10,000 Matching Annotations
  1. Feb 2025
    1. Reviewer #2 (Public review):

      Summary:

      In this study, Gao et al. use RNA-seq to identify Hspa2 as one of the earliest transcripts heterogeneously distributed between blastomeres. Functional studies are performed using siRNA knockdown showing Hspa2 may bias cells toward the ICM lineage via interaction with the known methyltransferase CARM1.

      Strengths:

      This study tackles an important question regarding the origins of the first cell fate decision in the preimplantation embryo. It provides novelty in its identification of Hspa2 as a heterogeneous transcript in the early embryo and proposes a plausible mechanism showing interactions with Carm1. Multiple approaches are used to validate their functional studies (FISH, WB, development rates, proteomics). Given only 4 other transcripts/RNA have been identified at or before the 4-cell stage (LincGET, CARM1, PRDM14, HMGA1), this would be an important addition to our understanding of how TE vs ICM fate is established.

      Weaknesses:

      The RNA-seq results leading the authors to focus on Hspa2 are not included in the manuscript. This dataset would serve as an important resource but is neither included nor discussed. Nor is it mentioned whether Hspa2 was identified in prior RNA-seq embryos studies (for example Deng Science 2014).

      Furthermore, the authors show that Hspa2 knockdown at the 1-cell stage lowers total Carm1 levels at the 4-cell stage. However, it is unclear how total abundance within the embryo alters lineage specification within blastomeres. The authors go on to propose a plausible mechanism involving Hspa2 and Carm1 interaction, but do not discuss how expression levels may be involved.

    1. Reviewer #2 (Public review):

      Summary:

      The work from You et al. elucidates the clonal contribution of ageing stem and progenitor cells to both native and perturbed hematopoiesis. The authors use a previously published in vivo lineage tracing system (Patel et al., 2022) that relies on the random integration of a transposon element in the mouse genome. They barcode all mouse cells and then look at lineage relationships between HSPC and mature populations after ~90 weeks.

      Strengths:

      This work offers very interesting insights into the clonal behaviour of HSPC in the native and perturbed setting during ageing. Experiments are well-planned and well-executed. Understanding the clonal output of HSPCs in aged mice in a native setting, after 5-FU treatment, and upon transplantation are important findings for the field.

      Weaknesses:

      We found appraising the graphs, interpreting the findings, and understanding those findings in the main text very difficult to follow. While we have made some suggestions below, we encourage the authors to think carefully about what the core messages are, and how best to visualise those, both in terms of data viz and in a schematic to summarise the key findings, and to use plain language in the text.

    1. Reviewer #2 (Public review):

      Summary:

      The authors tested how ROS and PZA affected Mycobacterium survival to determine if ROS could have a role in the remarkable in vivo efficacy of PZA.

      Strengths:

      This is a well-written and clear manuscript convincingly demonstrating the synergy between PZA and reactive oxygen species in the inhibition of growth and survival of Mycobacterium tuberculosis.

      Weaknesses:

      The manuscript would benefit from a clear statement of the rationale for the protocols used to examine the synergy of PZA with ROS, the possible models their protocols could be testing, and then how their data supports or disproves the models being tested. The manuscript appears to propose, as stated in the title, that "Oxidative stress drives potent bactericidal activity of pyrazinamide...". However their experimental design more likely tests the effect of PZA on ROS sensitivity. Indeed, by the last figure, the authors begin the present their data as PZA sensitizing the bacteria to ROS. More clarity on these possible models and the different interpretations of the data should be considered.

      Impact:

      The data provide important insight to expand our understanding of the in vivo efficacy of PZA in the treatment of tuberculosis.

    1. Reviewer #2 (Public review):

      Summary:

      Ueno et al. described substantial changes in the afadin knockout retina. These changes include decreased numbers of rods and cones, an increased number of bipolar cells, and disrupted somatic and synaptic organization of the outer limiting membrane, outer nuclear layer, and outer plexiform layer. In contrast, the number and organization of amacrine cells and retinal ganglion cells remain relatively intact. They also observed changes in ERG responses and RGC receptive fields and functions using MEA recordings.

      Strengths:

      The morphological characterization of retinal cell types and laminations is detailed and relatively comprehensive.

      Weaknesses:

      (1) The major weakness of this study, perhaps, is that its findings are predominantly descriptive and lack any mechanistic explanation. As afadin is key component of adherent junctions, its role in mediating retinal lamination has been reported previously (see PMCID: PMC6284407). Thus, a more detailed dissection of afadin's role in processes, such as progenitor generation, cell migration, or the formation of retinal lamination would provide greater insight into the defects caused by knocking out afadin.

      (2) The authors observed striking changes in the numbers of rods, cones, and BCs, but not in ACs or RGCs. The causes of these distinct changes in specific cell classes remain unclear. Detailed characterizations, such as the expression of afadin in early developing retina, tracing cell numbers across various early developmental time points, and staining of apoptotic markers in developing retinal cells, could help to distinguish between defects in cell generation and survival, providing a better understand of the underlying causes of these phenotypes.

      (3) Although the total number of ACs or RGCs remains unchanged, their localizations are somewhat altered (Figures 2E and 4E). Again, the cause of the altered somatic localization in ACs and RGCs is unclear.

      (4) One conclusion that the authors emphasise is that the function of RGCs remains detectable despite a major disrupted outer plexiform layer. However, the organization of the inner plexiform layer remains largely intact, and the axonal innervation of BCs remains unchanged. This could explain the function integrity of RGCs. In addition, the resolution of detecting RGCs by MEA is low, as they only detected 5 clusters in heterozygous animals. This represents an incomplete clustering of RGC functional types and does not provide a full picture of how functional RGC types are altered in the afadin knockout.

      Minor Comments:

      (1) Line 56-67: "Overall, these findings provide the first evidence that retinal circuit function can be partially preserved even when there are significant disruptions in retinal lamination and photoreceptor synapses" There is existing evidence showing substantial adaption in retinal function when retinal lamination or photoreceptor synapses are disrupted, such as PMCID: PMC10133175.

      (2) Line 114-115: "we focused on afadin, which is a scaffolding protein for nectin and has no ortholog in mice." The term "Ortholog" is misused here, as the mouse has an afadin gene. Should the intended meaning be that afadin has no other isoforms in mouse?

    1. Reviewer #2 (Public review):

      Summary:

      In this paper, the authors want to test the hypothesis that frictional instabilities rather than friction are the main drivers for discriminating flat surfaces of different sub-nanometric roughness profiles.

      They first produced flat surfaces with 6 different coatings giving them unique and various properties in terms of roughness (picometer scale), contact angles (from hydrophilic to hydrophobic), friction coefficient (as measured against a mock finger), and Hurst exponent.

      Then, they used those surfaces in two different experiments. In the first experiment, they used a mock finger (PDMS of 100kPA molded into a fingertip shape) and slid it over the surfaces at different normal forces and speeds. They categorized the sliding behavior as steady sliding, sticking spikes, and slow frictional waves by visual inspection, and show that the surfaces have different behaviors depending on normal force and speed. In a second experiment, participants (10) were asked to discriminate pairs of those surfaces. It is found that each of those pairs could be reliably discriminated by most participants.

      Finally, the participant's discrimination performance is correlated with differences in the physical attributes observed against the mock finger. The authors found a positive correlation between participants' performances and differences in the count of steady sliding against the mock finger and a negative correlation between participants' reaction time and differences in the count of stiction spikes against the mock finger. They interpret those correlations as evidence that participants use those differences to discriminate the surfaces.

      Strengths:

      The created surfaces are very interesting as they are flat at the nanometer scale, yet have different physical attributes and can be reliably discriminated.

      Weaknesses:

      In my opinion, the data presented in the paper do not support the conclusions. The conclusions are based on a correlation between results obtained on the mock finger and results obtained with human participants but there is no evidence that the human participants' fingertips will behave similarly to the mock finger during the experiment. Figure 3 gives a hint that the 3 sliding behaviors can be observed in a real finger, but does not prove that the human finger will behave as the mock finger, i.e., there is no evidence that the phase maps in Figure 1C are similar for human fingers and across different people that can have very different stiffness and moisture levels.

      I believe that the authors collected the contact forces during the psychophysics experiments, so this shortcoming could be solved if the authors use the actual data, and show that the participant responses can be better predicted by the occurrence of frictional instabilities than by the usual metrics on a trial by trial basis, or at least on a subject by subject basis. I.e. Poor performers should show fewer signs of differences in the sliding behaviors than good performers.

      The sample size (10) is very small.

    1. Reviewer #2 (Public review):

      Summary:

      In this manuscript, the authors identify Leiomodin-1 (LMOD1) as a key regulator of early myogenic differentiation, demonstrating its interaction with SIRT1 to influence SIRT1's cellular localization and gene expression. The authors propose that LMOD1 translocates SIRT1 from the nucleus to the cytoplasm to permit the expression of myogenic differentiating genes such as MYOD or Myogenin.

      Strengths:

      A major strength of this work lies in the robust temporal resolution achieved through a time-course mass spectrometry analysis of in vitro muscle differentiation. This provides novel insights into the dynamic process of myogenic differentiation, often under-explored in terms of temporal progression. The authors provide a strong mechanistic case for how LMOD1 exerts its role in muscle differentiation which opens avenues to modulate.

      Weaknesses:

      One limitation of the study is the in vivo data. Although the authors do translate their findings in vivo for LMOD1 localization and expression, the cross-sectional imaging is not highly convincing. Longitudinal cuts or isolated fibers could have been more useful specimens to answer these questions. Moreover, the authors do not assess their in vitro SIRT1 findings in vivo. A few key experiments in regenerating or aged mice would strengthen the mechanistic insight of the findings.

      Discussion:

      Overall, the study emphasizes the importance of understanding the temporal dynamics of molecular players during myogenic differentiation and provides valuable proteomic data that will benefit the field. Future studies should explore whether LMOD1 modulates the nuclear-cytoplasmic shuttling of other transcription factors during muscle development and how these processes are mechanistically achieved. Investigating whether LMOD1 can be therapeutically targeted to enhance muscle regeneration in contexts such as exercise, aging, and disease will be critical for translational applications. Additionally, elucidating the interplay among LMOD1, LMOD2, and LMOD3 could uncover broader implications for actin cytoskeletal regulation in muscle biology.

    1. Reviewer #2 (Public review):

      Summary:

      To design proteins and predict disease, we want to predict the effects of mutations on the function of a protein. To make these predictions, biologists have long turned to statistical models that learn patterns that are conserved across evolution. There is potential to improve our predictions however by incorporating structure. In this paper the authors build a denoising auto-encoder model that incorporates sequence and structure to predict mutation effects. The model is trained to predict the sequence of a protein given its perturbed sequence and structure. The authors demonstrate that this model is able to predict the effects of mutations better than sequence-only models.

      As well, the authors curate a set of assays measuring the effect of mutations on thermostability. They demonstrate their model also predicts the effects of these mutations better than previous models and make this benchmark available for the community.

      Strengths:

      The authors describe a method that makes accurate mutation effect predictions by informing its predictions with structure.

      The authors curate a new dataset of assays measuring thermostability. These can be used to validate and interpret mutation effect prediction methods in the future.

      Weaknesses:

      In the review period, the authors included a previous method, SaProt, that similarly uses protein structure to predict the effects of mutations, in their evaluations. They see that SaProt performs similarly to their method.

      ProteinGym is largely made of deep mutational scans, which measure the effect of every mutation on a protein. These new benchmarks contain on average measurements of less than a percent of all possible point mutations of their respective proteins. It is unclear what sorts of protein regions these mutations are more likely to lie in; therefore it is challenging to make conclusions about what a model has necessarily learned based on its score on this benchmark. For example, several assays in this new benchmark seem to be similar to each other, such as four assays on ubiquitin performed in pH 2.25 to pH 3.0.

      Comments on revisions:

      I think the rounds of review have improved the paper and I've raised my score.

    1. Reviewer #2 (Public review):

      Summary:

      This computational work examines whether the inputs that neurons receive through electrical synapses (gap junctions) have different signatures in the extracellular local field potential (LFP) compared to inputs via chemical synapses. The authors present the results of a series of model simulations where either electric or chemical synapses targeting a single hippocampal pyramidal neuron are activated in various spatio-temporal patterns, and the resulting LFP in the vicinity of the cell is calculated and analyzed. The authors find several notable qualitative differences between the LFP patterns evoked by gap junctions vs. chemical synapses. For some of these findings, the authors demonstrate convincingly that the observed differences are explained by the electric vs. chemical nature of the input, and these results likely generalize to other cell types. However, in other cases, it remains plausible (or even likely) that the differences are caused, at least partly, by other factors (such as different intracellular voltage responses due to, e.g., the unequal strengths of the inputs). Furthermore, it was not immediately clear to me how the results could be applied to analyze more realistic situations where neurons receive partially synchronized excitatory and inhibitory inputs via chemical and electric synapses.

      Strengths:

      The main strength of the paper is that it draws attention to the fact that inputs to a neuron via gap junctions are expected to give rise to a different extracellular electric field compared to inputs via chemical synapses, even if the intracellular effects of the two types of input are similar. This is because, unlike chemical synaptic inputs, inputs via gap junctions are not directly associated with transmembrane currents. This is a general result that holds independent of many details such as the cell types or neurotransmitters involved.

      Another strength of the article is that the authors attempt to provide intuitive, non-technical explanations of most of their findings, which should make the paper readable also for non-expert audiences (including experimentalists).

      Weaknesses:

      The most problematic aspect of the paper relates to the methodology for comparing the effects of electric vs. chemical synaptic inputs on the LFP. The authors seem to suggest that the primary cause of all the differences seen in the various simulation experiments is the different nature of the input, and particularly the difference between the transmembrane current evoked by chemical synapses and the gap junctional current that does not involve the extracellular space. However, this is clearly an oversimplification: since no real attempt is made to quantitatively match the two conditions that are compared (e.g., regarding the strength and temporal profile of the inputs), the differences seen can be due to factors other than the electric vs. chemical nature of synapses. In fact, if inputs were identical in all parameters other than the transmembrane vs. directly injected nature of the current, the intracellular voltage responses and, consequently, the currents through voltage-gated and leak currents would also be the same, and the LFPs would differ exactly by the contribution of the transmembrane current evoked by the chemical synapse. This is evidently not the case for any of the simulated comparisons presented, and the differences in the membrane potential response are rather striking in several cases (e.g., in the case of random inputs, there is only one action potential with gap junctions, but multiple action potentials with chemical synapses). Consequently, it remains unclear which observed differences are fundamental in the sense that they are directly related to the electric vs. chemical nature of the input, and which differences can be attributed to other factors such as differences in the strength and pattern of the inputs (and the resulting difference in the neuronal electric response).

      Some of the explanations offered for the effects of cellular manipulations on the LFP appear to be incomplete. More specifically, the authors observed that blocking leak channels significantly changed the shape of the LFP response to synchronous synaptic inputs - but only when electric inputs were used, and when sodium channels were intact. The authors seemed to attribute this phenomenon to a direct effect of leak currents on the extracellular potential - however, this appears unlikely both because it does not explain why blocking the leak conductance had no effect in the other cases, and because the leak current is several orders of magnitude smaller than the spike-generating currents that make the largest contributions to the LFP. An indirect effect mediated by interactions of the leak current with some voltage-gated currents appears to be the most likely explanation, but identifying the exact mechanism would require further simulation experiments and/or a detailed analysis of intracellular currents and the membrane potential in time and space.

      In every simulation experiment in this study, inputs through electric synapses are modeled as intracellular current injections of pre-determined amplitude and time course based on the sampled dendritic voltage of potential synaptic partners. This is a major simplification that may have a significant impact on the results. First, the current through gap junctions depends on the voltage difference between the two connected cellular compartments and is thus sensitive to the membrane potential of the cell that is treated as the neuron "receiving" the input in this study (although, strictly speaking, there is no pre- or postsynaptic neuron in interactions mediated by gap junctions). This dependence on the membrane potential of the target neuron is completely missing here. A related second point is that gap junctions also change the apparent membrane resistance of the neurons they connect, effectively acting as additional shunting (or leak) conductance in the relevant compartments. This effect is completely missed by treating gap junctions as pure current sources.

      One prominent claim of the article that is emphasized even in the abstract is that HCN channels mediate an outward current in certain cases. Although this statement is technically correct, there are two reasons why I do not consider this a major finding of the paper. First, as the authors acknowledge, this is a trivial consequence of the relatively slow kinetics of HCN channels: when at least some of the channels are open, any input that is sufficiently fast and strong to take the membrane potential across the reversal potential of the channel will lead to the reversal of the polarity of the current. This effect is quite generic and well-known and is by no means specific to gap junctional inputs or even HCN channels. Second, and perhaps more importantly, the functional consequence of this reversed current through HCN channels is likely to be negligible. As clearly shown in Supplementary Figure S3, the HCN current becomes outward only for an extremely short time period during the action potential, which is also a period when several other currents are also active and likely dominant due to their much higher conductances. I also note that several of these relevant facts remain hidden in Figure 3, both because of its focus on peak values, and because of the radically different units on the vertical axes of the current plots.

      Finally, I missed an appropriate validation of the neuronal model used, and also the characterization of the effects of the in silico manipulations used on the basic behavior of the model. As far as I understand, the model in its current form has not been used in other studies. If this is the case, it would be important to demonstrate convincingly through (preferably quantitative) comparisons with experimental data using different protocols that the model captures the physiological behavior of at least the relevant compartments (in this case, the dendrites and the soma) of hippocampal pyramidal neurons sufficiently well that the results of the modeling study are relevant to the real biological system. In addition, the correct interpretation of various manipulations of the model would be strongly facilitated by investigating and discussing how the physiological properties of the model neuron are affected by these alterations.

    1. Reviewer #3 (Public review):

      Arbués and colleagues describe the impact of mycobacterial genetic diversity on host-infection phenotypes. The authors evaluate Mtb infection and contextualize host-responses, bacterial growth and metabolic transitioning in vitro using their previously established model of blood-derived, primary-human-cells cultured within a collagen/fibronectin matrix. They seek to demonstrate the effectiveness of the model in determining mycobacterial strain specific granuloma-dependent host-pathogen interactions.

      Understanding the way mycobacterial genetic diversity impacts granuloma biology in tuberculosis is an important goal. One of this works strengths is the use of primary human cells and two constituents of pulmonary extracellular matrix to model Mtb infection. The authors and others have previously shown that Mtb infected PBMC aggregates share important characteristics with early pulmonary TB granulomas. Use of multiple genetically distinct strains of Mtb defines this work and further bolsters it potential impact. However, the study is not comprehensive as lineages 6 and 7 are not tested. Experiments are primarily descriptive, and the methodologies are conventional. Correlative relationships are the manuscripts focus and effect sizes are generally small.

      The main aim of this work is to extend an in vitro granuloma model to the study of a large collection of well characterized, genetically diverse representatives of the mycobacterium tuberculosis complex (MTBC). I believe that they accomplish that aim. The work does investigate MTBC infection of aggregated PBMCs using three strains each of Mtb lineages 1-5 and H37Rv, which is not a trivial undertaking. The experimental aims are to show that MTBC genetic diversity impacts growth and dormancy of granuloma bound bacteria and, the host responses of granulomatous aggregation as well as macrophage apoptosis, lymphocyte activation and soluble mediator release within granulomas. The methodologies employed are sufficient to test most of these aims. The authors conclusions regarding their results are mostly supported by the data. The conclusion that lineage impacts growth within granulomas is likely true and the data as presented reflect such a relationship. Their conclusions regarding lineage's impact on dormancy are partially supported, as their findings demonstrate that assays for dormancy identify strain-specific metabolic changes in the bacteria consistent with a dormancy-like state but also identify replicating bacteria as being dormant. The data strongly supports the impact of mycobacterial genetic diversity on a spectrum of granulomatous responses in their model system. Those findings are a highlight of the publication. The data further supports the idea that strain diversity impacts macrophage apoptosis but a relationship of apoptosis to the granulomatous response is not effectively evaluated. The association of lymphocyte activation with reduced mycobacterial growth as an aspect of granulomas is well documented in the literature and a negative correlation between T cell activation and growth is supported by the authors results. Their data also support the conclusion that soluble mediator production by PBMCs is different based on the infecting strain of mycobacteria and that IL1b modulates aggregate phenotypes in their model.

      The authors contribute some valuable insights, particularly in Figure 3. Their model is higher echelon relative to others in the field, but I don't believe that it possesses all the components necessary to replicate formation of mycobacterial granulomas in vivo. That being said, their identification of donor-dependent aggregation phenotypes by mycobacterial strain has the potential to enable future investigations of human and mycobacterial genetic components that are involved in the formation of TB granulomas.

    1. Reviewer #2 (Public review):

      Summary:

      NRDE-3 is a nuclear WAGO-clade Argonaute that, in somatic cells, binds small RNAs amplified in response to the ERGO-class 26G RNAs that target repetitive sequences. This manuscript reports that, in the germline and early embryos, NRDE-3 interacts with a different set of small RNAs that target mRNAs. This class of small RNAs were previously shown to bind to a different WAGO-clade Argonaute called CSR-1, which is cytoplasmic unlike nuclear NRDE-3. The switch in NRDE-3 specificity parallels recent findings in Ascaris where the Ascaris NRDE homolog was shown to switch from sRNAs that target repetitive sequences to CSR-class sRNAs that target mRNAs.

      The manuscript also correlates the change in NRDE-3 specificity with the appearance in embryos of cytoplasmic condensates that accumulate SIMR-1, a scaffolding protein that the authors previously implicated in sRNA loading for a different nuclear Argonaute HRDE-1. By analogy, and through a set of corelative evidence, the authors argue that SIMR foci arise in embryogenesis to facilitate the change in NRDE-3 small RNA repertoire. The paper presents lots of data that beautifully documents the appearance and composition of the embryonic SIMR-1 foci, including evidence that a mutated NRDE-3 that cannot bind sRNAs accumulate in SIMR-1 foci in SIMR-1-dependent fashion.

    1. Reviewer #2 (Public review):

      Summary:

      In this study, the authors aimed to delineate the antimicrobial activity of linalool and tried to investigate the mode of action on linalool against S. parasitica infection. One of the main focus of this work was to identify the in vitro and in vivo mechanisms associated with the protective role of linalool against S. parasitica infection.

      Strengths:

      (1) Authors have used a variety of techniques to prove their hypothesis.<br /> (2) Adequate number of replicates were used in their studies.<br /> (3) Their findings showed a protective role of linalool against oomycetes and makes it an attractive future antibiotic in the aquaculture industry.

      Weaknesses: The revised version of the manuscript is more thoroughly written with clearer explanations, however there are a few weaknesses in this manuscript.

      (1) Although the introduction section was rewritten with rationale, it's still lengthy and not very much to the point.<br /> (2) The claim of linalool regulating the gut microbiota is based on the correlation analysis only. It's not super convincing and requires experimental validation to strengthen the claim.

      Overall, the conclusions drawn by the authors are justified by the data. Importantly, this paper has discovered the novelty of the compound linalool as a potent antimicrobial agent and might open up future possibilities to use this compound in the aquaculture industry.

    1. Reviewer #2 (Public review):

      Summary:

      The manuscript by Nosaka et al is a comprehensive study exploring the involvement of IL1beta signaling in a 2-hit model of lung injury + ventilation, with a focus on modulation by hypothermia.

      Strengths:

      The authors demonstrate quite convincingly that interleukin 1 beta plays a role in the development of ventilator-induced lung injury in this model, and that this role includes the regulation of neutrophil extracellular trap formation. The authors use a variety of in vivo animal-based and in vitro cell culture work, and interventions including global gene knockout, cell-targeted knockout and pharmacological inhibition, which greatly strengthen the ability to make clear biological interpretations.

      Weaknesses:

      A primary point for open discussion is the translatability of the findings to patients. The main model used, one of intratracheal LPS plus mechanical ventilation is well accepted for research exploring the pathogenesis and potential treatments for acute respiratory distress syndrome (ARDS). However, the interpretation may still be open to question - in the model here, animals were exposed to LPS to induce inflammation for only 2 hours, and seemingly displayed no signs of sickness, before the start of ventilation. This would not be typical for the majority of ARDS patients, and whether hypothermia could be effective once substantial injury is already present remains an open question. The interaction between LPS/infection and temperature is also complicated - in humans, LPS (or infection) induces a febrile, hyperthermic response, whereas in mice LPS induces hypothermia (eg. Ganeshan K, Chawla A. Nat Rev Endocrinol. 2017;13:458-465). Given this difference in physiological response, it is therefore unclear whether hypothermia in mice and hypothermia in humans are easily comparable. Finally, the use of only young, male animals such as in the current study has been typical but may be criticised as limiting translatability to people.

      Therefore while the conclusions of the paper are well supported by the data, and the biological pathways have been impressively explored, questions still remain regarding the ultimate interpretations.

    1. Reviewer #2 (Public review):

      Summary:<br /> In this manuscript Qiwang Xiang et al. investigated the role of the E3 ubiquitin ligase ITCH in the life cycle of SARS-CoV-2. They claim the following:<br /> i) ITCH promotes virion assembly by interacting with E and M proteins and enhancing their K63-linked ubiquitination<br /> ii) ITCH-mediated ubiquitination promotes autophagosome-dependent secretion of viral particles.<br /> iii) ITCH stabilizes the viral spike protein by impairing its processing by furin and catepsin L proteases.<br /> The manuscript provides an interesting exploration of ITCH's role in the SARS-CoV-2 life cycle but requires additional work to strengthen key claims and address potential confounding factors.

      Strengths:

      The experiments are sufficiently clear in documenting that ITCH activity is critical for efficient SARS-CoV-2 replication and for M and E proteins K63-linked ubiquitination

      Weaknesses:

      • The manuscript does not convincingly demonstrate how ITCH-mediated ubiquitination of E and M impacts virus assembly and release. Identifying the specific lysine residues in M and E targeted by ITCH, and generating mutant VLPs or recombinant viruses, would strengthen the conclusions.<br /> • Most of the conclusions rely on ITCH overexpression data, which may have off-target effects on Golgi integrity and vesicular trafficking. For instance, figure 4F provides evidence of altered Golgi morphology and TGN46 fragmentation raising concerns that ITCH overexpression could indirectly mislocalize furin, affecting S1/S2 cleavage of the spike protein. In addition, inhibition of furin activity may also lead to off-target effects, given its role in processing numerous host proteins.<br /> • Similarly, ITCH overexpression is likely to indirectly affect cathepsin-L maturation. In addition, the manuscript does not clarify how impaired cathepsin L activity would influence virus assembly or release.<br /> • A major concern is also the lack of quantification and statistical analysis of immunofluorescence images throughout the manuscript, which undermines the reliability of these observations.

    1. Reviewer #2 (Public review):

      The study by Xue et al. reports the structural basis for the regulation of the human cardiac sodium-calcium exchanger, NCX1, by the endogenous activator PIP2 and the small molecule inhibitor SEA400. This well-written study contextualizes the new data within the existing literature on NCX1 and the broader NCX family. This work builds upon the authors' previous study (Xue et al., 2023), which presented the cryo-EM structures of human cardiac NCX1 in both inactivated and activated states. The 2023 study highlighted key structural differences between the active and inactive states and proposed a mechanism where the activity of NCX1 is regulated by the interactions between the ion-transporting transmembrane domain and the cytosolic regulatory domain. Specifically, in the inward-facing state and at low cytosolic calcium levels, the transmembrane (TM) and cytosolic domains form a stable interaction that results in the inactivation of the exchanger. In contrast, calcium binding to the cytosolic domain at high cytosolic calcium levels disrupts the interaction with the TM domain, leading to active ion exchange.

      In the current study, the authors present two mechanisms explaining how both PIP2 stimulates NCX1 activity by destabilizing the protein's inactive state (i.e., by disrupting the interaction between the TM domain and the cytosolic domain) and how SEA400 stabilizes this interaction, thereby acting as a specific inhibitor of the system.

      The first part of the results section addresses the effect of PIP2 and PIP2 diC8 on NCX1 activity. This is pertinent as the authors use the diC8 version of this lipid (which has a shorter acyl chain) in their subsequent cryo-EM structure due to the instability of native PIP2. I am not an electrophysiology expert; however, my main comment would be to ask whether there is sufficient data here to characterise fully the differences between PIP2 and PIP2 diC8 on NCX1 function. It appears from the text that this study is the first to report these differences, so perhaps this data needs to be more robust. The spread of the data points in Figure 1B is possibly a little unconvincing given that only six measurements were taken. Why is there one outlier in Figure 1A? Were these results taken using the same batch of oocytes? Are these technical or biological replicates? Is the convention to use statistical significance for these types of experiments?

      I am also somewhat skeptical about the modelling of the PIP2 diC8 molecule. The authors state, "The density of the IP3 head group from the bound PIP2 diC8 is well-defined in the EM map. The acyl chains, however, are flexible and could not be resolved in the structure (Fig. S2)."

      However, the density appears rather ambiguous to me, and the ligand does not fit well within the density. Specifically, there is a large extension in the volume near the phosphate at the 5' position, with no corresponding volume near the 4' phosphate. Additionally, there is no bifurcation of the volume near the lipid tails. I attempted to model cholesterol hemisuccinate (PDB: Y01) into this density, and it fits reasonably well - at least as well as PIP2 diC8. I am also concerned that if this site is specific for PIP2, then why are there no specific interactions with the lipid phosphates? How can the authors explain the difference between PIP2 and PIP2 diC8 if the acyl chains don't make any direct interactions with the TM domain? In short, the structures do not explain the functional differences presented in Figure 1.

      The side chain densities for Arg167 and Arg220 are also quite weak. While there is some density for the side chain of Lys164, it is also very weak. I would expect that if this site were truly specific for PIP2, it should exhibit greater structural rigidity - otherwise, how is this specific?

      Given this observation, have the authors considered using other PIP2 variants to determine if the specificity lies with PI4,5P2 as opposed to PI3,5P2 or PI3,4P2? A lack of specificity may explain the observed poor density.

      I also noticed many lipid-like densities in the maps for this complex. Is it possible that the authors overlooked something? For instance, there is a cholesterol-like density near Val51, as well as something intriguing near Trp763, where I could model PIP2 diC8 (though this leads to a clash with Trp763). I wonder if the authors are working with mixed populations in their dataset. The accompanying description of the structural changes is well-written (assuming it is accurate).

      I would recommend that the authors update the figures associated with this section, as they are currently somewhat difficult to interpret without prior knowledge of NCX architecture. My suggestions include:

      - Including the density for the PIP2 diC8 in Figure 2A.

      - Adding membrane boundaries (cytosolic vs. extracellular) in Figure 2B.

      - Labeling the cytosolic domains in Figure 2B.

      - Adding hydrogen bond distances in Figure 2A.

      - Detailing the domain movements in Figure 2B (what is the significance of the grey vs. blue structures?).

      The section on the mechanism of SEA400-induced inactivation is strong. The maps are of better quality than those for the PIP2 diC8 complex, and the ligand fits well. However, I noticed a density peak below F02 on SEA400 that lies within the hydrogen bonding distance of Asp825. Is this a water molecule? If so, is this significant?

      Furthermore, there are many unmodeled regions that are likely cholesterol hemisuccinate or detergent molecules, which may warrant further investigation.

      The authors introduce SEA400 as a selective inhibitor of NCX1; however, there is little to no comparison between the binding sites of the different NCX proteins. This section could be expanded. Perhaps Fig. 4C could include sequence conservation data.

      Additionally, is the fenestration in the membrane physiological, or is it merely a hole forced open by the binding of SEA400? I was unclear as to whether the authors were suggesting a physiological role for this feature, similar to those observed in sodium channels.

    1. Reviewer #2 (Public review):

      Summary:

      Micronuclei are aberrant nuclear structures frequently seen following the missegregation of chromosomes. The authors present two image analysis methods, one robust and another rapid, to identify micronuclei (MN) bearing cells. To analyse their software efficacy, the authors study images of cells treated with MPS1 inhibitor to induce chromosome missegregation. Next, the authors use RNA-seq to assess the outcomes of their MN-identifying methods: they do not observe a transcriptomic signature specific to MN but find changes that correlate with aneuploidy status. Overall, this work offers new tools to identify MN-presenting cells, and it sets the stage with clear benchmarks for further software development.

      Strengths:

      Currently, there are no robust MN classifiers with a clear quantification of their efficiency across cell lines (mIoU score). The software presented here tries to address this gap. GitHub material (images, ground truth labels, tools, protocols, etc.) provided is a great asset to computational biologists. The method has been tested in more than one cell line. This method can help integrate cell biology and 'omics' data, making it suitable for multimodal studies.

      Weaknesses:

      Although the classifier outperforms available tools for MN segmentation by providing mIoU, it's not yet at a point where it can be reliably applied to functional genomics assays where we expect a range of phenotypic penetrance in most cell lines (e.g., misshapen, multinucleated, and lagging DNA in addition to micronucleated cells). The discussion considers the nature and proportion of MN in RPE1 cells, and how the classifier is well-suited for RPE1 that predominantly display MN structures. Whether the classifier can rigorously assign MN-presenting cells amidst drastic nuclear aberrancies following a spindle checkpoint loss needs to be tested in the future.

    1. Reviewer #2 (Public review):

      Summary:

      This manuscript is about using different analytical approaches to allow ancestry adjustments to GWAS analyses amongst admixed populations. This work is a follow-on from the recently published ITHGC multi-population GWAS (https://doi.org/10.7554/eLife.84394), with the focus on the admixed South African populations. Ancestry adjustment models detected a peak of SNPs in the class II HLA DPB1, distinct from the class II HLA DQA1 loci signficant in the ITHGC analysis.

      Strengths:

      Excellent demonstration of GWAS analytical pipelines in highly admixed populations. Particularly the utility of ancestry adjustment to improve study power to detect novel associations. Further confirmation of the importance of the HLA class II locus in genetic susceptibility to TB.

      Weaknesses:

      Limited novelty compared to the group's previous existing publications and the body of work linking HLA class II alleles with TB susceptibility in South Africa or other African populations. This work includes only ~100 new cases and controls from what has already been published. High resolution HLA typing has detected significant signals in both the DQA1 and DPB1 regions identified by the larger ITHGC and in this GWAS analysis respectively (Chihab L et al. HLA. 2023 Feb; 101(2): 124-137).<br /> Despite the availability of strong methods for imputing HLA from GWAS data (Karnes J et Plos One 2017), the authors did not confirm with HLA typing the importance of their SNP peak in the class II region. This would have supported the importance of this ancestry adjustment versus prior ITHGC analysis.<br /> The populations consider active TB and healthy controls (from high-burden presumed exposed communities) and do not provide QFT or other data to identify latent TB infection.

      Important methodological points for clarification and for readers to be aware of when reading this paper:

      (1) One of the reasons cited for the lack of African ancestry-specific associations or suggestive peaks in the ITHGC study was the small African sample size. The current association test includes a larger African cohort and yields a near-genome-wide significant threshold in the HLA-DPB1 gene originating from the KhoeSan ancestry. Investigation is needed as to whether the increase in power is due to increased African samples and not necessarily the use of the LAAA model as stated on lines 295 and 296?

      Authors response - The Manhattan plot in Figure 3 includes the results for all four models: the traditional GWAS model (GAO), the admixture mapping model (LAO), the ancestry plus allelic (APA) model and the LAAA model. In this figure, it is evident that only the LAAA model identified the association peak on chromosome 6, which lends support the argument that the increase in power is due to the use of the LAAA model and not solely due to the increase in sample size.<br /> Reviewer comment - This data supports the authors conclusions that increase power is related to the LAAA model application rather than simply increase sample size.

      (2) In line 256, the number of SNPs included in the LAAA analysis was 784,557 autosomal markers; the number of SNPs after quality control of the imputed dataset was 7,510,051 SNPs (line 142). It is not clear how or why ~90% of the SNPs were removed. This needs clarification.

      Authors response:<br /> In our manuscript (line 194), we mention that "...variants with minor allele frequency (MAF) < 1% were removed to improve the stability of the association tests." A large proportion of imputed variants fell below this MAF threshold and were subsequently excluded from this analysis.

      Reviewers additional comment: The authors should specify the number of SNPs in the dataset before imputation and indicate what proportion of the 784,557 remaining SNPs were imputed. Providing this information might help the reader better understand the rationale behind the imputation process.

      (3) The authors have used the significance threshold estimated by the STEAM p-value < 2.5x10-6 in the LAAA analysis. Grinde et al. (2019 implemented their significance threshold estimation approach tailored to admixture mapping (local ancestry (LA) model), where there is a reduction in testing burden. The authors should justify why this threshold would apply to the LAAA model (a joint genotype and ancestry approach).

      Authors response: We describe in the methods (line 189 onwards) that the LAAA model is an extension of the APA model. Since the APA model itself simultaneously performs the null global ancestry only model and the local ancestry model (utilised in admixture mapping), we thus considered the use of a threshold tailored to admixture mapping appropriate for the LAAA model.

      Reviewers additional comment: While the LAAA model is an extension of the APA model, the authors describe the LAAA test as 'models the combination of the minor allele and the ancestry of the minor allele at a specific locus, along with the effect of this interaction,' thus a joint allele and ancestry effects model. Grinde et al. (2019) proposed the significance threshold estimation approach, STEAM, specifically for the LA approach, which tests for ancestry effects alone and benefits from the reduced testing burden. However, it remains unclear why the authors found it appropriate to apply STEAM to the LAAA model, a joint test for both allele and ancestry effects, which does not benefit from the same reduction in testing burden.

      (4) Batch effect screening and correction (line 174) is a quality control check. This section is discussed after global and local ancestry inferences in the methods. Was this QC step conducted after the inferencing? If so, the authors should justify how the removed SNPs due to the batch effect did not affect the global and local ancestry inferences or should order the methods section correctly to avoid confusion.

      Authors response: The batch effect correction method utilised a pseudo-case-control comparison which included global ancestry proportions. Thus, batch effect correction was conducted after ancestry inference. We excluded 36 627 SNPs that were believed to have been affected by the batch effect. We have amended line 186 to include the exact number of SNPs excluded due to batch effect.<br /> The ancestry inference by RFMix utilised the entire merged dataset of 7 510 051 SNPs. Thus, the SNPs removed due to the batch effect make up a very small proportion of the SNPs used to conduct global and local ancestry inferences (less than 0.5%). As a result, we do not believe that the removed SNPs would have significantly affected the global and local ancestry inferences. However, we did conduct global ancestry inference with RFMix on each separate dataset as a sanity check. In the Author response tables 1 and 2, we show the average global ancestry proportions inferred for each separate dataset, the average global ancestry proportions across all datasets and the average global ancestry proportions inferred using the merged dataset. The SAC and Xhosa cohorts are shown in two separate tables due to the different number of contributing ancestral populations to each cohort. The differences between the combined average global ancestry proportions across the separate cohorts does not differ significantly to the global ancestry proportions inferred using the merged dataset.

      This is an excellent response and should remain accessible to readers to clarify this issue.

    1. Reviewer #2 (Public review):

      Summary:

      The manuscript by Hadebe and colleagues describes a striking reduction in airway hyperresponsiveness in Igm-deficient mice in response to HDM, OVA and papain across the B6 and BALB-c backgrounds. The authors suggest that the deficit is not due to improper type 2 immune responses, nor an aberrant B cell response, despite a lack of class switching in these mice. Through RNA-Seq approaches, the authors identify few differences between the lungs of WT and Igm-deficient mice, but see that two genes involved in actin regulation are greatly reduced in IgM-deficient mice. The authors target these genes by CRISPR-Cas9 in in vitro assays of smooth muscle cells to show that these may regulate cell contraction. While the study is conceptually interesting, there are a number of limitations, which stop us from drawing meaningful conclusions.

      Strengths:

      Fig. 1. The authors clearly show that IgMKO mice have striking reduced AHR in the HDM model, despite the presence of a good cellular B cell response.

      Weaknesses:

      Due to several technical and experimental limitations, it is unclear what leads to the reduction in airway hyperresponsiveness in IGM-KO mice. The limitations as outlined previously remain.

    1. Reviewer #2 (Public review):

      Summary:

      Wang et al. investigate the role of TseP, a Type VI secretion system (T6SS) effector molecule, revealing its dual enzymatic activities as both an amidase and a lysozyme. This discovery significantly enhances the understanding of T6SS effectors, which are known for their roles in interbacterial competition and survival in polymicrobial environments. TseP's dual function is proposed to play a crucial role in bacterial survival strategies, particularly in hostile environments where competition between bacterial species is prevalent.

      Strengths:

      (1) The dual enzymatic function of TseP is a significant contribution, expanding the understanding of T6SS effectors.<br /> (2) The study provides important insights into bacterial survival strategies, particularly in interbacterial competition.<br /> (3) The findings have implications for antimicrobial research and understanding bacterial interactions in complex environments.

      Weaknesses:

      (1) The manuscript assumes familiarity with previous work, making it difficult to follow. Mutants and strains need clearer definition and references.<br /> (2) Figures lack proper controls, quantification, and clarity in some areas, notably in Figures 1A and 1C.<br /> (3) The Materials and Methods section is poorly organized, hindering reproducibility. Biophysical validation of Zn²⁺ interaction and structural integrity of proteins need to be addressed.<br /> (4) Discrepancies in protein degradation patterns and activities across different figures raise concerns about data reliability.

      Comments on revisions:

      The authors have addressed most of the comments, significantly improving the manuscript. They provided clear details of mutant constructs and strains, including additional references and a revised strain. Individual data points and statistical analyses were added to key figures, ensuring transparency and reproducibility. Supplemental data, such as protein purification details and loading controls, were included to address concerns about experimental reliability. However, the authors did not perform new experiments, such as isothermal titration calorimetry (ITC) to demonstrate the interaction between Zn<sup>2+</sup> and TsePN or stop-flow spectroscopy to examine enzymatic kinetics, which could have further strengthened the manuscript. I trust these aspects will be addressed in future studies.

      The revised Materials and Methods section was significantly improved, providing detailed protocols for bioinformatics analyses, microscopic imaging, and enzymatic assays.

      These revisions provide a clearer and more robust presentation of TseP's dual enzymatic functions and their implications in bacterial competition. The manuscript now represents a significant contribution to understanding T6SS effectors, and I recommend it for publication in its current form.

    1. Reviewer #2 (Public review):

      Summary:

      In this work, the authors present a differentiable version of the widely-used Gillespie Algorithm. The Gillespie Algorithm has been used for decades to simulate the behavior of stochastic biochemical reaction networks. But while the Gillespie Algorithm is a powerful tool for the forward simulation of biochemical systems given some set of known reaction parameters, it cannot be used for reverse process, i.e. inferring reaction parameters given a set of measured system characteristics. The Differentiable Gillespie Algorithm ("DGA") overcomes this limitation by approximating two discontinuous steps in the Gillespie Algorithm with continuous functions. This makes it possible to calculate of gradients for each step in the simulation process which, in turn, allows the reaction parameters to be optimized via powerful backpropagation techniques. In addition to describing the theoretical underpinnings of DGA, the authors demonstrate different potential use-cases for the algorithm in the context of simple models of stochastic gene expression.

      Overall, the DGA represents an important conceptual step forward for the field and should lay the groundwork for exciting innovations in the analysis and design of stochastic reaction networks. At the same time, significantly more work is needed to establish when the approximations made by DGA are valid and to demonstrate the viability of the algorithm in the context of complicated reaction networks.

      Strengths:

      This work makes an important conceptual leap by introducing a version of the Gillespie Algorithm that is end-to-end differentiable. This idea alone has the potential to drive a number of exciting innovations in the analysis, inference, and design of biochemical reaction networks. Beyond the theoretical adjustments, the authors also implement their algorithm in a Python-based codebase that combines DGA powerful optimization libraries like PyTorch. This codebase has the potential to be of interest to a wide range of researchers, even if the true scope of the method's applicability remains to be fully determined.

      The authors also demonstrate how DGA can be used in practice both to infer reaction parameters from real experimental data (Figure 7) and to design networks with user-specified input-output characteristics (Figure 8). These illustrations should provide a nice roadmap for researchers interested in applying DGA to their own projects/systems.

      Finally, although it does not stem directly from DGA, the exploration of pairwise parameter dependencies in different network architectures provides an interesting window into the design constraints (or lack thereof) that shape the architecture of biochemical reaction networks.

      Weaknesses:

      While it is clear that the DGA represents an important conceptual advancement, the authors do not do enough in the present manuscript to (i) validate the robustness of DGA inference and (ii) demonstrate that DGA inference works in the kinds of complex biochemical networks where it would actually be of legitimate use.

      It is to the authors' credit that they are open and explicit about the potential limitations of DGA due to breakdowns in its continuous approximations. However they do not provide the reader with nearly enough empirical (i.e. simulation-based) or theoretical context to assess when, why, and to what extent DGA will fail in different situations. In Figure 2, they compare DGA to GA (i.e. ground-truth) in the context of a simple two state model of a stochastic transcription. Even in this minimal system, we see that DGA deviates notably from ground-truth both in the simulated mRNA distributions (Figure 2A) and in the ON/OFF state occupancy (Figure 2C). This begs the question of how DGA will scale to more complicated systems, or systems with non-steady state dynamics. Will the deviations become more severe? This is important because, in practice, there is really not much need for using DGA with a simple 2 state system-we have analytic solutions for this case. It is the more complex systems where DGA has the potential to move the needle.

      A second concern is that the authors' present approach for parameter inference and error calculation does not seem to be reliable. For example, in Figure 5A, they show DGA inference results for the ON rate of a two-state system. We see substantial inference errors in this case, even though the inference problem should be non-degenerate in this case. One reason for this seems to be that the inference algorithm does not reliably find the global minimum of the loss function (Figure 2B). To turn DGA into a viable approach, it is paramount that the authors find some way to improve this behavior, perhaps by using multiple random initializations to better search the loss space.

      Finally, the authors do a good job of illustrating how DGA might be used to infer biological parameters (Figure 7) and design reaction networks with desired input-output characteristics (Figure 8). However, analytic solutions exist for both of the systems they select for examples. This means that, in practice, there would be no need for DGA in these contexts, since one could directly optimize, e.g., the expressions for the mean and Fano Factor of the system in Figure 7A. I still believe that it is useful to have these examples, but it seems critical to add a use-case where DGA is the only option.

      Comments on revisions:

      I am concerned that the results in Figure 8D may not be correct, or that the authors may be mis-interpreting them. From my reading of the paper they cite (Lammers & Flamholz 2023), the equilibrium sharpness limit for the network they consider in Figure 8 should be 0.25. But both solutions shown in Figure 8D fall below this limit, which means that they have sharpness levels that could have been achieved with no energy expenditure. If this is the case, then it would imply that while both systems do dissipate energy, they are not doing so productively; meaning that the same results could be achieved while holding Phi=0.

      I acknowledge that this could be due to a difference in how they measure sharpness, but wanted to raise it here in case it is, in fact, a genuine issue with the analysis.

      There should be an easy fix for this: just set the sharper "desired response" curve in 8b to be such that it demands non-equilibrium sharpness levels (0.25)

    1. Reviewer #2 (Public review):

      Summary:

      This paper presented a hypothesis testing procedure for the independence of two time-series that was potentially suitable for nonlinear dependence and for small-sample cases. This should bring potential benefits for biology data.

      Strengths:

      The test offers good flexibility for different kinds of dependence (through adjusting \rho), and seems to have good finite sample performance compared to the literature. The justification regarding the validity of the test procedure is clear.

      Weaknesses:

      (1) The size of the test is not guaranteed to (asymptotically) equal \alpha, which may damage the power.

      (2) The computational time can be an issue for a moderately large sample size when calculating the X / Y-perfect match. It will be beneficial to include discussions on the implementations of the test.

    1. Reviewer #2 (Public review):

      Summary:

      In this manuscript the authors describe their study on the role of meteorins in establishing the left-right organizer. The left-right organizer is a transient organ in vertebrate embryos in which rotating cilia cause a fluid flow that breaks the left-right symmetry and coordinates lateralization of internal organs such as gut and heart. In zebrafish, the left-right organizer (also named Kupffer's vesicle) is formed by dorsal forerunner cells, but very little is known about how dorsal forerunner cells coalles and form this ciliated vesicle in the embryo. The authors mutated the three meteorin-coding genes in zebrafish and observed that mutations in each one of these causes laterality defects with the strongest defects observed in the triple mutant. Loss of meteorins affects nodal gene expression, which play essential roles in establishing organ laterality. Meteorins are widely expressed in developing embryos and expression in lateral plate mesoderm and dorsal forerunner cells was observed. The meteorin triple mutant embryos display defects in the migration and clustering of the dorsal forerunner cells impairing kupffer's vesicle formation and cilia rotation. Finally, the authors show that meteorins genetically interact with integrins.

      Strengths:

      - These authors went through the lengthy process of generating triple mutants affecting all three meteorin genes. This provides robust genetic evidence on the role of meteorins in establishing organ laterality and circumvented that interpretation of the results would be hard due to redundant functions of meteorins.<br /> - The use of life imaging on triple mutants is appreciated<br /> - High-quality imaging of dorsal forerunner to quantify cell migrations and its relation to Kupffer's vesicle formation.

      Weaknesses:

      - Lack of a model how meteorins regulate dorsal forerunner cell migration.<br /> - Only genetic data to suggest a link between meteorins and integrins<br /> - Besides its role in DFC migration, meteorins may also play a more direct role in regulating Nodal signaling, which is not addressed here.

    1. Reviewer #2 (Public review):

      The authors aim to investigate the ability of evolution to create strong transcription factor binding sites (TFBSs) de novo in E. coli. They focus on three global transcriptional regulators: CRP, Fis, and IHF, using a massively parallel reporter assay to evaluate the regulatory effects of over 30,000 TFBS variants. By analyzing the resulting genotype-phenotype landscapes, they explore the ruggedness, accessibility, and evolutionary dynamics of regulatory landscapes, providing insights into the evolutionary feasibility of strong gene regulation. Their experiments show that de novo adaptive evolution of new gene regulation is feasible. It is also subject to a blend of chance, historical contingency, and evolutionary biases that favor some peaks and evolutionary paths.

      (1) Strengths of the methods and results:

      The authors successfully employed a well-designed sort-seq assay combined with high-throughput sequencing to map regulatory landscapes. The experimental design ensures reliable measurement of regulation strengths. Their system accounts for gene expression noise and normalizes measurements using appropriate controls.

      Comprehensive Landscape Mapping:<br /> The study examines ~30,000 TFBS variants per transcription factor, providing statistically robust and thorough maps of the regulatory landscapes for CRP, Fis, and IHF. The landscapes are rigorously analyzed for ruggedness (e.g., number of peaks) and epistasis, revealing parallels with theoretical uncorrelated random landscapes.

      Evolutionary Dynamics Simulations:<br /> Through simulations of adaptive walks under varying population dynamics, the authors demonstrate that high peaks in regulatory landscapes are accessible despite ruggedness. They identify key evolutionary phenomena, such as contingency (multiple paths to peaks) and biases toward specific evolutionary outcomes.

      Biological Relevance and Novelty:<br /> The author's work is novel in focusing on global regulators, which differ from previously studied local regulators (e.g., TetR). They provide compelling evidence that rugged landscapes are navigable, facilitating de novo evolution of regulatory interactions. The comparison of landscapes for CRP, Fis, and IHF underscores shared topographical features, suggesting general principles of global transcriptional regulation in bacteria.

      (2) Weaknesses of the methods and results:

      Undersampling of Genotype Space:<br /> While the quality filtering of the data ensures robustness, ~40% of the TFBS space remains uncharacterized. The authors acknowledge this limitation but could improve the analysis by employing subsampling or predictive modeling.

      Simplified Regulatory Architecture:<br /> The study considers a minimal system of a single TFBS upstream of a reporter gene. While this may have been necessary for clarity, this simplification may not reflect the combinatorial complexity of transcriptional regulation in vivo.

      Lack of Experimental Validation of Simulations:<br /> The adaptive walks are based on simulated dynamics rather than experimental evolution. Incorporating in vivo experimental evolution studies would strengthen the conclusions. Although this is a large request for the paper, that would not prevent publication.

      Impact on the Field:<br /> This study advances our understanding of adaptive landscapes in gene regulation and offers a critical step toward deciphering how global regulators evolve de novo binding sites. The findings provide foundational insights for synthetic biology, evolutionary genetics, and systems biology by highlighting the evolutionary accessibility of strong regulation in bacteria.

      Utility of Methods and Data:<br /> The sort-seq approach, combined with landscape analysis, provides a robust framework that can be extended to other transcription factors and systems. If made publicly available, the study's data and code would be valuable for researchers modeling transcriptional regulation or studying evolutionary dynamics.

      Additional Context:<br /> The study builds on a growing body of work exploring regulatory evolution. For instance, recent studies on local regulators like TetR and AraC have revealed high ruggedness and epistasis in TFBS landscapes. This study distinguishes itself by focusing on global regulators, which are more biologically complex and influential in bacterial gene networks. The observed evolutionary contingency aligns with findings in other biological systems, such as protein evolution and RNA folding landscapes, underscoring the generality of these evolutionary principles.

      Conclusion:<br /> The authors successfully mapped the genotype-phenotype landscapes for three global regulators and simulated evolutionary dynamics to assess the feasibility of strong TFBS evolution. They convincingly demonstrate that ruggedness and epistasis, while prominent, do not preclude the evolution of strong regulation. Their results support the notion that gene regulation evolves through a blend of chance, contingency, and evolutionary biases.

      This paper makes a significant contribution to the understanding of regulatory evolution in bacteria. While minor limitations exist, the authors' methods are robust, and their findings are well-supported. The work will likely be of broad interest to researchers in molecular evolution, synthetic biology, and gene regulation.

    1. Reviewer #2 (Public review):

      Summary:

      Cupollilo et al. investigate the properties of hippocampal CA3 neurons that express the immediate early gene cFos in response to a single foot shock. They compare ex-vivo the electrophysiological properties of these "engram neurons" labeled with two different cFos promoter-driven green markers: Their new tool FLEN labels neurons 2-6 h after activity, while RAM contains additional enhancers and peaks considerably later (>24 h). Since the fraction of labeled CA3 cells is comparable with both constructs, it is assumed (but not tested) that they label the same population of activated neurons at different time points. Both FLEN+ and RAM+ neurons in CA3 receive more synaptic inputs compared to non-expressing control neurons, which could be a causal factor for cFos activation, or a very early consequence thereof. Frequency facilitation and E/I ratio of mossy fiber inputs were also tested, but are not different in both cFos+ groups of neurons. One day after foot shock, RAM+ neurons are more excitable than RAM- neurons, suggesting a slow increase in excitability as a major consequence of cFos activation.

