.5 to ablate Pdgfra-Cre cells resulted in survival at least up to E16.5 age. What could be the possible reasons authors think that lead to embryo lethality when induced at E10.5? Did the authors analyze the expression of Pdgfra at E10.5 to E13.5 using Pdgfra antibody or Pdgfra-Cre labeling, or using the ScRNA seq data?

      We thank the reviewer for the comment. The expression pattern of Pdgfra at E10.5 has been previously reported (PMID: 18297729) and shown to be highly expressed in the atrioventricular region, consistent with the Col1a1 expression pattern we profiled in this study. Therefore, we believe the embryonic lethality observed in the ablated embryos at E10.5 was likely due to the disruption of the atrioventricular structure. However, since Pdgfra is also expressed in other tissues at this stage, we cannot rule out the possibility that the ablation of non-cardiac tissues also contributed to the lethality.

      (5) In terms of the findings on the trabeculation and compaction defects, please provide the images of the ventricles with markers to indicate the compact and trabecular zones and their defects.

      Thanks! We have included images that illustrate the quantification of compact and trabecular myocardium thickness in control and ablated hearts (FigS10C).

      (6) Did the author check the expression of any other marker for the vascular system in addition to CD31 to see the effects of ablated FB on coronary vasculature development?

      We thank the reviewer for the comment. We analyzed only Cd31 to assess the effects of fibroblast ablation on the overall endothelial cell population. We did not separately examine the subpopulations, but this would be an interesting direction for future studies.

      (7) Can the authors interpret how findings from PHH3 proliferation explain thinner compact and thicker trabeculae in ablated hearts?

      We thank the reviewer for the comment and apologize for the misinterpretation of the results. We observed that the ablated hearts have a thinner compact myocardium, while the thickness of the trabecular myocardium remains unchanged, leading to an increased trabecular-to-compact myocardium ratio (Fig 3D). We have corrected the description in the manuscript accordingly. Moreover, since the compact myocardium has a higher proliferation rate than the trabecular myocardium, a reduction in overall cell proliferation is expected to have a more pronounced impact on the compact myocardium. Inhibition of compact myocardium proliferation has been reported to lead thinner compact myocardium and non-compaction defects (PMID: 31342111).

      (8) The authors did not execute experiments to find the downstream target that causes compaction defects and endothelial cell density defects upon ablation of FBs. Can you project from your sequencing analysis what could be the potential downstream if you could execute bench-side experiments on this?

      We appreciate the reviewer for the comment. We believe that the regulatory predictive results in Figures 5C and D from the scRNA-seq data analysis have provided a set of downstream candidates for validation. We could select some of the ligands, such as the collagen ligands Col1a1, Col4a1, and Col5a1, to treat the ablated embryos in vivo to assess whether they could partially rescue the myocardium defects. Additionally, we could conduct ex vivo experiments by co-culturing CM and FB, comparing them with CM alone and CM treated with the identified ligands. This would allow us to evaluate CM proliferation and the expression of downstream genes identified in the prediction results. However, as the reviewer suggested, these experiments are planned for future studies.

      (9) Please provide the echocardiographic M mode images with a comparable number of cardiac cycles in control and ablated (Fig. 6H). Also, the heart rate of the ablated heart is too low to compare other parameters with the control. If you could stabilize the heart rate at comparable values to control the heart, it is possible that EF and FS values will be largely changed.

      We thank the reviewer for the comment. As the echocardiographic analysis was performed on conscious mice, the lower heart rates in the ablated mice are a phenotype associated with the ablation. Unfortunately, we are unable to adjust them to the same as the control mice.

      (10) Can you provide a numerical dataset for any one of the cell chat figures? Like in figure 2A, supporting the claim "However, in terms of interaction strength, FB exhibited the highest values compared to those of other cell types (Fig. 2A)".

      Yes, we have added a supplemental table (Table S2) containing the numerical interaction weights. As shown in the table, the interactions between FB and other cell types have the highest values.

    1. Author response:

      The following is the authors’ response to the original reviews

      Public Reviews:

      Reviewer #1 (Public review):

      Summary

      The authors use microscopy experiments to track the gliding motion of filaments of the cyanobacteria Fluctiforma draycotensis. They find that filament motion consists of back-and-forth trajectories along a "track", interspersed with reversals of movement direction, with no clear dependence between filament speed and length. It is also observed that longer filaments can buckle and form plectonemes. A computational model is used to rationalise these findings.

      We thank the reviewer for this accurate summary of the presented work.

      Strengths:

      Much work in this field focuses on molecular mechanisms of motility; by tracking filament dynamics this work helps to connect molecular mechanisms to environmentally and industrially relevant ecological behavior such as aggregate formation.

      The observation that filaments move on tracks is interesting and potentially ecologically significant.

      The observation of rotating membrane-bound protein complexes and tubular arrangement of slime around the filament provides important clues to the mechanism of motion.

      The observation that long filaments buckle has the potential to shed light on the nature of mechanical forces in the filaments, e.g. through the study of the length dependence of buckling.

      We thank the reviewer for listing these positive aspects of the presented work.

