Reviewer #1 (Public Review):
Wang et al., present a paper aiming to identify NALCN and TRPC6 channels as key mechanisms regulating VTA dopaminergic neuron spontaneous firing and investigating whether these mechanisms are disrupted in a chronic unpredictable stress model mouse.
Major strengths:
-This paper uses multiple approaches to investigate the role of NALCN and TRPC6 channels in VTA dopaminergic neurons.
Major weaknesses:
-The pharmacological tools used in this study are highly non-selective. Gd3+, used here to block NALCN is actually more commonly used to block TRP channels. 2-APB inhibits not only TRPC channels, but also TRPM and IP3 receptors while stimulating TRPV channels (Bon and Beech, 2013), while FFA actually stimulates TRPC6 channels while inhibiting other TRPCs (Foster et al., 2009).
Are the author's claims supported by the data?
-The multimodal approach including shRNA knockdown experiments alleviates much of the concern about the non-specific pharmacological agents. Therefore, the author's claim that NALCN is involved in VTA dopaminergic neuron pacemaking is well-supported.
-However, the claim that TRPC6 is the key TRPC channel in VTA spontaneous firing is somewhat, but not completely supported. As with NALCN above, the pharmacology alone is much too non-specific to support the claim that TRPC6 is the TRP channel responsible for pacemaking. However, unlike the NALCN condition, there is an issue with interpreting the shRNA knockdown experiments. The issue is that TRPC channels often form heteromers with TRPC channels of other types (Goel, Sinkins and Schilling, 2002; Strübing et al., 2003). Therefore, it is possible that knocking down TRPC6 is interfering with the normal function of another TRPC channel, such as TRPC7 or TRPC4.
-The claim that TRPC6 channels in the VTA are involved in the depressive-like symptoms of CMUS is supported.
- However, the connection between the mPFC-projecting VTA neurons, TRPC6 channels, and the chronic unpredictable stress model (CMUS) of depression is not well supported. In Figure 2, it appears that the mPFC-projecting VTA neurons have very low TRPC6 expression compared to VTA neurons projecting to other targets. However, in figure 6, the authors focus on the mPFC-projecting neurons in their CMUS model and show that it is these neurons that are no longer sensitive to pharmacological agents non-specifically blocking TRPC channels (2-APB, see above comment). Finally, in figure 7, the authors show that shRNA knockdown of TRPC6 channels (in all VTA dopaminergic neurons) results in depressive-like symptoms in CMUS mice. Due to the low expression of TRPC6 in mPFC-projecting VTA neurons, the author's claims of "broad and strong expression of TRPC6 channels across VTA DA neurons" is not fully supported. Because of the messy pharmacological tools used, it cannot be clamed that TRPC6 in the mPFC-projecting VTA neurons is altered after CMUS. And because the knockdown experiments are not specific to mPFC-projecting VTA neurons, it cannot be claimed that reducing TRPC6 in these specific neurons is causing depressive symptoms.
Impact:
It is valuable to compare pacemaking mechanisms in VTA and SNc neurons and this paper convincingly shows that NALCN contributes to VTA pacemaking, as it is known to contribute to SNc pacemaking. It also shows that TRPC6 channels in VTA dopamine neurons contribute to the depressive-like symptoms associated with CMUS.
It is important to note that the experiments presented in Figure 1 have all been previously performed in VTA dopaminergic neurons (Khaliq and Bean, 2010) including showing that low calcium increases VTA neuron spontaneous firing frequency and that replacement of sodium with NMDG hyperpolarizes the membrane potential.
Additional context:
-The authors explanation for the increase in firing frequency in 0 calcium conditions is that calcium-activated potassium channels would no longer be activated. However, there is a highly relevant finding that low calcium enhances the NALCN conductance through the calcium sensing receptor from Dejian Ren's lab (Lu et al., 2010) which is not cited in this paper. This increase in NALCN conductance with low calcium has been shown in SNc dopaminergic neurons (Philippart and Khaliq, 2018), and is likely a factor contributing to the low-calcium-mediated increase in spontaneous VTA neuron firing.
