5,926 Matching Annotations
  1. Last 7 days
    1. Reviewer #2 (Public Review):

      Li et al. used a four-day fMRI design to investigate how unimodal feature information is combined, integrated, or abstracted to form a multimodal object representation. The experimental question is of great interest and understanding how the human brain combines featural information to form complex representations is relevant for a wide range of researchers in neuroscience, cognitive science, and AI. While most fMRI research on object representations is limited to visual information, the authors examined how visual and auditory information is integrated to form a multimodal object representation. The experimental design is elegant and clever. Three visual shapes and three auditory sounds were used as the unimodal features; the visual shapes were used to create 3D-printed objects. On Day 1, the participants interacted with the 3D objects to learn the visual features, but the objects were not paired with the auditory features, which were played separately. On Day 2, participants were scanned with fMRI while they were exposed to the unimodal visual and auditory features as well as pairs of visual-auditory cues. On Day 3, participants again interacted with the 3D objects but now each was paired with one of the three sounds that played from an internal speaker. On Day 4, participants completed the same fMRI scanning runs they completed on Day 2, except now some visual-auditory feature pairs corresponded with Congruent (learned) objects, and some with Incongruent (unlearned) objects. Using the same fMRI design on Days 2 and 4 enables a well-controlled comparison between feature- and object-evoked neural representations before and after learning. The notable results corresponded to findings in the perirhinal cortex and temporal pole. The authors report (1) that a visual bias on Day 2 for unimodal features in the perirhinal cortex was attenuated after learning on Day 4, (2) a decreased univariate response to congruent vs. incongruent visual-auditory objects in the temporal pole on Day 4, (3) decreased pattern similarity between congruent vs. incongruent pairs of visual and auditory unimodal features in the temporal pole on Day 4, (4) in the perirhinal cortex, visual unimodal features on Day 2 do not correlate with their respective visual-auditory objects on Day 4, and (5) in the perirhinal cortex, multimodal object representations across Days 2 and 4 are uncorrelated for congruent objects and anticorrelated for incongruent. The authors claim that each of these results supports the theory that multimodal objects are represented in an "explicit integrative" code separate from feature representations. While these data are valuable and the results are interesting, the authors' claims are not well supported by their findings.

      (1) In the introduction, the authors contrast two theories: (a) multimodal objects are represented in the co-activation of unimodal features, and (b) multimodal objects are represented in an explicit integrative code such that the whole is different than the sum of its parts. However, the distinction between these two theories is not straightforward. An explanation of what is precisely meant by "explicit" and "integrative" would clarify the authors' theoretical stance. Perhaps we can assume that an "explicit" representation is a new representation that is created to represent a multimodal object. What is meant by "integrative" is more ambiguous-unimodal features could be integrated within a representation in a manner that preserves the decodability of the unimodal features, or alternatively the multimodal representation could be completely abstracted away from the constituent features such that the features are no longer decodable. Even if the object representation is "explicit" and distinct from the unimodal feature representations, it can in theory still contain featural information, though perhaps warped or transformed. The authors do not clearly commit to a degree of featural abstraction in their theory of "explicit integrative" multimodal object representations which makes it difficult to assess the validity of their claims.

      (2) After participants learned the multimodal objects, the authors report a decreased univariate response to congruent visual-auditory objects relative to incongruent objects in the temporal pole. This is claimed to support the existence of an explicit, integrative code for multimodal objects. Given the number of alternative explanations for this finding, this claim seems unwarranted. A simpler interpretation of these results is that the temporal pole is responding to the novelty of the incongruent visual-auditory objects. If there is in fact an explicit, integrative multimodal object representation in the temporal pole, it is unclear why this would manifest in a decreased univariate response.

      (3) The authors ran a neural pattern similarity analysis on the unimodal features before and after multimodal object learning. They found that the similarity between visual and auditory features that composed congruent objects decreased in the temporal pole after multimodal object learning. This was interpreted to reflect an explicit integrative code for multimodal objects, though it is not clear why. First, behavioral data show that participants reported increased similarity between the visual and auditory unimodal features within congruent objects after learning, the opposite of what was found in the temporal pole. Second, it is unclear why an analysis of the unimodal features would be interpreted to reflect the nature of the multimodal object representations. Since the same features corresponded with both congruent and incongruent objects, the nature of the feature representations cannot be interpreted to reflect the nature of the object representations per se. Third, using unimodal feature representations to make claims about object representations seems to contradict the theoretical claim that explicit, integrative object representations are distinct from unimodal features. If the learned multimodal object representation exists separately from the unimodal feature representations, there is no reason why the unimodal features themselves would be influenced by the formation of the object representation. Instead, these results seem to more strongly support the theory that multimodal object learning results in a transformation or warping of feature space.

      (4) The most compelling evidence the authors provide for their theoretical claims is the finding that, in the perirhinal cortex, the unimodal feature representations on Day 2 do not correlate with the multimodal objects they comprise on Day 4. This suggests that the learned multimodal object representations are not combinations of their unimodal features. If unimodal features are not decodable within the congruent object representations, this would support the authors' explicit integrative hypothesis. However, the analyses provided do not go all the way in convincing the reader of this claim. First, the analyses reported do not differentiate between congruent and incongruent objects. If this result in the perirhinal cortex reflects the formation of new multimodal object representations, it should only be true for congruent objects but not incongruent objects. Since the analyses combine congruent and incongruent objects it is not possible to know whether this was the case. Second, just because feature representations on Day 2 do not correlate with multimodal object patterns on Day 4 does not mean that the object representations on Day 4 do not contain featural information. This could be directly tested by correlating feature representations on Day 4 with congruent vs. incongruent object representations on Day 4. It could be that representations in the perirhinal cortex are not stable over time and all representations-including unimodal feature representations-shift between sessions, which could explain these results yet not entail the existence of abstracted object representations.

      In sum, the authors have collected a fantastic dataset that has the potential to answer questions about the formation of multimodal object representations in the brain. A more precise delineation of different theoretical accounts and additional analyses are needed to provide convincing support for the theory that "explicit integrative" multimodal object representations are formed during learning.

    1. Reviewer #2 (Public Review):

      This manuscript presents measurements of proteolytic digestion and structural studies using both hydrogen-deuterium exchange and NMR. The data test the idea that membrane association leads to a rearrangement of the MA domain of the MPMV Gag protein, as the myristate chain at the N-terminus of the protein is "switched" from a hydrophobic pocket within the protein into lipid layers, finally rendering the protein efficiently digestible by the viral protease. In my opinion, the data are highly convincing, and the underlying hypothesis is a useful contribution to the field, providing for this retrovirus a solution to the long-standing problem of how proteolytic maturation is activated.

    1. Reviewer #2 (Public Review):

      Many of the questions about type I interferon and photosensitivity have already been studied in murine lupus models but most importantly in skin biopsies from both lesional and non-lesional cutaneous lupus. The authors should try to link their data to the existing literature and validate their results by using human samples, as not all murine lupus models have a strong interferon-mediated disease. Other important aspects of the work include whether or not the authors have considered knocking out the mice for ADAM17 and reassessing the function of the Langerhans cells? Last but not least, some of the data presented will need to be validated by more in vitro work that will shed more light on the functional properties of ADAM17 in Langerhans cells and inflammatory response in cutaneous lupus.

    1. Reviewer #2 (Public Review):

      To measure the role of gastric state in emotion, the authors used an ingestible smart pill to measure pH, pressure, and temperature in the gastrointestinal tract (stomach, small bowel, large bowel) while participants watched videos that induced disgust, fear, happiness, sadness, or a control (neutral). The study has a number of strengths, including the novelty of the measurement (very few studies have ever measured these gut properties during emotion processing) and the apparent robustness of their main finding (that during disgusting video clips, participants who experienced more feelings of disgust (and to a lesser degree which might not survive more stringent multiple comparison correction, fear) had more acidic stomach measurements, while participants who experienced more happiness during the disgusting video clips had a less acidic (more basic) stomach pH. Although the study is correlational (which all discussion should carefully reflect) and is restricted to a moderately-sized, homogenous sample, the results support their general conclusion that stomach pH is related to emotion experience during disgust induction. There may be additional analyses to conduct in order for the authors to claim this effect is specific to the stomach. Nevertheless, this work is likely to have a large impact on the field, which currently tends to rely on noninvasive measures of gastric activity such as electrogastrography (which the authors also collect for comparison); the authors' minimally-invasive approach yields new and useful measurements of gastric state. These new measures could have relevance beyond emotion processing in understanding the role of gut pH (and perhaps temperature and pressure) in cognitive processes (e.g. interoception) as well as mental and physical health.

    1. Reviewer #2 (Public Review):

      This study aims to test the role of awake replay in short-term memory, a type of memory that operates on the timescale of seconds and minutes. Replay refers to a time-compressed burst of neuronal population activity during a particular oscillatory local field potential event in the hippocampus, called the sharp-wave ripple (SWR). SWRs are found during sleep and in the awake state and are always associated with the animal being quiescent. The paper compares results from three different behavioral tasks ranging in memory requirements and memory timescales. First, rats were trained on either a spatial match-to-sample task (MTS), a non-match-to-sample task (NMTS), or a task requiring the memorization of sequences (maze arms to be visited in a specific temporal order). In this initial training phase, the animals were allowed to learn the maze structure and the rules governing these tasks for all these behavioral paradigms. Then, awake sharp-SWRs were disrupted as the animal performed these tasks (both during instruction and test phases) via an online detection system combined with closed-loop electrical stimulation of the ventral hippocampal commissure. Notably, this manipulation appeared not to affect performance in all three tasks, as determined using various behavioral parameters. Trials with no stimulation or delayed stimulation serve as controls. Thus, the authors conclude that awake SWRs are not involved in these short-term memory-guided behaviors. I do have a few comments that the authors should discuss or address:

      (1) This study adds to a large number of studies investigating the role of awake SWRs in spatial learning and memory tasks. The results of these previous studies are quite contradictory and range from awake SWRs are not crucial in guiding decisions at all to SWRs are only essential during task rule learning to SWRs do guide behavior. Could the authors comment on these seemingly contradictory results? Why are these experiments now the right ones?<br /> (2) None of the experiments presented here test the role of replay. I suggest making this distinction in the paper and the title clear. As the results are presented now, is it possible that the SWR content is not affected sufficiently to have a behavioral effect or that there is a bias towards detecting specific SWRs, e.g., longer SWRs?

    1. Reviewer #2 (Public Review):

      Summary:<br /> In this study, Baier et al. investigated the mechanism by which SWR1C recognizes nucleosomal substrates for the deposition of H2A.Z. Their data convincingly demonstrate that the nucleosome's acidic patch plays a crucial role in the substrate recognition by SWR1C. The authors presented clear evidence showing that Swc5 is a pivotal subunit involved in the interaction between SWR1C and the acidic patch. They pared down the specific region within Swc5 responsible for this interaction. However, two central assertions of the paper are less convincing. First, the data supporting the claim that the insertion of one Z-B dimer into the canonical nucleosome can stimulate SWR1C to insert the second Z-B dimer is somewhat questionable (see below). Given that this claim contradicts previous observations made by other groups, this hypothesis needs further testing to eliminate potential artifacts. Secondly, the claim that SWR1C simultaneously recognizes the acidic patch on both sides of the nucleosome also needs further investigation, as the assay used to establish this claim lacks the sensitivity necessary to distinguish any difference between nucleosomal substrates containing one or two intact acidic patches.

      Strengths:<br /> As mentioned in the summary, the authors presented clear evidence demonstrating the role of Swc5 in recognition of the nucleosome acidic patch. The identification of the specific region in Swc5 responsible for this interaction is important.


      Major comments:

      (1) Figure 1B: It is unclear how much of the decrease in FRET is caused by the bleaching of fluorophores. The authors should include a negative control in which Z-B dimers are omitted from the reaction. In the absence of ZB dimers, SWR1C will not exchange histones. Therefore, any decrease in FRET should represent the bleaching of fluorophores on the nucleosomal substrate, allowing normalization of the FRET signal related to A-B eviction.

      (2) Figure S3: The authors use the decrease in FRET signal as a metric of histone eviction. However, Figure S3 suggests that the FRET signal decrease could be due to DNA unwrapping. Histone exchange should not occur when SWR1C is incubated with AMP-PNP, as histone exchange requires ATP hydrolysis (10.7554/eLife.77352). And since the insertion of Z-B dimer and the eviction of A-B dimer are coupled, the decrease of FRET in the presence of AMP-PNP is unlikely due to histone eviction or exchange. Instead, the FRET decrease is likely due to DNA unwrapping (10.7554/eLife.77352). The authors should explicitly state what the loss of FRET means.

      (3) Related to point 2. One way to distinguish nucleosomal DNA unwrapping from histone dimer eviction is that unwrapping is reversible, whereas A-B eviction is not. Therefore, if the authors remove AMP-PNP from the reaction chamber and a FRET signal reappears, then the initial loss of FRET was due to reversible DNA unwrapping. However, if the removal of AMP-PNP did not regain FRET, it means that the loss of FRET was likely due to A-B eviction. The authors should perform an AMP-PNP and/or ATP removal experiment to make sure the interpretation of the data is correct.

      (4) The nature of the error bars in Figure 1C is undefined; therefore, the statistical significance of the data is not interpretable.

      (5) The authors claim that the SWR1C requires intact acidic patches on both sides of the nucleosomes to exchange histone. This claim was based on the experiment in Figure 1C where they showed mutation of one of two acidic patches in the nucleosomal substrate is sufficient to inhibit SWR1C-mediated histone exchange activity. However, one could argue that the sensitivity of this assay is too low to distinguish any difference between nucleosomes with one (i.e., AB/AB-apm) versus two mutated acidic patches (i.e., AB-apm/AB-apm). The lack of sensitivity of the eviction assay can be seen when Figure 1B is taken into consideration. In the gel-shift assay, the AB-apm/AB-apm nucleosome exhibited a 10% SWR1C-mediated histone exchange activity compared to WT. However, in the eviction assay, the single AB/AB-apm mutant has no detectable activity. Therefore, to test their hypothesis, the authors should use the more sensitive in-gel histone exchange assay to see if the single AB/AB-apm mutant is more or equally active compared to the double AB-apm/AB-apm mutant.

      (6) The authors claim that the AZ nucleosome is a better substrate than the AA nucleosome. This is a surprising result as previous studies showed that the two insertion steps of the two Z-B dimers are not cooperative (10.7554/eLife.77352 and 10.1016/J.CELREP.2019.12.006). The authors' claim was based on the eviction assay shown in Fig 1C. However, I am not sure how much variation in the eviction assay is contributed by different preparations of nucleosomes. The authors should use the in-gel assay to independently test this hypothesis.

      Minor comments:

      (1) Abstract line 4: To say 'Numerous' studies have shown acidic patch impact chromatin remodeling enzymes activity may be too strong.

      (2) Page 15, line 15: The authors claim that swc5∆ was inviable on formamide media. However, the data in Figure 8 shows cell growth in column 1 of swc5∆.

      (3) The authors should use standard yeast nomenclature when describing yeast genes and proteins. For example, for Figure 8 and legend, Swc5∆ was used to describe the yeast strain BY4741; MATa; his3Δ1; leu2Δ0; met15Δ0; ura3Δ0; YBR231c::kanMX4. Instead, the authors should describe the swc5∆ mutant strain as BY4741 MAT a his3∆1 leu2∆0 met15∆0 ura3∆0 swc5∆::kanMX4. Exogenous plasmid should also be indicated in italics and inside brackets, such as [SWC5-URA3] or [swc5(R219A)-URA3].

      (4) According to Lin et al. 2017 NAR (doi: 10.1093/nar/gkx414), there is only one Swc5 subunit per SWR1C. Therefore, the pincher model proposed by the authors would suggest that there is a missing subunit that recognizes the second acidic patch. The authors should point out this fact in the discussion. However, as mentioned in Major comment 6, I am not sure if the pincer model is substantiated.

    1. Reviewer #2 (Public Review):

      I enjoyed reading this paper and appreciate the careful analysis performed by the investigators examining whether 'ancient' cofactors are preferentially bound by the first-available amino acids, and whether later 'LUCA' cofactors are bound by the late-arriving amino acids. I've always found this question fascinating as there is a contradiction in inorganic metal-protein complexes (not what is focused on here). Metal coordination of Fe, Ni heavily relies on softer ligands like His and Cys - which are by most models latecomer amino acids. There are no traces of thiols or imidazoles in meteorites - although work by Dvorkin has indicated that could very well be due to acid degradation during extraction. Chris Dupont (PNAS 2005) showed that metal speciation in the early earth (such as proposed by Anbar and prior RJP Williams) matched the purported order of fold emergence.

      As such, cofactor-protein interactions as a driving force for evolution has always made sense to me and I admittedly read this paper biased in its favor. But to make sure, I started to play around with the data that the authors kindly and importantly shared in the supplementary files. Here's what I found:

      Point 1: The correlation between abundance of amino acids and protein age is dominated by glycine.

      There is a small, but visible difference in old vs new amino acid fractional abundance between Ancient and LUCA proteins (Figure 3, Supplementary Table 3). However, the bias is not evenly distributed among the amino acids - which Figure 4A shows but is hard to digest as presented. So instead I used the spreadsheet in Supplement 3 to calculate the fractional difference FDaa = F(old aa)-F(new aa). As expected from Figure 3, the mean FD for Ancient is greater than the mean FD for LUCA. But when you look at the same table for each amino acid FDcofactor = F(ancient cofactor) - F(LUCA cofactor), you now see that the bias is not evenly distributed between older and newer amino acids at all. In fact, most of the difference can be explained by glycine (FDcofactor = 3.8) and the rest by also including tryptophan (FDcofactor = -3.8). If you remove these two amino acids from the analysis, the trend seen in Figure 3 all but disappears.

      Troubling - so you might argue that Gly is the oldest of the old and Trp is the newest of the new so the argument still stands. Unfortunately, Gly is a lot of things - flexible, small, polar - so what is the real correlation, age, or chemistry? This leads to point 2.

      Point 2 - The correlation is dominated by phosphate.

      In the ancient cofactor list, all but 4 comprise at least one phosphate (SAM, tetrahydrofolic acid, biopterin, and heme). Except for SAM, the rest have very low Gly abundance. The overall high Gly abundance in the ancient enzymes is due to the chemical property of glycine that can occupy the right-hand side of the Ramachandran plot. This allows it to make the alternating alphaleft-alpharight conformation of the P-loop forming Milner-White's anionic nest. If you remove phosphate binding folds from the analysis the trend in Figure 3 vanishes.

      Likewise, Trp is an important functional residue for binding quinones and tuning its redox potential. The LUCA cofactor set is dominated by quinone and derivatives, which likely drives up the new amino acid score for this class of cofactors.

      In summary, while I still believe the premise that cofactors drove the shape of peptides and the folds that came from them - and that Rossmann folds are ancient phosphate-binding proteins, this analysis does not really bring anything new to these ideas that have already been stated by Tawfik/Longo, Milner-White/Russell, and many others.

      I did this analysis ad hoc on a slice of the data the authors provided and could easily have missed something and I encourage the authors to check my work. If it holds up it should be noted that negative results can often be as informative as strong positive ones. I think the signal here is too weak to see in the noise using the current approach.

    1. Reviewer #2 (Public Review):

      Important findings:

      • Knockdown of UBE2D increases HTT aggregation.

      • Knockdown of UBE2D leads to an accumulation of ubiquitinated proteins and reduces the lifespan of Drosophila, which is rescued by an ectopic expression of the human homolog.

      • UBE2D protein levels decline with aging.

      • UBE2D knockdown is associated with an up- and downregulation of several different cellular pathways, including proteostasis components.


      • The readout of HTT aggregation (with methods that are not suitable) as a proxy for the role of UBE2D in proteostasis is not convincing. It would probably improve the manuscript to start with the proteomic analysis of UBE2D to demonstrate that its protein levels decrease with aging. The authors could then induce UBE2D in aged animals to assess the role of UBE2D in the proteome with aging.

      • UBE2D knockdown increases the number of HTT foci (Figure 1A), but the quantification is less convincing as depicted in Figure 1B, and other E2 enzymes show a stronger effect (e.g. Ubc6 that is only studied in Figures 1 and 2 without an explanation and Ubc84D). The graph is hard to interpret. What is the sample size and which genetic conditions show a significant change? P values and statistical analyses are missing.

      • The quantification of the HTT fluorescence cannot be used as a proxy for HTT aggregation. The authors should assess HTT aggregation by e.g. SDD-AGE, FRAP, filter retardation, etc. The quantification of the higher MW species of HTT in the SDS-PAGE is not ideal either as this simply reflects material that is stuck in the wells that could not enter the gel. Aggregation and hence high MW size could be one reason, but it can also be HTT trapped in cell debris, etc.

      • Does UBE2D ubiquitinate HTT? And thus, is HTT accumulation a suitable readout for the functional assessment of the E2 enzyme UBE2D?

      • The proteomic analyses could help to identify potential substrates for UBE2D.

      • Are there mutants available for UBE2D or conditional mutants? One caveat of RNAi is: first not complete knockdown and second, variable knockdown efficiencies that increase variability.

      • The analysis of the E3 enzymes does not add anything to this manuscript.

      • Figure 2B: the fluorescence intensities in images 2 and 4 are rather similar, yet the quantification shows significant differences.

      • The proteomic analyses could provide insights into the functional spectrum of UBE2D or even the identification of substrates. Yet apart from a DAVID analysis, none of the hits were followed up. In addition, only a few hits were labelled in the volcano plots (Figure 5). On what basis did the authors select those?

      • The manuscript remains at this stage rather descriptive.

    1. Reviewer #3 (Public Review):

      This study is a fine example of a recent productive trend in the integration of neuroimaging and molecular biology of the brain: in brief, overlaying some neuroimaging data (usually from a large cohort) onto the high spatial resolution gene expression in the Allen Human Brain Atlas data, derived from 6 individuals. By projecting structural MRI images over cell type proportions identified in the Allen data, the authors can represent various diseases in terms of their spatially-associated cell types. The result has implications for prioritizing the contributions of various cell types to each disease and creates an even-handed cell type profile through which the 11 diseases can be compared.

    1. Reviewer #3 (Public Review):


      Zai et al. test whether birds can modify their vocal behavior in a manner consistent with planning. They point out that while some animals are known to be capable of volitional control of vocalizations, it has been unclear if animals are capable of planning vocalizations-that is, modifying vocalizations towards a desired target without the need to learn this modification by practicing and comparing sensory feedback of practiced behavior to the behavioral target. They study zebra finches that have been trained to shift the pitch of song syllables away from their baseline values. It is known that once this training ends, zebra finches have a drive to modify pitch so that it is restored back to its baseline value. They take advantage of this drive to ask whether birds can implement this targeted pitch modification in a manner that looks like planning, by comparing the time course and magnitude of pitch modification in separate groups of birds who have undergone different manipulations of sensory and motor capabilities. A key finding is that birds who are deafened immediately before the onset of this pitch restoration paradigm, but after they have been shifted away from baseline, are able to shift pitch partially back towards their baseline target. In other words, this targeted pitch shift occurs even when birds don't have access to auditory feedback, which argues that this shift is not due to reinforcement-learning-guided practice, but is instead planned based on the difference between an internal representation of the target (baseline pitch) and current behavior (pitch the bird was singing immediately before deafening).

      The authors present additional behavioral studies arguing that this pitch shift requires auditory experience of song in its state after it has been shifted away from baseline (birds deafened early on, before the initial pitch shift away from baseline, do not exhibit any shift back towards baseline), and that a full shift back to baseline requires auditory feedback. The authors synthesize these results to argue that different mechanisms operate for small shifts (planning, which does not need auditory feedback) and large shifts (through a mechanism that requires auditory feedback).

      The authors also make a distinction between two kinds of planning: covert-not requiring any motor practice-and overt-requiring motor practice, but without access to auditory experience from which target mismatch could be computed. They argue that birds plan overtly, based on these deafening experiments as well as an analogous experiment involving temporary muting, which suggest that indeed motor practice is required for pitch shifts.


      The primary finding (that partially restorative pitch shift occurs even after deafening) rests on strong behavioral evidence. It is less clear to what extent this shift requires practice, since their analysis of pitch after deafening takes the average over within the first two hours of singing. If this shift is already evident in the first few renditions then this would be evidence for covert planning. Technical hurdles, such as limited sample sizes and unstable song after surgical deafening, make this difficult to test. (Similarly, the authors could test whether the first few renditions after recovery from muting already exhibit a shift back towards baseline.)

