eLife Assessment
This valuable work presents a novel computational framework for modeling macroscopic traveling waves in the mouse cortex by integrating open-source connectomic and transcriptomic data into a spiking network model. This approach allows the computational model to assign excitatory/inhibitory connections based on neurotransmitter profiles and extends simulations to the 3D domain. The authors present results that demonstrate how spatiotemporal dynamics such as slow oscillations (0.5-4 Hz) emerge and self-organize at the whole-brain scale. This study provides convincing initial insights into the structural basis of traveling waves at the whole-brain scale in the mouse.