6,569 Matching Annotations
  1. Last 7 days
    1. Reviewer #3 (Public review):

      In this study, the authors investigate the requirements for the formation of CPSF6 puncta induced by HIV-1 under a high multiplicity of infection conditions. Not surprisingly, they observe that mutation of the Phe-Gly (FG) repeat responsible for CPSF6 binding to the incoming HIV-1 capsid abrogates CPSF6 punctum formation. Perhaps more interestingly, they show that the removal of other domains of CPSF6, including the mixed-charge domain (MCD), does not affect the formation of HIV-1-induced CPSF6 puncta. The authors also present data suggesting that CPSF6 puncta form individual before fusing with nuclear speckles (NSs) and that the fusion of CPSF6 puncta to NSs requires the intrinsically disordered region (IDR) of the NS component SRRM2. While the study presents some interesting findings, there are some technical issues that need to be addressed and the amount of new information is somewhat limited. Also, the authors' finding that deletion of the CPSF6 MCD does not affect the formation of HIV-1-induced CPSF6 puncta contradicts recent findings of Jang et al. (https://doi.org/10.1093/nar/gkae769).

      Comments on revisions:

      The authors have generally addressed my comments.

    1. Reviewer #3 (Public review):

      Rovira, et al., aim to characterize immune cells in the brain parenchyma and identify a novel macrophage population referred to as "dendritic-like cells". They use a combination of single-cell transcriptomics, immunohistochemistry, and genetic mutants to conclude the presence of this "dendritic-like cell" population in the brain. The strength of this manuscript is the identification of dendritic cells in the brain, which are typically found in the meningeal layers and choroid plexus. In addition, Rovira, et al., findings are supported by the findings of the Wen lab and a recent Cell Reports paper. Congratulations on the nice work!

    1. Reviewer #3 (Public review):

      Summary:

      The goal of this paper is to characterize an anti-diuretic signaling system in insects using Drosophila melanogaster as a model. Specifically, the authors wished to characterize a role for ion transport peptide (ITP) and its isoforms in regulating diverse aspects of physiology and metabolism. The authors combined genetic and comparative genomic approaches with classical physiological techniques and biochemical assays to provide a comprehensive analysis of ITP and its role in regulating fluid balance and metabolic homeostasis in Drosophila. The authors further characterized a previously unrecognized role for Gyc76C as a receptor for ITPa, an amidated isoform of ITP, and in mediating the effects of ITPa on fluid balance and metabolism. The evidence presented in favor of this model is very strong as it combines multiple approaches and employs ideal controls. Taken together, these findings represent an important contribution to the field of insect neuropeptides and neurohormones and has strong relevance for other animals. The authors have addressed all weaknesses raised in my previous review.

    1. Reviewer #3 (Public review):

      Summary:

      Nucleotide modifications are important regulators of biological function, however, until recently, their study has been limited by the availability of appropriate analytical methods. Oxford Nanopore direct RNA sequencing preserves nucleotide modifications, permitting their study, however many different nucleotide modifications lack an available base-caller to accurately identify them. Furthermore, existing tools are computationally intensive, and their results can be difficult to interpret.

      Cheng et al. present SegPore, a method designed to improve the segmentation of direct RNA sequencing data and boost the accuracy of modified base detection.

      Strengths:

      This method is well described and has been benchmarked against a range of publicly available base callers that have been designed to detect modified nucleotides.

      Weaknesses:

      However, the manuscript has a significant drawback in its current version. The most recent nanopore RNA base callers can distinguish between different ribonucleotide modifications, however, SegPore has not been benchmarked against these models.

      The manuscript would be strengthened by benchmarking against the rna004_130bps_hac@v5.1.0 and rna004_130bps_sup@v5.1.0 dorado models, which are reported to detect m5C, m6A_DRACH, inosine_m6A and PseU.

      A clear demonstration that SegPore also outperforms the newer RNA base caller models will confirm the utility of this method.

    1. Reviewer #3 (Public review):

      Summary:

      This manuscript investigates how mutations in the SARS-CoV-2 nucleocapsid protein (N) alter ribonucleoprotein (RNP) assembly, stability, and viral fitness. The authors focus on mutations such as P13L, G214C, and G215C, combining biophysical assays (SV-AUC, mass photometry, CD spectroscopy, EM), VLP formation, and reverse genetics. They propose that SARS-CoV-2 exploits "fuzzy complex" principles, where distributed weak interfaces in disordered regions allow both stability and plasticity, with measurable consequences for viral replication.

      Strengths:

      (1) The paper demonstrates a comprehensive integration of structural biophysics, peptide/protein assays, VLP systems, and reverse genetics.

      (2) Identification of both de novo (P13L) and stabilizing (G214C/G215C) interfaces provides a mechanistic insight into RNP formation.

      (3) Strong application of the "fuzzy complex" framework to viral assembly, showing how weak/disordered interactions support evolvability, is a significant conceptual advance in viral capsid assembly.

      (4) Overall, the study provides a mechanistic context for mutations that have arisen in major SARS-CoV-2 variants (Omicron, Delta, Lambda) and a mechanistic basis for how mutations influence phenotype via altered biomolecular interactions.

      Weaknesses:

      (1) The arrangement of N dimers around LRS helices is presented in Figure 1C, but the text concedes that "the arrangement sketched in Figure 1C is not unique" (lines 144-146) and that AF3 modeling attempts yielded "only inconsistent results" (line 149).<br /> The authors should therefore present the models more cautiously as hypotheses instead. Additional alternative arrangements should be included in the Supplementary Information, so the readers do not over-interpret a single schematic model.

      (2) Negative-stained EM fibrils (Figure 2A) and CD spectra (Figure 2B) are presented to argue that P13L promotes β-sheet self-association. However, the claim could benefit from more orthogonal validation of β-sheet self-association. Additional confirmation via FTIR spectra or ThT fluorescence could be used to further distinguish structured β-sheets from amorphous aggregation.

      (3) In the main text, the authors alternate between emphasizing non-covalent effects ("a major effect of the cysteines already arises in reduced conditions without any covalent bonds," line 576) and highlighting "oxidized tetrameric N-proteins of N:G214C and N:G215C can be incorporated into RNPs". Therefore, the biological relevance of disulfide redox chemistry in viral assembly in vivo remains unclear. Discussing cellular redox plausibility and whether the authors' oxidizing conditions are meant as a mechanistic stress test rather than physiological mimicry could improve the interpretation of these results.

      The paper could benefit if the authors provide a summary figure or table contrasting reduced vs. oxidized conditions for G214C/G215C mutants (self-association, oligomerization state, RNP stability). Explicitly discuss whether disulfides are likely to form in infected cells.

      (4) VLP assays (Figure 7) show little enhancement for P13L or G215C alone, whereas Figure 8 shows that P13L provides clear fitness advantages. This discrepancy is acknowledged but not reconciled with any mechanistic or systematic rationale. The authors should consider emphasizing the limitations of VLP assays and the sources of the discrepancy with respect to Figure 8.

      (5) Figures 5 and 6 are dense, and the several overlays make it hard to read. The authors should consider picking the most extreme results to make a point in the main Figure 5 and move the other overlays to the Supplementary. Additionally, annotating MP peaks directly with "2×, 4×, 6× subunits" can help non-experts.

      (6) The paper has several names and shorthand notations for the mutants, making it hard to keep up. The authors could include a table that contains mutation keys, with each shorthand (Ancestral, Nο/No, Nλ, etc.) mapped onto exact N mutations (P13L, Δ31-33, R203K/G204R, G214C/G215C, etc.). They could then use the same glyphs (Latin vs Greek) consistently in text and figure labels.

      (7) The EM fibrils (Figure 2A) and CD spectra (Figure 2B) were collected at mM peptide concentrations. These are far above physiological levels and may encourage non-specific aggregation. Similarly, the authors mention" ultra-weak binding energies that require mM concentrations to significantly populate oligomers". On the other hand, the experiments with full-length protein were performed at concentrations closer to biologically relevant concentrations in the micromolar range. While I appreciate the need to work at high concentrations to detect weak interactions, this raises questions about physiological relevance. Specifically:

      a) Could some of the fibril/β-sheet features attributed to P13L (Figure 2A-C) reflect non-specific aggregation at high concentrations rather than bona fide self-association motifs that could play out in biologically relevant scenarios?

      b) How do the authors justify extrapolating from the mM-range peptide behaviors to the crowded but far lower effective concentrations in cells?