-One of the only demonstrations of the expression and physiological significance of TRPCs in VTA DA neurons was published by (Rasmus et al., 2011; Klipec et al., 2016) which are not cited in this paper. In their study, TRPC4 expression was detected in a uniformly distributed subset of VTA DA neurons, and TRPC4 KO rats showed decreased VTA DA neuron tonic firing and deficits in cocaine reward and social behaviors.
- Out of all seven TRPCs, TRPC5 is the only one reported to have basal/constitutive activity in heterologous expression systems (Schaefer et al., 2000; Jeon et al., 2012). Others TRPCs such as TRPC6 are typically activated by Gq-coupled GPCRs. Why would TRPC6 be spontaneously/constitutively active in VTA DA neurons?
-A new paper from the group of Myoung Kyu Park (Hahn et al., 2023) shows in great detail the interactions between NALCN and TRPC3 channels in pacemaking of SNc DA neurons.
References
Bon, R.S. and Beech, D.J. (2013) 'In pursuit of small molecule chemistry for calcium-permeable non-selective TRPC channels -- mirage or pot of gold?', British Journal of Pharmacology, 170(3), pp. 459-474. Available at: https://doi.org/10.1111/bph.12274.
Foster, R.R. et al. (2009) 'Flufenamic acid is a tool for investigating TRPC6-mediated calcium signalling in human conditionally immortalised podocytes and HEK293 cells', Cell Calcium, 45(4), pp. 384-390. Available at: https://doi.org/10.1016/j.ceca.2009.01.003.
Goel, M., Sinkins, W.G. and Schilling, W.P. (2002) 'Selective association of TRPC channel subunits in rat brain synaptosomes', The Journal of Biological Chemistry, 277(50), pp. 48303-48310. Available at: https://doi.org/10.1074/jbc.M207882200.
Hahn, S. et al. (2023) 'Proximal dendritic localization of NALCN channels underlies tonic and burst firing in nigral dopaminergic neurons', The Journal of Physiology, 601(1), pp. 171-193. Available at: https://doi.org/10.1113/JP283716.
Jeon, J.-P. et al. (2012) 'Selective Gαi subunits as novel direct activators of transient receptor potential canonical (TRPC)4 and TRPC5 channels', The Journal of Biological Chemistry, 287(21), pp. 17029-17039. Available at: https://doi.org/10.1074/jbc.M111.326553.
Khaliq, Z.M. and Bean, B.P. (2010) 'Pacemaking in dopaminergic ventral tegmental area neurons: depolarizing drive from background and voltage-dependent sodium conductances', The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 30(21), pp. 7401-7413. Available at: https://doi.org/10.1523/JNEUROSCI.0143-10.2010.
Klipec, W.D. et al. (2016) 'Loss of the trpc4 gene is associated with a reduction in cocaine self-administration and reduced spontaneous ventral tegmental area dopamine neuronal activity, without deficits in learning for natural rewards', Behavioural Brain Research, 306, pp. 117-127. Available at: https://doi.org/10.1016/j.bbr.2016.03.027.
Lu, B. et al. (2010) 'Extracellular calcium controls background current and neuronal excitability via an UNC79-UNC80-NALCN cation channel complex', Neuron, 68(3), pp. 488-499. Available at: https://doi.org/10.1016/j.neuron.2010.09.014.
Philippart, F. and Khaliq, Z.M. (2018) 'Gi/o protein-coupled receptors in dopamine neurons inhibit the sodium leak channel NALCN', eLife, 7. Available at: https://doi.org/10.7554/eLife.40984.
Rasmus, K. et al. (2011) 'Sociability is decreased following deletion of the trpc4 gene', Nature Precedings, pp. 1-1. Available at: https://doi.org/10.1038/npre.2011.6367.1.
Schaefer, M. et al. (2000) 'Receptor-mediated regulation of the nonselective cation channels TRPC4 and TRPC5', The Journal of Biological Chemistry, 275(23), pp. 17517-17526. Available at: https://doi.org/10.1074/jbc.275.23.17517.
Strübing, C. et al. (2003) 'Formation of novel TRPC channels by complex subunit interactions in embryonic brain', The Journal of Biological Chemistry, 278(40), pp. 39014-39019. Available at: https://doi.org/10.1074/jbc.M306705200.