      This work will be a valuable addition to others studying birdsong learning and its neural mechanisms. It documents features of birdsong plasticity that are unexpected in standard models of birdsong learning based on reinforcement and are consistent with an additional, perhaps more cognitive, mechanism involving planning. As the authors point out, perhaps this framework offers a reinterpretation of the neural mechanisms underlying a prior finding of covert pitch learning in songbirds (Charlesworth et al., 2012).

      A strength of this work is the variety and detail in its behavioral studies, combined with sensory and motor manipulations, which on their own form a rich set of observations that are useful behavioral constraints on future studies.


      The argument that pitch modification in deafened birds requires some experience hearing their song in its shifted state prior to deafening (Fig. 4) is solid, but has an important caveat. Their argument rests on comparing two experimental conditions: one with and one without auditory experience of shifted pitch. However, these conditions also differ in the pitch training paradigm: the "with experience" condition was performed using white noise training, while the "without experience" condition used "lights off" training (Fig. 4A). It is possible that the differences in ability for these two groups to restore pitch to baseline reflects the training paradigm, not whether subjects had auditory experience of the pitch shift. Ideally, a control study would use one of the training paradigms for both conditions, which would be "lights off" or electrical stimulation (McGregor et al. 2022), since WN training cannot be performed in deafened birds. In the Discussion, in response to this point the authors point out that birds are known to recover their pitch shift if those shifts are driven using electrical stimulation as reinforcement (McGregor et al. 2022); however, it is arguably still relevant to know whether a similar recovery occurs for the "lights off" paradigm used here.

    1. Reviewer #2 (Public Review):

      When people help others is an important psychological and neuroscientific question. It has received much attention from the psychological side, but comparatively less from neuroscience. The paper translates some ideas from a social Psychology domain to neuroscience using a neuroeconomically oriented computational approach. In particular, the paper is concerned with the idea that people help others based on perceptions of merit/deservingness, but also because they require/need help. To this end, the authors conduct two experiments with an overlapping participant pool:

      (1) A social perception task in which people see images of people that have previously been rated on merit and need scales by other participants. In a blockwise fashion, people decide to whether the depicted person a) deserves help, b) needs help, and c) whether the person uses both hands (== control condition)<br /> (2) In an altruism task, people make costly helping decisions by deciding between giving a certain amount of money to themselves or another person. It is manipulated how much the other person needs and deserves the money.<br /> The authors use sound and robust computational modelling approach for both tasks using evidence accumulation models. They analyse behavioural data for both tasks, showing that the behaviour is indeed influenced, as expected, by the deservingness and the need of the shown people. Neurally, the authors use a block-wise analysis approach to find differences in activity levels across conditions of the social perception task. The authors do find large activation clusters in areas related to theory of mind. Interestingly, they also find that activity in TPJ that relates to the deservingness condition correlates with people's deservingness ratings while they do the task, but also with computational parameters related to helping others in the second task, the one that was conducted many months later. Also some behavioural parameters correlate across the two tasks, suggesting that how deserving of help others are perceived reflects a relatively stable feature that translates into concrete helping decisions later-on.

      The conclusions of the paper are overall well supported by the data.

      (1) I found that the modelling was done very thoroughly for both tasks. Overall, I had the impression that the methods are very solid with many supplementary analyses. The computational modelling is done very well.<br /> (2) A slight caveat, however, regarding this aspect, is that, in my view, the tasks are relatively simplistic, so that even the complex computational models do not as much as they can in the case of more complex paradigms. For example, the bias term in the model seems to correspond to the mean response rate in a very direct way (please correct me if I am wrong).<br /> (3) Related to the simple tasks: The fMRI data is analysed in a simple block-fashion. This is in my view not appropriate to discern the more subtle neural substrates of merit/need-based decision making or person perception. Correspondingly, the neural activation patterns (merit > control, need > control) are relatively broad and unspecific. They do not seem to differ in the classic theory of mind regions, that are the focus of the analyses.<br /> (4) However, the relationship between neural signal and behavioural merit sensitivity in TPJ is noteworthy.<br /> (5) The latter is even more the case, as the neural signal and aspects of the behaviour are correlated across subjects with the second task that is conducted much later. Such a correlation is very impressive and suggests that the tasks are sensitive for important individual differences in helping perception/behaviour.<br /> (6) That being said, the number of participants in the latter analyses are at the lower end of the number of participants that are these days used for across-participant correlations.

    1. Reviewer #2 (Public Review):

      Summary:<br /> The authors develop a normative account of automaticity-control trade-offs using the mathematics of information theory, which they apply to abstract neural networks. They use this framework to derive optimal trade-off solutions under particular task conditions.

      Strengths:<br /> On the positive side, I appreciate the effort to rigorously synthesize ideas about multi-tasking within an information-theoretic framework. There is potentially a lot of promise in this approach. The analyis is quite comprehensive and careful.

      Weaknesses:<br /> Generally speaking, the paper is very long and dense. I don't in principle mind reading long and dense papers (though conciseness is a virtue); it becomes more of a slog when it's not clear what new insights are being gained from laboring through the math. For example, after reading the Stroop section, I wasn't sure what new insight was provided by the information-theoretic formalism which goes beyond earlier models. Is this just an elegant formalism for expressing previously conceived ideas, or is there something fundamentally new here that's not predicted by other frameworks? The authors cite multiple related frameworks addressing the same kinds of data, but there is no systematic comparison of predictions or theoretical interpretations. Even in the Discussion, where related work is directly addressed, I didn't see much in terms of explaining how different models made different predictions, or even what predictions any of them make.

      After a discussion of the Stroop task early in the paper, the analysis quickly becomes disconnected from any empirical data. The analysis could be much more impactful if it was more tightly integrated with relevant empirical data.

    1. Reviewer #2 (Public Review):

      Summary:<br /> In "Speech-induced suppression and vocal feedback sensitivity in human cortex", Ozker and colleagues use intracranial EEG to understand audiomotor feedback during speech production using a speech production and delayed auditory feedback task. The purpose of the paper is to understand where and how speaker-induced suppression occurs, and whether this suppression might be related to feedback monitoring. First, they identified sites that showed auditory suppression during speech production using a single-word auditory repetition task and a visual reading task, then observed whether and how these electrodes show sensitivity to auditory feedback using a DAF paradigm. The stimuli were single words played auditorily or shown visually and repeated or read aloud by the participant. Neural data were recorded from regular- and high-density grids from the left and right hemispheres. The main findings were:<br /> • Speaker-induced suppression is strongest in the STG and MTG, and enhancement is generally seen in frontal/motor areas except for small regions of interest in the dorsal sensorimotor cortex and IFG, which can also show suppression.<br /> • Delayed auditory feedback, even when simultaneous, induces larger response amplitudes compared to the typical auditory word repetition and visual reading tasks. The authors presume this may be due to the effort and attention required to perform the DAF task.<br /> • The degree of speaker-induced suppression is correlated with sensitivity to delayed auditory feedback.<br /> • pSTG (behind TTS) is more strongly modulated by DAF than mid-anterior STG

      Strengths:<br /> Overall, I found the manuscript to be clear, the methodology and statistics to be solid, and the findings mostly quite robust. The large number of participants with high-density coverage over both the left and right lateral hemispheres allows for a greater dissection of the topography of speaker-induced suppression and changes due to audiomotor feedback. The tasks were well-designed and controlled for repetition suppression and other potential caveats.

      Weaknesses:<br /> (1) In Figure 1D, it would make more sense to align the results to the onset of articulation rather than the onset of the auditory or visual cue, since the point is to show that the responses during articulation are relatively similar. In this form, the more obvious difference is that there is an auditory response to the auditory stimulus, and none to the visual, which is expected, but not what I think the authors want to convey.<br /> (2) The DAF paradigm includes playing auditory feedback at 0, 50, 100, and 200 ms lag, and it is expected that some of these lags are more likely to induce dysfluencies than others. It would be helpful to include some analysis of whether the degree of suppression or enhancement varies by performance on the task, since some participants may find some lags more interfering than others.<br /> (3) Figure 3 shows data from only two electrodes from one patient. An analysis of how amplitude changes as a function of the lag across all of the participants who performed this task would be helpful to see how replicable these patterns of activity are across patients. Is sensitivity to DAF always seen as a change in amplitude, or are there ever changes in latency as well? The analysis in Figure 4 gets at which electrodes are sensitive to DAF but does not give a sense of whether the temporal profile is similar to those shown in Figure 3.<br /> (4) While the sensitivity index helps to show whether increasing amounts of feedback delay are correlated with increased response enhancement, it is not sensitive to nonlinear changes as a function of feedback delay, and it is not clear from Figure 3 or 4 whether such relationships exist. A deeper investigation into the response types observed during DAF would help to clarify whether this is truly a linear relationship, dependent on behavioral errors, or something else.

    1. Reviewer #2 (Public Review):

      Summary: Torsekar et al. use a leaf litter decomposition experiment across seasons, and in an aridity gradient, to provide a careful test of the role of different-sized soil invertebrates in shaping the rates of leaf litter decomposition. The authors found that large-sized invertebrates are more active in the summer and small-sized invertebrates in the winter. The summed effects of all invets then translated into similar levels of decomposition across seasons. The system breaks down in hyper-arid sites.

      Strengths: This is a well-written manuscript that provides a complete statistical analysis of a nice dataset. The authors provide a complete discussion of their results in the current literature.

      Weaknesses: I have only three minor comments. Please standardize the color across ALL figures (use the same color always for the same thing, and be friendly to color-blind people). Fig 1 may benefit from separating the orange line (micro and meso) into two lines that reflect your experimental setup and results. I would mention the dryland decomposition conundrum earlier in the Introduction. And the manuscript is full of minor grammatical errors. Some careful reading and fixing of all these minor mistakes here and there would be needed.

    1. Reviewer #2 (Public Review):

      Summary:<br /> This study investigates to what extent neural processing of autobiographical memory retrieval is altered in people who are unable to generate mental images ('aphantasia'). Self-report as well as objective measures were used to establish that the aphantasia group indeed had lower imagery vividness than the control group. The aphantasia group also reported fewer sensory and emotional details of autobiographical memories. In terms of brain activity, compared to controls, aphantasics had a reduction in activity in the hippocampus and an increase in activity in the visual cortex during autobiographical memory retrieval. For controls, these two regions were also functionally connected during autobiographical memory retrieval, which did not seem to be the case for aphantasics. Finally, resting-state connectivity between the visual cortex and hippocampus was positively related to autobiographical vividness in the control group but negatively in the aphantasia group. The results are in line with the idea that aphantasia is caused by an increase in noise within the visual system combined with a decrease in top-down communication from the hippocampus.

      Recent years have seen a lot of interest in the influence of aphantasia on other cognitive functions and one of the most consistent findings is deficits in autobiographical memory. This is one of the first studies to investigate the neural correlates underlying this difference, thereby substantially increasing our understanding of aphantasia and the relationship between mental imagery and autobiographical memory.

      Strengths:<br /> One of the major strengths of this study is the use of both self-report as well as objective measures to quantify imagery ability. Furthermore, the fMRI analyses are hypothesis-driven and reveal unambiguous results, with alterations in hippocampal and visual cortex processing seeming to underlie the deficits in autobiographical memory.

      Weaknesses:<br /> In terms of weaknesses, the control task, doing mathematical sums, also differs from the autobiographical memory task in aspects that are unrelated to imagery or memory, such as self-relevance and emotional salience, which makes it hard to conclude that the differences in activity are reflecting only the cognitive processes under investigation.

      Overall, I believe that this is a timely and important contribution to the field and will inspire novel avenues for further investigation.

    1. Reviewer #2 (Public Review):


      An important frontier in research on the mammalian retina is to understand the role of inhibitory amacrine cells in visual processing. These cell types have been found to play roles in tuning the output of the retina to specific visual features like motion and orientation. These cell types are understudied for two main reasons. First, there are many types of them-over 60 types in the mouse--, and second, they are quite unconventional as far as neurons go, as they have dendrites but often lack axons. The manuscript "Molecular identification of wide-field amacrine cells in mouse retina that encode stimulus orientation" by Park et al. provides a characterization of two (or possibly more) cell types within the amacrine cell class. Specifically, they characterize types of widefield amacrine cells (WACs), which they have gained genetic access to using an intersectional transgenic mouse strategy (Bhlhe22 x KOR). The authors used a broad range of experiments to characterize these WACs' anatomical properties, their stimulus tuning, and their wiring within the retina to their postsynaptic partners. These experiments include anatomy, electrophysiology, calcium imaging, and electron microscopy.


      Overall, the manuscript presents strong evidence that the Bhlhe22 x KOR WACs represent multiple WAC types in the retina and that these cell types are orientation tuned. The most exciting finding is that their orientation tuning is correlated with the physical orientations of the dendrites, which suggests that this anatomical feature supports the tuning in these cells.


      (1) The one common thought about widefield amacrine cells (WACs) is that these are spiking cells, which allows them to transmit signals along their long dendrites. The authors state that "none of the recorded cells fired conventional action potentials (spikes)." (p.7) This is a surprising finding, which leads to an interesting question: how do these cells integrate information from their presynaptic partners to generate the orientation tuning observed without the ability to conduct over long distances? However, the authors have not fully ruled out that the cells do spike.<br /> For instance, one possibility is that spiking requires a specific stimulus and the authors did not play that stimulus during their recordings. Most somatic recordings did not result in very large depolarizations, and the cell could still be below threshold. Depolarizing the cell to attempt to evoke spikes directly could be used to explore this possibility. A second possibility is that the dendrites spike, but these spikes are attenuated at the soma. Direct injections of current into the cells to evoke such spikes could be used to observe whether dendritic spiking occurs. A third possibility is that some important machinery for spiking is being washed out by the whole cell recordings. Cell attached recordings could be used to assess whether spiking occurs in an intact cell. The authors may wish to address these possibilities experimentally, but at least should qualify their statement about spiking in these cells and discuss these possibilities.

      (2) It was unclear in this paper how many cell types are present in the intersectional cross. I think the paper would be stronger if they clarified that. For instance, in Fig. 1B: the authors show Bhlhe22 expression in amacrine cells from a previous study. They should also show the expression of the other gene they used in their intersectional strategy, the Kappa Opioid receptor (Oprk1), which is available in the same dataset. Another piece of analysis that could help would be clearer quantification of the anatomical features of the cells. For instance, the cells shown in Fig. 2 A2 vs. B2 have clear differences in number of dendrites and the relative angles of the dendrites. The On cells appear to have more dendrites evenly spread around the soma, while the Off cells appear to have more clumping along a line. Is this the case for all the cells recorded, or just these examples? The authors should present some population-level quantification.

      (3) In Fig. 4E, the preferred orientation of calcium responses and physical orientation of the dendrites appears to clump around specific orientations. The Methods don't mention if the retinas were aligned to the body axis during the dissection. Is this clumping real, or is this an artifact of the analysis? If there are specific preferred orientations to these WAC cell types, that would be important to discuss in the paper - for instance how this relates to the preferred direction in the direction selectivity system or how it might relate to the function of these cells for behavior.

    1. Reviewer #2 (Public Review):

      Summary:<br /> This paper by Howell and colleagues focuses on describing macro patterns of anatomical connections between cortical areas and the thalamus in the human brain. This research topic poses significant challenges due to the inability to apply the gold standard of mapping anatomical connections, and viral tracing, to humans. Moreover, when applied to animal models, viral tracing often has limited scope and resolution. As a result, the field has thus far lacked a comprehensive and validated description of thalamocortical anatomical connectivity in humans.

      The paper focuses on an intriguing question: whether anatomical connections from the cortex to the thalamus exhibit a diffuse pattern, targeting multiple thalamic sub-regions, or a more focal pattern, selectively targeting specific thalamic subregions. This novel and significant question holds substantial implications for our understanding of thalamocortical information processing. The authors have developed a sophisticated and innovative quantitative metric to address this question. The study revealed two main patterns: a focal pattern originating from sensorimotor cortical regions to the posterior thalamus and a more diffuse pattern from associative cortical regions to the anterior-medial thalamus. These findings are then framed within the context of thalamocortical motifs involved in feedforward versus feedback processing.

      While this paper has several strengths, including its significance and methodological sophistication, its extension to non-human primates, and other forms of data for testing hierarchy, there are important limitations. These limitations, discussed in more detail below, primarily concern tracking accuracy and the known limitations of using diffusion data to track thalamocortical connections in humans. These limitations may potentially introduce systematic biases into the results, weakening their support. Addressing these limitations through better validation is crucial, though some may remain unresolved due to the fundamental constraints of diffusion imaging.

      Strengths:<br /> This research holds significant basic, clinical, and translational importance as it contributes to our understanding of how thalamocortical anatomical connectivity is organized. Its relevance spans cognitive, systems, and clinical neuroscientists in various subfields.

      The central question addressed in this study, concerning whether cortico-thalamic projections are focal or diffuse, is both novel and previously unexplored to the best of my knowledge. It offers valuable insights into the potential capabilities of the thalamocortical system in terms of parallel or integrative processing.

      The development of quantitative metrics to analyze anatomical connectivity is highly innovative and suitable for addressing the research questions at hand.

      The findings are not only interesting but also robust, aligning with data from other sources that suggest a hierarchical organization in the brain.

      Using PCA to integrate results across a range of thresholds is innovative.

      The study's sophisticated integration of a diverse range of data and methods provides strong, converging support for its main findings, enhancing the overall credibility of the research.

      Weaknesses:<br /> Structural thalamocortical connectivity was estimated from diffusion imaging data obtained from the HCP dataset. Consequently, the robustness and accuracy of the results depend on the suitability of this data for such a purpose. Conducting tractography on the cortical-thalamic system is recognized as a challenging endeavor for several reasons. First, diffusion directions lose their clearly defined principal orientations once they reach the deep thalamic nuclei, rendering the tracking of structures on the medial side, such as the medial dorsal (MD) and pulvinar nuclei difficult. Somewhat concerning is those are regions that authors found to show diffuse connectivity patterns. Second, the thalamic radiata diverge into several directions, and routes to the lateral surface often lack the clarity necessary for successful tracking. It is unclear if all cortical regions have similar levels of accuracy, and some of the lateral associative regions might have less accurate tracking, making them appear to be more diffuse, biasing the results.

      While the methodology employed by the authors appears to be state-of-the-art, there exists uncertainty regarding its appropriateness for validation, given the well-documented issues of false positives and false negatives in probabilistic diffusion tractography, as discussed by Thomas et al. 2014 PNAS. Although replicating the results in both humans and non-human primates strengthens the study, a more compelling validation approach would involve demonstrating the method's ability to accurately trace known tracts from established tracing studies or, even better, employing phantom track data. Many of the control analyses the authors presented, such as track density, do not speak to accuracy.

      Because the authors included data from all thresholds, it seems likely that false positive tracks were included in the results. The methodology described seems to unavoidably include anatomically implausible pathways in the spatial extent analyses.

      If tracking the medial thalamus is indeed less accurate, characterized by higher false positives and false negatives, it could potentially lead to increased variability among individual subjects. In cases where results are averaged across subjects, as the authors have apparently done, this could inadvertently contribute to the emergence of the "diffuse" motif, as described in the context of the associative cortex. This presents a critical issue that requires a more thorough control analysis and validation process to ensure that the main results are not artifacts resulting from limitations in tractography.

      The thresholding approach taken in the manuscript aimed to control for inter-areal differences in anatomical connection strength that could confound the ED estimates. Here I am not quite clear why inter-areal differences in anatomical connection strength have to be controlled. A global threshold applied on all thalamic voxels might kill some connections that are weak but do exist. Those weak pathways are less likely to survive at high thresholds. In the meantime, the mean ED is weighted, with more conservative thresholds having higher weights. That being said, isn't it possible that more robust pathways might contribute more to the mean ED than weaker pathways?

    1. Reviewer #2 (Public Review):

      Summary:<br /> This computational modeling study addresses the observation that variable observations are interpreted differently depending on how much uncertainty an agent expects from its environment. That is, the same mismatch between a stimulus and an expected stimulus would be less significant, and specifically would represent a smaller prediction error, in an environment with a high degree of variability than in one where observations have historically been similar to each other. The authors show that if two different classes of inhibitory interneurons, the PV and SST cells, (1) encode different aspects of a stimulus distribution and (2) act in different (divisive vs. subtractive) ways, and if (3) synaptic weights evolve in a way that causes the impact of certain inputs to balance the firing rates of the targets of those inputs, then pyramidal neurons in layer 2/3 of canonical cortical circuits can indeed encode uncertainty-modulated prediction errors. To achieve this result, SST neurons learn to represent the mean of a stimulus distribution and PV neurons its variance.

      The impact of uncertainty on prediction errors is an understudied topic, and this study provides an intriguing and elegant new framework for how this impact could be achieved and what effects it could produce. The ideas here differ from past proposals about how neuronal firing represents uncertainty. The developed theory is accompanied by several predictions for future experimental testing, including the existence of different forms of coding by different subclasses of PV interneurons, which target different sets of SST interneurons (as well as pyramidal cells). The authors are able to point to some experimental observations that are at least consistent with their computational results. The simulations shown demonstrate that if we accept its assumptions, then the authors' theory works very well: SSTs learn to represent the mean of a stimulus distribution, PVs learn to estimate its variance, firing rates of other model neurons scale as they should, and the level of uncertainty automatically tunes the learning rate, so that variable observations are less impactful in a high uncertainty setting.

      Strengths:<br /> The ideas in this work are novel and elegant, and they are instantiated in a progression of simulations that demonstrate the behavior of the circuit. The framework used by the authors is biologically plausible and matches some known biological data. The results attained, as well as the assumptions that go into the theory, provide several predictions for future experimental testing.

      Weaknesses:<br /> Overall, I found this manuscript to be frustrating to read and to try to understand in detail, especially the Results section from the UPE/Figure 4 part to the end and parts of the Methods section. I don't think the main ideas are so complicated, and it should be possible to provide a much clearer presentation.

      For me, one source of confusion is the comparison across Figure 1EF, Figure 2A, Figure 3A, Figure 4AB, and Figure 5A. All of these are meant to be schematics of the same circuit (although with an extra neuron in Figure 5), yet other than Figures 1EF and 4AB, no two are the same! There should be a clear, consistent schematic used, with identical labeling of input sources, neuron types, etc. across all of these panels.

      The flow of the Results section overall is clear until the ``Calculation of the UPE in Layer 2/3 error neurons' and Figure 4, where I find that things become significantly more confusing. The mention of NMDA and calcium spikes comes out of the blue, and it's not clear to me how this fits into the authors' theory. Moreover: Why would this property of pyramidal cells cause the PV firing rate to increase as stated? The authors refer to one set of weights (from SSTs to UPE) needing to match two targets (weights from s to UPE and weights from mean representation to UPE); how can one set of weights match two targets? Why do the authors mention ``out-of-distribution detection' here when that property is not explored later in the paper? (see also below for other comments on Figure 4)

      Coming back to one of the points in the previous paragraph: How realistic is this exact matching of weights, as well as the weight matching that the theory requires in terms of the weights from the SSTs to the PVs and the weights from the stimuli to the PVs? This point should receive significant elaboration in the discussion, with biological evidence provided. I would not advocate for the authors' uncertainty prediction theory, despite its elegant aspects, without some evidence that this weight matching occurs in the brain. Also, the authors point out on page 3 that unlike their theory, "...SSTs can also have divisive effects, and PVs can have subtractive effects, dependent on circuit and postsynaptic properties". This should be revisited in the Discussion, and the authors should explain why these effects are not problematic for their theory. In a similar vein, this work assumes the existence of two different populations of SST neurons with distinct UPE (pyramidal) targets. The Discussion doesn't say much about any evidence for this assumption, which should be more thoroughly discussed and justified.

      Finally, I think this is a paper that would have been clearer if the equations had been interspersed within the results. Within the given format, I think the authors should include many more references to the Methods section, with specific equation numbers, where they are relevant throughout the Results section. The lack of clarity is certainly made worse by the current state of the Methods section, where there is far too much repetition and poor ordering of material throughout.

    1. Reviewer #2 (Public Review):


      The authors used 2-photon Ca2+-imaging to study the activity of ventral tegmental area (VTA) and locus coeruleus (LC) axons in the CA1 region of the dorsal hippocampus in head-fixed male mice moving on linear paths in virtual reality (VR) environments.