      Weaknesses:

      The manuscript makes the interesting statement that the distribution of speed vs filament length is uniform, which would constrain the possibilities for mechanical coupling between the filaments. However, Figure 1C does not show a uniform distribution but rather an apparent lack of correlation between speed and filament length, while Figure S3 shows a dependence that is clearly increasing with filament length. Also, although it is claimed that the computational model reproduces the key features of the experiments, no data is shown for the dependence of speed on filament length in the computational model. The statement that is made about the model "all or most cells contribute to propulsive force generation, as seen from a uniform distribution of mean speed across different filament lengths", seems to be contradictory, since if each cell contributes to the force one might expect that speed would increase with filament length.

      We agree that the data shows in general a lack of correlation, rather than strictly being uniform. In the revised manuscript, we intend to collect more data from observations on glass to better understand the relation between filament length and speed.

      In considering longer filaments, one also needs to consider the increased drag created by each additional cell - in other words, overall friction will either increase or be constant as filament length increases. Therefore, if only one cell (or few cells) are generating motility forces, then adding more cells in longer filaments would decrease speed.

      Since the current data does not show any decrease in speed with increasing filament length, we stand by the argument that the data supports that all (or most) cells in a filament are involved in force generation for motility. We would revise the manuscript to make this point - and our arguments about assuming multiple / most cells in a filament contributing to motility - clear.

      The computational model misses perhaps the most interesting aspect of the experimental results which is the coupling between rotation, slime generation, and motion. While the dependence of synchronization and reversal efficiency on internal model parameters are explored (Figure 2D), these model parameters cannot be connected with biological reality. The model predictions seem somewhat simplistic: that less coupling leads to more erratic reversal and that the number of reversals matches the expected number (which appears to be simply consistent with a filament moving backwards and forwards on a track at constant speed).

      We agree that the coupling between rotation, slime generation and motion is interesting and important when studying the specific mechanism leading to filament motion. However, we believe it is even more fundamental to consider the intercellular coordination that is needed to realise this motion. Individual filaments are a collection of independent cells. This raises the question of how they can coordinate their thrust generation in such a way that the whole filament can both move and reverse direction of motion as a single unit. With the presented model, we want to start addressing precisely this point.

      The model allows us to qualitatively understand the relation between coupling strength and reversals (erratic vs. coordinated motion of the filament). It also provides a hint about the possibility of de-coordination, which we then look for and identify in longer filaments.

      While the model’s results seem obvious in hindsight, the analysis of the model allows phrasing the question of cell-to-cell coordination, which so far has not been brought up when considering the inherently multi-cell process of filament motility.

      Filament buckling is not analysed in quantitative detail, which seems to be a missed opportunity to connect with the computational model, eg by predicting the length dependence of buckling.

      Please note that Figure S10 provides an analysis of filament length and number of buckling instances observed. This suggests that buckling happens only in filaments above a certain length.

      We do agree that further analyses of buckling - both experimentally and through modelling would be interesting. This study, however, focussed on cell-to-cell coupling / coordination during filament motility. We have identified the possibility of de-coordination through the use of a simple 1D model of motion, and found evidence of such de-coordination in experiments. Notice that the buckling we report does not depend on the filament hitting an external object. It is a direct result of a filament activity which, in this context, serves as evidence of cellular de-coordination.

      Now that we have observed buckling and plectoneme formation, these processes need to be analysed with additional experiments and modelling. The appropriate model for this process needs to be 3D, and should ideally include torques arising from filament rotation. Experimentally, we need to identify means of influencing filament length and motion and see if we can measure buckling frequency and position across different filament lengths. These works are ongoing and will have to be summarised in a separate, future publication.

      Reviewer #2 (Public review):

      Summary:

      The authors combined time-lapse microscopy with biophysical modeling to study the mechanisms and timescales of gliding and reversals in filamentous cyanobacterium Fluctiforma draycotensis. They observed the highly coordinated behavior of protein complexes moving in a helical fashion on cells' surfaces and along individual filaments as well as their de-coordination, which induces buckling in long filaments.

      We thank the reviewer for this accurate summary of the presented work.

      Strengths:

      The authors provided concrete experimental evidence of cellular coordination and de-coordination of motility between cells along individual filaments. The evidence is comprised of individual trajectories of filaments that glide and reverse on surfaces as well as the helical trajectories of membrane-bound protein complexes that move on individual filaments and are implicated in generating propulsive forces.

      We thank the reviewer for listing these positive aspects of the presented work.

      Limitations:

      The biophysical model is one-dimensional and thus does not capture the buckling observed in long filaments. I expect that the buckling contains useful information since it reflects the competition between bending rigidity, the speed at which cell synchronization occurs, and the strength of the propulsion forces.

      Cell-to-cell coordination is a more fundamental phenomenon than the buckling and twisting of longer filaments, in that the latter is a consequence of limits of the former. In this sense, we are focussing here on something that we think is the necessary first step to understand filament gliding. The 3D motion of filaments (bending, plectoneme formation) is fascinating and can have important consequences for collective behaviour and macroscopic structure formation. As a consequence of cellular coupling, however, it is beyond the scope of the present paper.

      Please also see our response above. We believe that the detailed analysis of buckling and plectoneme formation requires (and merits) dedicated experiments and modelling which go beyond the focus of the current study (on cellular coordination) and will constitute a separate analysis that stands on its own. We are currently working in that direction.