      The authors should consider adding a dedicated section (either in Methods or Discussion) justifying the use of high concentrations, with estimation of local concentrations in RNPs and how they compare to the in vitro ranges used here. For concentration-dependent phenomena discussed here, it is vital to ensure that the findings are not artefacts of non-physiological peptide aggregation..

    1. Reviewer #3 (Public review):

      Summary:

      This paper demonstrates that membrane depolarization induces a small increase in cell entry into mitosis. Based on previous work from another lab, the authors propose that ERK activation might be involved. They show convincingly using a combination of assays that ERK is activated by membrane depolarization. They show this is Ca2+ independent and is a result of activation of the whole K-Ras/ERK cascade which results from changed dynamics of phosphatidylserine in the plasma membrane that activates K-Ras. Although the activation of the Ras/ERK pathway by membrane depolarization is not new, linking it to an increase in cell proliferation is novel.

      Strengths:

      A major strength of the study is the use of different techniques - live imaging with ERK reporters, as well as Western blotting to demonstrate ERK activation as well as different methods for inducing membrane depolarization. They also use a number of different cell lines. Via Western blotting the authors are also able to show that the whole MAPK cascade is activated.

      Weaknesses:

      In the previous round of revisions, the authors addressed the issues with Figure 1, and the data presented are much clearer. The authors did also attempt to pinpoint when in the cell cycle ERK is having its activity, but unfortunately, this was not conclusive.

    1. Reviewer #3 (Public review):

      Summary:

      The finding of rhythmic activity in the brain has for a long time engendered the theory of rhythmic modes of perception, that humans might oscillate between improved and worse perception depending on states of our internal systems. However, experiments looking for such modes have resulted in conflicting findings, particularly in those where the stimulus itself is not rhythmic. This paper seeks to take a comprehensive look at the effect and various experimental parameters which might generate these competing findings: in particular, the presentation of the stimulus to one ear or the other, the relevance of motor involvement, attentional demands, and memory: each of which are revealed to effect the consistency of this rhythmicity.

      The need the paper attempts to resolve is a critical one for the field. However, as presented, I remain unconvinced that the data would not be better interpreted as showing no consistent rhythmic mode effect.

      Strengths:

      The paper is strong in its experimental protocol and its comprehensive analysis which seeks to compare effects across several analysis types and slight experiment changes to investigate which parameters could effect the presence or absence of an effect of rhythmicity. The prescribed nature of its hypotheses and its manner to set out to test them is very clear which allows for a straightforward assessment of its results

      Weaknesses:

      The papers cited to justify a rhythmic mode are largely based on the processing of rhythmic stimuli. The authors assume the rhythmic mode to be the general default but its not so clear to me why this would be so. The task design seems better suited to a continuous vigilance mode task.

      Secondly, the analysis to detect a "rhythmic mode", assumes a total phase rest at noise onset which is highly implausible given standard nonlinear dynamical analysis of oscillator performance. It's not clear that a rhythmic mode (should it be applied in this task) would indeed generate a consistent phase as the analysis searches for.

      Thirdly, the number of statistical tests used here make trusting any single effect quite difficult and very few of the effects replicate more than once. I think the better would be interpreted as not confirming evidence for rhythmic mode processing in the ears.

      Comments on revised version:

      No further comments. The paper has much of the same issues that I expressed in the initial review but I don't think they can be addressed without a replication study which I appreciate is not always plausible.

    1. Reviewer #3 (Public review):

      Summary:

      Kumar et al. examine the H3K115 epigenetic mark located on the lateral surface of the histone core domain and present evidence that it may serve as a marker enriched at transcription start sites (TSSs) of active CpG island promoters and at polycomb-repressed promoters. They also note enrichment of the H3K115ac mark is found on fragile nucleosomes within nucleosome-depleted regions, on active enhancers, and CTCF-bound sites. They propose that these observations suggest that H3K115ac contributes to nucleosome destabilization and so may serve as a marker of functionally important regulatory elements in mammalian genomes.

      Strengths:

      The authors present novel observations suggesting that acetylation of a histone residue in a core (versus on a histone tail) domain may serve a functional role in promoting transcription, in CPG islands and polycomb-repressed promoters. They present a solid amount of confirmatory in silico data using appropriate methodology that supports the idea that the H3K115ac mark may function to destabilize nucleosomes and contribute to regulating ESC differentiation.

      Weaknesses:

      Additional experiments to confirm antibody specificity are needed. The authors use synthetic peptides for other markers (e.g., H3K122) to support the claim that the antibody is specific, but ChIP-ChIP assays are performed under cross-linked, non-denatured conditions, which preserve structure and epitope accessibility differently than synthetic peptides used for dot blots. Does the antibody give a single band in western blots of histones, and can the H3K115ac peptide block western and immunofluorescence signals of the antibody? Given that the antibody is a rabbit polyclonal, specificity is not a trivial consideration.

    1. Reviewer #3 (Public review):

      Summary:

      This paper by Meier et al introduces a new optogenetic module for regulation of bacterial gene expression based on "bathy-BphP" proteins. Their paper begins with a careful characterization of kinetics and pH dependence of a few family members, followed by extensive engineering to produce infrared-regulated transcriptional systems based on the authors' previous design of the pDusk and pDERusk systems, and closing with characterization of the systems in bacterial species relevant for biotechnology.

      Strengths:

      The paper is important from the perspective of fundamental protein characterization, since bathy-BphPs are relatively poorly characterized compared to their phytochrome and cyanobacteriochrome cousins. It is also important from a technology development perspective: the optogenetic toolbox currently lacks infrared-stimulated transcriptional systems. Infrared light offers two major advantages: it can be multiplexed with additional tools, and it can penetrate into deep tissues with ease relative to the more widely used blue light activated systems. The experiments are performed carefully and the manuscript is well written.

      Weaknesses:

      Some of the light-inducible responses described in this compelling paper are complex and difficult to rationalize, such as the dependence of light responses on linker length and differences in responses observed from the bathy-BphPs in isolation versus strains in which they are multiplexed. Nevertheless, the authors should be commended for carrying out rigorous experiments and reporting these results accurately. These are minor weaknesses in an overall very strong paper.

    1. Reviewer #3 (Public review):

      Summary:

      This study looked at slow changes in neuronal activity (on the order of minutes to hours) in the superior colliculus (SC) and prefrontal cortex (PFC) of two monkeys. They found that SC activity shows slow drift in neuronal activity like in the cortex. They then computed a motor index in SC neurons. By definition, this index is low if the neuron has stronger visual responses than motor response, and it is low if the neuron has weaker visual responses and stronger motor responses. The authors found that the slow drift in neuronal activity was more prevalent in the low motor index SC neurons and less prevalent in the high motor index neurons. In addition, the authors measured pupil diameter and found it to correlate with slow drifts in neuronal activity, but only in the neurons with lower motor index of the SC. They concluded that arousal signals affecting slow drifts in neuronal modulations are brain-wide. They also concluded that these signals are not present in the deepest SC layers, and they interpreted this to mean that this minimizes the impact of arousal on unwanted eye movements.

      Strengths:

      The paper is clear and well-written.

      Showing slow drifts in the SC activity is important to demonstrate that cortical slow drifts could be brain-wide.

      Weaknesses:

      The authors find that the SC cells with the low motor index are modulated by pupil diameter. However, this could be completely independent of an "arousal signal". These cells have substantial visual sensitivity. If the pupil diameter changes, then their activity should be influenced since the monkey is watching a luminous display. So, in this regard, the fact that they do not see "an arousal signal" in the most motor neurons (through the pupil diameter analyses) is not evidence that the arousal signal is filtered out from the motor neurons. It could simply be that these neurons simply do not get affected by the pupil diameter because they do not have visual sensitivity. So, even with the pupil data, it is still a bit tricky for me to interpret that arousal signals are excluded from the "output layers" of the SC.

      Of course, the general conclusion is that the motor neurons will not have the arousal signal. It's just the interpretation that is different in the sense that the lack of the arousal signal is due to a lack of visual sensitivity in the motor neurons.

      I think that it is important to consider the alternative caveat of different amounts of light entering the system. Changes in light level caused by pupil diameter variations can be quite large. Please also note that I do not mean the luminance transient associated with the target onset. I mean the luminance of the gray display. it is a source of light. if the pupil diameter changes, then the amount of light entering to the visually sensitive neurons also changes.