      The main findings were as follows:

      - In a familiar environment, the activity of both VTA axons and LC axons increased with the mice's running speed on the Styrofoam wheel, with which they could move along a linear track through a VR environment.<br /> - VTA, but not LC, axons showed marked reward position-related activity, showing a ramping-up of activity when mice approached a learned reward position.<br /> - In contrast, the activity of LC axons ramped up before the initiation of movement on the Styrofoam wheel.<br /> - In addition, exposure to a novel VR environment increased LC axon activity, but not VTA axon activity.

      Overall, the study shows that the activity of catecholaminergic axons from VTA and LC to dorsal hippocampal CA1 can partly reflect distinct environmental, behavioral, and cognitive factors. Whereas both VTA and LC activity reflected running speed, VTA, but not LC axon activity reflected the approach of a learned reward, and LC, but not VTA, axon activity reflected initiation of running and novelty of the VR environment.

      I have no specific expertise with respect to 2-photon imaging, so cannot evaluate the validity of the specific methods used to collect and analyse 2-photon calcium imaging data of axonal activity.


      (1) Using a state-of-the-art approach to record separately the activity of VTA and LC axons with high temporal resolution in awake mice moving through virtual environments, the authors provide convincing evidence that the activity of VTA and LC axons projecting to dorsal CA1 reflect partly distinct environmental, behavioral and cognitive factors.

      (2) The study will help a) to interpret previous findings on how hippocampal dopamine and norepinephrine or selective manipulations of hippocampal LC or VTA inputs modulate behavior and b) to generate specific hypotheses on the impact of selective manipulations of hippocampal LC or VTA inputs on behavior.


      (1) The findings are correlational and do not allow strong conclusions on how VTA or LC inputs to dorsal CA1 affect cognition and behavior. However, as indicated above under Strengths, the findings will aid the interpretation of previous findings and help to generate new hypotheses as to how VTA or LC inputs to dorsal CA1 affect distinct cognitive and behavioral functions.

      (2) Some aspects of the methodology would benefit from clarification.<br /> First, to help others to better scrutinize, evaluate, and potentially to reproduce the research, the authors may wish to check if their reporting follows the ARRIVE (Animal Research: Reporting of In Vivo Experiments) guidelines for the full and transparent reporting of research involving animals (https://arriveguidelines.org/). For example, I think it would be important to include a sample size justification (e.g., based on previous studies, considerations of statistical power, practical considerations, or a combination of these factors). The authors should also include the provenance of the mice. Moreover, although I am not an expert in 2-photon imaging, I think it would be useful to provide a clearer description of exclusion criteria for imaging data.<br /> Second, why were different linear tracks used for studies of VTA and LC axon activity (from line 362)? Could this potentially contribute to the partly distinct activity correlates that were found for VTA and LC axons?<br /> Third, the authors seem to have used two different criteria for defining immobility. Immobility was defined as moving at <5 cm/s for the behavioral analysis in Figure 3a, but as <0.2 cm/s for the imaging data analysis in Figure 4 (see legends to these figures and also see Methods, from line 447, line 469, line 498)? I do not understand why, and it would be good if the authors explained this.

      (3) In the Results section (from line 182) the authors convincingly addressed the possibility that less time spent immobile in the novel environment may have contributed to the novelty-induced increase of LC axon activity in dorsal CA1 (Figure 4). In addition, initially (for the first 2-4 laps), the mice also ran more slowly in the novel environment (Figure 3aIII, top panel). Given that LC and VTA axon activity were both increasing with velocity (Figure 1F), reduced velocity in the novel environment may have reduced LC and VTA axon activity, but this possibility was not addressed. Reduced LC axon activity in the novel environment could have blunted the novelty-induced increase. More importantly, any potential novelty-induced increase in VTA axon activity could have been masked by decreases in VTA axon activity due to reduced velocity. The latter may help to explain the discrepancy between the present study and previous findings that VTA neuron firing was increased by novelty (see Discussion, from line 243). It may be useful for the authors to address these possibilities based on their data in the Results section, or to consider them in their Discussion.

      (4) Sensory properties of the water reward, which the mice may be able to detect, could account for reward-related activity of VTA axons (instead of an expectation of reward). Do the authors have evidence that this is not the case? Occasional probe trials, intermixed with rewarded trials, could be used to test for this possibility.

    1. Reviewer #2 (Public Review):

      The manuscript presents a method for tracking neurons recorded with neuropixels across days, based on the matching of cells' spatial layouts and spike waveforms at the population level. The method is tested on neuropixel recordings of the visual cortex carried over 47 days, with the similarity in visual receptive fields used to verify the matches in cell identity.

      This is an important tool as electrophysiological recordings have been notoriously limited in terms of tracking individual neuron's fate over time, unlike imaging approaches. The method is generally sound and properly tested but I think some clarifications would be helpful regarding the implementation of the method and some of the results.

      (1) Page 6: I am not sure I understand the point of the imposed drift and how the value of 12µm is chosen.<br /> Is it that various values of imposed drift are tried, the EMDs computed to produce histograms as in Fig2c, values of rigid drifts estimated based on the histogram modes, and then the value associated with minimum cost selected? The corresponding manuscript section would need some clarification regarding this aspect.

      (2) The EMD is based on the linear sum, with identical weight, of cell distance and waveform similarity measures. How performance is affected from using a different weighting of the 2 measures (for instance, using only cell distance and no waveform similarity)? It is common that spike waveforms associated to a given neuron appear different on different channels of silicon probes (i.e. the spike waveform changes depending the position of recording sites relative to the neuron), so I wonder if that feature is helping or potentially impeding the tracking.

      (3) Fig.5: I assume the dots are representing time gaps for which cell tracking is estimated. The 3 different groups of colors correspond to the 3 mice used. For a given mouse, I would expect to always see 3 dots (for ref, putative and mixed) for a given tracking gap. However, for mouse AL036 for instance, at tracking duration of 8 days, a dot is visible for mixed but not for ref and putative. How come this is happening?

      (4) Matched visual responses are measured by the sum of correlation of visual fingerprints, which are vectors of cells' average firing rate across visual stimuli, and correlation of PSTHs, which are implemented over all visual stimuli combined. I believe that some information is lost from combining all stimuli in the implementation of PSTHs (assuming that PSTHs show specificity to individual visual stimuli). The authors might consider, as alternative measure of matched visual responses, a correlation of the vector concatenations of all stimulus PSTHs. Such simpler measure would contain both visual fingerprint and PSTH information, and would not lose the information of PSTH specificity across visual stimuli.

      2nd revision

      (1) From reading the authors' response, I could understand several of the points I had previously missed. I still think that some part of the results are not straightforward to understand, the way it is written. Adding a few introductory sentences to the paragraphs (for instance the one related to my previous point #1) would really help the reader comprehend this important work.

      (2) Following on my point #2, the w value used is 1500 and the recovery rate doesn't seems to reach a peak but rather a plateau for larger w values. From such large w value and the absence of a downward trend for increasing values, it would seem that only the 'waveform distance' matter and that the 'location distance' doesn't contribute much to the EMD distance. Is this correct?

    1. Reviewer #2 (Public Review):

      Summary:<br /> TDP-43 mislocalization occurs in nearly all of ALS, roughly half of FTD, and as a co-pathology in roughly half of AD cases. Both gain-of-function and loss-of-function mechanisms associated with this mislocalization likely contribute to disease pathogeneisis.

      Here, the authors describe a new method to induce TDP-43 mislocalization in cellular models. They endogenously-tagged TDP-43 with a C-terminal GFP tag in human iPSCs. They then expressed an intrabody - fused with a nuclear export signal (NES) - that targeted GFP to the cytosol. Expression of this intrabody-NES in human iPSC-derived neurons induced nuclear depletion of homozygous TDP-43-GFP, caused its mislocalization to the cytosol, and at least in some cells appeared to cause cytosolic aggregates. This mislocalization was accompanied by induction of cryptic exons in well characterized transcripts known to be regulated by TDP-43, a hallmark of functional TDP-43 loss and consistent with pathological nuclear TDP-43 depletion. Interestingly, in heterozygous TDP-43-GFP neurons, expression of intrabody-NES appeared to also induce the mislocalization of untagged TDP-43 in roughly half of the neurons, suggesting that this system can also be used to study effects on untagged endogenous TDP-43 as well as TDP-43-GFP fusion protein.

      Strengths:<br /> A clearer understanding of how TDP-43 mislocalization alters cellular function, as well as pathways that mitigate clearance of TDP-43 aggregates, is critical. But modeling TDP-43 mislocalization in disease-relevant cellular systems has proven to be challenging. High levels of overexpression of TDP-43 lacking an NES can drive endogenous TDP-43 mislocalization, but such overexpression has direct and artificial consequences on certain cellular features (e.g. altered exon skipping) not seen in diseased patients. Toxic small molecules such as MG132 and arsenite can induce TDP-43 mislocalization, but co-induce myriad additional cellular dysfunctions unrelated to TDP-43 or ALS. TDP-43 binding oligonucleotides can cause cytosolic mislocalization as well. Each system has pros and cons, and additional ways to induce TDP-43 mislocalization would be useful for the field. The method described in this manuscript could provide researchers with a powerful way to study the combined biology of cytosolic TDP-43 mislocalization and nuclear TDP-43 depletion, with additional temporal control that is lacking in current method. Indeed, the authors see some evidence of differences in RNA splicing caused by pure TDP-43 depletion versus their induced mislocalization model. Finally, their method may be especially useful in determining how TDP-43 aggregates are cleared by cells, potentially revealing new biological pathways that could be therapeutically targeted.

      Weaknesses:<br /> The method and supporting data have limitations in its current form, outlined below, and in its current form the findings are rather preliminary.

      • Tagging of TDP-43 with a bulky GFP tag may alter its normal physiological functions, for example phase separation properties and functions within complex ribonucleoprotein complexes. In addition, alternative isoforms of TDP-43 (e.g. "short" TDP-43, would not be GFP tagged and therefore these species would not be directly manipulatable or visualizable with the tools currently employed in the manuscript.<br /> • The data regarding potential mislocalization of endogenous TDP-43 in the heterozygous TDP-43-GFP lines is especially intriguing and important, yet very little characterization was done. Does untagged TDP-43 co-aggregate with the tagged TDP-43? Is localization of TDP-43 immunostaining the same as the GFP signal in these cells?<br /> • The experiments in which dox was used to induce the nanobody-NES, then dox withdrawn to study potential longer-lasting or self-perpetuating inductions of aggregation is potentially interesting. However, the nanobody was only measured at the RNA level. We know that protein half lives can be very long in neurons, and therefore residual nanobody could be present at these delayed time points. The key measurement to make would be at the protein level of the nanobody if any conclusions are be made from this experiment.<br /> • Potential differences in splicing and microRNAs between TDP-43 knockdown and TDP-43 mislocalization are potentially interesting. However, different patterns of dysregulated RNA splicing can occur at different levels of TDP-knockdown, thus it is difficult to asses whether the changes observed in this paper are due to mislocalization per se, or rather just reflect differences in nuclear TDP-43 abundance.

    1. Faculty members have begun using it tohelp them design their courses, viewing it as a tool that can make instructionmore effective and engaging.In his business-communication class, Carl Follmer, director of the FrankBusiness Communication Center in the University of Iowa’s Tippie College ofBusiness, created an AI chatbot he calls Impy.

      professors are using AI to enhance teaching, like creating chatbots and improving lesson plans, showing AI's potential to improve education.

    2. Some faculty members said theyfeared colleges failed to recognize the potential dangers of AI, and argued for acomplete ban, better detection tools, and a return to in-class, pen-and-papertest-taking.

      I think that we should learn how to use AI correctly,not using it to cheat

    3. That small number may simply reflect that professors who hadexperimented with AI — even if they concluded it is a danger to learning —probably had more reason to write to us.

      It was surprising for professors to realize that many students had limited knowledge about AI

    1. Reviewer #2 (Public Review):

      Summary:<br /> In this manuscript, the authors reported the biological role of RBM7 deficiency in promoting metastasis of breast cancer. They further used a combination of genomic and molecular biology approaches to discover a novel role of RBM7 in controlling alternative splicing of many genes in cell migration and invasion, which is responsible for the RBM7 activity in suppressing metastasis. They conducted an in-depth mechanistic study on one of the main targets of RBM7, MFGE8, and established a regulatory pathway between RBM7, MFGE8-L/MFGE8-S splicing switch, and NF-κB signaling cascade. This link between RBM7 and cancer pathology was further supported by analysis of clinical data.

      Strengths:<br /> Overall, this is a very comprehensive study with lots of data, and the evidence is consistent and convincing. Their main conclusion was supported by many lines of evidence, and the results in animal models are pretty impressive.

      Weaknesses:<br /> However, there are some controls missing, and the data presentation needs to be improved. The writing of the manuscript needs some grammatical improvements because some of the wording might be confusing.

      Specific comments:<br /> (1) Figure 2. The figure legend is missing for Figure 2C, which caused many mislabels in the rest of the panels. The labels in the main text are correct, but the authors should check the figure legend more carefully. Also in Figure 2C, it is not clear why the authors choose to examine the expression of this subset of genes. The authors only refer to them as "a series of metastasis-related genes", but it is not clear what criteria they used to select these genes for expression analysis.

      (2) Line 218-220. The comparison of PSI changes in different types of AS events is misleading. Because these AS events are regulated in different mechanisms, they cannot draw the conclusion that "the presence of RBM7 may promote the usage of alternative splice sites". For example, the regulators of SE and IR may even be opposite, and thus they should discuss this in different contexts. If they want to conclude this point, they should specifically discuss the SE and A5SS rather than draw an overall conclusion.

      (3) In the section starting at line 243, they first referred to the gene and isoforms as "EFG-E8" or "EFG-E8-L", but later used "EFGE8" and "EFGE8-L". Please be consistent here. In addition, it will be more informative if the authors add a diagram of the difference between two EFGE8 isoforms in terms of protein structure or domain configuration.

      (4) Figure 7B and 7C. The figures need quantification of the inclusion of MFGE exon7 (PSI value) in addition to the RT-PCR gel. The difference seems to be small for some patients.

      Minor comments:<br /> The writing in many places is a little odd or somewhat confusing, I am listing some examples, but the authors need to polish the whole manuscript more to improve the writing.

      (1) Line 169-170, "...followed by profiling high-throughput transcriptome by RNA sequencing", should be "followed by high-throughput transcriptome profiling with RNA sequencing".

      (2) Line 170, "displayed a wide of RBM7-regulated genes were enriched...", they should add a "that" after the "displayed" as the sentence is very long.

      (3) Line 213, "PSI (percent splicing inclusion)" is not correct, PSI stands for "percent spliced in".

      (4) Line 216-217, the sentence is long and fragmented, they should break it into two sentences.

      (5) Line 224, the "tethering" should be changed to "recognizing". There is a subtle difference in the mechanistic implication between these two words.

      (6) Line 250, should be changed to "..in the ratio of two MFGE8 isoforms".

    1. Reviewer #2 (Public Review):

      Summary:<br /> The authors generated proteome profiles of 51 cancer cell lines treated with pharmacologic ascorbate. The idea was to identify players responsible for the sensitivity or relative resistance to ascorbate to delineate mechanisms of action of this potentially transformative new treatment.

      Strengths:<br /> The proteomic profiles themselves. The identification of MAPK and mTOR as overrepresented proteomic elements and close correlations between proliferation, cell cycle mediators, and sensitivity to ascorbate indicate that rapidly proliferating cancer may be more sensitive to ascorbate. Also, the finding that sensitivity to ascorbate is correlated to different pathways in different types of cancer is interesting. For instance, in some pancreatic and lung cancers sensitivity seemed to be related to iron handling while in breast DNA damage/repair seemed to be most involved.

      Weaknesses:<br /> The study is quite descriptive. Although the proteomes indicate what pathways are more or less represented after ascorbate challenge there is little mechanistic information about their relevance to the sensitivity to ascorbate. Since activity is not assessed, proteins may be present in higher or lower abundance but not necessarily at the peak of their activity. Also, many statements are made as "known facts" but no references are provided.

    1. Reviewer #2 (Public Review):

      In this manuscript by Kang et. al., the authors investigated the mechanisms of K+-efflux-coupled SOCE in NLRP3 inflammasome activation by LP(LPS+PA, and identified an essential role of TRPM2-mediated lysosomal Ca2+ release and subsequent IP3Rs-mediated ER Ca2+ release and store depletion in the process. K+ efflux is shown to be mediated by a Ca2+-activated K+ channel (KCa3.1). LP-induced cytosolic Ca2+ elevation also induced a delayed activation of ASK1 and JNK, leading to ASC oligomerization and NLRP3 inflammasome activation. Overall, this is an interesting and comprehensive study that has identified several novel molecular players in metabolic inflammation. The manuscript can benefit if the following concerns could be addressed.

      (1) The expression of TRPM2 in the lysosomes of macrophages needs to more definitively established. For instance, the cADPR-induced TRPM2 currents should be abolished in the TRPM2 KO macrophages. Can you show the lysosomal expression of TRPM2, either with an antibody if available or with a fluorescently-tagged TRPM2 overexpression construct?

      In the revised manuscript, the authors did not perform the KO control experiment to support that cADPR-induced currents were indeed mediated by TRPM2. Additonally, the co-localization analyses failed to convincingly establish the lysosomal perimeter membrane residence of TRPM2.

      (2) Can you use your TRPM2 inhibitor ACA to pharmacologically phenocopy some results, e.g., about [Ca2+]ER, [Ca2+]LY, and [Ca2+]i from the TRPM2 knockout?

      In the revised manuscript, most suggested experiments were not performed. In the only experiment that was conducted, Figure 3-figure supplement 1A, the effect of ACA was marginal.

      (3) In Fig. S4A, bathing the cells in zero Ca2+ for three hours might not be ideal. Can you use a SOCE inhibitor, e.g, YM-58483, to make the point?

      The specific suggested experiment was not performed.

      (4) In Fig. 1A, you need a positive control, e.g., ionomycin, to show that the GPN response was selectively reduced upon LP treatment.

      Results in a previous study cannot be used to substitute the missing control experiments in the current study.

    1. Reviewer #2 (Public Review):


      In this work, the authors report a role for the well-studied GTPase Rab7 in gut homeostasis. The study combines cell culture experiments with mouse models and human ulcerative colitis patient tissues to propose a model where, Rab7 by delivering a key mucous component CLCA1 to lysosomes, regulates its secretion in the goblet cells. This is important for the maintenance of mucous permeability and gut microbiota composition. In the absence of Rab7, CLCA1 protein levels are higher in tissues as well as the mucus layer, corroborating with the anti-correlation of Rab7 (reduced) and CLCA1 (increased) from ulcerative colitis patients. The authors conclude that Rab7 maintains CLCA1 level by controlling its lysosomal degradation, thereby playing a vital role in mucous composition, colon integrity, and gut homeostasis.


      The biggest strength of this manuscript is the combination of cell culture, mouse model, and human tissues. The experiments are largely well done and in most cases, the results support their conclusions. The authors go to substantial lengths to find a link, such as alteration in microbiota, or mucus proteomics.


      There are also some weaknesses that need to be addressed. The association of Rab7 with UC in both mice and humans is clear, however, claims on the underlying mechanisms are less clear. Does Rab7 regulate specifically CLCA1 delivery to lysosomes, or is it an outcome of a generic trafficking defect? CLCA1 is a secretory protein, how does it get routed to lysosomes, i.e. through Golgi-derived vesicles, or by endocytosis of mucous components? Mechanistic details on how CLCA1 is routed to lysosomes will add substantial value.

      Why does the level of Rab7 fluctuate during DSS treatment (Fig 1B)? Does the reduction seen in Rab7 levels (by WB) also reflect in reduced Rab7 endosome numbers? Are other late endosomal (and lysosomal) populations also reduced upon DSS treatment and UC? Is there a general defect in lysosomal function?

      While it is clear that the pattern of Muc2 in WT and Rab7-/- cells are different, how this corroborates with the in vivo data on alterations in mucus layer permeability - as claimed - is not clear.

      The use of an in vivo intestine-specific Rab7 silencing model is good. Why does Rab7 KD itself not capitulate aspects of DSS treatment, rather it seems to exacerbate it.

      The use of mucous proteomics to identify mechanisms of Rab7-mediated phenotype is a good approach. The replicates in the proteomics dataset (Fig 6F) do not seem to match. Detailing of methodology used for analysis will help to overcome these doubts.

      The work shows a role for a well-studied GTPase, Rab7, in gut homeostasis. This is an important finding and could provide scope and testable hypotheses for future studies aimed at understanding in detail the mechanisms involved.

    1. Reviewer #2 (Public Review):

      Summary:<br /> Pluripotent stem cells are powerful tools for understanding development, differentiation, and disease modeling. The capacity of stem cells to differentiate into various cell types holds great promise for therapeutic applications. However, ethical concerns restrict the use of human embryonic stem cells (hESCs). Consequently, induced human pluripotent stem cells (ihPSCs) offer an attractive alternative for modeling rare diseases, drug screening, and regenerative medicine. A comprehensive understanding of ihPSCs is crucial to establish their similarities and differences compared to hESCs. This work demonstrates systematic differences in the reprogramming of nuclear and non-nuclear proteomes in ihPSCs.

      Strengths:<br /> The authors employed quantitative mass spectrometry to compare protein expression differences between independently derived ihPSC and hESC cell lines. Qualitatively, protein expression profiles in ihPSC and hESC were found to be very similar. However, when comparing protein concentration at a cellular level, it became evident that ihPSCs express higher levels of proteins in the cytoplasm, mitochondria, and plasma membrane, while the expression of nuclear proteins is similar between ihPSCs and hESCs. A higher expression of proteins in ihPSCs was verified by an independent approach, and flow cytometry confirmed that ihPSCs had larger cell sizes than hESCs. The differences in protein expression were reflected in functional distinctions. For instance, the higher expression of mitochondrial metabolic enzymes, glutamine transporters, and lipid biosynthesis enzymes in ihPSCs was associated with enhanced mitochondrial potential, increased ability to uptake glutamine, and increased ability to form lipid droplets.

      Weaknesses:<br /> While this finding is intriguing and interesting, the study falls short of explaining the mechanistic reasons for the observed quantitative proteome differences. It remains unclear whether the increased expression of proteins in ihPSCs is due to enhanced transcription of the genes encoding this group of proteins or due to other reasons, for example, differences in mRNA translation efficiency. Another unresolved question pertains to how the cell type origin influences ihPSC proteomes. For instance, whether ihPSCs derived from fibroblasts, lymphocytes, and other cell types all exhibit differences in their cell size and increased expression of cytoplasmic and mitochondrial proteins. Analyzing ihPSCs derived from different cell types and by different investigators would be necessary to address these questions.

    1. Reviewer #2 (Public Review):

      Summary:<br /> The authors constructed multi-scale modeling and simulation methods to investigate the electrical and mechanical properties of acute and chronic myocardial infarction (MI). They simulated three acute MI conditions and two chronic MI conditions. They showed that these conditions gave rise to distinct ECG characteristics that have been seen in clinical settings. They showed that the post-MI remodeling reduced ejection fraction up to 10% due to weaker calcium current or SR calcium uptake, but the reduction of ejection fraction is not sensitive to remodeling of the repolarization heterogeneities.

      Strengths:<br /> The major strength of this study is the construction of computer modeling that simulates both electrical behavior and mechanical behavior for post-MI remodeling. The links of different heterogeneities due to MI remodeling to different ECG characteristics provide some useful information for understanding complex clinical problems.

      Weaknesses:<br /> The rationale (e.g., physiological or medical bases) for choosing the 3 acute MI and 2 chronic MI settings is not clear. Although the authors presented a huge number of simulation data, in particular in the supplemental materials, it is not clearly stated what novel findings or mechanistic insights this study gained beyond the current understanding of the problem.

    1. Reviewer #2 (Public Review):

      Summary:<br /> Two hypotheses could explain the observation that genes of more complex organisms tend to undergo more alternative splicing. On one hand, alternative splicing could be adaptive since it provides the functional diversity required for complexity. On the other hand, increased rates of alternative splicing could result through nonadaptive processes since more complex organisms tend to have smaller effective population sizes and are thus more prone to deleterious mutations resulting in more spurious splicing events (drift-barrier hypothesis). To evaluate the latter, B́enitiere et al. analyzed transcriptome sequencing data across 53 metazoan species. They show that proxies for effective population size and alternative splicing rates are negatively correlated. Furthermore, the authors find that rare, nonfunctional (and likely erroneous) isoforms occur more frequently in more complex species. Additionally, they show evidence that the strength of selection on splice sites increases with increasing effective population size and that the abundance of rare splice variants decreases with increased gene expression. All of these findings are consistent with the drift-barrier hypothesis.