      Strengths:

      The study is conducted to high standards and contributes significantly to our understanding of memory formation and consolidation in the hippocampus. Modifications of intrinsic neuronal properties seem to be more salient than overall changes in the total number of (excitatory and inhibitory) inputs, although a switch in the source of the synaptic inputs would not have been detected by the methods employed in this study

      Weaknesses:

      With regard to the new viral tool, a direct comparison between the new tool FLEN and existing cFos reporters is missing.

    1. Reviewer #2 (Public review):

      Summary:

      The present study identifies how mating and pup experience are correlated with differences in inhibitory neurotransmission underlying the promotion of paternal behavior toward pups. The study builds on existing knowledge about the circuit between the medial amygdala, medial preoptic area, and the bed nucleus of stria terminalis to uncover synaptic changes correlated with behavior. The authors find that inhibition from the medial amygdala is decreased in the medial preoptic area and increased in the bed nucleus of stria terminalis to promote paternal behavior in mated males.

      Strengths:

      The authors use a combination of in vivo activity manipulation and slice electrophysiology to study the role of inhibition in this circuit in dynamic infant-directed behavior induced by mating.

      Weaknesses:

      (1) Some technical and methodological details are incomplete or missing for interpretation of the significance of the findings. Statistical details are also left out.

      (2) The rationale for using Cartpt as a marker is not fully explained. This marker has activity-dependent expression and this possibility is not explored experimentally--for example, could exposure to objects or pups change expression (or the number of cells expressing) cartpt alone?

      (3) The cfos experiment is quantified by exposing a male to a pup inside a tea ball. Therefore, it is unclear how the male was classified as infanticidal or parental based on the available criteria provided in the methods section.

      (4) There is no information about inclusion/exclusion criteria for chemical and viral experiments. Specifically, there is no information provided about the validation of the lesion experiment--how large were the lesions? Is there concern about leakage of the chemical into the recorded region (MPOA and BNST are adjacent).

      (5) The authors do not provide information about how long rAAV is allowed to express before quantifying retrograde transport.

      (6) For statistics, the authors do not provide information distinguishing the main effects from multiple comparisons post hoc testing for the ANOVA analyses.

    1. Reviewer #2 (Public review):

      Summary:

      In this paper, Oláh and colleagues introduce new research data on the cellular and biophysical elements involved in transmission within the pyramidal circuits of the human neocortex. They gathered a comprehensive set of patch-clamp recordings from human and rat pyramidal neurons to compare how the temporal aspect of neuronal processing is maintained in the larger human neocortex. A range of experimental techniques have been used, including two-photon guided dual whole-cell recordings, electron microscopy, complemented by theoretical and computational methods.

      The authors find that synaptically connected pyramidal neurons within the human neocortex have longer intercellular path lengths. They go on to show that the short soma to soma latencies is not due to propagation velocity along the axon but instead reflects a higher propagation speed of synaptic potentials from dendrite to soma. Next, in a series of extensive computational modeling studies focusing on the synaptic potentials, the authors show that the shorter latency may be explained by larger diameters, affecting the cable properties and resulting is relatively faster propagation of EPSPs in the human neuron. The manuscript is well-written, and the physiological experiments and in-depth theoretical steps for the simulations are clear. Whether passive cable properties of the dendrites alone are responsible for higher velocities remains to be further investigated. Based on the present data the contribution of active membrane properties cannot be excluded.

      Strengths:

      The authors used complex 2P-guided dual whole-cell recordings in human neurons. In combination with detailed reconstructions, these approaches represent the next steps in unravelling the information processing in human circuits.

      The computational modelling and cable theory application to the experimentally constrained simulations provides an integrated view of the passive membrane properties of human neurons.

      Weaknesses:

      Whether the cable properties alone are the main explanation for speeding the electrical signaling in human pyramidal neurons deserves further studies.

    1. Reviewer #3 (Public review):

      Summary:

      The manuscript is evaluating changes in dopamine signaling in the nucleus accumbens following pair bonding and exposure to various stimuli in mandarin voles. In addition, the authors present chemogenetic data which demonstrates excitation and inhibition of D1 and D2 MSN affect pair bond formation.

      Strengths:

      The experimental designs are strong. The approaches are innovative and use cutting-edge methods. The manuscript is well written.

      Comments on revised version:

      I appreciate the efforts by the authors to address many of my previous comments. The issues that remain are those associated with the statistics. It seems that not all statistical analyses were performed with the correct test. For example, the photometry data comparing emissions during partner vs stranger investigation over time would be best performed as a two-way ANOVA with odor type and time being separate variables. Also, there are paired t-tests being performed by calculating an average deltaF/F during the 4 second window following the being of a behavioral event. I think an area-under-the-curve calculation of these events would better capture the fluorescent emissions of these events as an index. Details in the Result describing the data being analyzed via ANOVA vs t-tests when reporting the results would be useful for the reviewer to understand each analysis.

    1. Reviewer #2 (Public review):

      Summary:

      The authors main goal is to understand the mechanism by which pyroptosis (through the formation of Gasdermin D (GSDMD) pores in the plasma membrane) contributes to increased release of procoagulant Tissue Factor-containing microvesicles (MV). Their previous data demonstrate that GSDMD is critical for the release of MV that contains Tissue Factor (TF), thus making a link between pyroptosis and hypercoagulation. Given the recent identification of NINJ1 being responsible for plasma membrane rupture (Kayagaki et al. Nature 2011), the authors wanted to determine if NINJ1 is responsible for TF-containing MV release. Given the constitutive ninj1 KO mouse leads to partial embryonic lethality, the authors decide to use a heterozygous ninj1 KO mouse (ninj1+/-), and demonstrate that Ninj1 plays a role in release of TF-containing MV.

    1. Reviewer #2 (Public review):

      Summary:

      The authors provide a very thorough investigation on the role of UBR-1 in anthelmintic resistance using the non-parasitic nematode, C. elegans. Anthelmintic resistance to macrocyclic lactones is a major problem in veterinary medicine and likely just a matter of time until resistance emerges in human parasites too. Therefore, this study providing novel insight into the mechanisms of ivermectin resistance is particularly important and significant.

      Strengths:

      The authors use very diverse technologies (behavior, genetics, pharmacology, genetically encoded reporters) to dissect the role of UBR-1 in ivermectin resistance. Deploying such a comprehensive suite of tools and approaches provides exceptional insight into the mechanism of how UBR-1 functions in terms of ivermectin resistance.

      Weaknesses:

      I do not see any major weaknesses in this study. My only concern is whether the observations made by the authors would translate to any of the important parasitic helminths in which resistance has naturally emerged in the field. This is always a concern when leveraging a non-parasitic nematode to shed light on a potential mechanism of resistance of parasitic nematodes, and I understand that it is likely beyond the scope of this paper to test some of their results in parasitic nematodes.

      Comments on revisions: The authors have now addressed all my concerns.

    1. Reviewer #2 (Public review):

      Summary:

      This research offers a comprehensive analysis of the regenerative process in sea cucumbers and builds upon decades of previous research. The approach involves a detailed examination using single-cell sequencing, making it a crucial reference paper while shedding new light on regeneration in this organism.

      Strengths:

      Detailed analysis of single-cell sequencing data and high-quality RNA localization images provide significant new insights into regeneration in sea cucumbers and, more broadly, in animals. Identifying a proliferating cluster of cells is very interesting and may open avenues to identify the cell lineage history and deeper molecular properties of the cells that regenerate the intestine.

      Weaknesses:

      The spatial context of the RNA localization images is challenging to interpret in this spatially complex tissue organization. Although the authors have taken care to perform RNA localization staining, it is still challenging to relate these data to their schematic model. This is only a minor weakness that will almost certainly be clarified by future work from the authors as they follow up on findings.

    1. Reviewer #3 (Public review):

      This revised paper provides evidence that food washing and brushing in wild long-tailed macaques are deliberate behaviors to remove sand that can damage tooth enamel. The demonstration of the immediate functional importance of these behaviors is nicely done, and there is some interesting initial evidence that macaques differ systematically in their investment in food cleaning based on dominance rank.

      The authors interpret this evidence as support for "disposable soma" effects: that reduced time and effort invested food washing in high-ranking individuals is attributable to prioritizing reproductive effort. Given that the analysis is on a single group with no longitudinal data, there are no fitness measures or fitness proxies, the energetic constraints faced by this population are not clear, and both sexes are combined into a single dominance hierarchy (trade-offs between different forms of investment are typically thought to differ between sexes), this conclusion is premature, although an interesting foundation for future studies.

      More generally, the results directly supported by the data collection and analysis (grit on Koshima likely damages macaque teeth; processing food helps mitigate the damage; there is some interesting interindividual variation in food processing time, and that time is not always in line with what appears to be optimal) tend to be combined with interpretation that is much more speculative (e.g., the effect sizes observed are consequential for fitness; high-ranking animals are making choices that optimize their long-term fitness at the expense of their soma). This is in part a stylistic choice but can have the effect of drawing attention away from the stronger empirical findings and/or be misleading. Similarly, although I appreciate that the authors were trying to interpret and respond to previous feedback from reviewers, I found the addition of the box text on the raccoon nomenclature and on irrational behavior and the Concorde effect distracting (more intro-textbook style than journal article style).

    1. Reviewer #2 (Public review):

      Summary:

      Intrinsic primary afferent neurons are an interesting population of enteric neurons that transduce stimuli from the mucosa, initiate reflexive neurocircuitry involved in motor and secretory functions, and modulate gut immune responses. The morphology, neurochemical coding, and electrophysiological properties of these cells have been relatively well described in a long literature dating back to the late 1800's but questions remain regarding their roles in enteric neurocircuitry, potential subsets with unique functions, and contributions to disease. Here, the authors provide RNAscope, immunolabeling, electrophysiological, and organ function data characterizing IPANs in mice and suggest that Cdh6 is an additional marker of these cells.

      Strengths:

      This paper would likely be of interest to the enteric neuroscience community and increases information regarding the properties of IPANs in mice. These data are useful and suggest that prior data from studies of IPANs in other species are likely translatable to mice.

      Weaknesses:

      Major weaknesses:<br /> (1) The novelty of this study is relatively limited. The main point of novelty suggests an additional marker of IPANs (Cdh6) that would add to the known list of markers for these cells. How useful this would be is unclear. Other main findings basically confirm that IPANs in mice display the same classical characteristics that have been known for many years from studies in guinea pigs, rats, mice and humans.

      (2) Critical controls are needed to support the optogenetic experiments. Control experiments are needed to show that ChR2 expression 1) does not change the baseline properties of the neurons, 2) that stimulation with the chosen intensity of light elicits physiologically relevant responses in those neurons, and 3) that stimulation via ChR2 elicits comparable responses in IPANs in the different gut regions focused on here. These essential controls remain absent in the study and limit confidence in the data derived from this model.

      (3) The motor effects observed in optogenetic experiments are difficult to understand in the absence of good controls for optogenetic control of the proposed neuron population (discussed above). It remains unclear how stimulating IPANs in the distal colon would generate retrograde CMCs while stimulating IPANs in the proximal colon did nothing. Key controls confirming that the optogentic stimulus was adequate, specific, and relevant are needed. In addition, better characterization of the Cdh6+ population of cells in both regions would be needed to understand the mechanisms underlying these effects.

      (4) From the data shown, it is clear that expression driven by the Cdh6CreERT2 driver is not confined to IPANs. There is obviously expression of GFP and ChR2 in smooth muscle cells. This is a major limitation for the physiological experiments that attempt to use this model to specifically stimulate IPANs and assess changes in gut motor function. Better characterization of this model is needed and control experiments are necessary to assess whether functional ChR2 is expressed in cells beyond the proposed subtype of enteric IPANs.

      (5) Some of the main conclusions of this study are overstated and claims of priority are made that are not true. For example, the authors state on lines 27-28 of the abstract that their findings provide the "first demonstration of selective activation of a single neurochemical and functional class of enteric neurons". This is certainly not true since Gould et al (AJP-GIL 2019) expressed ChR2 in nitrergic enteric neurons and showed that activating those cells disrupted CMC activity. In fact, prior work by the authors themselves (Hibberd et al Gastro 2018) showed that activating calretinin neurons with ChR2 evoked motor responses. Work by other groups has used chemogenetics and optogenetics to show effects of activating multiple other classes of neurons in the gut.

      (6) The electrophysiological characterization of mouse IPANs is useful but is limited to a small subset of Cdh6+ neurons in the distal colon myenteric plexus. Therefore, it remains unclear how well the properties reported here might reflect those of other Cdh6+ IPANs in the same or different regions. Similarly, blocking IH with ZD7288 affects all IPANs and does not add specific information regarding the role of the proposed Cdh6+ subtype.

      (7) The submucosal plexus (SMP) also contains enteric IPANs and these were not included in the analysis of Cdh6 expression. Whether or not the proposed IPAN marker Cdh6 would be useful for identifying or targeting those cells remains unclear.

      [Editor's note: The Reviewing Editor considers that further controls requested from the reviewers have largely been provided already in prior publications by other groups, as they concern specifically tools published years ago but in a different tissue context. Hence the methodology used to deliver the results reported here fall within the standard practices in the field. The comprehensive, multi-technique approach to the results is compelling in and of itself, and ought to suffice, rendering this work reproducible and therefore a basis for further research.]

    1. Reviewer #2 (Public review):

      Summary:

      The manuscript investigates the role of ANKRD5 (ANKEF1) as a component of the N-DRC complex in sperm motility and male fertility. Using Ankrd5 knockout mice, the study demonstrates that ANKRD5 is essential for sperm motility and identifies its interaction with N-DRC components through IP-mass spectrometry and cryo-ET. The results provide insights into ANKRD5's function, highlighting its potential involvement in axoneme stability and sperm energy metabolism.

      Strengths:

      The authors employ a wide range of techniques, including gene knockout models, proteomics, cryo-ET, and immunoprecipitation, to explore ANKRD5's role in sperm biology.

      Weaknesses:

      (1) Limited Citations in Introduction: Key references on the role of N-DRC components (e.g., DRC1, DRC2, DRC3, DRC5) in male infertility are missing, which weakens the contextual background.

      (2) Lack of Functional Insights: While interacting proteins outside the N-DRC complex were identified, their potential roles and interactions with ANKRD5 are not adequately explored or discussed.

      (3) Mitochondrial Function Uncertainty: Immunofluorescence suggests possible mitochondrial localization for ANKRD5, but experiments on its role in energy metabolism (e.g., ATP production, ROS) are insufficient, especially given the observed sperm motility defects.

      (4) Glycolysis Pathway Impact: Proteomic analysis indicates glycolysis pathway disruptions in Ankrd5-deficient sperm, but the link between these changes and impaired motility is not well explained.

      (5) Cryo-ET Data Limitations: The structural analysis of the DMT lacks clarity on how ANKRD5 influences N-DRC or RS3. The low quality of RS3 data hinders the interpretation of ANKRD5's impact on axoneme structure.

      (6) Discussion of Findings: The manuscript could benefit from a deeper discussion on the broader implications of ANKRD5's interactions and its role in sperm energy metabolism and motility mechanisms.

    1. Reviewer #2 (Public review):

      Summary:

      This study by Lum and colleagues reports on the role of Afadin, a cytosolic adapter protein that organizes multiple cell adhesion molecule families, in the generation and maintenance of complex cellular layers in the mouse retina. They used a conditional deletion approach, removing Afadin in retinal progenitors, and allowing them to analyze broad effects on retinal neuron development.

      The study presents high-quality and extensive characterization of the cellular phenotypes, supporting the main conclusions of the paper. They show that Afadin loss results in significant disorganization of the retinal cellular layers and the neuropil, producing rosettes and displacement of cells away from their resident layers. The major classes of neurons in the inner retina are affected, and some neurons are, remarkably, displaced to the other side of the inner plexiform layer. Nevertheless, they mostly target their synaptic partners, including the RGCs to distant retinorecipient targets in the brain. The main conclusions are as follows. Afadin is necessary for establishing and maintaining the retinal architecture. It is not necessary for the generation of the correct numbers/densities of retinal neuron subtypes. Moreover, Afadin loss preserves associations between known synaptic partners and preserves axonal targeting to retinorecipient layers. The consequences on photoreceptor viability and visual processing are also interesting, underscoring the essential function for maintaining retinal structure and function. Overall the main conclusions describing the consequences are supported by the results.

      Strengths:

      The study provides new knowledge on the requirement of Afadin in retinal development. The introduction and discussion effectively set up the rationale for this work, and place it in the context of previous studies of Afadin in other regions of the CNS.

      The study presents high-quality and extensive characterizations of the cellular phenotypes resulting from Afadin loss. By analyzing various aspects of retinal organization - from cellular densities to axon targeting to brain - the study narrows down the role of a structure for promoting the establishment of the layers, or maintenance. The data are straightforward and convincing, and the interpretations are bounded by the data shown (though minor weakness re. survival). Another important finding is that the targeting of retinal neuron processes to synaptic partners, including retinorecipient targets in the brain, are intact.

      The study is important as it establishes a focused requirement for Afadin to set up and preserve the overall cellular organizations within the retinal tissue. The demonstration that Afadin is needed for photoreceptor viability and overall visual function enhances impact by establishing its functional importance.

      The manuscript is well well-written and presented. The images are attractive and compelling, and the figures are well organized.

      Weaknesses:

      (1) Expanding on the developmental mechanism is beyond the scope of the study, and would not add to the main conclusions. However, the manuscript would be improved by providing more clarity on the developmental emergence of the defects. The study left me questioning whether the rosettes and cell displacements occur during earlier stages of retina development, or are progressive. For instance, do the RGCs migrate and establish within the GCL correctly at first, and then are displaced with the progressive disorganization? Or are they disorganized and delaminate en route? Images of RGC staining at P0, or earlier during their migration, would be informative. Data in Figure 1 is limited to DAPI staining at P7. Figure 4 shows an image of rod photoreceptors at P7, with their displacement in the GCL layer (and not contained within a rosette). Are the progenitors mislocalized due to delamination?

      A few additional thoughts on how these defects compare to other mutants with rosettes might give us more context for understanding the results.

      (2) The manuscript reports that the densities of major inner retinal classes are unaffected. There are a few details missing for this point. How were the cell densities quantified (in terms of ROI size), and normalized? This information is lacking in the methods. There is a striking thickening of the GCL in the DAPI-labeled images shown in Figure 1. What are these cells?

    1. Reviewer #2 (Public review):

      Summary:

      This paper provides a valuable addendum to the findings described in Hamilton et al. 2020 (https://doi.org/ 10.7554/eLife.56582). In the earlier paper, the authors reconstituted the budding yeast centromeric nucleosome together with parts of the budding yeast kinetochore and tested which elements are required and sufficient for force transmission from microtubules to the nucleosome. Although budding yeast centromeres are defined by specific DNA sequences, this earlier paper did not use centromeric DNA but instead the generic Widom 601 DNA. The reason is that it has so far been impossible to stably reconstitute a budding yeast centromeric nucleosome using centromeric DNA.

      In this new study, the authors now report that they were able to replace part of the Widom 601 DNA with centromeric DNA from chromosome 3. This makes the assay more closely resemble the in vivo situation. Interestingly, the presence of the centromeric DNA fragment makes one type of minimal kinetochore assembly, but not the other, withstand stronger forces.

      Which kinetochore assembly turned out to be affected was somewhat unexpected, and can currently not be reconciled with structural knowledge of the budding yeast centromere/kinetochore. This highlights that, despite recent advances (e.g. Guan et al., 2021; Dendooven et al., 2023), aspects of budding yeast kinetochore architecture and function remain to be understood and that it will be important to dissect the contributions of the centromeric DNA sequence.

      Given the unexpected result, the study would become yet more informative if the authors were able to pinpoint which interactions contribute to the enhanced force resistance in the presence of centromeric DNA.

      Strength:

      The paper demonstrates that centromeric DNA can increase the attachment strength between budding yeast microtubules and centromeric nucleosomes.

      Weakness:

      How centromeric DNA exerts this effect remains unclear.

    1. Reviewer #3 (Public review):

      In this manuscript, Casas-Tintó et al. explore the role of glial cell in the response to a neurodegenerative injury in the adult brain. They used Drosophila melanogaster as a model organism, and found that glial cells are able to generate new neurons through the mechanism of transdifferentiation in response to injury. This paper provides a new mechanism in regeneration, and gives an understanding to the role of glial cells in the process.

      The authors have now addressed all my concerns.

    1. Reviewer #2 (Public review):

      Summary:

      In the present study, the authors, using a mouse model of Fragile X syndrome, explore the very interesting hypothesis that restricting food access over a daily schedule will improve sleep patterns and, subsequently, behavioral capacities. By restricting food access from 12h to 6h over the nocturnal period (active period for mice), they show, in these KO mice, an improvement of the sleep pattern accompanied by reduced systemic levels of inflammatory markers and improved behavior. Using a classical mouse model of neurodevelopmental disorder (NDD), these data suggest that eating patterns might improve sleep quality, reduce inflammation and improve cognitive/behavioral capacities in children with NDD.

      Strengths:

      Overall, the paper is very well-written and easy to follow. The rationale of the study is generally well-introduced. The data are globally sound. The provided data support the interpretation overall.

      Weaknesses:

      (1) The introduction part is quite long in the Abstract, leaving limited space for the data provided by the present study.

      (2) A couple of points are not totally clear for a non-expert reader:<br /> - The Fmr1/Fxr2 double KO mice are not well described.<br /> - What is the rationale for performing both LD and DD measures?

      (3) The data on cytokines and chemokines are interesting. However, the rationale for the selection of these molecules is not given. In addition, these measures have been performed in the systemic blood. Measures in the brain could be very informative.

      (4) An important question is the potential impact of fasting vs the impact of the food availability restriction. Indeed fasting has several effects on brain functioning including cognitive functions.

      (5) How do the authors envision the potential translation of the present study to human patients? How to translate the 12 to 6 hours of food access in mice to children with Fragile X syndrome?

    1. Reviewer #2 (Public review):

      Summary:

      Soham Mukhopadhyay et al. investigated the protein folding of the secretome from gall-forming microbes using the AI-based structure modeling tool AlphaFold2. Their study analyzed six gall-forming species, including two Plasmodiophorid species and four others spanning different kingdoms, along with one non-gall-forming Plasmodiophorid species, Polymyxa betae. The authors found no effector fold specifically conserved among gall-forming pathogens, leading to the conclusion that their virulence strategies are likely achieved through diverse mechanisms. However, they identified an expansion of the Ankyrin repeat family in two gall-forming Plasmodiophorid species, with a less pronounced presence in the non-gall-forming Polymyxa betae. Additionally, the study revealed that known effectors such as CCG and AvrSen1 belong to sequence-unrelated but structurally similar (SUSS) effector clusters.

      Strengths:

      (1) The bioinformatics analyses presented in this study are robust, and the AlphaFold2-derived resources deposited in Zenodo provide valuable resources for researchers studying plant-microbe interactions. The manuscript is also logically organized and easy to follow.

      (2) The inclusion of the non-gall-forming Polymyxa betae strengthens the conclusion that no effector fold is specifically conserved in gall-forming pathogens and highlights the specific expansion of the Ankyrin repeat family in gall-forming Plasmodiophorids.

      (3) Figure 4a and 4b effectively illustrate the SUSS effector clusters, providing a clear visual representation of this finding.

      (4) Figure 1 is a well-designed, comprehensive summary of the number and functional annotations of putative secretomes in gall-forming pathogens. Notably, it reveals that more than half of the analyzed effectors lack known protein domains in some pathogens, yet some were annotated based on their predicted structures, despite the absence of domain annotations.

      Weaknesses:

      (1) The effector families discussed in this paper remain hypothetical in terms of their functional roles, which is understandable given the challenges of demonstrating their functions experimentally. However, this highlights the need for experimental validation as a next step.

      (2) Some analyses, such as those in Figure 4e, emphasize motifs derived from sequence alignments of SUSS effector clusters. Since these effectors are sequence-unrelated, sequence alignments might be unreliable. It would be more rigorous to perform structure-based alignments in addition to sequence-based ones for motif confirmation. For instance, methods described in Figure 3E of de Guillen et al. (2015, https://doi.org/10.1371/journal.ppat.1005228) or tools like Foldseek (https://search.foldseek.com/foldmason) could be useful for aligning structures of multiple sequences.

      (3) When presenting AlphaFold-generated structures, it is essential to include confidence scores such as pLDDT and PAE. For example, in Figure 1D of Derbyshire and Raffaele (2023, https://doi.org/10.1038/s41467-023-40949-9), the structural representations were colored red due to their high pLDDT scores, emphasizing their reliability.

    1. Reviewer #2 (Public review):

      Although recent cryo-EM structures of the CFTR ion channel were reported in a putative open state (ATP-bound, NBD-dimerized), it remains unclear whether these structures explain the conductive properties of the open channel observed in functional experiments. To investigate this, the authors conducted extensive molecular dynamics simulations at different voltages. The simulations are started from snapshots of their prior work, based on the experimental putative open state and including conditions with high negative voltage. Their analysis reveals that the cryo-EM structure represents a near-open metastable state, with most trajectories transitioning to either more closed or more open conformations, leading to the identification of a potential new open state. Permeation rate analysis shows that, unlike the other states, the proposed open state exhibits functional conductive properties of the open channel, although a strong inward rectification, inconsistent with experimental data, is also noted. Further structural analysis and simulations of ATP-unbound closed states offer additional mechanistic insights.

      Overall, this work tackles key questions about CFTR: What is the true open conductive state? Does the ATP-bound cryo-EM structure reflect an actual open state? What is the ion permeation mechanism, and what structural changes occur during the closed-to-open transition? Which residues are critical, particularly those linked to diseases like CF? The study, based on a comprehensive set of all-atom molecular dynamics simulations, including a range of physiologically relevant voltages, provides important insights in this regard. It identifies key structural states, permeation pathways, critical residues, and conductance properties that can be directly compared to functional data. Notably, the analysis identifies a new open state of the channel, which, systematic analysis convincingly demonstrates is a conductive conformation of the channel, in line with experimental data at negative voltages. The authors carefully address some of the limitations of their results, exploring and discussing discrepancies with functional experiments, such as inward rectification. The work is also very well written, with a clear and logical presentation of key findings.

      The main weakness of this study is that the simulation data rely on the conventional CHARMM36 force field for Cl− ions, which has been shown to significantly underestimate the interaction between Cl− and proteins (J. Chem. Theory Comput. 2021, 17, 6240-6261). For example, the conventional CHARMM36 force field destabilizes the Cl-binding site in CLC-ec1. The latter ion unbinds irreversibly during microseconds-long simulations which is at odds with the experimental binding affinity.

      This imbalance in Cl−/protein/water interactions could significantly impact the CFTR simulations, potentially altering state populations and Cl− permeability. Notably, recent work by Levring and Chen (Proc Natl Acad Sci U S A. 2024) identifies a likely Cl− binding site in the bottleneck region of the channel, which contradicts the simulation results showing low occupancy Cl− ions in this region (Fig. 1B and Fig. 6A). This discrepancy may be due to the underestimation of Cl−/protein interactions. Indeed, Orabi et al. have proposed corrections that specifically tune these interactions, including those with aromatic residues, in line with the binding site geometry suggested by Levring and Chen. This imbalance in interactions may also lead to an underestimation of the conductance in the experimental near-open state.<br /> Balanced Cl−/protein interactions could also influence voltage/current relationships, potentially affecting the degree of inward rectification. For example, higher Cl− occupancy in the bottleneck region may stabilize the down state of R334, along with other measured interactions, thereby increasing conductance as the authors have shown.

      The experimental evidence reported and discussed by the authors in support of the proposed open state is largely qualitative. For instance, in Figure 4 Supplement 2 there is a significant overlap in the distances and SASA distributions of open and near-open states for the reported residues (are those residues water accessible in the simulations?).

      Given the known limitations of the standard CHARMM36 Cl− force field and in the absence of robust experimental validation of the proposed open state, I recommend validating at least part of the results using an independent set of simulations (not started from the previous ones) with an updated Cl− force field. It would be especially important to reassess whether the experimental near-open state is truly metastable and less probable than the new open state, and confirm that the near-open state exhibits negligible conductance.

      A minor point worth discussing is whether the observed inward rectification may be influenced by hysteresis or incomplete equilibration, as many simulations were started from prior trajectories at large negative voltages and may not have fully relaxed. For instance, is not uncommon that small structural changes in backbone and sidechains occur in several microseconds (Shaw et al., Science, 2010). That said, discrepancies in current-voltage relationships are not unexpected due to challenges in simulation sampling and force field accuracy (J Gen Physiol 2013 May;141(5):619-32) as the authors stated.

      Another minor point to address is the preparation of the simulation setup for the ATP-free structure of the protein. It would be helpful to specify whether any particular controls or steps were taken, given that the structure is based on a relatively low resolution (3.87 Å) model.

    1. Reviewer #2 (Public review):

      Summary:

      Rennert et al. developed a thermodynamic framework for the assembly of branched networks to calculate the entropy dissipation associated with this process. They base their model on the simplest possible experimental system consisting of four proteins: actin, Arp2/3, capping protein, and NPF. They decompose the network assembly into a linear model where the order of events (polymerization, capping, and nucleation) is recorded sequentially. Polymerization and capping are sensitive to load and affected by Brownian ratchet effects, while nucleation is not. This simplified model provides an analytical solution that describes the load sensitivity of actin networks and agrees well with experimental data for a given set of transition rates.

      Strengths:

      (1) These thermodynamic approaches are original and fundamental to our understanding of these non-equilibrium systems.

      (2) The fact that the model fits experimental data is encouraging.

      Weaknesses:

      (1) The possibility of describing branched actin assembly as a Markov process is not well justified.

      (2) The choice of parameters controlling the system is open to question. Some parameters are probably completely negligible, while other ignored effects are potentially significant.

      (3) The main conclusion of the manuscript, linked to the existence of a dissipation gap, is quite expected. The manuscript would have been more valuable if the authors had been able to decompose dissipation into different components in order to prove that a particular fraction is associated with adaptation.

    1. Reviewer #2 (Public review):

      Summary:

      The authors reconstructed the three-dimensional organization of melanosomes in fossilized feathers belonging to a spectacular specimen of a stem avialan from China. The authors then proceed to infer the original coloration and related ecological implications.

      Strengths:

      I believe the study is well executed and well explained. The methods are appropriate to support the main conclusions. I particularly appreciate how the authors went beyond the simple morphological inference and interrogated the structural implications of melanosome organization in three dimensions. I also appreciate how the authors were upfront with the reliability of their methods, results, and limitations of their study. I believe this will be a landmark study for the inference of coloration in extinct species and how to interrogate its significance in the future.

      Weaknesses:

      I have a few minor comments.<br /> Introduction: I would suggest the authors move the paragraph on coloration in modern birds (lines 75-97) before line 64, as this is part of the reasoning behind the study. I believe this change would improve the flow of the introduction for the general reader.<br /> Melanosome organization: I was surprised to find little information in the main text regarding this topic. As this is one of the major findings of the study, I would suggest the authors include more information regarding the general geometry/morphology of the single melanosomes and their arrangement in three dimensions.<br /> Keratin: the authors use such a term pretty often in the text, but how is this inference justified in the fossil? Can the authors extend on this? Previous studies suggested the presence of degradation products deriving from keratin, rather than immaculated keratin per se.<br /> Ontogenetic assessment: the authors infer a sub-adult stage for the specimen, but no evidence or discussion is reported in the SI. Can the authors describe and discuss their interpretations?<br /> CT scan data: these data should be made freely available upon publication of the study.

    1. Reviewer #2 (Public review):

      Summary:

      For centuries, humans have been developing methods to see ever smaller objects, such as cells and their contents. This has included studies of viruses and their interactions with host cells during processes extending from virion structure to the complex interactions between viruses and their host cells: virion entry, virus replication and virion assembly, and release of newly constructed virions. Recent developments have enabled simultaneous application of fluorescence-based detection and intracellular localization of molecules of interest in the context of sub-micron resolution imaging of cellular structures by electron microscopy.

      The submission by Nahas et al., extends the state-of-the-art for visualization of important aspects of herpesvirus (HSV-1 in this instance) virion morphogenesis, a complex process that involves virus genome replication, and capsid assembly and filling in the nucleus, transport of the nascent nucleocapsid and some associated tegument proteins through the inner and outer nuclear membranes to the cytoplasm, orderly association of several thousand mostly viral proteins with the capsid to form the virion's tegument, envelopment of the tegumented capsid at a virus-tweaked secretory vesicle or at the plasma membrane, and release of mature virions at the plasma membrane.

      In this groundbreaking study, cells infected with HSV-1 mutants that express fluorescently tagged versions of capsid (eYFP-VP26) and tegument (gM-mCherry) proteins were visualized with 3D correlative structured illumination microscopy and X-ray tomography. The maturation and egress pathways thus illuminated were studied further in infections with fluorescently tagged viruses lacking one of nine viral proteins.

      Strengths:

      This outstanding paper meets the journal's definitions of Landmark, Fundamental, Important, Valuable, and Useful. The work is also Exceptional, Compelling, Convincing, and Solid. The work is a tour de force of classical and state-of-the-art molecular and cellular virology. Beautiful images accompanied by appropriate statistical analyses and excellent figures. The numerous complex issues addressed are explained in a clear and coordinated manner; the sum of what was learned is greater than the sum of the parts. Impacts go well beyond cytomegalovirus and the rest of the herpesviruses, to other viruses and cell biology in general.

      Weaknesses:

      I have a few suggestions for minor adjustments in the text.

    1. Reviewer #2 (Public review):

      Summary:

      This well-written manuscript addresses an important but recalcitrant problem - molecular mechanism of protein misfolding in Ig light chain (LC) amyloidosis (AL), a major life-threatening form of systemic human amyloidosis. The authors use expertly recorded and analyzed small-angle X-ray scattering (SAXS) data as a restraint for molecular dynamics simulations (called M&M). Six patient-based LC proteins are explored, including four AL and two non-AL. The authors report a partially populated "H-state" determined computationally, wherein the two domains in an LC molecule acquire a straight rather than bent conformation, with an extended interdomain linker; this H-state distinguishes AL from non-AL LCs. H-D exchange mass spectrometry is used to support this conclusion. This is a novel and interesting finding with potentially important translational implications.

      Strengths:

      Expertly recorded and analyzed SAXS data combined with clever M&M simulations lead to a novel and interesting conclusion, which is supported by limited H-D exchange data.<br /> Stabilization of the CL-CL interface is a good idea that may help protect a subset of AL LCs from misfolding in amyloid.

      Computational M&M evidence is convincing and is supported by SAXS data, which are used as restraints for simulations. Although Kratky plots reported in the main MS Fig. 1 show significant differences between the data and the structural model for only one AL protein, AL-55, H-state is also inferred for other AL proteins.

      Apparent limitations:

      HDX MS results show that residues 35-50 from VL-VL and VL-CL dimerization interface are less protected in AL vs. non-AL proteins, which is consistent with the H-state. However, the small number of proteins yielding useful HDX data (three AL and one non-AL) suggests that this conclusion should be treated with caution. It is unclear whether the conformational heterogeneity depicted in M&M simulations is consistent with HDX results, and whether prior HDX studies of AL and MM LCs are consistent with the conclusions that a particular domain-domain interface is weakened in AL vs. non-AL LCs. The butterfly plots in Fig. 5 could benefit from the X-axis labeling with the peptide fragments.

    2. Reviewer #2 (Public review):

      Summary:

      This well-written manuscript addresses an important but recalcitrant problem - molecular mechanism of protein misfolding in Ig light chain (LC) amyloidosis (AL), a major life-threatening form of systemic human amyloidosis. The authors use expertly recorded and analyzed small-angle X-ray scattering (SAXS) data as a restraint for molecular dynamics simulations (called M&M). Six patient-based LC proteins are explored, including four AL and two non-AL. The authors report a partially populated "H-state" determined computationally, wherein the two domains in an LC molecule acquire a straight rather than bent conformation, with an extended interdomain linker; this H-state distinguishes AL from non-AL LCs. H-D exchange mass spectrometry is used to support this conclusion. This is a novel and interesting finding with potentially important translational implications.

      Strengths:

      Expertly recorded and analyzed SAXS data combined with clever M&M simulations lead to a novel and interesting conclusion, which is supported by limited H-D exchange data.<br /> Stabilization of the CL-CL interface is a good idea that may help protect a subset of AL LCs from misfolding in amyloid.

      Computational M&M evidence is convincing and is supported by SAXS data, which are used as restraints for simulations. Although Kratky plots reported in the main MS Fig. 1 show significant differences between the data and the structural model for only one AL protein, AL-55, H-state is also inferred for other AL proteins.

      Apparent limitations:

      HDX MS results show that residues 35-50 from VL-VL and VL-CL dimerization interface are less protected in AL vs. non-AL proteins, which is consistent with the H-state. However, the small number of proteins yielding useful HDX data (three AL and one non-AL) suggests that this conclusion should be treated with caution. It is unclear whether the conformational heterogeneity depicted in M&M simulations is consistent with HDX results, and whether prior HDX studies of AL and MM LCs are consistent with the conclusions that a particular domain-domain interface is weakened in AL vs. non-AL LCs. The butterfly plots in Fig. 5 could benefit from the X-axis labeling with the peptide fragments.

    1. Reviewer #3 (Public review):

      Summary:

      The authors were trying to show that a novel neuronal metallothionein of poorly defined function, GIF/MT3, is actually heavily persulfidated in both the Zn-bound and apo (metal-free) forms of the molecule as purified from a heterologous (bacterial) or native host. Evidence in support of this conclusion is strong, with both spectroscopic and mss spectrometry evidence strongly consistent with this general conclusion. The authors would appear to have achieved their aims.

      Strengths:

      The analytical data in support of the author's primary conclusions are strong. The authors also provide some modeling evidence that supports the contention that MT3 (and other MTs) can readily accommodate a sulfane sulfur on each of the 20 cysteines in the Zn-bound structure, with little perturbation of the overall structure. This is not the case with Cys trisulfides, which suggests that the persulfide-metallated state is clearly positioned at lower energy relative to the immediately adjacent thiolate- or trisulfidated metal coordination complexes.

      Weaknesses:

      The biological significance of the findings is not entirely clear. On the one hand, the analytical data are solid (albeit using a protein derived from a bacterial over-expression experiment), and yes, it's true that sulfane S can protect Cys from overoxidation, but everything shown in the summary figure (Fig. 9D) can be done with Zn release from a thiol by ROS, and subsequent reduction by the Trx/TR system. In addition, it's long been known that Zn itself can protect Cys from oxidation. I view this as a minor shortcoming that will motivate follow-up studies.

      Impact:

      The impact will be high since the finding is potentially disruptive to the MT field for sure. The sulfane sulfur counting experiment (the HPE-IAM electrophile trapping experiment) may well be widely adopted by the field. Those in the metals field always knew that this was a possibility, and it will interesting to see the extent to which metal binding thiolates broadly incorporate sulfane sulfur into their first coordination shells.

      Comments on revisions:

      The revised manuscript is only slightly changed from the original, with the inclusion of a supplementary figure (Fig. S2) and minor changes in the text. The authors did not choose to carry out the quantitative Zn binding experiment (which I really wanted to see), but given the complexities of the experiment, I'll let it go.

      Fig. 9: the authors imply in the mechanistic "redox-switch" figure that Trx/TR can not reduce persulfide linkages. A number of groups have shown this to be the case. I recommend modifying the figure legend or text to make this clear to the reader,

    1. Reviewer #2 (Public review):

      Summary

      I have reviewed the revised manuscript submitted by Wang et al., which is entitled "Shc1 cooperates with Frs2 and Shp2 to recruit Grb2 in FGF-induced lens development". In this paper, the authors first examined lens phenotypes in mice with Le-Cre-mediated knockdown (KD) of all four FGFR (FGFR1-4), and found that pERK signals, Jag1 and foxe3 expression are absent or drastically reduced, indicating that FGF signaling is essential for lens induction. Next, the authors examined lens phenotypes of FGFR1/2-KD mice and found that lens fiber differentiation is compromised and that proliferative activity and cell survival are also compromised in lens epithelium. Interestingly, Kras activation rescues defects in lens growth and lens fiber differentiation in FGFR1/2-KD mice, indicating that Ras activation is a key step for lens development, downstream of FGF signaling. Next, the authors examined the role of Frs2, Shp2 and Grb2 in FGF signaling for lens development. They confirmed that lens fiber differentiation is compromised in FGFR1/3-KD mice combined with Frs2-dysfunctional FGFR2 mutants, which is similar to lens phenotypes of Grb2-KD mice. However, lens defects are milder in mice with Shp2YF/YF and Shp2CS mutant alleles, indicating that involvement of Shp2 is limited for the Grb2 recruitment for lens fiber differentiation. Lastly, the authors showed new evidence on the possibility that another adapter protein, Shc1, promotes Grb2 recruitment independent of Frs2/Shp2-mediated Grb2 recruitment.

      Strength

      Overall, the manuscript provides valuable data on how FGFR activation leads to Ras activation through the adapter platform of Frs2/Shp2/Grb2, which advances our understanding on complex modification of FGF signaling pathway. The authors applied a genetic approach using mice, whose methods and results are valid to support the conclusion. The discussion also well summarizes the significance of their findings.

      Weakness

      The authors found that the new adaptor protein Shc1 is involved in Grb2 recruitments in response to FGF receptor activation. However, the main data on Shc1 are only histological sections and statistical evaluation of lens size. In the revised manuscript, the authors did not answer my major concern that cellular-level data are missing, which is not fully enough to support their main conclusion on the involvement of Shc1 in Grb2 recruitment of FGF signaling for lens development. Since the title of this manuscript is that Shc1 cooperates with Frs2 and Shp2 to recruit Grb2 in FGF-induced lens development, it is important to provide the cellular-level evidence on Shc1.

    1. Reviewer #3 (Public review):

      In this manuscript titled "Transplantation of exogenous mitochondria mitigates myocardial dysfunction after cardiac arrest", Zhen Wang et al. report that exogenous mitochondrial transplantation can enhance myocardial function and survival rates. It limits mitochondrial morphology impairment, boosts complexes II and IV activity, and increases ATP levels. Additionally, mitochondrial therapy reduces oxidative stress, lessens myocardial injury, and improves PAMD after cardiopulmonary resuscitation. The results of this manuscript clearly demonstrate that mitochondrial transplantation can effectively improve PAMD after cardiopulmonary resuscitation, highlighting its significant scientific and clinical value. The findings shown in this manuscript are interesting to the readers. However, further experiments are needed to confirm this conclusion. In addition, the results should be rewritten to describe and discuss the relevant data in detail.

      Major comments from the original round of review:

      (1) Can isolated mitochondria be transported to cultured cardiomyocytes, such as H9C2 cells, in vitro?

      (2) The description of results in the manuscript is too simple. It lacks detail on the rationale behind the experiments and the significance of the data.

      (3) The authors demonstrate that mitochondrial transplantation reduces cardiomyocyte apoptosis. Therefore, Western blot analysis of apoptosis-related caspases could be provided for further confirmation.

      (4) Do donor mitochondria fuse with recipient mitochondria? Relevant experiments and data should be provided to address this question.

      (5) In Figure 5A, the histograms are not labeled with the specific experimental groups.

      Comments on revisions:

      The revised manuscript quality has been improved, and most of my concerns were addressed and resolved.

    1. Reviewer #2 (Public review):

      Summary:

      The manuscript emphasises the increased invasive potential of histone reader YEATS2 in an SP1-dependent manner. They report that YEATS2 maintains high H3K27cr levels at the promoter of EMT-promoting gene SPARC. These findings assigned a novel functional implication of histone acylation, crotonylation.

      Concerns:

      (1) The patient cohort is very small with just 10 patients. To establish a significant result the cohort size should be increased.

      (2) Figure 4D compares H3K27Cr levels in tumor and normal tissue samples. Figure 1G shows overexpression of YEATS2 in a tumor as compared to normal samples. The loading control is missing in both. Loading control is essential to eliminate any disparity in protein concentration that is loaded.

      (3) Figure 4D only mentions 5 patient samples checked for the increased levels of crotonylation and hence forms the basis of their hypothesis (increased crotonylation in a tumor as compared to normal). The sample size should be more and patient details should be mentioned.

      (4) YEATS2 maintains H3K27Cr levels at the SPARC promoter. The p300 is reported to be hyper-activated (hyperautoacetylated) in oral cancer. Probably, the activated p300 causes hyper-crotonylation, and other protein factors cause the functional translation of this modification. The authors need to clarify this with a suitable experiment.

      (5) I do not entirely agree with using GAPDH as a control in the western blot experiment since GAPDH has been reported to be overexpressed in oral cancer.

      (6) The expression of EMT markers has been checked in shControl and shYEATS2 transfected cell lines (Figure 2A). However, their expression should first be checked directly in the patients' normal vs. tumor samples.

      (7) In Figure 3G, knockdown of SP1 led to the reduced expression of YEATS2 controlled gene Twist1. Ectopic expression of YEATS2 was able to rescue Twist1 partially. In order to establish that SP1 directly regulates YEATS2, SP1 should also be re-introduced upon the knockdown background along with YEATS2 for complete rescue of Twist1 expression.

      (8) In Figure 7G, the expression of EMT genes should also be checked upon rescue of SPARC expression.

    1. Reviewer #2 (Public review):

      Summary:

      This is a well-written manuscript that clearly demonstrates that the nrp encoded diisonitrile chalkophore is necessary for the function of the bcc-aa3 oxidase supercomplex under low copper conditions. In addition, the study demonstrates that the chlakophore is important early during infection when copper sequestration is employed by the host as a method of nutritional immunity.

      Strengths:

      The authors use genetic approaches including single and double mutants of chalkophore biosynthesis, and both the Mtb oxidases. They use copper chelators to restrict copper in vitro. A strength of the work was the use of a synthesized a Mtb chalkophore analogue to show chemical complementation of the mutant nrp locus. Oxphos metabolic activity was measuered by oxygen consumption and ATP levels. Importantly, the study demonstrated that chalkophore, especially in a strain lacking the secondary oxidase, was necessary for early infection and ruled out a role for adaptive immunity in the chalkophore lacking Mtb by use of SCID mice. It is interesting that after two weeks of infection and onset of adaptive immunity, the chalkophore is not required, which is consistent with the host environment switching from a copper-restricted to copper overload in phagosomes.

      Weaknesses:

      Most claims in the manuscript are soundly justified. The one exception is the claim that "maintenance of respiration is the only cellular target of chalkophore mediated copper acquisition." While under the in vitro conditions tested this does appear to be the case; however, it can't be ruled out that the chalkophore is important in other situations. In particular, for maintenance of the periplasmic superoxide dismustase, SodC, which is the other M. tuberculosis enzyme known to require copper.

    1. Reviewer #3 (Public review):

      The manuscript "Regeneration following tissue necrosis is mediated by non-apoptotic caspase activity" by Klemm et al. is an exploration of what happens to a group of cells that experience caspase activation after necrosis occurs some distance away from the cells of interest. These experiments have been conducted in the Drosophila wing imaginal disc, which has been used extensively to study the response of a developing epithelium to damage and stress. The authors revise and refine their earlier discovery of apoptosis initiated by necrosis, here showing that many of those presumed apoptotic cells do not complete apoptosis. Thus, the most interesting aspect of the paper is the characterization of a group of cells that experience mild caspase activation in response to an unknown signal, followed by some effector caspase activation and DNA damage, but that then recover from the DNA damage, avoid apoptosis, and proliferate instead.

      The authors have addressed the concerns raised, including those about drawing conclusions from RNAi knockdown without evaluating the efficacy of the knockdown, and in doing so they revised their conclusions after ascertaining that the Zfh2 RNAi was not effective.

      The authors have added quantification of the imaging data throughout, which strengthens their conclusions.

      In addition, the authors have revised some of the text describing the changes in EdU signal and added explanations of reagents such as the caspase sensors to clarify the experimental approaches, results, and interpretation of those results.

      The authors have also addressed the minor concerns and questions about the figures and text.

      A few questions remain, which the authors may choose to address.

      (1) The hh>Stat92ERNAi was assessed by the 10xSTAT-GFP reporter, as shown in Fig 2 Supp1 F. The authors point out the marked reduction in GFP in the ventral part of the hinge but do not comment on the lack of change in GFP in the dorsal part of the hinge. However, the open arrowhead in Figure 2H indicating the lack of cDcp-1 signal in the hinge in the same experiment points to the dorsal hinge, where the reporter suggests no difference in JAK-STAT signaling.

      (2) The data used to conclude that DRONC-DN and UAS-DIAP1 do not affect regenerative proliferation were normalized EdU intensities. As discussed in the prior review round, normalized EdU may not be a good comparison across experimental conditions given that the remainder of the disc may also have altered EdU incorporation, so this measurement may not be enough by itself to draw conclusions about regenerative proliferation. To strengthen the conclusion that regenerative proliferation is unaffected under these conditions, the authors may want to consider using a second measure such as adult wing size, PCNA, or quantitate mitoses via anti-phospho histone H3 staining.

    1. Reviewer #2 (Public review):

      Summary:

      Cell cycle duration and cell fate choice are critical to understanding the cellular plasticity of neoblasts in planarians. In this study, Tamar et al. integrated experimental and computational approaches to simulate a model for neoblast behaviors during colony expansion.

      Strengths:

      The finding that "arresting differentiation into specific lineages disrupts neoblast proliferative capacities without inducing compensatory expression of other lineages" is particularly intriguing. This concept could inspire further studies on pluripotent stem cells and their application for regenerative biology.

      Weaknesses:

      However, the absence of a cell-cell feedback mechanism during colony growth and the likelihood of the difference needs to be clarified. Is there any difference in interpreting the results if this mechanism is considered? More explanation and discussion should be included to distinguish the stages controlled by the one-step model from those discussed in this study. Although hnf-4 and foxF have been silenced together to validate the model, a deeper understanding of the tgs-1+ cell type and the non-significant reduction of tgs-1+ neoblasts in zfp-1 RNAi colonies is necessary, considering a high neural lineage frequency.

    1. Reviewer #2 (Public review):

      Summary:

      The authors observed gene ontologies associated with upregulated KLF2 target genes in HIV-1 RNA+ CD4 T Cells using scRNA-seq and scATAC-seq datasets from the PBMCs of early HIV-1-infected patients, showing immune responses contributing to HIV pathogenesis and novel targets for viral elimination.

      Strengths:<br /> The authors carried out detailed transcriptomics profiling with scRNA-seq and scATAC-seq datasets to conclude upregulated KLF2 target genes in HIV-1 RNA+ CD4 T Cells.

      Weaknesses:

      This key observation of up-regulation KLF2 associated genes family might be important in the HIV field for early diagnosis and viral clearance. However, with the limited sample size and in-vivo study model, it will be hard to conclude. I highly recommend increasing the sample size of early HIV-1-infected patients.

    1. Reviewer #2 (Public review):

      Summary:

      Host-derived lipids are an important factor during Mtb infection. In this study, using CRISPR knockouts of genes involved in fatty acid uptake and metabolism, the authors claim that a compromised uptake, storage or metabolism of fatty acid in the hosts restricts Mtb growth upon infection. The mechanism involves increased glycolysis, autophagy, oxidative stress, pro-inflammatory cytokines and nutrient limitation. The study may be useful for developing novel host-directed approaches against TB.

      Strengths:

      The study's strength is the use of clean HOXB8-derived primary mouse macrophage lines for generating CRISPR knockouts.

      Weaknesses:

      The strength of evidence on autophagy and redox stress remains incomplete.

      Comments on revisions:

      The authors have revised the manuscript and addressed some of the earlier concerns. However, some of the interpretations and responses are incorrect.

      Overall, the level of evidence to state the following in the abstract- "Our analyzes demonstrate that macrophages which cannot either import, store or catabolize fatty acids restrict Mtb growth by both common and divergent anti-microbial mechanisms, including increased glycolysis, increased oxidative stress, production of pro-inflammatory cytokines, enhanced autophagy and nutrient limitation" is incomplete.

      There is an increase in glycolysis and pro-inflammatory cytokines and, to some extent, oxidative stress. The same can not be said about autophagy. Unfortunately, the authors did not try to establish a direct role of any of these pathways in restricting bacterial growth in the absence of any of the three genes studied.

      Major concern:

      Autophagy: The LC3 WB does not, by any stretch of the imagination, convince that there is an increase in autophagy flux, as inferred by the authors. Authors correctly cite the "Guidelines to autophagy" paper. Unfortunately, they cite it only selectively to justify their assessment. The LC3II/LC3I ratio indicates the number of autophagosomes present. This ratio can also increase if there is an active block of autophagosome maturation. That's why having BafA1 or CQ controls is important to assess the active autophagosome maturation. However, the authors sidestep this serious consideration by claiming some "pleiotropic impact on Mtb". With BafA1 and CQ, the only assay one needs is to measure the impact on LC3II levels. In the absence of this assay, the evidence supporting the role of autophagy is incomplete.

      The main concern regarding autophagy results is that autophagy induction can typically bring down oxidative stress and classically has anti-inflammatory outlay. Thus, increased glycolysis, inflammatory cytokine production and redox stress indicate more towards a potential block in autophagy at the maturation step. This necessitates validation using autophagy flux assays.

      Oxidative stress: Showing a representative image for the corresponding representative groups would be more convincing. For example, there is no clarity on whether, in the infected group, there was any staining for Mtb to analyse only the infected cells.

    1. Reviewer #2 (Public review):

      Summary:

      Cell cycle duration and cell fate choice are critical to understanding the cellular plasticity of neoblasts in planarians. In this study, Tamar et al. integrated experimental and computational approaches to simulate a model for neoblast behaviors during colony expansion.

      Strengths:

      The finding that "arresting differentiation into specific lineages disrupts neoblast proliferative capacities without inducing compensatory expression of other lineages" is particularly intriguing. This concept could inspire further studies on pluripotent stem cells and their application for regenerative biology.

      Comments on revisions:

      The authors have addressed all of my comments and concerns.