      Future directions:

      The study highlights the need to identify molecular and mechanical signaling pathways of cellular coordination. In analogy to the many works on the mechanisms and functions of multi-ciliary coordination, elucidating coordination in cyanobacteria may reveal a variety of dynamic strategies in different filamentous cyanobacteria.

      We thank the reviewer for highlighting this point again and seeing the value in combining molecular and dynamical approaches.

      Reviewer #3 (Public review):

      Summary:

      The authors present new observations related to the gliding motility of the multicellular filamentous cyanobacteria Fluctiforma draycotensis. The bacteria move forward by rotating their about their long axis, which causes points on the cell surface to move along helical paths. As filaments glide forward they form visible tracks. Filaments preferentially move within the tracks. The authors devise a simple model in which each cell in a filament exerts a force that either pushes forward or backwards. Mechanical interactions between cells cause neighboring cells to align the forces they exert. The model qualitatively reproduces the tendency of filaments to move in a concerted direction and reverse at the end of tracks.

      We thank the reviewer for this accurate summary of the presented work.

      Strengths:

      The observations of the helical motion of the filament are compelling. The biophysical model used to describe cell-cell coordination of locomotion is clear and reasonable. The qualitative consistency between theory and observation suggests that this model captures some essential qualities of the true system.

      The authors suggest that molecular studies should be directly coupled to the analysis and modeling of motion. I agree.

      We thank the reviewer for listing these positive aspects of the presented work and highlighting the need for combining molecular and biophysical approaches.

      Weaknesses:

      There is very little quantitative comparison between theory and experiment. It seems plausible that mechanisms other than mechano-sensing could lead to equations similar to those in the proposed model. As there is no comparison of model parameters to measurements or similar experiments, it is not certain that the mechanisms proposed here are an accurate description of reality. Rather the model appears to be a promising hypothesis.

      We agree with the referee that the model we put forward is one of several possible. We note, however, that the assumption of mechanosensing by each cell - as done in this model - results in capturing both the alignment of cells within a filament (with some flexibility) and reversal dynamics. We have explored an even more minimal 1D model, where the cell’s direction of force generation is treated as an Ising-like spin and coupled between nearest neighbours (without assuming any specific physico-chemical basis). We found that this model was not fully able to capture both phenomena. In that model, we found that alignment required high levels of coupling (which is hard to justify except for mechanical coupling) and reversals were not readily explainable (and required additional assumptions). These points led us to the current, mechanically motivated model.

      The parameterisation of the current model would require measuring cellular forces. To this end, a recent study has attempted to measure some of the physical parameters in a different filamentous cyanobacteria [1] and in our revision we will re-evaluate model parameters and dynamics in light of that study. We will also attempt to directly verify the presence of mechano-sensing by obstructing the movement of filaments.

      Summary from the Reviewing Editor:

      The authors present a simple one-dimensional biophysical model to describe the gliding motion and the observed statistics of trajectory reversals. However, the model does not capture some important experimental findings, such as the buckling occurring in long filaments, and the coupling between rotation, slime generation, and motion. More effort is recommended to integrate the information gathered on these different aspects to provide a more unified understanding of filament motility. In particular, the referees suggest performing a more quantitative analysis of the buckling in long filaments. Finally, it is also recommended to discuss the results in the context of previous literature, in order to better explain their relevance. Please find below the detailed individual recommendations of the three reviewers.

      We thank the editor for this accurate summary of the presented work and for highlighting the key points raised by the reviewers. We have provided below point-by-point replies to these.

      Recommendations for the authors:

      Reviewer #1 (Recommendations for the authors):

      The relevance of the study organism Fluctiforma draycotensis is not clearly explained, and the results are not discussed in the context of previous literature. The motivation would be clearer if the manuscript explained why this model organism was chosen and how the results compare with those previously observed for this or other organisms.

      We have extended the introduction and discussion sections to make it clearer why we have worked with this organism and how the findings from this work relate to previous ones. In brief, Flucitforma draycotensis is a useful organism to work with as it not only displays significant motility but it also displays intriguing collective behaviour at different scales. Previous works on gliding motility in filamentous cyanobacteria have mostly focussed on the model organism Nostoc punctiforme, which only displays motility after differentiation into hormogonia [1]. There have also been studies in a range of different filamentous species, including those of the non-monophyletic genus, Phormidium, but these studies mostly looked at effects of genetic deletions on motility [2] or utilised electron microscopy to identify proteins (or surface features) involved in motility [3-5]. It must be noted that motility is also described and studied in non-filamentous cyanobacteria, but the dynamics of motion and molecular mechanisms there are different to filamentous cyanobacteria [6,7]. These previous studies are now cited / summarised in the revised introduction and discussion sections.

      The inferred tracks, probably associated with secreted slime, play a key role since it is supposed that the tracks provide the external force that keeps the filaments straight. Movie S3, in phase contrast, provides convincing evidence for the tracks, but they cannot be seen in the fluorescence images presented in the main text. Clearer evidence of them should be shown in the main text. An especially important aspect of the tracks is where they start and end since the computational model assumes that reversal happens due to forces generated by reaching the end of a track. Therefore it seems important to comment on what produces the tracks, to check whether reversals actually happen at the end of a track, etc. Perhaps tracks could be strained with Concanavalin-A?