      This study conducts a comprehensive set of separate analyses that all converge on the same overall result and the manuscript is well organized. Furthermore, this study is useful in that it provides a modified null hypothesis that can be used for future tests of adaptive explanations for variation in alternative splicing.

      Strengths:<br /> The major strength of this study lies in its complementary approach combining comparative and population genomics. Comparing evolutionary trends across phylogenetic diversity is a powerful way to test hypotheses about the origins of genome complexity. This approach alone reveals several convincing lines of evidence in support of the drift-barrier hypothesis. However, the authors also provide evidence from a population genetics perspective (using resequencing data for humans and fruit flies), making results even more convincing.

      The authors are forward about the study's limitations and explain them in detail. They elaborate on possible confounding factors as well as the issues with data quality (e.g. proxies for Ne, inadequacies of short reads, heterogeneity in RNA-sequencing data).

      Weaknesses:<br /> The authors primarily consider insects and mammals in their study. This only represents a small fraction of metazoan diversity. Sampling from a greater diversity of metazoan lineages would make these results and their relevance to broader metazoans substantially more convincing. Although the authors are careful about their tone, it is challenging to reconcile these results with trends across greater metazoans when the underlying dataset exhibits ascertainment bias and represents samples from only a few phylogenetic groups. Relatedly, some trends (such as Figure 1B-C) seem to be driven primarily by non-insect species, raising the question of whether some results may be primarily explained by specific phylogenetic groups (although the authors do correct for phylogeny in their statistics). How might results look if insects and mammals (or vertebrates) are considered independently?

      Throughout the manuscript, the authors refer to infrequently spliced (mode <5%) introns as "minor introns" and frequently spliced (mode >95%) as "major introns". This is extremely confusing since "minor introns" typically represent introns spliced by the U12 spliceosome, whereas "major introns" are those spliced by the U2 spliceosome. Furthermore, it remains unclear whether the study only considers major introns or both major and minor introns. Minor introns typically have AT-AC splice sites whereas major introns usually have GT/GC-AG splice sites, although in rare cases the U2 can recognize AT-AC (see Wu and Krainer 1997 for example). The authors also note that some introns show noncanonical AT-AC splice sites while these are actually canonical splice sites for minor introns.

    1. Reviewer #2 (Public Review):

      Summary:<br /> The authors investigated if obesity is associated with elevated working memory deficits. Prior theorizing would suggest that individuals with a higher BMI would be worse at working memory updating, potentially due to impaired dopaminergic signaling in the striatum. However, the authors find that higher BMI was associated with worse working memory performance, irrespective of having to ignore or update new information. To further explore the putative dopaminergic mechanisms, participants are stratified according to genetic polymorphisms in COMT, Taq1A, DARPP, and C957T and the ratio of the amino acids phenylalanine and tyrosine, all implicated in dopamine-signaling. They find that especially for working memory updating, carriers of a risk allele of Taq1A and DARPP, but not of COMT and C957T, performed worse with increasing BMI. The detrimental effects of these polymorphisms on updating only surfaced for individuals with high but not low BMI.

      Although the authors allude to potential imbalances in the striatal go/no-go dopamine pathways to explain these findings, the dopaminergic mechanisms of the effects remain speculative.

      Strengths:<br /> Differentiating between working memory maintenance (ignoring) and updating is a powerful way to get a deeper insight into specific working memory deficits in individuals with obesity. This way of assessing working memory could potentially be applied to various populations at risk for cognitive or working memory deficits.

      By pooling data from three studies, the authors reached a relatively large sample of 320 participants, which enables the assessment of more subtle effects on working memory, including the differentiation between updating and ignoring.

      Working memory gating has long implicated striatal dopamine signaling. This paper shows that specific combinations of risk factors, a high BMI and carrying a risk allele, can contribute to very selective working memory impairments. More insight into how these risk factors interact can ultimately lead to more tailor-made treatments.

      Weaknesses:<br /> The majority of participants seem to fall within the normal BMI range, whereas the interaction between BMI and genetic variations or amino acid ratio particularly surfaces at higher BMI. As genetic variations are usually associated with small effect sizes, the effective sample size, although large for a behavioral analysis only, might have been too small to detect meaningful effects of risk alleles of COMT and C957T.

      The relationships between genetic variations, BMI, and specific disturbances in dopamine signaling are complex, as compensating mechanisms might be at play to mitigate any detrimental effects. The results would therefore benefit from more direct measures or manipulations of dopaminergic processes.

      The introduction could benefit from a more elaborate description of the predicted effects: into which direction (better or worse updating) would the authors predict each effect to go and why? This is clearly explained for COMT, but not for e.g. DARPP-32.

    1. Reviewer #2 (Public Review):

      The biology and dynamics is well-described. The ERISM and WARP methods are state-of-the-art. The most important new information is the highly accurate and detailed maps of displacement. The real achievements are the new locomotory dynamics uncovered with amazing displacement measurements. One key discovery is the broad but shallow anchoring of the posterior body when the anterior body undertakes a "head sweep". Another discovery is the tripod indentation at the tail at the beginning of peristalsis cycles. This paper describes the detailed dynamics of anchoring for the first time. Anchoring behavior now has to be included in the motor sequence for Drosophila larva locomotion in any comprehensive biomechanical or neural model.

    1. Reviewer #2 (Public Review):

      Miller et al. take a variety of measurements and analytical techniques to assess the ecology of various species of the enantiornithine clade Bohaiornithidae. From this they suggest that the ancestral enantiornithine was a generalist and that the descendant clades occupied a breadth of niches similar to that of the radiation of derived birds after the K-Pg extinction.

      Overall, I find the idea that enantiornithines had occupied a similar niche breadth to post-K-Pg derived birds to be a curious, thought-provoking proposal.

      I am satisfied with the edits made by the authors and approve the revised version of the manuscript.

    1. Reviewer #2 (Public Review):

      Summary:<br /> In this manuscript, the authors examine how temporal expression of the lin-4 microRNA is transcriptionally regulated.

      In the revised manuscript, the authors have suitably addressed my original concerns.

      Aims achieved: The aims of the work are now achieved.

      Impact: This study shows that a single transcription factor (MYRF-1) is important for the regulation of multiple microRNAs that are expressed early in development to control developmental timing.

    1. Reviewer #3 (Public Review):

      Summary:<br /> A key element in the ability of trypanosomes to evade the mammalian host's immune system is its high rate of endocytosis. This rapid turnover of its surface enables the trypanosome to 'clean' its surface removing antibodies and other immune effectors that are subsequently degraded. The high rate of endocytosis is likely reflected in the organisation of the endosomal system in these parasites. Here, Link et al., sought to address this question using a range of light and three-dimensional electron microscopy approaches to define the endosomal organisation in this parasite.

      Before this study, the vast majority of our information about the make-up of the trypanosome endosomal system was from thin section electron microscopy and immunofluorescence studies, which did not provide the necessary resolution and 3D information to address this issue. Therefore, it was not known how the different structures observed by EM were related. Link et al., have taken advantage of the advances in technology and used an impressive combination of approaches at the LM and EM level to study the endosomal system in these parasites. This innovative combination has now shown the interconnected-ness of this network and demonstrated that there are no 'classical' compartments within the endosomal system, with instead different regions of the network enriched in different protein markers (Rab5a, Rab7, Rab11). Overall, the authors have achieved their aims, with results supporting their conclusions.

      This is a well written manuscript in which the authors use an impressive range of approaches to address the organisation of the endosomal system. The authors have clearly demonstrated that trypanosomes have a large interconnected endosomal network, without defined compartments and instead shows enrichment for specific Rabs within this network. I appreciate their inclusion of how they used a range of different light microscopy approaches even though for instance the dSTORM approach did not turn out to be as effective as hoped.

      The methodological impact of this work has the potential to be large, as the authors have introduced a range of advanced EM techniques for the study of trypanosomes. Moreover, the study of fundamental biological processes such as endosomal trafficking in divergent eukaryotes is important to define the limits within which this process operates.

    1. Reviewer #2 (Public Review):


      This manuscript addresses what rapid molecular events underly the earliest responses after gravity-sensing via the sedimentation of starch-enriched amyloplasts in columella cells of the plant root cap. The LAZY or NEGATIVE GRAVITROPIC RESPONSE OF ROOTS (NGR) protein family is involved in this process and localizes to both the amyloplast and to the plasma membrane (PM) of columella cells.

      This manuscript complements and extends a very recent study, (Nishimura et al., Science, 2023, August 10, 2023) that reported that the LZY3 and LZY4 proteins translocate from amyloplasts to the PM and that this translocation is likely necessary for the root gravitropic response. Kulich and colleagues describe the role of the LZY2 protein, also called NGR1, during this process, imaging its fast relocation and addressing additional novel points such as molecular mechanisms underlying NGR1 plasma membrane association as well as revealing the requirement of NGR1/LZY2, 3,4 for the polar localization of the AGCVIII D6 protein kinase at the PM of columella cells, in which NGR1/LZY2 acts redundantly with LZY3 and LZY4.

      The authors initially monitored relocalization of functional NGR1-GFP in columella cells of the ngr1 ngr2 ngr3 triple mutant after 180 degree reorientation of the roots. Within 10 -15 min NGR1-GFP signal disappeared from the upper PM after reorientation and reappeared at the lower PM of the reoriented cells in close proximity to the sedimented amyloplasts. Reorientation of NGR1-GFP occurred substantially faster than PIN3-GFP reorientation, at about the same time or slightly later than a rise in a calcium sensor (GCaMP3) just preceding a change in D2-Venus auxin sensor alterations. Reorientation of NGR1-GFP proved to be fast and not dependent on a brefeldin A-sensitive ARF GEF-mediated vesicle trafficking, unlike the trafficking of PIN proteins, like PIN3, or the AGCVIII D6 protein kinase. Strikingly, the PM association of NGR1-GFP was highly sensitive to pharmacological interference with sterol composition or concentration and phosphatidylinositol (4)kinase inhibition as well as dithiothreitol (DTT) treatment interfering with thioester bond formation e.g. during S-acylation. Indeed, combined mutation of a palmitoylation site and polybasic regions of NRG1 abolished its PM but not its amyloplast localization and rendered the protein non-functional during the gravitropic response, suggesting NRG1 PM localization is essential for the gravitropic response. Targeting the protein to the PM via an artificially introduced N-terminal myristoylation and a ROP2-derived polybasic region and geranylgeranylation site partially restored its functionality in the gravitropic response.


      This timely work should be of broad interest to plant, cell and developmental biologists across the field as gravity sensing and signaling may well be of general interest. The point that NGR1 is rapidly responsive to gravistimulation, polarizes at the PM in the vicinity to amyloplast and that this is required for repolarization of D6 protein kinase, prior to PIN relocation is really compelling. The manuscript is generally well written and accessible to a general readership, except for very minor language errors. The figures are clear and of high quality, the methods are sufficiently explained for reproduction of the experiments.

      Comments on revised submission:

      The authors have addressed my comments to a large part, however, while they write they have updated the statistical analysis as requested, they only did this for the main figures, but NOT for the supplementary images (except for Fig. S2) and their legends. These issues need fixing in order to correctly describe the data and let the reader know, which distributions actually differed. Some specific examples of concerns are:

      In Figs. 3F and D we now know that a one-way ANOVA test was performed and that letters designate the statistically significant difference between distributions with p smaller 0.0001, but we still do not know what "n" in the displayed distributions is e.g. how many PM/cytoplasm ratios were measured i.e. e.g 112? (from 112 cells?). It is said that 8-15 roots were quantified, but the data points in the distributions are not 8-15 .... . They are many more, so, "n" must be the number of cells derived from 8-15 roots but what is "n" in the displayed distributions and is that the same value that was used for the Anova test?

      This must be clarified as it has very well been done for Fig. 2 and Fig. S2B, E in the legends and by inserting a lettering for significance differences in the figures.

      Similar information is still lacking for Fig. S3D, no number "n" of cells from which the PM/cytoplasm ratios are analyzed is given, no lettering for differences, no p -value. This leaves one to guess which distributions differ from each other.

      This also needs to be fixed for Figs. S4 E, F (for G and H one can see the differences where the SDs do not overlap and it is explained what they are derived from).

    1. Reviewer #2 (Public Review):

      The effectors of cellular aging in yeast have not been fully elucidated. To address this, the authors curated gene expression studies to link genes influenced by rapamycin - a well-known mediator of longevity across model systems - to genes known to affect chronological and replicative lifespan (RLS) in yeast. Through their analyses, they find one gene, ybr238c, whose deletion increases both CLS and RLS upon deletion and that is downregulated by rapamycin. The authors follow up their cellular aging studies using CLS as a model throughout their study, demonstrating that deletion of ybr238c increases CLS across multiple yeast strains and through multiple assays. The authors also test the effects of YBR238C overexpression on lifespan and find the opposite effect, with overexpression yeast showing decreased survival relative to wild type cells, consistent with accelerated aging as the authors propose. The authors also note that ybr238c has a paralog, rmd9, whose deletion decreases CLS and seems to be epistatic to ybr238c, as a double ybr238c/rmd9 mutant has decreased CLS relative to a wild-type strain.

      Collectively, the data presented by the authors convincingly demonstrate that ybr238c influences lifespan in a manner that is distinct from (and likely opposite to) rmd9. The authors then link the increased CLS in Δybr238c yeast to HAP4, a transcription factor that promotes mitochondrial biogenesis and oxidative phosphorylation. Through genetic studies, the authors suggest a model in which YBR238C negatively regulates HAP4 activity, and thus loss of HAP4 repression in Δybr238c yeast leads to elevated mitochondrial function. Notably, while the authors use various methods to test mitochondrial function, including the quantification of transcripts associated with oxidative phosphorylation, cellular ATP levels, and mtDNA, none of these fully test mitochondrial function. Thus, while the trends of these proxies are consistent with the model proposed by the authors, including data such as respirometry or assaying the activity of oxidative phosphorylation complexes would have bolstered these conclusions.

      Finally, the authors tie the phenotypes of mitochondrial dysfunction caused by deletion of ybr238c to TORC1 signaling, as the gene is influenced by rapamycin. However, the data assaying mitochondrial function in these experiments, such as profiling the transcriptional changes in oxidative phosphorylation complexes or monitoring cellular ATP levels, do not directly measure mitochondrial function. Furthermore, many of the studies performed by the authors rely on genetic or pharmacological rescue of lifespan to establish the influence of YBR238C on TORC1 signaling and mitochondrial function. While valuable, these assays leave questions as to the molecular mechanisms by which YBR238C functions. As such, this manuscript establishes that ybr238c is rapamycin responsive and influences CLS, but the molecular mechanisms by which it affects mitochondrial activity and TORC1 signaling remain to be elucidated.

    1. Reviewer #2 (Public Review):

      Summary:<br /> Caflisch and coworkers investigate the methyltransferase activity of the complex of methyltransferase-like proteins 3 and 14 (METTL3-14). To obtain an high resolution description of the complete catalytic cycle they have carefully designed a combination of experiments and simulations. Starting from the identification of bisubstrate analogues (BAs) as binder to stabilise a putative transition state of the reaction they have determined multiple crystal structures and validated relevant interactions by mutagenesis and enzymatic assays.

      Using the resolved structure and classical MD simulations they obtained a kinetic picture of the binding and release of the substrates. Of note, they accumulate very good statistics on these processes using 16 simulation replicates over a time scale of 500 ns. To compare the time scale of the release of the products with that of the catalytic step they performed state-of-the-art QM/MM free energy calculations (testing multiple levels of theory) and obtain a free energy barrier that indicates how the release of the product is slower than the catalytic step.

      Strengths:<br /> All the work proceeds through clear hypothesis testing based on a combination of literature and new results. Eventually, this allows them to present in Figure 10 a detailed step-by-step description of the catalytic cycle. The work is very well crafted and executed.

    1. Reviewer #2 (Public Review):

      The authors have studied in detail the embryogenesis of the ametabolan insect Thermobia domestica. They have also measured the levels of the two most important hormones in insect development: juvenile hormone (JH) and ecdysteroids. The work then focuses on JH, whose occurrence concentrates in the final part (between 70 and 100%) of embryo development. Then, the authors used a precocene compound (7-ethoxyprecocene, or 7EP) to destroy the JH producing tissues in the embryo of the firebrat T. domestica, which allowed to unveil that this hormone is critically involved in the last steps of embryogenesis. The 7EP-treated embryos failed to resorb the extraembryonic fluid and did not hatch. More detailed observations showed that processes like the maturational growth of the eye, the lengthening of the foregut and posterior displacement of the midgut, and the detachment of the E2 cuticle, were impaired after the 7EP treatment. Importantly, a treatment with a JH mimic subsequent to the 7EP treatment restored the correct maturation of both the eye and the gut. It is worth noting that the timing of JH mimic application was essential for correcting the defects triggered by the treatment with 7EP.

      This is a relevant result in itself since the role of JH in insect embryogenesis is a controversial topic. It seems to have an important role in hemimetabolan embryogenesis, but not so much in holometabolans. Intriguingly, it appears important for hatching, an observation made in hemimetabolan and in holometabolan embryos. Knowing that this role was already present in ametabolans is relevant from an evolutionary point of view, and knowing exactly why embryos do not hatch in the absence of JH, is relevant from the point of view of developmental biology.

      Then, the authors describe a series of experiments applying the JH mimic in early embryogenesis, before the natural peak of JH occurs, and its effects on embryo development. Observations were made under different doses of JHm, and under different temporal windows of treatment. Higher doses triggered more severe effects, as expected, and different windows of application produced different effects. The most used combination was 1 ng JHm applied 1.5 days AEL, checking the effects 3 days later. Of note, 1.5 days AEL is about 15% embryonic development, whereas the natural peak of JH occurs around 85% embryonic development. In general, the ectopic application of JHm triggered a diversity of effects, generally leading to an arrest of development. Intriguingly, however, a number of embryos treated with 1 ng of JHm at 1.5 days AEL showed a precocious formation of myofibrils in the longitudinal muscles. Also, a number of embryos treated in the same way showed enhanced chitin deposition in the E1 procuticle and showed an advancement of at least a day in the deposition of the E2 cuticle.

      While the experiments and observations are done with great care and are very exhaustive, I am not sure that the results reveal genuine JH functions. The effects triggered by a significant pulse of ectopic JHm when the embryo is 15% of the development will depend on the context: the transcriptome existing at that time, especially the cocktail of transcription factors. This explains why different application times produce different effects. This also explains why the timing of JHm application was essential for correcting the effects of 7EP treatment. In this reasoning, we must consider that the context at 85% development, when the JH peaks in natural conditions and plays its genuine functions, must be very different from the context at 15% development, when the JHm was applied in most of the experiments. In summary, I believe that the observations after the application of JHm reveal effects of the ectopic JHm, but not necessarily functions of the JH. If so, then the subsequent inferences made from the premise that these ectopic treatments with JHm revealed JH functions are uncertain and should be interpreted with caution.

      Those inferences affect not only the "JH and the progressive nature of embryonic molts" section, but also, the "Modifications in JH function during the evolution of hemimetabolous and holometabolous life histories" section, and the entire "Discussion". In addition to inferences built on uncertain functions, the sections mentioned, especially the Discussion, I think suffer from too many poorly justified speculations. I love speculation in science, it is necessary and fruitful. But it must be practiced within limits of reasonableness, especially when expressed in a formal journal.

      Finally, In the section "Modifications in JH function during the evolution of hemimetabolous and holometabolous life", it is not clear the bridge that connects the observations on the embryo of Thermobia and the evolution of modified life cycles, hemimetabolan and holometabolan.

    1. Reviewer #2 (Public Review):

      In "Lipid discovery enabled by sequence statistics and machine learning" Christensen et al. address an important question: how can bacteria modify lipid charges to produce cationic lipids, prone to confer resistance to cationic antibiotics? One of the enzymes involved in this process is MprF, which can, through the transfer of amino acids, in particular, lysine, from charged tRNA modify the charge of anionic membrane phospholipid from negative to positive. Recent works have shown that MprF can also modify another substrate, glycolipid glucosyl-diacylglycerol, which is neutral. These findings immediately raise two questions: what are the determinants in the MrpF sequence controlling the lipid substrates it can modify? Are there other substrates for MrpF, so far unknown?

      Christensen et al. address both of these questions in an elegant way, combining sequence analysis with machine-learning methods and experimental characterisation of the enzymatic products through mass spectrometry. Using restricted Boltzmann machines (RBM), an unsupervised architecture extracting statistical features from the sequence data, they identify putative amino-acid motifs along the MprF sequences possibly related to the substrate identity, select some bacterial species whose wild-type sequence contains those motifs, and validate the biological role of the motifs by identifying the produced lipids. Remarkably, with this approach, the authors find a novel cationic lipid with two glucosyl groups.

      Besides these new results on MrpF and its operation, the present work is appealing, as it shows that the functional characterisation of a very small number of proteins (here, three!) combined with the guided classification of homologous sequence data with appropriate machine-learning methods can lead to the discovery of new functionalities.

    1. Reviewer #2 (Public Review):

      Summary:<br /> This work concerns the evolution of ZDBF2 imprinting in mammalian species via initiation of GPR1 antisense (AS) transcription from a lineage-specific long-terminal repeat (LTR) retrotransposon. It extends previous work describing the mechanism of ZDBF2 imprinting in mice and humans by demonstrating conservation of GPR1-AS transcripts in rabbits and non-human primates. By identifying the origin of GPR1-AS transcription as the LTR MER21C, the authors claim to account for how imprinting evolved in these species but not in those lacking the MER21C insertion. This illustrates the principle of LTR co-option as a means of evolving new gene regulatory mechanisms, specifically to achieve parent-of-origin allele specific expression (i.e., imprinting). Examples of this phenomenon have been described previously, but usually involve initiation of transcription during gametogenesis rather than post-fertilization, as in this work. The findings of this paper are therefore relevant to biologists studying imprinted genes or interested more generally in the evolution of gene regulatory mechanisms.

      Strengths:<br /> (1) The authors convincingly demonstrate the existence of GPR1-AS orthologs in specific mammalian lineages using deeply sequenced, stranded, and paired-end RNA-seq libraries collected from diverse mammalian species.

      Weaknesses:<br /> (1) The authors do not directly demonstrate imprinting of the ZDBF2 locus in rabbits and non-human primates, which would greatly strengthen their model linking ZDBF2 imprinting to transcription from MER21C.

      (2) Experimental evidence linking GPR1-AS transcription to ZDBF2 imprinting in rabbits and non-human primates is currently lacking. Consideration should be given to the challenges associated with studying non-model species and manipulating repeat sequences, which may explain the absence of experimental evidence in this case. Further, this mechanism is established in humans and mice, so the authors' model is arguably sufficiently supported merely by the existence of GPR1-AS orthologs in other mammalian lineages.

    1. Reviewer #2 (Public Review):

      The manuscript by Petitgas et al demonstrates that loss of function for the only enzyme responsible for the purine salvage pathway in fruit-flies reproduces the metabolic and neurologic phenotypes of human patients with Lesch-Nyhan disease (LND). LND is caused by mutations in the enzyme HGPRT, but this enzyme does not exist in fruit-flies, which instead only have Aprt for purine recycling. They demonstrate that mutants lacking the Aprt enzyme accumulate uric acid, which like in humans can be rescued by feeding flies allopurinol, and have decreased longevity, locomotion and sleep impairments and seizures, with striking resemblance to HGPRT loss of function in humans. They demonstrate that both loss of function throughout development or specifically in the adult ubiquitously or in all neurons, or dopaminergic neurons, mushroom body neurons or glia, can reproduce the phenotypes (although knock-down in glia does not affect sleep). They show that the phenotypes can be rescued by over-expressing a wild-type form of the Aprt gene in neurons. They identify a decrease in adenosine levels as the cause underlying these phenotypes, as adenosine is a neurotransmitter functioning via the purinergic adenosine receptor in neurons. In fact, feeding flies throughout development and in the adult with either adenosine or m6A could prevent seizures. They also demonstrate that loss of adenosine caused a secondary up-regulation of ENT nucleoside transporters and of dopamine levels, that could explain the phenotypes of decreased sleep and hyperactivity and night. Finally, they provide the remarkable finding that over-expression of the human mutant HGPRT gene but not its wild-type form in neurons impaired locomotion and induced seizures. This means that the human mutant enzyme does not simply lack enzymatic activity, but it is toxic to neurons in some gain-of-function form. Altogether, these are very important and fundamental findings that convincingly demonstrate the establishment of a Drosophila model for the scientific community to investigate LND, to carry out drug testing screens and find cures.