      Comments on revised manuscript:

      The authors have addressed my first primary comment. For the light comment, I'm still not sure they addressed it. At the very least, they should explicitly state the possibility that the amount of light entering from the gray background can matter greatly, and it is not resolved by simply changing the analysis interval to the baseline pre-stimulus epoch. I provide more clear details below:

      In line 194 of the redlined version of the article (in the Introduction), the citation to Baumann et al., PNAS, 2023 is missing near the citation of Jagadisan and Gandhi, 2022. Besides replicating Jagadisan and Gandhi, 2022, this other study actually showed that the subspaces for the visual and motor epochs are orthogonal to each other

      Line 683 (and around) of the redlined version of the article (in the Results): I'm very confused here. When I mentioned visual modulation by changed pupil diameter, I did not mean the transient changes associated with the brief onset of the cue in the memory-guided saccade task. I meant the gray background of the display itself. This is a strong source of light. If the pupil diameter changes across trials, then the amount of light entering the eye also changes from the gray background. Thus, visually-responsive neurons will have different amount of light driving them. This will also happen in the baseline interval containing only a fixation spot. The arguments made by the authors here do not address this point at all. So, please modify the text to explicitly state the possibility that the global luminance of the display (as filtered by the pupil diameter) alters the amount of light driving the visually-responsive neurons and could contribute to the higher effects seen in the more visual neurons.

      The figures (everywhere, including the responses to reviewers) are very low resolution and all equations in methods are missing.

      I'm very confused by Fig. 2 - supplement 2. Panel B shows a firing rate burst aligned to *microsaccade* onset. Does that mean you were in the foveal SC? i.e. how can neurons have a motor burst to the target of the memory-guided saccade and also for microsaccades? And which microsaccade directions caused such a burst? And what does it mean to compute the motor index and spike count for microsaccades in panel C? if you were in the proper SC location for the saccade target, then shouldn't you *not* get any microsaccade-related burst at all? This is very confusing to me and needs to be clarified

    1. Reviewer #3 (Public review):

      Summary:

      This short paper aims to provide an independent validation of the transgenerational inheritance of learned behaviour (avoidance) that has been published by the Murphy lab. The robustness of the phenotype has been questioned by the Hunter lab. In this paper, the authors present one figure showing that transgenerational inheritance can be replicated in their hands. Overall, it helps to shed some light on a controversial topic.

      Strengths:

      The authors clearly outline their methods, particularly regarding the choice of assay, so that attempting to reproduce the results should be straightforward. It is nice to see these results repeated in an independent laboratory.

      Comments on revised version:

      I'm happy with the response to reviewers.

    1. Reviewer #3 (Public review):

      Summary

      The authors set out to explore the potential relationship between adult neurogenesis of inhibitory granule cells in the olfactory bulb and cumulative changes over days in odor-evoked spiking activity (representational drift) in the olfactory stream. They developed a richly detailed spiking neuronal network model based on Izhikevich (2003), allowing them to capture the diversity of spiking behaviors of multiple neuron types within the olfactory system. This model recapitulates the circuit organization of both the main olfactory bulb (MOB) and the piriform cortex (PCx), including connections between the two (both feedforward and corticofugal). Adult neurogenesis was captured by shuffling the weights of the model's granule cells, preserving the distribution of synaptic weights. Shuffling of granule cell connectivity resulted in cumulative changes in stimulus-evoked spiking of the model's M/T cells. Individual M/T cell tuning changed with time, and ensemble correlations dropped sharply over the temporal interval examined (long enough that almost all granule cells in the model had shuffled their weights). Interestingly, these changes in responsiveness did not disrupt low-dimensional stability of olfactory representations: when projected into a low-dimensional subspace, population vector correlations in this subspace remained elevated across the temporal interval examined. Importantly, in the model's downstream piriform layer, this was not the case. There, shuffled GC connectivity in the bulb resulted in a complete shift in piriform odor coding, including for low-dimensional projections. This is in contrast to what the model exhibited in the M/T input layer. Interestingly, these changes in PCx extended to the geometrical structure of the odor representations themselves. Finally, the authors examined the effect of experience on representational drift. Using an STDP rule, they allowed the inputs to and outputs from adult-born granule cells to change during repeated presentations of the same odor. This stabilized stimulus-evoked activity in the model's piriform layer.

      Strengths

      This paper suggests a link between adult neurogenesis in the olfactory bulb and representational drift in the piriform cortex. Using an elegant spiking network that faithfully recapitulates the basic physiological properties of the olfactory stream, the authors tackle a question of longstanding interest in a creative and interesting manner. As a purely theoretical study of drift, this paper presents important insights: synaptic turnover of recurrent inhibitory input can destabilize stimulus-evoked activity, but only to a degree, as representations in the bulb (the model's recurrent input layer) retain their basic geometrical form. However, this destabilized input results in profound drift in the model's second (piriform) layer, where both the tuning of individual neurons and the layer's overall functional geometry are restructured. This is a useful and important idea in the drift field, and to my knowledge, it is novel. The bulb is not the only setting where inhibitory synapses exhibit turnover (whether through neurogenesis or synaptic dynamics), and so this exploration of the consequences of such plasticity on drift is valuable. The authors also elegantly explore a potential mechanism to stabilize representations through experience, using an STDP rule specific to the inhibitory neurons in the input layer. This has an interesting parallel with other recent theoretical work on drift in the piriform (Morales et al., 2025 PNAS), in which STDP in the piriform layer was also shown to stabilize stimulus representations there. It is fascinating to see that this same rule also stabilizes piriform representations when implemented in the bulb's granule cells.

      The authors also provide a thoughtful discussion regarding the differential roles of mitral and tufted cells in drift in piriform and AON and the potential roles of neurogenesis in archicortex.

      In general, this paper puts an important and much-needed spotlight on the role of neurogenesis and inhibitory plasticity in drift. In this light, it is a valuable and exciting contribution to the drift conversation.

      Weaknesses

      I have one major, general concern that I think must be addressed to permit proper interpretation of the results.

      I worry that the authors' model may confuse thinking on drift in the olfactory system, because of differences in the behavior of their model from known features of the olfactory bulb. In their model, the tuning of individual bulbar neurons drifts over time. This is inconsistent with the experimental literature on the stability of odor-evoked activity in the olfactory bulb.

      In a foundational paper, Bhalla & Bower (1997) recorded from mitral and tufted cells in the olfactory bulb of freely moving rats and measured the odor tuning of well-isolated single units across a five-day interval. They found that the tuning of a single cell was quite variable within a day, across trials, but that this variability did not increase with time. Indeed, their measure of response similarity was equivalent within and across days. In what now reads as a prescient anticipation of the drift phenomenon, Bhalla and Bower concluded: "it is clear, at least over five days, that the cell is bounded in how it can respond. If this were not the case, we would expect a continual increase in relative response variability over multiple days (the equivalent of response drift). Instead, the degree of variability in the responses of single cells is stable over the length of time we have recorded." Thus, even at the level of single cells, this early paper argues that the bulb is stable.

      This basic result has since been replicated by several groups. Kato et al. (2012) used chronic two-photon calcium imaging of mitral cells in awake, head-fixed mice and likewise found that, while odor responses could be modulated by recent experience (odor exposure leading to transient adaptation), the underlying tuning of individual cells remained stable. While experience altered mitral cell odor responses, those responses recovered to their original form at the level of the single neuron, maintaining tuning over extended periods (two months). More recently, the Mizrahi lab (Shani-Narkiss et al., 2023) extended chronic imaging to six months, reporting that single-cell odor tuning curves remained highly similar over this period. These studies reinforce Bhalla and Bower's original conclusion: despite trial-to-trial variability, olfactory bulb neurons maintain stable odor tuning across extended timescales, with plasticity emerging primarily in response to experience. (The Yamada et al., 2017 paper, which the authors here cite, is not an appropriate comparison. In Yamada, mice were exposed daily to odor. Therefore, the changes observed in Yamada are a function of odor experience, not of time alone. Yamada does not include data in which the tuning of bulb neurons is measured in the absence of intervening experience.)

      Therefore, a model that relies on instability in the tuning of bulbar neurons risks giving the incorrect impression that the bulb drifts over time. This difference should be explicitly addressed by the authors to avoid any potential confusion. Perhaps the best course of action would be to fit their model to Mizrahi's data, should this data be available, and see if, when constrained by empirical observation, the model still produces drift in piriform. If so, this would dramatically strengthen the paper. If this is not feasible, then I suggest being very explicit about this difference between the behavior of the model and what has been shown empirically. I appreciate that in the data there is modest drift (e.g., Shani-Narkiss' Figure 8C), but the changes reported there really are modest compared to what is exhibited by the model. A compromise would be to simply apply these metrics to the model and match the model's similarity to the Shani-Narkiss data. Then the authors could ask what effect this has on drift in piriform.