      To confirm that reversals happen on track ends, we have now performed an analysis on agar, where we can see tracks on phase microscopy. This analysis confirms that, on agar, reversals indeed happen on track ends. We added this analysis, along with images showing tracks clearly as a new Fig in the main text (see new Fig. 1).

      Further confirming the reversal at track ends, we note that filaments on circular tracks do not not reverse over durations longer than the ‘expected reversal interval’ of a filament on a straight track (see details in response to Reviewer 2).

      Regarding what produces the tracks on agar, we are still analysing this using different methods and these results will be part of a future study. Fluorescent staining can be used to visualise slime tubes using TIRF microscopy, as shown in Fig. S8, however, visualising tracks on agar using low magnification microscopy has been difficult due to background fluorescence from agar.

      We would also like to clarify that the model does not incorporate any assumptions regarding the track-filament interaction, other than that the track ends behave akin to a physical boundary for the filament. The observed reversal at track ends and “what” produces the track are distinct aspects of filament motion. We do not think that the model’s assumption of filament reversal at the end of the track requires understanding of the mechanism of slime production.

      Reviewer #3 (Recommendations for the authors):

      The manuscript combines three distinct topics: (1) the difference in locomotion on glass vs agar, (2) the development of a biophysical model, and (3) the helical motion of filament. It is not clear what insight one can gain from any one of these topics about the two others. The manuscript would be strengthened by more clearly connecting these three aspects of the work. A stronger comparison of theory to observation would be very useful. Some suggestions:

      (1) The observation that it is only the longest filaments that buckle is interesting. It should be possible to predict the critical length from the biophysical model. Doing so could allow fits of some model parameters.

      (2) What model parameters change between glass and agar? Can you explain these qualitative differences in motility by changing one model parameter?

      (3) Is it possible to exert a force on one end of a filament to see if it is really mechano-sensing that couples their motion?

      We thank the reviewer for this comment and agree with them that a better connection between model and experiment should be sought. We believe that the new analyses, presented below in response to the 2nd suggestion of the reviewer, provide such a connection in the context of reversal frequency. As stated below, we think that the 1st suggestion falls outside of the scope of the current work, but should form the basis of a future study.

      Regarding suggestion (1) - addressing buckling:

      We agree with the reviewer that using a model to predict a critical buckling length would be useful. We note, however, that the presented study focussed on cell-to-cell coupling / coordination during filament motility using a 1D, beadchain model. The buckling observations served, in this context, as evidence of cellular de-coordination. Now that we have observed buckling (and plectoneme formation), these processes need to be analysed with further experiments and modelling. The appropriate model for studying buckling would have to be at least 2D (ideally 3D) and consider elastic forces and torques relating to filament bending, rotation, and twisting. Experimentally, we need to identify means of influencing filament length and motion and undertake further measurements of buckling frequency and position across different filament lengths. These investigations are ongoing and will be summarised in a separate, future publication.

      Regarding suggestion (2) - addressing differences in motility on agar vs. glass:

      We believe that the two key differences between agar and glass experiments are the occasional detachment of filaments from substrate on glass and the lack of confining tracks on glass. These differences might arise from the interactions between the filament, the slime, and the surface. As both slime and agar contain polysaccharides, the slime-agar interaction can be expected to be different from the slime-glass interaction. Additionally, in the agar experiments, the filaments are confined between the agar and a glass slide, while they are not confined on the glass, leaving them free to lift up from the glass surface. We expect these factors to alter reversal frequency between the two conditions. To explore this possibility, we have now extended the analysis of experimental data from glass and present that (see details below):

      (i) dwell times are similar between agar and glass, and

      (ii) reversal frequency distribution is different between glass and agar, and remains constant across filament length on glass.

      We were able to explore these experimental findings with new model simulations, by removing the assumption of an “external bounding frame”. We then analysed reversal frequency within against model parameters, as detailed below.

      “The movement of the filaments on glass. We have extended our analysis of motility on glass resulting in the following noted features. Firstly, the median speed shows a weak positive correlation with filament length on glass (see original Fig S3B vs. updated Fig. S3A). This is slightly different to agar, where we do not observe any strong correlation in either direction (see original, Fig. 1 vs. updated Fig 2). Both the cases of positive, and no correlation, support our original hypothesis that the propulsion force is generated by multiple cells within the filament.

      Secondly, the filaments on glass display ‘stopping’ events that are not followed by a reversal, but are instead followed by a continuation in the original direction of motion, which we term ‘stop-go’ events, in contrast to the reversals. The dwell times associated with reversals and ‘stop-go’ events are similarly distributed (see original Fig S3A vs. updated Fig S3B). Furthermore, the dwell time distributions are similar between agar and glass (compare old Fig. 1C vs. new Fig 2C and new Fig. S3B). This suggests that the reversal process is the same on both agar and glass.