      The authors have dealt with my concerns satisfactorily and have explained the instances in which resolving experimentally the criticisms raised would require a work effort well beyond the scope of a revision for this manuscript.

    1. Reviewer #2 (Public Review):

      Clark and Nolan's study aims to test whether the stability of grid cell firing fields is associated with better spatial behavior performance on a virtual task. Mice were trained to stop at a rewarded location along a virtual linear track. The rewarded location could be marked by distinct visual stimuli or be unmarked. When the rewarded location was unmarked, the animal had to estimate its distance run from the beginning of the trial to know where to stop. When the mouse reached the end of the virtual track, it was teleported back to the start of the virtual track.

      The authors found that grid cells could fire in at least two modes. In the "task-anchored" mode, grid firing fields had stable positions relative to the virtual track. In the "task-independent" mode, grid fields were decoupled from the virtual cues and appeared to be located as a function of distance run on the track. Importantly, on trials in which the rewarded location was unmarked, the behavioral performance of mice was better when grid cells fired in the "task-anchored" mode. When a unique visual cue marked the reward location, navigation performance was not correlated with the grid cells' firing mode.

      This study is very timely as there is a pressing need to identify/delimit the contribution of grid cells to spatial behaviors. More studies are needed in which grid cell activity is linked to navigational abilities. The link proposed by Clark and Nolan between "task-anchored" coding by grid cells and navigational performance is a significant step toward better understanding how grid cell activity might support behavioral behavior. The results also highlight that some forms of navigation (approaching a location marked by a visual cue) might be less dependent on the anchoring of grid cells.

      It should be noted that the study by Clark and Nolan is correlative. Therefore, the effect of selective manipulations of grid cell activity on the virtual task will be needed to evaluate whether the activity of grid cells is causally linked to the behavioral performance on this task. A previous study by the same research group showed that inactivating the synaptic output of stellate cells of the medial entorhinal cortex affected mice's performance of the same virtual task (Tennant et al., 2018). Although this manipulation likely affects non-grid cells, it is still one of the most selective manipulations of grid cells that are currently available.

      It is interesting to consider how grid cells remain anchored to virtual cues. Recent work shows that grid cell activity spans the surface of a torus (Gardner et al., 2022). A run on the track can be mapped to a trajectory on the torus. Assuming that grid cell activity is updated primarily from self-motion cues on the track and that the grid cell period is unlikely to be an integer of the virtual track length, having stable firing fields on the virtual track likely requires a resetting mechanism taking place on each trial. During this resetting event, the active location on the torus is likely to jump to a new toroidal location, independently of self-motion cues. Future studies in which large numbers of grid cells are recorded could pinpoint at which moment such resetting event occurs on each trial.

    1. Reviewer #2 (Public Review):

      Summary:<br /> Zhang and colleagues use a combination of behavioral, neural, and computational analyses to test an active inference model of exploration in a novel reinforcement learning task.

      Strengths:<br /> The paper addresses an important question (validation of active inference models of exploration). The combination of behavior, neuroimaging, and modeling is potentially powerful for answering this question.

      Weaknesses:<br /> The paper does not discuss relevant work on contextual bandits by Schulz, Collins, and others. It also does not mention the neuroimaging study of Tomov et al. (2020) using a risky/safe bandit task.

      The statistical reporting is inadequate. In most cases, only p-values are reported, not the relevant statistics, degrees of freedom, etc. It was also not clear if any corrections for multiple comparisons were applied. Many of the EEG results are described as "strong" or "robust" with significance levels of p<0.05; I am skeptical in the absence of more details, particularly given the fact that the corresponding plots do not seem particularly strong to me.

      The authors compare their active inference model to a "model-free RL" model. This model is not described anywhere, as far as I can tell. Thus, I have no idea how it was fit, how many parameters it has, etc. The active inference model fitting is also not described anywhere. Moreover, you cannot compare models based on log-likelihood, unless you are talking about held-out data. You need to penalize for model complexity. Finally, even if active inference outperforms a model-free RL model (doubtful given the error bars in Fig. 4c), I don't see how this is strong evidence for active inference per se. I would want to see a much more extensive model comparison, including model-based RL algorithms which are not based on active inference, as well as model recovery analyses confirming that the models can actually be distinguished on the basis of the experimental data.

      Another aspect of the behavioral modeling that's missing is a direct descriptive comparison between model and human behavior, beyond just plotting log-likelihoods (which are a very impoverished measure of what's going on).

      The EEG results are intriguing, but it wasn't clear that these provide strong evidence specifically for the active inference model. No alternative models of the EEG data are evaluated.

      Overall, the central claim in the Discussion ("we demonstrated that the active inference model framework effectively describes real-world decision-making") remains unvalidated in my opinion.

    1. Résumé de la vidéo [00:00:00][^1^][1] - [00:16:42][^2^][2]:

      Cette vidéo est un webinaire présenté par Serge, un représentant syndical du SNAC, qui explique la Dotation Horaire Globale (DHG) dans les établissements scolaires français. Il détaille comment la DHG est calculée, distribuée et utilisée pour organiser les emplois du temps, ainsi que l'importance du Tableau de Répartition des Moyens (TRM) dans la gestion des ressources et la prise de décisions pédagogiques au sein des établissements.

      Points clés: + [00:00:17][^3^][3] Qu'est-ce que la DHG * Définition et rôle + [00:01:03][^4^][4] Calcul de la DHG * Facteurs influençant la DHG + [00:02:04][^5^][5] Temporalité de la DHG * Processus et timing + [00:03:01][^6^][6] Mythes sur la DHG * Clarification des idées reçues + [00:04:01][^7^][7] Importance du TRM * Répartition et impact sur l'établissement + [00:06:07][^8^][8] Processus de décision du TRM * Étapes et implications + [00:08:00][^9^][9] Si le TRM est refusé * Procédures et alternatives + [00:10:36][^10^][10] Responsabilités en cas de refus du TRM * Actions du chef d'établissement + [00:13:01][^11^][11] Conseils pour l'administration * Importance de la participation et de la proposition

    1. Reviewer #2 (Public Review):

      Summary:<br /> In this paper, Zambo and coworkers use a powerful technique, called native holdup, to measure the affinity of the SH3 domain of BIN1 for cellular partners. Using this assay, they combine data using cellular proteins and proline-containing fragments in these proteins to identify 97 distinct direct binding partners of BIN1. They also compare the binding interactome of the BIN1 SH3 domain to the interactome of several other SH3 domains, showing varying levels of promiscuity among SH3 domains. The authors then use pathway analysis of BIN1 binding partners to show that BIN1 may be involved in mitosis. Finally, the authors examine the impact of clinically relevant mutations of the BIN1 SH3 domain on the cellular interactome. The authors were able to compare the interactome of several different SH3 domains and provide novel insight into the cellular function of BIN1. Generally, the data supports the conclusions, although the reliance on one technique and the low number of replicates in each experiment is a weakness of the study.

      Strengths:<br /> The major strength of this paper is the use of holdup and native holdup assays to measure the affinity of SH3 domains to cellular partners. The use of both assays using cell-derived proteins and peptides derived from identified binding partners allows the authors to better identify direct binding partners. This assay has some complexity but does hold the possibility of being used to measure the affinity of the cellular interactome of other proteins and protein domains. Beyond the utility of the technique, this study also provides significant insight into the cellular function of BIN1. The authors have strong evidence that BIN1 might have an undiscovered function in cellular mitosis, which potentially highlights BIN1 as a drug target. Finally, the study provides outstanding data on the cellular binding properties and partners of seven distinct SH3 domains, showing surprising differences in the promiscuity of these proteins.

      Weaknesses:<br /> There are three major weaknesses of the study. First, the authors rely completely on a single technique to measure the affinity of the cellular interactome. The native holdup is a relatively new technique that is powerful yet relatively unproven. However, it appears to have the capacity to measure the relative affinity of proteins. Second, the authors appear to use a relatively small number of replicates for the holdup assays. There is no information in the legends about the number of replicates but the materials and methods suggest the native holdup data is from a single experimental replicate with multiple technical replicates. Finally, the authors' data using cellular proteins and fragments show that the affinity of the whole proteins is 5-20 fold lower than individual proline-containing fragments. The authors state that this difference suggests that there is cooperativity between different proline-rich sites of the binding partners of BIN1, yet BIN1 only has one SH3 domain. It is unclear what the molecular mechanism of the cooperative interaction would be exactly since there would be only one SH3 domain to bind the partner. An alternative interpretation would be that the BIN 1 SH3 domain requires sequences outside of the short proline-rich regions for high-affinity interactions with cellular partners, a hypothesis that is supported by other studies.

    1. Reviewer #2 (Public Review):


      Chew et al describe interaction of the flavivirus protein NS1 with HDL using primarily cryoEM and mass spec. The NS1 was secreted from dengue virus infected Vero cells, and the HDL were derived from the 3% FBS in the culture media. NS1 is a virulence factor/toxin and is a biomarker for dengue infection in patients. The mechanisms of its various activities in the host are incompletely understood. NS1 has been seen in dimer, tetramer and hexamer forms. It is well established to interact with membrane surfaces, presumably through a hydrophobic surface of the dimer form, and the recombinant protein has been shown to bind HDL. In this study, cryoEM and crosslinking-mass spec are used to examine NS1 secreted from virus-infected cells, with the conclusion that the sNS1 is predominantly/exclusively HDL-associated through specific contacts with the ApoA1 protein.

      Strengths: The experimental results are consistent with previously published data.


      CryoEM:<br /> Some of the neg-stain 2D class averages for sNS1 in Fig S1 clearly show 1 or 2 NS1 dimers on the surface of a spherical object, presumably HDL, and indicate the possibility of high-quality cryoEM results. However, the cryoEM results are disappointing. The cryo 2D class averages and refined EM map in Fig S4 are of poor quality, indicating sub-optimal grid preparation or some other sample problem. Some of the FSC curves (2 in Fig S7 and 1 in Fig S6) have extremely peculiar shapes, suggesting something amiss in the map refinement. The sharp drop in the "corrected" FSC curves in Figs S5c and S6c (upper) indicate severe problems. The stated resolutions (3.42 & 3.82 Å) for the sNS1ts-Fab56.2 are wildly incompatible with the images of the refined maps in Figs 3 & S7. At those resolutions, clear secondary structural elements should be visible throughout the map. From the 2D averages and 3D maps shown in the figures, this does not seem to be the case. Local resolution maps should be shown for each structure.

      The samples were clearly challenging for cryoEM, leading to poor quality maps that were difficult to interpret. None of the figures are convincing that NS1, Ab56.2 or Fab56.2 are correctly fit into EM maps. There is no indication of ApoA1 helices. Details of the fit of models to density for key regions of the higher-resolution EM maps should be shown and the models should be deposited in the PDB. An example of modeling difficulty is clear in the sNS1ts dimer with bound Fab56.2 (figs 3c & S7e). For this complex, the orientation of the Fab56.2 relative to the sNS1ts dimer in this submission (Fig 3c) is substantially different than in the bioRxiv preprint (Fig 3c). Regions of empty density in Fig 3c also illustrate the challenge of building a model into this map.

      Mass spec:<br /> Crosslinking-mass spec was used to detect contacts between NS1 and ApoA1, providing strong validation of the sNS1-HDL association. As the crosslinks were detected in a bulk sample, they show that NS1 is near ApoA1 in many/most HDL particles, but they do not indicate a specific protein-protein complex. Thus, the data do not support the model of an NS1-ApoA1 complex in Fig 4d. Further, a specific NS1-ApoA1 interaction should have evidence in the EM maps (helical density for ApoA1), but none is shown or mentioned. If such exists, it could perhaps be visualized after focused refinement of the map for sNS1ts-HDL with Fab56.2 (Fig S7d). The finding that sNS1-ApoA1 crosslinks involved residues on the hydrophobic surface of the NS1 dimer confirms previous data that this NS1 surface engages with membranes and lipids.

      Sample quality:<br /> The paper lacks any validation that the purified sNS1 retains established functions, for example the ability to enhance virus infectivity or to promote endothelial dysfunction. Peculiarities include the gel filtration profiles (Fig 2a), which indicate identical elution volumes (apparent MWs) for sNS1wt-HDL bound to Ab562 (~150 kDa) and to the ~3X smaller Fab56.2 (~50 kDa). There should also be some indication of sNS1wt-HDL pairs crosslinked by the full-length Ab, as can be seen in the raw cryoEM micrograph (Fig S5b).

      Obtaining high quality structures is often more demanding of sample integrity than are activity assays. Given the low quality of the cryoEM maps, it's possible that the acidification step in immunoaffinity purification damaged the HDL complex. No validation of HDL integrity, for example with acid-treated HDL, is reported. Acid treatment is perhaps discounted by a statement (line 464) that another group also used immunoaffinity purification in a recent study (ref 20) reporting sNS1 bound to HDL. However the statement is incorrect; the cited study used affinity purification via a strep-tag on recombinant sNS1.

      Discussion:<br /> The Discussion reflects a view that the NS1 secreted from virus-infected cells is a 1:1 sNS1dimer:HDL complex with the specific NS1-ApoA1 contacts detected by crosslinking mass spec. This is inconsistent with both the neg-stain 2D class average with 2 sNS1 dimers on an HDL (Fig S1c) and with the recent study of Flamand & co-workers showing 1-3 NS1 dimers per HDL (ref 20). It also ignores the propensity of NS1 to associate with membranes and lipids. It is far more likely that NS1 association with HDL is driven by these hydrophobic interactions than by specific protein-protein contacts. A lengthy Discussion section (lines 461-522) includes several chemically dubious or inconsistent statements, all based on the assumption that specific ApoA1 contacts are essential to NS1 association with HDL and that sNS1 oligomers higher than the dimer necessarily involve ApoA1 interaction, conclusions that are not established by the data in this paper.

      Additional comments on the revised manuscript:

      Comments on the structures:

      The authors kindly provided their fitted atomic models for the 2 reported structures. The EM maps are available in the EMDB. Based on these materials, the derived structures are not well supported due to problems with the models, the maps, and the fit of models to maps.

      Quick inspection revealed that the models for both structures are implausible due to a large steric clash of Fab56.2 and the end of the NS1. The Fab and NS1 protein backbones interpenetrate by nearly 20 Å. This substantial overlap exists for all 3 Fab56.2-NS1 interactions in the 2 structures, and is also visible in the perpendicular views of the NS1 dimer with 2 bound Fab56.2 in Fig. 2c. It appears that the Fab56.2 model was jammed into the NS1 model in order to bring all domains inside the density envelope at the threshold chosen to display the map. The poor fit of model to map is also clear in several protruding density regions without any model.

      The fits of both atomic models to the maps are questionable because<br /> - The maps suffer from severe preferred orientation problems, as seen in the streaky tubes of density. The streaks in both maps do not match the NS1 beta strands of the fitted models.<br /> - The shape of the modeled ApoA1 helical ring surrounding the HDL does not match the shape of the EM density. In some regions, the ApoA1 helices are inside the rather strong density for the spherical HDL, but in other regions the helices are outside the density.<br /> - Both maps have regions of strong density that are adjacent to NS1 but lack any protein model, while other parts of the structure, including the beta-roll domain, lack density.<br /> - The claimed 4.3-Å resolution of the NS1-Fab56.2 complex is wildly overstated. The local resolution of ~2.5 Å for the "best" part of the structure (Supp Fig. 7E) appears to pertain to the beta strands at the center of the NS1 dimer. However, these density streaks do not match the beta strands of the fit model.<br /> - The manuscript lacks statistics on the fit of model to map. A standard cryo-EM "Table 1" should include more than is presented in Supp Table 1. The fitted model for at least the higher resolution structure should be deposited in the PDB.

      Comments on the structure interpretation:

      By now it should be abundantly clear that the oligomer state of NS1 is dynamic and highly sensitive to environmental conditions and to each sample's "history". For the reasons pointed out by reviewer 1, it is not clear that the immunoaffinity purification method captured all forms of sNS1 equally. Thus, the authors insistence that NS1 secreted from virus-infected cells is predominantly bound to HDL particles in a ratio of 1 NS1 dimer per HDL is not well supported. They employ similar arguments to challenge the discovery of sNS1 as a lipoprotein particle (PNAS 2011), contending that the 2011 finding was an artefact of recombinant NS1 production and is irrelevant to sNS1 from a virus infection. The several published structures of NS1 oligomers reveal a large degree of asymmetry in dimer-dimer interaction, consistent with the ability of NS1 to dynamically associate with a variety of hydrophobic entities.

    1. Reviewer #2 (Public Review):

      Summary:<br /> Protein kinases have been very successfully targeted with small molecules for several decades, with many compounds (including clinical drugs) bringing about conformational changes that are also relevant to broader interactions with the cellular signaling networks that they control. The authors set out to develop a targeted biosensor approach to evaluate distinct kinase conformations in cells for multiple kinases in the context of incoming signals, other proteins, and small molecule binding, with a broad goal of using the KinCon assay to confirm (and perhaps predict) how drug binding or signal perception changes conformations and outputs in the presence of cellular complexes. This work will likely impact on the field with cellular reporters of kinase conformations a useful addition to the toolbox.

      Strengths:<br /> The KinCon reporter platform has previously been validated for well-known kinases; in this study, the team evaluates how to employ a full-length kinase (often containing a known pathlogical mutation). The sensitive detection method is based on a Renilla luciferase (RLuc)protein fragment complementation assay, where individual RLuc fragments are present at the N and the C terminus of the kinase. This report, which is both technical and practical in nature, co-expresses the kinase with known interactors (at low levels) in a high throughput format and then performs pharmacological evaluation with known small molecule kinase modulators. This is explained nicely in Figure 1, as are the signaling pathways that are being evaluated. Data demonstrate that V600E BRAF iexposed to vemurafenib is converted to the inactive conformation, as expected. In contrast, the more closed STRAD𝛼 and LKB1 KinCon conformations appear to represent the more active state of the complexed kinase, and a W308C mutation (evaluated alongside others) reverses this effect. The authors then evaluated necroptotic signaling in the context of RIPK1/3 under conditions where RIPK1 and RIPK3 are active, confirming that the reporters highlight the active states of both kinases. Exposure to compounds that are known to engage with the RIPK1 arm of the pathway induce bioluminescence changes consistent with the opening (inactivation) of the kinase. Finally, the authors move to an important drug target for which clinical drugs have arrived relatively recently; the CDK4/6 complexes. These are of additional importance because kinase-independent functions also exist for CDK6, and the effects of drugs in cells usually rely on a downstream marker, rather than demonstration of direct protein complex engagement. The data presented are interpreted as the formation of complexes with the CDK inhibitor p16INK4a; reducing the affinity of the interaction through mutations drives an inactive conformation, whilst the application of CDK4/6 inhibitors does not, implying binding to the active conformation.

      Weaknesses:<br /> (1) The work is very solid, uses examples from the literature, and also extends into new experimental space. An obvious weakness is mentioned by the authors for the CKDK data, in that measurements with Cyclin D (the activating subunit) are not characterised, although Cyclin D might be assumed to be present.

      (2) The work with the trimeric LKB1 complex involves pseudokinase, STRADalpha, whose conformation is also examined as a function of LKB1 status; since STRAD is an activator of LKB1. A future goal should be the evaluation of the complex in the presence of STRAD inhibitory/activating small molecules.

    1. Reviewer #2 (Public Review):

      Summary:<br /> Patsy R. Tomlinson et al; investigated the impact of different p85 alpha variants associated with SHORT syndrome or APDS2 on insulin-mediated signaling in dermal fibroblasts and preadipocytes. They find no evidence of hyperactive PI3K signalling monitored by pAKT in APDS2 patient-derived dermal fibroblast cells. In these cells p110 alpha protein levels were comparable to levels in control cells, however, the p110 delta protein levels were strongly reduced. Remarkably, the truncated APDS2-causal p85 alpha variant was less abundant in these cells than p85 alpha wildtype. Afterwards, they studied the impact of ectopically expressed p85 alpha variants on insulin-mediated PI3K signaling in 3T3-L1 preadipocytes. Interestingly they found that the truncated APDS2-causal p85 alpha variant impaired insulin-induced signaling. Using immunoprecipitation of p110 alpha they did not find truncated APDS2-causal p85 alpha variant in p110 alpha precipitates. Furthermore, by immunoprecipitating IRS1 and IRS2, they observed that the truncated APDS2-causal p85 alpha variant was very abundant in IRS1 and IRS2 precipitates, even in the absence of insulin stimulation. These important findings add in an interesting way possible mechanistic explanation for the growing number of APDS2 patients described with features of SHORT syndrome.

      Strengths:<br /> Based on state-of-the-art functional investigation the authors propose indicating a loss-of-function activity of the APDS2-disease causing p85 alpha variant in preadipocytes providing a possible mechanistic explanation for the growing number of APDS2 patients described with features of SHORT syndrome.

      Weaknesses:<br /> Related to Figure 1: PIK3R1 expression not only by Western blotting but also by quantifying the RNA transcripts, e.g. mutant and wildtype transcripts, was not performed. RNA expression analysis would further strengthen the suggested impaired stabilization/binding.

      Related to Figure 2: As mentioned by the authors in the manuscript the expression of p110 delta but also p110 beta in 3T3-L1 preadipocytes ectopically expressing p85 alpha variants has not been analyzed.

      Furthermore, a direct comparison of the truncated APDS2-causal p85 alpha variant with SHORT syndrome -causal p85 alpha variants in regard to pAKT level, and p85 alpha expression level has not been performed.

      These investigations would further strengthen the data.

      Related to Figure 3:<br /> The E489K and Y657X p85 alpha variants should be also tested in combination with p110 delta in the PI3K activity in vitro assay. This would help to further decipher the overall impact, especially of the E489K variant.

    1. Reviewer #2 (Public Review):

      Summary:<br /> Keratin 17 is a highly stress-inducible keratin that has been implicated in various human disorders. For example, higher K17 expression was shown to be associated with poor survival in several cancers including pancreatic carcinoma. To follow up on these observations, Kawalerski et al. assessed the relevance of K17 and its phosphorylation on this deadly tumor. In particular, they identified novel K17 phosphorylation sites and demonstrated that they affect K17 solubility as well as its nuclear localization. They also studied their significance in vivo.

      Strengths:<br /> The overall structure is very logical, the manuscript is well-written.

      Weaknesses:<br /> Unfortunately, the key experiment, i.e. the assessment of growth of cancer cell lines with different phospho-variants of K17, turned largely negative.

    1. Reviewer #2 (Public Review):

      Summary:<br /> This paper consists of mostly descriptive data, judged from alpha-mannosidase-treated samples, in which they found an increase in core fucose, a product of Fut 8.

      Strengths:<br /> This paper is interesting in the clinical field, but unfortunately the data is mostly descriptive and does not have a significant impact on the scientific community in general.

      Weaknesses:<br /> If core fucose is increased, at least the target glycan molecules of core fucose should be evaluated. They also found an increase in NO, suggesting that inflammatory processes also play an important role in OA in addition to glycan changes.<br /> It has already been reported that core fucose is decreased by administration of alpha-mannosidase inhibitors. Therefore, it is expected that alphaa-mannosidase administration increases core fucose.

    1. Review #2 (Public Review)

      The authors use a dual optical trap instrument combined with 2-color fluorescence imaging to analyze the diffusion of RSC and ISW2 on DNA, both in the presence and absence of nucleosomes, as well as long-range nucleosome sliding by these remodelers. This allowed them to demonstrate that both enzymes can participate in 1D diffusion along DNA for rather long ranges, with ISW2 predominantly tracking the DNA strand, while RSC diffusion involves hopping. In an elegant two-color assay, the authors were able to analyze interactions of diffusing remodeler molecules, both of the same or different types, observing their collisions, co-diffusion and bypassing. The authors demonstrate that nucleosomes act as barriers for remodeler diffusion, either repelling or sequestering them upon collision. In the presence of ATP, they observed surprisingly processive unidirectional nucleosome sliding with a strong bias in the direction opposite to where the remodeler approached the nucleosome from for ISW2. These results have fundamentally important implications for the mechanism of nucleosome positioning at promoters in vivo, will be of great interest for the scientific community, and will undoubtedly spark exciting future research

    1. Reviewer #2 (Public Review):

      Summary:<br /> Lin Y., Tao E., et al. used multiscale MD simulations to show that PI(4,5)P2 binds stably to an inactivated state of Nav channels at a conserved site within the DIV S4-S5 linker, which couples the voltage sensing domain (VSD) to the pore. The authors hypothesized that PI(4,5)P2 prolongs inactivation by binding to the same site where the C-terminal tail is proposed to bind during recovery from inactivation. They convincingly showed that PI(4,5)P2 reduces the mobility of both the DIV S4-S5 linker and the DIII-IV linker, thus slowing the conformational changes required for the channel to recover to the resting state. They also conducted MD simulations to show that phosphoinositides bind to VSD gating charges in the resting state of Nav channels. These interactions may anchor VDS at the resting state and impede its activation. Their results provide a mechanism by which phosphoinositides alter the voltage dependence of activation and the recovery rate from inactivation, an important step for developing novel therapies to treat Nav-related diseases. However, the study is incomplete lacks the expected confirmatory studies which are relevant to such proposals.