      The risk here is that people will conclude from this paper that drift in piriform may simply be inherited from instability in the bulb. This view is inconsistent with what has been documented empirically, and so great care is warranted to avoid conveying that impression to the community.

      Major comments (all related to the above point)

      (1) Lines 146-168: The authors find in their model that "individual M/T cells changed their responses to the same odor across days due to adult-neurogenesis, with some cells decreasing the firing rate responses (Fig.2A1 top) while other cells increased the magnitude of their responses (Fig. 2A2 bottom, Fig. S2)" they also report a significant decrease in the "full ensemble correlation" in their model over time. They claim that these changes in individual cell tuning are "similar to what has been observed by others using calcium imaging of M/T cell activity (Kato et al., 2012 and Yamada et al., 2017)" and that the decrease in full ensemble correlation is "consistent with experimental observations (Yamada et al., 2017)." However, the conditions of the Kato and Yamada experiments that demonstrate response change are not comparable here, as odors were presented daily to the animals in these experiments. Therefore, the changes in odor tuning found in the Kato and Yamada papers (Kato Figure 4D; Yamada Figure 3E) are a function of accumulated experience with odor. This distinction is crucial because experience-induced changes reflect an underlying learning process, whereas changes that simply accumulate over time are more consistent with drift. The conditions of their model are more similar to those employed in other experiments described in Kato et al. 2012 (Figure 6C) as well as Shani-Narkiss et al. (2023), in which bulb tuning is measured not as a function of intervening experience, but rather as a function of time (Kato's "recovery" experiment). What is found in Kato is that even across two months, the tuning of individual mitral cells is stable. What alters tuning is experience with odor, the core finding of both the Kato et al., 2012 paper and also Yamada et al., 2017. It is crucial that this is clarified in the text.

      (2) The authors show that in a reduced-space correlation metric, the correlation of low-dimensional trajectories "remained high across all days"..."consistent with a recent experimental study" (Shani-Narkiss et al., 2023). It is true that in the Shani-Narkiss paper, a consistent low-dimensional response is found across days (t-SNE analysis in Shani-Narkiss Figure 7B). However, the key difference between the Shani-Narkiss data and the results reported here is that Shani-Narkiss also observed relative stability in the native space (Shani-Narkiss Figure 8). They conclude that they "find a relatively stable response of single neurons to odors in either awake or anesthetized states and a relatively stable representation of odors by the MC population as a whole (Figures 6-8; Bhalla and Bower, 1997)." This should be better clarified in the text.

      (3) In the discussion, the authors state that "In the MOB, individual M/T cells exhibited variable odor responses akin to gain control, altering their firing rate magnitudes over time. This is consistent with earlier experimental studies using calcium-imaging." (L314-6). Again, I disagree that these data are consistent with what has been published thus far. Changes in gain would have resulted in increased variability across days in the Bhalla data. Moreover, changes in gain would be captured by Kato's change index ("To quantify the changes in mitral cell responses, we calculated the change index (CI) for each responsive mitral cell-odor pair on each trial (trial X) of a given day as (response on trial X - the initial response on day 1)/(response on trial X + the initial response on day 1). Thus, CI ranges from −1 to 1, where a value of −1 represents a complete loss of response, 1 represents the emergence of a new response, and 0 represents no change." Kato et al.). This index will capture changes in gain. However, as shown in Figure 4D (red traces), Figure 6C (Recovery and Odor set B during odor set A experience and vice versa), the change index is either zero or near zero. If the authors wish to claim that their model is consistent with these data, they should also compute Kato's change index for M/T odor-cell pairs in their model and show that it also remains at 0 over time, absent experience.

    1. Reviewer #3 (Public review):

      Summary:

      Through micro-electroencephalography, Hight and colleagues studied how the auditory cortex in its ensemble responds to cochlear implant stimulation compared to the classic pure tones. Taking advantage of a double-implanted rat model (Micro-ECoG and Cochlear Implant), they tracked and analyzed changes happening in the temporal and spatial aspects of the cortical evoked responses in both normal hearing and cochlear-implanted animals. After establishing that single-trial responses were sufficient to encode the stimuli's properties, the authors then explored several decoder architectures to study the cortex's ability to encode each stimulus modality in a similar or different manner. They conclude that a) intracranial EEG evoked responses can be accurately recorded and did not differed between normal hearing and cochlear-implanted rats; b) Although coarsely spatially organized, CI-evoked responses had higher trial-by-trial variability than pure tones; c) Stimulus identity is independently represented by temporal and spatial aspect of cortical representations and can be accurately decoded by various means from single trials; d) and that Pure tones trained decoder can't decode CI-stimulus identity accurately.

      Strength:

      The model combining micro-eCoG and cochlear implantation and the methodology to extract both the Event Related Potentials (ERPs) and High-Gammas (HGs) is very well designed and appropriately analyzed. Likewise, the PCA-LDA and TCA-LDA are powerful tools that take full advantage of the information provided by the cortical ensembles.

      The overall structure of the paper, with a paced and exhaustive progress through each step and evolution of the decoder, is very appreciable and easy to follow. The exploration of single-trial encoding and stimulus identity through temporal and spatial domains is providing new avenues to characterize the cortical responses to CI stimulations and their central representation. The fact that single trials suffice to decode the stimulus identity regardless of their modality is of great interest and noteworthy. Although the authors confirm that iEEG remains difficult to transpose in the clinic, the insights provided by the study confirm the potential benefit of using central decoders to help in clinic settings.

      Weaknesses:

      The conclusion of the paper, especially the concept of distinct cortical encoding for each modality, is unfortunately partially supported by the results, as the authors did not adequately consider fundamental limitations of CI-related stimulation.

      First, the reviewer assumed that the authors stimulated in a Monopolar mode, which, albeit being clinically relevant, notoriously generates a high current spread in rodent models. Second, comparing the averaged BF maps for iEEG (Figure 2A, C), BFs ranged from 4 to 16kHz with a predominance of 4kHz BFs. The lack of BFs at higher frequencies hints at a potential location mismatch between the frequency range sampled at the level of the cortex (low to medium frequencies) and the frequency range covered by the CI inserted mostly in the first turn-and-a-half of the cochlea (high to medium frequencies). Looking at Figure 2F (and to some extent 2A), most of the CI electrodes elicited responses around the 4kHz regions, and averaged maps show a predominance of CI-3-4 across the cortex (Figure 2C, H) from areas with 4kHz BF to areas with 16kHz BF. It is doubtful that CI-3-4 are located near the 4kHz region based on Müller's work (1991) on the frequency representation in the rat cochlea.

      Taken together with the Pearsons correlations being flat, the decoder examples showing a strong ability to identify CI-4 and 3 and the Fig-8D, E presenting a strong prediction of 4kHz and 8kHz for all the CI electrodes when using a pure tone trained decoder, it is possible that current spread ended stimulating indistinctly higher turns of the cochlea or even the modiolus in a non-specific manner, greatly reducing (or smearing) the place-coding/frequency resolution of each electrode, which in turn could explain the coarse topographic (or coarsely tonotopic according to the manuscript) organization of the cortical responses. Thus, the conclusion that there are distinct encodings for each modality is biased, as it might not account for monopolar smearing. To that end, and since it is the study's main message and title, it would have benefited from having a subgroup of animals using bipolar stimulations (or any focused strategy since they provide reduced current spread) to compare the spatial organization of iEEG responses and the performances of the different decoders to dismiss current spread and strengthen their conclusion.

      Nevertheless, the reviewer wants to reiterate that the study proposed by Hight et al. is well constructed, relevant to the field, and that the overall proposal of improving patient performances and helping their adaptation in the first months of CI use by studying central responses should be pursued as it might help establish new guidelines or create new clinical tools.

    1. Reviewer #3 (Public review):

      Summary:

      Clausner et al. investigate the relationship between cortical oscillations in the alpha and gamma bands and the feature-specific and feature-unspecific BOLD signals across cortical layers. Using a well-designed stimulus and GLM, they show a method by which different BOLD signals can be differentiated and investigated alongside multiple cortical oscillatory frequencies. In addition to the previously reported positive relationship between gamma and BOLD signals in superficial layers, they show a relationship between gamma and feature-specific BOLD in the deeper layers. Alpha-band power is shown to have a negative relationship with the negative BOLD response for both feature-specific and feature-unspecific contrasts. When separated into lower (8-10Hz) and upper (11-13Hz) alpha oscillations, they show that higher frequency alpha showed a significantly stronger negative relationship with congruency, and can therefore be interpreted as more feature-specific than lower frequency alpha.