      Thirdly, we find that the frequencies of both reversal and stop-go events on glass are uncorrelated with the filament length (see new Fig. S4A) and there are approximately twice as many reversals as stop-go events. In contrast, the filaments on agar reverse with a frequency that is inversely proportional to the filament length (which is in turn proportional to the track length) (see original Fig. S1). The distribution of reversal frequencies on agar is broader and flatter than the distribution on glass (see new Fig. S4B). These findings are inline with the idea that tracks on agar (which are defined by filament length) dictate reversal frequency, resulting in the strong correlations we observe between reversal frequency, track length, and filament length. On glass, filament movement is not constrained by tracks, and we have a specific reversal frequency independent of filament length.”

      “Model can capture movement of filaments on glass and provides hypotheses regarding constancy of reversal frequency with length. We believe the model parameters controlling cellular memory (ω<sub>max</sub>) and strength of cellular coupling (K<sub>ω</sub>) describe the internal behaviour of a filament and therefore should not change depending on the substrate. Thus, we expect the model to be able to capture movement on glass just by removal of any ‘confining tracks’, i.e external forces, from the simulations. Indeed, we find that the model displays both stop-go and reversal events when simulated without any external force and can capture the dwell time distribution under this condition (compare new Figs. S12,S13 with S3).

      In terms of reversal frequency, however, the model shows a reduction in reversal frequency with filament length (see new Fig. S15). This is in contrast to the experimental data. We find, however, that model results also show a reduction in reversal frequency with increasing (ω<sub>max</sub> and K<sub>ω</sub> (see new Fig. S14 and S15). This effect is stronger with (ω<sub>max</sub>, while it quickly saturates with K<sub>ω</sub> (see new Fig. S14). Therefore, one possibility of reconciling the model and experiment results in terms of constant reversal frequency with filament length would be to assume that (ω<sub>max</sub> is decreasing with filament length (see new Fig. S16). Testing this hypothesis - or adding additional mechanisms into the model - will constitute the basis of future studies.”

      Regarding suggestion (3) - role of mechanosensing:

      We have tried several experiments to evaluate mechanosensing. First, we have used a micropipette or a thin wire placed on the agar, to create a physical barrier in the way of the filaments. The micropipette approach was not quite feasible in our current setup. The wire approach was possible to implement, but the wire caused a significant undulation / perturbation on agar. Possibly relating to this, filaments tended to continue moving alongside the wire barrier. Therefore, these experiments were inconclusive at this stage with regards to mechanosensing a physical barrier. As an alternative, we have attempted trapping gliding filaments using an optical trap with a far red laser that should not affect the physiology of the cells. This did not cause an immediate reversal in filament motion. However, this could be due to the optical trap strength being below the threshold value for mechanosensing. The force per unit length generated by filamentous cyanobacteria has been calculated via a model of self-buckling rods, giving a value of ≈1nN/μm [8]. In comparison, the optical trap generates forces on the scale of pN. Thus, the trap force is several orders of magnitude lower than the propulsive force generated by a filament, given filament lengths in the range of ten to several hundreds μm. We conclude that the lack of observed response may be due to the optical trap force being too weak.

      Thus, the experiments we can perform using our current available methods and equipment are not able to prove either the presence or the absence of mechanosensing in the filament. We plan to perform further experiments in this direction, involving new and/or improved experimental setups, such as use of Atomic Force Microscopy.

      We would like to note that there is an additional observation that supports the idea of reversals being mediated by mechanosensing at the end of a track, instead of the locations of the track ends being caused by the intrinsic reversal frequency of the filament. In a few instances (N = 4), filaments on agar ended up on a circular track (see Movie S4 for an example). These filaments did not reverse over durations a few times longer than the ‘expected reversal interval’ of a filament on a straight track.

      Should $N$ following eq 7 and in eq 9 be $N_f$?

      We have corrected this typo.

      It would be useful to include references to what is known about mechanosensing in cyanobacteria.

      We agree with the reviewer, and we have not updated the discussion section to include this information. Mechanosensing has not yet been shown directly in any cyanobacteria, but several species are shown to harbor genes that are implicated (by homology) to be involved in mechanosensing. In particular, analysis of cyanobacterial genomes predicts the presence of a significant number of homologues of the Escherichia coli mechanosensory ion channels MscS and MscL [9]. We have also identified similar MscS protein sequences in F. draycotensis. These channels open when the membrane tension increases, allowing the cell to protect itself from swelling and rupturing when subject to extreme osmotic shock. [10,11]

      We also note that F. draycotensis, as with other filamentous cyanobacteria, have genes associated with the type IV pili, which may be involved in the surface-based motility [1]. Type IV pili have been shown to be mechanosensitive. For example, in cells of Pseudomonas aeruginosa that ‘twitch’ on a surface using type IV pili, application of mechanical shear stress results in increased production of an intracellular signalling molecule involved in promoting biofilm production. The pilus retraction motor has been shown to be involved in this shear-sensing response [12]. Additionally, twitching P. aeruginosa cells often reverse in response to collisions with other cells. Reversal is also caused by collisions with inert glass microfibres, which suggests that the pili-based motility can be affected by a mechanical stimulus [13].

      References

      (1) D. D. Risser, Hormogonium Development and Motility in Filamentous Cyanobacteria. Appl Environ Microbiol 89, e0039223 (2023).