    1. Reviewer #2 (Public review):

      The authors of this work set out to test ideas about how observers learn to ignore irrelevant visual information. Specifically, they used fMRI to scan participants who performed a visual search task. The task was designed in such a way that highly salient but irrelevant search items were more likely to appear at a given spatial location. With a region-of-interest approach, the authors found that activity in visual cortex that selectively responds to that location was generally suppressed, in response to all stimuli (search targets, salient distractors, or neutral items), as well as in the absence of an anticipated stimulus.

      Strengths of the study include: A well-written and well-argued manuscript; clever application of a region of interest approach to fMRI design, which allows articulating clear tests of different hypotheses; careful application of follow-up analyses to rule out alternative, strategy-based accounts of the findings; tests of the robustness of the findings to detailed analysis parameters such as ROI size; and exclusion of the role of regional baseline differences in BOLD responses. The main findings are enhanced by supplementary analyses that distinguish between the responses of early visual areas.

      The study provides an advance over previous studies, which identified enhancement or suppression in visual cortex as a function of search target/distractor predictability, but in less spatially-specific way. It also speaks to open questions about whether such suppression/enhancement is observed only in response to the arrival of visual information, or instead is preparatory, favouring the latter view. These questions have been at the heart of theoretical debates in this literature on how distractor suppression unfolds in the context of visual search.

    1. Reviewer #2 (Public review):

      Summary:

      This article investigates the role of PRDM16 in regulating cell proliferation and differentiation during choroid plexus (ChP) development in mice. The study finds that PRDM16 acts as a corepressor in the BMP signaling pathway, which is crucial for ChP formation.

      The key findings of the study are:<br /> (1) PRDM16 promotes cell cycle exit in neural epithelial cells at the ChP primordium.<br /> (2) PRDM16 and BMP signaling work together to induce neural stem cell (NSC) quiescence in vitro.<br /> (3) BMP signaling and PRDM16 cooperatively repress proliferation genes.<br /> (4) PRDM16 assists genomic binding of SMAD4 and pSMAD1/5/8.<br /> (5) Genes co-regulated by SMADs and PRDM16 in NSCs are repressed in the developing ChP.<br /> (6) PRDM16 represses Wnt7b and Wnt activity in the developing ChP.<br /> (7) Levels of Wnt activity correlate with cell proliferation in the developing ChP and CH.

      In summary, this study identifies PRDM16 as a key regulator of the balance between BMP and Wnt signaling during ChP development. PRDM16 facilitates the repressive function of BMP signaling on cell proliferation while simultaneously suppressing Wnt signaling. This interplay between signaling pathways and PRDM16 is essential for the proper specification and differentiation of ChP epithelial cells. This study provides new insights into the molecular mechanisms governing ChP development and may have implications for understanding the pathogenesis of ChP tumors and other related diseases.

      Strengths:

      (1) Combining in vitro and in vivo experiments to provide a comprehensive understanding of PRDM16 function in ChP development.

      (2) Uses of a variety of techniques, including immunostaining, RNA in situ hybridization, RT-qPCR, CUT&Tag, ChIP-seq, and SCRINSHOT.

      (3) Identifying a novel role for PRDM16 in regulating the balance between BMP and Wnt signaling.

      (4) Providing a mechanistic explanation for how PRDM16 enhances the repressive function of BMP signaling. The identification of SMAD palindromic motifs as preferred binding sites for the SMAD/PRDM16 complex suggests a specific mechanism for PRDM16-mediated gene repression.

      (5) Highlighting the potential clinical relevance of PRDM16 in the context of ChP tumors and other related diseases. By demonstrating the crucial role of PRDM16 in controlling ChP development, the study suggests that dysregulation of PRDM16 may contribute to the pathogenesis of these conditions.

      Weaknesses:

      (1) Limited investigation of the mechanism controlling PRDM16 protein stability and nuclear localization in vivo. The study observed that PRDM16 protein became nearly undetectable in NSCs cultured in vitro, despite high mRNA levels. While the authors speculate that post-translational modifications might regulate PRDM16 in NSCs similar to brown adipocytes, further investigation is needed to confirm this and understand the precise mechanism controlling PRDM16 protein levels in vivo.

      (2) Reliance on overexpression of PRDM16 in NSC cultures. To study PRDM16 function in vitro, the authors used a lentiviral construct to constitutively express PRDM16 in NSCs. While this approach allowed them to overcome the issue of low PRDM16 protein levels in vitro, it is important to consider that overexpressing PRDM16 may not fully recapitulate its physiological role in regulating gene expression and cell behavior.

      (3) Lack of direct evidence for AP1 as the co-factor responsible for SMAD relocation in the absence of PRDM16. While the study identified the AP1 motif as enriched in SMAD binding sites in Prdm16 knockout cells, they only provided ChIP-qPCR validation for c-FOS binding at two specific loci (Wnt7b and Id3). Further investigation is needed to confirm the direct interaction between AP1 and SMAD proteins in the absence of PRDM16 and to rule out other potential co-factors.

    1. Reviewer #2 (Public review):

      Summary:

      This study explores how a simple sensorimotor circuit in the nematode C. elegans enables it to navigate salt gradients based on past experiences. Using computational simulations and previously described neural connections, the study demonstrates how a single neuron, ASER, can change its signaling behavior in response to different salt conditions, with which the worm is able to "remember" prior environments and adjust its navigation toward "preferred" salinity accordingly.

      Strengths:

      The key novelty and strength of this paper is the explicit demonstration of computational neurobehavioral modeling and evolutionary algorithms to elucidate the synaptic plasticity in a minimal neural circuit that is sufficient to replicate memory-based chemotaxis. In particular, with changes in ASER's glutamate release and sensitivity of downstream neurons, the ASER neuron adjusts its output to be either excitatory or inhibitory depending on ambient salt concentration, enabling the worm to navigate toward or away from salt gradients based on prior exposure to salt concentration.

      Weaknesses:

      While the model successfully replicates some behaviors observed in previous experiments, many key assumptions lack direct biological validation. As to the model output readouts, the model considers only endpoint behaviors (chemotaxis index) rather than the full dynamics of navigation, which limits its predictive power. Moreover, some results presented in the paper lack interpretation, and many descriptions in the main text are overly technical and require clearer definitions.

    1. Reviewer #2 (Public review):

      Summary:

      The authors generated a zebrafish mutant of the pdgfrb gene. The presented analyses and data confirm previous studies demonstrating that Pdgfrb signaling is necessary for mural cell development in zebrafish. In addition, the data support previously published studies in zebrafish showing that mural cell deficiency leads to hemorrhages later in life. The authors presented quantified data on vessel density and branching, assessed tracer extravasation, and investigated the vasculature of adult mice using electron microscopy.

      Strengths:

      The strength of this article is that it provides independent confirmation of the important role of Pdgfrb signaling for the development of mural cells in the zebrafish brain. In addition, it confirms previous literature on zebrafish that provides evidence that, in the absence of pericytes/VSMC, hemorrhages appear (Wang et al, 2014, PMID: 24306108 and Ando et al 2021, PMID: 3431092). The study by Ando et al, 2021 did not report experiments assessing BBB leakage in pdgfrb mutants but in the review article by Ando et al (PMID: 34685412) it is stated that "indicating that endothelial cells can produce basic barrier integrity without pericytes in zebrafish".

      Weaknesses:

      (1) The authors should avoid using violin plots, which show distribution. Instead, they should replace all violin plots in the figures with graphs showing individual data points and standard deviation. For Figure 2f specifically, the standard deviation in the analyzed cohort should be shown.

      (2) The authors have not shown the reduced PDGFRB protein or the effect of mutation on mRNA level in their zebrafish mutant.

      (3) Statistical data analysis: Did the authors perform analyses to investigate whether the data has a normal distribution (e.g., Figures 1d, e)?

      (4) Analysis of tracer extravasation. The use of 2000 kDa dextran intensity as an internal reference is problematic because the authors have not provided data demonstrating that the 2000 kDa dextran signal remains consistent across the entire vasculature. The authors have not provided data demonstrating that the 2000 kDa dextran signal in vessels exhibits acceptable variance across the vasculature to serve as a reliable internal reference. The variability of this signal within a single animal remains unknown. The presented data do not address this aspect.

      Additionally, it's intriguing that the signal intensity in the parenchyma of the tested tracers presents a substantial range, varying by 20-30% in the analysed cohort (Figure 1g, Extended Figure 1e). Such large variability raises the question of its origin. Could it be a consequence of the normalization to 2000 kDa dextran intensity which differs between different fish? Or is it due to the differences in the parenchymal signal intensity while the baseline 2000 kDa intensity is stable? Or is the situation mixed?

      An alternative and potentially more effective approach would be to cross the pdgfrb mutant line with a line where endothelial cells are genetically labeled to define vessels (e.g. the line kdrl used in acquiring data presented in Figure 2a). Non-injected controls could then be used as a baseline to assess tracer extravasation into the parenchyma.

      How is the data presented in Figure 3e generated? How was the dextran intensity calculated? It looks like the authors have used the kdrl line to define vessels. Was the 2000 kDa still used as in previous figures? If not, please describe this in the Materials and Methods section.

      (5) The authors state that both controls and mutants show extravasation of 1 kDa NHS-ester into the parenchyma. However, the presented images do not illustrate this; it is not obvious from these images (Extended Data Figure 1c). Additionally, the presented quantification data (Extended Data Figure 1e) do not show that, at 7 dpf, the vasculature is permeable to this tracer. Note that the range of signal intensity of the 1 kDa NHS-ester is similar to the 70 kDa dextran (Figure 1g and Extended Figure 1e). Would one expect an increase in the ratio in case of extravasation, considering that the 2000 kDa dextran has the same intensity in all experiments? Please explain.

      (6) The study would be strengthened by a more detailed temporal analysis of the phenotype. When do the aneurysms appear? Is there an additional loss of VSMC?

      (7) The authors intended to analyze the BBB at later stages (line 128), but there is not a significant time difference between 2 months (Figure 2) and 3 months (Figure 3) considering that zebrafish live on average 3 years. Therefore, the selection of only two time-points, 2 and 3 months, to analyze BBB changes does not provide a comprehensive overview of temporal changes throughout the zebrafish's lifespan. How long do the pdgfb mutants live?

      (8) Why is there a difference in tracer permeability between 2 and 3 months (Figures 2 and 3)? Are hemorrhages not detected in 2-month-old zebrafish?

      (9) Figure 3: The capillary bed should be presented in magnified images as it is not clearly visible. Figure 3e shows that in the pdgfb mutant the dextran intensity is higher also in regions 6-10. How do the authors explain this?

      (10) In general, the manuscript would benefit from a more detailed description of the performed experiments. How long did the tracer circulate in the experiments presented in Figures 2, 3, and 4?

      (11) How do the authors explain the poor signal of the 70 kDa dextran from the vasculature of 5-month-old zebrafish presented in Extended Data Figure 3?

      (12) The study would benefit from a clear separation of the phenotypes caused by the loss of VSMC. The title eludes that also capillaries present hemorrhages which is not the case. How do vascular mural cells differ from mural cells? Are there any other mural cells?

      (13) I have a few comments about how the authors have interpreted the literature and why, in my opinion, they should revise their strong statements (e.g., the last sentence in the abstract).

      Scientists have their own insights and interpretations of data. However, when citing published data, it should be clearly indicated whether the statement is a direct quote from the original publication or an interpretation. In the current manuscript, the authors have not correctly cited the data presented in the two published papers (references 5 and 6). These papers do not propose a model where pericytes suppress "adsorptive transcytosis" (lines 73-76). While increased transcytosis is observed in pericyte-deficient mice, the specific type of vesicular transport that is increased or induced remains unknown.

      Similarly, lines 151-152 refer to references 5 and 6 and use the term "adsorptive transcytosis," but the authors of both papers did not use this term. Attributing this term to the original authors is inaccurate. Additionally, lines 152-153 do not accurately represent the findings of references 5 and 6. These papers do not state that there is an induction of "caveolae" in endothelial cells in pericyte-deficient mice. In the absence of pericytes, many vesicles can be observed in endothelial cells, but these vesicles are relatively large. It is more likely that there is some form of uncontrolled transcytosis, perhaps micropinocytosis. Please refer to the original papers accurately.

      Also, the authors have missed the fact that in mice, the extent of pericyte loss correlates with the extent of BBB leakage. To a certain extent, the remaining pericytes, can compensate for the loss by making longer processes and so ensure the full longitudinal coverage of the endothelium. This was shown in the initial work of Armulik et al (reference 5) and later in other studies.

      The bold assertion on lines 183 -187 that a lack of specific BBB phenotype in pdgfrb zebrafish mutant invalidates mouse model findings is unfounded. Despite the notion that zebrafish endothelium possesses a BBB, I present a few examples highlighting the differences in brain vascular development and why the authors' expectation of a straightforward extrapolation of mouse BBB phenotypes to zebrafish is untenable.

      In mice Pdgfrb knockout is lethal, but in zebrafish, this is not the case. In marked contrast to mice, however, zebrafish pdgfrb null mutants reach adulthood despite extensive cerebral vascular anomalies and hemorrhage. Following the authors' argumentation about the unlikely divergence of zebrafish and mice evolution, does it mean that the described mouse phenotype warrants a revisit and that the Pdgfrb knockout in mice perhaps is not lethal? Another example where the role of a gene product is not one-to-one, which relates to pericyte development, is Notch3. Notch3-null mice do not show significant changes in pericyte numbers or distribution, suggesting a less prominent role in pericyte development compared to zebrafish.

      Although many aspects of development are conserved between species, there are significant differences during brain vascular development between zebrafish and mice. These differences could reveal why the BBB is not impaired in zebrafish pdgfrb mutants. There is a difference in the temporal aspect when various cellular players emerge. The timing of microglia colonization in the brain differs. In mice, microglia colonization starts before the first vessel sprouts enter the brain, while in zebrafish, microglia enter after. Additionally, microglia in zebrafish and mice have a different ontogeny. In mice, astrocytes specialize postnatally and form astrocyte endfeet postnatally. In zebrafish, radial glia/astrocytes form at 48 hpf, and as early as 3 dpf, gfap+ cells have a close relationship with blood vessels. Thus, these radial glia/astrocyte-like cells could play an important role in BBB induction in zebrafish. It's worth noting that in Drosophila, the blood-brain barrier is located in glial cells. While speculative, these cells might still play a role in zebrafish, while the role of pericytes does not seem to be crucial. Pericytes enter the brain and contact with developing vasculature (endothelium) relatively late in zebrafish (60 hpf). In mice, the situation is different, as there is no such lag between endothelium and pericyte entry into the brain. I suggest that the authors approach the observed data with curiosity and ask: Why are these differences present? Are all aspects of the BBB induced by neural tissue in zebrafish? What is the contribution of microglia and astrocytes?"

      Another interesting aspect to consider is the endothelial-pericyte ratio and longitudinal coverage of pericytes in the zebrafish brain, and how this relates to what is observed in mice. How similar is the zebrafish vasculature to the mouse vasculature when it comes to the average length of pericytes in the zebrafish brain? Does the longitudinal coverage of pericytes in the zebrafish brain reach nearly 100%, as it does in mice?

      Based on the preceding arguments, it is recommended that the authors present a balanced discussion that provides insightful discussion and situates their work within a broader framework.

    1. Reviewer #2 (Public review):

      The study begins by exposing wild-type yeast libraries to some well-understood antifungals (amphotericin B, caspofungin, myriocin) to illustrate the complexity and power of the analytical method. These toxins are positively selected for loss-of-function transposon (CDS) insertions in many of the genes identified previously in earlier studies. The outlier genes were visually evident in scatter plots (Figure 1A, 1B, 1C) but the magnitude and statistical significance of the effects were not presented in tables. There were some unexplained and unexpected findings as well. For example, caspofungin targets the product of the GSC2 gene, and yet transposon insertions in this gene were positively selected rather than negatively selected (seemingly discordant from other studies).

      Interestingly, transposon insertions immediately upstream of toxin targets (Figure 1D) and toxin efflux transporters or their regulators (Figure 1E) were visibly selected by exposure to the toxins, suggesting gain-of-expression. Most of these findings are convincing, even without statistical tests. However, some were not (for example, Soraphen A on YOR1). A relevant question emerges here: Do both ends of the transposon confer the same degree of cryptic enhancer/promoter activity? If one end contains strong activity on downstream gene expression while the other does not, the effects of one may be obscured by the other. The directionality of transposon insertions (not provided) would then be important to consider when interpreting the raw data.

      A masterful rationalization of transposon insertion selection in the YAP1 and FLR1 genes was presented wherein loss of C-terminal auto-inhibitory domain of the Yap1 transcription factor resulted in FLR1 overexpression and resistance to Cerulenin. Transposon insertions in the CDS of YAP1 and FLR1 were negatively selected in Chlorothalonil while the gain-of-function and -expression insertions (enriched in Cerulenin) were not. The rationalization of these findings - that Chlorothalonil activates Yap1 while Cerulenin does not - was much less convincing and should be tested directly with a simple experiment such as Q-PCR.

      Moving to specially engineered yeast strains (Figure 2) where multiple efflux transporters were eliminated (for Prochloraz testing) or new drug targets were inserted (for Fludioxonil and Iprodione), numerous interesting observations were obtained. For instance, transposon insertions in totally different sets of genes were enriched by prochloraz depending on the strain background. Conversely, almost the exact same genes were selected in Fludioxonil and Iprodione, including genes in the well-known HOG pathway. Because several candidate receptors of these compounds were not significant in the Tn-seq dataset, the authors add new evidence to the field suggesting that the introduced gene (BdDRK1) represents the direct, or near-direct, target of these compounds.

      Chitosan effectiveness was studied by Tn-seq in yet another specialized strain of yeast that is uniquely susceptible to the toxin. Once again, the authors masterfully rationalize the complex effects, leading to a simple model where chitosan interacts with mannosyl-phosphate in the cell wall and membrane, which is deposited by Mnn4 and Mnn6 and masked by Mnn1 enzymes in the Golgi complex (themselves regulated or dependent on a number of additional gene products such as YND1. This research compellingly adds to our understanding of an industrial antifungal.

      Finally, the effects of a preclinical antifungal ATI-2307 were studied for the first time. Remarkably, ATI-2307 efficacy greatly depended on HOL1 coding sequences and an upstream enhancer (Figure 4). After engineering hol1∆ strains, uptake of the compound and sensitivity to the compound were lost and then restored by heterologous expression of CaHOL1 from a pathogenic yeast. HOL1 also conferred susceptibility to polyamines with related structures (Pentamidine, Iminoctadine). Remarkably, separation-of-function mutations were obtained in HOL1 that abolished the uptake of the toxins while preserving the uptake of nutrient polyamines in low nitrogen conditions, which strongly suggests that HOL1 encodes a direct transporter of the toxins. The implications are important for ATI-2307 efficacy in patients, where resistance mutations could arise spontaneously and produce poor clinical outcomes.

      Additional comments:

      The experiments presented here are often convincing and serve to illustrate the power of Tn-seq approaches in elucidating drug resistance mechanisms in eukaryotic microbes. The gain-of-expression effects (upstream of CDS), gain-of-function effects (elimination of auto-inhibitory domains), and loss-of-function effects were all carefully exposed and discussed, leading to numerous new insights on the action of diverse toxins.

      On the other hand, several deficiencies and weaknesses (in addition to the minor ones described above) limit the utility of the data that has been generated.

      (1) There was no summary table of Tn-seq data for different genes in the different conditions, so readers could not easily access data for genes and pathways not mentioned in the text. This is especially important because transposon insertions that were negatively selected (of great interest to the community) were barely mentioned. Additionally, the statistical significance of outlier genes was not reported. The same is true for insertions within the DNA segments upstream of CDSs. Users of these data are therefore restricted to visually inspecting insertion sites on a genome browser.

      (2) Only one dose of each toxin was studied, which therefore produces a limited perspective on the genetic mechanisms of resistance in each case.

      (3) No Tn-seq experiments were performed in diploid yeast strains. The gain-of-expression and gain-of-function insertions under positive selection in haploid strains in the different conditions are expected to be dominant in diploid strains as well, while loss-of-function insertions in CDS are expected to be recessive. Do these expectations hold? Could such experiments potentially confirm the models for Cerulenin and Chlorothalonil effects on YAP1 and FLR1? Pathogenic Candida species are usually diploid where gain-of-function/expression mutants most frequently lead to poor clinical outcomes. Resistance to ATI-2307 through loss of HOL1 may not be as significant for diploid C. albicans with two functional copies of all genes. On a related note, is it possible that transposon insertions in the 3' untranslated region produce anti-sense transcripts that lowers the expression of the upstream gene from both alleles in diploids, thereby producing a strong selective advantage in ATI-2307? This study already touches on exciting new applications of the Tn-seq method but could easily go a bit further.

    1. Reviewer #2 (Public review):

      Summary:

      The authors proposed that variability in post-feedback pupillary responses during the associative learning tasks can be explained by information gain, which is measured as KL divergence. They analysed pupil responses in a later time window (2.5s-3s after feedback onset) and correlated them with information-theory-based estimates from an ideal learner model (i.e., information gain-KL divergence, surprise-subjective probability, and entropy-average uncertainty) in two different associative decision-making tasks.

      Strength:

      The exploration of task-evoked pupil dynamics beyond the immediate response/feedback period and then associating them with model estimates was interesting and inspiring. This offered a new perspective on the relationship between pupil dilation and information processing.

      Weakness:

      However, disentangling these later effects from noise needs caution. Noise in pupillometry can arise from variations in stimuli and task engagement, as well as artefacts from earlier pupil dynamics. The increasing variance in the time series of pupillary responses (e.g., as shown in Figure 2D) highlights this concern.

      It's also unclear what this complicated association between information gain and pupil dynamics actually means. The complexity of the two different tasks reported made the interpretation more difficult in the present manuscript.

    1. Reviewer #2 (Public review):

      Summary:

      The authors sequence 45 new samples of S. Gallinarum, a commensal Salmonella found in chickens, which can sometimes cause disease. They combine these sequences with around 500 from public databases, determine the population structure of the pathogen, and coarse relationships of lineages with geography. The authors further investigate known anti-microbial genes found in these genomes, how they associate with each other, whether they have been horizontally transferred, and date the emergence of clades.

      Strengths:

      - It doesn't seem that much is known about this serovar, so publicly available new sequences from a high burden region are a valuable addition to the literature.<br /> - Combining these sequences with publicly available sequences is a good way to better contextualise any findings.<br /> - The genomic analyses have been greatly improved since the first version of the manuscript, and appropriately analyse the population and date emergence of clades.<br /> - The SNP thresholds are contextualised in terms of evolutionary time.<br /> - The importance and context of the findings are fairly well described.

    1. Reviewer #3 (Public review):

      Tutak et al provide intriguing findings demonstrating that insufficiency of RPS26 and related proteins, such as TSR2 and RPS25, downregulates RAN translation from CGG repeat RNA in fragile X-associated conditions. Using RNA-tagging system and mass spectrometry-based screening, the authors identified RPS26 as a potential regulator of RAN translation. They further confirmed its regulatory effects on RAN translation by siRNA-based knockdown experiments in multiple cellular disease models. Quantitative mass spectrometry analysis revealed that the expression of some ribosomal proteins is sensitive to RPS26 depletion, while approximately 80% of proteins, including FMRP, were not influenced. Given the limited understanding of the roles of ribosomal proteins in RAN translation regulation, this study provides novel insights into this research field. However, certain data do not fully support the authors' critical conclusions.

      (1) While the authors substituted the ACG near-cognate initiation codon with other near-cognate codons, such as GTG and CTG, in the luciferase assay (Figure 4F), substitution of the ACG codon with an ATG codon should also be performed. Although they evaluated RPS26 knockdown effect on AUG-dependent FMRP translation in Figure 3C, investigating its effect on AUG-dependent repeat-associated translation (e.g., AUG-CGG-repeat) is necessary to substantiate their claim that ACG codon selection is important for RAN translation downregulation by RPS26 knockdown.

      (2) The results of the ASO-based ACG codon-blocking experiment in Figure 4G are difficult to interpret. While RPS knockdown reduces FMRpolyG expression, the effect appears attenuated by the ASO-ACG treatment compared to the control. However, this does not conclusively demonstrate that the regulatory effect is directly due to ACG codon selection during translation initiation for some reasons. For example, ASO-ACG treatment possibly interferes with ribosomal scanning rather than ACG-codon selection, or alters the expression of template CGG repeat RNA. To validate the effect of RPS26 knockdown on ACG codon selection, experiments using the ACG-to-ATG substituted CGG repeat reporter are recommended, as suggested in comment 1.

      (3) The regulatory effects of RPS26 and other molecules on RAN translation have been investigated as effects on the expression levels of FMRpolyG proteins upon knockdown of these molecules in disease model cells expressing CGG repeat sequences (Figures 1C, 1D, 3B, 3C, 3E, 4F, 4G, 5A, 5C, 6A, 6D). However, FMRpolyG expression levels can be influenced by factors other than RAN translation in these cellular experiments, such as template RNA level, template RNA localization, and FMRpolyG protein degradation. Although the authors evaluated the effect on the expression levels of template CGG repeat RNA, it would be better to confirm the direct effect of these regulators on RAN translation by other experiments. In vitro translation assay that can directly evaluate RAN translation is preferable, but experiments using the ACG-to-ATG substituted CGG repeat reporter, as suggested in comment 1, would also provide valuable insights.

    1. Reviewer #2 (Public review):

      Summary:

      This is a very elegant and important EEG study that unifies within a single set of behaviorally equated experimental conditions conscious access (and therefore also conscious access failures) during visual masking and attentional blink (AB) paradigms in humans. By a systematic and clever use of multivariate pattern classifiers across conditions, they could dissect, confirm, and extend a key distinction (initially framed within the GNWT framework) between 'subliminal' and 'pre-conscious' unconscious levels of processing. In particular, the authors could provide strong evidence to distinguish here within the same paradigm these two levels of unconscious processing that precede conscious access : (i) an early (< 80ms) bottom-up and local (in brain) stage of perceptual processing ('local contrast processing') that was preserved in both unconscious conditions, (ii) a later stage and more integrated processing (200-250ms) that was impaired by masking but preserved during AB. On the basis of preexisting studies and theoretical arguments, they suggest that this later stage could correspond to lateral and local recurrent feedback processes. Then, the late conscious access stage appeared as a P3b-like event.

      Strengths:

      The methodology and analyses are strong and valid. This work adds an important piece in the current scientific debate about levels of unconscious processing and specificities of conscious access in relation to feed-forward, lateral, and late brain-scale top-down recurrent processing.

      Comments on revisions:

      I congratulate the authors for the quality of their revised ms. They convincingly addressed each of the issues raised in my previous review.

    1. Reviewer #2 (Public review):

      Summary:

      This work delineates the larval zebrafish behavioral phenotypes caused by F0 knockout of several important genes that increase risk for Alzheimer's disease. Using behavioral pharmacology, comparing the behavioral fingerprint of previously assayed molecules to the newly generated knockout data, compounds were discovered that impacted larval movement in ways that suggest interaction with or recovery of disrupted mechanisms.

      Strengths:

      This is a well-written manuscript that uses newly developed analysis methods to present the findings in a clear, high-quality way. The addition of an extensive behavioral analysis pipeline is of value to the field of zebrafish neuroscience and will be particularly helpful for researchers who prefer the R programming language. Even the behavioral profiling of these AD risk genes, regardless of the pharmacology aspect, is an important contribution. The recovery of most behavioral parameters in the psen2 knockout with betamethasone, predicted by comparing fingerprints, is an exciting demonstration of the approach. The hypotheses generated by this work are important stepping stones to future studies uncovering the molecular basis of the proposed gene-drug interactions and discovering novel therapeutics to treat AD or co-occurring conditions such as sleep disturbance. Most concerns are sufficiently addressed in the revised manuscript or response to reviewers.

      Weaknesses:

      - The overarching concept of the work is that comparing behavioral fingerprints can align genes and molecules with similarly disrupted molecular pathways. While the recovery of the psen2 phenotypes by one molecule with the opposite phenotype is interesting, as are previous studies that show similar behaviorally-based recoveries, the underlying assumption that normalizing the larval movement normalizes the mechanism still lacks substantial support. While I agree with the authors detailed response that rescuing most behavioral parameters is a good indication that the underlying mechanism is normalized, I disagree that high-throughput larval behavior kinematics is a sufficient enough representation of most behavioral parameters to be indicative of molecular mechanism normalization. There are many instances of mutants with completely normal kinetics at baseline, but a behavioral difference that emerges during stimulation or in a new paradigm such as hunting. Without testing far more behavioral paradigms than are possible in the multi-well plate format, as well as possibly multiple life stages, I remain unconvinced that this approach will yield valuable therapeutic insights. I do agree that it can yield insight for future investigation, such as in the case of cntnap2a/cntnap2b and GABA receptor agonists, but even in that instance is it not clear that such an agonist would rescue abnormalities in a meaningful way. In the case of a disorder such as autism, the early locomotor phenotypes may be disconnected from the molecular mechanisms underlying later social deficits, and it is far more challenging to screen on juvenile behaviors that would be a more appropriate target for a behavior-first approach. The added experiment of testing fluvoxamine, a second SSRI, yielded very different behavioral responses to the SSRI citalopram, supporting my assertion that this approach and the disrupted underlying mechanisms are more complicated than suggested by the authors. I disagree that the connection between sorl1 and serotonin is strengthened by this experiment. The authors suggest that since the knockout larvae react differently than control siblings to both SSRIs, it indicates that serotonin is disrupted. There is no negative control included, where a pathway that is clearly not indicated to be important is pharmacologically manipulated. It is possible that the mutants would also behave differently compared to siblings when other pathways are perturbed. The authors acknowledge in the reviewers that they may not have identified the underlying molecular disruption in this mutant, but they did not substantially alter the Discussion section on this point. I agree with the authors that using a different wild-type strain in a different lab could lead to discrepancies, but these issues could have been experimentally mitigated or more clearly highlighted in the manuscript itself.

    1. Reviewer #2 (Public review):

      Summary:

      The study presents significant findings that elucidate the relationship between multi-dimensional social relationships and social attention in rhesus macaques. By integrating advanced computational methods, behavioral analyses, and neuroendocrine manipulation, the authors provide strong evidence for how oxytocin modulates attention within social networks. The results are robust and address critical gaps in understanding the dynamics of social attention in primates.

      Strengths:

      (1) The use of YOLOv5 for automatic behavioral detection is an exceptional methodological advance. The combination of automated analyses with manual validation enhances confidence in the data.<br /> (2) The study's focus on three distinct dimensions of social interaction (aggression, grooming, and proximity) is comprehensive and provides nuanced insights into the complexity of primate social networks.<br /> (3) The investigation of oxytocin's role adds a compelling neuroendocrine dimension to the findings, providing a bridge between behavioral and neural mechanisms.

      Weaknesses:

      (1) The study's conclusions are based on observations of only four monkeys, which limits the generalizability of the findings. Larger sample sizes could strengthen the validity of the results.<br /> (2) The limited set of stimulus images (in-group and out-group faces) may introduce unintended biases. This could be addressed by increasing the diversity of stimuli or incorporating a broader range of out-group members.

      Comments on revisions: I have no further comments!

    1. Reviewer #2 (Public review):

      Summary:

      Herdering et al. introduced research on an archaeal glutamine synthetase (GS) from Methanosarcina mazei, which exhibits sensitivity to the environmental presence of 2-oxoglutarate (2-OG). While previous studies have indicated 2-OG's ability to enhance GS activity, the precise underlying mechanism remains unclear. Initially, the authors utilized biophysical characterization, primarily employing a nanomolar-scale detection method called mass photometry, to explore the molecular assembly of Methanosarcina mazei GS (M. mazei GS) in the absence or presence of 2-OG. Similar to other GS enzymes, the target M. mazei GS forms a stable dodecamer, with two hexameric rings stacked in tail-to-tail interactions. Despite approximately 40% of M. mazei GS existing as monomeric or dimeric entities in the detectable solution, the majority spontaneously assemble into a dodecameric state. Upon mixing 2-OG with M. mazei GS, the population of the dodecameric form increases proportionally with the concentration of 2-OG, indicating that 2-OG either promotes or stabilizes the assembly process. The cryo-electron microscopy (cryo-EM) structure reveals that 2-OG is positioned near the interface of two hexameric rings. At a resolution of 2.39 Å, the cryo-EM map vividly illustrates 2-OG forming hydrogen bonds with two individual GS subunits as well as with solvent water molecules. Moreover, local sidechain reorientation and conformational changes of loops in response to 2-OG further delineate the 2-OG-stabilized assembly of M. mazei GS.

      Strengths & Weaknesses:

      The investigation studies into the impact of 2-oxoglutarate (2-OG) on the assembly of Methanosarcina mazei glutamine synthetase (M mazei GS). Utilizing cutting-edge mass photometry, the authors scrutinized the population dynamics of GS assembly in response to varying concentrations of 2-OG. Notably, the findings demonstrate a promising and straightforward correlation, revealing that dodecamer formation can be stimulated by 2-OG concentrations of up to 10 mM, although GS assembly never reaches 100% dodecamerization in this study. Furthermore, catalytic activities showed a remarkable enhancement, escalating from 0.0 U/mg to 7.8 U/mg with increasing concentrations of 2-OG, peaking at 12.5 mM. However, an intriguing gap arises between the incomplete dodecameric formation observed at 10 mM 2-OG, as revealed by mass photometry, and the continued increase in activity from 5 mM to 10 mM 2-OG for M mazei GS. This prompts questions regarding the inability of M mazei GS to achieve complete dodecamer formation and the underlying factors that further enhance GS activity within this concentration range of 2-OG.

      Moreover, the cryo-electron microscopy (cryo-EM) analysis provides additional support for the biophysical and biochemical characterization, elucidating the precise localization of 2-OG at the interface of two GS subunits within two hexameric rings. The observed correlation between GS assembly facilitated by 2-OG and its catalytic activity is substantiated by structural reorientations at the GS-GS interface, confirming the previously reported phenomenon of "funnel activation" in GS. However, the authors did not present the cryo-EM structure of M. mazei GS in complex with ATP and glutamate in the presence of 2-OG, which could have shed light on the differences in glutamine biosynthesis between previously reported GS enzymes and the 2-OG-bound M. mazei GS.

      Furthermore, besides revealing the cryo-EM structure of 2-OG-bound GS, the study also observed the filamentous form of GS, suggesting that filament formation may be a universal stacking mechanism across archaeal and bacterial species. However, efforts to enhance resolution to investigate whether the stacked polymer is induced by 2-OG or other factors such as ions or metabolites were not undertaken by the authors, leaving room for further exploration into the mechanisms underlying filament formation in GS.

      Comments on revisions:

      My comments have been addressed adequately.

      I recognize that determining the structure of the GS complex bound to ATP and/or other ligands would enhance this study by offering a more comprehensive understanding of 2-oxoglutarate-mediated dodecameric assembly and activation. However, I accept the authors' explanation for not including this aspect in the current work.

    1. Reviewer #2 (Public review):

      In this study, Kavaklıoğlu et al. investigated and presented evidence for a role for domesticated transposon protein L1TD1 in enabling its ancestral relative, L1 ORF1p, to retrotranspose in HAP1 human tumor cells. The authors provided insight into the molecular function of L1TD1 and shed some clarifying light on previous studies that showed somewhat contradictory outcomes surrounding L1TD1 expression. Here, L1TD1 expression was correlated with L1 activation in a hypomethylation dependent manner, due to DNMT1 deletion in HAP1 cell line. The authors then identified L1TD1 associated RNAs using RIP-Seq, which display a disconnect between transcript and protein abundance (via Tandem Mass Tag multiplex mass spectrometry analysis). The one exception was for L1TD1 itself, is consistent with a model in which the RNA transcripts associated with L1TD1 are not directly regulated at the translation level. Instead, the authors found L1TD1 protein associated with L1-RNPs and this interaction is associated with increased L1 retrotransposition, at least in the contexts of HAP1 cells. Overall, these results support a model in which L1TD1 is restrained by DNA methylation, but in the absence of this repressive mark, L1TD1 is expression, and collaborates with L1 ORF1p (either directly or through interaction with L1 RNA, which remains unclear based on current results), leads to enhances L1 retrotransposition. These results establish feasibility of this relationship existing in vivo in either development or disease, or both.

      Comments on revised version:

      Thank you for this revised manuscript and for addressing our concerns and suggestions. These improvements have significantly enhanced the quality and reliability of the results presented and have addressed all our questions.

    1. Reviewer #2 (Public review):

      In this study, Wang and colleagues aimed to explore brain-wide activation patterns associated with NREM sleep oscillations, including slow oscillations (SOs), spindles, and SO-spindle coupling events. Their findings reveal that SO-spindle events corresponded with increased activation in both the thalamus and hippocampus. Additionally, they observed that SO-spindle coupling was linked to heightened functional connectivity from the hippocampus to the thalamus, and from the thalamus to the medial prefrontal cortex-three key regions involved in memory consolidation and episodic memory processes.

      This study's findings are timely and highly relevant to the field. The authors' extensive data collection, involving 107 participants sleeping in an fMRI while undergoing simultaneous EEG recording, deserves special recognition. If shared, this unique dataset could lead to further valuable insights. While the conclusions of the data seem overall well supported by the data, some aspects with regard to the detection of sleep oscillations need clarification.

      The authors report that coupled SO-spindle events were most frequent during NREM sleep (2.46 {plus minus} 0.06 events/min), but they also observed a surprisingly high occurrence of these events during N1 and REM sleep (2.23 {plus minus} 0.09 and 2.32 {plus minus} 0.09 events/min, respectively), where SO-spindle coupling would not typically be expected. Combined with the relatively modest SO amplitudes reported (~25 µV, whereas >75 µV would be expected when using mastoids as reference electrodes), this raises the possibility that the parameters used for event detection may not have been conservative enough - or that sleep staging was inaccurately performed. This issue could present a significant challenge, as the fMRI findings are largely dependent on the reliability of these detected events.

    1. Reviewer #2 (Public review):

      Overview

      In this manuscript the authors use deep mutational scanning to assess the effect of ~6,600 protein-coding variants in MC4R, a G protein-coupled receptor associated with obesity. Reasoning that current deep mutational scanning approaches are insufficiently precise for some drug development applications, they focus on articulating new, more precise approaches. These approaches, which include a new statistical model and innovative reporter assay, enable them to probe molecular phenotypes directly relevant to the development of drugs that target this receptor with high precision and statistical rigor.

      They use the resulting data for a variety of purposes, including probing the relationship between MC4R's sequence and structure, analyzing the effect of clinically important variants, identifying variants that disrupt downstream MC4R signaling via one but not both pathways, identifying loss of function variants are amenable to a corrector drug and exploring how deep mutational scanning data could guide small molecule drug optimization.

      Strengths

      The analysis and statistical framework developed by the authors represent a significant advance. In particular, it makes use of barcode-level internally replicated measurements to more accurately estimate measurement noise.<br /> The framework allows variant effects to be compared across experimental conditions, a task which is currently hard to do with rigor. Thus, this framework will be applicable to a large number of existing and future deep mutational scanning experiments.

      The authors refine their existing barcode transcription-based assay for GPCR signaling, and develop a clever "relay" new reporter system to boost signaling in a particular pathway. They show that these reporters can be used to measure both gain of function and loss of function effects, which many deep mutational scanning approaches cannot do.

      The use of systematic approaches to integrate and then interrogate high-dimensional deep mutational scanning data is a big strength. For example, the authors applied PCA to the variant effect results from reporters for two different MC4R signaling pathways and were able to discover variants that biased signaling through one or the other pathway. This approach paves the way for analyses of higher dimensional deep mutational scans.

      The authors use the deep mutational scanning data they collect to map how different variants impact small molecule agonists activate MC4R signaling. This is an exciting idea because developing small-molecule protein-targeting therapeutics is difficult, and this manuscript suggests a new way to map small molecule-protein interactions.

      Weaknesses

      The authors derive insights into the relationship between MC4R signaling through different pathways and its structure. While these make sense based on what is already known, the manuscript would be stronger if some of these insights were validated using methods other than deep mutational scanning.

      Likewise, the authors use their data to identify positions where variants disrupt MC4R activation by one small molecule agonist but not another. They hypothesize these effects point to positions that are more or less important for the binding of different small molecule agonists. The manuscript would be stronger if some of these insights were explored further.

      Impact

      In this manuscript the authors present new methods, including a statistical framework for analyzing deep mutational scanning data that will have a broad impact. They also generate MC4R variant effect data that is of interest to the GPCR community.

      Comments on revisions:

      I do not have additional comments, and feel that the authors addressed most of my concerns!

    1. Reviewer #2 (Public review):

      This paper describes the molecular characterisation of a new isolate of the giant virus Jyvaskylavirus, a member of the Marseilleviridae family infecting Acanthamoeba castellanii. The isolate comes from a boreal environment in Finland, showcasing that giant viruses can thrive in this ecological niche. The authors came up with a non-trivial isolation procedure that can be applied to characterise other members of the family and will be beneficial for the virology field. The genome shows typical Marseilleviridae features and phylogenetically belongs to their clade B. The structural characterisation was performed on the level of isolated virion morphology by negative stain EM, virions associated with cells either during the attachment or release by helium microscopy, the visualisation of the virus assembly inside cells using stained thin sections, and lastly on the protein secondary structure level by reconstructing ~6 A icosahedral map of the massive virion using cryoEM. The cryoEM density combined with gene product structure prediction enabled the identification and functional assessment of various virion proteins. The visualisation of ongoing virus assembly inside virus factories brings interesting hypotheses about the process that; however, needs to be verified in the next studies.

      Strengths:

      The detailed description of the virus isolation protocol is the largest strength of the paper and I believe it can be modified for isolating various viruses infecting small eukaryotes. The cryoEM map allows us to understand how exceptionally large virions of these viruses are stabilised by minor capsid proteins and nicely demonstrates the integration of medium-resolution cryoEM with protein structure prediction in deciphering virion protein function.

      Weaknesses:

      No mass spectrometry data are presented to supplement and confirm the identity of virion proteins which predicted models were fitted into the cryoEM density.

    1. Reviewer #2 (Public review):

      1st Public review:<br /> Using proteogenomic analysis of human cancer datasets, Yu et al, found that EGFR protein levels negatively correlate with ZNFR3/RNF43 expression across multiple cancers. Interestingly, they found that CRC harbouring the frequent RNF43 G659Vfs*41 mutation exhibit higher levels of EGFR when compared to RNF43 wild-type tumors. This is highly interesting since this mutation is generally not thought to influence Frizzled levels and Wnt-bcatenin pathway activity. Using CRISPR knockouts and overexpression experiments, the authors show that EGFR levels are modulated by ZNRF3/RNF43. Supporting these findings modulation of ZNRF3/RNF43 activity using Rspondin also leads to increased EGFR levels. Mechanistically, the authors, show that ZNRF3/RNF43 ubiquitinate EGFR and lead to degradation. Finally, the authors present functional evidence that loss of ZNRF3/RNF43 unleashes EGFR-mediated cell growth in 2D culture and organoids and promote tumor growth in vivo.

      Overall, the conclusions of the manuscript are well supported by the data presented, but some aspects of the mechanism presented need to be re-enforced to fully support the claims made by the authors. Additionally, the title of the paper suggests that ZNRF3 and RNF43 loss leads to hyperactivity of EGFR and that its signalling activity contribute to cancer initiation/progression. I don't think the authors convincingly showed this in their study.

      Major points:

      (1) EGFR ubiquitination. All of the experiments supporting that ZNFR3/RNF43 mediate EGFR ubiquitination are performed under overexpression conditions. A major caveat is also that none of the ubiquitination experiments are performed under denaturing conditions. Therefore, it is impossible to claim that the ubiquitin immunoreactivity observed on the western blots presented in Fig.4 corresponds to ubiquitinated-EGFR species.

      Another issue is that in Figure 4A, the experiments suggest that the RNF43-dependent ubiquitination of EGFR is promoted by EGF. However, there is no control showing the ubiquitination of EGFR in the absence of EGF but under RNF43 overexpression. According to the other experiments presented in Figures 4B, 4C and 4F, there seems to be a constitutive ubiquitination of EGFR upon overexpression. How do the authors reconcile the role of ZNRF3/RNF43 vs c-cbl?

      (2) EGFR degradation vs internalization. In Figure 3C, the authors show experiments that demonstrate that RNF43 KO increases steady state levels of EGFR and prevents its EGF-dependent proteolysis. Using flow cytometry they then present evidence that the reduction in cell surface levels of EGFR mediated by EGF is inhibited in the absence of RNF43. The authors conclude that this is due to inhibition of EGF-induced internalization of surface EGF. However, the experiments are not designed to study internalization and rather merely examine steady state levels of surface EGFR pre and post treatment. These changes are an integration of many things (retrograde and anterograde transport mechanisms presumable modulated by EGF). What process(es) is/are specifically affected by ZNFR3/RNF43? Are these processes differently regulated by c-cbl? If the authors are specifically interested in internalization/recycling, the use of cell surface biotinylation experiments and time courses are needed to examine the effect of EGF in the presence or absence of the E3 ligases.

      (3) RNF43 G659fs*41. The authors make a point in Figure 1D that this mutant leads to elevated EGFR in cancers but do not present evidence that this mutant is ineffective in mediated ubiquitination and degradation of EGFR. As this mutant maintains its ability to promote Frizzled ubiquitination and degradation, it would be important to show side by side that it does not affect EGFR. This would perhaps imply differential mechanisms for these two substrates.

      (4) "Unleashing EGFR activity". The title of the paper implies that ZNRF3/RNF43 loss leads to increased EGFR expression and hence increased activity that underlies cancer. However, I could find only one direct evidence showing that increased proliferation of the HT29 cell line mutant for RNF43 could be inhibited by the EGFR inhibitor Erlotinib. All the other evidence presented that I could find is correlative or indirect (e.g. RPPA showing increased phosphorylation of pathway members upon RNF43 KO, increased proliferation of a cell line upon ZNRF3/ RNF43 KO, decreased proliferation of a cell line upon ZNRF3/RNF43 OE in vitro or in xeno...). Importantly, the authors claim that cancer initiation/ progression in ZNRF3/RNF43 mutant may in some contexts be independent of their regulation of Wnt-bcatenin signaling and relying on EGFR activity upregulation. However, this has not been tested directly. Could the authors leverage their znrf3/RNF43 prostate cancer model to test whether EGFR inhibition could lead to reduced cancer burden whereas a Frizzled or Wnt inhibitor does not?

      More broadly, if EGFR signaling were to be unleashed in cancer, then one prediction would be that these cells would be more sensitive to EGFR pathway inhibition. Could the authors provide evidence that this is the case? Perhaps using isogenic cell lines or a panel of patient derived organoids (with known genotypes).

      Comments on revisions:

      The most important criticism of this manuscript that I raised in my original review has not been addressed. Indeed, the authors claim that EGFR is a direct substrate of the RNF43/ZNFR3 E3 ligase. This has not been directly demonstrated. Indeed, showing increased detection of ubiquitinated species in an immunoprecipitate could mean that a protein is directly modified. However, an alternative explanation is that a protein that is co-immunoprecipitated with the target protein is ubiquitinated (such as several EGFR adapters and interacting partners). Performing these experiments under denaturing conditions is one way to determine that EGFR is the substrate. Alternatively, a quantitative MS approach to quantify an increase in ubiquitinated peptides would also enable the authors to conclude that EGFR is indeed a substrate.

      In addition, one of the main conclusions of the authors is that EGFR activity is unleashed in cancer following ZNRF3 and/or RNF43 loss (as the title suggests). There is still no direct evidence in the manuscript that this is the case. I appreciate the new data showing that MEF with knockout of RNF43/ZNRF3 are sensitive to EGFR inhibitor (and not porcupine inhibitor) but what is the data supporting that EGFR activity is "unleashed" in cancer? The authors still claim that ZNRF3 and RNF43 loss could impact cancer initiation/development in a Wnt-independent fashion (see lines 341-343). I believe this conclusion is based on correlative staining of nuclear bcatenin (which is in itself not a reliable readout of active sginaling) and not on functional data.... I suggested in my original review that the authors should test the efficacy of EGFR inhibitor and Wnt inhibitor in the prostate cancer model that they present in Figure 7 that would have enabled them to firmly conclude about their relative contribution. This was largely handwaved in their rebuttal letter... Doing experiment in WT cells is not the same as addressing this question in the context of cancer.

      Finally, the authors use CRISPR KO experiments, without assessing editing or KO efficiencies throughout the manuscript and simply assume that the gRNA work. In my opinion this is an unacceptable practice.

    1. Reviewer #2 (Public review):

      The authors used a clever and powerful approach to explore how Nav1.2 and Nav1.6 channels, which are both present in neocortical pyramidal neurons, differentially control firing properties of the neurons. Overall, the approach worked very well, and the results show very interesting differences when one or the other channel is partially inhibited. The experimental data is solid and the experimental data is very nicely complemented by a computational model incorporating the different localization of the two types of sodium channels.

      In my opinion the presentation and interpretation of the results could be improved by a more thorough discussion of the fact that only incomplete inhibition of the channels can be achieved by the inhibitor under physiological recording conditions and I thought the paper could be easier to digest if the figures were re-organized. However, the key results are well-documented.

    1. Reviewer #2 (Public review):

      Summary:

      Primates are a particularly important and oft-applied model for understanding the evolution of, e.g., life history and senescence in humans. Although there is a growing body of work on aging in primates, there are three components of primate senescence research that have been underutilized or understudied: (1) longitudinal datasets, (2) wild populations, and (3) (stone) tool-use behaviors. Therefore, the goal of this study was to (1) use a 17-year longitudinal dataset (2) of wild chimpanzees in the Bossou forest, (3) visiting a site for field experiments on nut-cracking. They sampled and analyzed data from five field seasons for five chimpanzees of old age. From this sample, Howard-Spink and colleagues noted a decline in tool-use and tool-use efficiency in some individuals, but not in others. The authors then conclude that there is a measurable effect of senescence on chimpanzee behavior, but that it varies individually. The study has major intellectual value as a building block for future research, but there are several major caveats.

      Strengths:

      With this study, Howard-Spink and colleagues make a foray into a neglected topic of research: the impact of the physiological and cognitive changes due to senescence on stone tool use in chimpanzees. Based on novelty alone, this is a valuable study. The authors cleverly make use of a longitudinal record covering 17 years of field data, which provides a window into long-term changes in the behavior of wild chimpanzees, which I agree cannot be understood through cross-sectional comparisons.

      The metrics of 'efficiency' (see caveats below) are suitable for measuring changes in technological behavior over time, as specifically tailored to the nut-cracking (e.g., time, number of actions, number of strikes, tool changes). The ethogram and the coding protocol are also suitable for studying the target questions and objectives. I would recommend, however, the inclusion of further variables that will assist in improving the amount of valid data that can be extrapolated (see also below).

      With this pilot, Howard-Spink and colleagues have established a foundation upon which future research can be designed, including further investigation with the Bossou dataset and other existing video archives, but especially future targeted data collection, which can be designed to overcome some of the limits and confounds that can be identified in the current study.

      Weaknesses:

      Although I agree with the reasoning behind conducting this research and understand that, as the authors state, there are logistical considerations that have to be made when planning and executing such a study, there are a number of methodological and theoretical shortcomings that either need to be more explicitly stated by the authors or would require additional data collection and analysis.

      One of the main limitations of this study is the small sample size. There are only 5 of the old-aged individuals, which is not enough to draw any inferences about aging for chimpanzees more generally. Howard-Spink and colleagues also study data from only five of the 17 years of recorded data at Bossou. The selection of this subset of data requires clarification: why were these intervals chosen, why this number of data points, and how do we know that it provides a representative picture of the age-related changes of the full 17 years?

      With measuring and interpreting the 'efficiency' of behaviors, there are in-built assumptions about the goals of the agents and how we can define efficiency. First, it may be that efficiency is not an intentional goal for nut-cracking at all, but rather, e.g., productivity as far as the number of uncrushed kernels (cf. Putt 2015). Second, what is 'efficient' for the human observer might not be efficient for the chimpanzee who is performing the behavior. More instances of tool-switching may be considered inefficient, but it might also be a valid strategy for extracting more from the nuts, etc. Understanding the goals of chimpanzees may be a difficult proposition, but these are uncertainties that must be kept in mind when interpreting and discussing 'decline' or any change in technological behaviors over time.

      For the study of the physiological impact of senescence of tool use (i.e., on strength and coordination), the study would benefit from the inclusion of variables like grip type and (approximate) stone size (Neufuss et al., 2016). The size and shape of stones for nut-cracking have been shown to influence the efficacy and 'efficiency' of tool use (i.e., the same metrics of 'efficiency' implemented by Howard-Spink et al. in the current study), meaning raw material properties are a potential confound that the authors have not evaluated.

      Similarly, inter- and intraspecific variation in the properties of nuts being processed is another confound (Falótico et al., 2022; Proffitt et al., 2022). If oil palm nuts were varying year-to-year, for example, this would theoretically have an effect on the behavioral forms and strategies employed by the chimpanzees, and thus, any metric of efficiency being collected and analyzed. Further, it is perplexing that the authors analyze only one year where the coula nuts were provided at the test site, but these were provided during multiple field seasons. It would be more useful to compare data from a similar number of field seasons with both species if we are to study age-related changes in nut processing over time (one season of coula nut-cracking certainly does not achieve this).

      Both individual personality (especially neophilia versus neophobia; e.g., Forss & Willems, 2022) and motivation factors (Tennie & Call, 2023) are further confounds that can contribute to a more valid interpretation of the patterns found. To draw any conclusions about age-related changes in diet and food preferences, we would need to have data on the overall food intake/preferences of the individuals and the food availability in the home range. The authors refer briefly to this limitation, but the implications for the interpretation of the data are not sufficiently underlined (e.g., for the relevance of age-related decline in stone tool-use ability for individual survival).

      Generally speaking, there is a lack of consideration for temporal variation in ecological factors. As a control for these, Howard-Spink and colleagues have examined behavioral data for younger individuals from Bossou in the same years, to ostensibly show that patterns in older adults are different from patterns in younger adults, which is fair given the available data. Nonetheless, they seem to focus mostly on the start and end points and not patterns that occur in between. For example, there is a curious drop in attendance rate for all individuals in the 2008 season, the implications of which are not discussed by the authors.

