236 Matching Annotations
  1. Jun 2020
    1. he associations between childhood poverty andupward mobility are cumulative: each year of childhood spent in poverty lowers an individual's chances of being upwardly mobile, as they are less likely to be consistently employed or in school

      Each year in childhood poverty = less likely to be upwardly mobile, consistently employed/in school

    2. Children who experienced any childhood poverty are less likely to be economically mobilethan their middle-income peers(Chetty et al., 2016c; Mitnik et al., 2015) and are more than five times likelier to remain poor in adulthood than to make it to the top income quintile

      Any childhood poverty = less likely to be economically mobile, 5x likelier to remain poor in adulthood

    3. In 2016, 18% of American children were living in poverty, defined fora household of four as living with an annual income of less than $24,755(Semega, Fontenot & Kollar, 2017). Although this is just one snapshot in time, up to 39% of allAmerican children will experience povertyat some point during theirchildhood(Ratcliffe, 2015). Childhood poverty is linked to low educational attainment, socioemotional issues,and development delays. Poor families are likelier to be exposed to food insecurity, homeless, and unsafe neighborhoods. They are also likelier than their middle-income peers to have poorer health and access to health care

      In 2016,

      • 18% of American children lived in poverty
      • poverty = less than $24,755
      • up to 39% of all American children will experience poverty
      • childhood poverty is linked to low educational attainment, socioemotional issues, and development delays
      • poor families more likely to be exposed to food insecurity, homelessness, and unsafe neighborhoods
      • more likely to have poorer health and access to health care
    4. In 2016, close to one-fifth of American children wereliving in poverty (Semega, Fontenot & Kollar, 2017). These millions of children are likely to remain poor throughout their lives, and are less likely to be upwardly mobile than their middle-income peers (Ratcliffe, 2015; Mitnik, Bryant, Weberb & Grusky, 2015).

      1/5 of American children were living in poverty in 2016; likely to remain poor and less likely to be upwardly mobile

    5. Low-income youth, however, were less likely to have an informal mentor, and only 45% of those who were mentored had the type that could promote mobility.

      Statistical finding: low-income youth likely did not have an informal mentor, and only 45% of those with one were able to have mobility.

    Tags

    Annotators

    1. Because subject matter expertise goes a long way towards helping you spot interesting patterns in your data faster, the best analysts are serious about familiarizing themselves with the domain. Failure to do so is a red flag. As their curiosity pushes them to develop a sense for the business, expect their output to shift from a jumble of false alarms to a sensibly-curated set of insights that decision-makers are more likely to care about.

      Analysts have domain expertise or knowledge at least.

    2. While statistical skills are required to test hypotheses, analysts are your best bet for coming up with those hypotheses in the first place. For instance, they might say something like “It’s only a correlation, but I suspect it could be driven by …” and then explain why they think that. This takes strong intuition about what might be going on beyond the data, and the communication skills to convey the options to the decision-maker, who typically calls the shots on which hypotheses (of many) are important enough to warrant a statistician’s effort. As analysts mature, they’ll begin to get the hang of judging what’s important in addition to what’s interesting, allowing decision-makers to step away from the middleman role.

      More formal and detailed version of above. Besides, the difference of being important and being interesting should be noted too. Maybe search for a thread.

    3. For example, not “we conclude” but “we are inspired to wonder”. They also discourage leaders’ overconfidence by emphasizing a multitude of possible interpretations for every insight.

      Data analysts are the inspiration team.

    4. Analysts are data storytellers. Their mandate is to summarize interesting facts and to use data for inspiration.

      This is actually what i do in my reviews too, so i may define myself as a qualitative analyst now.

    5. Excellence in analytics: speed The best analysts are lightning-fast coders who can surf vast datasets quickly, encountering and surfacing potential insights faster than those other specialists can say “whiteboard.” Their semi-sloppy coding style baffles traditional software engineers — but leaves them in the dust. Speed is their highest virtue, closely followed by the ability to identify potentially useful gems. A mastery of visual presentation of information helps, too: beautiful and effective plots allow the mind to extract information faster, which pays off in time-to-potential-insights. The result is that the business gets a finger on its pulse and eyes on previously-unknown unknowns. This generates the inspiration that helps decision-makers select valuable quests to send statisticians and ML engineers on, saving them from mathematically-impressive excavations of useless rabbit holes.

      Analysts are more of a digger, they carelessly and fast dig into data, maybe find some directions, which then will be studied elaborately by statisticians and then MLs to create sustainable and automated solutions.

    6. Performance means more than clearing a metric — it also means reliable, scalable, and easy-to-maintain models that perform well in production. Engineering excellence is a must. The result? A system that automates a tricky task well enough to pass your statistician’s strict testing bar and deliver the audacious performance a business leader demanded.

      What machine learners/ AIs do is to scale a statistically rigorous solution to a system-wide, complex problem.

    1. The p-value says, “If I’m living in a world where I should be taking that default action, how unsurprising is my evidence?” The lower the p-value, the more the data are yelling, “Whoa, that’s surprising, maybe you should change your mind!”

      In a simpler context, it means the occurrence of default (null) situation is of very low probability.

  2. Dec 2019
  3. May 2019
  4. Apr 2019
    1. There are two tests that you can run that are applicable when the assumption of homogeneity of variances has been violated: (1) Welch or (2) Brown and Forsythe test. Alternatively, you could run a Kruskal-Wallis H Test. For most situations it has been shown that the Welch test is best. Both the Welch and Brown and Forsythe tests are available in SPSS Statistics (see our One-way ANOVA using SPSS Statistics guide).

      ANOVA is robust against violation of the assumption of equal variances, but...

    2. However, platykurtosis can have a profound effect when your group sizes are small. This leaves you with two options: (1) transform your data using various algorithms so that the shape of your distributions become normally distributed or (2) choose the nonparametric Kruskal-Wallis H Test which does not require the assumption of normality.

      ANOVA is robust against violation of normality, but...

  5. Mar 2019
  6. Feb 2019
    1. You may believe that there is a relationship between 10,000 m running performance and VO2max (i.e., the larger an athlete's VO2max, the better their running performance), but you would like to know if this relationship is affected by wind speed and humidity (e.g., if the relationship changes when taking wind speed and humidity into account since you suspect that athletes' performance decreases in more windy and humid conditions).

      An example of partial correlation.

  7. Nov 2017
    1. Developers are an important demographic. Apple says they are the biggest segment of Macbook Pro users, which means they spend a lot of money. And they’re a demographic underserved by Chromebooks today.
    1. Heteroscedasticity

      Heteroscedasticity is a hard word to pronounce, but it doesn't need to be a difficult concept to understand. Put simply, heteroscedasticity (also spelled heteroskedasticity) refers to the circumstance in which the variability of a variable is unequal across the range of values of a second variable that predicts it.

  8. Apr 2017
  9. Mar 2017
  10. Feb 2017
  11. Jan 2017
  12. Feb 2016
    1. He expects that the logging project near Quimby’s land will likely generate about $755,250 at the state’s average sale price, $50.35 per cord of wood. The land has about 1,500 harvestable acres that contain about 30 cords of wood per acre, or 45,000 cords, but only about a third of that will be cut because the land is environmentally sensitive, Denico said. The Bureau of Parks and Lands expects to generate about $6.6 million in revenue this year selling about 130,000 cords of wood from its lots, Denico said. Last year, the bureau generated about $7 million harvesting about 139,000 cords of wood. The Legislature allows the cutting of about 160,000 cords of wood on state land annually, although the LePage administration has sought to increase that amount.
  13. Jan 2016
  14. Oct 2013