      (2) T. Lamparter et al., The involvement of type IV pili and the phytochrome CphA in gliding motility, lateral motility and photophobotaxis of the cyanobacterium Phormidium lacuna. PLoS One 17, e0249509 (2022)

      (3) E. Hoiczyk, Gliding motility in cyanobacteria: observations and possible explanations. Arch Microbiol 174, 11-17 (2000).

      (4) D. G. Adams, D. Ashworth, B. Nelmes, Fibrillar Array in the Cell Wall of a Gliding Filamentous Cyanobacterium. Journal of Bacteriology 181 (1999).

      (5) L. N. Halfen, R. W. Castenholz, Gliding in a blue-green alga: a possible mechanism. Nature 225, 1163-1165 (1970).

      (6) S. N. Menon, P. Varuni, F. Bunbury, D. Bhaya, G. I. Menon, Phototaxis in Cyanobacteria: From Mutants to Models of Collective Behavior. mBio 12, e0239821 (2021).

      (7) F. D. Conradi, C. W. Mullineaux, A. Wilde, The Role of the Cyanobacterial Type IV Pilus Machinery in Finding and Maintaining a Favourable Environment. Life (Basel) 10 (2020).

      (8) M. Kurjahn, A. Deka, A. Girot, L. Abbaspour, S. Klumpp, M. Lorenz, O. Bäumchen, S. Karpitschka Quantifying gliding forces of filamentous cyanobacteria by self-buckling. eLife 12:RP87450 (2024).

      (9) S.C. Johnson, J. Veres, H. R. Malcolm, Exploring the diversity of mechanosensitive channels in bacterial genomes. Eur Biophys J 50, 25–36 (2021).

      (10) S.I. Sukharev, W.J. Sigurdson, C. Kung, F. Sachs, Energetic and spatial parameters for gating of the bacterial large conductance mechanosensitive channel, MscL. Journal of General Physiology, 113(4), 525-540 (1999).

      (11) N. Levina, S. Tötemeyer, N.R. Stoke, P. Louis, M.A. Jones, I.R. Boot. Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity. The EMBO journal (1999).

      (12) V.D. Gordon, L. Wang, Bacterial mechanosensing: the force will be with you, always. Journal of cell science 132(7):jcs227694 (2019).

      (13) M.J. Kühn, L. Talà, Y.F. Inclan, R. Patino, X. Pierrat, I. Vos, Z. Al-Mayyah, H. Macmillan, J. Negrete Jr, J.N. Engel, A. Persat, Mechanotaxis directs Pseudomonas aeruginosa twitching motility. Proceedings of the National Academy of Sciences. 118(30):e2101759118 (2021).

    1. Author response:

      The following is the authors’ response to the original reviews:

      We sincerely thank the reviewers for their thoughtful review and feedback. We believe that our work will provide valuable insights into how MRSA evolves under bacteriophage predation and stimulate efforts to use genetic trade-offs to combat drug resistance. We have substantially revised the paper and performed several additional experiments to address the reviewers' questions and concerns.

      Summary:

      (1) Testing for genetic trade-offs in additional S. aureus strains

      We obtained 30 clinical isolates of the S. aureus USA300 strain that were isolated between 2008 and 2011 (see Table S1). We first tested the FStaph1N, Evo2, and FNM1g6 phages against this expanded strain panel and found that Evo2 showed strong activity against all 30 strains (Table S4). We tested whether Evo2 infection could elicit trade-offs in b-lactam resistance for a subset of these strains. We found that Evo2 infection caused a ~10-100-fold reduction in their MIC against oxacillin. This data is now incorporated into a revised Figure 2 in panel C.

      (2) Testing additional staphylococcal phages

      We isolated from the environment a phage called SATA8505. Similar to FStaph1N and Evo2, SATA8505 belongs to the Kayvirus genus and infects the MRSA strains MRSA252, MW2, and LAC. Phage-resistant MRSA recovered following SATA8505 infection also showed a strong reduction in oxacillin resistance (Figure S5). Furthermore, we confirmed that resistance against FNM1g6, which belongs to the Dubowvirus genes, does not elicit tradeoffs in b-lactam resistance (Figure S4). Sequencing analysis of FNM1g6 - resistant LAC strains showed a different mutation fmhC, which was not observed with the FStaph1N and Evo2 phages (Table 1). We have added this new data into the main text and supplemental figures and tables. Future work will focus on obtaining comprehensive analysis of a wide range of phage families. 

      (3) Testing additional antibiotics

      We also expanded our trade-off analysis include wider range of antibiotic classes (Table S3). Overall, the loss of resistance appears to be confined to b-lactams.

      (4) Genetic analysis of ORF141

      In order determine the function of ORF141, which is mutated in Evo2, we attempted to clone wild-type ORF141 into a staphylococcal plasmid and perform complementation assays with Evo2. Unfortunately, obtaining the plasmid-borne wild-type ORF141 has proven to be tricky, as all clones developed frameshift or deletions in the open reading frame. We posit that the gene product of ORF141 is toxic to the bacteria. We are currently working on placing the gene under more stringent expression conditions but feel that these efforts fall outside of the scope of this paper.  