      Strengths:

      The use of interleaved EEG-fMRI has provided a rich dataset that can be used to evaluate the relationship of cortical layer BOLD signals with multiple EEG frequencies. The EEG data were of sufficient quality to see the modulation of both alpha-band and gamma-band oscillations in the group mean VE-channel TFS. The good EEG data quality is backed up with a highly technical analysis pipeline that ultimately enables the interpretation of the cortical layer relationship of the BOLD signal with a range of frequencies in the alpha and gamma bands. The stimulus design allowed for the generation of multiple contrasts for the BOLD signal and the alpha/gamma oscillations in the GLM analysis. Feature-specific and unspecific BOLD contrasts are used with congruently or incongruently selected EEG power regressors to delineate between local and global alpha modulations. A transparent approach is used for the selection of voxels contributing to the final layer profiles, for which statistical analysis is comprehensive but uses an alternative statistical test, which I have not seen in previous layer-fMRI literature.

      A significant negative relationship between alpha-band power and the BOLD signal was seen in congruently (EEGco) selected voxels (predominantly in superficial layers) and in feature-contrast (EEGco-inco) selected (superficial and deep layers). When separated into lower (8-10Hz) and upper (11-13Hz) alpha oscillations, they show that higher frequency alpha showed a significantly stronger negative relationship with congruency than lower frequency alpha. This is interpreted as a frequency dissociation in the alpha-BOLD relationship, with upper frequency alpha being feature-specific and lower frequency alpha corresponding to general modulation. These results are a valuable addition to the current literature and improve our current understanding of the role of cortical alpha oscillations.

      There is not much work in the literature on the relationship between alpha power and the negative BOLD response (NBR), so the data provided here are particularly valuable. The negative relationship between the NBR and alpha power shown here suggests that there is a reduction in alpha power, linked to locally reduced BOLD activity, which is in line with the previously hypothesized inhibitory nature of alpha.

      Weaknesses:

      It is not entirely clear how the draining vein effect seen in GE-BOLD layer-fMRI data has been accounted for in the analysis. For the contrast of congruent-incongruent, it is assumed that the underlying draining effect will be the same for both conditions, and so should be cancelled out. However, for the other contrasts, it is unclear how the final layer profiles aren't confounded by the bias in BOLD signal towards the superficial layers. Many of the profiles in Figure 3 and Figure 4A show an increased negative correlation between alpha power and the BOLD signal towards the superficial layers.

      When investigating if high alpha (8-10 Hz) and low alpha (11-13 Hz) are two different sources of alpha, it would be beneficial to show if this effect is only seen at the group level or can be seen in any single subjects. Inter-subject variability in peak alpha power could result in some subjects having a single low alpha peak and some a single high alpha peak rather than two peaks from different sources.

      The figure layout used to present the main findings throughout is an innovative way to present so much information, but it is difficult to decipher the main findings described in the text. The readability would be improved if the example (Appendix 0 - Figure 1) in the supplementary material is included as a second panel inside Figure 3, or, if this is not possible, the example (Appendix 0 - Figure 1) should be clearly referred to in the figure caption.

    1. Reviewer #3 (Public review):

      The study tested how people search for objects in natural scenes using virtual reality. Participants had to find targets among other objects, shown upright or tilted. The main results showed that upright objects were found faster and more accurately. When the scene or body was rotated, performance changed, showing that people use cues from the environment and gravity to guide search.

      The manuscript is clearly written and well designed, but there are some aspects related to methods and analyses that would benefit from stronger support.

      First, the sample size is not justified with a power analysis, nor is it explained how it was determined. This is an important point to ensure robustness and replicability.

      Second, the reaction time data were processed using different procedures, such as the use of the median to exclude outliers and an ad hoc cut-off of 50 ms. These choices are not sufficiently supported by a theoretical rationale, and could appear as post-hoc decisions.

      Third, the mixed-model analyses are overall well-conducted; however, the specification of the random structure deserves further consideration. The authors included random intercepts for participants and object categories, which is appropriate. However, they did not include random slopes (e.g., for orientation or set size), meaning that variability in these effects across participants was not modelled. This simplification can make the models more stable, but it departs from the maximal random structure recommended by Barr et al. (2013). The authors do not explicitly justify this choice, and a reviewer may question why participant-specific variability in orientation effects, for example, was not allowed. Given the modest sample sizes (20 in Experiment 1 and 10 in Experiment 2), convergence problems with more complex models are likely. Nonetheless, ignoring random slopes can, in principle, inflate Type I error rates, so this issue should at least be acknowledged and discussed.

    1. Reviewer #3 (Public review):

      Summary:

      MerQuaCo is an open-source computational tool developed for quality control in image-based spatial transcriptomics data, with a primary focus on data generated by the Vizgen MERSCOPE platform. The authors analyzed a substantial dataset of 641 fresh-frozen adult mouse brain sections to identify and quantify common imperfections, aiming to replace manual quality assessment with an automated, objective approach, providing standardized data integrity measures for spatial transcriptomics experiments.

      Strengths:

      The manuscript's strengths lie in its timely utility, rigorous empirical validation, and practical contributions to methodology and biological discovery in spatial transcriptomics.

      Weaknesses:

      While MerQuaCo demonstrates utility in large datasets and cross-platform potential, its generalizability and validation require expansion, particularly for non-MERSCOPE platforms and real-world biological impact.

    1. Reviewer #3 (Public review):

      Summary:

      I found the manuscript to be well-written. I have a few questions regarding the model, though the bulk of my comments are requests to provide definitions and additional clarity. There are concepts and approaches used in this manuscript that are clear boons for understanding the ecology of microbiomes but are rarely considered by researchers approaching the manuscript from a traditional biology background. The authors have clearly considered this in their writing of S1 and S2, so addressing these comments should be straightforward. The methods section is particularly informative and well-written, with sufficient explanations of each step of the derivation that should be informative to researchers in the microbial life sciences that are not well-versed with physics-inspired approaches to ecology dynamics.

      Strengths:

      The modeling efforts of this study primarily rely on a disordered for of the generalized Lotka-Volterra (gLV) model. This model can be appropriate for investigating certain systems and the authors are clear about when and how more mechanistic models (i.e., consumer-resource) can lead to gLV. Phenomenological models such as this have been found to be highly useful for investigating the ecology of microbiomes, so this modeling choice seems justified, and the limitations are laid out.

      Weaknesses:

      The authors use metagenomic data of diseased and healthy patients that was first processed in Pasqualini et al. (2024). The use of metagenomic data leads me into a question regarding the role of sampling effort (i.e., read counts) in shaping model parameters such as $h$. This parameter is equal to the average of 1/# species across samples because the data are compositional in nature. My understanding is that $h$ was calculated using total abundances (i.e., read counts). The number of observed species is strongly influenced by sampling effort and the authors addressed this point in their revised manuscript.

      However, the role of sampling effort can depend on the type of data and my instinct about the role that sampling effort plays in species detection is primarily based on 16S data. The dependency between these two variables may be less severe for the authors' metagenomic pipeline. This potential discrepancy raises a broader issue regarding the investigation of microbial macroecological patterns and the inference of ecological parameters. Often microbial macroecology researchers rely on 16S rRNA amplicon data because that type of data is abundant and comparatively low-cost. Some in microbiology and bioinformatics are increasingly pushing researchers to choose metagenomics over 16S. Sometimes this choice is valid (discovery of new MAGs, investigate allele frequency changes within species, etc.), sometimes it is driven by the false equivalence "more data = better". The outcome though is that we have a body of more-or-less established microbial macroecological patterns which rest on 16S data and are now slowly incorporating results from metagenomics. To my knowledge there has not been a systematic evaluation of the macroecological patterns that do and do not vary by one's choice in 16S vs. metagenomics. Several of the authors in this manuscript have previously compared the MAD shape for 16S and metagenomic datasets in Pasqualini et al., but moving forward a more comprehensive study seems necessary (2024). These points were addressed by the authors in their revised manuscript.

      Final review: The authors addressed all comments and I have no additional comments.

      References

      Pasqualini, Jacopo, et al. "Emergent ecological patterns and modelling of gut microbiomes in health and in disease." PLOS Computational Biology 20.9 (2024): e1012482.