      As far as attendance, Howard-Spink and colleagues also discuss how this might be explained by changes in social standing in later life (i.e., chimpanzees move to the fringes of the social network and become less likely to visit gathering sites). This is not senescence in the sense of physiological and cognitive decline with older age. Instead, the reduced attendance due to changes in social standing seems rather to exacerbate signs of aging rather than be an indicator of it itself. The authors also mention a flu-like epidemic that caused the death of 5 individuals; the subsequent population decline and related changes in demography also warrant more discussion and characterization in the manuscript.

      Understandably, some of these issues cannot be evaluated or corrected with the presented dataset. Nonetheless, these undermine how certain and/or deterministic their conclusions can really be considered. Howard-Spink et al. have not strongly 'demonstrated' the validity of relationships between the variables of the study. If anything, their cursory observations provide us with methods to apply and hypotheses to test in future studies. It is likely that with higher-resolution datasets, the individual variability in age-related decline in tool-use abilities will be replicated. For now, this can be considered a starting point, which will hopefully inspire future attempts to research these questions.

      Falótico, T., Valença, T., Verderane, M. & Fogaça, M. D. Stone tools differences across three capuchin monkey populations: food's physical properties, ecology, and culture. Sci. Rep. 12, 14365 (2022).<br /> Forss, S. & Willems, E. The curious case of great ape curiosity and how it is shaped by sociality. Ethology 128, 552-563 (2022).<br /> Neufuss, J., Humle, T., Cremaschi, A. & Kivell, T. L. Nut-cracking behaviour in wild-born, rehabilitated bonobos (Pan paniscus): a comprehensive study of hand-preference, hand grips and efficiency. Am. J. Primatol. 79, e22589 (2016).<br /> Proffitt, T., Reeves, J. S., Pacome, S. S. & Luncz, L. V. Identifying functional and regional differences in chimpanzee stone tool technology. R. Soc. Open Sci. 9, 220826 (2022).<br /> Putt, S. S. The origins of stone tool reduction and the transition to knapping: An experimental approach. J. Archaeol. Sci.: Rep. 2, 51-60 (2015).<br /> Tennie, C. & Call, J. Unmotivated subjects cannot provide interpretable data and tasks with sensitive learning periods require appropriately aged subjects: A Commentary on Koops et al. (2022) "Field experiments find no evidence that chimpanzee nut cracking can be independently innovated". ABC 10, 89-94 (2023).

    1. Reviewer #2 (Public review):

      The work presents a model of dopamine release, diffusion, and reuptake in a small (100 micrometer^2 maximum) volume of striatum. This extends previous work by this group and others by comparing dopamine dynamics in the dorsal and ventral striatum and by using a model of immediate dopamine-receptor activation inferred from recent dopamine sensor data. From their simulations, the authors report two main conclusions. The first is that the dorsal striatum does not appear to have a sustained, relatively uniform concentration of dopamine driven by the constant 4Hz firing of dopamine neurons; rather that constant firing appears to create hotspots of dopamine. By contrast, the lower density of release sites and lower rate of reuptake in the ventral striatum creates a sustained concentration of dopamine. The second main conclusion is that D1 receptor (D1R) activation is able to track dopamine concentration changes at short delays but D2 receptor activation cannot.

      The simulations of the dorsal striatum will be of interest to dopamine aficionados as they throw some doubt on the classic model of "tonic" and "phasic" dopamine actions, further show the disconnect between dopamine neuron firing and consequent release, and thus raise issues for the reward-prediction error theory of dopamine.

      There is some careful work here checking the dependence of results on the spatial volume and its discretisation. The simulations of dopamine concentration are checked over a range of values for key parameters. The model is good, the simulations are well done, and the evidence for robust differences between dorsal and ventral striatum dopamine concentration is good.

      However, the main weakness here is that neither of the main conclusions is strongly evidenced as yet. The claim that the dorsal striatum has no "tonic" dopamine concentration is based on the single example simulation of Figure 1 not the extensive simulations over a range of parameters. Some of those later simulations seem to show that the dorsal striatum can have a "tonic" dopamine concentration, though the measurement of this is indirect. It is not clear why the reader should believe the example simulation over those in the robustness checks, for example by identifying which range of parameter values is more realistic.

      The claim that D1Rs can track rapid changes in dopamine is not well supported. It is based on a single simulation in Figure 1 (DS) and 2 (VS) by visual inspection of simulated dopamine concentration traces - and even then it is unclear that D1Rs actually track dynamics because they clearly do not track rapid changes in dopamine that are almost as large as those driven by bursts (cf Figure 1i). The claim also depends on two things that are poorly explained. First, the model of binding here is missing from the text. It seems to be a simple bound-fraction model, simulating a single D1 or D2 receptor. It is unclear whether more complex models would show the same thing. Second, crucial to the receptor model here is the inference that D1 receptor unbinding is rapid; but this inference is made based on the kinetics of dopamine sensors and is superficially explained - it is unclear why sensor kinetics should let us extrapolate to receptor kinetics, and unclear how safe is the extrapolation of the linear regression by an order of magnitude to get the D1 unbinding rate.

    1. Reviewer #2 (Public review):

      Summary:

      The manuscript by Xu et al. studies the relevance of endophilin A3-dependent endocytosis and retrograde transport of immune synapse components and in the activation of cytotoxic CD8 T cells. First, the authors show that ICAM1 and ALCAM, known components of immune synapses, are endocytosed via endoA3-dependent endocytosis and retrogradely transported to the Golgi. The authors then show that blocking internalization or retrograde trafficking reduces the activation of CD8 T cells. Moreover, this diminished CD8 T cell activation resulted in the formation of an enlarged immune synapse with reduced ICAM1 recruitment.

      Strengths:

      The authors show a novel EndoA3-dependent endocytic cargo and provide strong evidence linking EndoA3 endocytosis to the retrograde transport of ALCAM and ICAM1.

      Weaknesses:

      The role of EndoA3 in the process of T cell activation is shown in a cell that requires exogenous expression of this gene. Moreover, the authors claim that their findings are important for polarized redistribution of cargoes, but failed to show convincingly that the cargoes they are studying are polarized in their experimental system. The statistics of the manuscript also require some refinement.

    1. Reviewer #2 (Public review):

      Summary:

      The authors provide convincing evidence that Rab27 and STYL5 work together to regulate mitochondrial activity and homeostasis.

      Strengths:

      The development of models that allow the function to be dissected, and the rigorous approach and testing of mitochondrial activity

      Weaknesses:

      There may be unknown redundancies in both pathways in which Rab27 and SYTL5 are working which could confound the interpretation of the results.

      Suggestions for revision:

      Given that Rab27A and SYTL5 are members of protein families it would be important to exclude any possible functional redundancies coming from Rab27B expression or one of the other SYTL family members. For Rab27 this would be straightforward to test in the assays shown in Figure 4 and Supplementary Figure 5. For SYTL5 it might be sufficient to include some discussion about this possibility.

      Suggestions for Discussion:

      Both Rab27A and STYL5 localize to other membranes, including the endolysosomal compartments. How do the authors envisage the mechanism or cellular modifications that allow these proteins, either individually or in complex to function also to regulate mitochondrial function? It would be interesting to have some views.

    1. Reviewer #2 (Public review):

      Summary:

      The authors aimed to understand the biophysical properties of archeal membranes made of bolalipids. Bacterial and eukaryotic membranes are made of lipids that self-assemble into bilayers. Archea, instead, use bolalipids, lipids that have two headgroups and can span the entire bilayer. The authors wanted to determine if the unique characteristics of archaea, which are often extremophiles, are in part due to the fact that their membranes contain bolalipids.

      The authors develop a minimal computational model to compare the biophysics of bilayers made of lipids, bolalipids, and mixtures of the two. Their model enables them to determine essential parameters such as bilayer phase diagrams, mechanical moduli, and the bilayer behavior upon cargo inclusion and remodeling.

      The author demonstrates that bolalipid bilayers behave as binary mixtures, containing bolalipids organized either in a straight conformation, spanning the entire bilayer, or in a u-shaped one, confined to a single leaflet. This dynamic mixture allows bolalipid bilayers to be very sturdy but also provides remodeling. However, remodeling is energetically more expensive than with standard lipids. The authors speculate that this might be why lipids were more abundant in the evolutionary process.

      Strengths:

      This is a wonderful paper, a very fine piece of scholarship. It is interesting from the point of view of biology, biophysics, and material science. The authors mastered the modeling and analysis of these complex systems. The evidence for their findings is really strong and complete. The paper is written superbly, the language is precise and the reading experience is very pleasant. The plots are very well-thought-out.

      Weaknesses:

      I would not talk about weaknesses, because this is really a nice paper. If I really had to find one, I would have liked to see some clear predictions of the model expressed in such a way that experimentalists could design validation experiments.

    1. Reviewer #2 (Public review):

      Summary:

      The Commander complex is a key player in endosomal recycling which recruits cargo proteins and facilitates the formation of tubulo-vesicular carriers. Squiers et al found COMMD3, a subunit of the Commander complex, could interact directly with ARF1 and regulate endosomal recycling.

      Strengths:

      Overall, this is a nice study that provides some interesting knowledge on the function of the Commander complex.

      Weaknesses:

      Several issues should be addressed.

      (1) All existing data suggest that COMMD3 is a subunit of the Commander complex. Is there any evidence that COMMD3 can exist as a monomer?

      (2) In Figure 9, the author emphasizes COMMD3-dependent cargo and Commander-dependent cargo. Can the authors speculate what distinguishes these two types of cargo? Do they contain sequence-specific motifs?

      (3) What could be the possible mechanism underlying the observation that the knockout of COMMD3 results in larger early endosomes? How is the disruption of cargo retrieval related to the increase in endosome size?

    1. Reviewer #2 (Public review):

      Summary:

      The author of this manuscript aimed to uncover the mechanisms behind miRNA retention within cells. They identified PCBP2 as a crucial factor in this process, revealing a novel role for RNA-binding proteins. Additionally, the study discovered that SYNCRIP is essential for PCBP2's function, demonstrating the cooperative interaction between these two proteins. This research not only sheds light on the intricate dynamics of miRNA retention but also emphasizes the importance of protein interactions in regulating miRNA behavior within cells.

      Strengths:

      This paper makes important progress in understanding how miRNAs are kept inside cells. It identifies PCBP2 as a key player in this process, showing a new role for proteins that bind RNA. The study also finds that SYNCRIP is needed for PCBP2 to work, highlighting how these proteins work together. These discoveries not only improve our knowledge of miRNA behavior but also suggest new ways to develop treatments by controlling miRNA locations to influence cell communication in diseases. The use of liver cell models and thorough experiments ensures the results are reliable and show their potential for RNA-based therapies

      Weaknesses:

      Despite its strengths, the manuscript has several notable limitations. The study's exclusive focus on hepatocytes limits the applicability of the findings to other cell types and physiological contexts. While the interaction between PCBP2 and SYNCRIP is well-characterized, the manuscript lacks detailed insights into the structural basis of this interaction and the dynamic regulation of their binding. The generalization of the findings to a broader spectrum of miRNAs and RNA-binding proteins (RBPs) remains underexplored, leaving gaps in understanding the full scope of miRNA compartmentalization.

      Furthermore, the therapeutic implications of these findings, though promising, are not directly connected to specific disease models or clinical scenarios, reducing their immediate translational impact. The manuscript would also benefit from a deeper discussion of potential upstream regulators of PCBP2 and SYNCRIP and the influence of cellular or environmental factors on their activity. Additionally, it is important to note that SYNCRIP has already been recognized as a major regulator of miRNA loading in extracellular vesicles (EVs). However, the purity of EVs is a concern, as the author only performed crude extraction methods without further purification using an iodixanol density gradient. The study also lacks in vivo evidence of PCBP2's role in exosomal miRNA export.

    1. Reviewer #2 (Public review):

      Summary:

      The manuscript explores the role of PRMT1 in AMKL, highlighting its overexpression as a driver of metabolic reprogramming. PRMT1 overexpression enhances the glycolytic phenotype and extracellular acidification by increasing lactate production in AMKL cells. Treatment with the PRMT1 inhibitor MS023 significantly reduces AMKL cell viability and improves survival in tumor-bearing mice. Intriguingly, PRMT1 overexpression also increases mitochondrial number and mtDNA content. High PRMT1-expressing cells demonstrate the ability to utilize alternative energy sources dependent on mitochondrial energetics, in contrast to parental cells with lower PRMT1 levels.

      Strengths:

      This is a conceptually novel and important finding as PRMT1 has never been shown to enhance glycolysis in AMKL, and provides a novel point of therapeutic intervention for AMKL.

      Weaknesses:

      (1) The manuscript lacks detailed molecular mechanisms underlying PRMT1 overexpression, particularly its role in enhancing survival and metabolic reprogramming via upregulated glycolysis and diminished oxidative phosphorylation (OxPhos). The findings primarily report phenomena without exploring the reasons behind these changes.

      (2) The article shows that PRMT1 overexpression leads to augmented glycolysis and low reliance on the OxPhos. However, the manuscript also shows that PMRT1 overexpression leads to increased mitochondrial number and mitochondrial DNA content and has an elevated NADPH/NAD+ ratio. Further, these overexpressing cells have the ability to better survive on alternative energy sources in the absence of glucose compared to low PMRT1-expressing parental cells. Surprisingly, the seashores assay in PRMT1 overexpressing cells showed no further enhancement in the ECAR after adding mitochondrial decoupler FCCP, indicating the truncated mitochondrial energetics. These results are contradicting and need a more detailed explanation in the discussion.

      (3) How was disease penetrance established following the 6133/PRMT1 transplant before MS023 treatment?

      (4) The 6133/PRMT1 cells show elevated glycolysis compared to parental 6133; why did the author choose the 6133 cells for treatment with the MS023 and ECAR assay (Fig.3 b)? The same is confusing with OCR after inhibitor treatment in 6133 cells; the figure legend and results section description are inconsistent.

      (5) The discussion is too brief and incoherent and does not adequately address key findings. A comprehensive rewrite is necessary to improve coherence and depth.

      (6) The materials and methods section lacks a description of statistical analysis, and significance is not indicated in several figures (e.g., Figures 1C, D, F; Figures 2D, E, F, I). Statistical significance must be consistently indicated. The methods section requires more detailed descriptions to enable replication of the study's findings.

      (7) Figures are hazy and unclear. They should be replaced with high-resolution images, ensuring legible text and data.

      (8) Correct the labeling in Figure 2I by removing the redundant "D."

    1. Reviewer #2 (Public review):

      Summary:

      This work by den Bakker and Kloosterman contributes to the vast body of research exploring the dynamics governing the communication between the hippocampus (HPC) and the medial prefrontal cortex (mPFC) during spatial learning and navigation. Previous research showed that population activity of mPFC neurons is replayed during HPC sharp-wave ripple events (SWRs), which may therefore correspond to privileged windows for the transfer of learned navigation information from the HPC, where initial learning occurs, to the mPFC, which is thought to store this information long term. Indeed, it was also previously shown that the activity of mPFC neurons contains task-related information that can inform about the location of an animal in a maze, which can predict the animals' navigational choices. Here, the authors aim to show that the mPFC neurons that are modulated by HPC activity (SWRs and theta rhythms) are distinct from those "encoding" spatial information. This result could suggest that the integration of spatial information originating from the HPC within the mPFC may require the cooperation of separate sets of neurons.

      This observation may be useful to further extend our understanding of the dynamics regulating the exchange of information between the HPC and mPFC during learning. However, my understanding is that this finding is mainly based upon a negative result, which cannot be statistically proven by the failure to reject the null hypothesis. Moreover, in my reading, the rest of the paper mainly replicates phenomena that have already been described, with the original reports not correctly cited. My opinion is that the novel elements should be precisely identified and discussed, while the current phrasing in the manuscript, in most cases, leads readers to think that these results are new. Detailed comments are provided below.

      Major concerns:

      (1) The main claim of the manuscript is that the neurons involved in predicting upcoming choices are not the neurons modulated by the HPC. This is based upon the evidence provided in Figure 5, which is a negative result that the authors employ to claim that predictive non-local representations in the mPFC are not linked to hippocampal SWRs and theta phase. However, it is important to remember that in a statistical test, the failure to reject the null hypothesis does not prove that the null hypothesis is true. Since this claim is so central in this work, the authors should use appropriate statistics to demonstrate that the null hypothesis is true. This can be accomplished by showing that there is no effect above some size that is so small that it would make the effect meaningless (see https://doi.org/10.1177/070674370304801108).

      (2) The main claim of the work is also based on Figure 3, where the authors show that SWRs-unmodulated mPFC neurons have higher spatial tuning, and higher directional selectivity scores, and a higher percentage of these neurons show theta skipping. This is used to support the claim that SWRs-unmodulated cells encode spatial information. However, it must be noted that in this kind of task, it is not possible to disentangle space and specific task variables involving separate cognitive processes from processing spatial information such as decision-making, attention, motor control, etc., which always happen at specific locations of the maze. Therefore, the results shown in Figure 3 may relate to other specific processes rather than encoding of space and it cannot be unequivocally claimed that mPFC neurons "encode spatial information". This limitation is presented by Mashoori et al (2018), an article that appears to be a major inspiration for this work. Can the authors provide a control analysis/experiment that supports their claim? Otherwise, this claim should be tempered. Also, the authors say that Jadhav et al. (2016) showed that mPFC neurons unmodulated by SWRs are less tuned to space. How do they reconcile it with their results?

      (3) My reading is that the rest of the paper mainly consists of replications or incremental observations of already known phenomena with some not necessarily surprising new observations:<br /> a) Figure 2 shows that a subset of mPFC neurons is modulated by HPC SWRs and theta (already known), that vmPFC neurons are more strongly modulated by SWRs (not surprising given anatomy), and that theta phase preference is different between vmPFC and dmPFC (not surprising given the fact that theta is a travelling wave).<br /> b) Figure 4 shows that non-local representations in mPFC are predictive of the animal's choice. This is mostly an increment to the work of Mashoori et al (2018). My understanding is that in addition to what had already been shown by Mashoori et al here it is shown how the upcoming choice can be predicted. The author may want to emphasize this novel aspect.<br /> c) Figure 6 shows that prospective activity in the HPC is linked to SWRs and theta oscillations. This has been described in various forms since at least the works of Johnson and Redish in 2007, Pastalkova et al 2008, and Dragoi and Tonegawa (2011 and 2013), as well as in earlier literature on splitter cells. These foundational papers on this topic are not even cited in the current manuscript.<br /> Although some previous work is cited, the current narrative of the results section may lead the reader to think that these results are new, which I think is unfair. Previous evidence of the same phenomena should be cited all along the results and what is new and/or different from previous results should be clearly stated and discussed. Pure replications of previous works may actually just be supplementary figures. It is not fair that the titles of paragraphs and main figures correspond to notions that are well established in the literature (e.g., Figure 2, 2nd paragraph of results, etc.).<br /> d) My opinion is that, overall, the paper gives the impression of being somewhat rushed and lacking attention to detail. Many figure panels are difficult to understand due to incomplete legends and visualizations with tiny, indistinguishable details. Moreover, some previous works are not correctly cited. I tried to make a list of everything I spotted below.

    1. Reviewer #2 (Public review):

      Summary:

      This study describes a novel method for mapping torsional stress in the genome of Saccharomyces cerevisiae using trimethylpsoralen (TMP). It introduces a procedure to establish a zero-torsion baseline while preserving the chromatin state by treating cells with formaldehyde before releasing torsion with restriction enzyme digestion.

      This approach allows foer more accurate differentiation between torsional stress effects and accessibility effects in the psoralen signal. The results confirm that psoralen crosslinking is strongly affected by accessibility of the DNA and to a much more limited extent by the torsional stress of the DNA. Subtracting the baseline signal (no torsion) from the total signal allows detecting torsional stress, although TMP accessibility is still affecting the read out. The authors confirm the validity of the method by studying torsional stress in dependence of transcription levels, gene length and relative gene orientation. They propose that torsional stress may play a role in recruiting topoisomerases and regulating 3D genome architecture via cohesin. They also suggest that transcription factor binding might insulate negative supercoiling originated form transcription of neighboring divergent genes.

      Strengths:

      This paper offers a potentially interesting tool for future work.

      Weaknesses:

      The signal-to-background ratio, which represents the torsional fraction, appears to be quite limited relative to the overall signal (roughly 20x less, according to the scales in figs 2a and 2b, raising concerns about the robustness of the conclusions. It is clear from these figures, for instance, that a non-negligible fraction of the remaining signal is still dependent on DNA accessibility, revealing the nucleosomes footprints in spite of the fact that subtracting the zero-torsion signal should theoretically hinder the accessibility component. Because of this, some of the conclusions might be flawed, in that what is attributed to torsional stress might in reality be due, partially or fully, to accessibility issues.

      Specific points:

      Lines 226-227: "rotation may be more restricted with a lengthening in the RNA transcript, which is known to be associated with large machinery, such as spliceosomes". This argument is not appropriate to correlate torsional stress with gene length. Spliced genes are rare and generally short in yeast, generally in ribosomal proteins genes.

      Lines 256-257 In discussing that torsional stress must hinder Pol II progression, the authors write: "Pol II has a minimal presence in the intergenic region between divergent genes and is enriched in the intergenic region between convergent genes, consistent with a previous finding that after termination, Pol II tends to remain on the DNA downstream of the terminator". The connection between Pol II distribution and torsional stress is unclear. Pol ii is depleted at promoters and is enriched at at 3'-end of convergent genes most likely because this ChIP signal is the sum of signals from the two convergent genes. The fact that positive torsional stress is observed in these region does not mean that polymerases accumulate because the torsional stress hinder Pol II progression. To claim elongation defects the authors should repeat the same analysis with stranded data (e.g. NET-seq or CRAC) and assess if polymerases transcribing these regions accumulate more when facing convergent genes compared to tandem genes. The claim that after termination the Pol II tends to remain on the DNA appears to be meaningless - the authors probably mean after RNA processing.

      Lines 275-277: "These data provide evidence that the (+) supercoiling generated by transcription may facilitate genome folding in coordination with other participating proteins". This is an overstatement. It is known that cohesins accumulate between convergent genes. The fact that there is torsional stress in the same position does not imply that supercoiling participates in genome folding. These could be independent events, or even, supercoiling might depend on cohesins

      Lines 289-290 "torsion generated from one gene can impact the expression of its neighboring gene, consistent with previous findings that the expression of these genes is coupled" the existence of negative torsional stress in a common intergenic region for two genes does not imply that torsion is causally associated to gene expression coupling

      Lines 291-292: "Another large class of S. cerevisiae promoters (termed "TFO") are regulated by insulator ssTFs, such as Reb1 and Abf1, which decouple interactions between neighbouring genes" In these cases and others that depend on an activator binding the authors detect a region of accessibility interrupted by a valley, which they interpret as a topological insulator. However, the valley might be generated because of decreased TMP accessibility due to of TF binding.

    1. Reviewer #2 (Public review):

      Summary:

      In this study, the authors build a statistical model that stochastically samples from a time-interval distribution of reorientation rates. The form of the distribution is extracted from a large array of behavioral data, and is then used to describe not only the dynamics of individual worms (including the inter-individual variability in behavior), but also the aggregate population behavior. The authors note that the model does not require assumptions about behavioral state transitions, or evidence accumulation, as has been done previously, but rather that the stochastic nature of behavior is "simply the product of stochastic sampling from an exponential function".

      Strengths:

      This model provides a strong juxtaposition to other foraging models in the worm. Rather than evoking a behavioral transition function (that might arise from a change in internal state or the activity of a cell type in the network), or evidence accumulation (which again maps onto a cell type, or the activity of a network) - this model explains behavior via the stochastic sampling of a function of an exponential decay. The underlying model and the dynamics being simulated, as well as the process of stochastic sampling, are well described and the model fits the exponential function (Equation 1) to data on a large array of worms exhibiting diverse behaviors (1600+ worms from Lopez-Cruz et al). The work of this study is able to explain or describe the inter-individual diversity of worm behavior across a large population. The model is also able to capture two aspects of the reorientations, including the dynamics (to switch or not to switch) and the kinetics (slow vs fast reorientations). The authors also work to compare their model to a few others including the Levy walk (whose construction arises from a Markov process) to a simple exponential distribution, all of which have been used to study foraging and search behaviors.

      Weaknesses:

      This manuscript has two weaknesses that dampen the enthusiasm for the results. First, in all of the examples the authors cite where a Gillespie algorithm is used to sample from a distribution, be it the kinetics associated with chemical dynamics, or a Lotka-Volterra Competition Model, there are underlying processes that govern the evolution of the dynamics, and thus the sampling from distributions. In one of their references, for instance, the stochasticity arises from the birth and death rates, thereby influencing the genetic drift in the model. In these examples, the process governing the dynamics (and thus generating the distributions from which one samples) is distinct from the behavior being studied. In this manuscript, the distribution being sampled is the exponential decay function of the reorientation rate (lines 100-102). This appears to be tautological - a decay function fitted to the reorientation data is then sampled to generate the distributions of the reorientation data. That the model performs well and matches the data is commendable, but it is unclear how that could not be the case if the underlying function generating the distribution was fit to the data.

      The second weakness is somewhat related to the first, in that absent an underlying mechanism or framework, one is left wondering what insight the model provides. Stochastic sampling a function generated by fitting the data to produce stochastic behavior is where one ends up in this framework, and the authors indeed point this out: "simple stochastic models should be sufficient to explain observably stochastic behaviors." (Line 233-234). But if that is the case, what do we learn about how the foraging is happening? The authors suggest that the decay parameter M can be considered a memory timescale; which offers some suggestion, but then go on to say that the "physical basis of M can come from multiple sources". Here is where one is left for want: The mechanisms suggested, including loss of sensory stimuli, alternations in motor integration, ionotropic glutamate signaling, dopamine, and neuropeptides are all suggested: these are basically all of the possible biological sources that can govern behavior, and one is left not knowing what insight the model provides. The array of biological processes listed is so variable in dynamics and meaning, that their explanation of what governs M is at best unsatisfying. Molecular dynamics models that generate distributions can point to certain properties of the model, such as the binding kinetics (on and off rates, etc.) as explanations for the mechanisms generating the distributions, and therefore point to how a change in the biology affects the stochasticity of the process. It is unclear how this model provides such a connection, especially taken in aggregate with the previous weakness.

      Providing a roadmap of how to think about the processes generating M, the meaning of those processes in search, and potential frameworks that are more constrained and with more precise biological underpinning (beyond the array of possibilities described) would go a long way to assuaging the weaknesses.

    1. Reviewer #2 (Public review):

      Summary:

      This paper presents miniML as a supervised method for detection of spontaneous synaptic events. Recordings of such events are typically of low SNR, where state-of-the-art methods are prone to high false favourable rates. Unlike current methods, training miniML requires neither prior knowledge of the kinetics of events nor the tuning of parameters/thresholds.

      The proposed method comprises four convolutional networks, followed by a bi-directional LSTM and a final fully connected layer, which outputs a decision event/no event per time window. A sliding window is used when applying miniML to a temporal signal, followed by an additional estimation of events' time stamps. miniML outperforms current methods for simulated events superimposed on real data (with no events) and presents compelling results for real data across experimental paradigms and species.

      Strengths:

      The authors present a pipeline for benchmarking based on simulated events superimposed on real data (with no events). Compared to five other state-of-the-art methods, miniML leads to the highest detection rates and is most robust to specific choices of threshold values for fast or slow kinetics. A major strength of miniML is the ability to use it for different datasets. For this purpose, the CNN part of the model is held fixed and the subsequent networks are trained to adapt to the new data. This Transfer Learning (TL) strategy reduces computation time significantly and more importantly, it allows for using a substantially smaller data set (compared to training a full model) which is crucial as training is supervised (i.e. uses labeled examples).

      Weaknesses:<br /> The authors do not indicate how the specific configuration of miniML was set, i.e. number of CNNs, units, LSTM, etc. Please provide further information regarding these design choices, whether they were based on similar models or if chosen based on performance.

      The data for the benchmark system was augmented with equal amounts of segments with/without events. Data augmentation was undoubtedly crucial for successful training.<br /> (1) Does a balanced dataset reflect the natural occurrence of events in real data? Could the authors provide more information regarding this matter?<br /> (2) Please provide a more detailed description of this process as it would serve users aiming to use this method for other sub-fields.

      The benchmarking pipeline is indeed valuable and the results are compelling. However, the authors do not provide comparative results for miniML for real data (figures 4-8). TL does not apply to the other methods. In my opinion, presenting the performance of other methods, trained using the smaller dataset would be convincing of the modularity and applicability of the proposed approach.

      Impact:

      Accurate detection of synaptic events is crucial for the study of neural function. miniML has a great potential to become a valuable tool for this purpose as it yields highly accurate detection rates, it is robust, and is relatively easily adaptable to different experimental setups.

      Comments on revisions:

      The revised manuscript presents a compelling framework. The performance of mini ML is thouroughly explored and compared to several benchmarks. The training process along with other technical issues are now described in a satisfactory level of detail.<br /> I think the authors did a great job. They answered all claims and concerns raised by me and the other reviewers.

    1. Reviewer #2 (Public review):

      Summary:

      The manuscript by Yu et al. describes a novel approach for collecting complex and different cognitive phenotypes in individually housed mice in their home cage. The authors report a simple yet elegant design that they developed for assessing a variety of complex and novel behavioral paradigms autonomously in mice.

      Strengths:

      The data are strong, the arguments are convincing, and I think the manuscript will be highly cited given the complexity of behavioral phenotypes one can collect using this relatively inexpensive ($100/box) and high throughput procedure (without the need for human interaction). Additionally, the authors include a machine learning algorithm to correct for erroneous strategies that mice develop which is incredibly elegant and important for this approach as mice will develop odd strategies when given complete freedom.

      Weaknesses:

      (1) A limitation of this approach is that it requires mice to be individually housed for days to months. This should be discussed in depth.

      (2) A major issue with continuous self-paced tasks such as the autonomous d2AFC used by the authors is that the inter-trial intervals can vary significantly. Mice may do a few trials, lose interest, and disengage from the task for several hours. This is problematic for data analysis that relies on trial duration to be similar between trials (e.g., reinforcement learning algorithms). It would be useful to see the task engagement of the mice across a 24-hour cycle (e.g., trials started, trials finished across a 24-hour period) and approaches for overcoming this issue of varying inter-trial intervals.

      (3) Movies - it would be beneficial for the authors to add commentary to the video (hit, miss trials). It was interesting watching the mice but not clear whether they were doing the task correctly or not.

      (4) The strength of this paper (from my perspective) is the potential utility it has for other investigators trying to get mice to do behavioral tasks. However, not enough information was provided about the construction of the boxes, interface, and code for running the boxes. If the authors are not willing to provide this information through eLife, GitHub, or their own website then my evaluation of the impact and significance of this paper would go down significantly.

      Minor concerns:

      Learning rate is confusing for Figure 3 results as it actually refers to trials to reach the criterion, and not the actual rate of learning (e.g., slope).

    1. Reviewer #2 (Public review):

      Summary:

      This study aimed to determine which spatial factors (conceived broadly as environmental, agronomic and socio-economic) explain greater avian influenza case numbers reported since 2020 (2020--2022) by comparing similar models built with data from the period 2015--2020. The authors have chosen an environmental niche modelling approach, where detected infections are modelled as a function of spatial covariates extracted at the location of each case. These covariates are available over the entire world so that the predictions can be projected back to space in the form of a continuous map.

      Strengths:

      The authors use boosted regression trees as the main analytical tool, which always feature among the best-performing models for environmental niche models (also known as habitat suitability models). They run replicate sets of the analysis for each of their model targets (wild/domestic x pathogen variant), which can help produce stable predictions. The authors take steps to ameliorate some forms of expected bias in the detection of cases, such as geographic variation in surveillance efforts, and in general more detections near areas of higher human population density.

      Weaknesses:

      The study is not altogether coherent with respect to time. Data sets for the response (N5H1 or N5Hx case data in domestic or wild birds ) are divided into two periods; 2015--2020, and 2020--2022. Each set is modelled using a common suite of covariates that are not time-varying. That suggests that causation is inferred by virtue of cases being in different geographic areas in those two time periods. Furthermore, important predictors such as chicken density appear to be informed (in the areas of high risk) from census data from before 2010. The possibility for increased surveillance effort *through time* is overlooked, as is the possibility that previously high-burden locations may implement practice changes to reduce vulnerability.

    1. Reviewer #2 (Public review):

      Summary:

      The authors exposed naïve male flies to different groups of females, either mated or virgin. Male flies can successfully copulate with virgin females; however, they are rejected by mated females. This rejection reduces sugar preference and sensitivity in males. Investigating the underlying neural circuits, the authors show that dopamine signaling onto GR5a sensory neurons is required for reduced sugar preference. GR5a sensory neurons respond less to sugar exposure when they lack dopamine receptors.

      Strengths:

      The findings add another strong phenotype to the existing dataset about brain-wide neuromodulatory effects of mating. The authors use several state-of-the-art methods, such as activity-dependent GRASP to decipher the underlying neural circuitry. They further perform rigorous behavioral tests and provide convincing evidence for the local labellar circuit.

      Weaknesses:

      The authors focus on the circuit connection between dopamine and gustatory sensory neurons in the male SEZ. Therefore, it is still unknown how mating modulates dopamine signaling and what possible implications on other behaviors might result from a reduced sugar preference.

    1. Reviewer #2 (Public review):

      Summary:

      In this manuscript, Krishnan et al devised three paradigms to perform contextual fear conditioning in head-fixed mice. Each of the paradigms relied on head-fixed mice running on a treadmill through virtual reality arenas. The authors tested the validity of three versions of the paradigms by using various parameters. As described below, I think there are several issues with the way the paradigms are designed and how the data are interpreted. Moreover, as Paradigm 3 was published previously in a study by the same group, it is unclear to me what this manuscript offers beyond the validations of parameters used for the previous publication. Below, I list my concerns point-by-point, which I believe need to be addressed to strengthen the manuscript.

      Major comments

      (1) In the analysis using the LME model (Tables 1 and 2), I am left wondering why the mice had increased freezing across recall days as well as increased generalization (increased freezing to the familiar context, where shock was never delivered). Would the authors expect freezing to decrease across recall days, since repeated exposure to the shock context should drive some extinction? This is complicated by the analysis showing that freeing was increased only on retrieval day 1 when analyzing data from the first lap only. Since reward (e.g., motivation to run) is removed during the conditioning and retrieval tests, I wonder if what the authors are observing is related to decreased motivation to perform the task (mice will just sit, immobile, not necessarily freezing per se). I think that these aspects need to be teased out.

      (2) Related to point 1, the authors actually point out that these changes could be due to the loss of the water reward. So, in line 304, is it appropriate to call this freezing? I think it will be very important for the authors to exactly define and delineate what they consider as freezing in this task, versus mice just simply sitting around, immobile, and taking a break from performing the task when they realize there is no reward at the end.

      (3) In the second paradigm, mice are exposed to both novel and (at the time before conditioning) neutral environments just before fear conditioning. There is a big chance that the mice are 'linking' the memories (Cai et al 2016) of the two contexts such that there is no difference in freezing in the shock context compared to the neutral context, which is what the authors observe (Lines 333-335). The experiment should be repeated such that exposure to the contexts does not occur on the conditioning day.

      (4) On lines 360-361, the authors conclude that extinction happens rapidly, within the first lap of the VR trial. To my understanding, that would mean that extinction would happen within the first 5-10 seconds of the test (according to Figure S1E). That seems far too fast for extinction to occur, as this never occurs in freely behaving mice this quickly.

      (5) Throughout the different paradigms, the authors are using different shock intensities. This can lead to differences in fear memory encoding as well as in levels of fear memory generalization. I don't think that comparisons can be made across the different paradigms as too many variables (including shock intensity - 0.5/0.6mA can be very different from 1.0 mA) are different. How can the authors pinpoint which works best? Indeed, they find Paradigm 3 'works' better than Paradigm 2 because mice discriminate better between the neutral and shock contexts. This can definitely be driven by decreased generalization from using a 0.6mA shock in Paradigm 3 compared to 1.0 mA shock in Paradigm 2.

      (6) There are some differences in the calcium imaging dataset compared to other studies, and the authors should perform additional testing to determine why. This will be integral to validating their head-fixed paradigm(s) and showing they are useful for modeling circuit dynamics/behaviors observed in freely behaving mice. Moreover, the sample size (number of mice) seems low.

      (7) It appears that the authors have already published a paper using Paradigm 3 (Ratigan et al 2023). If they already found a paradigm that is published and works, it is unclear to me what the current manuscript offers beyond that initial manuscript.

      (8) As written, the manuscript is really difficult to follow with the averages and standard error reported throughout the text. This reporting in the text occurred heterogeneously throughout the text, as sometimes it was reported and other times it was not. Cleaning this reporting up throughout the paper would greatly improve the flow of the text and qualitative description of the results.

    1. Reviewer #2 (Public review):

      Summary:

      This manuscript uses a recently published oxytocin receptor null prairie vole line to examine the effects of this mutation on pair bonding behavior and PVN gene expression. Results reveal that Oxtr sex specifically influences early courtship behavior and partner preference formation as well as suppressing promiscuity toward novel potential mates. PVN gene expression varies between Oxtr null and WT prairie voles.

      Strengths:

      Behavioral analyses extend beyond the typical reporting of frequency and duration. The gene expression models and analyses are well-done and convincing. The experimental designs and approaches are strong.

      Weaknesses:

      More details and background literature explaining the role of the Oxt system in pair bonding behaviors is necessary, particularly for the Introduction. The authors overstate several times that Oxtr expression is not necessary for partner preference formation, based on their previous findings. However, it does appear, particularly, in the short cohabitation that it is necessary. Thus, the nuanced answer may be that Oxt may accelerate partner preference formation. Improving the presentation of the statistics and figures will make the manuscript more reader-friendly.

    1. Reviewer #2 (Public review):

      Summary:

      The authors developed a deep learning model based on a DenseNet CNN architecture to predict two cognitive functions: working memory and episodic memory, from functional connectivity matrices. These matrices were recorded under three conditions: during rest, a working memory task, and a movie, and were treated as images for the CNN algorithm. They tested their model's performance across different conditions and a separate dataset with a different age distribution (using the same MRI scanner, scanning configurations, and cognitive tests). They also calculated the "brain cognition gap" based on the model trained on resting functional connectivity to predict working memory. Extending from the commonly used index "brain age," the brain cognition gap was defined as the difference between the working memory score predicted by their model (predicted working memory) and the working memory score based on the working memory test itself (observed working memory). This brain cognition gap was found to be associated with physical activity, education, and cardiovascular risk. The authors also conducted additional mediation tests to examine whether regional functional variability mediated the relationship between PET-derived measures of dopamine and the brain cognition gap.

      Strengths:

      The major strength of this manuscript is the extensive effort the authors have put into creating a new 'biomarker' that links deep learning with fMRI, PET, physical activity, education, and cardiovascular risk across two studies. This effort is impressive.

      Weaknesses:

      There are several weaknesses in the current methods and results, making many of the claims unconvincing. These weaknesses include:

      (1) The lack of baseline models to benchmark the predictive performance of their DenseNet models.

      (2) The inappropriate calculation of the brain cognition gap due to the lack of control for regression-toward-the-mean and the influence of the working memory itself (a common practice in brain age studies).

      (3) The lack of benchmarking of the brain cognition gap against the 'corrected' brain age gap and the direct prediction of physical activity, education, and cardiovascular risk.

      (4) Minimal justification for their PET mediation analysis.

      Regarding the impact of the work on the field and the utility of the methods and data to the community, I see its potential. However, addressing all the weaknesses listed above is crucial and likely to change the conclusions of the results.

      It is important to note that many statements in the manuscript are overstated, making the contribution of the manuscript seem exaggerated.

      For instance, the abstract claims "there is a lack of objective biomarkers to accurately predict cognitive function," and the discussion states, "across various studies, the correlation between predicted and actual fluid intelligence typically hovers around 0.25 (98-100)." However, a meta-analysis by Vieira and colleagues (2022 https://doi.org/10.1016/j.intell.2022.101654) found over 37 studies up to 2020 predicting cognitive abilities from fMRI with machine learning, with 24 studies published in 2019-20 alone. Since 2020, with the rise of machine learning and AI, even more studies have likely been published on this topic, all claiming to show objective biomarkers to accurately predict cognitive function. Vieira and colleagues also found an average performance of these objective biomarkers in predicting general cognition at r = .42, similar to what was found in this manuscript. Based on this alone, it is unclear how novel or superior their method is without a proper systematic benchmark.

      Similarly, the authors claim superior performance of deep learning and mischaracterize machine learning algorithms: "In particular, deep neural networks (DNN) methods have been successfully applied to behavioral and disease prediction (24-26), and have been found to outperform other machine learning approaches (27-29)," and "Deep learning approaches overcome the limitation of predictive techniques that solely rely on linear associations between connectivity and behavioral phenotypes (17)." However, the superiority of deep learning is debatable. Studies show comparable performance between machine learning (such as kernel regression) and deep learning (such as fully-connected neural networks, BrainNetCNN, Graph CNN (GCNN), and temporal CNN), e.g., He and colleagues (2019) and Vieira and colleagues (2024) https://doi.org/10.1016/j.neuroimage.2019.116276 and Vieira and colleagues' https://doi.org/10.1101/2024.03.07.583858.

      Moreover, many non-deep learning predictive techniques are non-linear, e.g., XGBoost, CatBoost, random forest, kernel ridge, and support vector regression with non-linear kernels (such as RBF and polynomial). Thus, stating that machine learning can only model linear relationships is incorrect. Moreover, for the small amount of data the authors had, some might argue that a linear algorithm might be more appropriate to balance the bias-variance trade-off in prediction. Again, without a proper systematic benchmark, it is unclear how well their DenseNet algorithm performs compared to other algorithms.

      Regarding the Brain Age literature, the authors also misinterpreted recent findings: "However, a recent study suggests that brain age predictions contribute minimally compared to chronological age for explaining cognitive decline (65), implying that cognitive predictions are more reliable." In this study, Tetereva and colleagues (2024) (https://doi.org/10.7554/eLife.87297.4) showed that non-deep-learning machine learning can make good predictions from MRI on both chronological age (with r up to .88) and fluid cognition (with r up to .627). Using the combination of functional connectivity matrices across rest and tasks to predict fluid cognition, they found performance at r = .565, comparable to what was found in the current manuscript with deep learning. Nonetheless, while brain age predicted chronological age well (and brain cognition predicted fluid cognition well), it was problematic to predict fluid cognition from brain age. They showed that, because brain age, by design, shared so much common variance with chronological age, brain age and chronological age captured the same variance of fluid cognition. When chronological age was controlled for in the prediction of fluid cognition, brain age no longer had high predictive ability. In the case of the current manuscript, the brain cognition gap is not appropriately controlled for cognition (to be more precise, a working memory score). I expect the performance in predicting physical activity, education, and cardiovascular risk will drop dramatically once cognition is controlled for. There are at least two ways to control cognition according to Tetereva and colleagues' study (see more in the recommendations).

      The authors mentioned, "The third aim of the current study is to uncover the contribution of dopamine (DA) integrity to brain-cognition gaps." However, I fail to see how mediation analysis would test this. The authors also mentioned, "Insufficient DA modulation can affect neurocognitive functions detrimentally (69, 74, 76-78)." They should test if DA levels are related to working memory scores in their study, and if so, whether the relationship is mediated by the "corrected" brain-cognition gaps. Note see more on the recommendation for the calculation of the "corrected" brain-cognition gaps.

    1. Reviewer #2 (Public review):

      Summary:

      A rapid recovery of the ecosystems during the late Early Triassic, in the aftermath of the end-Permian mass extinction, is discussed based on different types of fossils.

      Strengths:

      The combined study of invertebrate trace fossils, tetrapod bones, and plant remains together with their stratigraphic distribution in different sections provides a convincing case to support a rapid recovery as the authors hypothesize.

      Weaknesses:

      The study is based on three regions with Triassic successions from the North China block. While a first-hand study of other localities of similar age would be ideal, this is of course a difficult task. Instead, the authors provide comparisons with other worldwide regions to build their case and support the initial hypothesis.

    1. Reviewer #2 (Public review):

      Summary:

      Dr. Adam Kim and collaborators study the changes in chromatin structure in monocytes obtained from alcohol-associated hepatitis (AH) when compared to healthy controls (HC). Through the usage of high throughput chromatin conformation capture technology (Hi-C), they collected data on contact frequencies between both contiguous and distal DNA windows (100 kB each); mainly within the same chromosome. From the analyses of those data in the two cohorts under analysis, authors describe frequent pairs of regions subject to significant changes in contact frequency across cohorts. Their accumulation onto specific regions of the genome -referred to as hotspots- motivated authors to narrow down their analyses to these disease-associated regions, in many of which, authors claim, a number of key innate immune genes can be found. Ultimately, the authors try to draw a link between the changes observed in chromatin architecture in some of these hotspots and the differential co-expression of the genes lying within those regions, as ascertained in previous single-cell transcriptomic analyses.

      Strengths:

      The main strength of this paper lies in the generation of Hi-C data from patients, a valuable asset that, as the authors emphasize, offers critical insights into the role of chromatin architecture dysregulation in the pathogenesis of alcohol-associated hepatitis (AH). If confirmed, the reported findings have the potential to highlight an important, yet overlooked, aspect of cellular dysregulation-chromatin conformation changes - not only in AH but potentially in other immune-related conditions with a component of pathological inflammation.

      Weaknesses:

      In what I regard as the two most important weaknesses of the work, I feel that they are more methodological than conceptual. The first of these issues concerns the perhaps insufficient level of description provided on the definition of some key types of genomic regions, such as topologically associated domains, DNA hotspots, or even DNA loci showing significant changes in contact frequency between AH and HC. In spite of the importance of these concepts in the paper, no operational, explicit description of how are they defined, from a statistical point of view, is provided in the current version of the manuscript.

      Without these definitions, some of the claims that authors make in their work become hard to sustain. Some examples are the claim that randomizing samples does not lead to significant differences between cohorts; the claim that most of the changes in contact frequency happen locally; or the claim that most changes do not alter the structure of TADs, but appear either within, or between TADs. In my viewpoint, specific descriptions and implementation of proper tests to check these hypotheses and back up the mentioned specific claims, along with the inclusion of explicit results on these matters, would contribute very significantly to strengthening the overall message of the paper.

      The second notable weakness of the study pertains to the characterization of the changes observed around immune genes in relation to genome-wide expectations. Although the authors suggest that certain hotspots contain a high number of immune-related genes, no enrichment analysis is provided to verify whether these regions indeed harbor a higher concentration of such genes compared to other genomic areas. It would be important for readers to be promptly informed if no such enrichment is observed, for in that case, the presence of some immune genes within these hotspots would carry more limited implications.

      Additionally, the criteria used to define a hotspot are not clearly outlined, making it difficult to assess whether the changes in contact frequencies around the immune genes highlighted in figures 5-8 are truly more pronounced than what would be expected genome-wide.

    1. Reviewer #2 (Public review):

      Summary:

      This study examines the role of beta oscillations in motor control, particularly during rapid changes in movement direction among patients with Parkinson's disease. The researchers utilized magnetoencephalography (MEG) and local field potential (LFP) recordings from the subthalamic nucleus to investigate variations in beta band activity within the cortex and STN during the initiation, cessation, and reversal of movements, as well as the impact of external cue predictability on these dynamics. The primary finding indicates that beta oscillations more effectively signify the start and end of motor sequences than transitions within those sequences. The article is well-written, clear, and concise.

      Strengths:

      The use of a continuous motion paradigm with rapid reversals extends the understanding of beta oscillations in motor control beyond simple tasks. It offers a comprehensive perspective on subthalamo-cortical interactions by combining MEG and LFP.

      Comments on revisions: I am satisfied with the revisions. I do not have further comments on the revised manuscript.

    1. Reviewer #2 (Public review):

      This manuscript builds on the authors' earlier work, most recently Wong et al. 2019, in which they showed the importance of the perirhinal cortex (PRh) during the first-order conditioning stage of sensory preconditioning. Sensory preconditioning requires learning between two neutral stimuli (S2-S1) and subsequent development of a conditioned response to one of the neutral stimuli after pairing of the other stimulus with a motivationally relevant unconditioned stimulus (S1-US). One highly debated question regarding the mechanisms of learning of sensory preconditioning has been whether conditioned responses evoked by the indirectly trained stimulus (S2) occur through a mediated representation at the time of the first-order US training, or whether the conditioned responses develop through a chained evoked representation (S2--> S1 --> US) at the time of test. The authors' prior findings provided strong evidence for PRh being involved in mediated learning during the first-order training. They showed that protein synthesis was required during the first-order S1-US learning to support the conditioned response to the indirectly trained stimulus (S2) at test.

      One question remaining following the previous paper was whether certain conditions may promote a chaining mechanism over mediated learning, as there is some evidence for chained representations at the time of test. In this paper, the authors directly address this important question and find unambiguous results that the extent of training during the preconditioning stage impacts the involvement of PRh during the first-order conditioning or stage 2. They show that putative blockade of synaptic changes in PRh, using an NMDA antagonist, disrupts responding to the preconditioned cue at test during shorter duration preconditioning training (8 trials), but not during extended training (32 trials). They also show that this is the case for communication between the PRh and BLA during the same stage of training using a contralateral inactivation approach. This confirms their previous findings in 2019 of connectivity between these regions for the short duration training, while they observe here for the first time that this is not the case for extended training. Finally, they show that with extended training, communication between BLA and the PRh is required at the final test of the preconditioned stimulus, but not for the short duration training.

      Strengths:

      The results are clear and extremely consistent across experiments within this paper as well as with earlier work. The experiments here are thorough, well-conceived, and address an important and highly debated question in the field regarding the neural and psychological mechanisms underlying sensory preconditioning. This work is highly impactful for the field as the debate over mediated versus chaining mechanisms has been an important topic for more than 70 years.

      Comments on revisions:

      Thank you for addressing all of my concerns in considerable detail. I have no more suggestions for the authors. This is a fantastic paper both in the experimental design and the execution as well as in the high quality of writing.

    1. Reviewer #2 (Public review):

      Summary:

      In this set of studies, authors identify cFos activation in neurons in female mice that mated with males, and after experiencing male sexual behavior that is either restricted to appetitive behavior or including ejaculation. The medial preoptic nucleus was identified as an area with high cFos induction following ejaculation. Characterization of neurochemical phenotypes of cfos-expressing neurons showed a heterogenous distribution of activated neurons in the MPOA, including both inhibitory and excitatory cell types. Next, in vivo calcium imaging was used to show activation of Vgat and Vglut neurons in female mice MPOA after displaying sniffing of the male, experiencing male appetitive, or male consummatory sexual behavior, demonstrating significantly higher activation and of a greater subpopulation of Vgat neurons than Vglut neurons. Moreover, greatest activation of Vgat neurons was detected following experiencing ejaculation, and ejaculation activated different subpopulations of MPOA cells than consummatory or appetitive sexual behaviors experienced by the female. Finally, pharmaco-genetic activation of the subpopulation of MPOA neurons that were previously activated following ejaculation resulted in a significant reduction of approach behavior by the female mice towards the male, interpreted as suppression of female sexual motivation. In conclusion, a subpopulation of inhibitory cells in the MPOA is activated in female mice after experiencing ejaculation, in turn contributing to suppression of sexual approach behavior.

      Strengths:

      The current set of studies replicates previous findings that ejaculation causes longer latencies to initiate interactions with a male after receiving an ejaculation in a paced mating paradigm, which is widely validated and extensively used to investigate sexual behavior in female rodents. Studies also confirm that ejaculation increases cFos expression in the MPOA, while extending prior findings with a careful analysis of the neurochemical phenotype of activated neurons. A major strength of the studies is the use of cell-specific in vivo imaging and pharmaco-genetic activation to reveal a functional role of specific neuronal ensemble within the MPOA for post ejaculatory female sexual behavior.

      Weaknesses:

      The authors include an elegant manipulation of ejaculation-activated neurons in the MPOA using DREADD. However, this study was limited to show that activation of previously activated cells was sufficient to reduce approach behavior in a paced mating paradigm and receiving intromissions in a home cage mating paradigm. An inhibition approach using DREADD would have been a great complement to this study as it would have examined if activation of the cells was required. Moreover, additional tests for sexual motivation would have greatly strengthened the overall conclusions.

    1. Reviewer #2 (Public review):

      In this study, Wang et al., report the significance of XAP5L and XAP5 in spermatogenesis which are involved in transcriptional regulation of the ciliary gene in testes. In a previous study, the authors demonstrated that XAP5 is a transcription factor required for flagellar assembly in Chlamydomonas. Continuing from their previous study, the authors examined conserved role of the XAP5 and XAP5L, which are the orthologue pair in mammals.

      XAP5 and XAP5L express ubiquitously and testis specifically, respectively, and their absence in testes causes male infertility with defective spermatogenesis. Interestingly, XAP5 deficiency arrest germ cell development at pachytene stage, whereas XAP5L absence causes impaired flagellar formation. RNA-seq analyses demonstrated that XAP5 deficiency suppresses ciliary gene expression including Foxj1 and Rfx family genes in early testis. By contrast, XAP5L deficiency abnormally remains Foxj1 and Rfx genes in mature sperm. From the results, the authors conclude that XAP5 and XAP5L are the antagonistic transcription factor to function at the upstream of Foxj1 and Rfx family genes.

      The current version of the manuscript well represents this reviewer's initial concerns and supports author's claim. Key transcription factors for ciliogenesis, Foxj1 and Rfx2, are direct downstream targets for XAP5 and XAP5L and their common motifs well explain their antagonistic function in sperm flagellar development. All the results well demonstrate that ancient transcription factors, XAP5 and XAP5L, are upstream transcription factors to modulate flagellar development in male mammalian germ line.

    1. Reviewer #2 (Public review):

      Summary:

      The Authors utilize biochemical approaches to determine and validate NRL protein-protein interactions to further understand the mechanisms by which the NRL transcription factor controls rod photoreceptor gene regulatory networks. Observations that NRL displays numerous protein-protein interactions with RNA-binding proteins, many of which are involved in R-loop biology, led the authors to investigate the role of RNA and R-loops in mediating protein-protein interactions and profile the co-localization of R-loops with NRL genomic occupancy.