      (5) Testing the effect of single mutants  

      Our genomic analysis showed that phage-resistant MRSA evolved multiple mutations following phage infection, making it difficult to determine the mechanism of each mutation alone. For example, phage-resistant MW2 and LAC evolved nonsense mutations in transcriptional regulators mgrA, arlR, and sarA. To test whether these mutations alone were sufficient to confer resistance, we obtained MRSA strains with single-gene knockouts of mgrA, arlR, and sarA and tested their ability to resist phage. We observed that deletion of mgrA in the MW2 resulted in a modest reduction in phage sensitivity (Figure S7). However, we did not the observe any changes in the other mutant strains. These results suggest that phage resistance in these strains is likely caused by a combination of mutations. Determining the mechanisms of these mutations is the focus if our future work.

      (6) Transcriptomics of phage-resistant MRSA strains

      To further assess the effects of the phage resistance mutations, we performed bulk RNA-seq on phage-resistant MW2 and LAC strains and compared their differential expression levels to the respective wild-type strains. We picked these strains because our genomic data showed that they had evolved mutations in known transcriptional regulators (e.g. mgrA). Our analysis shows that both strains significantly modulate their gene expression (Figure 4). Notably, both strains upregulate the cell wall-associated protein ebh, while downregulating several genes involved in quorum sensing, virulence, and secretion. We have included this new data in Figure 4 and Table S5 and added an entire section in the manuscript discussing these results and their implications.  

      (7) Co-treatment of MRSA with phage and b-lactam

      We performed checkerboard experiments on MRSA strains with phage and b-lactam gradients (Figure 6). We found that under most conditions, MRSA cells were only able to recover under low phage and b-lactam concentrations. Notably, these recovered cells were still phage resistant and b-lactam sensitive. However, under one condition where MW2 was treated with FStaph1N and b-lactam, we found that some recovered cells still had high levels of b-lactam resistance, showing a distinct mutational profile. We discuss these results in detail in the main text.

      Reviewer # 1:

      Strengths:

      Phage-mediated re-sensitization to antibiotics has been reported previously but the underlying mutational analyses have not been described. These studies suggest that phages and antibiotics may target similar pathways in bacteria.

      We thank Reviewer 1 for this assessment. We hope that the data provided in this work will help stimulate further inquiries into this area and help in the development of better phage-based therapies to combat MRSA.

      Weaknesses:

      One limitation is the lack of mechanistic investigations linking particular mutations to the phenotypes reported here. This limits the impact of the work.

      We acknowledge the limitations of our initial analysis. We note (and cite) that separate studies have already linked mutations in femA, mgrA, arlR, and sarA with reduced b-lactam resistance and virulence phenotypes in MRSA, but not to phage resistance. For the other mutations, we could not find literature linking them to our observed phenotypes. We analyzed the effects of single gene knockouts of mgrA, arlR, and sarA on MRSA’s phage resistance. However, as shown above, the results only showed modest effects on phage resistance in the MW2 strain (see Figure S7 and lines 309-317). We therefore believe that mutations in single genes are not sufficient to cause the trade-offs in phage/ b-lactam resistance. Because each MRSA strain evolved multiple mutations (e.g. MW2 evolved 6 or more mutations), we feel that determining the effects of all possible permutations of those mutations was beyond the scope of the paper.

      However, to bridge the mutational data with our phenotypic observations, we performed RNAseq and compared the transcriptomes of un-treated and phage-treated MRSA strains (see Figure 4, Table S5, and lines 337-391). Our results show that phage-treated MRSA strains significantly modulate their transcript levels. Indeed, some of the changes in gene expression can explain for the phenotypic observations (e.g. overexpression of ebh can lead to reduced clumping). Further, the results shown some unexpected patterns, such as the downregulation of quorum sensing genes or genes involved in type VII secretion.

      Another limitation of this work is the use of lab strains and a single pair of phages. However, while incorporation of clinical isolates would increase the translational relevance of this work it is unlikely to change the conclusions.

      We thank the reviewer for this suggestion. We would like to clarify that MW2, MRSA252, and LAC are pathogenic clinical isolates that were isolated between 1997 and 2000’s. However, we acknowledge that, because these 3 strains have been propagated for many generations, they might have acquired laboratory adaptations. We therefore obtained 30 USA300 clinical strains that were isolated in more recent years (~2008-2011) and tested our phages against them. We note that these clinical isolates (generously provided by Dr. Petra Levin’s lab) were preserved with minimal passaging to reduce the effects of laboratory adaptation. We found that the Evo2 phage was able to elicit oxacillin trade-offs in those strains as well. (see Table S1, Table S7, Fig 2C, and lines 210 – 225)

      For the phages, we had to work with phage(s) that could infect all three MRSA strains. That is why in our initial tests, we focused on FStaph1N and Evo2, both members of the Kayvirus genus. Now in our revised work, we extend our analysis to FNM1g6, a member of the Dubowvirus genus, that also infects the LAC strain, but not MW2 and MRSA252. We find that FNM1g6 is unable to drive trade-offs in b-lactam resistance (see lines 229 – 238). Next, we analyzed the effects of SATA8505, also a member of the Kayvirus genus. Here, we observed that SATA8505 can elicit trade-offs in b-lactam resistance (see Figure S5 and lines 238 – 246). These results suggest that not all staphylococcal phages can elicit these trade-offs and call for more comprehensive analyses of different types of phages.