    1. Reviewer #3 (Public review):

      In the manuscript "Ribosomal RNA synthesis by RNA polymerase I is regulated by premature termination of transcription", Azouzi and co-authors investigate the regulatory mechanisms of ribosomal RNA (rRNA) transcription by RNA Polymerase I (RNAPI) in the budding yeast S. cerevisiae. They follow up on exploring the molecular basis of a mutant allele of the second-largest subunit of RNAPI, RPA135-F301S, also dubbed SuperPol, that they had previously reported (Darrière et al, 2019), and which was shown to rescue Rpa49-linked growth defects, possibly by increasing rRNA production.

      Through a combination of genomic and in vitro approaches, the authors test the hypothesis that RNAPI activity could be subjected to a premature transcription termination (PTT) mechanism, akin to what is observed for RNA Polymerase II (RNAPII). The authors demonstrate that SuperPol increased processivity "desensitizes" RNAPI to abortive transcription cycles at the expense of decreased fidelity. In agreement, SuperPol is shown to be resistant to BMH-21, a drug previously shown to impair RNAPI elongation.

      Overall, this work expands the mechanistic understanding of the early dynamics of RNAPI transcription. The presented results are of interest for researchers studying transcription regulation, particularly those interested in RNAPI's transcription mechanisms and fidelity.

      Strengths:

      Overall, the experiments are performed with rigor and include the appropriate controls and statistical analyses. Conclusions are drawn from appropriate experiments. Both the figures and the text present the data clearly. The Materials and Methods section is detailed enough.

      Weaknesses:

      The biological significance of this phenomenon remains unaddressed and thus unclear. The lack of experiments to test a specific regulatory function (such as UTP-A loading checkpoint or other mechanisms) limit these termination events to possibly abortive actions of unclear significance.

      Comments on revised version:

      I appreciated the additional experiments and the other changes made by the authors in the revised version.

    1. Reviewer #3 (Public review):

      Summary:

      The authors have provided a thorough and constructive response to the comments. They effectively addressed concerns regarding the dependence on marker gene selection by detailing the incorporation of multiple feature selection strategies, such as highly variable genes and spatially informative markers (e.g., via Moran's I), which enhance glmSMA's robustness even when using gene-limited reference atlases.

      Furthermore, the authors thoughtfully acknowledged the assumption underlying glmSMA-that transcriptionally similar cells are spatially proximal-and discussed both its limitations and empirical robustness in heterogeneous tissues such as human PDAC. Their use of real-world, heterogeneous datasets to validate this assumption demonstrates the method's practical utility and adaptability.

      Overall, the response appropriately contextualizes the limitations while reinforcing the generalizability and performance of glmSMA. The authors' clarifications and experimental justifications strengthen the manuscript and address the reviewer's concerns in a scientifically sound and transparent manner.

    1. Reviewer #3 (Public review):

      Summary:

      In this study by Shi et al., the authors evaluate if cGAS is recruited to the membranes of intracellular organelles. Using a combination of biochemical fractionation and imaging techniques, the authors propose that upon recognition of DNA, cGAS translocates to various subcellular locations, including the golgi, endoplasmic reticulum, and endosomes. Mechanistically, the authors propose that upon localizing to the Golgi or endosome, cGAS binding to MARCH8 and ZDHHC18 prevents cGAS activity by incorporating cGAS and dsDNA into biomolecular condensates. However, in its current form, the study does not directly address this question.

      Strengths:

      The question of evaluating cGAS sub-cellular localization as a mechanism for controlling activity is interesting, and there is some evidence that cGAS is localized to sub-cellular organelle membranes.

      Weaknesses:

      (1) The well-established nuclear localization of cGAS is not adequately addressed in the cell lines used and is inconsistent with the findings.

      (2) Previous studies have shown that ZDHHC18 and MARCH8 control cGAS activity, which detracts somewhat from the novelty.

      (3) A lot of inconsistency in the cell lines and artificial expression systems used across the study.

      (4) A key element missing is showing that in the absence of ZDHHC18 or MARCH8, the loss of endogenous cGAS localization to the various sub-cellular organelles increases cGAMP synthesis and downstream STING activation in primary cells. There is an over-reliance on artificial expression systems. An important experiment to validate the hypothesis would be to evaluate endogenous cGAS localization in MARCH8- and ZDHHC18-deficient primary cells. Further, there should be evaluation of endogenous STING responses in MARCH8- and ZDHHC18-deficient primary cells in tandem with the localization studies.

      (5) There are a large number of grammatical errors throughout the manuscript which should be addressed.

    1. Reviewer #3 (Public review):

      Summary:

      Ruppert et al. present a well-designed 2×2 factorial study directly comparing methionine restriction (MetR) and cold exposure (CE) across liver, iBAT, iWAT, and eWAT, integrating physiology with tissue-resolved RNA-seq. This approach allows a rigorous assessment of where dietary and environmental stimuli act additively, synergistically, or antagonistically. Physiologically, MetR progressively increases energy expenditure (EE) at 22{degree sign}C and lowers RER, indicating a lipid utilization bias. By contrast, a 24-hour 4 {degree sign}C challenge elevates EE across all groups and eliminates MetR-Ctrl differences. Notably, changes in food intake and activity do not explain the MetR effect at room temperature.

      Strengths:

      The data convincingly support the central claim: MetR enhances EE and shifts fuel preference to lipids at thermoneutrality, while CE drives robust EE increases regardless of diet and attenuates MetR-driven differences. Transcriptomic analysis reveals tissue-specific responses, with additive signatures in iWAT and CE-dominant effects in iBAT. The inclusion of explicit diet×temperature interaction modeling and GSEA provides a valuable transcriptomic resource for the field.

      Weaknesses:

      Limitations include the short intervention windows (7 d MetR, 24 h CE), use of male-only cohorts, and reliance on transcriptomics without complementary proteomic, metabolomic, or functional validation. Greater mechanistic depth, especially at the level of WAT thermogenic function, would strengthen the conclusions.

    1. Reviewer #3 (Public review):

      Summary

      In this study, the authors aim to uncover how 3D tongue direction is represented in the Motor (M1o) and Somatosensory (S1o) cortex. In non-human primates implanted with chronic electrode arrays, they use X-ray based imaging to track the kinematics of the tongue and jaw as the animal is either chewing food or licking from a spout. They then correlate the tongue kinematics with the recorded neural activity. They perform both single-unit and population level analyses during feeding and licking. Then, they recharacterize the tuning properties after bilateral lidocaine injections in the two sensory branches of the trigeminal nerve. They report that their nerve block causes a reorganization of the tuning properties and population trajectories. Overall, this paper concludes that M1o and S1o both contain representations of the tongue direction, but their numbers, their tuning properties and susceptibility to perturbed sensory input are different.

      Strengths

      The major strengths of this paper are in the state-of-the-art experimental methods employed to collect the electrophysiological and kinematic data. In the revision, the single-unit analyses of tuning direction are robustly characterized. The differences in neural correlations across behaviors, regions and perturbations are robust. In addition to the substantial amount of largely descriptive analyses, this paper makes two convincing arguments 1) The single-neuron correlates for feeding and licking in OSMCx are different - and can't be simply explained by different kinematics and 2) Blocking sensory input alters the neural processing during orofacial behaviors. The evidence for these claims is solid.

      Weaknesses

      The main weakness of this paper is in providing an account for these differences to get some insight into neural mechanisms. For example, while the authors show changes in neural tuning and different 'neural trajectory' shapes during feeding and drinking - their analyses of these differences are descriptive and provide limited insight for the underlying neural computations.

    1. Reviewer #3 (Public review):

      Summary:

      The authors revisit the role of DR6 in axon degeneration following physical injury (Wallerian degeneration), examining both its effects on axons and its role in regulating the Schwann cell response to injury. Surprisingly, and in contrast to previous studies, they find that DR6 deletion does not delay the rate of axon degeneration after injury, suggesting that DR6 is not a mediator of this process.

      Overall, this is a valuable study. As the authors note, the current literature on DR6 is inconsistent, and these results provide useful new data and clarification. This work will help other researchers interpret their own data and re-evaluate studies related to DR6 and axon degeneration.

      Strengths:

      (1) The use of two independent DR6 knockout mouse models strengthens the conclusions, particularly when reporting the absence of a phenotype.

      (2) The focus on early time points after injury addresses a key limitation of previous studies. This approach reduces the risk of missing subtle protective phenotypes and avoids confounding results with regenerating axons at later time points after axotomy.