      Strengths:<br /> The authors identified a novel binding between phosphoinositides and the VSD of Nav and showed that the strength of this interaction is state-dependent. Based on their work, the affinity of PIPs to the inactivated state is higher than the resting state. This work will help pave the way for designing novel therapeutics that may help relieve pain or treat diseases like arrhythmia, which may result from a leftward shift of the channel's activation.

      Weaknesses:<br /> However, the study lacks the expected confirmatory studies relevant to such proposals. For example, one would expect that the authors would mutate the positive residues that they claim to make interactions with phosphoinositides to show that there are much fewer interactions once they make these mutations. Another point is that the authors found that the main interaction site of PIPs with Nav1.4 is the VSD-DIV and DIII-DIV linker. This interaction is expected to delay fast inactivation if it happens at the resting state. The authors should make a resting state model of the Nav1.4 channel to explain the recent experimental data showing that PIP2 delays the activation of Nav1.4, with almost no effect on the voltage dependence of fast inactivation.

      The reviewers answered most of my concerns about the first version of the manuscript.

    1. Reviewer #2 (Public Review):

      Summary:<br /> This manuscript clearly shows that Trypanosoma PKA is controlled by nucleoside analogues rather than cyclic nucleotides, which are the primary allosteric effectors of human PKA and PKG. The authors demonstrate that the inosine, guanosine, and adenosine nucleosides bind with high affinity and activate PKA in the tropical pathogens T. brucei, T. cruzi and Leishmania. The underlying determinants of nucleoside binding and selectivity are dissected by solving the crystal structure of T. cruzi PKAR(200-503) and T. brucei PKAR(199-499) bound to inosine at 1.4 Å and 2.1 Å resolution and through comparative mutational analyses. Of particular interest is the identification of a minimal subset of 2-3 residues that controls nucleoside vs. cyclic nucleotide specificity.

    1. Reviewer #2 (Public Review):


      Jablonowski and colleagues explored altered pre-mRNA splicing and metabolism in MYC-driven neuroblastoma cell lines. They focused on the role of JMJD6 assessing cellular transformation, for example through interactions with RNA-binding proteins. Moreover, the study examined JMJD6's impact on the splicing of glutaminase (GLS), crucial in neuroblastoma cell metabolism. It also connected JMJD6 to the anti-proliferative effects of indisulam, a compound targeting RBM39 (splicing factor interacting with JMJD6).

      Overall, the findings presented by Jablonowski et al. begin to illuminate a cancer-promoting metabolic, and potentially, a protein synthesis suppression program that may be linked to alternative pre-mRNA splicing through the action of JMJD6 - downstream of MYC. This discovery can provide further evidence for considering JMJD6 as a potential therapeutic target for the treatment of MYC-driven cancers.


      Alternative Splicing Induced by JMJD6 Knockdown: the study presents evidence for the role of JMJD6 in alternative splicing in neuroblastoma cells. Specifically, the RNA immunoprecipitation experiments demonstrated a significant shift from the GAC to the KGA GLS isoform upon JMJD6 knockdown. Moreover, a significant correlation between JMJD6 levels and GAC/KGA isoform expression was identified in two distinct neuroblastoma cohorts. This suggests a causative link between JMJD6 activity and isoform prevalence.

      Physical Interaction of JMJD6 in Neuroblastoma Cells: The paper provides preliminary insight into the physical interactome of JMJD6 in neuroblastoma cells. This offers a potential mechanistic avenue for the observed effects on metabolism and protein synthesis and could be exploited for a deeper investigation into the exact nature, and implications of neuroblastoma-specific JMJD6 protein-protein interactions.


      There are several areas that would benefit from improvements with regards to the neuroblastoma modelling strategy, lack of in vivo data, and depth of mechanistic investigation. While the need for additional experimental evidence in these areas remains (as highlighted in the initial review), the authors have now acknowledged several relevant limitations and provided a paragraph discussing future experimental work.

    1. Reviewer #2 (Public Review):

      The authors wanted to address the differential processing of GSDME by caspase 3 and 7, finding that while in humans GSDME is only processed by CASP3, Takifugu GSDME, and other mammalian can be processed by CASP3 and 7. This is due to a change in a residue in the human CAPS7 active site that abrogates GSDME cleavage. This phenomenon is present in humans and other primates, but not in other mammals such as cats or rodents. This study sheds light on the evolutionary changes inside CASP7, using sequences from different species. Although the study is somehow interesting and elegantly provides strong evidence of this observation, it lacks the physiological relevance of this finding, i.e. on human side, mouse side, and fish what are the consequences of CASP3/7 vs CASP3 cleavage of GSDME.

      Fish also present a duplication of GSDME gene and Takifugu present GSDMEa and GSDMEb. It is not clear in the whole study if when referring to TrGSDME is the a or b. This should be stated in the text and discussed in the differential function of both GSDME in fish physiology (i.e. PMIDs: 34252476, 32111733 or 36685536).

  2. Feb 2024
    1. Reviewer #2 (Public Review):

      Summary:<br /> Proteins that bind to double-stranded RNA regulate various cellular processes, including gene expression and viral recognition. Such proteins often contain multiple double-stranded RNA-binding domains (dsRBDs) that play an important role in target search and recognition. In this work, Chug and colleagues have characterized the backbone dynamics of one of the dsRBDs of a protein called TRBP2, which carries two tandem dsRBDs. Using solution NMR spectroscopy, the authors characterize the backbone motions of dsRBD2 in the absence and presence of dsRNA and compare these with their previously published results on dsRBD1. The authors show that dsRBD2 is comparatively more rigid than dsRBD1 and claim that these differences in backbone motions are important for target recognition.

      Strengths:<br /> The strengths of this study are multiple solution NMR measurements to characterize the backbone motions of dsRBD2. These include 15N-R1, R2, and HetNOE experiments in the absence and presence of RNA and the analysis of these data using an extended-model-free approach; HARD-15N-experiments and their analysis to characterize the kex. The authors also report differences in binding affinities of dsRBD1 and dsRBD2 using ITC and have performed MD simulations to probe the differential flexibility of these two domains.

      Weaknesses:<br /> While it may be true that dsRBD2 is more rigid than dsRBD1, the manuscript lacks conclusive and decisive proof that such changes in backbone dynamics are responsible for target search and recognition and the diffusion of TRBP2 along the RNA molecule. To conclusively prove the central claim of this manuscript, the authors could have considered a larger construct that carries both RBDs. With such a construct, authors can probe the characteristics of these two tandem domains (e.g., semi-independent tumbling) and their interactions with the RNA. Additionally, mutational experiments may be carried out where specific residues are altered to change the conformational dynamics of these two domains. The corresponding changes in interactions with RNA will provide additional evidence for the model presented in Figure 8 of the manuscript. Finally, there are inconsistencies in the reported data between different figures and tables.

    1. Reviewer #2 (Public Review):

      Summary:<br /> This work provides important anatomical features of a new species from the Lower Cambrian, which helps advance our understanding of the evolutionary origins of animal body plans. The authors interpreted that the new species possessed a bilateral body covered with cuticular polygonal reticulation and a ventral mouth. Based on cladistic analyses using maximum likelihood, Bayesian, and parsimony, the new species was placed, along with Saccorhytus, in a sister group ("Saccorhytida") of the Ecdysozoa. The phylogenetic position of Saccorhytida suggests a new scenario of the evolutionary origin of the crown ecdysozoan body plan.

      Strengths:<br /> Although the new species reported in this paper show strange morphologies, the interpretation of anatomical features was based on detailed observations of multiple fossil specimens, thereby convincing at the moment. Morphological data about fossil taxa in the Ediacaran and Early Cambrian are quite important for our understanding of the evolution of body plans (and origins of phyla) in paleontology and evolutionary developmental biology, and this paper represents a valuable contribution to such research fields.

      Weaknesses:<br /> The preservations of the specimens, in particular on the putative ventral side, are not good, and the interpretation of the anatomical features needs to be tested with additional specimens in the future. The monophyly of Cycloneuralia (Nematoida + Scalidophora) was not necessarily well-supported by cladistic analyses, and the evolutionary scenario (Figure 4) also needs to be tested in future works.

    1. Reviewer #2 (Public Review):

      Summary:<br /> The authors utilized (permeabilized) fibers from muscle samples obtained from brown and black bears, squirrels, and Garden dormice, to provide interesting and valuable data regarding changes in myosin conformational states and energetics during hibernation and different types of activity in summer and winter. Assuming that myosin structure is similar between species then its role as a regulator of metabolism would be similar and not different, yet the data reveal some interesting and perplexing differences between the selected hibernating species.

      Strengths:<br /> The experiments on the permeabilized fibers are complementary, sophisticated, and well-performed, providing new information regarding the characteristics of skeletal muscle fibers between selected hibernating mammalian species under different conditions (summer, interarousal, and winter).

      The studies involve complementary assessments of muscle fiber biochemistry, sarcomeric structure using X-ray diffraction, and proteomic analyses of posttranslational modifications.

      Weaknesses:<br /> It would be helpful to put these findings on permeabilized fibers into context with the other anatomical/metabolic differences between the species to determine the relative contribution of myosin energetics (with these other contributors) to overall metabolism in these different species, including factors such as fat volume/distribution.

    1. Reviewer #2 (Public Review):


      In this work, the authors seek to test a version of an old idea, which is that our perception of the world and our understanding of the objects in it are deeply influenced by the nature of our bodies and the kinds of behaviours and actions that those objects afford. The studies presented here muster three kinds of evidence for a discontinuity in the encoding of objects, with a mental "border" between objects roughly of human body scale or smaller, which tend to relate to similar kinds of actions that are yet distinct from the kinds of actions implied by human-or-larger scale objects. This is demonstrated through observers' judgments of the kinds of actions different objects afford; through similar questioning of AI large-language models (LLMs); and through a neuroimaging study examining how brain regions implicated in object understanding make distinctions between kinds of objects at human and larger-than-human scales.


      The authors address questions of longstanding interest in the cognitive neurosciences -- namely how we encode and interact with the many diverse kinds of objects we see and use in daily life. A key strength of the work lies in the application of multiple approaches. Examining the correlations among kinds of objects, with respect to their suitability for different action kinds, is novel, as are the complementary tests of judgments made by LLMs. The authors include a clever manipulation in which participants are asked to judge action-object pairs, having first adopted the imagined size of either a cat or an elephant, showing that the discontinuity in similarity judgments effectively moved to a new boundary closer to the imagined scale than the veridical human scale. The dynamic nature of the discontinuity hints that action affordances may be computed dynamically, "on the fly", during actual action behaviours with objects in the real world.


      A limitation of the tests of LLMs may be that it is not always known what kinds of training material was used to build these models, leading to a possible "black box" problem. Further, presuming that those models are largely trained on previous human-written material, it may not necessarily be theoretically telling that the "judgments" of these models about action-object pairs shows human-like discontinuities. Indeed, verbal descriptions of actions are very likely to mainly refer to typical human behaviour, and so the finding that these models demonstrate an affordance discontinuity may simply reflect those statistics, rather than providing independent evidence for affordance boundaries.

      The relatively small sample size of the brain imaging experiment, and some design features (such as the task participants performed, and the relatively narrow range of objects tested) provide some limits on the extent to which it can be taken as support for the authors' claims.

    1. Reviewer #2 (Public Review):

      Summary:<br /> This paper reports that mechanical stress from egg accumulation is a biological stimulus that drives the formation of extruded vesicles from the neurons of C. elegans ALMR touch neurons. Using powerful genetic experiments only readily available in the C. elegans system, the authors manipulate oocyte production, fertilization, embryo accumulation, and egg-laying behavior, providing convincing evidence that exopher production is driven by stretch-dependent feedback of fertilized, intact eggs in the adult uterus. Shifting the timing of egg production and egg laying alters the onset of observed exophers. Pharmacological manipulation of egg laying has the predicted effects, with animals retaining fewer eggs having fewer exophers and animals with increased egg accumulation having more. The authors show that egg production and accumulation have dramatic consequences for the viscera, and moving the ALMR process away from eggs prevents the formation of exophers. This effect is not unique to ALMR but is also observed in other touch neurons, with a clear bias toward neurons whose cell bodies are adjacent to the filled uterus. Embryos lacking an intact eggshell with reduced rigidity have impaired exopher production. Acute injection into the uterus to mimic the stretch that accompanies egg production causes a similar induction of exopher release. Together these results are consistent with a model where stretch caused by fertilized embryo accumulation, and not chemical signals from the eggs themselves or egg release, underlies ALMR exopher production seen in adult animals.

      Strengths:<br /> Overall, the experiments are very convincing, using a battery of RNAi and mutant approaches to distinguish direct from indirect effects. Indeed, these experiments provide a model generally for how one would methodically test different models for exopher production. The paper is well-written and easy to understand. I had been skeptical of the origin and purpose of exophers, concerned they were an artefact of imaging conditions, caused by deranged calcium activity under stressful conditions, or as evidence for impaired animal health overall. As this study addresses how and when they form in the animal using otherwise physiologically meaningful manipulations, the stage is now set to address at a cellular level how exophers like these are made and what their functions are.

      Weaknesses:<br /> Not many. The experiments are about as good as could be done. Some of the n's on the more difficult-to-work strains or experiments are comparatively low, but this is not a significant concern because of the number of different, complementary approaches used. The microinjection experiment in Figure 7 is very interesting, there are missing details that would confirm whether this is a sound experiment.

    1. Reviewer #2 (Public Review):

      This study describes a deep mutational scan across CDKN2A using suppression of cell proliferation in pancreatic adenocarcinoma cells as a readout for CDKN2A function. The results are also compared to in silico variant predictors currently utilized by the current diagnostic frameworks to gauge these predictors' performance. The authors also functionally classify CDKN2A somatic mutations in cancers across different tissues.

      This study is a potentially important contribution to the field of cancer variant interpretation for CDKN2A, but is almost impossible to review because of the severe lack of details regarding the methods and incompleteness of the data provided with the paper. We do believe that the cell proliferation suppression assay is robust and works, but when it comes to the screening of the library of CDKN2A variants the lack of primary data and experimental detail prevents assessment of the scientific merit and experimental rigor.

    1. Reviewer #2 (Public Review):

      Clément Mazeaud et al. identified the insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) as a proviral cellular protein that regulates Zika virus RNA replication by modulating the biogenesis of virus-induced replication organelles.

      The absence of IGF2BP2 specifically dampens ZIKV replication without having a major impact on DENV replication. The authors show that ZIKV infection changes IGF2BP2 cellular distribution, which relocates to the perinuclear viral replication compartment. These assays were conducted by infecting cells with an MOI of 10 for 48 hours. Considering the ZIKV life cycle, it is noteworthy that at this time there may be a cytopathic effect. One point of concern arises regarding how the authors can ascertain that the observed change in localization is a consequence of the infection rather than of the cytopathic effect. To address this concern, shorter infection periods (e.g., 24 hours post-infection) or additional controls, such as assessing cellular proteins that do not change their localization or infecting with another flavivirus lacking the IGF2BP2 effect, could be incorporated into their experiments.

      By performing co-immunoprecipitation assays on mock and infected cells that express HA-tagged IGF2BP2, the authors propose that the observed change in IGF2BP2 localization results from its recruitment to the replication compartment by the viral NS5 polymerase and associated with the viral RNA. Given that both IGF2BP2 and NS5 are RNA-binding proteins, it is plausible that their interaction is mediated indirectly through the RNA molecule. Notably, the authors do not address the treatment of lysates with RNAse before the IP assay, leaving open the possibility of this indirect interaction between IGF2BP2 and NS5.

      In in vitro binding assays, the authors demonstrate that the RNA-recognition motifs of the IGF2BP2 protein specifically bind to the 3' nontranslated region (NTR) of the ZIKV genome, excluding binding to the 5' NTR. However, they cannot rule out the possibility of this host protein associating with other regions of the viral genome. Using a reporter ZIKV subgenomic replicon system in IGF2BP2 knock-down cells, they additionally demonstrate that IGF2BP2 enhances viral genome replication. Despite its proviral function, the authors note that the "overexpression of IGF2BP2 had no impact on total vRNA levels." However, the authors do not delve into a discussion of this latter statement.

      In this study, the authors extend their findings by illustrating that ZIKV infection triggers a remodeling of IGF2BP2 ribonucleoprotein complex. They initially evaluate the impact of ZIKV infection on IGF2BP2's interaction with its endogenous mRNA ligands. Their results reveal that viral infection alters the binding of specific mRNA ligands, yet the physiological consequences of this loss of binding in the cell remain unexplored. Additionally, the authors demonstrate that ZIKV infection modifies the IGF2BP2 interactome. Through proteomic assays, they identified 62 altered partners of IGF2BP2 following ZIKV infection, with proteins associated with mRNA splicing and ribosome biogenesis being the most represented. In particular, the authors focused their research on the heightened interaction between IGF2BP2 and Atlastin 2, an ER-shaping protein reported to be involved in flavivirus vesicle packet formation. The validation of this interaction by Western blot assays prompted an analysis of the effect of ZIKV on organelle biogenesis using a newly described replication-independent vesicle packet induction system. Consequently, the authors demonstrate that IGF2BP2 plays a regulatory role in the biogenesis of ZIKV replication organelles.

      Based on these findings and previously published data, the authors propose a model outlining the role of IGF2BP2 in ZIKV infectious cycle, detailing the changes in IGF2BP2 interactions with both cellular and viral proteins and RNAs that occur during viral infection.

      The conclusions drawn in this paper are generally well substantiated by the data. However, it is worth noting that the majority of infections were conducted at a high MOI for 48 hours, spanning more than one infectious cycle. To enhance the robustness of their findings and mitigate potential cell stress, it would be valuable to observe these effects at shorter time intervals, such as 24 hours post-infection.<br /> Furthermore, the assertion regarding the association of IGF2BP2 with NS5 could be strengthened through additional immunoprecipitation (IP) assays. These assays, performed in the presence of RNAse treatment, would help exclude the possibility of an indirect interaction between IGF2BP2 and NS5 (both RNA-binding proteins) through viral RNA, thus providing more confidence in the observed association.

    1. Reviewer #2 (Public Review):

      The manuscript raises interesting observations about the potential evolution of release factors and tRNA to readdress the meaning of stop codons. The manuscript is divided into two parts: The first consists of revealing that the presence of a trp tRNA with an AS of 5bp in Condylostoma magnum is probably linked to contamination in the databases by sequences from bacteria. This is an interesting point which seems to be well supported by the data provided. It highlights the difficulty of identifying active tRNA genes from poorly annotated or incompletely assembled genomes. The second part criticises the fact that a mutation at position S67 of eRF1 is required to allow the UGA codon to be reassigned as a sense codon. As supporting evidence, they provide a phylogenetic study of the eRF1 factor showing that there are numerous ciliates in which this position is mutated, whereas the organism shows no trace of the reassignment of the UGA codon into a sense codon. While this criticism seems valid at first glance, it suffers from the lack of information on the level of translation of UGA codons in the organisms considered. It has been clearly shown that S67G or S67A mutations allow a strong increase in the reading of UGA codons by tRNAs, so this point is not in doubt. However, this has been demonstrated in model organisms, and we now need to determine whether other changes in the translational apparatus could accompany this mutation by modifying its impact on the UGA codon. This is a point partly raised at the end of the manuscript. Indeed, it is quite possible that in these organisms the UGA codon is both used to complete translation and is subject to a high level of readthrough. Actually, in the presence of a mutation at position 67 (or elsewhere), the reading of the UGA can be tolerated under specific stress conditions (nutrient deficiency, oxidative stress, etc.), so the presence of this mutation could allow translational control of the expression of certain genes. On the other hand, it seems obvious to me that there are other ways of reading through a stop codon without mutating eRF1 at position S67. So the absence of a mutation at this position is not really indicative of a level of reading of the UGA codon. Before writing such a strong assertion as that found on page 3, experiments should be carried out. The authors should therefore moderate their assertion.

      To make a definitive conclusion, we would need to be able to measure the level of termination and readthrough in these organisms. So, from my point of view, all the arguments seem rather weak. Moreover, the authors themselves indicate that the conjunction between a Trp tRNA that is efficient at reading the UGA codon and an eRF1 factor that is not efficient at recognising this stop codon could be the key to reassignment.

    1. Reviewer #2 (Public Review):

      Summary:<br /> In the present manuscript, Zhang et al utilize single-nuclei RNA-Seq to investigate the heterogeneity of perirenal adipose tissue. The perirenal depot is interesting because it contains both brown and white adipocytes, a subset of which undergo functional "whitening" during early development. While adipocyte thermogenic transdifferentiation has been previously reported, there remains many unanswered questions regarding this phenomenon and the mechanisms by which it is regulated.

      Strengths:<br /> The combination of UCP1-lineage tracing with the single nuclei analysis allowed the authors to identify four populations of adipocytes with differing thermogenic potential, including an "whitened" adipocyte (mPRAT-ad2) that retains the capacity to rapidly revert to a brown phenotype upon cold exposure. They also identify two populations of white adipocytes that do not undergo browning with acute cold exposure.

      Anatomically distinct adipose depots display interesting functional differences, and this work contributes to our understanding of one of the few brown depots present in humans.

      Weaknesses:<br /> The most interesting aspect of this work is the identification of a highly plastic mature adipocyte population with the capacity to switch between a white and brown phenotype. The authors attempt to identify the transcriptional signature of this ad2 subpopulation, however the limited sequencing depth of single nuclei somewhat lessens the impact of these findings. Furthermore, the lack of any form of mechanistic investigation into the regulation of mPRAT whitening limits the utility of this manuscript. However, the combination of well-executed lineage tracing with comprehensive cross-depot single-nuclei presented in this manuscript could still serve as a useful reference for the field.

    1. Reviewer #2 (Public Review):


      The authors investigated the molecular evolution of members of the gasdermin (GSDM) family. By adding the evolutionary time axis of animals, they created a new molecular phylogenetic tree different from previous ones. The analyzed result verified that non-mammalian GSDMAs and mammalian GSDMAs have diverged into completely different and separate clades. Furthermore, by biochemical analyses, the authors demonstrated non-mammalian GSDMA proteins are cleaved by the host-encoded caspase-1. They also showed mammalian GSDMAs have lost the cleavage site recognized by caspase-1. Instead, the authors proposed that the newly appeared GSDMD is now cleaved by caspase-1.

      Through this study, we have been able to understand the changes in the molecular evolution of GSDMs, and by presenting the cleavage of GSDMAs through biochemical experiments, we have become able to grasp the comprehensive picture of this family molecules. However, there are some parts where explanations are insufficient, so supplementary explanations and experiments seem to be necessary.


      It has a strong impact in advancing ideas into the study of pyroptotic cell death and even inflammatory responses involving caspase-1.


      Based on the position of mammalian GSDMA shown in the molecular phylogenetic tree (Figure 1), it may be difficult to completely agree with the authors' explanation of the evolution of GSDMA.

      (1) Focusing on mammalian GSDMA, this group and mammalian GSDMD diverged into two clades, and before that, GSDMA/D groups and mammalian GSDMC separated into two, more before that, GSDMB, and further before that, non-mammalian GSDMA, when we checked Figure 1. In the molecular phylogenetic tree, it is impossible that GSDMA appears during evolution again. Mammalian GSDMAs are clearly paralogous molecules to non-mammalian GSDMAs in the figure. If they are bona fide orthologous, the mammalian GSDMA group should show a sub-clade in the non-mammalian GSDMA clade. It is better to describe the plausibility of the divergence in the molecular evolution of mammalian GSDMA in the Discussion section.