      Strengths:

      Overall, the manuscript is well-written, providing succinct explanations of the observed results and potential implications. Additionally, the Authors use multiple orthogonal techniques and tissue samples to reproduce and validate that NRL interacts with DHX9 and DDX5. Experiments also utilize specific assays to understand the influence of RNA and R-loops on protein-protein interactions. The Authors also use state-of-the-art techniques to profile R-loop localization within the retina and integrate multiple previously established datasets to correlate R-loop presence with transcription factor binding and chromatin marks an attempt to understand the significance of R-loops in the retina.

      Weaknesses:

      In general, the Authors provide interpretations of the data that fit a narrative about NRL and the perceived significance of interactions with RNA binding proteins. Large-scale screens for NRL protein interactions were conducted but all of the data is not reported. For example, NRL IP-Mass Spec was performed, but the authors only provide interaction/detection data for identified interactions with known RNA binding proteins. We cannot assess the enrichment of interactions or specificity of interactions with RNA binding proteins based on the reported results. Additionally, the lack of experiments testing the functional significance of Nrl interactions with R-loops within the developing retina fails to provide novel biological insights into the regulation of gene regulatory networks. While this provides additional avenues for research in the future, it is unclear that NRL interaction with R-loops have physiological relevance for photoreceptor health or function.

    1. Reviewer #2 (Public review):

      Summary:

      Generating biophysically detailed computational models that capture the characteristic physiological properties of biological neurons for diverse cell types is an important and difficult problem in computational neuroscience. One major challenge lies in determining the large number of parameters of such models, which are notoriously difficult to fit to experimental data. Thereby, the computational and energy costs can be significant. The study 'ElectroPhysiomeGAN: Generation of Biophysical Neuron Model Parameters from Recorded Electrophysiological Responses' by Kim et al. describes a computationally efficient approach for predicting model parameters of Hodgkin-Huxley neuron models using Generative Adversarial Networks (GANs) trained on simulation data. The method is applied to generate models for 9 non-spiking neurons in C. elegans based on electrophysiological recordings. While the generated models capture the responses of these neurons to some degree, they generally show significant deviations from the empirically observed responses in important features. Although EP-GAN shows clear benefits under limited compute, the results do not yet demonstrate the quality needed to match other state-of-the-art methods. Future work examining extended training, larger datasets, or hybrid approaches would help clarify whether EP-GAN can generate models of high quality. If so, this would indeed be a major step forward; if not, the computationally more expensive methods will remain essential.

      Strengths:

      The authors work on an important and difficult problem. A noteworthy strength of their approach is that once trained, the GANs can generate models from new empirical data with very little computational effort. The generated models reproduce the response to current injections reasonably well.

      Weaknesses:

      Major 1: Models do not faithfully capture empirical responses. While the models generated with EP-GAN reproduce the average voltage during current injections reasonably well, the dynamics of the response are generally not well captured. For example, for the neuron labeled RIM (Figure 2), the most depolarized voltage traces show an initial 'overshoot' of depolarization, i.e. they depolarize strongly within the first few hundred milliseconds but then fall back to a less depolarized membrane potential. In contrast, the empirical recording shows no such overshoot. Similarly, for the neuron labeled AFD, all empirically recorded traces slowly ramp up over time. In contrast, the simulated traces are mostly flat. Furthermore, all empirical traces return to the pre-stimulus membrane potential, but many of the simulated voltage traces remain significantly depolarized, far outside of the ranges of empirically observed membrane potentials. The authors trained an additional GAN (EP-GAN Extended) to improve the fit to the resting membrane potential. Interestingly, for one neuron (AWB), this improved the response during stimulation, which now reproduced the slowly raising membrane potentials observed empirically, however, the neuron still does not reliably return to its resting membrane potential. For the other two neurons, the authors report a decrease in accuracy in comparison to EP-GAN. While such deviations may appear small in the Root mean Square Error (RMSE), they likely indicate a large mismatch between the model and the electrophysiological properties of the biological neuron. The authors added a second metric during the revision - percentages of predicted membrane potential trajectories within empirical range. I appreciate this additional analysis. As the empirical ranges across neurons are far larger than the magnitude of dynamical properties of the response ('slow ramps', etc.), this metric doesn't seem to be well suited to quantify to which degree these dynamical properties are captured by the models.

      Major 2: Comparison with other approaches is potentially misleading. Throughout the manuscript, the authors claim that their approach outperforms the other approaches tested. But compare the responses of the models in the present manuscript (neurons RIM, AFD, AIY) to the ones provided for the same neurons in Naudin et al. 2022 (https://doi.org/10.1371/journal. pone.0268380). Naudin et al. present models that seem to match empirical data far more accurately than any model presented in the current study. Naudin et al. achieved this using DEMO, an algorithm that in the present manuscript is consistently shown to be among the worst of all algorithms tested. I therefore strongly disagree with the authors claim that a "Comparison of EP-GAN with existing estimation methods shows EP-GAN advantage in the accuracy of estimated parameters". This may be true in the context of the benchmark performed in the study (i.e., a condition of very limited compute resources - 18 generations with a population size of 600, compare that to 2000 generations recommended in Naudin et al.), but while EP-GAN wins under these specific conditions (and yes, here the authors convincingly show that their EP-GAN produces by far the best results!), other approaches seem to win with respect to the quality of the models they can ultimately generate.

      Major 3: As long as the quality of the models generated by the EP-GAN cannot be significantly improved, I am doubtful that it indeed can contribute to the 'ElectroPhysiome', as it seems likely that dynamics that are currently poorly captured, like slow ramps, or the ability of the neuron to return to its resting membrane potential, will critically affect network computations. If the authors want to motivate their study based on this very ambitious goal, they should illustrate that single neuron model generation with their approach is robust enough to warrant well-constrained network dynamics. Based on the currently presented results, I find the framing of the manuscript far too bold.

      Major 4: The conclusion of the ablation study 'In addition the architecture of EP-GAN permits inference of parameters even when partial membrane potential and steady-state currents profile are given as inputs' does not seem to be justified given the voltage traces shown in Figure 3. For example, for RIM, the resting membrane potential stays around 0 mV, but all empirical traces are around -40mV. For AFD, all simulated traces have a negative slope during the depolarizing stimuli, but a positive slope in all empirically observed traces. For AIY, the shape of hyperpolarized traces is off. While it may be that by their metric neurons in the 25% category are classified as 'preserving baseline accuracy', this doesn't seem justified given the voltage traces presented in the manuscript. It appears the metric is not strict enough.

    1. Reviewer #2 (Public review):

      I thank the authors for their efforts in the revision. In general, I believe the main conclusion that Rab3A is required for TTX-induced homeostatic synaptic plasticity is well-supported by the data presented, and this is an important addition to the repertoire of molecular players involved in homeostatic compensations. I also acknowledge that the authors are more cautious in making conclusions based on the current evidence, and the structure and logic have been much improved.

      The only major concern I have still falls on the interpretation of the mismatch between GluA2 cluster size and mEPSC amplitude. The authors argue that they are only trying to say that changes in the cluster size are more variable than those in the mEPSC amplitude, and they provide multiple explanations for this mismatch. It seems incongruous to state that the simplest explanation is a presynaptic factor when you have all these alternative factors that very likely have contributed to the results. Further, the authors speculate in the discussion that Rab3A does not regulate postsynaptic GluA2 but instead regulates a presynaptic contributor. Do the authors mean that, in their model, the mEPSC amplitude increases can be attributed to two factors- postsynaptic GluA2 regulation and a presynaptic contribution (which is regulated by Rab3A)? If so, and Rab3A does not affect GluA2 whatsoever, shouldn't we see GluA2 increase even in the absence of Rab3A? The data in Table 1 seems to indicate otherwise.

      I also question the way the data are presented in Figure 5. The authors first compare 3 cultures and then 5 cultures altogether, if these experiments are all aimed to answer the same research question, then they should be pooled together. Interestingly, the additional two cultures both show increases in GluA2 clusters, which makes the decrease in culture #3 even more perplexing, for which the authors comment in line 261 that this is due to other factors. Shouldn't this be an indicator that something unusual has happened in this culture? Data in this figure is sufficient to support that GluA2 increases are variable across cultures, which hardly adds anything new to the paper or to the field. The authors further cite a study with comparable sample sizes, which shows a similar mismatch based on p values (Xu and Pozzo-Miller 2007), yet the effect sizes in this study actually match quite well (both ~160%). P values cannot be used to show whether two effects match, but effect sizes can. Therefore, the statement in lines 411-413 "... consistently leads to an increase in mEPSC amplitudes, and sometimes leads to an increase in synaptic GluA2 receptor cluster size" is not very convincing, and can hardly be used to support "the idea that there are additional sources contributing to the homeostatic increase in quantal size".

      I would suggest simply showing mEPSC and immunostaining data from all cultures in this experiment as additional evidence for homeostatic synaptic plasticity in WT cultures, and leave out the argument for "mismatch". The presynaptic location of Rab3A is sufficient to speculate a presynaptic regulation of this form of homeostatic compensation.

      Minor concerns:

      (1) Line 214, I see the authors cite literature to argue that GluA2 can form homomers and can conduct currents. While GluA2 subunits edited at the Q/R site (they are in nature) can form homomers with very low efficiency in exogenous systems such as HEK293 cells (as done in the cited studies), it's unlikely for this to happen in neurons (they can hardly traffick to synapses if possible at all).

      (2) Lines 221-222, the authors may have misinterpreted the results in Turrigiano 1998. This study does not show that the increase in receptors is most dramatic in the apical dendrite, in fact, this is the only region they have tested. The results in Figures 3b-c show that the effect size is independent of the distance from soma.

      (3) Lines 309-310 (and other places mentioning TNFa), the addition of TNFa to this experiment seems out of place. The authors have not performed any experiment to validate the presence/absence of TNFa in their system (citing only 1 study from another lab is insufficient). Although it's convincing that glia Rab3A is not required for homeostatic plasticity here, the data does not suggest Rab3A's role (or the lack of) for TNFa in this process.

    1. Reviewer #2 (Public review):

      In their manuscript entitled "BEND2 is a crucial player in oogenesis and reproductive aging", the authors present their findings that full-length BEND2 is important for repair of meiotic double strand break repair in spermatocytes, regulation of LINE-1 elements in spermatocytes, and proper oocyte meiosis and folliculogenesis in females. The manuscript utilizes an elegant system to specifically ablate the full-length form of BEND2 which has been historically difficult to study due to its location on the X chromosome and male sterility of global knockout animals.

      The authors have been extremely responsive to reviewer critiques and have presented strong data and appropriate conclusions, making it an excellent addition to the field.

    1. Reviewer #2 (Public review):

      The FGF receptor Heartless has previously been implicated in Drosophila peripheral glial growth and axonal wrapping. Here, the authors perform a large-scale screen of over 2600 RNAi lines to find factors that control the downstream signaling in this process. They identify a transmembrane protein Uninflatable to be necessary for the formation of plasma membrane domains. They further find that a Uif regulatory target, Notch, is necessary for glial wrapping. Interestingly, additional evidence suggests Notch itself regulates uif and htl, suggesting a feedback system. Together, they propose that Uif functions as a "switch" to regulate the balance between glial growl and wrapping of axons.

      Little is known about how glial cell properties are coordinated with axons, and the identification of Uif is a promising link to shed light on this orchestration. The manuscript is well-written, and the experiments are generally well-controlled. The EM studies in particular are of outstanding quality and really help to mechanistically dissect the consequences of Uif and Notch signaling in the regulation of glial processes. Together, this valuable study provides convincing evidence of a new player coordinating the interactions controlling the glial wrapping of axons.

    1. Reviewer #2 (Public review):

      Summary:

      Brooks et al. generate a compelling gene expression atlas of the early embryonic cranial neural plate. They generate single-cell transcriptome data from early cranial neural plate cells at 6 consecutive stages between E7.5 to E9. Utilizing computational analysis they infer temporal gene expression dynamics and spatial gene expression patterns along the anterior-posterior and mediolateral axis of the neural plate. Subsequent comparison with known gene expression patterns revealed a good agreement with their inferred patterns, thus validating their approach. They then focus on Sonic Hedgehog (Shh) signalling, a key morphogen signal, whose activities partition the neural plate into distinct gene expression domains along the mediolateral axis. Single-cell transcriptome analysis of embryos in which the Shh pathway was pharmacologically activated throughout the neural plate revealed characteristic changes in gene expression along the mediolateral axis and the induction of distinct Shh regulated gene expression programs in the developing fore-, mid- and hindbrain.

      Strengths:

      This manuscript provides a comprehensive transcriptomic characterisation of the developing cranial neural plate, a part of the embryo that to my knowledge has not been extensively analysed by single-cell transcriptomic approaches. The single-cell sequencing data appears to be of high quality and will be a great resource for the wider scientific community. Moreover, the computational analysis is well executed and the validation of the sequencing data using published gene expression patterns is convincing. In my opinion the authors completely achieved their aim of generating a reliable sequencing atlas of the early cranial neural plate. Conceptually, the findings that gene expression patterns differ along the rostrocaudal, mediolateral and temporal axes of the neural plate and that Shh signalling induces distinct target genes along the anterior-posterior axis of the nervous system are not completely unexpected. However, the comprehensive characterization of the spatiotemporal gene expression patterns and how they change upon ectopic activation of the Shh pathway will definitely contribute to a better understanding of neural plate patterning. Taken together, this is a well-executed study that describes a relevant scientific resource that will likely be of great use for the wider scientific community .

      Weaknesses:

      No weaknesses were identified.

    1. Reviewer #3 (Public review):

      Summary:

      In this study, the authors analyzed the complex functional organization of the hippocampus using two separate adult lifespan datasets. They investigated how individual variations in the detailed connectivity patterns within the hippocampus relate to behavioral and molecular traits. The findings confirm three overlapping hippocampal gradients and reveal that each is linked to established functional patterns in the cortex, the arrangement of dopamine receptors within the hippocampus, and differences in memory abilities among individuals. By employing multivariate data analysis techniques, they identified older adults who display a hippocampal gradient pattern resembling that of younger individuals and exhibit better memory performance compared to their age-matched peers. This underscores the behavioral importance of maintaining a specific functional organization within the hippocampus as people age.

      Strengths:

      The evidence supporting the conclusions is compelling, based on a unique dataset, a rich set of carefully unpacked results, and a rigorous data analysis that is clearly explained and motivated. Possible confounds are carefully considered and ruled out.

      Assessment after revision:

      The authors improved the transparency of the statistical analyses by stating explicitly what tests and corrections were performed and clearly justifying the elected statistical approaches. They now also acknowledge and discuss the potential limitations of the presented PET analyses. Overall this is a rigorous and important contribution to the literature that will likely be of broad interest to basic and clinical neuroscience.

    1. Reviewer #2 (Public review):

      Summary:

      Yue et al. set out to determine if the low but measurable level of DNMT3B expression that is observed prior to the major wave of de novo DNA methylation has a function (ie before the epiblast stage) . Re-analyzing existing DNA methylation data from Smith et al. (2012) they find a very modest DNA methylation gain over a subset of promoters, on the order of 1%, occurring between the 8-cell and blastocyst stages, and refer to this as "minor de novo DNA methylation". They attempt to assess the relevance/functionality of this minor DNA methylation gain, and intriguingly report reduced H3K27me3 in Dnmt3b knockdown (KD) trophoblast cells that normally undergo imprinted X-chromosome inactivation (iXCI) before the blastocyst stage. In addition, they assess proliferation, differentiation, metabolic function, implantation rate and live birth rate of Dnmt3b KD blastocysts, and assign specific phenotypes to the loss of DNA methylation at this early stage..

      Strengths:

      Working with early embryos is technically demanding and as such the relevance of disrupting epigenetic factors specifically at this stage in development is less well studied. The detailed analyses of published data as well as DNMT3B depletion experiments presented in this manuscript provides food for thought for the epigenetics community.

      Weaknesses:

      - Throughout the manuscript, please represent DNA methylation changes as delta DNA methylation instead of fold change. In many figures, it is not clear what the unit of DNA methylation presented actually is. Readers should be made aware that the changes in DNA methylation observed are very modest and the threshold applied to the delta in DNA methylation is just 1% "( Δ DNA methylation > 0.01)").<br /> - The minimum coverage threshold and threshold applied For DNA methylation should be presented in each relevant figure. Currently for example, the latter is only mentioned not in the methods section but rather once in "Figure 2, figure supplement 1"<br /> - Indirect effects of disrupting DNMT3B at the earlier stages in development, when de novo DNAme levels are very low in the promoter regions of interest, should be considered. For example, de novo DNA methylation in repetitive regions/pericentric heterochromatin at this stage (not studied here) could be much higher than 1%. Disruption of such methylation, could result in a "sink effect", with loss of H3K27me3 at promoter regions (including on the inactive X-chromosome), due to aberrant repositioning of Polycomb complexes/PRC2 to such ectopic sites from which they are normally excluded, rather than a direct positive effect of the very low DNA methylation gain observed on Polycomb recruitment.<br /> The impact of depletion of DNMT3B on the major wave of de novo DNA methylation that takes place at the peri-implantion stage of embryonic development may also play a role in some of the later phenotypes observed. In other words when the failure of de novo methylation is more profound as levels of DNA methylation are much higher at these later stages as a consequence of DNMT3B activity.

    1. Reviewer #2 (Public review):

      Summary:

      The authors first conducted whole exome sequencing for infertile male patients and families where they co-segregated the biallelic mutations in the Dynein Axonemal Heavy Chain 12 (DNAH12) gene. Sperm from patients with biallelic DNAH12 mutations exhibited a wide range of morphological abnormalities in both tails and heads, reminiscing a prevalent cause of male infertility, asthenoteratozoospermia. To deepen the mechanistic understanding of DNAH12 in axonemal assembly, the authors generated two distinct DNAH12 knockout mouse lines via CRISPR/Cas9, both of which showed more severe phenotypes than observed in patients. Ultrastructural observations and biochemical studies revealed the requirement of DNAH12 in recruiting other axonemal proteins and that the lack of DNAH12 leads to the aberrant stretching in the manchette structure as early as stage XI-XII. At last, the authors proposed intracytoplasmic sperm injection as a potential measure to rescue patients with DNAH12 mutations, where the knockout sperm culminated in the blastocyst formation with a comparable ratio to that in WT.

      Strengths:

      The authors convincingly showed the importance of DNAH12 in assembling cilia and flagella in both human and mouse sperm. This study is not a mere enumeration of the phenotypes, but a strong substantiation of DNAH12's essentiality in spermiogenesis, especially in axonemal assembly.

      The analyses conducted include basic sperm characterizations (concentration, motility), detailed morphological observations in both testes and sperm (electron microscopy, immunostaining, histology), and biochemical studies (co-immunoprecipitation, mass-spec, computational prediction). Molecular characterizations employing knockout animals and recombinant proteins beautifully proved the interactions with other axonemal proteins.

      Many proteins participate in properly organizing flagella, but the exact understanding of the coordination is still far from conclusive. The present study gives the starting point to untangle the direct relationships and order of manifestation of those players underpinning spermatogenesis. Furthermore, comparing flagella and trachea provides a unique perspective that attracts evolutional perspectives.

      Weaknesses:

      Seemingly minor, but the discrepancies found in patients and genetically modified animals were not fully explained. For example, both knockout mice vastly reduced the count of sperm in the epididymis and the motility, while phenotypes in patients were rather milder. Addressing the differences in the roles that the orthologs play in spermatogenesis would deepen the comprehensive understanding of axonemal assembly.

      Comments on revisions:

      The reviewer is satisfied with the authors' response.

    1. Reviewer #2 (Public review):

      The manuscript investigates oviductal responses to the presence of gametes and embryos using a multi-omics and machine learning-based approach. By applying RNA sequencing (RNA-seq), single-cell RNA sequencing (sc-RNA-seq), and proteomics, the authors identified distinct molecular signatures in different regions of the oviduct, proximal versus distal. The study revealed that sperm presence triggers an inflammatory response in the proximal oviduct, while embryo presence activates metabolic genes that provide nutrients to the developing embryos. Overall, this study offers valuable insights and will likely be of great interest to reproductive biologists and researchers in oviduct biology.

    1. Reviewer #2 (Public review):

      This manuscript presents an interesting study of enalapril for its potential impact on senescence through the activation of Smad1/5/9 signaling with a focus on antioxidative gene expression. Repurposing enalapril in this context provides a fresh perspective on its effects beyond blood pressure regulation. The authors make a strong case for the importance of Smad1/5/9 in this process, and the inclusion of both in vitro and in vivo models adds value to the findings. Below, I have a few comments and suggestions which may help improve the manuscript.

      A major finding in the study is that phosphorylated Smad1/5/9 mediates the effects of enalapril. However, the manuscript focused on the Smad pathway relatively abruptly, and the rationale behind targeting this specific pathway is not fully explained. What makes Smad1/5/9 particularly relevant to the context of this study?

      Furthermore, their finding that activation of Smad1/5/9 leads to a reduction of senescence appears somewhat contradictory to the established literature on Smad1/5/9 in senescence. For instance, studies have shown that BMP4-induced senescence involves the activation of Smad1/5/8 (Smad1/5/9), leading to the upregulation of senescence markers like p16 and p21 (JBC, 2009, 284, 12153). Similarly, phosphorylated Smad1/5/8 has been shown to promote and maintain senescence in Ras-activated cells (PLOS Genetics, 2011, 7, e1002359). Could the authors provide more detailed mechanistic insights into why enalapril seems to reverse the typical pro-senescent role of Smad1/5/9 in their study?

      While the authors showed that enalapril increases pSmad1/5/9 phosphorylation, what are the expression levels of other key and related factors like Smad4, pSmad2, pSmad3, BMP2, and BMP4 in both senescent and non-senescent cells? These data will help clarify the broader signaling effects.

      They used BMP receptor inhibitor LDN193189 to pharmacologically inhibit BMP signaling, but it would be more convincing to also include genetic validation (e.g., knockdown or knockout of BMP2 or BMP4). This will help confirm that the observed effects are truly due to BMP-Smad signaling and not off-target effects of the pharmacological inhibitor LDN.

      I don't see the results on the changes in senescence markers p16 and p21 in the mouse models treated with enalapril. Similarly, the effects of enalapril treatment on some key SASP factors, such as TNF-α, MCP-1, IL-1β, and IL-1α, are missing, particularly in serum and tissues. These are important data to evaluate the effect of enalapril on senescence.

      Given that enalapril is primarily known as an antihypertensive, it would be helpful to include data on how it affects blood pressure in the aged mouse models, such as systolic and diastolic blood pressure. This will clarify whether the observed effects are independent of or influenced by changes in blood pressure.

    1. Reviewer #2 (Public review):

      Summary:

      In this manuscript, authors use a combination of transgenic animals, intersectional viruses, retrograde tracing, and ex-vivo slice electrophysiology to show that VTA projections neurons synapse locally. First, the authors injected a cre-dependent channelrhodopsin into the VTA of PV, SST, MOR, and NTS-Cre mice. Importantly, PV, SST, MOR, and NTS are molecular markers previously used to describe VTA interneurons. Imaging of known VTA target regions identified that these neurons are not localized to the VTA and instead project to the PFC, NAc, VP, and LHb. Next, the authors used an intersectional viral strategy to label projections neurons with both GFP (membrane localized) and Syn:Ruby (release sites). These experiments identified that VTA projection neurons also make intra-VTA synapses. Finally, the authors use a combination of optogenetics and ex-vivo slice electrophysiology to show that neurons projecting from the VTA to the NAc/VP/PFC also synapse locally. Overall, the conclusions are well supported by the data.

      Strengths:

      Previous literature has described Pvalb, Sst, Oprm1, and Nts as selective markers of VTA interneurons. Here, the authors make use of cre driver lines to show that neurons defined by these genes are not classically-defined interneurons and project to known VTA target regions. Additionally, the authors convincingly use intersectional viral approaches and slice electrophysiology to show that projection neurons synapse onto neighboring cells within the VTA

    1. Reviewer #2 (Public review):

      The manuscript describes an interesting approach towards designing genetic circuits to sense different RAS mutants in the context of cancer therapeutics. The authors created sensors for mutant RAS and incorporated feed-forward control that leverages endogenous RAS/MAPK signaling pathways in order to dramatically increase the circuits' dynamic range. The modularity of the system is explored through the individual screening of several RAS binding domains, transmembrane domains, and MAPK response elements, and the author further extensively screened different combinations of circuit components. This is an impressive synthetic biology demonstration that took it all the way to cancer cell lines. However, given the sole demonstrated output in the form of fluorescent proteins, the authors' claims related to therapeutic implications require additional empirical evidence or, otherwise, expository revision.

      Major comments:

      "These therapies are limited to cancers with KRASG12C mutations" is technically accurate. However, in this fast-moving field, there are examples such as MRTX1133 which holds the promise to target the very G12D mutation that is the focus of this paper. There are broader efforts too. It would help the readers better appreciate the background if the authors could update the intro to reflect the most recent landscape of RAS-targeting drugs.

      Only KRASG12D was used as a model in the design and optimization work of the genetic circuits. Other mutations should be quite experimentally feasible and comparisons of the circuits' performances across different KRAS mutations would allow for stronger claims on the circuits' generalizability. Particularly, the cancer cell line used for circuit validation harbored a KRASG13D mutation. While the data presented do indeed support the circuit's "generalizability," the model systems would not have been consistent in the current set of data presented.

      In Figure 2a, the text claims that "inactivation of endogenous RAS with NF1 resulted in a lower YFP/RBDCRD-NarX expression," but Figure 2a does not show a statistically significant reduction in expression of SYFP (measured by "membrane-to-total signal ratio [RU]).

      The therapeutic index of the authors' systems would be better characterized by a functional payload, other than florescent proteins, that for example induce cell death, immune responses, etc.

      Regarding data presented in "Mechanism of action" (Figure 2), the observations are interesting and consistent across different fluorescent reporters. However, with regard to interpretations of the underlying molecular mechanisms, it is not clear whether the different output levels in 2b, 2c, and 2d are due to the pathway as described by the authors or simply from varied expression levels of RBDCRD-NarX itself (2a) that is nonlinearly amplified by the rest of the circuit. From a practical standpoint, this caveat is not critical with respect to the signal-to-noise ratios in later parts of the paper. From a mechanistic interpretation standpoint, claims made forth in this section are not clearly substantiated. Some additional controls would be nice. For example, if the authors express NarXs that constitutively dimerize on the membrane, what would the RasG12D-responsiveness look like? Does RasG12D alter the input-output curve of NarL-RE? How would Figure 4f compare to a NaxR constitutively dimerized control that only relies on transcriptional amplification of the Ras-dependent promoters? It's also possible that these Ras could affect protein production at the post-transcriptional or even post-translational levels, which were not adequately considered.

      The text claims that "in contrast to what we saw in HEK293 overexpressing RAS (Figure 5d), the "AND-gate" RAS-targeting circuits do not generate higher output than the EF1a-driven, binding-triggered RAS sensor in HCT-116. Instead, the improved dynamic range results from decreased leakiness in HCT- 116k.o." Comparing the experiment from Figure 5d, which looks at activation in KRASG12D and KRASWT, to the experiments in Figure 6b-d, which looks at activation in HCT-116WT and HCT-116KO is misleading. In Fig 5d., cells are transfected with KRASG12D and KRASWT to emulate high levels of mutant RAS and high levels of wild-type RAS. In Figures 6b-d, HCT-116WT has endogenous levels of mutant RAS, while the KCT-116KO is a knock-out cell line, and does not have mutant or WT RAS. Therefore, the improved dynamic range or "decreased leakiness in HCT-116KO" in comparison to Figure 5d. is more comparable to the NF1 condition from Figure 2, which deactivates endogenous RAS. While this may not be feasible, the most accurate comparison would have been an HCT-116KO line with KRASWT stably integrated.

      We couldn't locate the citation or discussion of Figure 4d in the text. Conversely, based on the text description, Figure 6g would contain exciting results. But we couldn't find Figure 6g anywhere ... unless it was a typo and the authors meant Figure 6f, in which case the cool results in Figure S8 could use more elaboration in the main text.

    1. Reviewer #2 (Public review):

      In this work the authors develop a mathematical model that incorporates three contributions to cellular force generation in 3D matrices: (1) actively generated contractile forces via myosin motors and consumption of ATP; (2) the energy stored in the extracellular matrix as it is deformed by the contractile cell; and (3), the energy associated with the interactions at the interface between the matrix and the cell, e.g. at focal adhesions. The authors make predictions about the dependence of cell shape on these three contributions.

      The authors succeed in making a number of predictions of how cell shapes will depend on these contributions to force generation. However, these predictions seem to be largely buried in the supplemental material and come in a form that will be accessible to a certain type of physicist and modeler but will likely not be accessible to many experimentalists who may want to test the predictions of the model. The authors show a comparison between their expected cell shape distributions and those predicted by the model, under multiple regimes: cells in two different concentrations of collagen (Figure 4c), cells with inhibited myosin and therefore reduced contractility (Figure 4d), cells with impaired interactions with the ECM (Figure 4e), and for cells with both contractility and ECM interactions impaired. They find a strong agreement between the experiments and their predictions. However, it should be noted that there are multiple "tuning parameters" in their model, so the ability to match experiment and theory may not be ultimately so surprising.

      While the authors do achieve their aim of building this modeling and testing it in comparison to experimental data, the text is frequently unclear and doesn't seem to have the right information at the right place and time to allow the reader to most clearly understand the motivation, the approach, or the results. A number of elements of this manuscript were confusing to this reviewer, and I discuss these below in the hopes that raising these points here can bring more clarity in future revisions, and/or that readers will be able to provide additional insight or attention to these questions.

      There are certain elements of the writing that obscure, rather than clarify, the model and the results. For example, the authors frequently refer to "matrix stiffening" and "strain stiffening", which are typically used in the literature to describe the phenomenon whereby an applied force changes the mechanical properties of the substrate; here, for example in regard to the discussion of Figure 4C, these terms instead seem to be simply referring to the experimental intervention of exposing different cells to different concentrations of the collagen matrix. While there may be some element of classically understood strain stiffening, incorporated into the model as the function f(λ_i), this doesn't seem to match the experimental validation - which, as described above, is not about strain stiffening but instead simply uses softer vs. stiffer gels. Therefore, it is unclear what exactly is meant throughout the manuscript by strain stiffening - does it mean "difference in stiffness between two conditions" or does it mean "change in substrate stiffness upon application of force"?

      Furthermore, while the introductory text emphasizes collective migration, the model itself focuses on the interactions between single cells and their environments. The emphasis on collective migration and cell shape in the introduction invokes previous literature focusing on collective phase transitions, but that is misleading. This paper is all about individual cell mechanics, not about collective migration or unjamming.

      The experimental validation seems to have a significant flaw. The mechanics and interactions of the cellular extensions seem to be completely ignored. We see, in Figure 4, that cell bodies are outlined to determine cell shape, but that the extremely long extensions are simply ignored. We know from previous studies that these extensions are generating quite a bit of traction and are contractile, and yet they've been excluded from the analysis. This doesn't make physical sense or fit with previous literature, and would seem to indicate that the regimes predicted by the model are missing an essential component of force generation and cell-matrix interaction.

    1. Reviewer #2 (Public review):

      Summary:

      This study by Kremer et al. investigates the impact of modulation of expression of TFAM, a key protein involved in mitochondrial DNA (mtDNA) packaging and expression, in mtDNA mutator mice, which carry random mtDNA mutations. While previous research suggested that increasing TFAM could counteract the pathological effects of mtDNA mutations, this study reveals that the effects of TFAM modulation are tissue-specific. These findings highlight the complexity of mtDNA copy number regulation and gene expression, emphasizing that TFAM alone is not the sole determinant of mtDNA levels in contexts where oxidative phosphorylation is impaired. Other factors likely play a significant role, underscoring the need for nuanced approaches when targeting TFAM for therapeutic interventions.

      Strengths:

      The data presented in the manuscript is of high quality and supports major conclusions.

      Weaknesses:

      The statistical methods used are not clearly described, and some marked non-significant results appear visually significant, which raises concerns about data analysis.

      Data presentation requires improvement.

    1. Reviewer #2 (Public review):

      Summary:

      Qi et al. determined the X-ray crystallographic structure of the methyltransferase core of the obligate heterodimeric complex METTL3-METTL14 in complex with methyladenosine monophosphate (m6A), a product mimic for the methylation of adenosine, to a resolution of 2.5 Å. Their structure appears to reveal a cryptic binding pocket for m6A that had not previously been identified. Using full-length protein produced in insect cells, Qi et al. determined the methyltransferase activity of wildtype METTL3-METTL14 and compared it to that of mutant forms of the protein that have been implicated in cancer. In addition to methyltransferase activity, the authors used both fluorescence polarization assays and surface plasmon resonance to investigate the affinities and kinetics of RNA binding to wildtype and mutant forms of the full-length complex. The results indicate that mutations in the methyltransferase core of two separate arginine residues alter the dynamics of RNA binding and enzyme specificity of METTL3-METTL14. The authors go on to use a combination of supervised molecular dynamics simulations and comparisons to recently published structures to propose a "swivelling" mechanism for the transfer of the methylated substrate from the catalytic site of the complex to the novel cryptic pocket.

      Strengths:

      I appreciated the inclusion of supplementary data showing the purity and monodispersity of the protein used for crystallization as well as the omit map and other electron density maps to support the placement of the product mimic in the cryptic site. The authors use a combination of complementary biophysical techniques to test the effects of mutations that were identified in the literature as being clinically important and to develop a hypothesis for the large-scale translocation required for the enzymatic product to move from the catalytic site to the cryptic pocket. The use of molecular dynamics simulations to attempt to indirectly visualize how this translocation might occur in vivo was well done.

      Weaknesses:

      Even taking into account the 2.5 Å resolution of the structure, the model is not refined to the point that it could be. Some waters seem to be built into blobs of density that aren't particularly convincing, and other seemingly obvious waters aren't built at all. The structure validation report supports this and shows that overall, and in the context of 2.5 Å resolution, this is not a great model. A good many parts of the structural analysis don't seem consistent with what I see when I look at the model and density in terms of proposed interactions in the cryptic pocket. Much of the language used in the manuscript is too strong when the model is quite speculative.

    1. Reviewer #2 (Public review):

      Summary:

      In this manuscript, Li et al investigate the combined role of diacylglycerol (DAG) kinases (DGK) a and z in Foxp3+ Treg cells function that prevent autoimmunity. The authors generated DGK a and z Treg-specific double knockout mice (DKO) by crossing Dgkalpha-/- mice to DgKzf and Foxp3YFPCre/+ mice. The resulting "DKO" mice thus lack DGK a in all cells and DGK z in Foxp3+Treg cells. The authors show that the DKO mice spontaneously develop autoimmunity, characterized by multiorgan inflammatory infiltration and elevated anti-double-strand DNA (dsDNA), -single-strand DNA (ssDNA), and -nuclear autoantibodies. The authors attribute the DKO mice phenotype to Foxp3+Treg dysfunction, including accelerated conversion into "exTreg" cells with pathogenic activity. Interestingly, the combined deficiency of DGK a and z seems to release Treg cell dependence on CD28-mediated costimulatory signals, which the authors show by crossing their DKO mice to CD28-/- mice (TKO mice), which also develop autoimmunity.

      Strengths:

      The phenotypes of the mutant mice described in the manuscript are striking, and the authors provide a comprehensive analysis of the functional processes altered by the lack of DGKs.

      Weaknesses:

      One aspect that could be better explored is the direct role of "ex-Tregs" in causing pathogenesis in the models utilized.

      However, overall, this is an important report that makes a significant addition to the understanding of DAG kinases in Treg cell biology.

    1. Reviewer #2 (Public review):

      Summary:

      In this study, the authors have devised a novel assay to measure relative social rank in mice that is aimed at incorporating multiple aspects of social competition while minimizing direct contact between animals. Forming a hierarchy often involves complex social dynamics related to competitive drives for different fundamental resources including access to food, water, territory, and sexual mates. This makes the study of social dominance and its neural underpinnings hard, warranting the development of new tools and methods that can help understand both social functions as well as dysfunction.

      Strengths:

      This study showcases an assay called the Food Pellet Competition Test where cagemate mice compete for food, without direct contact, by pushing a block in a tube from opposite directions. The authors have attempted to quantify motivation to obtain the food independent of other factors such as age, weight, sex, etc. by running the assay under two conditions: one where the food is accessible and one where it isn't. This assay results in an impressive outcome consistency across days for females and males paired housed and for male groups of three. Further, the determined social ranks correlate strongly with two common assays: the tube test and the warm spot test.

      Weaknesses:

      This new assay has limited ethological validity since mice do not compete for food without touching each other with a block in the middle. In addition, the assay may only be valid for a single trial per day making its utility for recording neural recordings and manipulations limited to a single sample per mouse. Although the authors attempt to measure motivation as a factor driving who wins the social competition, the data is limited. This novel assay requires training across days with some mice reaching criteria before others. From the data reported, it is unclear what effects training can have on the outcome of social competition. Beyond the data shown, the language used throughout the manuscript and the rationale for the design of this novel assay is difficult to understand.

    1. Reviewer #2 (Public review):

      Summary:

      Kargulyan et al. investigate the function of the transsynaptic adhesion molecule RTN4RL2 in the formation and function of ribbon synapses between type I spiral ganglion neurons (SGNs) and inner hair cells. For this purpose, they study constitutive RTN4RL2 knock-out mice. Using immunohistochemistry, they reveal defects in the recruitment of protein to ribbon synapses in the knockouts. Serial block phase EM reveals defects in SGN projections in mutants. Electrophysiological recordings suggest a small but statistically significant depolarized shift in the activation of Cav1.3 Ca2+ channels. Auditory thresholds are also elevated in the mutant mice. The authors conclude that RTN4RL2 contributes to the formation and function of auditory afferent synapses to regulate auditory function.

      Strengths:

      The authors have excellent tools to analyze ribbon synapses.

      Weaknesses:

      However, there are several concerns that substantially reduce my enthusiasm for the study.

      (1) The analysis of the expression pattern of RTN4RL2 in Figure 1 is incomplete. The authors should show a developmental time course of expression up into maturity to correlate gene expression with major developmental milestones such as axon outgrowth, innervation, and refinement. This would allow the development of models supporting roles in axon outgrowth versus innervation or both.

      (2) It would be important to improve the RNAscope data. Controls should be provided for Figure 1B to show that no signal is observed in hair cells from knockouts. The authors apparently already have the sections because they analyzed gene expression in SGNs of the knock-outs (Figure 1C).

      (3) It is unclear from the immunolocalization data in Figure 1D if all type I SGNs express RTN4RL2. Quantification would be important to properly document the presence of RTN4RL2 in all or a subset of type I SGNs. If only a subset of SGNs express RTN4RL2, it could significantly affect the interpretation of the data. For example, SGNs selectively projecting to the pillar or modiolar side of hair cells could be affected. These synapses significantly differ in their properties.

      (4) It is important to show proper controls for the RTN4RL2 immunolocalization data to show that no staining is observed in knockouts.

      (5) The authors state in the discussion that no staining for RTN4RL2 was observed at synaptic sites. This is surprising. Did the authors stain multiple ages? Was there perhaps transient expression during development? Or in axons indicative of a role in outgrowth, not synapse formation?

      (6) In Figure 2 it seems that images in mutants are brighter compared to wildtypes. Are exposure times equivalent? Is this a consistent result?

      (7) The number of synaptic ribbons for wildtype in Figure 2 is at 10/IHCs, and in Figure 2 Supplementary Figure 2 at 20/IHCs (20 is more like what is normally reported in the literature). The value for mutant similarly drastically varies between the two figures. This is a significant concern, especially because most differences that are reported in synaptic parameters between wild-type and mutants are far below a 2-fold difference.

      (8) The authors report differences in ribbon volume between wild-type and mutant. Was there a difference between the modiolar/pillar region of hair cells? It is known that synaptic size varies across the modiolar-pillar axis. Maybe smaller synapses are preferentially lost?

      (9) The authors show in Figure 2 - Supplement 3 that GluA2/3 staining is absent in the mutants. Are GluA4 receptors upregulated? Otherwise, synaptic transmission should be abolished, which would be a dramatic phenotype. Antibodies are available to analyze GluA4 expression, the experiment is thus feasible. Did the authors carry out recordings from SGNs?

      (10) The authors use SBEM to analyze SGN projections and synapses. The data suggest that a significant number of SGNs are not connected to IHCs. A reconstruction in Figure 3 shows hair cells and axons. It is not clear how the outline of hair cells was derived, but this should be indicated. Also, is this a defect in the formation of synapses and subsequent retraction of SGN projections? Or could RTN4RL2 mutants have a defect in axonal outgrowth and guidance that secondarily affects synapses? To address this question, it would be useful to sparsely label SGNs in mutants, for example with AAV vectors expression GFP, and to trace the axons during development. This would allow us to distinguish between models of RTN4RL2 function. As it stands, it is not clear that RTN4RL2 acts directly at synapses.

      (11) The authors observe a tiny shift in the operation range of Ca2+ channels that has no effect on synaptic vesicle exocytosis. It seems very unlikely that this difference can explain the auditory phenotype of the mutant mice.

      (12) ABR recordings were conducted in whole-body knockouts. Effects on auditory thresholds could be a secondary consequence of perturbation along the auditory pathway. Conditional knockouts or precisely designed rescue experiments would go a long way to support the authors' hypothesis. I realize that this is a big ask and floxed mice might not be available to conduct the study.

    1. Reviewer #2 (Public review):

      Summary:

      Sphingosine-1-phosphate (S1P) metabolic and signaling genes are expressed highly in retinal Müller glia (MG) cells. This study tested how S1P signaling regulates glial phenotype, dedifferentiation of, reprogramming into proliferating MG-derived progenitor cells (MGPCs), and neuronal differentiation of the progeny of MGPCs using in vivo chick retina. Major techniques used are Sc-RNASeq and immunohistochemistry to determine the gene expression and proliferation of MG cells that co-label with signaling antibodies or mRNA FISH following treating the in vivo eyes with various S1P signaling antagonists, agonists, and signal modulators. The major conclusions drawn are supported by the results presented. However, the methodology they have used to modulate the S1P pathway using various chemical drugs raises questions about the outcomes and whether those are the real effects of S1P receptor modulation or S1P synthesis inhibition.

      Strengths:

      - Use of elaborated single-cell RNAseq expression data.<br /> - Use of FISH for S1P receptors and kinase as a good quality antibody is not available.<br /> - Use of EdU assay in combination with IHC<br /> - Comparison with human and Zebrafish Sc-RNA data

    1. Reviewer #2 (Public review):

      A large number of ovarian experiments have been conducted - especially in morphological and molecular biology studies - specifically removing the ovarian membrane. This experiment is a good supplement to existing knowledge and plays an important role in early ovarian development and the regulation of ovarian homeostasis during the estrous cycle. There are also innovations in research ideas and methods, which will meet the requirements of experimental design and provide inspiration for other researchers.

      Comments on revisions: I don't have any further opinions and suggest to accept.

    1. Reviewer #2 (Public review):

      Summary:

      This is a compelling study that systematically characterized and identified clonal MSC populations derived from normal and osteoarthritis human synovium. There is immense growth in the focus on synovial-derived progenitors in the context of both disease mechanisms and potential treatment approaches, and the authors sought to understand the regenerative potential of synovial-derived MSCs.

      Strengths:

      This study has multiple strengths. MSC cultures were established from an impressive number of human subjects, and rigorous cell surface protein analyses were conducted, at both pre-culture and post-culture timepoints. In vivo experiments using a rat DMM model showed beneficial therapeutic effects of MSCs vs non-MSCs, with compelling data demonstrating that only "real" MSC clones incorporate into cartilage repair tissue and express Prg4. Proteomics analysis was performed to characterize non-MSC vs MSC cultures, and high CD47 expression was identified as a marker for MSC. Injection of CD47-Hi vs CD47-Low cells in the same rat DMM model also demonstrated beneficial effects, albeit only based on histology. A major strength of these studies is the direct translational opportunity for novel MSC-based therapeutic interventions, with high potential for a "personalized medicine" approach.

      Weaknesses:

      Weaknesses of this study include the rather cursory assessment of the OA phenotype in the rat model, confined entirely to histology (i.e. no microCT, no pain/behavioral assessments, no molecular readouts). It is somewhat unclear how the authors converged on CD47 vs the other factors identified in the proteomics screen, and additional information is needed to understand whether true MSCs only engraft in articular cartilage or also in ectopic cartilage (in the context of osteophyte/chondrophyte formation). Some additional discussion and potential follow-up analyses focused on other cell surface markers recently described to identify synovial progenitors is also warranted. A conceptual weakness is the lack of discussion or consideration of the multiple recent studies demonstrating that DPP4+ PI16+ CD34+ stromal cells (i.e. the "universal fibroblasts") act as progenitors in all mesenchymal tissues, and their involvement in the joint is actively being investigated. Thus, it seems important to understand how the MSCs of the present study are related to these DPP4+ progenitors. Despite these areas for improvement, this is a strong paper with a high degree of rigor, and the results are compelling, timely, and important.

      Overall, the authors achieved their aims, and the results support not just the therapeutic value of clonally-isolated synovial MSCs but also the immense heterogeneity in stromal cell populations (containing true MSCs and non-MSCs) that must be investigated further. Of note, the authors employed the ISCT criteria to characterize MSCs, with mixed results in pre-culture and post-culture assessments. This work is likely to have a long-term impact on methodologies used to culture and study MSCs, in addition to advancing the field's knowledge about how synovial-derived progenitors contribute to cartilage repair in vivo.

    1. Reviewer #2 (Public review):

      Summary:

      In this manuscript, the authors develop an exciting new hemogenic gastruloid (hGX) system, which they claim reproduces the sequential generation of various blood cell types. The key advantage of this cellular system would be its potential to more accurately recapitulate the spatiotemporal emergence of hematopoietic progenitors within their physiological niche compared to other available in vitro systems. The authors present a large set of data and also validate their new system in the context of investigating infant leukemia.

      Strengths:

      The development of this new in vitro system for generating hematopoietic cells is innovative and addresses a significant drawback of current in vitro models. The authors present a substantial dataset to characterize this system, and they also validate its application in the context of investigating infant leukemia.

      Weaknesses:

      The thorough characterization and full demonstration that the cells produced truly represent distinct waves of hematopoietic progenitors are incomplete. The data presented to support the generation of late yolk sac (YS) progenitors, such as lymphoid cells, and aortic-gonad-mesonephros (AGM)-like progenitors, including pre-hematopoietic stem cells (pre-HSCs), by this system are not entirely convincing. Given that this is likely the manuscript's most crucial claim, it warrants further scrutiny and direct experimental validation. Ideally, the identity of these progenitors should be further demonstrated by directly assessing their ability to differentiate into lymphoid cells or fully functional HSCs. Instead, the authors primarily rely on scRNA-seq data and a very limited set of markers (e.g., Ikzf1 and Mllt3) to infer the identity and functionality of these cells. Many of these markers are shared among various types of blood progenitors, and only a well-defined combination of markers could offer some assurance of the lymphoid and pre-HSC nature of these cells, although this would still be limited in the absence of functional assays.

      The identification of a pre-HSC-like CD45⁺CD41⁻/lo c-Kit⁺VE-Cadherin⁺ cell population is presented as evidence supporting the generation of pre-HSCs by this system, but this claim is questionable. This FACS profile may also be present in progenitors generated in the yolk sac such as early erythro-myeloid progenitors (EMPs). It is only within the AGM context, and in conjunction with further functional assays demonstrating the ability of these cells to differentiate into HSCs and contribute to long-term repopulation, that this profile could be strongly associated with pre-HSCs. In the absence of such data, the cells exhibiting this profile in the current system cannot be conclusively identified as true pre-HSCs.

      The engraftment data presented are also not fully convincing, as the observed repopulation is very limited and evaluated only at 4 weeks post-transplantation. The cells detected after 4 weeks could represent the progeny of EMPs that have been shown to provide transient repopulation rather than true HSCs.

    1. Reviewer #2 (Public review):

      Previously, the authors published a Leishmania cytosine base editor (CBE) genetic tool that enables the generation of functionally null mutants. This works by utilising a CAS9-cytidine deaminase variant that is targeted to a genetic locus by a small guide RNA (sgRNA) and causes a cytosine to thymine conversion. This has the potential to generate a premature stop codon and therefore a loss of function mutant.

      CBE has advantages over existing CAS-based knockout tools because it allows the targeting of multicopy gene families and, potentially, the easier generation of pooled loss of function mutants in complex population experiments. Although successful, the first generation of this genetic tool had several limitations that may have prevented its wider adoption, especially in complex genome-wide screens. These include nonspecific toxicity of the sgRNAs, low transfection efficiencies, low editing efficiencies, a proportion of transfectants that express multiple different sgRNAs, and insufficient effectivity in some Leishmania species.

      Here, the authors set out to systematically solve each of these limitations. By trialling different transfection conditions and different CAS12a cut sites to promote sgRNA expression cassette integration, they increase the transfection efficiency 400-fold and ensure that only a single sgRNA expression cassette integrates that edits with high efficiencies. By trialling different T7 promoters, they significantly reduce the non-specific toxicity of sgRNA expression whilst retaining high editing efficiencies in several Leishmania species (Leishmania major, L. mexicana and L. donovani). By improving the sgRNA design, the authors predict that null mutants will be more efficiently produced after editing. They validate this tool in a small-scale loss of function screen incorporating essential and non-essential genes, identifying the expected growth phenotypes.

      This tool will find adoption for producing null mutants of single-copy genes, multicopy gene families, and genome-wide mutational analyses.

      This is an impressive and thorough study that significantly improves the previous iteration of the CBE. The approach is careful and systematic and reflects the authors excellent experience developing CRISPR tools. The quality of data and analysis is high and data are clearly presented.

    1. Reviewer #2 (Public review):

      In this article, the authors examined the organization of misplaced retinal inputs in the visual thalamus of albino mice at electron-microscopic (EM) resolution to determine whether these synaptic inputs are segregated from the rest of the retinogeniculate circuitry.

      The study's major strengths include its high resolution, achieved through serial EM and confocal microscopy, which enabled the identification of all synaptic inputs onto neurons in the dorsolateral geniculate nucleus (dLGN).<br /> The experiments are very precise and demanding thus, only the synaptic inputs of a few neurons were fully reconstructed in one animal.

      Despite this, the authors clearly demonstrate the synaptic segregation of misrouted retinal axons onto dLGN neurons, separate from the rest of the retinogeniculate circuitry.

      This finding is impactful because retinal inputs typically do not segregate within the mouse dLGN, and it was previously thought that this was due to the nucleus's small size, which might prevent proper segregation. The study shows that in cases where axons are misrouted and exhibit a different activity pattern than surrounding retinal inputs, segregation of inputs can indeed occur. This suggests that the normal system has the capacity to segregate inputs, despite the limited volume of the mouse dLGN.

    1. Reviewer #2 (Public review):

      Summary:

      While it is often assumed that the cerebellar cortex connects, via its sole output neuron, Purkinje cell, exclusively to the cerebellar nuclei, axonal projections of the Purkinje cells to dorsal brainstem regions have been well documented. This paper provides comprehensive mapping and quantification of such extracerebellar projections of the Purkinje cells, most of which are confirmed with electrophysiology in slice preparation. A notable methodological strength of this work is the use of highly Purkinje cell-specific transgenic strategies, enabling selective and unbiased visualization of Purkinje terminals in the brainstem. By utilizing these selective mouse lines, the study offers compelling evidence challenging the general assumption that Purkinje cell targets are limited to the cerebellar nuclei. While the individual connections presented are not entirely novel, this paper provides a thorough and unambiguous demonstration of their collective significance. Regarding another major claim of this paper, "characterization of direct Purkinje cell outputs (Title)", however, the depth of electrophysiological analysis is limited to presence/absence of physiological Purkinje input to postsynaptic brainstem neurons whose known cell types are mostly blinded. Overall, conceptual advance is largely limited to confirmatory or incremental, although it would be useful for the field to have the comprehensive landscape presented.

      Strengths:

      Unsupervised comprehensive mapping and quantification of the Purkinje terminals in the dorsal brainstem are enabled, for the first time, by using the current state-of-the-art mouse lines, BAC-Pcp2-Cre and synaptophysin-tdTomato reporter (Ai34).

      Combinatorial quantification with vGAT puncta and synaptophysin-tdTomato labeled Purkinje terminals clarifies the anatomical significance of the Purkinje terminals as an inhibitory source in each dorsal brainstem region.

      Electrophysiological confirmation of the presence of physiological Purkinje synaptic input to 7 out of 9 dorsal brainstem regions identified.

      Pan-Purkinje ChR2 reporter provides solid electrophysiological evidence to help understand the possible influence of the Purkinje cells onto LC.

      Weaknesses:

      The present paper is largely confirmatory to what is presented in a previous paper published by the author's group (Chen et al., 2023, Nat Neurosci). In this preceding paper, the author's group used AAV1-mediated anterograde transsynaptic strategy to identify postsynaptic neurons of the Purkinje cells. The experiments performed in the present paper is, by nature, complementary to the AAV1 tracing which can also infect retrogradely and thus is not able to demonstrate the direction of synaptic connections between reciprocally connected regions. Anatomical findings are all consistent with the preceding paper.

      While the authors appear to assume uniform cell type and postsynaptic response in each of the dorsal brainstem nuclei (as noted in the Discussion, "PCs likely function similarly to their inputs to the cerebellar nuclei, where a very brief pause in firing can lead to large and rapid elevations in target cell firing"), we know that the responses to the Purkinje cell input are cell type dependent, which vary in neurotransmitter, output targets, somata size, and distribution, in the cerebellar and vestibular nuclei (Shin et al., 2011, J Neurosci; Najac and Raman, 2015, J Neurosci; Özcan et al., 2020, J Neurosci). Also, whether 23 % (for PCG), for example, is "a small fraction" would be subjective: it might represent a numerically small but functionally important cell type population. From a functional perspective, the cell type-blind physiological characterization in this manuscript remains superficial compared to existing cell type-specific analyses, although the authors commented on these issues in the manuscript.