      Reviewer #1 (Recommendations for the authors):

      Specific questions:

      (1) The Evo2 isolate is an evolved version of phage Staph1N with more potent lytic activity. Is this reflected in more pronounced antibiotic sensitivity?

      We did not observe that Evo2-treated MRSA cells showed more sensitivity towards b-lactams. However, we did observe that Evo2 was able to elicit these trade-offs at lower multiplicities of infection (MOI) (see lines 173 – 176 and Figure S2). Further, we did observe that Evo2 caused a greater trade-off in virulence phenotypes (hemolysis and cell agglutination) (see lines 416 - 419 lines 433 – 435, and Figure 5)

      In our revisions, we also tested Evo2-treated MRSA against a wide range of antibiotics. We did not observe significant changes in MICs against those agents.   

      (2) Are there mutations in the SCCmec cassette or the MecA gene after selection against ΦStaph1N?

      We did not observe any mutations in known resistance genes SCCmec or blaZ. Furthermore, we did not see any differential expression of those genes in our transcriptomic data (see lines 344 and 346).  

      (3) The authors report that phage ΦNM1γ6 does not induce antibiotic sensitivity changes despite being effective against bacterial strain LAC. Were mutational sequencing studies performed with the resistant isolates that emerged against this strain? Can the authors hypothesize why these did not impact the virulence or resistance of LAC despite effective killing? How does this align with their models for ΦStaph1N?

      We thank the reviewer for that insightful question. In our revised manuscript, we found that ΦNM1γ6 elicits a point mutation in the fmhC gene, which is involved in cell wall maintenance (see lines 326 – 335). To our knowledge, this point mutation has not been linked to phage resistance or drug sensitivity MRSA. Notably this mutation was not observed with ΦStaph1N or Evo2. We therefore speculate that ΦNM1γ6 binds to a different receptor molecule on the MRSA cell wall.   

      (4) If I understand correctly, the authors attribute these effects of phage predation on antibiotic sensitivity and virulence to orthogonal selection pressures. A good test of this model would be to examine the mutations that emerge in antibiotic/phage co-treatment. This should be done.

      We thank the reviewer for this suggestion. As described in the summary section above, we performed checkerboard experiments on MRSA strains with phage and b-lactam gradients (see lines 440 – 494 and Figure 6). We found that under most conditions, MRSA cells were only able to recover under low phage and b-lactam concentrations. Notably, these recovered cells were still phage resistant and b-lactam sensitive. However, under one condition where MW2 was treated with FStaph1N and b-lactam, we found that some recovered cells still had high levels of b-lactam resistance and only limited phage resistance, showing a distinct mutational profile (Figure S6). Under these conditions, we think that the selective pressure exerted by FStaph1N is “overcome” by the selective pressure of the high oxacillin concentration, a point that we discuss in the main text.

      Reviewer #2 (Public review):

      Summary:

      The work presented in the manuscript by Tran et al deals with bacterial evolution in the presence of bacteriophage. Here, the authors have taken three methicillin-resistant S. aureus strains that are also resistant to beta-lactams. Eventually, upon being exposed to phage, these strains develop beta-lactam sensitivity. Besides this, the strains also show other changes in their phenotype such as reduced binding to fibrinogen and hemolysis.

      Strengths:

      The experiments carried out are convincing to suggest such in vitro development of sensitivity to the antibiotics. Authors were also able to "evolve" phage in a similar fashion thus showing enhanced virulence against the bacterium. In the end, authors carry out DNA sequencing of both evolved bacteria and phage and show mutations occurring in various genes. Overall, the experiments that have been carried out are convincing.

      We thank Reviewer 2 for their positive comments.

      Weaknesses:

      Although more experiments are not needed, additional experiments could add more information. For example, the phage gene showing the HTH motif could be reintroduced in the bacterial genome and such a strain can then be assayed with wildtype phage infection to see enhanced virulence as suggested. At least one such experiment proves the discoveries regarding the identification of mutations and their outcome.

      We thank the reviewer for this suggestion. We attempted to clone ORF141 into an expression plasmid and perform complementation experiments with Evo2 phage; however, all transformants that were isolated had premature stop-codons and frameshifts in the wild-type ORF141 insert that would disrupt protein function. We therefore think that the gene product of ORF141 might be toxic to the cells. We are currently working on placing the gene under more stringent transcriptional control but feel that these efforts fall outside of the scope of this paper.  

      Secondly, I also feel that authors looked for beta-lactam sensitivity and they found it. I am sure that if they look for rifampicin resistance in these strains, they will find that too. In this case, I cannot say that the evolution was directed to beta-lactam sensitivity; this is perhaps just one trait that was observed. This is the only weakness I find in the work. Nevertheless, I find the experiments convincing enough; more experiments only add value to the work.  

      We thank the reviewer for their comments. Because both phages and β-lactams interface with the bacterial cell wall, we posited that phage resistance would reduce resistance in cell wall targeting antibiotics. In our revisions, we have expanded our analysis to include a much wider range of antibiotic classes, including rifampicin, mupirocin, erythromycin, and other cell wall disruptors, such as daptomycin and teicoplanin. We did not observe any significant changes to the MICs of these other antibiotics (see Table S3 and lines 191-199). It therefore appears that the effects of these trade-offs are confined to beta-lactams.