      (2) Regarding (1), it is recommended that the authors reconsider the validity of estimates of divergence dates by focusing on mammalian species divergence. Because the validity of this estimation requires recheck of the molecular phylogenetic tree, including alignment.

      (3) If GSDMB and/or GSDMC between non-mammalian GSDMA and mammalian GSDMD as shown in the molecular phylogenetic tree would be cleaved by caspase-1, the story of this study becomes clearer. The authors should try that possibility.

    1. Reviewer #2 (Public Review):


      In this study, Rana and colleagues present interesting findings demonstrating potential beneficial effects of AMPA receptor modulator with ampakines in the context of neurogenic bladder following acute spinal cord injury. Neurogenic bladder dysfunction is characterized by urinary retention and/or incontinence, with limited treatments available. Based on recent observations showing that ampakines improved respiratory function in rats with SCI, the authors explored the use of ampakine CX1739 on bladder and external urethral sphincter (EUS) function and coordination early after mid-thoracic contusion injury. Using continuous flow cystometry and EUS myography the authors showed that ampakine treatment led to decreased peak pressures, threshold pressure, intercontraction interval and voided volume in SCI rats versus vehicle-treated controls. Although CX1739 did not alter EUS EMG burst duration, treatment did lead to EUS EMG bursting at lower bladder pressure compared to baseline. In a subset of rats that did not show regular cystometric voiding, CX1739 treatment diminished non-voiding contractions and improved coordinated EUS EMG bursting. Based on these findings the authors conclude that ampakines may have utility in recovery of bladder function following SCI.

      Strengths and Weaknesses:

      The experimental design is thoughtful and rigorous, providing evaluation of both the bladder and external urethral sphincter function in the absence and presence of ampakine treatment. The data in support of a role for CX1789 treatment in the context of neurogenic bladder are presented clearly, and the conclusions are adequately supported by the findings. The authors have addressed essentially all of the weaknesses related to translational significance, CX1789 half-life, and the use of female animals only in this study.

    1. Reviewer #2 (Public Review):

      Summary:<br /> This manuscript mainly studied the biological effect of tenascin XB (TNXB) on hemophilic arthropathy (HA) progression. Using bioinformatic and histopathological approaches, the authors identified the novel candidate gene TNXB for HA. Next, the authors showed that TNXB knockdown leads to chondrocyte apoptosis, matrix degeneration, and subchondral bone loss in vivo/vitro. Furthermore, AKT agonists promoted extracellular matrix synthesis and prevented apoptosis in TNXB knockdown chondrocytes.

      Strengths:<br /> In general, this study significantly advances our understanding of HA pathogenesis. The authors utilize comprehensive experimental strategies to demonstrate the role of TNXB in cartilage degeneration associated with HA. The results are clearly presented, and the conclusions appear appropriate.

      Weaknesses:<br /> Additional clarification is required regarding the gender of the F8-/- mouse in the study. Is the mouse male or female?

    1. Reviewer #2 (Public Review):

      The following review for a revised manuscript is updated where appropriate and otherwise unchanged for completeness.

      Summary<br /> The paper concerns the phenomenon of continuous flash suppression (CFS), relevant to questions about the extent and nature of subconscious visual processing. Whereas standard CFS studies only measure the breakthrough threshold-the contrast at which an initially suppressed target stimulus with steadily increasing contrast becomes visible-the authors also measure the re-suppression threshold, the contrast at which a visible target with decreasing contrast becomes suppressed. Thus, the authors could calculate suppression depth, the ratio between the breakthrough and re-suppression thresholds. To measure both thresholds, the authors introduce the tracking-CFS method, a continuous-trial design that results in faster, better controlled, and lower-variance threshold estimates compared to the discrete trials standard in the literature. The study finds that suppression depths are similar for different image categories, providing an interesting contrast to previous results that breakthrough thresholds differ for different image categories. The new finding calls for a reassessment of interpretations based solely on the breakthrough threshold that subconscious visual processing is category-specific.

      Strengths<br /> (1) The tCFS method quickly estimates breakthrough and re-suppression thresholds using continuous trials, which also better control for slowly varying factors such as adaptation and attention. Indeed, tCFS produces estimates with lower across-subject variance than the standard discrete-trial method (Fig. 2). The tCFS method is straightforward to adopt in future research on CFS and binocular rivalry.

      (2) The CFS literature has lacked re-suppression threshold measurements. By measuring both breakthrough and re-suppression thresholds, this work calculated suppression depth (i.e., the difference between the two thresholds), which warrants different interpretations from the breakthrough threshold alone.

      (3) The work found that different image categories show similar suppression depths, suggesting some aspects of CFS are not category-specific. This result enriches previous findings that breakthrough thresholds vary with image categories. Re-suppression thresholds vary symmetrically, such that their differences are constant.

      Weakness<br /> The following concern remains from my initial review. Reviewer #3 raised a similar point in the last revision round, and I believe the authors do not fully address either comment. Thus, here I paraphrase my initial concern with reference to the authors' reply and discuss why it needs further elaboration.

      I do not follow the authors' reasoning as to why the suppression depth is a better (or fuller, superior, more informative) indication of subconscious visual processing than the breakthrough threshold alone. To my previous round of comments, the authors replied that 'breakthrough provides only half of the needed information.' I do not understand this. One cannot infer the suppression depth from the breakthrough threshold alone, but *one cannot obtain the breakthrough threshold from the suppression depth alone*, either. The two measures are complementary. (To be sure, given *both* the suppression depth and the re-suppression threshold, one can trivially recover the breakthrough threshold. The discussion concerns the suppression depth *alone* and the breakthrough threshold *alone*.) I am fully open to being convinced that there is a good reason why the suppression depth may be more informative than the breakthrough threshold about a specific topic, e.g., inter-ocular suppression or subconscious visual processing. I only request that the authors make such an argument explicit. Preferably, this argument will precede claims that require it. For example, in the significance statement, the authors write, 'all images show equal suppression when both thresholds are measured. We *thus* find no evidence of differential unconscious processing and *conclude* reliance on breakthrough thresholds is misleading' (emphasis added). Just what supports the 'thus' and the 'conclude'? Similarly, at the end of the introduction, the authors write, '[...] suppression depth was constant for faces, objects, gratings and visual noise. *In other words*, we find no evidence to support differential unconscious processing among these particular, diverse categories of suppressed images' (emphasis added). I believe the statements before and after the period have not been shown to be equivalent. In the abstract, the authors revised, 'variations in bCFS thresholds alone are insufficient for inferring whether the barrier to achieving awareness exerted by interocular suppression is weaker for some categories of visual stimuli compared to others.' While I appreciate the added specificity, this claim still needs more support because the authors have not established that suppression depth is a better index than the breakthrough threshold of 'the barrier to achieving awareness exerted by interocular suppression.'

      The authors' reply included a discussion of neural CRFs, which may explain why the bCFS thresholds differ across image categories. However, CRFs do not explain why the bCFS threshold does not implicate some component of subconscious processing. For example, the bCFS threshold may reflect the aspect of subconscious visual processing that corresponds to V1/V4 neural responses.

    1. Reviewer #2 (Public Review):

      As a report of the first structure of VMAT2, indeed the first structure of any vesicular monoamine transporter, this manuscript represents an important milestone in the field of neurotransmitter transport. VMAT2 belongs to a large family (the major facilitator superfamily, MFS) containing transporters from all living species. There is a wealth of information relating to the way that MFS transporters bind substrates, undergo conformational changes to transport them across the membrane and couple these events to the transmembrane movement of ions. VMAT2 couples the movement of protons out of synaptic vesicles to the vesicular uptake of biogenic amines (serotonin, dopamine and norepinephrine) from the cytoplasm. The new structure presented in this manuscript can be expected to contribute to an understanding of this proton/amine antiport process.

      The structure contains a molecule of the inhibitor TBZ bound in a central cavity, with no access to either luminal or cytoplasmic compartments. The authors carefully analyze which residues interact with bound TBZ and measure TBZ binding to VMAT2 mutated at some of those residues. These measurements allow well-reasoned conclusions about the differences in inhibitor selectivity between VMAT1 and VMAT2 and differences in affinity between TBZ derivatives.

      The structure also reveals polar networks within the protein and hydrophobic residues in positions that may allow them to open and close pathways between the central binding site and the cytoplasm or the vesicle lumen. The authors propose involvement of these networks and hydrophobic residues in coupling of transport to proton translocation and conformational changes. However, these proposals are quite speculative in the absence of supporting structures and experimentation that would test specific mechanistic details.

    1. Reviewer #2 (Public Review):


      In this manuscript, Lane and colleagues measured the abundance of SARS-CoV-2 on breath in 60 outpatients after the development of COVID-19 symptoms using a novel breath collection apparatus. They found that, overall, viral abundance remains high for approximately eight days following the development of symptoms, after which viral abundance on breath drops to a low level that may persist for approximately 20 days or more. They did not identify significant differences in viral shedding on breath by vaccination status or viral variant. They also noted substantial variation in the degree and duration of shedding across individuals.


      The primary strengths of this study are (1) the focus on breath, rather than the more traditional nasal/oropharyngeal swabs, and (2) the fact that the data were collected at multiple time points for each infection. This allows the authors to characterize not only mean viral abundance across individuals but also how that abundance changes over time, allowing for a better understanding of the potential duration of infectiousness of SARS-CoV-2.


      The sample size is moderate (60) and focuses only on outpatients. While these are minor weaknesses (as the authors note, the majority of SARS-CoV-2 transmission likely occurs among those with symptoms below the threshold of hospitalization), it would nevertheless be useful to have a fuller understanding of variation in viral shedding across clinical groups. Furthermore, the study lacks information on viral shedding prior to the development of symptoms, which may be a critical period for transmission. Since the samples were collected at home by study participants using a novel apparatus, it is difficult to assess the degree to which actual variation in viral abundance, user variability, and/or measurement variation is inherent to the apparatus.

    1. French hospital medicine came to be based on three pillars, none entirely new, but which together constituted a new way of looking at disease. The three pillars were physical diagnosis, pathologico-clinical correlation, and the use of large numbers of cases to elucidate diagnostic categories and to evaluate therapy

      3 pillars to french hospital medicine;

      -physical diagnosis -pathologico-clinical correlation -use of large numbers of cases to elucidate diagnostic categories + evaluate therapy

    1. Reviewer #2 (Public Review):

      This study focuses on the association between weight at birth and area, volume and thickness of the cerebral cortex measured at timepoints throughout the lifespan. Overall, the study is well designed, supported by evidence from a large sample drawn from three geographically distinct cohorts with robust analytical and statistical methods.

      The authors test the hypotheses: that higher birth weight is associated with greater cortical area in later life; that associations are robust across samples and age; and that associations are stable across the lifespan. Analyses are performed separately in three cohorts: ABCD, UKBB and LCBC and the pattern of associations compared by means of spatial correlations. They find that BW is positively associated with cortical area (and, as a consequence, cortical volume) across most of the cortex, with effect sizes greatest in frontal and temporal regions. These associations remain largely unchanged when accounting for age, sex, length of gestation and (in one cohort) ethnicity. Variations due to MRI scanner and site are accounted for statistically. Measures are taken to determine within sample replicability through split-half analyses.

      The authors conclude that BW, as a marker of early development, is associated with brain characteristics throughout the lifespan.

    1. Reviewer #2 (Public Review):

      Previous studies have shown that two hair cell transcription factors, Pou4f3 and Gfi1 are both necessary for the survival of cochlear hair cells, and that Gfi1 is regulated by Pou4f3. The authors have previously also shown that mosaic inactivation of the RNA-binding protein RBM24 leads to outer hair cell death.

      In the present study, the authors show that hair cells dies in Pou4f3 and Gfi1 mutant mice. They show that Gfi1 is regulated by Pou4f3. Both these observations have been published before. They then show that RBM24 is absent in Pou4f3 knockouts, but not Gfi1 knockouts. They ectopically activate RMB24 in the hair cells of Poui4f3 knockouts, but this does not rescue the hair cell death. Finally the authors validate three RMB24 enhancers that are active in young hair cells and which have been previously shown to bind Pou4f3.

      The experiments are well-executed and the data are clear. The results support the conclusions of the paper. The authors have revised the paper slightly, mostly to modify the red/green staining in the figures, and to perform additional analyses of the RBM24 and Ikzf2 mutants, now shown in Supplementary Figure 3.

      Much of the work in the paper has been reported before. The result that hair cell transcription factors operate in a network, with some transcription factors activating only a subset of hair cell genes, is an expected result. Since RBM24 is only one of many genes regulated directly by Pou4f3, it is not surprising that it cannot rescue the Pou4f3 knockout hair cell degeneration, and indeed the rationale for attempting such a rescue experiment is not provided by the authors.

      The identification of new hair cell enhancers may be of use to investigators wishing to express genes in hair cells.

      In sum, this work, although carefully performed, does not shed significant new light on our understanding of hair cell development or survival.

    1. Reviewer #2 (Public Review):

      Summary: This study is a superbly written and illustrated documentation of the external sensilla of the Drosophila larva. Serial electron microscopy and digital modeling is used to the fullest to provide a definitive and clear picture of the sensory organs, which is dearly needed in the field.

      Strengths: Serial electron microscopy and digital modeling is used to the fullest to provide a comprehensive, definitive and clear picture of the sensory organs, which is dearly needed in the field.

      Weaknesses: none detected.

    1. Reviewer #2 (Public Review):

      The study presented by Paoli et al. explores temporal aspects of neuronal encoding of odors and their perception, using bees as a general model for insects. The neuronal encoding of the presence of an odor is not a static representation; rather, its neuronal representation is partly encoded by the temporal order in which parallel olfactory pathways participate and are combined. This aspect is not novel, and its relevance in odor encoding and recognition has been discussed for more than the past 20 years.

      The temporal richness of the olfactory code and its significance have traditionally been driven by results obtained based on electrophysiological methods with temporal resolution, allowing the identification and timing of the action potentials in the different populations of neurons whose combination encodes the identity of an odor. On the other hand, optophysiological methods that enable spatial resolution and cell identification in odor coding lack the temporal resolution to appreciate the intricacies of olfactory code dynamics.

      1) In this context, the main merit of Paoli et al.'s work is achieving an optical recording that allows for spatial registration of olfactory codes with greater temporal detail than the classical method and, at the same time, with greater sensitivity to measure inhibitions as part of the olfactory code.

      The work clearly demonstrates how the onset and offset of odor stimulation triggers a dynamic code at the level of the first interneurons of the olfactory system that changes at every moment as a natural consequence of the local inhibitory interactions within the first olfactory neuropil, the antennal lobe. This gives rise to the interesting theory that each combination of activated neurons along this temporal sequence corresponds to the perception of a different odor. The extent to which the corresponding postsynaptic layers integrate this temporal information to drive the perception of an odor, or whether this sequence is, in a sense, a journey through different perceptions, is challenging to address experimentally.

      In their work, the authors propose a computational approach and olfactory learning experiments in bees to address these questions and evaluate whether the sequence of combinations drives a sequence of different perceptions. In my view, it is a highly inspiring piece of work that still leaves several questions unanswered.

      2) In my opinion, the detailed temporal profile of the response of projection neurons and their respective probabilities of occurrence provide valuable information for understanding odor coding at the level of neurons transferring information from the antennal lobes to the mushroom bodies. An analysis of these probabilities in each animal, rather than in the population of animals that were measured, would aid in better comprehending the encoding function of such temporal profiles. Being able to identify the involved glomeruli and understanding the extent to which the sequence of patterns and inhibitions is conserved for each odor across different animals, as it is well known for the initial excitatory burst of activity observed in previous studies without the fine temporal detail, would also be highly significant.

      In my view, the computational approach serves as a useful tool to inspire future experiments; however, it appears somewhat simplistic in tackling the complexity of the subject. One question that I believe the researchers do not address is to what extent the inhibitions recorded in the projection neurons are integrated by the Kenyon cells and are functional for generating odor-specific patterns at that level.

      Lastly, the behavioral result indicating a difference in conditioned response latency after early or delayed learning protocol is interesting. However, it does not align with the expected time for the neuronal representation that was theoretically rewarded in the delayed protocol. This final result does not support the authors' interpretation regarding the existence of a smell and an after-smell as separate percepts that can serve as conditioned stimuli.

    1. Reviewer #2 (Public Review):

      Summary:<br /> Etcheverry et al. present two computational frameworks for exploring the functional capabilities of gene regulatory networks (GRNs). The first is a framework based on intrinsically-motivated exploration, here used to reveal the set of steady states achievable by a given gene regulatory network as a function of initial conditions. The second is a behaviorist framework, here used to assess the robustness of steady states to dynamical perturbations experienced along typical trajectories to those steady states. In Figs. 1-5, the authors convincingly show how these frameworks can explore and quantify the diversity of behaviors that can be displayed by GRNs. In Figs. 6-9, the authors present applications of their framework to the analysis and control of GRNs, but the support presented for their case studies is often incomplete.

      Strengths:<br /> Overall, the paper presents an important development for exploring and understanding GRNs/dynamical systems broadly, with solid evidence supporting the first half of their paper in a narratively clear way.

      The behaviorist point of view for robustness is potentially of interest to a broad community, and to my knowledge introduces novel considerations for defining robustness in the GRN context.

      Some specific weaknesses, mostly concerning incomplete analyses in the second half of the paper:

      (1) The analysis presented in Fig. 6 is exciting but preliminary. Are there other appropriate methods for constructing energy landscapes from dynamical trajectories in gene regulatory networks? How do the results in this particular case study compare to other GRNs studied in the paper?

      Additionally, it is unclear whether the analysis presented in Fig. 6C is appropriate. In particular, if the pseudopotential landscapes are constructed from statistics of visited states along trajectories to the steady state, then the trajectories derived from dynamical perturbations do not only reflect the underlying pseudo-landscape of the GRN. Instead, they also include contributions from the perturbations themselves.

      (2) In Fig. 7, I'm not sure how much is possible to take away from the results as given here, as they depend sensitively on the cohort of 432 (GRN, Z) pairs used. The comparison against random networks is well-motivated. However, as the authors note, comparison between organismal categories is more difficult due to low sample size; for instance, the "plant" and "slime mold" categories each only have 1 associated GRN. Additionally, the "n/a" category is difficult to interpret.

      (3) In Fig. 8, it is unclear whether the behavioral catalog generated is important to the intervention design problem of moving a system from one attractor basin to another. The authors note that evolutionary searches or SGD could also be used to solve the problem. Is the analysis somehow enabled by the behavioral catalog in a way that is complementary to those methods? If not, comparison against those methods (or others e.g. optimal control) would strengthen the paper.

      (4) The analysis presented in Fig. 9 also is preliminary. The authors note that there exist many algorithms for choosing/identifying the parameter values of a dynamical system that give rise to a desired time-series. It would be a stronger result to compare their approach to more sophisticated methods, as opposed to random search and SGD. Other options from the recent literature include Bayesian techniques, sparse nonlinear regression techniques (e.g. SINDy), and evolutionary searches. The authors note that some methods require fine-tuning in order to be successful, but even so, it would be good to know the degree of fine-tuning which is necessary compared to their method.

    1. Reviewer #2 (Public Review):

      Summary:<br /> In this manuscript, Jiang et al., explore the role of neurexins at glycinergic MNTB-LSO synapses. The authors utilize elegant and compelling ex vivo slice electrophysiology to assess how the genetic conditional deletion of Nrxns1-3 impacts inhibitory glycinergic synaptic transmission and found that TKO of neurexins reduced electrically and optically evoked IPSC amplitudes, slowed optically evoked IPSC kinetics and reduced presynaptic release probability. The authors use classic approaches including reduced [Ca2+] in ACSF and EGTA chelation to propose that changes in these evoked properties are likely driven by the loss of calcium channel coupling. Intriguingly, while evoked transmission was impaired, the authors reported that spontaneous IPSC frequency was increased, potentially due to an increased number of synapses in LSO. Overall, this manuscript provides important insight into the role of neurexins at the glycinergic MNTP-LSO synapse and further emphasizes the need for continued study of both the non-redundant and redundant roles of neurexins.

      Strengths:<br /> This well-written manuscript seamlessly incorporates mouse genetics and elegant ex vivo electrophysiology to identify a role for neurexins in glycinergic transmission at MNTB-LSO synapses. Triple KO of all neurexins reduced the amplitude and timing of evoked glycinergic synaptic transmission. Further, spontaneous IPSC frequency was increased. The evoked synaptic phenotype is likely a result of reduced presynaptic calcium coupling while the spontaneous synaptic phenotype is likely due to increased synapse numbers. While neuroligin-4 has been identified at glycinergic synapses, this study, to the best of my knowledge, is the first to study Nrxn function at these synapses.

      Weaknesses:<br /> The data are compelling and report an intriguing functional phenotype. The role of Neurexins redundantly controls calcium channel coupling has been previously reported. Mechanistic insight would significantly strengthen this study.<br /> The claim that triple KO of Nrxns from MNTB increases the number of synapses in LSO is not strongly supported.<br /> Despite the stated caveats of measuring electrically evoked currents and the more robust synaptic phenotypes observed using optically evoked transmission, the authors rely heavily on electrical stimulation for most measurements.<br /> The differential expression of individual neurexins might indicate that specific neurexins may dominantly regulate synaptic transmission, however, this possibility is not discussed in detail.

    1. Reviewer #2 (Public Review):

      Summary:<br /> The authors introduce a new 192-channel OPM system that can be configured using different helmets to fit individuals from 2 to 34 years old. To demonstrate the veracity of the system, they conduct a sensorimotor task aimed at mapping developmental changes in beta oscillations across this age range. Many past studies have mapped the trajectory of beta (and gamma) oscillations in the sensorimotor cortices, but these studies have focused on older children and adolescents (e.g., 9-15 years old) and used motor tasks. Thus, given the study goals, the choice of a somatosensory task was surprising and not justified. The authors recorded a final sample of 27 children (2-13 years old) and 24 adults (21-34 years) and performed a time-frequency analysis to identify oscillatory activity. This revealed strong beta oscillations (decreases from baseline) following the somatosensory stimulation, which the authors imaged to discern generators in the sensorimotor cortices. They then computed the power difference between 0.3-0.8 period and 1.0-1.5 s post-stimulation period and showed that the beta response became stronger with age (more negative relative to the stimulation period). Using these same time windows, they computed the beta burst probability and showed that this probability increased as a function of age. They also showed that the spectral composition of the bursts varied with age. Finally, they conducted a whole-brain connectivity analysis. The goals of the connectivity analysis were not as clear as prior studies of sensorimotor development have not conducted such analyses and typically such whole-brain connectivity analyses are performed on resting-state data, whereas here the authors performed the analysis on task-based data. In sum, the authors demonstrate that they can image beta oscillations in young children using OPM and discern developmental effects.

      Strengths:<br /> Major strengths of the study include the novel OPM system and the unique participant population going down to 2-year-olds. The analyses are also innovative in many respects.

      Weaknesses:<br /> Several weaknesses currently limit the impact of the study. First, the choice of a somatosensory stimulation task over a motor task was not justified. The authors discuss the developmental motor literature throughout the introduction, but then present data from a somatosensory task, which is confusing. Of note, there is considerable literature on the development of somatosensory responses so the study could be framed with that. Second, the primary somatosensory response actually occurs well before the time window of interest in all of the key analyses. There is an established literature showing mechanical stimulation activates the somatosensory cortex within the first 100 ms following stimulation, with the M50 being the most robust response. The authors focus on a beta decrease (desynchronization) from 0.3-0.8 s which is obviously much later, despite the primary somatosensory response being clear in some of their spectrograms (e.g., Figure 3 in older children and adults). This response appears to exhibit a robust developmental effect in these spectrograms so it is unclear why the authors did not examine it. This raises a second point; to my knowledge, the beta decrease following stimulation has not been widely studied and its function is unknown. The maps in Figure 3 suggest that the response is anterior to the somatosensory cortex and perhaps even anterior to the motor cortex. Since the goal of the study is to demonstrate the developmental trajectory of well-known neural responses using an OPM system, should the authors not focus on the best-understood responses (i.e., the primary somatosensory response that occurs from 0.0-0.3 s)?