    1. Reviewer #2 (Public review):

      Summary:

      Held et al. investigated the distinct activities of Insulin-Producing Cells (IPCs) by electrophysiological recordings and calcium imaging. In the brain of the fruit fly Drosophila melanogaster, there are approximately 16 IPCs that are analogous to mammalian pancreatic beta cells and provide a good model system for monitoring their activities in vivo. The authors performed single-nucleus RNA sequencing analysis to examine what types of neuromodulatory inputs are received by IPCs. A variety of neuromodulatory receptors are expressed heterogeneously in IPCs, which would explain the distinct activities of IPCs in response to the activations of neuromodulatory neurons. The authors also conducted the connectome analysis and G-protein prediction analysis to strengthen their hypothesis that the heterogeneity of IPCs may underlie the flexible insulin release in response to various environmental conditions.

      Strengths:

      The authors succeeded patch-clamp recordings and calcium imaging of individual IPCs in living animals at a single-cell resolution, which allows them to show the heterogeneity of IPCs precisely. They measured IPC activities in response to 9 types of neurons in patch-clamp recordings and 5 types of neurons in calcium imaging, comparing the similarities and differences in activities between two methods. These results support the idea that the neuromodulatory system affects individual IPC activities differently in a receptor-dependent manner. This work explores the fundamental properties of IPCs that may contribute to the neuroendocrine regulation of insulin-like peptides in maintaining metabolic homeostasis.

      Weaknesses:

      It remains unknown how much extent the heterogeneity of IPC activities in a short time scale is relevant to the net output, a release of insulin-like peptides in response to metabolic demands in a relatively longer time scale. The authors can test their hypothesis by manipulating the heterogenous expressions of receptor genes in IPCs and examine IPC activities in the future. Moreover, while the authors focus on IPC activities, they did not show the activation of the neuromodulatory inputs and the net output of insulin levels in the data. The readers might want to know which neurons are indeed activated to send signals to IPCs and how IPC activities result in the secretion of insulin peptides.

    1. Reviewer #2 (Public review):

      Summary:

      The study by Fisher et al investigates a therapeutic role for SZN-043, a hepatocyte-targeted R-spondin mimetic, for its potential role in restoring Wnt signaling and promoting liver regeneration in alcohol-associated liver disease (ALD). Using multiple preclinical models, the compound was shown to promote hepatocyte proliferation and reduce fibrosis. This study highlights the efficacy of promoting liver regeneration while maintaining controlled signaling. Limitations include a need for further exploration of off-target effects and fibrosis mechanisms. The findings support SZN-043 as a promising candidate for ALD therapy, warranting further clinical evaluation. This is a well-designed study with thorough investigation using multiple disease models.

      Strengths:

      (1) Well-written manuscript with clear design, robust methods, and discussion.

      (2) Using multiple models strengthens the findings and expands beyond ALD.

      (3) Identification of SZN-043 as a novel potent drug for liver regeneration.

      Weaknesses:

      (1) The introduction needs to be re-structured with an emphasis on liver regeneration. It seems that the entire manuscript is focused on liver regeneration, however, only the last two sentences or so describe liver regeneration. The frequency of liver transplants owing to a reduced ability for liver regeneration in AH patients needs to be highlighted.

      (2) In Figure 4, it appears that the humanized mice liver was injected with the SZN-043. Is it possible that using a partial hepatectomy model will be beneficial for assessing the effects of SZN-043 rather than using them in mice without any hepatocyte damage?

      (3) Figure 4B. Panel 3 has 10mpk merged inside the figure. Please correct this.

      (4) Figure 4B. DAPI staining will be vital to show the Ki67 staining specific to hepatocytes (at least visually we can do co-localization with a double nucleus in each cell). The current image shows some cells show Ki67 staining which shows some cells which are not binuclear.

      (5) The alcohol feeding was performed for 8 weeks and is described as NIAAA model in the methods section. NIAAA model is 11 days of alcohol+ one binge. Please correct this or clarify it in the methods section, as this is not reflected. ASGR1 may be also expressed by macrophages so it's important to show the specificity.

      (6) Is it possible that the SZN-043 also has effect on macrophages promoting an anti-inflammatory state? This should be discussed.

      (7) Potential off-target effects of SZN-043, particularly in stellate cell activation in the context of fibrosis should be discussed.

      (8) Discuss the limitations of current models and how they might influence the interpretation of the results.

      (9) Clearly explain how SZN-043 overcomes limitations of prior RSPO-based therapies.

    1. Reviewer #2 (Public review):

      Summary:

      This interesting study compared two different intensities of aerobic exercise (low-intensity, high-intensity) and their efficacy in inducing a hypoalgesic reaction (i.e. exercise-induced hypoalgesia; EIH). fMRI was used to identify signal changes in the brain, with the infusion of naloxone used to identify hypoalgesia mechanisms. No differences were found in post-exercise pain perception between the high-intensity and low-intensity conditions, with naloxone infusion causing increased pain perception across both conditions which was mirrored by activation in the medial frontal cortex (identified by fMRI). However, the primary conclusion made in this manuscript (i.e. that aerobic exercise has no overall effect on pain in a mixed population sample) cannot be supported by this study design, because the methodology did not include a baseline (i.e. pain perception following no exercise) to compare high/low-intensity exercise against. Therefore, some of the statements/implications of the findings made in this manuscript need to be very carefully assessed.

      Strengths:

      (1) The use of fMRI and naloxone provides a strong approach by which to identify possible mechanisms of EIH.

      (2) The infusion of naloxone to maintain a stable concentration helps to ensure a consistent effect and that the time course of the protocol won't affect the consistency of changes in pain perception.

      (3) The manipulation checks (differences in intensity of exercise, appropriate pain induction) are approached in a systematic way.

      (4) Whilst the exploratory analyses relating to the interactions for fitness level and sex were not reported in the study pre-registation, they do provide some interesting findings which should be explored further.

      Weaknesses:

      (1) Given that there is no baseline/control condition, it cannot be concluded that aerobic exercise has no effect on pain modulation because that comparison has not been made (i.e. pain perception at 'baseline' has not been compared with pain perception after high/low-intensity exercise). Some of the primary findings/conclusions throughout the manuscript state that there is 'No overall effect of aerobic exercise on pain modulation', but this cannot be concluded.

      (2) Across the manuscript, a number of terms are used interchangeably (and applied, it seems, incorrectly) which makes the interpretation of the manuscript difficult (e.g. how the author's use the term 'exercise-induced pain').

      (3) There is a lack of clarity on the interventions used in the methods, for example, it is not exactly clear the time and order in which the exercise tasks were implemented.

      (4) The exercise test (functional threshold power) used to set the intensity of the low/high exercise bouts is not an accurate means of demarcating steady state and non-steady state exercise. As a result, at the intensity selected for the high-intensity exercise in this study, it is likely that the challenge presented for the high-intensity exercise would have been very different between participants (e.g. some would have been in the 'heavy' domain, whereas others would be in the 'severe' domain).

      (5) It is likely that participants did not properly understand how to use the 6-20 Borg scale to rate their perceived effort, and so caution must be taken in how this RPE data is used/interpreted.

      (6) Although interesting, the secondary analyses (relating to the interaction effects of fitness level and sex) were not included in the study pre-registration, and so the study was not designed to undertake this analysis. These findings should be taken with caution.

    1. Reviewer #2 (Public review):

      The manuscript investigates the relationship between sleep, DNA damage, and aging in the Mexican cavefish (Astyanax mexicanus), a species that exhibits significant differences in sleep patterns between surface-dwelling and cave-dwelling populations. The authors aim to understand whether these evolved sleep differences influence the DNA damage response (DDR) and oxidative stress levels in the brain and gut of the fish.

      Summary of the Study:

      The primary objective of the study is to determine if the reduced sleep observed in cave-dwelling populations is associated with increased DNA damage and altered DDR. The authors compared levels of DNA damage markers and oxidative stress in the brains and guts of surface and cavefish. They also analyzed the transcriptional response to UV-induced DNA damage and evaluated the DDR in embryonic fibroblast cell lines derived from both populations.

      Strengths of the Study:

      Comparative Approach: The study leverages the unique evolutionary divergence between surface and cave populations of A. mexicanus to explore fundamental biological questions about sleep and DNA repair.

      Multifaceted Methodology: The authors employ a variety of methods, including immunohistochemistry, RNA sequencing, and in vitro cell line experiments, providing a comprehensive examination of DDR and oxidative stress.<br /> Interesting Findings: The study presents intriguing results showing elevated DNA damage markers in cavefish brains and increased oxidative stress in cavefish guts, alongside a reduced transcriptional response to UV-induced DNA damage.

      Weaknesses of the Study:

      Link to Sleep Physiology: The evidence connecting the observed differences in DNA damage and DDR directly to sleep physiology is not convincingly established. While the study shows distinct DDR patterns, it does not robustly demonstrate that these are a direct result of sleep differences.

      Causal Directionality: The study fails to establish a clear causal relationship between sleep and DNA damage. It is possible that both sleep patterns and DDR responses are downstream effects of a common cause or independent adaptations to the cave environment.

      Environmental Considerations: The lab conditions may not fully replicate the natural environments of the cavefish, potentially influencing the results. The impact of these conditions on the study's findings needs further consideration.

      Photoreactivity in Albino Fish: The use of UV-induced DNA damage as a primary stressor may not be entirely appropriate for albino, blind cavefish. Alternative sources of genotoxic stress should be explored to validate the findings.

      Assessment of the Study's Achievements:

      The authors partially achieve their aims by demonstrating differences in DNA damage and DDR between surface and cavefish. However, the results do not conclusively support the claim that these differences are driven by or directly related to the evolved sleep patterns in cavefish. The study's primary claims are only partially supported by the data.

      Impact and Utility:

      The findings contribute valuable insights into the relationship between sleep and DNA repair mechanisms, highlighting potential areas of resilience to DNA damage in cavefish. While the direct link to sleep physiology remains unsubstantiated, the study's data and methods will be useful to researchers investigating evolutionary biology, stress resilience, and the molecular basis of sleep.

      Comments on revisions:

      The manuscript should tone down claims of a direct causal relationship between sleep differences and DDR outcomes, acknowledging the possibility that both are independent or downstream adaptations to the cave environment. To strengthen the study, the authors should adopt additional genotoxic stressors, such as chemical agents (e.g., cisplatin or hydrogen peroxide) or physical stress (e.g., ionizing radiation), to validate findings beyond UV-induced DNA damage, which may not be ideal for albino cavefish. Explicitly discussing the influence of laboratory conditions, such as water quality, lighting, and diet, on oxidative stress and DDR phenotypes, and comparing lab-reared and wild-caught fish if feasible, would bolster ecological relevance. The study should clarify that the current data do not establish a causal link between sleep and DNA damage, instead proposing this as a hypothesis for future research. Expanding the evolutionary context by linking DDR differences to other cavefish traits, such as metabolic efficiency or hypoxia tolerance, could provide a more integrative perspective. Additionally, proposing future experiments involving pharmacological or behavioral manipulation of sleep, as well as incorporating comparative genomics or transcriptomics to identify DDR-related genetic adaptations, would enhance the study's depth.

    1. Reviewer #2 (Public review):

      Summary:

      This study employed voltage imaging in the CA1 region of the mouse hippocampus during the exploration of a novel environment. The authors report synchronous activity, involving almost half of the imaged neurons, occurred during periods of immobility. These events did not correlate with SWRs, but instead, occurred during theta oscillations and were phased locked to the trough of theta. Moreover, pairs of neurons with high synchronization tended to display non-overlapping place fields, leading the authors to suggest these events may play a role in binding a distributed representation of the context.

      Strengths:

      Technically this is an impressive study, using an emerging approach that allow single-cell resolution voltage imaging in animals, that while head-fixed, can move through a real environment. The paper is written clearly and suggests novel observations about population-level activity in CA1.

      Weaknesses:

      The evidence provided is weak, with the authors making surprising population-level claims based on a very sparse data set (5 data sets, each with less than 20 neurons simultaneously recorded) acquired with exciting, but less tested technology. Further, while the authors link these observations to the novelty of the context, both in the title and text, they do not include data from subsequent visits to support this. Detailed comments are below:

      (1) My first question for the authors, which is not addressed in the discussion, is why these events have not been observed in the countless extracellular recording experiments conducted in rodent CA1 during exploration of novel environments. Those data sets often have 10x the neurons simultaneously recording compared to these present data, thus the highly synchronous firing should be very hard to miss. Ideally, the authors could confirm their claims via the analysis of publicly available electrophysiology data sets. Further, the claim of high extra-SWR synchrony is complicated by the observation that their recorded neurons fail to spike during the limited number of SWRs recorded during behavior- again, not agreeing with much of the previous electrophysiological recordings.<br /> (2) The authors posit that these events are linked to the novelty of the context, both in the text, as well as in the title and abstract. However they do not include any imaging data from subsequent days to demonstrate the failure to see this synchrony in a familiar environment. If these data are available it would strengthen the proposed link to novelty is they were included.<br /> (3) In the discussion the authors begin by speculating the theta present during these synchronous events may be slower type II or attentional theta. This can be supported by demonstrating a frequency shift in the theta recording during these events/immobility versus the theta recording during movement.<br /> (4) The authors mention in the discussion that they image deep layer PCs in CA1, however this is not mentioned in the text or methods. They should include data, such as imaging of a slice of a brain post-recording with immunohistochemistry for a layer specific gene to support this.

      Comments on revisions:

      I have no further major requests and thank the authors for the additional data and analyses.

    1. Reviewer #3 (Public review):

      Summary:

      The mechanisms by which short-term isolation influences the brain to promote social behavior remain poorly understood. The authors observed that acute isolation enhanced social behaviors, including increased investigation, mounting, and ultrasonic vocalizations (USVs). These effects were evident in same-sex interactions among females and in male-female interactions. Concurrently, cFos expression in the preoptic area (POA) of the hypothalamus was selectively elevated in single-housed females. To further investigate, the authors used an innovative tagging strategy (TRAP2) to manipulate these neurons. Overall, the study identifies a population of hypothalamic neurons that promote various aspects of social behavior after short-term isolation, with effects that are sex- and context-dependent.

      Strengths:

      Understanding the neural circuit mechanisms underlying acute social isolation is an important and timely topic. By employing state-of-the-art techniques to tag neurons active during specific behavioral epochs, the authors identified the preoptic area (POA) as a key locus mediating the effects of social isolation. The experimental design is sound, and the data are of high quality. Notably, the control experiments, which show that chemogenetic inactivation of other hypothalamic regions (AH and VMH) does not affect social behavior, strongly support the specificity of the POA's role within the hypothalamus. Through a combination of behavioral assays, activity-dependent neural tagging, and circuit manipulation techniques, the authors provide compelling evidence for the POA's involvement in behaviors following social isolation. These findings represent a valuable contribution to understanding how hypothalamic circuits adapt to the challenges of social isolation.

      Weaknesses:

      The authors conducted several circuit perturbation experiments, including chemogenetics, ablation, and optogenetics, to investigate the effects of POA-social neurons. They observed that the outcomes of these manipulations varied depending on whether the intervention was chronic (e.g., ablations) or acute (e.g., DREADDs), potentially due to compensatory mechanisms in other brain regions. Furthermore, their additional experiments revealed that the robustness of the manipulations was influenced by the heterozygosity or homozygosity of TRAP2 animals. While these findings suggest that POA neurons contribute to multiple behavioral responses to social isolation, further experiments are needed to clarify their precise roles.

    1. Reviewer #2 (Public review):

      Summary:

      This study makes a significant contribution to understanding the microenvironment of megakaryocytes (MKs) in the bone marrow, identifying an extracellular matrix (ECM) cage structure that influences MK localization and maturation. The authors provide compelling evidence for the presence of this ECM cage and its role in MK homeostasis, employing an array of sophisticated imaging techniques and molecular analyses. While the work is innovative and impactful, there are several points that require clarification or further data to fully support the conclusions.

      Major Strengths:

      Novelty: The identification of an ECM cage as a regulator of MK localization and maturation in the bone marrow is a novel and exciting finding.

      Imaging Techniques: The use of advanced microscopy to visualize the 3D structure of the ECM cage and its role in MK homeostasis provides a strong visual foundation for the study's claims.

      Comprehensive Analysis: The integration of in vivo and ex vivo approaches enhances the significance of the findings, offering valuable insights into the molecular mechanisms involved in ECM cage formation.

      Areas for Improvement and Clarifications:

      (1) ECM cage imaging:<br /> a) The value or additional information provided by the staining on nano-sections (A) is not clear, especially considering that the thick vibratome sections already display the entirety of the laminin γ1 cage structure effectively. Further clarification on the unique insights gained from each approach would help justify its inclusion.<br /> b) The sMK shown in Supplementary Figure 1C appears to be linked to two sinusoids, releasing proplatelets to the more distant vessels. Is this observation representative, and if so, can further discussion be provided?<br /> c) Freshly isolated BM-derived MKs are reported to maintain their laminin γ1 cage. Are the proportions of MKs with/without cages consistent with those observed in microscopy?

      (2) ECM cage formation:<br /> a) The statement "the full assembly of the 3D ECM cage required megakaryocyte interaction with the sinusoidal basement membrane" on page 7 is too strong given the data presented at this stage of the study. Supplemental Figure 1C shows that approximately 10% of pMKs form cages without direct vessel contact, indicating that other factors may also play a role in cage formation.<br /> b) The data supporting the statement that "pMK represent a small fraction of the total MK population" (cell number or density) could be shown to help contextualize the 10% of them with a cage.<br /> c) How "the full assembly of the 3D ECM cage" is defined at this stage of the study should be clarified, specifically regarding the ECM components and structural features that characterize its completion.

      (3) Data on MK Circulation and Cage Integrity: Does the cage require full component integrity to prevent MK release in circulation? Are circulating MKs found in Lama4-/- mice? Is the intravasation affected in these mice? Are the ~50% sinusoid associated MK functional?

      (4) Methodology:<br /> a) Details on fixation time are not provided, which is critical as it can impact antibody binding and staining. Including this information would improve reproducibility and feasibility for other researchers.<br /> b) The description of 'random length measuring' is unclear, and the rationale behind choosing random quantification should be explained. Additionally, in the shown image, it appears that only the branching ends were measured, which makes it difficult to discern the randomness in the measurements.

      (5) Figures:<br /> a) Overall, the figures and their corresponding legends would benefit from greater clarity if some panels were split, such as separating images from graph quantifications.

    1. Reviewer #2 (Public review):

      Summary:

      The authors used rats to determine the receptor for a food-related perception (kokumi) that has been characterized in humans. They employ a combination of behavioral, electrophysiological, and immunohistochemical results to support their conclusion that ornithine-mediated kokumi effects are mediated by the GPRC6A receptor. They complemented the rat data with some human psychophysical data. I find the results intriguing, but believe that the authors overinterpret their data.

      Strengths:

      The authors provide compelling evidence that ornithine enhances the palatability of several chemical stimuli (i.e., IMP, MSG, MPG, Intralipos, sucrose, NaCl, quinine). Ornithine also increases CT nerve responses to MSG. Additionally, the authors provide evidence that the effects of ornithine are mediated by GPRC6A, a G-protein-coupled receptor family C group 6 subtype A, and that this receptor is expressed primarily in fungiform taste buds. Taken together, these results indicate that ornithine enhances the palatability of multiple taste stimuli in rats and that the enhancement is mediated, at least in part, within fungiform taste buds. This is an important finding that could stand on its own. The question of whether ornithine produces these effects by eliciting kokumi-like perceptions (see below) should be presented as speculation in the Discussion section.

      Weaknesses:

      I am still unconvinced that the measurements in rats reflect the "kokumi" taste percept described in humans. The authors conducted long-term preference tests, 10-min avidity tests and whole chorda tympani (CT) nerve recordings. None of these procedures specifically model features of "kokumi" perception in humans, which (according to the authors) include increasing "intensity of whole complex tastes (rich flavor with complex tastes), mouthfulness (spread of taste and flavor throughout the oral cavity), and persistence of taste (lingering flavor)." While it may be possible to develop behavioral assays in rats (or mice) that effectively model kokumi taste perception in humans, the authors have not made any effort to do so. As a result, I do not think that the rat data provide support for the main conclusion of the study--that "ornithine is a kokumi substance and GPRC6A is a novel kokumi receptor."

      Why are the authors hypothesizing that the primary impacts of ornithine are on the peripheral taste system? While the CT recordings provide support for peripheral taste enhancement, they do not rule out the possibility of additional central enhancement. Indeed, based on the definition of human kokumi described above, it is likely that the effects of kokumi stimuli in humans are mediated at least in part by the central flavor system.

      The authors include (in the supplemental data section) a pilot study that examined the impact of ornithine on variety of subjective measures of flavor perception in humans. The presence of this pilot study within the larger rat study does not really mice sense. While I agree with the authors that there is value in conducting parallel tests in both humans and rodents, I think that this can only be done effectively when the measurements in both species are the same. For this reason, I recommend that the human data be published in a separate article.

      The authors indicated on several occasions (e.g., see Abstract) that ornithine produced "synergistic" effects on the CT nerve response to chemical stimuli. "Synergy" is used to describe a situation where two stimuli produce an effect that is greater than the sum of the response to each stimulus alone (i.e., 2 + 2 = 5). As far as I can tell, the CT recordings in Fig. 3 do not reflect a synergism.

    1. Reviewer #2 (Public review):

      Summary:

      The authors set out to determine how the microbiome and host genotype impact host protein-based nutrition.

      Strengths:

      The quantification of protein uptake dynamics is a major strength of this work and the sensitivity of this assay shows that the microbiome and even mono-associated bacterial strains dampen protein uptake in the host by causing down-regulation of genes involved in this process rather than a change in cell type.

      The use of fluorescent proteins in combination with transcript clustering in the single cell seq analysis deepens our understanding of the cells that participate in protein uptake along the intestine. In addition to the lysozome-rich enterocytes (LRE), subsets of enteroendocrine cells, acinar, and goblet cells also take up protein. Intriguingly, these non-LRE cells did not show lysosomal-based protein degradation; but importantly analysis of the transcripts upregulated in these cells include dab2 and cubn, genes shown previously as being essential to protein uptake.

      The derivation of zebrafish mono-associated with single strains of microbes paired with HCR to localize and quantify the expression of host protein absorption genes shows that different bacterial strains suppress these genes to variable extents.

      The analysis of microbiome composition, when host protein absorption is compromised in cubn-/- larvae or by reducing protein in the food, demonstrates that changes to host uptake can alter the abundance of specific microbial taxa like Aeramonas.

      Weaknesses:

      The finding that neurons are positive for protein uptake in the single-cell data set is not adequately discussed. It is curious because the cldn:GFP line used for sorting does not mark neurons and if the neurons are taking up mCherry via trans-synaptic uptake from EECs, those neurons should be mCherry+/GFP-; yet methods indicate GFP+ and GFP+/mCherry+ cells were the ones collected and analyzed.

    1. Reviewer #2 (Public review):

      The authors investigate the phosphotransfer capacity of Ser/Thr kinase IκB kinase (IKK), a mediator of cellular inflammation signaling. Canonically, IKK activity is promoted by activation loop phosphorylation at Ser177/Ser181. Active IKK can then unleash NF-κB signaling by phosphorylating repressor IκBα at residues Ser32/Ser26. Noting the reports of other IKK phosphorylation sites, the authors explore the extent of autophosphorylation.

      Semi-phosphorylated IKK purified from Sf9 cells, exhibits the capacity for further autophosphorylation. Anti-phosphotyrosine immunoblotting indicated unexpected tyrosine phosphorylation. Contaminating kinase activity was tested by generating a kinase-dead K44M variant, supporting the notion that the unexpected phosphorylation was IKK-dependent. In addition, the observed phosphotyrosine signal required phosphorylated IKK activation loop serines.

      Two candidate IKK tyrosines were examined as the source of the phosphotyrosine immunoblotting signal. Activation loop residues Tyr169 and Tyr188 were each rendered non-phosphorylatable by mutation to Phe. The Tyr variants decreased both autophosphorylation and phosphotransfer to IκBα. Likewise, Y169F and Y188F IKK2 variants immunoprecipitated from TNFa-stimulated cells also exhibited reduced activity in vitro.

      The authors further focus on Tyr169 phosphorylation, proposing a role as a phospho-sink capable of phosphotransfer to IκBα substrate. This model is reminiscent of the bacterial two-component signaling phosphotransfer from phosphohistidine to aspartate. Efforts are made to phosphorylate IKK2 and remove ATP to assess the capacity for phosphotransfer. Phosphorylation of IκBα is observed after ATP removal, although there are ambiguous requirements for ADP.

      Strengths:

      Ultimately, the authors draw together the lines of evidence for IKK2 phosphotyrosine and ATP-independent phosphotransfer to develop a novel model for IKK2-mediated phosphorylation of IκBα. The model suggests that IKK activation loop Ser phosphorylation primes the kinase for tyrosine autophosphorylation. With the assumption that IKK retains the bound ADP, the phosphotyrosine is conformationally available to relay the phosphate to IκBα substrate. The authors are clearly aware of the high burden of evidence required for this unusual proposed mechanism. Indeed, many possible artifacts (e.g., contaminating kinases or ATP) are anticipated and control experiments are included to address many of these concerns. The analysis hinges on the fidelity of pan-specific phosphotyrosine antibodies, and the authors have probed with two different anti-phosphotyrosine antibody clones. Taken together, the observations are thought-provoking, and I look forward to seeing this model tested in a cellular system.

      Weaknesses:

      Multiple phosphorylated tyrosines in IKK2 were apparently identified by mass spectrometric analyses. LC-MS/MS spectra are presented, but fragments supporting phospho-Y188 and Y325 are difficult to distinguish from noise. It is common to find non-physiological post-translational modifications in over-expressed proteins from recombinant sources. Are these IKK2 phosphotyrosines evident by MS in IKK2 immunoprecipitated from TNFa-stimulated cells? Identifying IKK2 phosphotyrosine sites from cells would be especially helpful in supporting the proposed model.

    1. Reviewer #2 (Public review):

      Summary:

      Chlamydial cell division is a peculiar event, whose mechanism was mysterious for many years. C. trachomatis division was shown to be polar and involve a minimal divisome machinery composed of both homologues of divisome and elongasome components, in absence of an homologue of the classical division organizer FtsZ. In this paper, Harpring et al., show that FtsK is required at an early stage of the chlamydial divisome formation.

      Strengths:

      The manuscript is well-written and the results are convincing. Quantification of divisome component localization is well performed, number of replicas and number of cells assessed are sufficient to get convincing data. The use of a CRISPRi approach to knock down some divisome components is an asset and allows a mechanistic understanding of the hierarchy of divisome components

      Weaknesses

      Despite advances in the understanding of the importance of FtsK for chlamydial division, this manuscript does not show by which mechanism FtsK specifically localizes at the division site and how it mediates recruitment of other divisome members. Moreover, the potential link with DNA partitioning is not addressed.

    1. Reviewer #2 (Public review):

      Summary:

      The authors set out to determine how the microbiome and host genotype impact host protein-based nutrition.

      Strengths:

      The quantification of protein uptake dynamics is a major strength of this work and the sensitivity of this assay shows that the microbiome and even mono-associated bacterial strains dampen protein uptake in the host by causing down-regulation of genes involved in this process rather than a change in cell type.

      The use of fluorescent proteins in combination with transcript clustering in the single cell seq analysis deepens our understanding of the cells that participate in protein uptake along the intestine. In addition to the lysozome-rich enterocytes (LRE), subsets of enteroendocrine cells, acinar, and goblet cells also take up protein. Intriguingly, these non-LRE cells did not show lysosomal-based protein degradation; but importantly analysis of the transcripts upregulated in these cells include dab2 and cubn, genes shown previously as being essential to protein uptake.

      The derivation of zebrafish mono-associated with single strains of microbes paired with HCR to localize and quantify the expression of host protein absorption genes shows that different bacterial strains suppress these genes to variable extents.

      The analysis of microbiome composition, when host protein absorption is compromised in cubn-/- larvae or by reducing protein in the food, demonstrates that changes to host uptake can alter the abundance of specific microbial taxa like Aeramonas.

    1. Reviewer #2 (Public review):

      Summary:

      The interplay between the medial prefrontal cortex and ventral hippocampal system is critical for many cognitive processes, including memory and its consolidation over time. A prominent idea in recent research is that this relationship is mediated at least in part by the midline nucleus reuniens with respect to consolidation in particular. Whereas the bulk of evidence has focused on neuroanatomy and the effects of temproary or permanent lesions of the nucleus reuniens, the current work examined the electrophysiology of these three structures and how they inter-relate, especially during sleep, which is anticipated to be critical for consolidation. They provide evidence from intercellualr recordings of the bi-directional functional connectivity among these structures. There is an emphasis on the interactions between these regions during sleep, especially slow wave sleep. They provide evidence, in cats, that cortical slow waves precede reuniens slow waves and hippocampal sharp-wave ripples, which may reflect prefrontal control of the timing of thalamic and hippocampal events, They also find evidence that hippocampal sharp wave ripples trigger thalamic firing and precede the onset of reuniens and medial prefrontal cortex spindles. The authors suggest that the effectiveness of bidirectional connections between the reuniens and the (ventral) CA1 is particularly strong during non-rapid eye movement sleep in the cat. This is a very interesting, complex study on a highly topical subject.

      Strengths:

      An excellent array of different electrophysiological techniques and analyses are conducted. The temporal relationships described are novel findings that suggest mechanisms behind the interactions between the key regions of interest. These may be of value for future experimental studies to test more directly their association with memory consolidation.

      Weaknesses:

      The number of findings provided is complex and some readers may struggle to follow all the details. The fact that bidirectional connections exist in the model system is not new per se. How and why the specific findings add to existing literature could still be presented with a little more impact. However, I am not sure this can be done more easily than is currently presented. I leave that to the authors to consider.

    1. Reviewer #2 (Public review):

      Summary:

      Marylin Alves de Almeida et al. developed a novel mouse cross via conditionally depleting functional SMN protein in the liver (AlbCre/+;Smn2B/F7). This mouse model retains a proportion of SMN in the liver, which better recapitulates SMN deficiency observed in SMA patients and allows further investigation into liver-specific SMN deficiency and its systemic impact. They show that AlbCre/+;Smn2B/F7 mice do not develop an apparent SMA phenotype as mice did not develop motor neuron death, neuromuscular pathology or muscle atrophy, which is observed in the Smn2B/- controls. Nonetheless, at P19 and P60, these mice develop mild liver steatosis, and interestingly, this conditional depletion of SMN in the liver impacts cells in the pancreas.

      Strengths:

      The current model has clearly delineated the apparent metabolic perturbations which involve a significantly increased lipid accumulation in the liver and pancreatic cell defects in AlbCre/+;Smn2B/F7 mice at P19 and P60. Standard methods like H&E and Oil Red-O staining show that in AlbCre/+;Smn2B/F7 mice, their livers closely mimic the livers of Smn2B/- mice, which have the full body knockout of SMN protein. Unlike previous work, this liver-specific conditional depletion of SMN is superior in that it is not lethal to the mouse, which allows an opportunity to investigate the long-term effects of liver-specific SMN on the pathology of SMA.

      Weaknesses:

      Given that SMA often involves fatty liver, dyslipidemia and insulin resistance, using the current mouse model, the authors could have explored the long-term effects of liver-specific depletion of SMN on metabolic phenotypes beyond P19, as well as systemic effects like glucose homeostasis. Given that the authors also report pancreatic cell defects, the long-term effect on insulin secretion and resistance could be further explored. This has been addressed in the revised manuscript. The mechanistic link between a liver-specific SMN depletion and apparent pancreatic cell defects has been made clearer.

      Discussion:

      This current work explores a novel mouse cross in order to specifically deplete liver SMN using an Albumin-Cre driver line. This provides insight into the contribution of liver-specific SMN protein to the pathology of SMA, which is relevant for understanding metabolic perturbations in SMA patients. Nonetheless, given that SMA in patients involve a systemic deletion or mutation of the SMN gene, the authors could emphasize the utility of this liver-specific mouse model, as opposed to using in vitro models, which have been recently reported (Leow et al, 2024, JCI).

      Comments on current version:

      No further suggestions. Previous recommendations have been addressed by the authors.

    1. Reviewer #2 (Public review):

      Summary:

      This study provides novel insights into the neurotransmitter release mechanisms employed by two distinct subclasses of dopaminergic neurons in the olfactory bulb (OB). The findings suggest that anaxonic neurons primarily release neurotransmitters through their dendrites, whereas axon-bearing neurons predominantly release neurotransmitters via their axons. Furthermore, the study reveals that anaxonic neurons exhibit self-inhibitory behavior, indicating that closely related neuronal subclasses may possess specialized roles in sensory processing.

      Strengths:

      This study introduces a novel and significant concept, demonstrating that two closely related neuron subclasses can exhibit distinct patterns of neurotransmitter release. Therefore, this finding establishes a valuable framework for future investigations into the functional diversity of neuronal subclasses and their contributions to sensory processing. Furthermore, these findings offer fundamental insights into the neural circuitry of the olfactory bulb, enhancing our understanding of sensory information processing within this critical brain region.

      Weaknesses:

      While this study offers novel insights, it is hindered by several limitations. The experimental approaches sometimes lack comprehensive justification and often rely on citations without providing adequate explanatory context. The small sample sizes (n values) compromise the statistical reliability and generalizability of the findings. Furthermore, the reliance on synaptophysin-based presynaptic structures raises concerns regarding whether these structures represent functional synapses. These shortcomings highlight the need for further refinement and additional data to substantiate the study's central conclusions. Addressing these concerns would improve the rigor and impact of the study's findings while ensuring the validity of its conclusions.

    1. Reviewer #2 (Public review):

      Summary:

      The authors aimed to improve the detection of enkephalins, opioid peptides involved in pain modulation, reward, and stress. They used optogenetics, microdialysis and mass spectrometry to measure enkephalin release during acute stress in freely moving rodents. Their study provided detection and quantitation of enkephalins due to implementation of previously reported derivatization reaction combined with improved sample collection and offered insights into the dynamics and relationship between Met- and Leu-Enkephalin in the Nucleus Accumbens shell during stress.

      Strengths:

      A strength of this work is the quantitative Enk measurements resulted from an optimized microdialysis technique coupled with established derivatization approach and sensitive and quantitative nLC-MS measurements. This approach allowed basal and stimulated peptide release with higher temporal resolution, lower detection thresholds, and native-state endogenous peptide measurement.

      Weaknesses:

      The optimization of the previously published customizable microdialysis probe and the Met-Enk oxidation derivatization are included in the results, but these adjustments seem more like refinements or practical adaptations rather than significant innovations.

      Another consideration is the use of log transformation for quantitation of peptides. Transforming data to achieve normality for parametric tests does not guarantee that all assumptions of normality are met, especially in small and variable datasets reported here. Visual checks like QQ-plots can help verify the appropriateness of transformations. In biological contexts, log transformation can obscure the relationship between measured values and underlying processes.

    1. Reviewer #2 (Public review):

      Summary:

      In this paper, Oláh and colleagues introduce new research data on the cellular and biophysical elements involved in transmission within the pyramidal circuits of the human neocortex. They gathered a comprehensive set of patch-clamp recordings from human and rat pyramidal neurons to compare how the temporal aspect of neuronal processing is maintained in the larger human neocortex. A range of experimental techniques have been used, including two-photon guided dual whole-cell recordings, electron microscopy, complemented by theoretical and computational methods.

      The authors find that synaptically connected pyramidal neurons within the human neocortex have longer intercellular path lengths. They go on to show that the short soma to soma latencies is not due to propagation velocity along the axon but instead reflects a higher propagation speed of synaptic potentials from dendrite to soma. Next, in a series of extensive computational modeling studies focusing on the synaptic potentials, the authors show that the shorter latency may be explained by larger diameters, affecting the cable properties and resulting is relatively faster propagation of EPSPs in the human neuron. The manuscript is well-written, and the physiological experiments and in-depth theoretical steps for the simulations are clear. Whether passive cable properties of the dendrites alone are responsible for higher velocities remains to be further investigated. Based on the present data the contribution of active membrane properties cannot be excluded.

      Strengths:

      The authors used complex 2P-guided dual whole-cell recordings in human neurons. In combination with detailed reconstructions, these approaches represent the next steps in unravelling the information processing in human circuits.

      The computational modelling and cable theory application to the experimentally constrained simulations provide an integrated view of the passive membrane properties of human neurons.

      Weaknesses:

      There are concerns with the statistical analyses of the experimental data. The two-way analyses are not supporting that the backpropagation speed in human neurons is more affected by TTX-induced or after ZD remains higher. Significance of interaction is required, and the authors make errors in the interpretation and application of separate additional t-tests. Whether the cable properties alone are the main explanation for speeding the electrical signaling in human pyramidal neurons deserves further studies.

      Comments on the latest version:

      In my previous review I suggested the author read upon the need to perform two-way ANOVA for their experiments. Although I am glad this has now been done, I'm surprised to read the interpretation remains flawed and we are not provided with all the analyses. We need to know all the covariates and results of the post-hoc comparisons. What is written in the results is incomplete.

      One cannot perform two-way ANOVA and subsequently performing t-tests on computed differences. Figures 3C and F are irrelevant. Instead, we need to know the Bonferroni post-hoc results for all comparisons.

      If there is an interaction significance then the authors will have to conclude the Na+ channels have a larger contribution to the backpropagation.

      Line187 "It therefore be argued that HCN channels may contribute to the higher conduction velocities in human dendrites, but do not by themselves explain the differences between the two species."

      One wonders whether supplementary figures are required.

    1. Reviewer #2 (Public review):

      In this study, Nartker et al. examine how much observers are conscious of using variations of classic inattentional blindness studies. The key idea is that rather than simply ask observers if they noticed a critical object with one yes/no question, the authors also ask follow-up questions to determine if observers are aware of more than the yes/no questions suggest. Specifically, by having observers make forced choice guesses about the critical object, the authors find that many observers who initially said "no" they did not see the object can still "guess" above chance about the critical object's location, color, etc. Thus, the authors claim, that prior claims of inattentional blindness are mistaken and that using such simple methods has led numerous researchers to overestimate how little observers see in the world. To quote the authors themselves, these results imply that "inattentionally blind subjects consciously perceive these stimuli after all... they show sensitivity to IB stimuli because they can see them."

      Before getting to a few issues I have with the paper, I do want to make sure to explicitly compliment the researchers for many aspects of their work. Getting massive amounts of data, using signal detection measures, and the novel use of a "super subject" are all important contributions to the literature that I hope are employed more in the future.

      Main point 1: My primary issue with this work is that I believe the authors are misrepresenting the way people often perform inattentional blindness studies. In effect, the authors are saying, "People do the studies 'incorrectly' and report that people see very little. We perform the studies 'correctly' and report that people see much more than previously thought." But the way previous studies are conducted is not accurately described in this paper. The authors describe previous studies as follows on page 3:

      "Crucially, however, this interpretation of IB and the many implications that follow from it rest on a measure that psychophysics has long recognized to be problematic: simply asking participants whether they noticed anything unusual. In IB studies, awareness of the unexpected stimulus (the novel shape, the parading gorilla, etc.) is retroactively probed with a yes/no question, standardly, "Did you notice anything unusual on the last trial which wasn't there on previous trials?". Any subject who answers "no" is assumed not to have any awareness of the unexpected stimulus.

      If this quote were true, the authors would have a point. Unfortunately, I do not believe it is true. This is simply not how many inattentional blindness studies are run. Some of the most famous studies in the inattentional blindness literature do not simply as observes a yes/no question (e.g., the invisible gorilla (Simons et al. 1999), the classic door study where the person changes (Simons and Levin, 1998), the study where observers do not notice a fight happening a few feet from them (Chabris et al., 2011). Instead, these papers consistently ask a series of follow-up questions and even tell the observers what just occurred to confirm that observers did not notice that critical event (e.g., "If I were to tell you we just did XYZ, did you notice that?"). In fact, after a brief search on Google Scholar, I was able to relatively quickly find over a dozen papers that do not just use a yes/no procedure, and instead as a series of multiple questions to determine if someone is inattentionally blind. In no particular order some papers:

      (1) Most et al. (2005) Psych Review<br /> (2) Drew et al. (2013) Psych Science<br /> (3) Drew et al. (2016) Journal of Vision<br /> (4) Simons et al. (1999) Perception<br /> (5) Simons and Levin (1998) Perception<br /> (6) Chabris et al. (2011) iPerception<br /> (7) Ward & Scholl (2015) Psych Bulletin and Review<br /> (8) Most et al. (2001) Psych Science<br /> (9) Todd & Marois (2005) Psych Science<br /> (10) Fougnie & Marois (2007) Psych Bulletin and Review<br /> (11) New and German (2015) Evolution and Human Behaviour<br /> (12) Jackson-Nielsen (2017) Consciousness and cognition<br /> (13) Mack et al. (2016) Consciousness and cognition<br /> (14) Devue et al. (2009) Perception<br /> (15) Memmert (2014) Cognitive Development<br /> (16) Moore & Egeth (1997) JEP:HPP<br /> (17) Cohen et al. (2020) Proc Natl Acad Sci<br /> (18) Cohen et al. (2011) Psych Science

      This is a critical point. The authors' key idea is that when you ask more than just a simple yes/no question, you find that other studies have overestimated the effects of inattentional blindness. But none of the studies listed above only asked simple yes/no questions. Thus, I believe the authors are mis-representing the field. Moreover, many of the studies that do much more than ask a simple yes/no question are cited by the authors themselves! Furthermore, as far as I can tell, the authors believe that if researchers do these extra steps and ask more follow-ups, then the results are valid. But since so many of these prior studies do those extra steps, I am not exactly sure what is being criticized.

      To make sure this point is clear, I'd like to use a paper of mine as an example. In this study (Cohen et al., 2020, Proc Natl Acad Sci USA) we used gaze-contingent virtual reality to examine how much color people see in the world. On the critical trial, the part of the scene they fixated on was in color, but the periphery was entirely in black and white. As soon as the trial ended, we asked participants a series of questions to determine what they noticed. The list of questions included:

      (1) "Did you notice anything strange or different about that last trial?"<br /> (2) "If I were to tell you that we did something odd on the last trial, would you have a guess as to what we did?"<br /> (3) "If I were to tell you we did something different in the second half of the last trial, would you have a guess as to what we did?"<br /> (4) "Did you notice anything different about the colors in the last scene?"<br /> (5) We then showed observers the previous trial again and drew their attention to the effect and confirmed that they did not notice that previously.<br /> In a situation like this, when the observers are asked so many questions, do the authors believe that "the inattentionally blind can see after all?" I believe they would not say that and the reason they would not say that is because of the follow-up questions after the initial yes/no question. But since so many previous studies use similar follow-up questions, I do not think you can state that the field is broadly overestimating inattentional blindness. This is why it seems to me to be a bit of a straw-man: most people do not just use the yes/no method.

      Main point 2: Let's imagine for a second that every study did just ask a yes/no question and then would stop. So, the criticism the authors are bringing up is valid (even though I believe it is not). I am not entirely sure that above chance performance on a forced choice task proves that the inattentionally blind can see after all. Could it just be a form of subliminal priming? Could there be a significant number of participants who basically would say something like, "No I did not see anything, and I feel like I am just guessing, but if you want me to say whether the thing was to the left or right, I will just 100% guess"? I know the literature on priming from things like change and inattentional blindness is a bit unclear, but this seems like maybe what is going on. In fact, maybe the authors are getting some of the best priming from inattentional blindness because of their large sample size, which previous studies do not use.<br /> I'm curious how the authors would relate their studies to masked priming. In masked priming studies, observers say the did not see the target (like in this study) but still are above chance when forced to guess (like in this study). Do the researchers here think that that is evidence of "masked stimuli are truly seen" even if a participant openly says they are guessing?

      Main point 3: My last question is about how the authors interpret a variety of inattentional blindness findings. Previous work has found that observers fail to notice a gorilla in a CT scan (Drew et al., 2013), a fight occurring right in front of them (Chabris et al., 2011), a plane on a runway that pilots crash into (Haines, 1991), and so forth. In a situation like this, do the authors believe that many participants are truly aware of these items but simply failed to answer a yes/no question correctly? For example, imagine the researchers made participants choose if the gorilla was in the left or right lung and some participants who initially said they did not notice the gorilla were still able to correctly say if it was in the left or right lung. Would the authors claim "that participant actually did see the gorilla in the lung"? I ask because it is difficult to understand what it means to be aware of something as salient as a gorilla in a CT scan, but say "no" you didn't notice it when asked a yes/no question. What does it mean to be aware of such important, ecologically relevant stimuli, but not act in response to them and openly say "no" you did not notice them?

      Overall: I believe there are many aspects of this set of studies that are innovative and I hope the methods will be used more broadly in the literature. However, I believe the authors misrepresent the field and overstate what can be interpreted from their results. While I am sure there are cases where more nuanced questions might reveal inattentional blindness is somewhat overestimated, claims like "the inattentionally blind can see after all" or "Inattentionally blind subjects consciously perceive thest stimuli after all" seem to be incorrect (or at least not at all proven by this data).

    1. Reviewer #2 (Public review):

      Summary:

      This paper presents a very interesting use of a causal graph framework to identify the "root genes" of a disease phenotype. Root genes are the genes that cause a cascade of events that ultimately leads to the disease phenotype, assuming the disease progression is linear.

      Strengths:

      - The methodology has a solid theoretical background.<br /> - This is a novel use of the causal graph framework to infer root causes in a graph

      Comments on revisions:

      The authors addressed all of my comments.

    1. Reviewer #2 (Public review):

      Summary: This study proposes a novel role for ensheathing glia (EG) in a Pink1-model of Parkinson's disease and shows that this cell population exibits the highest number of DEG in a pre-symptomatic stage. In the olfactory system, there seems to be morphological changes in this cell-type that resembles an 'activated' state and the authors further show that the neuronal loss of Pink1 is responsible for this defect. The authors go on to show that manipulation of Pink1 in EG also leads to some defects in the visual system and in the dopaminergic neurons (DAN) that innervate the mushroom body (MB), and performed a screen based on the 'on-transient' defect of the ERG to identify potential genes that may modulate the function of EG in synaptic regulation. They focus on several genes related to Rab7/Vps13, and performed some additional experiments in the visual system and MB to propose the role of vesicle/lipid trafficking in EG as a important factor for PD pathogenesis.

      Strengths: The study proposes functional and mechanistic connections between several genes that have been linked to PD (PINK1, VPS13A/C). I feel that the data presented in Figure 1 and Fig3A-C are performed with rigor and are convincing/novel. The selection of Drosophila to study the questions is also a strength and the lab has extensive experiences in this field and model organism.

      Weaknesses: There is one fundamental concern I have with the genetic experiments performed in this paper (especially in Fig 3D and Fig4, see major issue #1), and I feel that there is a bit of a disconnect between the EG 'activation' phenotype the author show in the olfactory system and the other two neuronal systems (visual system, MB DAN) that the authors investigate see major issue #2). Also, there are quite a bit of information that is not provided in the manuscript (see major issues #3 and #4), which makes me difficult to judge the rigor and interpretation of several experiments.

      Major Concern #1: A number of lines used in this study are referred to as "RNAi" lines but when I look at the actual genotypes of reagents listed in the table in the METHODS section, many are actually NOT RNAi lines. Quite a few lines, including lines that the authors use as RNAi against Ccz1, Rab7 and Mon1, are gRNA lines for the TKO (TRiP-CRISPR knockout) system. While these reagents can theoretically knock-out these genes in somatic cells if used in combination with UAS-Cas9, there is no mention that UAS-Cas9 was used in this work throughout the manuscript. Hence, when these lines are just crossed to GAL4 with or without the Pink1 mutant, they shouldn't be having any effects. Similarly, the strongest hit from their screen was a TOE (TRiP-CRISPR Over Expression) gRNA against PIG-A, which could allow overexpression of PIG-A if there is a UAS-dCas9::VP64. However, I also do not see any mention that such activator was introduced into the crossing scheme. Considering that 3 of the 4 'hits' from their screen are not RNAi lines, I am quite skeptical of the study. Similarly, except for Vps13, all reagents used in Fig4 are TKO gRNA lines. Therefore, if this experiment was conducted without an UAS-Cas9, most of the data shown here are problematic. Also, note that several of the 'RNAi' lines listed in the Table in the METHODS section are actually MiMIC alleles. While some MiMIC lines could function as strong LOF alleles (if they are inserted in the exon or in an intron of the gene in the same orientation as the gene), some of the lines are not expected to affect gene function (e.g. FASN2 and CG17712, MiMICs are in introns and face the opposite orientation). Hence, the rationale of including these reagents in the screen doesn't make much sense. The description of the modifier screen should be much more detailed in the RESULTS and METHODS section and if the UAS-Cas9/dCas9::VP64 transgenes were not introduced when the TKO/TOE reagents were utilized, what can be concluded?

      In addition, for the 4 genes that the authors further study in Fig4, there are many other reagents that the authors can use, including mutant alleles, previously characterized RNAi lines (e.g. Vps13) and dominant negative/constitute active lines (e.g. especially for Rab7). The authors should validate their results with independent reagents to really convincingly show that the same conclusions can be drawn for the Vps13/Rab7 related genes since this is the key takeaway message of this paper.

      Also, they do not show whether the manipulation of these genes in a wild-type background (they only show what happens in Pink1 mutants) affect ERG and MB DAN synapse morphology. If these manipulations alone dramatically affect these phenotypes, it would be very difficult to interpret their data.

      Major Concern #2: In Figure 1, the authors show some morphological evidence that EG are 'activated' in Pink1 mutants, but whether the same phenomenon occurs in the visual system and in the MB is not shown. Since all of the studies in Fig3D and Fig4 are done in the visual system and MB, it is not clear whether the visual system and MB phenotypes are related to 'activation' of EG.

      Also, in the RNA-seq data in Fig1A and Fig3C, is there any molecular evidence that EG are indeed 'activated'? The only evidence that the authors show to state that EG are 'activated' in young Pink1 null animals is based on increased CD8::GFP staining in the olfactory system.

      The authors cannot draw a strong conclusion that indeed EG are 'activated' based on these data (e.g. perhaps the expression level of CD8::GFP is just increased). Additional evidence that the EG are 'activated' could be provided by looking at the increase in Draper intensity (as reported by Doherty et al. and MacDonald et al. that the authors cite), not only in the olfactory system, but also in the visual system and in the MB. It would also be informative if the authors can look at morphology of the EG in the visual system and MB to convincingly that the data shown in Fig4 is relevant to EG 'activation'.

      Major Concern #3: In Fig3, there is no clear explanation why they focus on the ON transients and ignore the OFF transients, and also why the difference in the depolarization is not quantified in Fig4.

      Major Concern #4: While the authors claim that mz709-GAL4 is a EG specific driver, do the authors know that this is indeed true in the tissues and stages that are studied here? The Ito et al,. paper that is cited in the METHOD section has only looked at the expression of this reporter in embryonic and larval stages. The authors need to that the authors should validate their findings with an additional EG specific driver and/or provide additional data that mz709-GAL4 is indeed specific to EG in the adult fly brain and eye. If mz709-GAL4 is expressed in other cell-types, the interpretation of many of the data in this paper becomes quite questionable. I believe the data in Fig3B is suggesting that mz709-GAL4 is indeed specific to glia cells and not expressed in neurons, but whether this driver is truly specific to EG (and not in other glial types), especially in the visual system (including the lamina as well as in the eye), is not obvious.

    1. Reviewer #2 (Public review):

      The authors inject, into the rete testes, mRNA and plasmids encoding mRNAs for GFP and then ARMC2 (into infertile Armc2 KO mice) in a gene therapy approach to express exogenous proteins in male germ cells. They do show GFP epifluorescence and ARMC2 protein in KO tissues, although the evidence presented is weak. Overall, the data do not necessarily make sense given the biology of spermatogenesis and more rigorous testing of this model is required to fully support the conclusions, that gene therapy can be used to rescue male infertility.

      In this revision, the authors attempt to respond to the critiques from the first round of reviews. While they did address many of the minor concerns, there are still a number to be addressed. With that said, the data still do not support the conclusions of the manuscript.

      (1) The authors have not satisfactorily provided an explanation for how a naked mRNA can persist and direct expression of GFP or luciferase for ~3 weeks. The most stable mRNAs in mammalian cells have half-lives of ~24-60 hours. The stability of the injected mRNAs should be evaluated and reported using cell lines. GFP protein's half-life is ~26 hours, and luciferase protein's half-life is ~2 hours.

      (2) There is no convincing data shown in Figs. 1-8 that the GFP is even expressed in germ cells, which is obviously a prerequisite for the Armc2 KO rescue experiment shown in the later figures! In fact, to this reviewer the GFP appears to be in Sertoli cell cytoplasm, which spans the epithelium and surrounds germ cells - thus, it can be oft-confused with germ cells. In addition, if it is in germ cells, then the authors should be able to show, on subsequent days, that it is present in clones of germ cells that are maturing. Due to intracellular bridges, a molecule like GFP has been shown to diffuse readily and rapidly (in a matter of minutes) between adjacent germ cells. To clarify, the authors must generate single cell suspensions and immunostain for GFP using any of a number of excellent commercially-available antibodies to verify it is present in germ cells. It should also be present in sperm, if it is indeed in the germline.

      Other comments:

      70-1 This is an incorrect interpretation of the findings from Ref 5 - that review stated there were ~2,000 testis-enriched genes, but that does not mean "the whole process involves around two thousand of genes"

      74 would specify 'male'

      79-84 Are the concerns with ICSI due to the procedure itself, or the fact that it's often used when there is likely to be a genetic issue with the male whose sperm was used? This should be clarified if possible using references from the literature, as this reviewer imagines this could be a rather contentious issue with clinicians who routinely use this procedure, even in cases where IVF would very likely have worked

      199 Codon optimization improvement of mRNA stability needs a reference; in one study using yeast transcripts, optimization improved RNA stability on the order of minutes (e.g., from ~5 minutes to ~17 minutes); is there some evidence that it could be increased dramatically to days or weeks?

      472-3 The reported half-life of EGFP is ~36 hours - so, if the mRNA is unstable (and not measured, but certainly could be estimated by qRT-PCR detection of the transcript on subsequent days after injection) and EGFP is comparatively more stable (but still hours), how does EGFP persist for 21 days after injection of naked mRNA??

      Curious why the authors were unable to get anti-GFP to work in immunostaining?