      Weaknesses:

      (1) The study would benefit from including an additional experimental paradigm in which DR6 deficiency is expected to have a protective effect, to increase confidence in the experimental models, and to better contextualize the findings within different pathways of axon degeneration. For example, DR6 deletion has been shown in more than one study to be partially axon protective in the NGF deprivation model in DRGs in vitro. Incorporating such an experiment could be straightforward and would strengthen the paper, especially if some of the neuroprotective effects previously reported are confirmed.

      (2) The quality of some figures could be improved, particularly the EM images in Figure 2. As presented, they make it difficult to discern subtle differences.

    1. Reviewer #3 (Public review):

      In this paper, the authors investigate how the RNA-binding protein Ssd1 and calorie restriction (CR) influence yeast replicative lifespan, with a particular focus on age-dependent iron uptake and activation of the iron regulon. For this, they use microfluidics-based single-cell imaging to monitor replicative lifespan, protein localization, and intracellular iron levels across aging cells. They show that both Ssd1 overexpression and CR act through a shared pathway to prevent the nuclear translocation of the iron-regulon regulator Aft1 and the subsequent induction of high-affinity iron transporters. As a result, these interventions block the age-related accumulation of intracellular free iron, which otherwise shortens lifespan. Genetic and chemical epistasis experiments further demonstrate that suppression of iron regulon activation is the key mechanism by which Ssd1 and CR promote replicative longevity.

      Overall, the paper is technically rigorous, and the main conclusions are supported by a substantial body of experimental data. The microfluidics-based assays in particular provide compelling single-cell evidence for the dynamics of Ssd1 condensates and iron homeostasis.

      My main concern, however, is that the central reasoning of the paper-that Ssd1 overexpression and CR prevent the activation of the iron regulon-appears to be contradicted by previous findings, and the authors may actually be misrepresenting these studies, unless I am mistaken. In the manuscript, the authors state on two occasions:

      "Intriguingly, transcripts that had altered abundance in CR vs control media and in SSD1 vs ssd1∆ yeast included the FIT1, FIT2, FIT3, and ARN1 genes of the iron regulon (8)"

      "Ssd1 and CR both reduce the levels of mRNAs of genes within the iron regulon: FIT1, FIT2, FIT3 and ARN1 (8)"

      However, reference (8) by Kaeberlein et al. actually says the opposite:

      "Using RNA derived from three independent experiments, a total of 97 genes were observed to undergo a change in expression >1.5-fold in SSD1-V cells relative to ssd1-d cells (supplemental Table 1 at http://www.genetics.org/supplemental/). Of these 97 genes, only 6 underwent similar transcriptional changes in calorically restricted cells (Table 2). This is only slightly greater than the number of genes expected to overlap between the SSD1-V and CR datasets by chance and is in contrast to the highly significant overlap in transcriptional changes observed between CR and HAP4 overexpression (Lin et al. 2002) or between CR and high external osmolarity (Kaeberlein et al. 2002). Intriguingly, of the 6 genes that show similar transcriptional changes in calorically restricted cells and SSD1-V cells, 4 are involved in iron-siderochrome transport: FIT1, FIT2, FIT3, and ARN1 (supplemental Table 1 at http://www.genetics.org/supplemental/)."

      Although the phrasing might be ambiguous at first reading, this interpretation is confirmed upon reviewing Matt Kaeberlein's PhD thesis: https://dspace.mit.edu/handle/1721.1/8318 (page 264 and so on).

      Moreover, consistent with this, activation of the iron regulon during calorie restriction (or the diauxic shift) has also been observed in two other articles:

      https://doi.org/10.1016/S1016-8478(23)13999-9

      https://doi.org/10.1074/jbc.M307447200

      Taken together, these contradictory data might blur the proposed model and make it unclear how to reconcile the results.

    1. Reviewer #3 (Public review):

      The manuscript "Theory of active self-organization of dense nematic structures in the actin cytoskeleton" analysis self-organized pattern formation within a two-dimensional nematic liquid crystal theory and uses microscopic simulations to test the plausibility of some of the conclusions drawn from that analysis. After performing an analytic linear stability analysis that indicates the possibility of patterning instabilities, the authors perform fully non-linear numerical simulations and identify the emergence of stripe-like patterning when anisotropic active stresses are present. Following a range of qualitative numerical observations on how parameter changes affect these patterns, the authors identify, besides isotropic and nematic stress, also active self-alignment as an important ingredient to form the observed patterns. Finally, microscopic simulations are used to test the plausibility of some of the most crucial assumptions underlying continuum simulations.

      The paper is well written, figures are mostly clear, and the theoretical analysis presented in both, main text and supplement, is rigorous. Mechano-chemical coupling has emerged in recent years as a crucial element of cell cortex and tissue organization and it is plausible to think that both, isotropic and anisotropic active stresses, are present within such effectively compressible structures. Even though not explicitly stated this way by the authors, I would argue that combining these two is one of the key ingredients that distinguishes this theoretical paper from similar ones.

      The diversity of patterning processes experimentally observed and theoretically described is nicely elaborated on in the introduction of the paper. The theory development and discussion of the continuum model itself is also well-embedded in a review of the relevant broad literature on active liquid crystals and active nematics, which includes plenty of previous results by the authors themselves. Interestingly, several of the patterns identified in the present work, such as 2D hexagonal and pulsatory patterns (Kumar et al, PRL, 2014), as well as contractile patches (Mietke et al, PRL 2019) have been observed previously in different, but related, active isotropic fluid models. In light of this crowded literature, the authors do good job in delineating key results obtained in the present manuscript from existing work.

      The results of numerical simulations are well-presented. The discussion of numerical observations is comprehensive, but also at many times qualitative. Some of the observations resonate with recent discussions in the field, for example the observation of effectively extensile dynamics in a contractile system, which is interesting and reminiscent of ambiguities about extensile/contractile properties discussed in recent preprints (Nejad et al, Nat Comm 2024). It is convincingly concluded that, besides nematic stress on top of isotropic one, active self-alignment is a key ingredient to produce the observed patterns.

      The authors must be complimented for trying to gain further mechanistic insights into their conclusions using microscopic filament simulations that were diligently performed. It is rightfully stated that these simulations only provide plausibility tests about key assumptions underlying the hydrodynamic theory. Within this scope, I would say the authors are successful. At the same time, it leaves open questions that could have been discussed more carefully. For example, I wonder what can be said about the regime \kappa>0 microscopically, in which the continuum theory does also predict the formation of stripe patterns? How does the spatial inhomogeneous organization the continuum theory predicts fit in the presented, microscopic picture and vice versa? The authors clearly explain the scope and limitations of the microscopic model, which suggests that questions like these will be interesting directions of future investigations.

      Overall, the paper represents a valuable contribution to the field of active matter that should provide a fruitful basis to develop new hypothesis about the dynamic self-organisation and mechanics of dense filamentous bundles in biological systems.

    1. Reviewer #3 (Public review):

      Summary:

      Using latest knock-in technology, the authors generated a set of five mouse lines with expression of recombinases in striatal projection neurons and dopaminergic neurons for public use. They rigorously characterize the expression of the recombinases by intersectional crossing with reporter lines to demonstrate that these lines are faithful, and they perform electrophysiological experiments in slices to provide evidence that the respective neurons show the expected features in these assays.

      Strengths:

      The characterization of the new mouse lines is exceptional, and these will be widely used by the community. The mouse lines are openly available for the community to use.

      Weaknesses:

      No weaknesses were identified by this Reviewer.

    1. Reviewer #3 (Public review):

      Summary:

      CTF18-RFC is an alternative eukaryotic PCNA sliding clamp loader which is thought to specialize in loading PCNA on the leading strand. Eukaryotic clamp loaders (RFC complexes) have an interchangeable large subunit which is responsible for their specialized functions. The authors show that the CTF18 large subunit has several features responsible for its weaker PCNA loading activity, and that the resulting weakened stability of the complex is compensated by a novel beta hairpin backside hook. The authors show this hook is required for the optimal stability and activity of the complex.

      Relevance:

      The structural findings are important for understanding RFC enzymology and novel ways that the widespread class of AAA ATPases can be adapted to specialized functions. A better understanding of CTF18-RFC function will also provide clarity into aspects of DNA replication, cohesion establishment and the DNA damage response.

      Strengths:

      The cryo-EM structures are of high quality enabling accurate modelling of the complex and providing a strong basis for analyzing differences and similarities with other RFC complexes.

      Weaknesses:

      The manuscript would have benefited from a more detailed biochemical analysis using mutagenesis and assays to tease apart the differences with the canonical RFC complex. Analysis of the FRET assay could be improved.

      Overall appraisal:

      Overall, the work presented here is solid and important. The data is mostly sufficient to support the stated conclusions.