      Regarding the developmental effects, the authors appear to compute a modulation index that contrasts the peak beta window (.3 to .8) to a later 1.0-1.5 s window where a rebound is present in older adults. This is problematic for several reasons. First, it prevents the origin of the developmental effect from being discerned, as a difference in the beta decrease following stimulation is confounded with the beta rebound that occurs later. A developmental effect in either of these responses could be driving the effect. From Figure 3, it visually appears that the much later rebound response is driving the developmental effect and not the beta decrease that is the primary focus of the study. Second, these time windows are a concern because a different time window was used to derive the peak voxel used in these analyses. From the methods, it appears the image was derived using the .3-.8 window versus a baseline of 2.5-3.0 s. How do the authors know that the peak would be the same in this other time window (0.3-0.8 vs. 1.0-1.5)? Given the confound mentioned above, I would recommend that the authors contrast each of their windows (0.3-0.8 and 1.0-1.5) with the 2.5-3.0 window to compute independent modulation indices. This would enable them to identify which of the two windows (beta decrease from 0.3-0.8 s or the increase from 1.0-1.5 s) exhibited a developmental effect. Also, for clarity, the authors should write out the equation that they used to compute the modulation index. The direction of the difference (positive vs. negative) is not always clear.

      Another complication of using a somatosensory task is that the literature on bursting is much more limited and it is unclear what the expectations would be. Overall, the burst probability appears to be relatively flat across the trial, except that there is a sharp decrease during the beta decrease (.3-.8 s). This matches the conventional trial-averaging analysis, which is good to see. However, how the bursting observed here relates to the motor literature and the PMBR versus beta ERD is unclear.

      Another weakness is that all participants completed 42 trials, but 19% of the trials were excluded in children and 9% were excluded in adults. The number of trials is proportional to the signal-to-noise ratio. Thus, the developmental differences observed in response amplitude could reflect differences in the number of trials that went into the final analyses.

      Finally, the discussion could be improved to focus on the somatosensory literature and how this contributes to that. Currently, the discussion includes very little from the somatosensory literature.

    1. Reviewer #2 (Public Review):

      Summary:<br /> The authors address an important outstanding question: what forces are the primary drivers of evolutionary rate covariation? Exploration of this topic is important because it is currently difficult to interpret the functional/mechanistic implications of evolutionary covariation. These analyses also speak to the predictive power (and limits) of evolutionary rate covariation. This study reinforces the existing paradigm that covariation is driven by a varied/mixed set of interaction-types that all fall under the umbrella explanation of 'co-functional interactions'.

      Strengths:<br /> Very smart experimental design that leverages individual protein domains for increased resolution.

      Weaknesses:<br /> Nuanced and sometimes inconclusive results that are difficult to capture in a short title/abstract statement.

      EDIT: The authors have done a satisfactory job of honing their language to get the nuanced ideas across clearly. The added scholarship and theoretical discussion they added strengthen the impact of the manuscript. The revised edition addresses my concerns.

    1. Reviewer #3 (Public Review):

      The study focuses on in vivo and in vitro cellular responses intranasal instillation of glycoforms and mutants of SARS-CoV2 spike trimer or spike bearing VLP in mice. Collectively, the experiments suggest that SARS-CoV2 spike has pro-inflammatory roles through increase M1 macrophage associated cytokines and induction of neutrophil netosis/necrosis, a proinflammatory cell death pathway. These effects seem largely independent of hACE2 interaction and partly depend upon interactions with SIGLECs on macrophages and neutrophils. A strength of the study is that a number sophisticated methods are used, including intravital microscopy in the cramaster and liver as well as acute lung slice models, to look at uptake of the spike proteins and immune cell dynamics. The weakness is that some of the reagents maybe contaminated with uncharacterized glycoforms and some important controls, such as control spike protein and control VLP are unevenly applied or not included. The authors have revised the manuscript through some improvements in the writing, but the survey nature and suggestive level of evidence is still a weakness. The study calls attention to sources of proinflammatory activity in the SARS CoV2 spike that may involve some carbohydrate interactions.

    1. Reviewer #2 (Public Review):

      This manuscript reports the discovery and analysis of a large protein complex that controls mating type and sexual reproduction of the model ciliate Tetrahymena thermophila. In contrast to many organisms that have two mating types or two sexes, Tetrahymena is multi-sexual with 7 distinct mating types. Previous studies identified the mating type locus, which encodes two transmembrane proteins called MTA and MTB that determine the specificity of mating type interactions. In this study, mutants are generated in the MTA and MTB genes and mutant isolates are studied for mating properties. Cells missing either MTA or MTB failed to co-stimulate wild-type cells of different mating types. Moreover, a mixture of mutants lacking MTA or MTB also failed to stimulate. These observations support the conclusion that MTA and MTB may form a complex that directs mating-type identity. To address this, the proteins were epitope-tagged and subjected to IP-MS analysis. This revealed that MTA and MTB are in a physical complex, and also revealed a series of 6 other proteins (MRC1-6) that together with MTA/B form the mating type recognition complex (MTRC). All 8 proteins feature predicted transmembrane domains, three feature GFR domains, and two are predicted to function as calcium transporters. The authors went on to demonstrate that components of the MTRC are localized on the cell surface but not in the cilia. They also presented findings that support the conclusion that the mating type-specific region of the MTA and MTB genes can influence both self- and non-self-recognition in mating.

      Taken together, the findings presented are interesting and extend our understanding of how organisms with more than two mating types/sexes may be specified. The identification of the six-protein MRC complex is quite intriguing. It would seem important that the function of at least one of these subunits be analyzed by gene deletion and phenotyping, similar to the findings presented here for the MTA and MTB mutants. A straightforward prediction might be that a deletion of any subunit of the MRC complex would result in a sterile phenotype. The manuscript was very well written and a pleasure to read.

    1. Langes Interview mit Hans Joachim Schellnhuber im Standard, under anderem zu Kipppunkten und der Möglichkeit, dass wir uns schon auf dem Weg in ein „neues Klimaregime“ befinden. Schellnhuber geht davon aus, dass auch das 2°-Ziel überschritten werden wird. Der „Königsweg“, um der Atmosphäre danach wieder CO<sub>2</sub> zu entziehen, sei der weltweite Ersatz von Zement durch Holz beim Bauen, den er als Direktor des IIASA vor allem erforschen wolle. Die Wahrscheinlichkeit dafür, dass „noch alles gutgehen" werde, sei gering. https://www.derstandard.at/story/3000000204635/klimaforscher-schellnhuber-werden-auch-ueber-das-zwei-grad-ziel-hinausschiessen

    1. RRID:ZFIN_ZDB-ALT-130409-2

      DOI: 10.7554/eLife.42455

      Resource: (ZFIN Cat# ZDB-ALT-130409-2,RRID:ZFIN_ZDB-ALT-130409-2)

      Curator: @scibot

      SciCrunch record: RRID:ZFIN_ZDB-ALT-130409-2

      What is this?

    2. RRID:ZFIN_ZDB-ALT-130624-2

      DOI: 10.7554/eLife.42455

      Resource: (ZFIN Cat# ZDB-ALT-130624-2,RRID:ZFIN_ZDB-ALT-130624-2)

      Curator: @scibot

      SciCrunch record: RRID:ZFIN_ZDB-ALT-130624-2

      What is this?

    3. RRID:ZFIN_ZDB-ALT-110520-2

      DOI: 10.7554/eLife.42455

      Resource: (ZFIN Cat# ZDB-ALT-110520-2,RRID:ZFIN_ZDB-ALT-110520-2)

      Curator: @scibot

      SciCrunch record: RRID:ZFIN_ZDB-ALT-110520-2

      What is this?

    1. Reviewer #2 (Public Review):

      Summary:<br /> This work describes a new pharmacological targeting approach to inhibit selective functions of the ubiquitously expressed chemokine receptor CXCR4, a potential target of immunomodulatory or anti-cancer treatments. Overall, the results build a strong case for the potential of this new compound to target specific functions of CXCR4, particularly linked to tumorigenesis. However, a more thorough evaluation of the function of the compound as well as future studies in mammalian model systems are needed to better assess the promise of the compound.

      Strengths:<br /> The work elegantly utilizes in silico drug modelling to propose new small molecule compounds with specific features. This way, the authors designed compound AGR1.137, which abolishes ligand-induced CXCR4 receptor nanoclustering and the subsequent directed cell migration without affecting ligand binding itself or some other ligand-induced signaling pathways. The authors have used a relatively broad set of experiments to validate and demonstrate the effects of the drug. Importantly, the authors also test AGR1.137 in vivo, using a zebrafish model of tumorigenesis and metastasis. A relatively strong inhibitory effect of the compound is reported.

      Weaknesses:<br /> The data would be significantly strengthened by adding kinetics and titration of concentrations. This is particularly important as it is the first description of these particular compounds and would help to evaluate the potency and possible side effects of the drug.

      The authors carry out single-molecule tracking experiments to analyze nanoclustering of CXCR4 upon ligand binding. This complex data is presented in a sub-optimal manner. Representative images of the data should be included together with more thorough analysis tools like autocorrelation function or mean square displacement to get a more conclusive view of receptor clustering and the effects of the compound.

      In the in vivo tumorigenesis experiments, again more kinetics and different concentrations of the drug would generate more convincing data. Also, the individual data points should be visualized to allow full evaluation of the data, throughout the experiments.

    1. Reviewer #2 (Public Review):

      Summary:<br /> This study aims to demonstrate that E. coli can acquire rapid antibiotic resistance mutations in the absence of a DNA damage response. To investigate this, the authors employed a sophisticated experimental framework based on a modified Adaptive Laboratory Evolution (ALE) workflow. This workflow involves numerous steps culminating in the measurement of antibiotic resistance. The study presents evidence that a recA strain develops ampicillin resistance mutations more quickly than the wild-type, as shown by measuring the Minimum Inhibitory Concentration (MIC) and mutation frequency. Whole-genome sequencing of 15 recA- colonies resistant to ampicillin revealed predominantly inactivation of genes involved in the multi-drug efflux pump system, whereas, in the wild-type, mutations appear to enhance the activity of the chromosomal ampC cryptic promoter. By analyzing mutants involved in the SOS response, including a lexA3 mutant incapable of inducing the SOS response, the authors conclude that the rapid evolution of antibiotic resistance occurs in an SOS-independent manner when recA is absent.

      Furthermore, RNA sequencing (RNA-seq) of the four experimental conditions suggests that genes related to antioxidative responses drive the swift evolution of antibiotic resistance in the recA- strain.

      Weaknesses:<br /> However, a potential limitation of this study is the experimental design used to determine the 'rapid' evolution of antibiotic resistance. It may introduce a significant bottleneck in selecting ampicillin-resistant mutants early on. A recA mutant could be more susceptible to ampicillin than the wild-type, and only resistant mutants might survive after 8 hours, potentially leading to their enrichment in subsequent steps. To address this concern, it would be critical to perform a survival analysis at various time points (0h, 2h, 4h, 6h, and 8h) during ampicillin treatment for both recA and wild-type strains, ensuring there is no difference in viability.

      The observation that promoter mutations are absent in recA strains could be explained by previous research indicating that amplification of the AmpC genes is a mechanism for E. coli resistance to ampicillin, which does not occur in a recA-deficient background (PMID# 19474201).

      The section describing Figure 3 is poorly articulated, and the conclusions drawn are apparent. The inability of a recA strain to induce the SOS response is well-documented (lines 210 and 278). The data suggest that merely blocking SOS induction is insufficient to cause 'rapid' evolution in their experimental conditions. To investigate whether SOS response can be induced independently of lexA cleavage by recA, alternative experiments, such as those using a sulA-GFP fusion, might be more informative.

      In Figure 4E, the lack of increased SulA gene expression in the wild-type strain treated with ampicillin is unexpected, given that SulA is an SOS-regulated gene. The fact that polA (Pol I) is going down should be taken into account in the interpretation of Figures 2D and 2E.

      The connection between compromised DNA repair, the accumulation of Reactive Oxygen Species (ROS) based on RNA-seq data, and accelerated evolution is merely speculative at this point and not experimentally established.

    1. Reviewer #3 (Public Review):

      Bae et al. described the key roles of pericytes in cavernous tissues in diabetic erectile dysfunction using both mouse and human single-cell transcriptomic analysis. Erectile dysfunction (ED) is caused by dysfunction of the cavernous tissue and affects a significant proportion of men aged 40-70. The most common treatment for ED is phosphodiesterase 5 inhibitors; however, these are less effective in patients with diabetic ED. Therefore, there is an unmet need for a better understanding of the cavernous microenvironment, cell-cell communications in patients with diabetic ED, and the development of new therapeutic treatments to improve the quality of life.

      Pericytes are mesenchymal-derived mural cells that directly interact with capillary endothelial cells (ECs). They play a vital role in the pathogenesis of erectile function as their interactions with ECs are essential for penile erection. Loss of pericytes has been associated with diabetic retinopathy, cancer, and Alzheimer's disease and has been investigated in relation to the permeability of cavernous blood vessels and neurovascular regeneration in the authors' previous studies. This manuscript explores the mechanisms underlying the effect of diabetes on pericyte dysfunction in ED. Additionally, the cellular landscape of cavernous tissues and cell type-specific transcriptional changes were carefully examined using both mouse and human single-cell RNA sequencing in diabetic ED. The novelty of this work lies in the identification of a newly identified pericyte (PC)-specific marker, LBH, in mouse and human cavernous tissues, which distinguishes pericytes from smooth muscle cells. LBH not only serves as a cavernous pericyte marker, but its expression level is also reduced in diabetic conditions. The LBH-interacting proteins (Cryab and Vim) were further identified in mouse cavernous pericytes, indicating that these signaling interactions are critical for maintaining normal pericyte function. Overall, this study demonstrates the novel marker of pericytes and highlights the critical role of pericytes in diabetic ED.

      Comments on revised version:

      Bae and colleagues substantially improved the data quality and revised their manuscript "Pericytes contribute to pulmonary vascular remodeling via HIF2a signaling". While these revisions clarify some of the concerns raised, others remain. In my view, the following question must be addressed.

      In my prior question on #3, I completely disagree with the statement that "identified cells with pericyte-like characteristics in the walls of large blood vessels". The staining that authors provided for LBH, was clearly stained for SMCs, not pericytes. Per Fig 2E, the authors are correct that LBH is colocalized with SMA+ cells( SMCs). However, the red signal from LBH clearly stains endothelial cells. In the rest of 2E and 2D, LBH is CD31- and their location suggests LBH stained for SMCs in the Aorta, Kidney vasculature, Dorsal vein, and Dorsal Artery.

    1. Reviewer #2 (Public Review):

      Summary: The authors seek to elucidate the early evolution of cnidarians through computer modeling of fluid flow in the oral region of very small, putative medusozoan polyps. They propose that the evolutionary advent of the free-swimming medusoid life stage was preceded by a sessile benthic life stage equipped with circular muscles that originally functioned to facilitate feeding and that later became co-opted for locomotion through jet propulsion.

      Strengths: Assumptions of the modeling exercise laid out clearly; interpretations of the results of the model runs in terms of functional morphology plausible. An intriguing investigation that should stimulate further discussion and research.

      Weaknesses: Speculation on the origin of the medusoid life stage in cnidarians heavily dependent on prior assumptions concerning the soft part anatomy and material properties of the skeleton of the modeled fossil organism that may be open to alternative interpretations. Logically, of course, the hypothesis that cnidarian medusae originated from benthic polyps must be evaluated along with the alternative hypotheses that the medusa came first and that the ancestral cnidarian exhibited both life stages.

    1. Reviewer #2 (Public Review):

      Summary and strengths:

      1) The work provides significant insights because usually non-significant studies can be considered replicated by their null replications as well. The work discuss and provide data demonstrating that when analyzing studies with p > 0.05 for the result to be replicated, equivalence tests and bayes factor approaches are more suitable, since studies can be underpowered even if replications use larger samples than their original studies in general. Non-significant p-values are highly expected even with 80% of power for a true effect.

      2) The evidence used features methods and analyses more rigorous than current state-of-the-art research on replicability.

      Weaknesses:<br /> I am satisfied with the revisions made by the authors in response to my initial suggestions, as well as their subsequent responses to my observations throughout the reviewing process.

    1. Reviewer #2 (Public Review):

      Summary:<br /> In this study, the authors present a robust pipeline that integrates high-content phenotypic imaging of a targeted pool of 366 CRISPRi-screened genes with in situ sequencing of single cells, achieving a resolution for 1.3 million cells. The application of this pipeline on the U2OS cell line effectively screens for nuclear and actin morphology changes. One study's strength lies in the utilization of a barcode system, enabling efficient imaging and genotype determination for 85% of cells. The authors employ two distinct approaches to delineate phenotypic changes. In the first approach, cells are characterized by approximately 1,000 morphological features, with dimensionality reduction via PCA using 25 principal components and a novel image sampling method called VIEWED (Visual Interpretation of Embedding by Constrained Walkthrough Sampling). The second approach employs a deep learning technique, specifically the Beta-variational encoder, to identify morphological differences, offering a generative AI approach for visualizing interpreted distinctions learned through the algorithm. While the Beta-variational encoder is deemed simpler to use and interpret, the classical PCA approach demonstrates superiority due to its heightened sensitivity in identifying more genes with phenotypic changes. Both methods, however, successfully identify shared phenotypic gene hits, showing consistent replication across multiple individual guides for each gene hit. Key phenotypic clusters are identified and replicated similarly by both the conventional PCA feature approach and the Beta-variational encoder approach.

      Strengths:<br /> - A novel barcode methodology for efficient genotyping via in situ sequencing, minimizing rounds of imaging and genotyping 85% of cells.<br /> - Use of a beta variational autoencoder, generative AI approach to facilitate detection of morphological change in cells, gene hits, and phenotypic gene clusters.

      Weaknesses:<br /> Although the outcome is reproduced with 3 gRNA/gene, no biological replicate is presented and is as such limiting on convincing on reproducibility of the phenotypic detection approach.

      The presented work is highly compelling as it employs an optical pooled CRISPRi screen, showcasing the capability to conduct pool screening beyond the typical frequency count of guides with the next-generation sequencing approach, effectively establishing a direct link between cell images and guide RNAs in the pool screen approach. This achievement, typically associated with arrayed screens, sets the study apart. Moreover, the study offers captivating images of individual cells that vividly portray convincing phenotypic changes. Additionally, the work effectively highlights the potency of generative AI in interpreting cell phenotypic changes detected by the algorithm. This aspect of the study is particularly relevant in the present time, as it introduces a potentially highly valuable methodology. Overall, the research provides a robust demonstration of innovative techniques and methodologies, contributing significantly to the field.

    1. Reviewer #2 (Public Review):

      Summary:<br /> This interesting study challenges a dogma regarding the link between bacterial metabolism decrease and tolerance to aminoglycosides (AG). The authors demonstrate that mutants well-known for being tolerant to AG, such as those of complexes I and II, are not so due to a decrease in the proton motive force (PMF) and thus antibiotic uptake, as previously reported in the literature.

      Strengths:<br /> This is a complete study. These results are surprising and are based on various read-outs, such as ATP levels, pH measurement, membrane potential, and the uptake of fluorophore-labeled gentamicin. Utilizing a proteomic approach, the authors show instead that in tolerant mutants, there is a decrease in the levels of proteins associated with ribosomes (targets of AG), causing tolerance.

      Weaknesses:<br /> The use of a single high concentration of aminoglycoside: my main comment on this study concerns the use of an AG concentration well above the MIC (50 µg/ml or 25 µg/ml for uptake experiments), which is 10 times higher than previously used concentrations (Kohanski, Taber) in study showing a link with PMF. This significant difference may explain the discrepancies in results. Indeed, a high concentration of AG can mask the effects of a metabolic disruption and lead to less specific uptake. However, this concentration highlights a second molecular level of tolerance. Adding experiments using lower concentrations (we propose 5 µg/ml to compare with the literature) would provide a more comprehensive understanding of AG tolerance mechanisms during a decrease in metabolism.

      Another suggestion would be to test iron limitation (using an iron chelator as DIP), which has been shown to induce AG tolerance. Can the authors demonstrate if this iron limitation leads to a decrease in ribosomal proteins? This experiment would validate their hypothesis in the case of a positive result. Otherwise, it would help distinguish two types of molecular mechanisms for AG tolerance during a metabolic disruption: (i) PMF and uptake at low concentrations, (ii) ribosomal proteins at high concentrations.

    1. Reviewer #2 (Public Review):

      Summary:<br /> The authors tried to understand the mechanism of how a drug candidate, VLZ, works on a receptor, 5-HTR1A, by activating the SRC/MAPK pathway to promote the formation of platelets.

      Strengths:<br /> The authors used both computational and experimental methods. This definitely saves time and funds to find a useful drug candidate and its therapeutic marker in the subfield of platelets reduction in cancer patients. The authors achieved the aim of explaining the mechanism of VLZ in improving thrombocytopenia by using two cell lines and two animal models.

      Weaknesses:<br /> Only two cell lines, HEL and Meg-01 cells, were evaluated in this study. However, using more cell lines is really depending on the workflow and the grant situations of the current research team.

    1. Reviewer #2 (Public Review):

      Summary:<br /> The paper sets out to understand the mechanisms underlying the colonization and degradation of marine particles using a natural Vibrio isolate as a model. The data are measurements of motility and gene expression using microfluidic devices and RNA sequencing. The results reveal that degradation products of alginate do stimulate motility but not chemotaxis. The evidence for these claims is strong. The story of how particle degradation occurs through colonization and dispersal has modest support in the data. A quantitative description of these dynamics awaits future studies.

      Strengths:<br /> The microfluidic and transcriptional measurements are the central strengths of the paper as they allow the delineation of phenotypes at the cellular and molecular levels in the presence of polymer and byproducts of polymer degradation.

      Weaknesses:<br /> The explanation of the microfluidics measurements is somewhat confusing but I think this could be easily remedied. The quantitative interpretation of the dispersal data could also be improved and I'm not clear if the data support the claim made.

    1. we—are the beginningour work is today:A mugA floor brushBootsA catalogAnd when one person in his laboratory set upA squar

      I see this quote as a direct declaration of war against technology as a whole. Going back to analog roots of brushes, well-worn boots, and a magazine. All things needed in order to set up the grid behind art, a guideline of human creativity.

    2. We say that the world’s magnificence has been enriched by a new beauty:the beauty of speed.

      I feel this rule of the manifesto of futurism still holds up to this day. News, ads, and tabloids come at us faster than ever. There is always something to turn our eyes to and whenever the 15 minutes of fame and attention are up, we move on to the next thing. It is a constant, overstimulating cycle of content.

    3. We, however, are satisfied if in our bookthe lyric and epic evolution of our times is given shape.

      Each era has their own version of what the world should follow and believe. It is an constant evolving movement.

    4. We will glorify war—the world’s only hygiene—militarism, patriotism, thedestructive gesture of freedom-bringers, beautiful ideas worth dying for, andscorn for woman

      Pro-violence, very problematic

    5. previously—Engineers relaxed with artnow—Artists relax with technology1 For a detailed discussion ofRodchenko’s belief in theideal Soviet citizen, see VictorMargolin, The Struggle forUtopia: Rodchenko, Lissitzky,Moholy-Nagy, 1917–1946(Chicago: university of ChicagoPress, 1998).

      progressive way of thinking

    1. Reviewer #2 (Public Review):


      The authors proposed a toolset Photo-SynthSeg to the software FreeSurfer which performs 3D reconstruction and high-resolution 3D segmentation on a stack of coronal dissection photographs of brain tissues. To prove the performance of the toolset, three experiments were conducted, including volumetric comparison of brain tissues on AD and HC groups from MADRC, quantitative evaluation of segmentation on UW-ADRC and quantitative evaluation of 3D reconstruction on HCP digitally sliced MRI data.


      To guarantee successful workflow of the toolset, the authors clearly mentioned the prerequisites of dissection photograph acquisition, such as fiducials or rulers in the photos and tissue placement of brain slices with more than one connected component. The quantitative evaluation of segmentation and reconstruction on synthetic and real data demonstrates the accuracy of the methodology. Also, the successful application of this toolset on two brain banks with different slice thicknesses, tissue processing and photograph settings demonstrates its robustness. By working with tools of the SynthSeg pipeline, Photo-SynthSeg could further support volumetric cortex parcellation. The toolset also benefits from its adaptability of different 3D references, such as surface scan, ex vivo MRI and even probabilistic atlas, suiting the needs for different brain banks.


      Certain weaknesses are already covered in the manuscript. Cortical tissue segmentation could be further improved. The quantitative evaluation of 3D reconstruction is quite optimistic due to random affine transformations. Manual edits of slice segmentation task are still required and take a couple of minutes per photograph. Finally, the current toolset only accepts coronal brain slices and should adapt to axial or sagittal slices in future work.