      In Fig. 3-4, the GFP signals are unremarkable, in that they cannot be fairly attributed to any structure or cell type - they just look like blobs; and why, in Fig. 4D-E, why does the GFP signal appear stronger at 21 days than 15 days? And why is it completely gone by 28 days? This data is unconvincing. If the authors did a single cell suspension, what types or percentage of cells would be GFP+? Since germ cells are not adherent in culture, a simple experiment could be done whereby a single cell suspension could be made, cultured for 4-6 hours, and non-adherent cells "shaken off" and imaged vs adherent cells. Cells could also be fixed and immunostained for GFP, which has worked in many other labs using anti-GFP.

      In Fig. 5, what is the half-life of luciferase? From this reviewer's search of the literature, it appears to be ~2-3 h in mammalian cells. With this said, how do the authors envision detectable protein for up to 20 days from a naked mRNA? The stability of the injected mRNAs should be shown in a mammalian cell line - perhaps this mRNA has an incredibly long half-life, which might help explain these results. However, even the most stable endogenous mRNAs (e.g., globin) are ~24-60 hrs.

      527-8 The Sertoli cell cytoplasm is not just present along the basement membrane as stated, but also projects all the way to the lumina

      529-30 This is incorrect, as round spermatids are never "localized between the spermatocytes and elongated spermatids" - if elongated spermatids are present, rounds are not - they are never coincident in the same testis section

      Fig. 7 To this reviewer, all of the GFP appears to be in Sertoli cell cytoplasm

      In Figs 1-8 there is no convincing evidence presented that GFP is expressed in germ cells! In fact, it appears to be in Sertoli cells

      Fig. 9 - alpha-tubuline?

      Fig. 11 - how was sperm morphology/motility not rescued on "days 3, 6, 10, 15, or 28 after surgery", but it was in some at 21 and 35? How does this make sense, given the known kinetics of male germ cell development?? And at least one of the sperm in the KO in Fig. B5 looks relatively normal, and the flagellum may be out-of-focus in the image? With only a few sperm for reviewers to see, how can we know these represent the population?

    1. Reviewer #2 (Public review):

      Summary:

      Zhang et al. present a methodology to model protein-DNA interactions via learning an optimizable energy model, taking into account a representative bound structure for the system and binding data. The methodology is sound and interesting. They apply this model for predicting binding affinity data and binding sites in vivo. However, the manuscript lacks discussion of/comparison with state-of-the-art and evidence of broad applicability. The interpretability aspect is weak, yet over-emphasized.

      Strengths:

      The manuscript is well organized with good visualizations and is easy to follow. The methodology is discussed in detail. The IDEA energy model seems like an interesting way to study a protein-DNA system in the context of a given structure and binding data. The authors show that an IDEA model trained on one system can be transferred to other structurally similar systems. The authors show good performance in discriminating between binding-vs-decoy sequences for various systems, and binding affinity prediction. The authors also show evidence of the ability to predict genome-wide binding sites.

      Weaknesses:

      An energy-based model that needs to be optimized for specific systems is inherently an uncomfortable idea. Is this kind of energy model superior to something like Rosetta-based energy models, which are generally applicable? Or is it superior to family-specific knowledge-based models? It is not clear.

      Prediction of binding affinity is a well-studied domain and many competitors exist, some of which are well-used. However, no quantitative comparison to such methods is presented. To understand the scope of the presented method, IDEA, the authors should discuss/compare with such methods (e.g. PMID 35606422).

      The term "interpretable" has been used lavishly in the manuscript while providing little evidence on the matter. The only evidence shown is the family-specific residue-nucleotide interaction/energy matrix and speculations on how these values are biologically sensible. Recent works already present more biophysical, fine-grained, and sometimes family-independent interpretability (e.g. PMID 39103447, 36656856, 38352411, etc.). The authors should put into context the scope of the interpretability of IDEA among such works.

      The manuscript disregards subtle yet important differences in commonly used terminology in the field. For example, the authors use the term "specificity" and "affinity" almost interchangeably (for example, the caption for Figure 3A uses "specificity" although the Methods text describes the prediction as about "affinity"). If the authors are looking to predict specificity, IDEA needs to be put in the context of the corresponding state-of-the-art (PMID 36123148, 39103447, 38867914, 36124796, etc).

      It is not clear how much the learned energy model is dependent on the structural model used for a specific system/family. It would be interesting to see the differences in learned model based on different representative PDB structures used. Similarly, the supplementary figures show a lack of discriminative power for proteins like PDX1 (homeodomain family), POU, etc. Can the authors shed some light on why such different performances?

      It is also not clear if IDEA's prediction for reverse complement sequences is the same for a given sequence. If so, how is this property being modelled? Either this description is lacking or I missed it.

    1. Reviewer #2 (Public review):

      Summary:

      The posterior parietal cortex (PPC) has been identified as an integrator of multiple sensory streams and guides decision-making. Hira et al observe that dissection of the functional specialization of PPC subregions requires simultaneous measurement of neuronal activity throughout these areas. To this end, they use wide-field calcium imaging to capture the activity of thousands of neurons across the PPC and surrounding areas. They begin by delineating the boundaries between the primary sensory and higher visual areas using intrinsic imaging and validate their mapping using calcium imaging. They then conduct imaging during a visually guided task to identify neurons that respond selectively to visual stimuli or choices. They find that vision and choice neurons intermingle primarily in the anterior medial (AM) area, and that AM uniquely encodes information regarding both the visual stimulus and the previous choice, positioning AM as the main site of integration of behavioral and visual information for this task.

      Strengths:

      There is an enormous amount of data and results reveal very interesting relationships between stimulus and choice coding across areas and how network dynamics relate to task coding.

      Weaknesses:

      The enormity of the data and the complexity of the analysis make the manuscript hard to follow. Sometimes it reads like a laundry list of results as opposed to a cohesive story.

    1. Reviewer #2 (Public review):

      Summary:

      The authors aimed to investigate how IL-4 modulates the reactive state of microglia in the context of neuropathic pain. Specifically, they sought to determine whether IL-4 drives an increase in CD11c+ microglial cells, a population associated with anti-inflammatory responses and whether this change is linked to the suppression of neuropathic pain. The study employs a combination of behavioral assays, pharmacogenetic manipulation of microglial populations, and characterization of microglial markers to address these questions.

      Strengths:

      The methodological approach in this study is robust, providing convincing evidence for the proposed mechanism of IL-4-mediated microglial regulation in neuropathic pain. The experimental design is well thought out, utilizing two distinct neuropathic pain models (SpNT and SNI), each yielding different outcomes. The SpNT model demonstrates spontaneous pain remission and an increase in the CD11c+ microglial population, which correlates with pain suppression. In contrast, the SNI model, which does not show spontaneous pain remission, lacks a significant increase in CD11c+ microglia, underscoring the specificity of the observed phenomenon. This design effectively highlights the role of the CD11c+ microglial population in pain modulation. The use of behavioral tests provides a clear functional assessment of IL-4 manipulation, and pharmacogenetic tools allow for precise control of microglial populations, minimizing off-target effects. Notably, the manipulation targets the CD11c promoter, which presumably reduces the risk of non-specific ablation of other microglial populations, strengthening the experimental precision. Moreover, the thorough characterization of microglial markers adds depth to the analysis, ensuring that the changes in microglial populations are accurately linked to the behavioral outcomes.

      Weaknesses:

      One potential limitation of the study is that the mechanistic details of how IL-4 induces the observed shift in microglial populations are not fully explored. While the study demonstrates a correlation between IL-4 and CD11c+ microglial cells, a deeper investigation into the specific signaling pathways and molecular processes driving this population shift would greatly strengthen the conclusions. Additionally, the paper does not clearly integrate the findings into the broader context of microglial reactive state regulation in neuropathic pain.

    1. Reviewer #2 (Public review):

      Summary:

      Despite several methodological strengths, the major and highly significant drawback is the confound of arousal with movement. This confound is not resolved, so the results could be explained by previously established relationships between orexin and arousal/wakefulness.

      Strengths:

      The authors show that orexin neuron activity is associated with body movement and that this information is conveyed irrespective of the fasted state. They also report differences in different orexin target brain regions for orexin release during movement.

      This paper contains an impressive array of cutting-edge techniques to examine a very important brain system, the orexin-hypocretin system. The authors offer an original perspective on the function of this system. The authors showed that orexin neuron activity scales to some degree with the magnitude of body movement change; this is unaffected by a fasted state and seems to be somewhat unique to orexin neurons.

      The investigation of other genetically-defined subcortical neuron populations to determine the specificity of findings is also a strength, as is the ability to quantify movement and use deep learning to classify specific behaviors adds sophistication to analysis. The authors also show heterogeneity in orexin projections to specific target nuclei, which is interesting.

      The authors "speculate that narcolepsy-cataplexy, caused by HON loss-of-function, is perhaps explained by oscillations into unwanted sleep-states and motor programs due to impaired control loops for wakefulness and movement". This is quite an interesting aspect of their work, and deserving of further study.

      Weaknesses:

      Despite the strengths, there are several major and minor weaknesses that detract significantly from the study.

      Weaknesses - Major

      My main concern with this work is the confound of arousal with movement so that correlations with one might reflect a relationship instead with the other. The orexin system is well known to play an important role in arousal, with elevated activity of orexin neurons reported for waking and high arousal. Orexin signaling has also been strongly associated with motivation, which also is associated with arousal and movement. The authors offer no compelling evidence that the relationships they describe between different movements and orexin signaling do not simply reflect the known relationship between arousal and motivation.

      The authors could address this concern by including classical arousal measurements, eg, cortical EEG recorded simultaneously with movements. Often, EEG arousal occurs independently of movement, so this could provide one approach to disentangling this confound. The idea that orexin signaling plays a role in arousal rather than movement is supported by their finding that orexin lesions using the orexin-DTR mouse model did not impact movements. In contrast, prior lesion and pharmacologic studies have found that decreased orexin signaling significantly decreases arousal and waking.

      Another way they could test their idea would be to paralyze and respirate animals so that orexin activity could be recorded without movement. Alternatively, animals could be trained to remain motionless to receive a reward. Thus, there are several ways to test the overall hypothesis of this work that have not been examined here.

      The authors propose that "a simple interpretation of their results is that, via HON movement tracking, the brain creates a "wake up" signal in proportion to movement". This seems to argue for the role of the orexin system in arousal and motivation rather than in movement per se.

      There are several studies that have examined the effect of orexin antagonist treatment in rodents on locomotor and other motor activities. These studies have largely found no consistent effect of antagonizing orexin signaling, especially at the OxR1 receptor, on simple motor activity. These studies are not referenced here but should be taken into account in the authors' conclusions.

      Figure 3, panel F: I understand HON-DTR is a validated model but a picture of HONs ablation is necessary, including pictures of HONs outputs ablation within the SNc and LC.

      The discussion lacks a more extensive paragraph on the distinct signal and role of Ox->SNc and Ox-LC projections.

    1. Reviewer #2 (Public review):

      The aim of the investigation was to find out more about the mechanism(s) by which the structural protein vimentin can facilitate the epithelial-mesenchymal transition in breast cancer cells.

      The authors focussed on a key amino acid of vimentin, C238, its role in the interaction between vimentin and actin microfilaments, and the downstream molecular and cellular consequences. They model the binding between vimentin and actin in silico to demonstrate the potential involvement of C238, but the outcome is described vaguely. The phenotype of a non-metastatic breast cancer cell line MCF7, which doesn't express vimentin, could be changed to a metastatic phenotype when mutant C238S vimentin, but not wild-type vimentin, was expressed in the cells. Expression of vimentin was confirmed at the level of mRNA, protein, and microscopically. Patterns of expression of vimentin and actin reflected the distinct morphology of the two cell lines. Phenotypic changes were assessed through assay of cell adhesion, proliferation, migration, and morphology and were consistent with greater metastatic potential in the C238S MCF7 cells. Changes in the transcriptome of MCF7 cells expressing wild-type and C238S vimentins were compared and expression of Xist long ncRNA was found to be the transcript most markedly increased in the metastatic cells expressing C238S vimentin. Moreover changes in expression of many other genes in the C238S cells are consistent with an epithelial mesenchymal transition. Tumourigenic potential of MCF7 cells carrying C238S but not wild-type, vimentin was confirmed by inoculation of cells into nude mice. This assay is a measure of the stem-cell quality of the cells and not a measure of metastasis. It does demonstrate phenotypic changes that could be linked to metastasis.

      shRNA was used to down-regulate vimentin or Xist in the MCF7 C238S cells. The description of the data is limited in parts and data sets require careful scrutiny to understand the full picture. Down-regulation of vimentin reversed the morphological changes to some degree, but down-regulation of Xist didn't. Conversely, down-regulation of Xist inhibited cell growth, a sign of reversing metastatic potential, but down-regulation of vimentin had no effect on growth. Down-regulation of either did inhibit cell migration, another sign of metastatic reversal. The interpretation of this type of experiment is handicapped when full reversal of expression is not achieved, as was the case in this study.

      Overall the study describes an intriguing model of metastasis that is worthy of further investigation, especially at the molecular level to unravel the connection between vimentin and metastasis. The identification of a potential role for Xist in metastasis, beyond its normal role in female cells to inactivate one of the X chromosomes, corroborates the work of others demonstrating increased levels in a variety of tumours in women and even in some tumours in men. It would be of great interest to see where in metastatic cells Xist is expressed and what it binds to.

    1. Reviewer #2 (Public review):

      Summary:

      This manuscript describes a comprehensive analysis of signalling downstream of the chemokine receptor CCR7. A comprehensive dataset supports the authors' hypothesis that G protein and beta arrestin signalling can occur simultaneously at CCR7 with implications for continued signalling following receptor endocytosis.

      Strengths:

      The experiments are well controlled and executed, employing a wide range of assay, using in the main, CCR7 transfectants. Data are well presented, with the authors claims supported by the data. The paper also has an excellent narrative which makes it relatively easy to follow. I think this would certainly be of interest to the readership of the journal.

      Weaknesses:

      The experiments are currently representative of signalling events in HEK293 transfectants and await verification in more relevant systems e.g. T-cells and dendritic cells.

      Appraisal and Discussion

      Overall, the authors appear to have achieved their experimental aims and provide substantial evidence that chemokine receptors can stimulate G proteins from within endosomes to regulate signalling pathways involved in cell migration. This builds upon earlier studies from the Legler group which showed that endocytosed CCR7 could activate Rac1 and influence lamellipodia formation. An unbiased mass spectrometry-based proteome profiling approach was used by the authors of this study to identify several candidate proteins which appear to play a role in receptor trafficking and signalling downstream of CCR7. These data may provide clues as to how other chemokine receptors are regulated post endocytosis in various leukocyte subsets.

    1. Reviewer #3 (Public review):

      In this work, the authors conducted a large-scale field trial of 130 indica accessions in normal vs. moderate salt stress conditions. The experiment consists of 3 replicates for each accession in each treatment, making it 780 plants in total. Leaf transcriptome, plant traits, and final yield were collected. Starting from a quantitative genetics framework, the authors first dissected the heritability and selection forces acting on gene expression. After summarizing the selection force acting on gene expression (or plant traits) in each environment, the authors described the difference in gene expression correlation between environments. The final part consists of eQTL investigation and categorizing cis- and trans-effects acting on gene expression.

      Building on the group's previous study and using a similar methodology (Groen et al. 2020, 2021), the unique aspect of this study is in incorporating large-scale empirical field works and combining gene expression data with plant traits. Unlike many systems biology studies, this study strongly emphasizes the quantitative genetics perspective and investigates the empirical fitness effects of gene expression data. The large amounts of RNAseq data (one sample for each plant individual) also allow heritability calculation. This study also utilizes the population genetics perspective to test for traces of selection around eQTL. As there are too many genes to fit in multiple regression (for selection analysis) and to construct the G-matrix (for breeder's equation), grouping genes into PCs is a very good idea.

      In the previous review, three major points were mentioned. The manuscript was modified, and here I briefly summarize them as a reference for future works:

      (1) The separate sections (selection analysis, transcript correlation structure change, and eQTL) could use better integration.<br /> (2) It would be worth considering joint analyses integrating the two environments together.<br /> (3) Whether gene expression PCs or unique expression modules should be used in selection analyses.

      Regarding whether to use PCs or WGCNA eigengenes to summarize gene expression for selection analyses, the authors reported that only a few WGCNA eigengenes were under selection, citing this observation as the rationale for choosing PC over eigengenes. However, as the relative false positive-negative rates of these choices likely require another dedicated study to explore, at this stage, it might be premature to state which method is better based on which gives more positive results. On one hand, one could easily imagine that plants screwed up by salinity have erratic genomewide expression and become extreme data points on the PCs, making the PCs a good proxy to correlate with fitness. On the other, it remains to be discussed whether this genomewide screwed-up-ness is what we want to measure in this study or whether we should focus on more dedicated gene modules instead. I suggest the authors acknowledge both possibilities. In this revision, I do not see relevant WGCNA results (as mentioned in the previous response letter) reported.

      Figure 4: The observation that chlorophyll a content is under negative selection under BOTH conditions is a bit counterintuitive. The manuscript only mentioned "consistent with the general trend for reduced photosynthesis under salinity stress" (line 329) but did not mention why this increased fitness, even in normal conditions.

    1. Reviewer #2 (Public review):

      Summary:

      This paper has some intriguing data regarding the different potential roles of Pch-2 in ensuring crossing over. In particular the alterations in crossover distribution and Msh-5 foci are compelling. My main issue is that some of the models are confusingly presented and would benefit from some reframing. The role of Pch-2 across organisms has been difficult to determine, the ability to separate pairing and synapsis roles in worms provides a great advantage for this paper.

      Strengths:

      Beautiful genetic data, clearly made figures. Great system for studying the role of Pch-2 in crossing over.

      Comments on revisions: The authors have responded to all major and minor critiques.

    1. Reviewer #2 (Public review):

      Summary:

      In the manuscript de la Fuente et al analyze the species specificity of sperm-egg recognition by looking at sperm binding and penetration of zonae pellucidae from different mammalian species and find a role for the oviductal protein OVGP1 in determining species specificity.

      Strengths:

      By combining sperm, oocytes, zona pellucida (ZP), and oviductal fluid from different mammalian species, they elucidate the essential role of OVGP1 in conferring species-specific fertilization.

      Weaknesses:

      Mice with OVGP1 deletion are viable and fertile. It would be quite interesting to investigate the species-specificity of sperm-ZP binding in this model. That would indicate whether OVGP1 is the only glycoprotein involved in determining species-specificity. Alternatively, the authors could immunodeplete OVGP1 from oviductal fluid and then ascertain whether this depleted fluid retains the ability to impede cross-species fertilization.

    1. Reviewer #2 (Public Review):

      Summary:

      Environmental influences on development are ubiquitous, affecting many phenotypes in organisms. However molecular genetic and cellular mechanisms transducing environmental signals are still only barely understood. This study examines part of one such intracellular mechanism in a polyphenic (or dimorphic) aphid.

      Strengths:

      While other published reports have linked phenotypic plasticity to RNA editing before, this study reports such an interaction in insects. The study uses a wide array of molecular tools to identify connections upstream and downstream of the RNA editing to elucidate the regulatory mechanism, which is illuminating.

      Weaknesses:

      While this system is intriguing, this report does not foster confidence in its conclusions. Many of the analyses seem based on very small sample sizes. It is itself problematic that sample sizes are not obvious in most figures, although based on Methods section covering RNAseq, they seem to be either 3, 6 or 9, depending on whether stages were pooled, but that point is not made clear. With such small sample sizes, statistical tests of any kind are unreliable. Besides the ambiguity on sample sizes, it's unclear what error bars or whiskers show in plots throughout this study. When sample sizes are small estimates of variance are not reliable. Student's t-test is not appropriate for comparisons with such small sample sizes. Presently, it is not possible to replicate the tests shown in Figures 3, 4 and 6. (Besides the HT-seq reads, other data should also be made publicly available, following the journal's recommendations.) Regardless, effect sizes in some comparisons (Fig 3J, 4A-C, 6E,H) are clearly not large, making confidence in conclusions low. The authors should be cautious about over-interpreting these data.

      [Editors' note: The authors made a great effort to address the reviewers' concerns. The current manuscript is significantly improved with additional data and clarification.]

    1. Reviewer #2 (Public review):

      Summary:

      In the manuscript "Mapping HIV-1 RNA Structure, Homodimers, Long-Range Interactions and 1 persistent domains by HiCapR" Zhang et al report results from an omics-type approach to mapping RNA crosslinks within the HIV RNA genome under different conditions i.e. in infected cells and in virions. Reportedly, they used a previously published method which, in the present case, was improved for application to RNAs of low abundance.

      Their claims include the detection of numerous long-range interactions, some of which differ between cellular and virion RNA. Further claims concern the detection and analysis of homodimers.

      Strengths:

      (1) The method developed here works with extremely little viral RNA input and allows for the comparison of RNA from infected cells versus virions.

      (2) The findings, if validated properly, are certainly interesting to the community.

      Weaknesses:

      (1) On the communication level, the present version of the manuscript suffers from a number of shortcomings. I may be insufficiently familiar with habits in this community, but for RNA afficionados just a little bit outside of the viral-RNA-X-link community, the original method (reference 22) and the presumed improvement here are far too little explained, namely in something like three lines (98-100). This is not at all conducive to further reading.

      (2) Experimentally, the manuscript seems to be based on a single biological replicate, so there is strong concern about reproducibility.

      (3) The authors perform an extensive computational analysis from a limited number of datasets, which are in thorough need of experimental validation

      Comments on revisions:

      The authors have made cosmetic changes with regards to the problems I raised. 1 - Reproducibilty: the rebuttal letter says there are now 3 replicates, but there is only data for 2 in the supplement. The generation of biological replicates needs to be precisely stated, e.g. taken on different days, from separate cultures, or from neighbouring dishes on the same day etc. I think, the manuscript would greatly benefit from the comparison of at least 3 replicates that were not generated on the same day. Given that the authors report a r2 of 0.99 between the sets they have, this seems quite plausible.

      The validation of the dimerisation sites is marginally better, but the authors should read up on significant digits and how precise Kd values can be determined.

      The authors state that they want to make several of the experimeriments that would address my issues in the future in the context of another study. I find that disappointing, and correspondingly the present datasets insufficient for further endorsement.

    1. Reviewer #2 (Public Review):

      Summary:

      In this work, the authors show that the camelid single-chain antibody sdAb42 selectivity inhibits Trypanosome pyruvate kinase (PYK) but not human PYK. Through the determination of the crystal structure and biophysical experiments, the authors show that the nanobody binds to the inactive T-state of the enzyme, and in silico analysis shows that the binding site coincides with an allosteric hotspot, suggesting that nanobody binding may affect the enzyme active site. Binding to the T-state of the enzyme is further supported by non-linear inhibition kinetics. PYK is an important enzyme in the glycolytic pathway, and inhibition is likely to have an impact on organisms such a trypanosomes, that heavily rely on glycolysis for their energy production. The nanobody was generated against Trypanosoma congolense PYK, but for technical reasons the authors progressed to testing its impact on cell viability in Trypanosoma brucei brucei. First, they show that sdA42 is able to inhibit Tbb PYK, albeit with lower potency. Cell-based experiments next show that expression of sdA42 has a modest, and dose-dependent effect on the growth rate of Tbb. The authors conclude that their data indicates that targeting this allosteric site affects cell growth and is a valuable new option for the development of new chemotherapeutics for trypanosomatid diseases.

      Strengths:

      The work clearly shows that sdA42A inhibits Trypanosome and Leishmania PYK selectively, with no inhibition of the human orthologue. The crystal structure clearly identifies the binding site of the nanobody, and the accompanying analysis supports that the antibody acts as an allosteric inhibitor of PYK, by locking the enzyme in its apo state (T-state).

      Weaknesses:

      (1) The most impactful claim of this work is that sdAb42-mediated inhibition of PYK negatively affects parasite growth and that this presents an opportunity to develop novel chemotherapeutics for trypanosomatid diseases. For the following reasons I think this claim is not sufficiently supported:

      - The authors do not provide evidence of target-engagement in cells, i.e. they do not show that sdA42A binds to, or inhibits, Tbb PYK in cells and/or do not provide a functional output consistent with PYK inhibition (e.g. effect on ATP production). Measuring the extent of target engagement and inhibition is important to draw conclusions from the modest effect on growth.

      - The authors do not explore the selectivity of sdA42A in cells. Potentially sdA42A may cross-react with other proteins in cells, which would confound interpretation of the results.

      - sdA42A only affects minor growth inhibition in Tbb. The growth defect is used as the main evidence to support targeting this site with chemotherapeutics, however based on the very modest effect on the parasites, one could reasonably claim that PYK is actually not a good drug target. The strongest effect on growth is seen for the high expressor clone in Figure 4a, however here the uninduced cells show an unusual profile, with a sudden increase in growth rate after 4 days, something that is not seen for any of the other control plots. This unexplained observation accentuates the growth difference between induced and uninduced, and the growth differences seen in all other experiments, including those with the highest expressors (clones 54 and 55) are much more modest. The loss of expression of sdA42A over time is presented as a reason for the limited effect, and used to further support the hypothesis that targeting the allosteric site is a suitable avenue for the development of new drugs. However, strong evidence for this is missing.

      - For chemotherapeutic interventions to be possible, a ligandable site is required. There is no analysis provided of the antibody binding site to indicate that small molecule binding is indeed feasible.

      (2) The authors comment on the modest growth inhibition, and refer to the need to achieve over 88% reduction in Vmax of PYK to see a strong effect, something that may or may not be achieved in the cell-based model (no target-engagement or functional readout provided). The slow binding model and switch of species are also raised as potential explanations. While these may be plausible explanations, they are not tested which leaves us with limited evidence to support targeting the allosteric site on PYK.

      (3) The evidence to support an allosteric mechanism is derived from structural studies, including the in silico allosteric network predictions. Unfortunately, standard enzyme kinetics mode of inhibition studies are missing. Such studies could distinguish uncompetitive from non-competitive behaviour and strengthen the claim that sdAb42 locks the enzyme complex in the apo form.

      (4) As general comment, the graphical representation of the data could be improved in line with recent recommendations: https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1002128, https://elifesciences.org/inside-elife/5114d8e9/webinar-report-transforming-data-visualisation-to-improve-transparency-and-reproducibility.

      - Bar-charts for potency are ideally presented as dot plots, showing the individual data points, or box plots with datapoints shown.

      - Images in Figure 7 show significant heterogeneity of nanobody expression, but the extent of this can not be gleaned from Figure 7B. It would be much better to use box plots or violin plots for each cell line on this figure panel. The same applies to Figure 10.

      Comments on revision:

      The authors have reduced the emphasis on the potential drug discovery applications. They are now referring to opportunities using a so called "chemo-superior" approach. This is not a commonly used term, and the newly added text seems to indicate that "chemo-superiors" target sites exposed by antibody binding, whereas the paper that the authors refer to (Lawson, 2012), defines "chemo-superiors" as small-molecules that induce similar effects to antibodies. I suggest removing the term "chemo-superior" altogether, as it has not been used since being coined in 2012, and instead simply point out the examples where antibodies have successfully informed small molecule design.

      Unfortunately, the authors were unable to carry out additional experiments. Any experimental data to support their hypotheses as to why the observed growth defect is only marginal, and how the effect on growth could be increased, would have been very useful. As such, the evidence to support embarking on a drug discovery campaign for this allosteric site remains very limited.

      The authors do provide some evidence of a druggable allosteric pocket, that partially overlaps with the antibody binding site, which is useful. However, I also ran the APOP tool on TcoPYK and it reveals 217 potential allosteric pockets all over the protein. The authors should provide the rank and APOP confidence score for the pocket that they have selected, to show that this is a high confidence allosteric pocket.

    1. Reviewer #2 (Public review):

      Summary:

      This study by Pradhan et al. offers critical insights into the mechanisms by which antimony-resistant Leishmania donovani (LD-R) parasites alter host cell lipid metabolism to facilitate their own growth and, in the process, acquire resistance to amphotericin B therapy. The authors illustrate that LD-R parasites enhance LDL uptake via fluid-phase endocytosis, resulting in the accumulation of neutral lipids in the form of lipid droplets that surround the intracellular amastigotes within the parasitophorous vacuoles (PV) that support their development and contribute to amphotericin B treatment resistance. The evidence provided by the authors supporting the main conclusions is compelling, presenting rigorous controls and multiple complementary approaches. The work represents an important advance in understanding how intracellular parasites can modify host metabolism to support their survival and escape drug treatment.

      Strengths:

      (1) The study utilizes clinical isolates of antimony-resistant L. donovani and provides interesting mechanistic information regarding the increased LD-R isolate virulence and emerging amphotericin B resistance.

      (2) The authors have used a comprehensive experimental approach to provide a link between antimony-resistant isolates, lipid metabolism, parasite virulence, and amphotericin B resistance. They have combined the following approaches:<br /> (a) In vivo infection models involving BL/6 and Apoe-/- mice.<br /> (b) Ex-vivo infection models using primary Kupffer cells (KC) and peritoneal exudate macrophages (PEC) as physiologically relevant host cells.<br /> (c) Various complementary techniques to ascertain lipid metabolism including GC-MS, Raman spectroscopy, microscopy.<br /> (d) Applications of genetic and pharmacological tools to show the uptake and utilization of host lipids by the infected macrophage resident L. donovani amastigotes.

      (3) The outcome of this study has clear clinical significance. Additionally, the authors have supported their work by including patient data showing a clear clinical significance and correlation between serum lipid profiles and treatment outcomes.

      (4) The present study effectively connects the basic cellular biology of host-pathogen interactions with clinical observations of drug resistance.

      (5) Major findings in the study are well-supported by the data:<br /> (a) Intracellular LD-R parasites induce fluid-phase endocytosis of LDL independent of LDL receptor (LDLr).<br /> (b) Enhanced fusion of LDL-containing vesicles with parasitophorous vacuoles (PV) containing LD-R parasites both within infected KCs and PECs cells.<br /> (c) Intracellular cholesterol transporter NPC1-mediated cholesterol efflux from parasitophorous vacuoles is suppressed by the LD-R parasites within infected cells.<br /> (d) Selective exclusion of inflammatory ox-LDL through MSR1 downregulation.<br /> (e) Accumulation of neutral lipid droplets contributing to amphotericin B resistance.

      Weaknesses:

      The weaknesses are minor:

      (1) The authors do not show how they ascertain that they have a purified fraction of the PV post-density gradient centrifugation.

      (2) The study could have benefited from a more detailed analysis of how lipid droplets physically interfere with amphotericin B access to parasites.

      Impact and significance:

      This work makes several fundamental advances:

      (1) The authors were able to show the link between antimony resistance and enhanced parasite proliferation.

      (2) They were also able to reveal how parasites can modify host cell metabolism to support their growth while avoiding inflammation.

      (3) They were able to show a certain mechanistic basis for emerging amphotericin B resistance.

      (4) They suggest therapeutic strategies combining lipid droplet inhibitors with current drugs.

    1. Reviewer #2 (Public review):

      Summary:

      In this study, the authors use a mechanical model to investigate how the geometry and deformations of myosin II filaments influence their force generation. They introduce a force generation efficiency that is defined as the ratio of the total generated force and the maximal force that the motors can generate. By changing the architecture of the myosin II filaments, they study the force generation efficiency in different systems: two filaments, a disorganized bundle, and a 2D network. In the simple two-filament systems, they found that in the presence of actin cross-linking proteins motors cannot add up their force because of steric hindrances. In the disorganized bundle, the authors identified a critical overlap of motors for cooperative force generation. This overlap is also influenced by the arrangement of the motor on the filaments and influenced by the length of the bare zone between the motor heads.

      Strengths:

      The strength of the study is the identification of organizational principles in myosin II filaments that influence force generation. It provides a complementary mechanistic perspective on the operation of these motor filaments. The force generation efficiency and the cooperative overlap number are quantitative ways to characterize the force generation of molecular motors in clusters and between filaments. These quantities and their conceptual implications are most likely also applicable in other systems.

      Weaknesses:

      The detailed model that the authors present relies on over 20 numerical parameters that are listed in the supplement. Because of this vast amount of parameters, it is not clear how general the findings are. On the other hand, it was not obvious how specific the model is to myosin II, meaning how well it can describe experimental findings or make measurable predictions. The model seems to be quantitative, but the interpretation and connection to real experiments are rather qualitative in my point of view.

      It was often difficult for me to follow what parameters were changed and what parameters were set to what numerical values when inspecting the curve shown in the figures. The manuscript could be more specific by explicitly giving numbers. For example, in the caption for Figure 6, instead of saying "is varied by changing the number of motor arms, the bare zone length, the spacing between motor arms", the authors could be more specific and give the ranges: ""is varied by changing the number of motor arms form ... to .., the bare zone length from .. to..., and the spacing between motor arms from .. to ..".

      This unspecificity is also reflected in the text: "We ran simulations with a variation in either Lsp or Lbz" What is the range of this variation? "When LM was similar" similar to what? "despite different NM." What are the different values for NM? These are only a few examples that show that the text could be way more specific and quantitative instead of qualitative descriptions.

      In the text, after equation (2) the authors discuss assumptions about the binding of the motor to the actin filament. I think these model-related assumptions and explanations should be discussed not in the results section but rather in the "model overview" section.

      The lines with different colors in Figure 2A are not explained. What systems and parameters do they represent?

    1. Reviewer #2 (Public review):

      Frangos et al present a set of studies aiming to determine mechanisms underlying initiation and tumour progression. Overall, this work provides some useful insights into the involvement of mitochondrial dysfunction during the cellular transformation process. This body of work could be improved in several possible directions to establish more mechanistic connections.

      (1) The interesting point of the paper: the contrast between suppressed ETC components and activated OXPHOS function is perplexing and should be resolved. It is still unclear if activated mitochondrial function triggers gene down-regulation vs compensatory functional changes (as the title suggests). Have the authors considered reversing the HER2-derived signals e.g. with PI3K-AKT-MTOR or ERK inhibitors to potentially separate the expression vs. functional phenotypes? The root of the OXPHOS component down-regulation should also be traced further, e.g. by probing into levels of core mitochondrial biogenesis factors. Are transcript levels of factors encoded by mtDNA also decreased?

      (2) The second interesting aspect of this study is the implication of mitochondrial activation in tumours, despite the downregulation of expression signatures, suggestive of a positive role for mitochondria in this tumour model. To address if this is correlative or causal, have the authors considered testing an OXPHOS inhibitor for suppression of tumorigenesis?

      (3) A number of issues concerning animal/ tumour variability and further pathway dissection could be explored with in vitro approaches. Have the authors considered deriving tumour-derived cell cultures, which could enable further confirmations, mechanistic drug studies and additional imaging approaches? Culture systems would allow alternative assessment of mitochondrial function such as Seahorse or flow cytometry (mitochondrial potential and ROS levels).

      (4) The study could be greatly improved with further confirmatory studies, eg immunoblotting for mitochondrial components with parallel blots for phospho-signalling in the same samples. It would be interesting if trends could be maintained in tumour-derived cell cultures. It is notable that OXPHOS protein/transcript changes are more consistent (Figure 5, Supplementary Figure 4) than mitochondrial dynamics /mitophagy factors (Figure 8). Core regulatory factors in these pathways should be confirmed by conventional immunoblotting.

    1. Reviewer #2 (Public review):

      This manuscript builds from the interesting observation that local recruitment of the DHPH domain of the RhoGEF PRG can induce local retraction, protrusion, or neither. The authors convincingly show that these differential responses are tied to the level of expression of the PRG transgene. This response depends on the Rho-binding activity of the recruited PH domain and is associated with and requires (co?)-activation of Cdc42. This begs the question of why this switch in response occurs. They use a computational model to predict that the timing of protein recruitment can dictate the output of the response in cells expressing intermediate levels and found that, "While the majority of cells showed mixed phenotypes irrespectively of the activation pattern, in few cells (3 out of 90) we were able to alternate the phenotype between retraction and protrusion several times at different places of the cell by changing the frequency while keeping the same total integrated intensity (Figure 6F and Supp Movie)."

    1. Reviewer #2 (Public review):

      Summary

      The authors characterize the cell-cycle arrest induced by HIV-1 Vif in infected cells. They show this arrest is not at G2/M as previously thought but during metaphase. They show that the metaphase plate forms normally but progression to anaphase is massively delayed, and chromosome segregation is dysregulated in a manner consistent with impaired assembly of microtubules at the kinetochore. This correlates with the lack of recruitment of B56-subunits of PP2 phosphatase which are known degradation targets of Vif, suggesting that this weakens and unbalances the microtubule-mediated forces on the separating chromosomes.

      Strengths

      The authors present a very well-performed set of quantitative live cell imaging experiments that convincingly show a difference between Vif and Vpr-mediated cell cycle arrests. Through an in-depth characterization of the Vif-mediated block in metaphase, they make a strong case for this phenotype being tied to the degradation of PP2-B56 by Vif. Furthermore, it is important that they have performed most of these experiments with virally infected cells, meaning that their observations are observable at relevant viral expression levels of Vif.

      Comments on revisions:

      The authors have addressed the concerns and have discussed them accordingly. I hope they pursue the in vivo relevance in their future work

    1. Reviewer #2 (Public review):

      Summary:

      In this manuscript, the authors ran a dual task. Subjects monitored a peripheral location for a target onset (to generate a saccade to), and they also monitored a foveal location for a foveal probe. The foveal probe could be congruent or incongruent with the orientation of the peripheral target. In this study, the authors manipulated the conspicuity of the peripheral target, and they saw changes in performance in the foveal task. However, the changes were somewhat counterintuitive.

      Strengths:

      The authors use solid analysis methods and careful experimental design.

      Comments on revisions:

      The authors have addressed my previous comments.

      One minor thing is that I am confused by their assertion that there was no smoothing in the manuscript (other than the newly added time course analysis). Figure 3A and Figure 6 seem to have smoothing to me.

      Another minor comment is related to the comment of Reviewer 1 about oscillations. Another possible reason for what looks like oscillations is saccadic inhibition. when the foveal probe appears, it can reset the saccade generation process. when aligned to saccade onset, this appears like a characteristic change in different parameters that is time-locked to saccade onset (about a 100 ms earlier). So, maybe the apparent oscillation is a manifestation of such resetting and it's not really an oscillation. so, I agree with Reviewer 1 about removing the oscillation sentence from the abstract.

    1. Reviewer #2 (Public review):

      Summary:

      The manuscript by Nohara et al. presents a novel 3D assay that allows for stratification of epithelia, active EMT through small pores, and active MET. They show that 3um pores allow for keratinocytes to sample the pore through filopodia and up-regulate EMT genes to transverse the pores to the other side of the membrane where EMT genes are downregulated as the cells re-establish stratified epithelia. The TGFbeta pathway and actin polymerization promote the movement of cells into the pores and Piezo1 and KRT6 actively block this movement. This work provides a novel 3D assay that is likely to become a benchmark to analyze these processes using a more complex system than other current culture-specific EMT and MET assays.

      Strengths:

      The strengths of the manuscript include the foundational analysis of the pathways involved in establishing the tri-phasic epithelium. The authors have incorporated live imaging, drug studies, KO analysis, and RNA sequencing to show the relevant pathways involved.

      Weaknesses:

      While the authors provide strong evidence that the tri-phasic epithelium represents the EMT process, the MET process is largely relegated to the absence of EMT genes. It would be interesting to know how the stratified MET epithelia submerged in the media is similar or different from the stratified epithelia at the air-liquid interface.

    1. Reviewer #2 (Public review):

      Summary:

      In this study, the authors suggest that the structure of Piezo2 in a tensionless simulation is flatter compared to the electron microscopy structure. This is an interesting observation and highlights the fact that the membrane environment is important for Piezo2 curvature. Additionally, the authors calculate the excess area of Piezo2 and Piezo1, suggesting that it is significantly smaller compared to the area calculated using the EM structure or simulations with restrained Piezo2. Finally, the authors propose an elastic model for Piezo proteins. Those are very important findings, which would be of interest to the mechanobiology field.

      Whilst I like the suggestion that the membrane environment will change Piezo2 flatness, could this be happening because of the lower resolution of the MARTINI simulations? In other words, would it be possible that MARTINI is not able to model such curvature due to its lower resolution?

      Related to my comment above, the authors say that they only restrained the secondary structure using an elastic network model. Whilst I understand why they did this, Piezo proteins are relatively large. How can the authors know that this type of elastic network model restrains, combined with the fact that MARTINI simulations are perhaps not very accurate in predicting protein conformations, can accurately represent the changes that happen within the Piezo channel during membrane tension?

      Modelling or Piezo1, seems to be based on homology to Piezo2. However, the authors need to further evaluate their model, e.g. how it compares with an Alphafold model.

      To calculate the tension-induced flattening of the Piezo channel, the authors "divide all simulation trajectories into 5 equal intervals and determine the nanodome shape in each interval by averaging over the conformations of all independent simulation runs in this interval.". However, probably the change in the flattening of Piezo channel happens very quickly during the simulations, possibly within the same interval. Is this the case? and if yes does this affect their calculations?

      Finally, the authors use a specific lipid composition, which is asymmetric. Is it possible that the asymmetry of the membrane causes some of the changes in the curvature that they observe? Perhaps more controls, e.g. with a symmetric POPC bilayer are needed to identify whether membrane asymmetry plays a role in the membrane curvature they observe.

    1. Reviewer #2 (Public review):

      This study analyzes the interaction among the gut microbiota, lipid metabolism, and the host in type 2 diabetes (T2DM) using rhesus macaques. The authors first identified 8 macaques with T2DM from 1698 individuals. Then, they observed in T2DM macaques: dysbiosis by 16S rRNA gene amplicon analysis and shotgun sequencing, imbalanced tryptophan metabolism and fatty acid beta oxidization in the feces by metabolome analysis, increased plasma concentration of palmitic acid by MS analysis, and sn inflammatory gene signature of blood cells by transcriptomic analysis. Finally, they transplanted feces of T2DM macaques into mice and fed them with palmitic acid and showed that those mice became diabetic through increased absorption of palmitic acid in the ileum.

      This study clearly shows the interaction among gut microbiota, lipid metabolism, and the host in T2DM. The experiments were well designed and performed, and the data are convincing. One point I would suggest is that in the experiments of mice with FMT, control mice should be those colonized with feces of healthy macaques, but not with no FMT.

    1. Reviewer #3 (Public review):

      Arbués and colleagues describe the impact of mycobacterial genetic diversity on host-infection phenotypes. The authors evaluate Mtb infection and contextualize host-responses, bacterial growth and metabolic transitioning in vitro using their previously established model of blood-derived, primary-human-cells cultured within a collagen/fibronectin matrix. They seek to demonstrate the effectiveness of the model in determining mycobacterial strain specific granuloma-dependent host-pathogen interactions.

      Understanding the way mycobacterial genetic diversity impacts granuloma biology in tuberculosis is an important goal. One of this works strengths is the use of primary human cells and two constituents of pulmonary extracellular matrix to model Mtb infection. The authors and others have previously shown that Mtb infected PBMC aggregates share important characteristics with early pulmonary TB granulomas. Use of multiple genetically distinct strains of Mtb defines this work and further bolsters it potential impact. However, the study is not comprehensive as lineages 6 and 7 are not tested. Experiments are primarily descriptive, and the methodologies are conventional. Correlative relationships are the manuscripts focus and effect sizes are generally small.

      The main aim of this work is to extend an in vitro granuloma model to the study of a large collection of well characterized, genetically diverse representatives of the mycobacterium tuberculosis complex (MTBC). I believe that they accomplish that aim. The work does investigate MTBC infection of aggregated PBMCs using three strains each of Mtb lineages 1-5 and H37Rv, which is not a trivial undertaking. The experimental aims are to show that MTBC genetic diversity impacts growth and dormancy of granuloma bound bacteria and, the host responses of granulomatous aggregation as well as macrophage apoptosis, lymphocyte activation and soluble mediator release within granulomas. The methodologies employed are sufficient to test most of these aims. The authors conclusions regarding their results are mostly supported by the data. The conclusion that lineage impacts growth within granulomas is likely true and the data as presented reflect such a relationship. Their conclusions regarding lineage's impact on dormancy are partially supported, as their findings demonstrate that assays for dormancy identify strain-specific metabolic changes in the bacteria consistent with a dormancy-like state but also identify replicating bacteria as being dormant. The data strongly supports the impact of mycobacterial genetic diversity on a spectrum of granulomatous responses in their model system. Those findings are a highlight of the publication. The data further supports the idea that strain diversity impacts macrophage apoptosis but a relationship of apoptosis to the granulomatous response is not effectively evaluated. The association of lymphocyte activation with reduced mycobacterial growth as an aspect of granulomas is well documented in the literature and a negative correlation between T cell activation and growth is supported by the authors results. Their data also support the conclusion that soluble mediator production by PBMCs is different based on the infecting strain of mycobacteria and that IL1b modulates aggregate phenotypes in their model.

      The authors contribute some valuable insights, particularly in figure 3. Their model is higher echelon relative to others in the field, but I don't believe that it possesses all the components necessary to replicate formation of mycobacterial granulomas in vivo. That being said, their identification of donor-dependent aggregation phenotypes by mycobacterial strain has the potential to enable future investigations of human and mycobacterial genetic components that are involved in the formation of TB granulomas.

    1. Disease: Von-willebrand Disorder Type 2B, Noncanonical

      Patient: 55 YO, Italian male

      Note: these heterozygous variants are in cis mutations

      Variant1: VWF NM_000552.5 c.2771G>A p.(R924Q), in exon 21, D'D3 domain affected

      Variant2: VWF NM_000552.5 c.6532G>T p.(A2178S), in exon 37, D4 domain affected

      Phenotypes: Mucosal and cutaneous bleeding, low VWF antigent and VWF activity, mild thrombocytopenia, increased ristocetin-induced platelet aggregation, deficiency in high-molecular-weight multimers. Epistaxis, repeated GI bleeding, easy bruising, ISTH BAT score of 7.

      Note: Proband initially diagnosed with VWD type 1 in 2010 but later re-diagnosed as VWD-Type 2.

      Family: No reported family history of bleeding, parents unable to be included in family work-up as they were deceased by time of study. Paternity test was performed for family, parental link established. Patient's daughter does not present the same mutation noted in proband but has heterozygous polymorphic variant inherited from mother which is: VWF NM_000552.5 c.3379C>T p.(P1127S), in exon 25. Daughter did not show menorrhagia or hemorrhagic disorder except for large hematoma on the thigh after trauma of moderate intensity.

      Molecular workup: Paternity test, Sanger-sequencing to validate genetic variants, multimer analysis with electrophoresis, platelet aggregation analysis with Ristocetin, electron micrographs to observe conformation differences.

      Prediction workup: Structural analysis with I-TASSER modeling program to identify perturbed structure. A2178S is predicted as tolerated in all in-silico systems used.

      Database Information: Effect of the R924Q mutation is noted in literature database but has contradicting reports of effects altering VWF levels. Some studies do report it as a polymorphic variant

      Variant is present in dbSNP database (rs33978901). MAF in European population 0.01< MAF< 0.02

      Effect of A2178S variant is present in dbSNP database (rs34230288), MAF = 0.02 in European population.

    1. Reviewer #2 (Public review):

      This manuscript describes the impact of deleting or enhancing the expression of the neuronal-specific kinase DLK in glutamatergic hippocampal neurons using clever genetic strategies, which demonstrates that DLK deletion had minimal effects while overexpression resulted in neurodegeneration in vivo. To determine the molecular mechanisms underlying this effect, ribotag mice were used to determine changes in active translation which identified Jun and STMN4 as DLK-dependent genes that may contribute to this effect. Finally, experiments in cultured neurons were conducted to better understand the in vivo effects. These experiments demonstrated that DLK overexpression resulted in morphological and synaptic abnormalities.

      Strengths:

      This study provides interesting new insights into the role of DLK in the normal function of hippocampal neurons. Specifically, the study identifies:

      (1) CA1 vs CA3 hippocampal neurons have differing sensitivity to increased DLK signaling.

      (2) DLK-dependent signaling in these neurons is similar to but distinct from the downstream factors identified in other cell types, highlighted by the identification of STMN4 as a downstream signal.

      (3) DLK overexpression in hippocampal neurons results in signaling that is similar to that induced by neuronal injury.

      The study also provides confirmatory evidence that supports previously published work through orthogonal methods, which adds additional confidence to our understanding of DLK signaling in neurons. Taken together, this is a useful addition to our understanding of DLK function.

      Comments on the latest version:

      The authors have sufficiently addressed all issues raised with the initial manuscript.

    1. Reviewer #2 (Public review):

      This is an excellent and timely study from the Rao lab investigating the interactions of enteric glia with the intestinal epithelium. Two early studies in the late 90's and early 2000's had previously suggested that enteric glia play a pivotal role in control of the intestinal epithelial barrier, as their ablation using mouse models resulted in severe and fatal intestinal inflammation. However, it was later identified that these inflammatory effects could have been an indirect product of the transgenic mouse models used, rather than due to the depletion of enteric glia. In previous studies from this lab, the authors had identified expression of PLP1 in enteric glia, and its use in CRE driver lines to label and ablate enteric glia.

      In the current paper, the authors carefully examine the role of enteric glia by first identifying that PLP1-creERT2 is the most useful driver to direct enteric glial ablation, in terms of the quantity of glial cells targeted, their proximity to the intestinal epithelium, and the relevance for human studies (GFAP expression is rather limited in human samples in comparison). They examined gene expression changes in different regions of the intestine using bulk RNA-seq following ablation of enteric glia by driving expression of diptheria toxin A (PLP1-creERT2;Rosa26-DTA). Alterations in gene expression were observed in different regions of the gut, with specific effects in different regions. Interestingly, while there were gene expression changes in the epithelium, there were limited changes to the proportions of different epithelial cell types identified using immunohistochemistry in control vs glial-ablated mice. The authors then focused on investigation of Paneth cells in the ileum, identifying changes in the ultrastructural morphology and lysozyme activity. In addition, they identified alterations in gut microbiome diversity. As Paneth cells secrete antimicrobial peptides, the authors conclude that the changes in gut microbiome are due to enteric glia-mediated impacts on Paneth cell activity.

      Overall, the study is excellent and delves into the different possible mechanisms of action, including investigation of changes in enteric cholinergic neurons innervating the intestinal crypts. The use of different CRE-drivers to target enteric glial cells has led to varying results in the past, and the authors should be commended on how they address this in the Discussion.

      Comments on the latest version:

      Thanks to the authors for addressing my concerns. The additional stratification of male vs female microbiome data was very helpful.

    1. Reviewer #2 (Public review):

      Piersma et al. continue to work on deciphering the role and function of Ly49 NK cell receptors. This manuscript shows that a single inhibitory Ly49 receptor is sufficient to license NK cells and eliminate MHC-I-deficient target cells in mice. In short, they refined the mouse model ∆Ly49-1 (Parikh et al., 2020) into the Ly49KO model in which all Ly49 genes are disrupted. Using this model, they confirmed that NK cells from Ly49KO mice cannot be licensed, produce lower levels of IFN-gamma, and cannot reject MHC-I-deficient cells. To study the effect of a single Ly49 receptor in the function of NK cells, the authors backcrossed Ly49KO mice to H-2Dd transgenic KODO (D8-KODO) Ly49A knock-in mice in which a single inhibitory Ly49A receptor that recognizes H-2Dd ligands is expressed. By doing so, they demonstrate that a single inhibitory Ly49 receptor expressed by all NK cells is sufficient for licensing and missing-self killing.

      While the results of the study are largely consistent with the conclusions, it is important to address some discrepancies. For instance, in the title of Figure 1, the authors state that NK cells in Ly49KO mice compared to WT mice have a less mature phenotype , which is not consistent with the corresponding text in the Results section (lines 170-171) that states there is no difference in maturation. These differences are not evident in Figure 1, panel D. It is crucial to acknowledge these inconsistencies to ensure a comprehensive understanding of the research findings.

      In the legend of Figure 2. the text related to panel C indicates the use of dyes to label the splenocytes, and CFSE, CTV, and CTFR were mentioned. However, only CTV and CTFR are shown on the plots and mentioned in the corresponding text in the Results section. Similarly, in the legend of Figure 4, which is related to panel C, the authors write that splenocytes were differentially labeled with CFSE and CTV as indicated; however, in Figure 4, C and the Results section text, there is no mention of CFSE.

      The authors should clarify why they assume that KLRG1 expression is influenced by the expression of inhibitory Ly49 receptors and not by manipulations on chromosome 6, where the genes for both KLRG1 and Ly49 receptors are located. However, a better explanation for the possible influence of other inhibitory NK cell receptors still needs to be included. In the study by Zhang et al. (doi: 10.1038/s41467-019-13032-5 the authors showed the synergized regulation of NK cell education by the NKG2A receptor and the specific Ly49 family members. Although in this study, Piersma and colleagues show the control of MHC-I deficient cells by Ly49A+ NKG2A-NK cells in Figure 4., this receptor is not mentioned in the Results or in the Discussion section, so its role in this story needs to be clarified. Therefore, the reader would benefit from more information regarding NKG2A receptor and NKG2A+/- populations in their results.

      Comments on revisions: The authors have successfully answered all my questions and edited the manuscript accordingly.

    1. Reviewer #3 (Public review):

      Summary:

      infectious bursal disease virus (IBDV) is a birnavirus and an important avian pathogen. Interestingly, IBDV appears to be a unique dsRNA virus that uses early endosomes for RNA replication that is more common for +ssRNA viruses such as for example SARS-CoV-2.

      This work builds on previous studies showing that IBDV VP3 interacts with PIP3 during virus replication. The authors provide further biophysical evidence for the interaction and map the interacting domain on VP3.

      Strengths:

      Detailed characterization of the interaction between VP3 and PIP3 identified R200D mutation as critical for the interaction. Cryo-EM data show that VP3 leads to membrane deformation.

      Comments on revisions:

      I have no further comments. The authors have addressed my questions and concerns. I congratulate the authors on their work!

    1. Reviewer #2 (Public Review):

      When people help others is an important psychological and neuroscientific question. It has received much attention from the psychological side, but comparatively less from neuroscience. The paper translates some ideas from a social Psychology domain to neuroscience using a neuroeconomically oriented computational approach. In particular, the paper is concerned with the idea that people help others based on perceptions of merit/deservingness, but also because they require/need help. To this end, the authors conduct two experiments with an overlapping participant pool:

      (1) A social perception task in which people see images of people that have previously been rated on merit and need scales by other participants. In a blockwise fashion, people decide to whether the depicted person a) deserves help, b) needs help, and c) whether the person uses both hands (== control condition)

      (2) In an altruism task, people make costly helping decisions by deciding between giving a certain amount of money to themselves or another person. It is manipulated how much the other person needs and deserves the money.

      The authors use sound and robust computational modelling approach for both tasks using evidence accumulation models. They analyse behavioural data for both tasks, showing that the behaviour is indeed influenced, as expected, by the deservingness and the need of the shown people. Neurally, the authors use a block-wise analysis approach to find differences in activity levels across conditions of the social perception task. The authors do find large activation clusters in areas related to theory of mind. Interestingly, they also find that activity in TPJ that relates to the deservingness condition correlates with people's deservingness ratings while they do the task, but also with computational parameters related to helping others in the second task, the one that was conducted many months later. Also some behavioural parameters correlate across the two tasks, suggesting that how deserving of help others are perceived reflects a relatively stable feature that translates into concrete helping decisions later-on.

      The conclusions of the paper are overall well supported by the data.

      (1) I found that the modelling was done very thoroughly for both tasks. Overall, I had the impression that the methods are very solid with many supplementary analyses. The computational modelling is done very well.

      (2) A slight caveat, however, regarding this aspect, is that, in my view, the tasks are relatively simplistic, so that even the complex computational models do not as much as they can in the case of more complex paradigms. For example, the bias term in the model seems to correspond to the mean response rate in a very direct way (please correct me if I am wrong).

      (3) Related to the simple tasks: The fMRI data is analysed in a simple block-fashion. This is in my view not appropriate to discern the more subtle neural substrates of merit/need-based decision making or person perception. Correspondingly, the neural activation patterns (merit > control, need > control) are relatively broad and unspecific. They do not seem to differ in the classic theory of mind regions, that are the focus of the analyses.

      (4) However, the relationship between neural signal and behavioural merit sensitivity in TPJ is noteworthy.

      (5) The latter is even more the case, as the neural signal and aspects of the behaviour are correlated across subjects with the second task that is conducted much later. Such a correlation is very impressive and suggests that the tasks are sensitive for important individual differences in helping perception/behaviour.

      (6) That being said, the number of participants in the latter analyses are at the lower end of the number of participants that are these days used for across-participant correlations.

    1. Reviewer #2 (Public review):

      In this manuscript, Hua et al. proposed SLC7A11, a protein facilitating cellular cystine uptake, as a potential target for the treatment of trastuzumab-resistant HER2-positive breast cancer. If this claim holds true, the finding would be of significance and might be translated to clinical practice. Nevertheless, this reviewer finds that the conclusion was poorly supported by the data.

      Notably, most of the data (Figures 2-6) were based on two cell lines - JIMT1 as a representative of trastuzumab-resistant cell line, and SKBR3 as a representative of trastuzumab sensitive cell line. As such, these findings could be cell-line specific while irrelevant to trastuzumab sensitivity at all. Furthermore, the authors claimed ferroptosis simply based on lipid peroxidation (Figure 3). Cell viability was not determined, and the rescuing effects of ferroptosis inhibitors were missing. The xenograft experiments were also suspicious (Figure 4). The description of how cysteine starvation was performed on xenograft tumors was lacking, and the compound (i.e., erastin) used by the authors is not suitable for in vivo experiments due to low solubility and low metabolic stability. Finally, it is confusing why the authors focused on epigenetic regulations (Figures 5 & 6), without measuring major transcription factors (e.g., NRF2, ATF4) which are known to regulate SLC7A11.

      To sum up, this reviewer finds that the most valuable data in this manuscript is perhaps Figure 1, which provides unbiased information concerning the metabolic patterns in trastuzumab-sensitive and primary resistant HER2-positive breast cancer patients.

    1. Reviewer #2 (Public review):

      Summary:

      This paper investigates the mode of action of GPR55, a relatively understudied type of cannabinoid receptor, in presynaptic terminals of Purkinje cells. The authors use demanding techniques of patch clamp recording of the terminals, sometimes coupled with another recording of the postsynaptic cell. They find a lower release probability of synaptic vesicles after activation of GPR55 receptors, while presynaptic voltage-dependent calcium currents are unaffected. They propose that the size of a specific pool of synaptic vesicles supplying release sites is decreased upon activation of GPR55 receptors.

      Strengths:

      The paper uses cutting-edge techniques to shed light on a little-studied, potentially important type of cannabinoid receptor. The results are clearly presented, and the conclusions are for the most part sound.

      Weaknesses:

      The nature of the vesicular pool that is modified following activation of GPR55 is not definitively characterized.

    1. Reviewer #2 (Public review):

      Summary:

      The authors describe the development and implementation of hamFISH, a sensitive multiplexed ISH method. They leverage a pre-existing scRNA-seq dataset for the MeA to design 32 probes that combinatorically represent MeA neuronal populations - ~80% of MeA neurons express three of these markers. Using these markers to assess the spatial organization of the MeA, the authors identify a novel population of Ndnf+ projection neurons and characterize their connectivity with anterograde and retrograde labeling. They additionally combine hamFISH with CTB labeling of three principal MeA projection sites to show that 75% of MeA neurons have only a single projection target. Finally, they engage adult male mice in encounters with other adult males (aggression), females (mating), and pups (infanticide), followed by hamFISH and c-fos labeling to relate cell identity to behavior. Their overall conclusion is that hamFISH-defined cell types are broadly active to multiple sensory stimuli. However, the data presented are not sufficient to conclude that no selectivity exists within the MeA. A weakness of the study is that the selected hamFISH genes contain only Lhx6 as a lineage-marking transcription factor. Instead, the authors predominately use neuropeptides as markers. Genes such as Tac1, Cartpt, Adcyap1, Calb1, and Gal are expressed throughout the MeA, and many other brain regions; they are not restricted to a single transcriptomic cell type and they do not denote any developmental origins. By design, the panel has low cell type specificity as all MeA neurons express at least three of the genes. Therefore, the authors' conclusions may not hold with a more stringent classification of cell type or cell identity.

    1. Reviewer #2 (Public review):

      Summary:

      Using the well-studied oxalate-microbiome-host system, the authors propose a novel conceptual and experimental framework for developing targeted bacteriotherapies using a three-phase pre-clinical workflow. The third phase is based on a 'complex system theoretical approach' in which multi-omics technologies are combined in independent in vivo and in vitro models to successfully identify the most pertinent variables that influence specific phenotypes in diet-host-microbe systems. The innovation relies on the third phase since phase I and phase II are the dominant approaches everyone in the microbiome field uses.

      Strengths:

      The authors used a multidisciplinary approach which included:

      (1) fecal transplant of two distinct microbial communities into Swiss-Webster mice (SWM) to characterize the host response (hepatic response-transcriptomics) and microbial activity (untargeted metabolomics of the stool samples) to different oxalate concentrations;

      (2) longitudinal analysis of the N. albigulia gut microbiome composition in response to varying concentrations of oxalate by shotgun metagenomics, with deep bioinformatic analyses of the genomes assembled; and

      (3) development of synthetic microbial communities around oxalate metabolisms and evaluation of these communities' activity in oxalate degradation in vivo.

      Weaknesses:

      However, I have concerns about the frame the authors tried to provide for a 'complex system theoretical approach' and how the data are interpreted within this frame. Several of the conclusions the authors provide do not seem to have sufficient data to support them.

    1. Reviewer #2 (Public review):

      Summary:

      This manuscript by Bisson et al describes the role GATA6 to regulate cardiac progenitor cell (CPC) specification and cardiomyocyte (CM) generation using human embryonic stem cells (hESCs). The authors found that GATA6 loss-of-function hESC exhibit early defects in mesendoderm and lateral mesoderm patterning stages. Using RNA-seq and CUT&RUN assays the genes of the Wnt and BMP programs were found to be affected by the loss of GATA6 expression. Modulating Wnt and BMP during early cardiac differentiation can partially rescue CPC and CM defects in GATA6 hetero- and homozygous mutant hESCs.

      Strengths:

      The studies performed were rigorous and the rationale for the experimental designed were logical. The results obtained were clear and supports the conclusions that the authors made regarding the role of GATA6 on Wnt and BMP pathway gene expression.

      Weaknesses:

      Given the wealth of studies that have been performed in this research area previously, the amount of new information provided in this study is relatively modest. Nevertheless, the results and quite clear and should make a strong contribution to the field.

      Comments on revised version:

      The authors have addressed the prior request to assess genes expression representing each stage of development/differentiation from mesoderm to cardiac progenitor to cardiomyocytes and confirmed that the differentiation defect lies at the cardiac progenitor and cardiomyocyte stages and not in mesodermal differentiation. This work has significantly improved the robustness of the study.

    1. Reviewer #2 (Public review):

      Summary:

      In this article, the authors study the function of TEDC1 and TEDC2, two proteins previously reported to interact with TUBD1 and TUBE1. Previous work by the same group had shown that TUBD1 and TUBE1 are required for centriole assembly and that human cells lacking these proteins form abnormal centrioles that only have singlet microtubules that disintegrate in mitosis. In this new work, the authors demonstrate that TEDC1 and TEDC2 depletion results in the same phenotype with abnormal centrioles that also disintegrate into mitosis. In addition, they were able to localize these proteins to the proximal end of the centriole, a result not previously achieved with TUBD1 and TUBE1, providing a better understanding of where and when the complex is involved in centriole growth.

      Strengths:

      The results are very convincing, particularly the phenotype, which is the same as previously observed for TUBD1 and TUBE1. The U-ExM localization is also convincing: despite a signal that's not very homogeneous, it's clear that the complex is in the proximal region of the centriole and procentriole. The phenotype observed in U-ExM on the elongation of the cartwheel is also spectacular and opens the question of the regulation of the size of this structure. The authors also report convincing results on direct interactions between TUBD1, TUBE1, TEDC1, and TEDC2, and an intriguing structural prediction suggesting that TEDC1 and TEDC2 form a heterodimer that interacts with the TUBD1- TUBE1 heterodimer.

      Comments on revisions:

      I would like to thank the authors for their work and for thoroughly addressing most of my questions. I extend my congratulations to the authors for this excellent and impactful article.

    1. Reviewer #2 (Public review):

      Summary:

      In this study, the authors identified and characterized a regulatory mechanism based on transcriptional anti-termination that connects the two gene clusters, capsid and run-off replication (ROR) locus, of the bipartite Bartonella gene transfer agent (GTA). Among genes essential for GTA functionality identified in a previous transposon sequencing project, they found a potential antiterminatior of phage origin within the ROR locus. They employed fluorescence reporter and gene transfer assays of overexpression and knockout strains in combination with ChiPSeq and promoter-fusions to convincingly show that this protein indeed acts as an antiterminator counteracting attenuation of the capsid gene cluster expression.

      Impact on the field:

      The results provide valuable insights into the evolution of the chimeric BaGTA, a unique example of phage co-domestication by bacteria. A similar system found in the other broadly studied Rhodobacterales/Caulobacterales GTA family suggests that antitermination could be a general mechanism for GTA control.

      Strengths:

      Results of the selected and carefully designed experiments support the main conclusions.

      Weaknesses:

      It remains open why overexpression of the antiterminator does not increase the gene transfer frequency.

    1. Reviewer #2 (Public review):

      In the present manuscript, Huang et.al. revealed the significant roles of the DNA methylome in regulating virulence and metabolism within Pseudomonas syringae, with a particular focus on the HsdMSR system in this model strain. The authors used SMRT-seq to profile the DNA methylation patterns (6mA, 5mC, and 4mC) in three P. syringae strains (Psph, Pss, and Psa) and displayed the conservation among them. They further identified the type I restriction-modification system (HsdMSR) in P. syringae, including its specific motif sequence. The HsdMAR participated in the process of metabolism and virulence (T3SS & Biofilm formation), as demonstrated through RNA-seq analyses. Additionally, the authors revealed the mechanisms of the transcriptional regulation by 6mA. Strictly from the point of view of the interest of the question and the work carried out, this is a worthy and timely study that uses third-generation sequencing technology to characterize the DNA methylation in P. syringae. The experimental approaches were solid, and the results obtained were interesting and provided new information on how epigenetics influences the transcription in P. syringae. The conclusions of this paper are mostly well supported by data.

      Comments on revisions:

      The authors have successfully addressed all the comments from the reviewers in their revised manuscript.

    1. Reviewer #3 (Public review):

      Hong et al. used a model they previously developed to study the impact of plasmid transfer on microbial multispecies communities. They investigated the effect of plasmid transfer on the existence of alternative stable states in a community. The model most closely resembles plasmid conjugation, where the transferred genes confer independent growth-related fitness effects and different plasmids do not affect each other's transfer or growth effects. For this process, the authors find that increasing the rate of plasmid transfer leads to an increasing number of stable states, as long as the model includes a constant death/dilution term.

      This is an interesting and important topic, and I welcome the authors' efforts to explore these topics with mathematical modeling. The addition of sensitivity analyses also strengthens the usefulness for quantitative microbial ecologists. However, the additional sections have made the main text harder to read. Between the effect of the dilution rate, the increase in subpopulations with HGT, and the modulation of interspecies competition, the reviewers have suggested a number of factors that may explain the way plasmid transfer modulates multistability. I think it would be helpful if the authors could summarize some of these effects/interactions between different parameters in their model more. I personally continue to find the model very unintuitive, especially in the way it averages over subpopulations carrying more than one foreign plasmid. Additional sentences that give the reader intuition for the sensitivity analyses and how these interplay with the results would be good.

      Specific points

      (1) The model makes strong assumptions about the biology of HGT, that could be spelled out even more. Since the model is primarily applicable to HGT driven by the exchange of plasmids, I believe the abstract (and perhaps even the title of the paper) should be updated to reflect that.

      (2) I am not surprised that a mechanism that creates diversity will lead to more alternative stable states. Specifically, the null model for the absence of HGT is to set gamma to zero, resulting in pij=0 for all subpopulations (line 454). This means that a model with N^2 classes is effectively reduced to N classes. It seems intuitive that an LV-model with many more species would also allow for more alternative stable states. For a fair comparison one would really want to initialize these subpopulations in the model (with the same growth rates - e.g. mu1(1+lambda2)) but without gene mobility.<br /> [Update:] It is good that it seems that initializing pij with non-zero abundance did not seem to affect the conclusion that higher amounts of HGT increases multi stability. However, rather than listing it as one control for a specific condition, I would argue that this is the appropriate null model across the board (where HGT rate is varied from 0 to a high value), including figures S9 and S10.

      (3) The possibility that the same cell may be counted in different pij runs counter to all intuition that researchers coming from a background of compartmental /epidemiological modeling may have. The associated assumption that plasmids do not affect each other's dynamics or (growth/interaction) effects at all is also a very strong assumption. This should be signaled much earlier in the manuscript, possibly already in line 106 when the model is introduced.

    1. Reviewer #2 (Public review):

      In this study the authors developed a framework to investigate the export rates of Influenza viral RNAs translocating from the nucleus to the cytoplasm. This model suggests that the influenza virus may control gene expression at the RNA export level, namely, the retention of certain transcripts in the nucleus for longer times, allows the generation of other viral encoded proteins that are exported regularly, and only later on do certain mRNAs get exported. These encode proteins that alert the cell to the presence of viral molecules, hence keeping their emergence to very end, might help the virus to avoid detection as late as possible in the infection cycle.

      The study is of limited scope. The notion that some mRNAs are retained in the nucleus after transcription is concluded early on from the FISH data. The model does not contribute much to the understanding and is mostly confirming the FISH data. The export rate is an ambiguous number and this part is not elaborated upon. One is left with more questions since no mechanistic knowledge emerges, and no additional experimentation is attempted to try drive to a deeper understanding.

      Comments on revisions:

      The authors have implemented the comments that required textual rewriting, which does make the paper clearer. On the experimental side, very little was done. It is fine to answer that the suggested experiments are not relevant or feasible for one reason or another, but one would expect to see some effort in providing other experimental sets to address key comments, and not only to modify a sentence in the text. So in my mind this round of revision feels more like some kind of intellectual discussion, which is fine, but I would have expected more, particularly after so much time has passed. I am still not satisfied with the way the analysis is presented in Fig. 2B, and writing a line about what is not analyzed in the legend, does not seem clear enough.

    1. Reviewer #2 (Public review):

      Summary:

      Giménez-Orenga carried out this study to assess whether human endogenous retroviruses (HERVs) could be used to improve the diagnosis of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and Fibromyalgia (FM). To this end, they used the HERV-V3 array developed previously, to characterize the genome-wide changes in the expression of HERVs in patients suffering from ME/CFS, FM, or both, compared to controls. In turn, they present a useful repertoire of HERVs that might characterize ME/CFS and FM. For the most part, the paper is written in a manner that allows a natural understanding of the workflow and analyses carried out, making it compelling. The figures and additional tables present solid support for the findings. However, some statements made by the authors seem incomplete and would benefit from a more thorough literature review. Overall, this work will be of interest to the medical community seeking in better understanding of the co-occurrence of these pathologies, hinting at a novel angle by integrating HERVs, which are often overlooked, into their assessment.

      Strengths:

      (1) The work is well-presented, allowing the reader to understand the overall workflow and how the specific aims contribute to filling the knowledge gap in the field.

      (2) The analyses carried out to understand the potential impact on gene expression mediated by HERVs are in line with previous works, making it solid and robust in the context of this study.

      Weaknesses:

      (1) The authors claim to obtain genome-wide HERV expression profiles. However, the array used was developed using hg19, while the genomic analysis of this work are carried out using a liftover to hg38. It would improve the statement and findings to include a comparison of the differences in HERVs available in hg38, and how this could impact the "genome-wide" findings.

      (2) The authors in some points are not thorough with the cited literature. Two examples are:<br /> a) Lines 396-397 the authors say "the MLT1, usually found enriched near DE genes (Bogdan et al., 2020)". I checked the work by Bogdan, and they studied bacterial infection. A single work in a specific topic is not sufficient to support the statement that MLT1 is "usually" in close vicinity to differentially expressed genes. More works are needed to support this.<br /> b) After the previous statement, the authors go on to mention "contributing to the coding of conserved lncRNAs (Ramsay et al., 2017)". First, lnc = long non-coding, so this doesn't make sense. Second, in the work by Ramsay they mention "that contributed a significant amount of sequence to primate lncRNAs whose expression was conserved", which is different from what the authors in this study are trying to convey. Again, additional work and a rephrasing might help to support this idea.

      (3) When presenting the clusters, the authors overlook the fact that cluster 4 is clearly control-specific, and fail to discuss what this means. Could this subset of HERV be used as bona fide markers of healthy individuals in the context of these diseases? Are they associated with DE genes? What could be the impact of such associations?

      Appraisals on aims:

      The authors set specific questions and presented the results to successfully answer them. The evidence is solid, with some weaknesses discussed above that will methodologically strengthen the work.

      Likely impact of work on the field:

      This work will be of interest to the medical community looking for novel ways to improve clinical diagnosis. Although future works with a greater population size, and more robust techniques such as RNA-Seq, are needed, this is the first step in presenting a novel way to distinguish these pathologies.

      It would be of great benefit to the community to provide a table/spreadsheet indicating the specific genomic locations of the HERVs specific to each condition. This will allow proper provenance for future researchers interested in expanding on this knowledge, as these genomic coordinates will be independent of the technique used (as was the array used here).

    1. Reviewer #2 (Public review):

      Summary:

      The authors have examined the effects of two parameters that could improve their clade forecasting predictions for A(H3N2) seasonal influenza viruses based solely on analysis of haemagglutinin gene sequences deposited on the GISAID Epiflu database. Sequences were analysed from viruses collected between April 1, 2005 and October 1, 2019. The parameters they investigated were various lag periods (0, 1, 3 months) for sequences to be deposited in GISAID from the time the viruses were sequenced. The second parameter was the time the forecast was accurate over projecting forward (for 3,6,9,12 months). Their conclusion (not surprisingly) was that "the single most valuable intervention we could make to improve forecast accuracy would be to reduce the forecast horizon to 6 months or less through more rapid vaccine development". This is not practical using conventional influenza vaccine production and regulatory procedures. Nevertheless, this study does identify some practical steps that could improve the accuracy and utility of forecasting such as a few suggested modifications by the authors such as "..... changing the start and end times of our long-term forecasts. We could change our forecasting target from the middle of the next season to the beginning of the season, reducing the forecast horizon from 12 to 9 months.'

      Strengths:

      The authors are very familiar with the type of forecasting tools used in this analysis (LBI and mutational load models) and the processes used currently for influenza vaccine virus selection by the WHO committees having participated in a number of WHO Influenza Vaccine Consultation meetings for both the Southern and Northern Hemispheres.

      Weaknesses:

      The conclusion of limiting the forecasting to 6 months would only be achievable from the current influenza vaccine production platforms with mRNA. However, there are no currently approved mRNA influenza vaccines, and mRNA influenza vaccines have also yet to demonstrate their real-world efficacy, longevity, and cost-effectiveness and therefore are only a potential platform for a future influenza vaccine. Hence other avenues to improve the forecasting should be investigated.

      While it is inevitable that more influenza HA sequences will become available over time a better understanding of where new influenza variants emerge would enable a higher weighting to be used for those countries rather than giving an equal weighting to all HA sequences.

      Also, other groups are considering neuraminidase sequences and how these contribute to the emergence of new or potentially predominant clades.

    1. Reviewer #2 (Public review):

      Summary:

      In short, this paper uses a previously published method, ReplicaDock to improve predictions from AlphaFold-multimer. The method generated about 25% more acceptable predictions than AFm, but more important is improving an Antibody-antigen set, where more than 50% of the models become improved.

      When looking at the results in more detail, it is clear that for the models where the AFm models are good, the improvement is modest (or not at all). See, for instance, the blue dots in Fig 6. However, in the cases where AFm fails, the improvement is substantial (red dots in Fig 6), but no models reach a very high accuracy (Fnat ~0.5 compared to 0.8 for the good AFm models). So the paper could be summarized by claiming, "We apply ReplicaDock when AFm fails", instead of trying to sell the paper as an utterly novel pipeline. I must also say that I am surprised by the excellent performance of ReplicaDock - it seems to be a significant step ahead of other (not AlphaFold) docking methods, and from reading the original paper, that was unclear. Having a better benchmark of it alone (without AFm) would be very interesting.

      These results also highlight several questions I try to describe in the weakness section below. In short, they boil down to the fact that the authors must show how good/bad ReplicaDock is at all targets (not only the ones where AFm fails. In addition, I have several more technical comments.

      Strengths:

      Impressive increase in performance on AB-AG set (although a small set and no proteins ).

      Weaknesses:

      The presentation is a bit hard to follow. The authors mix several measures (Fnat, iRMS, RMSDbound, etc). In addition, it is not always clear what is shown. For instance, in Fig 1, is the RMSD calculated for a single chain or the entire protein? I would suggest that the author replace all these measures with two: TM-score when evaluating the quality of a single chain and DockQ when evaluating the results for docking. This would provide a clearer picture of the performance. This applies to most figures and tables. For instance, Fig 9 could be shown as a distribution of DockQ scores.

      The improvements on the models where AFm is good are minimal (if at all), and it is unclear how global docking would perform on these targets, nor exactly why the plDDT<0.85 cutoff was chosen. To better understand the performance of ReplicaDock, the authors should therefore (i) run global and local docking on all targets and report the results, (ii) report the results if AlphaFold (not multimer) models of the chains were used as input to ReplicaDock (I would assume it is similar). These models can be downloaded from AlphaFoldDB.

      Further, it would be interesting to see if ReplicaDock could be combined with AFsample (or any other model to generate structural diversity) to improve performance further.

      The estimates of computing costs for the AFsample are incorrect (check what is presented in their paper). What are the computational costs for RepliaDock global docking?

      It is unclear strictly what sequences were used as input to the modelling. The authors should use full-length UniProt sequences if that were not done.

      The antibody-antigen dataset is small. It could easily be expanded to thousands of proteins. It would be interesting to know the performance of ReplicaDock on a more extensive set of Antibodies and nanobodies.

      Using pLDDT on the interface region to identify good/bas models is likely suboptimal. It was acceptable (as a part of the score) for AlphaFold-2.0 (monomer), but AFm behaves differently. Here, AFm provides a direct score to evaluate the quality of the interaction (ipTM or Ranking Confidence). The authors should use these to separate good/bad models (for global/local docking), or at least show that these scores are less good than the one they used.

      Comments on revisions:

      The inclusion of the DockQ improved the paper. No further comments.

    1. Reviewer #2 (Public review):

      Summary:

      In this work, the authors performed a CRISPR knockout screen in the presence of floxuridine, a chemotherapeutic agent that incorporates uracil and fluoro-uracil into DNA, and identified unexpected factors, such as the RNA m6A methyltransferase METTL3, as required to overcome floxuridine-driven cytotoxicity in mammalian cells. Interestingly, the observed N6-methyladenosine was embedded in DNA, which has been reported as DNA 6mA in mammalian genomes and is currently confirmed with mass spectrometry in this model. Therefore, this work consolidated the functional role of mammalian genomic DNA 6mA, and supported with solid evidence to uncover the METTL3-6mA-UNG2 axis in response to DNA base damage.

      Strengths:

      In this work, the authors took an unbiased, genome-wide CRISPR approach to identify novel factors involved in uracil repair with potential clinical interest.

      The authors designed elegant experiments to confirm the METTL3 works through genomic DNA, adding the methylation into DNA (6mA) but not the RNA (m6A), in this base damage repair context. The authors employ different enzymes, such as RNase A, RNase H, DNase, and liquid chromatography coupled to tandem mass spectrometry to validate that METTL3 deposits 6mA in DNA in response to agents that increase genomic uracil.

      They also have the Mettl3-KO and the METTL3 inhibition results to support their conclusion.

      Weaknesses:

      Although this study demonstrates that METTL3-dependent 6mA deposition in DNA is functionally relevant to DNA damage repair in mammalian cells, there are still several concerns and issues that need to be improved to strengthen this research.

      First, in the whole paper, the authors never claim or mention the mammalian cell lines contamination testing result, which is the fundamental assay that has to be done for the mammalian cell lines DNA 6mA study.

      Second, in the whole work, the authors have not supplied any genomic sequencing data to support their conclusions. Although the sequencing of DNA 6mA in mammalian models is challenging, recent breakthroughs in sequencing techniques, such as DR-Seq or NT/NAME-seq, have lowered the bar and improved a lot in the 6mA sequencing assay. Therefore, the authors should consider employing the sequencing methods to further confirm the functional role of 6mA in base repair.

      Third, the authors used the METTL3 inhibitor and Mettl3-KO to validate the METTL3-6mA-UNG2 functional roles. However, the catalytic mutant and rescue of Mettl3 may be the further experiments to confirm the conclusion.

    1. Reviewer #2 (Public review):

      Summary:

      This paper presents an interesting and useful analysis of grid cell heterogeneity, showing that the experimentally observed heterogeneity of spacing and orientation within a grid cell module can allow more accurate decoding of location from a single module.

      Strengths:

      (1) I found the statistical analysis of the grid cell variability to be very systematic and convincing. I also found the evidence for enhanced decoding of location based on between cell variability within a module to be convincing and important, supporting their conclusions.

      (2) Theoreticians have developed models that focus on the use of grid cells that are highly regular in their parameters, and usually vary only in the spatial phase of cells within modules and the spacing and orientation between modules. This focus on consistency is partly to obtain the generalization of the grid cell code to a broad range of previously unvisited locations. In contrast, most experimentalists working with grid cells know that many if not most grid cells show high variability of firing fields, as demonstrated in the figures in experimental papers. The authors of this current paper have highlighted this discrepancy, and shown that the variability shown in the data could actually enhance decoding of location.

    1. Reviewer #2 (Public review):

      In this paper, Hotinger et. al. propose an improved barcoded library system, called STAMPR, to study Salmonella population dynamics during infection. Using this system, the authors demonstrate significant diversity in the colonization of different Salmonella clones (defined by the presence of different barcodes) not only across different organs (liver, spleen, adipose tissues, pancreas and gall bladder) but also within different compartments of the same gastrointestinal tissue. Additionally, this system revealed that microbiota competition is the major bottleneck in Salmonella intestinal colonization, which can be mitigated by streptomycin treatment. However, this has been demonstrated previously in numerous publications. They also show that there was minimal sharing between populations found in the intestine and those in the other organs. Upon IV and IP infection to bypass the intestinal bottleneck, they were able to demonstrate, using this library, that Salmonella can renter the intestine through two possible routes. One route is essentially the reverse path used to escape the gut, leading to a diverse intestinal population; while the other, through the bile, typically results in a clonal population.

      Comments on latest version:

      The authors have addressed my concerns.

    1. Reviewer #2 (Public review):

      RNA guanine-rich G-quadruplexes (rG4s) are non-canonical higher order nucleic acid structures that can form under physiological conditions. Interestingly, cellular stress is positively correlated with rG4 induction.

      In this study, the authors examined human hippocampal postmortem tissue for the formation ofrG4s in aging and Alzheimer Disease (AD). rG4 immunostaining strongly increased in the hippocampus with both age and with AD severity. 21 cases were used in this study (age range 30-92).

      This immunostaining co-localized with hyper-phosphorylated tau immunostaining in neurons. The BG4 staining levels were also impacted by APOE status. rG4 structure was previously found to drive tau aggregation. Based on these observations, the authors propose a model of neurodegeneration in which chronic rG4 formation drives proteostasis collapse.

      This model is interesting, and would explain different observations (e.g., RNA is present in AD aggregates and rG4s can enhance protein oligomerization and tau aggregation).

    1. Reviewer #2 (Public review):

      Summary:

      Stephens et al. present a comprehensive study of TMEM16-members via coarse-grained MD simulations (CGMD). They particularly focus on the scramblase ability of these proteins and aim to characterize the "energetics of scrambling". Through their simulations, the authors interestingly relate protein conformational states to the membrane's thickness and link those to the scrambling ability of TMEM members, measured as the trespassing tendency of lipids across leaflets. They validate their simulation with a direct qualitative comparison with Cryo-EM maps.

      Strengths:

      The study demonstrates an efficient use of CGMD simulations to explore lipid scrambling across various TMEM16 family members. By leveraging this approach, the authors are able to bypass some of the sampling limitations inherent in all-atom simulations, providing a more comprehensive and high-throughput analysis of lipid scrambling. Their comparison of different protein conformations, including open and closed groove states, presents a detailed exploration of how structural features influence scrambling activity, adding significant value to the field. A key contribution of this study is the finding that groove dilation plays a central role in lipid scrambling. The authors observe that for scrambling-competent TMEM16 structures, there is substantial membrane thinning and groove widening. The open Ca2+-bound nhTMEM16 structure (PDB ID 4WIS) was identified as the fastest scrambler in their simulations, with scrambling rates as high as 24.4 {plus minus} 5.2 events per μs. This structure also shows significant membrane thinning (up to 18 Å), which supports the hypothesis that groove dilation lowers the energetic barrier for lipid translocation, facilitating scrambling.

      The study also establishes a correlation between structural features and scrambling competence, though analyses often lack statistical robustness and quantitative comparisons. The simulations differentiate between open and closed conformations of TMEM16 structures, with open-groove structures exhibiting increased scrambling activity, while closed-groove structures do not. This finding aligns with previous research suggesting that the structural dynamics of the groove are critical for scrambling. Furthermore, the authors explore how the physical dimensions of the groove qualitatively correlate with observed scrambling rates. For example, TMEM16K induces increased membrane thinning in its open form, suggesting that membrane properties, along with structural features, play a role in modulating scrambling activity.

      Another significant finding is the concept of "out-of-the-groove" scrambling, where lipid translocation occurs outside the protein's groove. This observation introduces the possibility of alternate scrambling mechanisms that do not follow the traditional "credit-card model" of groove-mediated lipid scrambling. In their simulations, the authors note that these out-of-the-groove events predominantly occur at the dimer interface between TM3 and TM10, especially in mammalian TMEM16 structures. While these events were not observed in fungal TMEM16s, they may provide insight into Ca2+-independent scrambling mechanisms, as they do not require groove opening.

      Weaknesses:

      A significant challenge of the study is the discrepancy between the scrambling rates observed in CGMD simulations and those reported experimentally. Despite the authors' claim that the rates are in line experimentally, the observed differences can mean large energetic discrepancies in describing scrambling (larger than 1kT barrier in reality). For instance, the authors report scrambling rates of 10.7 events per μs for TMEM16F and 24.4 events per μs for nhTMEM16, which are several orders of magnitude faster than experimental rates. While the authors suggest that this discrepancy could be due to the Martini 3 force field's faster diffusion dynamics, this explanation does not fully account for the large difference in rates. A more thorough discussion on how the choice of force field and simulation parameters influence the results, and how these discrepancies can be reconciled with experimental data, would strengthen the conclusions. Likewise, rate calculations in the study are based on 10 μs simulations, while experimental scrambling rates occur over seconds. This timescale discrepancy limits the study's accuracy, as the simulations may not capture rare or slow scrambling events that are observed experimentally and therefore might underestimate the kinetics of scrambling. It's however important to recognize that it's hard (borderline unachievable) to pinpoint reasonable kinetics for systems like this using the currently available computational power and force field accuracy. The faster diffusion in simulations may lead to overestimated scrambling rates, making the simulation results less comparable to real-world observations. Thus, I would therefore read the findings qualitatively rather than quantitatively. An interesting observation is the asymmetry observed in the scrambling rates of the two monomers. Since MARTINI is known to be limited in correctly sampling protein dynamics, the authors - in order to preserve the fold - have applied a strong (500 kJ mol-1 nm-2) elastic network. However, I am wondering how the ENM applies across the dimer and if any asymmetry can be noticed in the application of restraints for each monomer and at the dimer interface. How can this have potentially biased the asymmetry in the scrambling rates observed between the monomers? Is this artificially obtained from restraining the initial structure, or is the asymmetry somehow gatekeeping the scrambling mechanism to occur majorly across a single monomer? Answering this question would have far-reaching implications to better describe the mechanism of scrambling.

      Notably, the manuscript does not explore the impact of membrane composition on scrambling rates. While the authors use a specific lipid composition (DOPC) in their simulations, they acknowledge that membrane composition can influence scrambling activity. However, the study does not explore how different lipids or membrane environments or varying membrane curvature and tension, could alter scrambling behaviour. I appreciate that this might have been beyond the scope of this particular paper and the authors plan to further chase these questions, as this work sets a strong protocol for this study. Contextualizing scrambling in the context of membrane composition is particularly relevant since the authors note that TMEM16K's scrambling rate increases tenfold in thinner membranes, suggesting that lipid-specific or membrane-thickness-dependent effects could play a role.

    1. On February 3, 2025, several School Closings in Ma have announced delays and closings due to significant overnight snowfall. The weather conditions have resulted in hazardous travel, prompting administrators to adjust school schedules to ensure the safety of students and staff. This report will provide an overview of the current situation regarding school delays and closings in Massachusetts, alongside related information for nearby regions.

    1. Reviewer #3 (Public review):

      Summary:

      This study focuses on changes in brain organization associated with congenital deafness. The authors investigate differences in functional connectivity (FC) and differences in the variability of FC. By comparing congenitally deaf individuals to individuals with normal hearing, and by further separating congenitally deaf individuals into groups of early and late signers, the authors can distinguish between changes in FC due to auditory deprivation and changes in FC due to late language acquisition. They find larger FC variability in deaf than normal-hearing individuals in temporal, frontal, parietal, and midline brain structures, and that FC variability is largely driven by auditory deprivation. They suggest that the regions that show a greater FC difference between groups also show greater FC variability.

      Strengths:

      The manuscript is well-written, and the methods are clearly described and appropriate. Including the three different groups enables the critical contrasts distinguishing between different causes of FC variability changes. The results are interesting and novel.

      Weaknesses:

      Analyses were conducted for task-based data rather than resting-state data. The authors report behavioral differences between groups and include behavioral performance as a nuisance regressor in their analysis. This is a good approach to account for behavioral task differences, given the data. Nevertheless, additional work using resting-state functional connectivity could remove the potential confound fully.

      Comment from Reviewing Editor: In the revised manuscript, the authors have addressed all concerns previously identified by reviewer 3, and the eLife assessment statement reflects the point by reviewer 3 that using resting-state functional connectivity in the future could further strengthen the results.

    1. Reviewer #2 (Public review):

      Summary:

      The study investigates the potential influence of the response criterion on neural decoding accuracy in consciousness and unconsciousness, utilizing either simulated data or reanalyzing experimental data with post-hoc sorting data.

      Strengths:

      When comparing the neural decoding performance of Target versus NonTarget with or without post-hoc sorting based on subject reports, it is evident that response criterion can influence the results. This was observed in simulated data as well as in two experiments that manipulated subject response criterion to be either more liberal or more conservative. One experiment involved a two-level response (seen vs unseen), while the other included a more detailed four-level response (ranging from 0 for no experience to 3 for a clear experience). The findings consistently indicated that adopting a more conservative response criterion could enhance neural decoding performance, whether in conscious or unconscious states, depending on the sensitivity or overall response threshold.

      Weaknesses:

      (1) In the realm of research methodology, conducting post-hoc sorting based on subject reports raises an issue. This operation leads to an imbalance in the number of trials between the two conditions (Target and NonTarget) during the decoding process. Such trial number disparity introduces bias during decoding, likely contributing to fluctuations in neural decoding performance. This potential confounding factor significantly impacts the interpretation of research findings. The trial number imbalance may cause models to exhibit a bias towards the category with more trials during the learning process, leading to misjudgments of neural signal differences between the two conditions and failing to accurately reflect the distinctions in brain neural activity between target and non-target states. Therefore, it is recommended that the authors extensively discuss this confounding factor in their paper. They should analyze in detail how this factor could influence the interpretation of results, such as potentially exaggerating or diminishing certain effects, and whether measures are necessary to correct the bias induced by this imbalance to ensure the reliability and validity of the research conclusions.

    1. Reviewer #2 (Public review):

      Summary:

      This manuscript by Tubert et al. presents the role of D5 receptors (D5R) in regulating the striatal cholinergic interneuron (CIN) pause response through D5R-cAMP-Kv1 inhibitory signaling. Their findings provide a compelling model explaining the "on/off" switch of the CIN pause, driven by the distinct dopamine affinities of D2R and D5R. This mechanism, coupled with varying dopamine states, is likely critical for modulating synaptic plasticity in cortico-striatal circuits during motor learning and execution. Furthermore, the study bridges their previous finding of CIN hyperexcitability (Paz et al., Movement Disorder 2022) with the loss of the pause response in LID mice and demonstrates the restore of the pause through D1/D5 inverse agonism.

      Strengths:

      The study presents solid findings, and the writing is logically structured and easy to follow. The experiments are well-designed, properly combining ex vivo electrophysiology recording, optogenetics, and pharmacological treatment to dissect / rule out most, if not all, alternative mechanisms in their model.

      Weaknesses:

      While the manuscript is overall satisfying, one conceptual gap needs to be further addressed or discussed: the potential "imbalance" between D2R and D5R signaling due to the ligand-independent activity of D5R in LID. Given that D2R and D5R oppositely regulate CIN pause responses through cAMP signaling, investigating the role of D2R under LID off L-DOPA (e.g., by applying D2 agonists or antagonists, even together with intracellular cAMP analogs or inhibitors) could provide critical insights. Addressing this aspect would strengthen the manuscript in understanding CIN pause loss under pathological conditions.

    1. Reviewer #2 (Public review):

      Summary:

      In this work, the authors performed a CRISPR knockout screen in the presence of floxuridine, a chemotherapeutic agent that incorporates uracil and fluoro-uracil into DNA, and identified unexpected factors, such as the RNA m6A methyltransferase METTL3, as required to overcome floxuridine-driven cytotoxicity in mammalian cells. Interestingly, the observed N6-methyladenosine was embedded in DNA, which has been reported as DNA 6mA in mammalian genomes and is currently confirmed with mass spectrometry in this model. Therefore, this work consolidated the functional role of mammalian genomic DNA 6mA, and supported with solid evidence to uncover the METTL3-6mA-UNG2 axis in response to DNA base damage.

      Strengths:

      In this work, the authors took an unbiased, genome-wide CRISPR approach to identify novel factors involved in uracil repair with potential clinical interest.

      The authors designed elegant experiments to confirm the METTL3 works through genomic DNA, adding the methylation into DNA (6mA) but not the RNA (m6A), in this base damage repair context. The authors employ different enzymes, such as RNase A, RNase H, DNase, and liquid chromatography coupled to tandem mass spectrometry to validate that METTL3 deposits 6mA in DNA in response to agents that increase genomic uracil.

      They also have the Mettl3-KO and the METTL3 inhibition results to support their conclusion.

      Weaknesses:

      The authors used the METTL3 inhibitor and Mettl3-KO to validate the METTL3-6mA-UNG2 functional roles. While not an outright weakness, rescue experiments of the KO line with wild type and the METTL3 catalytic mutant would have further strengthened the evidence.

    1. Reviewer #2 (Public review):

      Significance:

      This paper reanalyzes an experimental fitness landscape generated by Papkou et al., who assayed the fitness of all possible combinations of 4 nucleotide states at 9 sites in the E. coli DHFR gene, which confers antibiotic resistance. The 9 nucleotide sites make up 3 amino acid sites in the protein, of which one was shown to be the primary determinant of fitness by Papkou et al. This paper sought to assess whether pairwise epistatic interactions differ among genetic backgrounds at other sites and whether there are major patterns in any such differences. They use a "double mutant cycle" approach to quantify pairwise epistasis, where the epistatic interaction between two mutations is the difference between the measured fitness of the double-mutant and its predicted fitness in the absence of epistasis (which equals the sum of individual effects of each mutation observed in the single mutants relative to the reference genotype). The paper claims that epistasis is "fluid," because pairwise epistatic effects often differs depending on the genetic state at the other site. It also claims that this fluidity is "binary," because pairwise effects depend strongly on the state at nucleotide positions 5 and 6 but weakly on those at other sites. Finally, they compare the distribution of fitness effects (DFE) of single mutations for starting genotypes with similar fitness and find that despite the apparent "fluidity" of interactions this distribution is well-predicted by the fitness of the starting genotype.

      The paper addresses an important question for genetics and evolution: how complex and unpredictable are the effects and interactions among mutations in a protein? Epistasis can make the phenotype hard to predict from the genotype and also affect the evolutionary navigability of a genotype landscape. Whether pairwise epistatic interactions depend on genetic background - that is, whether there are important high-order interactions -- is important because interactions of order greater than pairwise would make phenotypes especially idiosyncratic and difficult to predict from the genotype (or by extrapolating from experimentally measured phenotypes of genotypes randomly sampled from the huge space of possible genotypes). Another interesting question is the sparsity of such high-order interactions: if they exist but mostly depend on a small number of identifiable sequence sites in the background, then this would drastically reduce the complexity and idiosyncrasy relative to a landscape on which "fluidity" involves interactions among groups of all sites in the protein. A number of papers in the recent literature have addressed the topics of high-order epistasis and sparsity and have come to conflicting conclusions. This paper contributes to that body of literature with a case study of one published experimental dataset of high quality. The findings are therefore potentially significant if convincingly supported.

      Validity:

      In my judgment, the major conclusions of this paper are not well supported by the data. There are three major problems with the analysis.

      (1) Lack of statistical tests. The authors conclude that pairwise interactions differ among backgrounds, but no statistical analysis is provided to establish that the observed differences are statistically significant, rather than being attributable to error and noise in the assay measurements. It has been established previously that the methods the authors use to estimate high-order interactions can result in inflated inferences of epistasis because of the propagation of measurement noise (see PMID 31527666 and 39261454). Error propagation can be extreme because first-order mutation effects are calculated as the difference between the measured phenotype of a single-mutant variant and the reference genotype; pairwise effects are then calculated as the difference between the measured phenotype of a double mutant and the sum of the differences described above for the single mutants. This paper claims fluidity when this latter difference itself differs when assessed in two different backgrounds. At each step of these calculations, measurement noise propagates. Because no statistical analysis is provided to evaluate whether these observed differences are greater than expected because of propagated error, the paper has not convincingly established or quantified "fluidity" in epistatic effects.

      (2) Arbitrary cutoffs. Many of the analyses involve assigning pairwise interactions into discrete categories, based on the magnitude and direction of the difference between the predicted and observed phenotypes for a pairwise mutant. For example, the authors categorize as a positive pairwise interaction if the apparent deviation of phenotype from prediction is >0.05, negative if the deviation is <-0.05, and no interaction if the deviation is between these cutoffs. Fluidity is diagnosed when the category for a pairwise interaction differs among backgrounds. These cutoffs are essentially arbitrary, and the effects are assigned to categories without assessing statistical significance. For example, an interaction of 0.06 in one background and 0.04 in another would be classified as fluid, but it is very plausible that such a difference would arise due to error alone. The frequency of epistatic interactions in each category as claimed in the paper, as well as the extent of fluidity across backgrounds, could therefore be systematically overestimated or underestimated, affecting the major conclusions of the study.

      (3) Global nonlinearities. The analyses do not consider the fact that apparent fluidity could be attributable to the fact that fitness measurements are bounded by a minimum (the fitness of cells carrying proteins in which DHFR is essentially nonfunctional) and a maximum (the fitness of cells in which some biological factor other than DHFR function is limiting for fitness). The data are clearly bounded; the original Papkou et al. paper states that 93% of genotypes are at the low-fitness limit at which deleterious effects no longer influence fitness. Because of this bounding, mutations that are strongly deleterious to DHFR function will therefore have an apparently smaller effect when introduced in combination with other deleterious mutations, leading to apparent epistatic interactions; moreover, these apparent interactions will have different magnitudes if they are introduced into backgrounds that themselves differ in DHFR function/fitness, leading to apparent "fluidity" of these interactions. This is a well-established issue in the literature (see PMIDs 30037990, 28100592, 39261454). It is therefore important to adjust for these global nonlinearities before assessing interactions, but the authors have not done this.

      This global nonlinearity could explain much of the fluidity claimed in this paper. It could explain the observation that epistasis does not seem to depend as much on genetic background for low-fitness backgrounds, and the latter is constant (Figure 2B and 2C): these patterns would arise simply because the effects of deleterious mutations are all epistatically masked in backgrounds that are already near the fitness minimum. It would also explain the observations in Figure 7. For background genotypes with relatively high fitness, there are two distinct peaks of fitness effects, which likely correspond to neutral mutations and deleterious mutations that bring fitness to the lower bound of measurement; as the fitness of the background declines, the deleterious mutations have a smaller effect, so the two peaks draw closer to each other, and in the lowest-fitness backgrounds, they collapse into a single unimodal distribution in which all mutations are approximately neutral (with the distribution reflecting only noise).<br /> Global nonlinearity could also explain the apparent "binary" nature of epistasis. Sites 4 and 5 change the second amino acid, and the Papkou paper shows that only 3 amino acid states (C, D, and E) are compatible with function; all others abolish function and yield lower-bound fitness, while mutations at other sites have much weaker effects. The apparent binary nature of epistasis in Figure 5 corresponds to these effects given the nonlinearity of the fitness assay. Most mutations are close to neutral irrespective of the fitness of the background into which they are introduced: these are the "non-epistatic" mutations in the binary scheme. For the mutations at sites 4 and 5 that abolish one of the beneficial mutations, however, these have a strong background-dependence: they are very deleterious when introduced into a high-fitness background but their impact shrinks as they are introduced into backgrounds with progressively lower fitness. The apparent "binary" nature of global epistasis is likely to be a simple artifact of bounding and the bimodal distribution of functional effects: neutral mutations are insensitive to background, while the magnitude of the fitness effect of deleterious mutations declines with background fitness because they are masked by the lower bound. The authors' statement is that "global epistasis often does not hold." This is not established. A more plausible conclusion is that global epistasis imposed by the phenotype limits affects all mutations, but it does so in a nonlinear fashion.

      In conclusion, most of the major claims in the paper could be artifactual. Much of the claimed pairwise epistasis could be caused by measurement noise, the use of arbitrary cutoffs, and the lack of adjustment for global nonlinearity. Much of the fluidity or higher-order epistasis could be attributable to the same issues. And the apparently binary nature of global epistasis is also the expected result of this nonlinearity.

    1. Reviewer #2 (Public review):

      Summary:

      Meijer et al reanalyze behavioral data from a task in which people made predictions about the next in a sequence of localized sounds with the goal of understanding the computations through which people combine sensory experiences into a prior used for perception. The authors combine basic analyses of experimental data with model simulations and development and fitting of a factorial model set that includes a prominent model of change-point detection that has previously been shown to approximate Bayesian inference at a reduced computational cost and provide a good match to human prediction data (reduced Bayesian model). The authors present a number of findings, including a demonstration of key qualitative markers for Bayesian change-point detection, a tendency in humans to over-rely on recent observations, a lack of an inverse relationship between fit values of hazard rate and fit values of noise, support for a number of assumptions in the reduced Bayesian model, and a lack of evidence for reliance on memory systems beyond the extremely minimal requirements of that model.

      Strengths:

      The paper asks an important question and takes a number of useful steps toward answering it. In particular, the factorial model set constructed to examine a number of explicit assumptions in the models typically fit to change-point predictive inference task data was a very useful innovation, and in some cases showed clearly that assumptions in the model are necessary or at least better than the proposed alternatives. In particular, the paper develops a notion of memory capacity that allows for a continuum of models differing in their tradeoffs between computational cost and predictive precision. Another strength of the paper is that it relies on data that avoids sequential biases that can contaminate reported beliefs in more standard predictive inference tasks.

      Weaknesses:

      The primary weakness of the paper is that most of the definitive findings reported within it have already been reported elsewhere. That humans increase the influence of surprising outcomes indicative of change points, or to say this another way, decrease their reliance on prior information in such cases, has been fairly well established, as has the discovery that humans tend to overuse recent outcomes when making predictions. The most novel aspect of the paper, the exploration of reductions of the Bayesian ideal observer that rely on differing memory capacities, yielded results that are somewhat difficult to interpret, particularly because it is not clear that the task analyzed is diagnostic of the memory capacity term in the model, or if so, what the qualitative hallmarks of a high/low memory capacity model reduction might be.

    1. Reviewer #2 (Public review):

      Summary:

      The authors aim to develop a neural mass model characterized by a few collective variables mimicking the dynamics of a network of Hodgkin - Huxley neurons encompassing ion-exchange mechanisms. They describe in detail the derivation of the mean-field model, then they compare experimental results obtained for the hippocampus of a mouse with the neural network simulations and the mean-field results. Furthermore, they report a bifurcation analysis of the developed model and simulation of a small network containing various coupled neural masses, somehow moving towards the simulation of an entire connectome.

      Strengths:

      The author attempts to develop a mean-field model for a globally coupled network of heterogeneous Hodgkin-Huxley neurons with an explicit ion exchange mechanism between the cell interior and exterior.

      Weaknesses:

      (1) It seems that the reduction methodology that is employed is not the most suitable one for the single-neuron model they are considering.<br /> (2) The authors' derivation of the neural mass model is based on several assumptions, and not all well justified.<br /> (3) The formulation of the mean-field derivation is unnecessarily complicated. It could be heavily simplified by following previously published approaches to derive biologically realistic neural masses.<br /> (4) The model seems to work only for highly synchronized situations and not for the standard asynchronous evolution usually observed in neural circuits.

      General Statements:

      The authors honestly declared the many limitations of their approach. It is assumed that the results of the mean-field are somehow inconsistent with the neural network simulations as expected.

      The authors suggest employing this model for the simulations on the whole connectome to follow seizure propagation, however, I believe that the Epileptor remains superior in this respect to this model. That indeed includes biophysical parameters but their correspondence with the ones employed in the network dynamics remains elusive, due to the many assumptions required to derive this mean-field model. Furthermore, it is more complicated than the Epileptor, I do not think that the present model will be largely employed by the community.

    1. Reviewer #2 (Public review):

      Summary:

      Haast et al. investigated the organization of the zona incerta (ZI) in the human brain based on its structural connectivity to the neocortex. They found that the ZI is organized according to a primary rostro-caudal gradient, where the rostral ZI is more strongly connected to the prefrontal cortex and the caudal ZI to the sensorimotor cortex. They also found that the central region of the ZI is differently connected to the neocortex compared with the rostral and caudal regions, and could be important as a deep brain stimulation target for the treatment of essential tremors.

      Strengths:

      I think the overall quality of this work is great, and the results are presented in a very clear and organized manner. I particularly appreciate the effort that the authors put into validating the results using 7T and 3T data, as well as test-retest data.

      Weaknesses:

      That being said, I was left with a couple of concerns after reading the paper.

      (1) Although the authors discussed animal evidence for a dorsal-ventral organization of the ZI, I thought that the evidence they presented for it in this paper was not so convincing. In Figure S5, the second gradient (G2) shows a clear dorsoventral pattern, but this pattern seems to primarily separate the ZI and H fields rather than show an internal topology of the ZI. This is more likely the case given that there are two bands (superior and inferior) of high G2 values surrounding a single band (middle) of low G2 values. The evidence for the rostrocaudal gradient, on the other hand, is quite convincing.

      (2) HCP data is still too advanced for clinical translation. Although 3T is becoming more and more prevalent for presurgical planning, the HCP 3T dataset is acquired with a voxel size of 1.25mm, which is a far higher resolution than the typical clinical scan. It would be very useful for clinical readers to see what individual subject replicability looks like if the data were acquired at the more typical voxel size of 2mm. This could be achieved by replicating the analysis on a downsampled version of the HCP data that more closely resembles clinical data. This is understandably a large undertaking, so it could be left to future validation work.

    1. Langes Interview mit Hans Joachim Schellnhuber im Standard, under anderem zu Kipppunkten und der Möglichkeit, dass wir uns schon auf dem Weg in ein „neues Klimaregime“ befinden. Schellnhuber geht davon aus, dass auch das 2°-Ziel überschritten werden wird. Der „Königsweg“, um der Atmosphäre danach wieder CO<sub>2</sub> zu entziehen, sei der weltweite Ersatz von Zement durch Holz beim Bauen, den er als Direktor des IIASA vor allem erforschen wolle. Die Wahrscheinlichkeit dafür, dass „noch alles gutgehen" werde, sei gering. https://www.derstandard.at/story/3000000204635/klimaforscher-schellnhuber-werden-auch-ueber-das-zwei-grad-ziel-hinausschiessen