      Comments on revisions:

      While the authors addressed my previous specific concerns, they have now added a new experiment which raises new concerns.

      The FRET clamp loading experiments (Fig. 6) appear to be overfitted so that the fitted values are unlikely to be robust and it is difficult to know what they mean, and this is not explained in this manuscript. Specifically, the contribution of two exponentials is floated in each experiment. By eye, CTF18-RFC looks much slower than RFC1-RFC (as also shown previously in the literature) but the kinetic constants and text suggest it is faster. This is because the contribution of the fast exponential is substantially decreased, and the rate constants then compensate for this. There is a similar change in contribution of the slow and fast rates between WT CTF18 and the variant (where the data curves look the same) and this has been balanced out by a change in the rate constants, which is then interpreted as a defect. I doubt the data are strong enough to confidently fit all these co-dependent parameters, especially for CTF18, where a fast initial phase is not visible. I would recommend either removing this figure or doing a more careful and thorough analysis.

    1. Reviewer #3 (Public review):

      Summary:

      In this paper, Kumar et al investigated the role of two decapping activators, Edc3 and Scd6, in regulating mRNA decay and translation in yeast. Using a variety of approaches including RNA-seq, ribosome profiling, proteomics, polysome analysis, and metabolomics the authors demonstrate that whereas single deletions of Edc3 or Scd6 have modest effects, the double mutant leads to increased abundance of mRNAs, many of which overlap with those targeted by the decapping activators Dhh1 and Pat1. The data suggest that Edc3 and Scd6 function redundantly to recruit Dhh1 to the Dcp2 decapping complex, thereby promoting mRNA turnover and translational repression. The authors show that these factors cooperate with Dhh1/Pat1 to repress transcripts involved in respiration, mitochondrial function, and alternative carbon source utilization, linking post-transcriptional regulation to nutrient responses. The study establishes Edc3 and Scd6 as important, but redundant regulators that fine-tune gene expression and metabolic adaptation in response to nutrient availability.

      Strengths:

      The paper has several strengths, including the comprehensive approach taken by the authors using multiple experimental techniques (RNA-seq, ribosome profiling, Western blotting, TMT-MS, polysome profiling, and metabolomics) to provide multiple lines of evidence to support their conclusions. The authors demonstrate clear redundancy of the factors by using single and double mutants for Edc3 and Scd6 and their global approach enables an understanding of these factors' roles across the yeast transcriptome. The work connects post-transcriptional processes to nutrient-dependent gene regulation, providing insights into how cells adapt to changes in their environment. The authors demonstrate the redundant roles of Edc3 and Scd6 in mRNA decapping and translation repression. Their RNA-seq and ribosome profiling results convincingly show that many mRNAs are derepressed only in the double mutants, confirming their hypothesis of redundancy. Furthermore, the functional cooperation between Edc3/Scd6 and Dhh1/Pat1 in regulating specific metabolic pathways, including mitochondrial function and carbon source utilization, is supported by the metabolomic data.

      Weaknesses:

      The study uses indirect evidence to support claims about the effect on mRNA stability rather than directly measuring mRNA stability. However, the combination of Pol II occupancy and RNA abundance measurements is consistent with the claims regarding mRNA stability. The addition of new experiments in the revision co-IPing Dhh1 and Dcp2 strengthens the argument that Edc3 and Scd6 recruit these factors.

    1. Reviewer #3 (Public review):

      Summary:

      This paper investigates the Matthew effect, where early success in funding peer review can translate into potentially unwarranted later success. It also investigated the previously found "setback" effect for those who narrowly miss out on funding.

      Strengths:

      The study used data from six funding agencies, which increases the generalisability, and was able to link bibliographic data for around 95% of applicants. The authors nicely illustrate how the previously found "setback" effect for near-miss applicants could be a collider bias due to those who chose to apply sometime later. This is a good explanation for the counter-intuitive effect and is nicely shown in Figure 5.

      Weaknesses:

      Most of the methods were clearly presented, but I have a few questions and comments, as outlined below.

      In Figure 4(a) why are the "post" means much lower than the "pre"? This contradicts the expected research trajectory of researchers. Or is this simply due to less follow-up time? But doesn't the field citation ratio control for follow-up time?

      The choice of the log-normal distribution for latent quality was not entirely clear to me. This would create some skew, rather than a symmetric distribution, which may be reasonable but log-normal distributions can have a very long tail which might not mimic reality, as I would not expect a small number of researchers to be extremely above the crowd. However, then the skew was potentially dampened by using percentile scores. Some further reasoning and plots of the priors would help.

      Can the authors confirm the results of Figure S9 which show no visible effect of altering the standard deviation for the review parameter or the mean citations? Is this just because the prior for quality is dominated by the data? Could it be that the width of the distribution for quality does not matter, as it's the relative difference/ranking that counts? So the beta in equation 6 changes to adjust to the different quality scale?

      The contrary result for the FWF is not explained (Table S3). Does this funder have different rules around re-applicants or many other competing funders?

      The outlined qualitative research sounds worthwhile. Another potential mechanism (based on anecdote) is that some researchers react irrationally to rejection or acceptance, tending to think that the whole agency likes or hates their work based on one experience. Many researchers do not appreciate that it was a somewhat random selection of reviewers who viewed their work, and it will unlikely be the same reviewers next time.

      "A key implication is the importance of encouraging promising, but initially unsuccessful applicants to reapply." Yes, A policy implication is to give people multiple chances to be lucky, perhaps by giving fewer grants to more people, which could be achieved by shortening the funding period (e.g., 4 year fellowships instead of 5 years). Although this will have some costs as applicants would need to spend more time on applications and suffer increased stress of shorter-term contracts. The bridge grants is potentially an ideal half-way house between many short-term and few long-term awards. Giving more grants to fewer people is supported by this analysis showing a diminishing returns in research outputs with more funding, DOI: 10.1371/journal.pone.0065263.

      Making more room for re-applicants also made me wonder if there should be an upper cap on funding, potentially for people who have been incredibly successful. Of course, funders generally want to award successful researchers, but people who've won over some limit, for example $50 million, could likely be expected to win funding from other sources such as philanthropy and business. Graded caps could occur by career stage.

    1. Reviewer #3 (Public review):

      Summary:

      This is an interesting investigation on the benefits of perceiving control and its impact on the subjective experience of stress. To assess the subjective sense of control, the authors introduce a novel wheel stopping (WS) task where control is manipulated via size and speed to induce conditions of low and high control. The authors demonstrate that the subjective sense of control is associated with experienced subjective stress and individual differences related to mental health measures. In a second experiment, they further demonstrate that an increased sense of control buffers subjective stress induced by a trier social stress manipulation, more so than a typical stress-buffering mechanism of watching neutral/calming videos.

      Strengths:

      Several strengths of the manuscript can be highlighted. For instance, the paper introduces a new paradigm and a clever manipulation to test a significant and important question. Additionally, it is a well-powered investigation that allows for confidence in replicability and demonstrate both high internal consistency and high external validity, along with an interesting set of individual difference analyses. Finally, the results are quite interesting and support prior literature, while also making a significant contribution to the field in understanding the benefits of perceiving control.

      Weaknesses:

      The authors have addressed all my queries, and I believe the revised paper has been improved and will make an important contribution to the literature.

    1. Reviewer #3 (Public review):

      Summary:

      IRG1 is highly expressed in activated human and mouse myeloid cells. It encodes the mitochondrial enzyme cis-aconitate decarboxylase 1 (ACOD1) that generates itaconate. Itaconate has anti-microbial activity and acts immunoregulatory by interfering with cellular metabolism, signaling to cytokine production, and multiple other processes.

      The authors perform a phylogenetic analysis of IRG1 to obtain insight into the evolution of itaconate biosynthesis. Combining BLAST with human IRG1 and a MmgE/Ptrp domain search, they find CAD in all domains of life, but the presence of IRG1 homologs is patchy in eukaryotes, indicating that itaconate biosynthesis is not essential. The phylogenetic analysis showed a more distant relationship of fungal and metazoan CAD/IRG1 to many prokaryotic sequences, suggesting independent acquisition of these metazoan and fungal CAD genes. In metazoans, three subbranches of paleo-IRG1 (in mollusks/early chordates) and two paralogous vertebrate forms (IRG1 and IRG1-like) were identified, with the latter derived from paleo-IRG1, and by genome duplication. While most jawed vertebrates have both IRG1 and IRG1L, metatherian and eutherian mammals have lost IRG1L and contain only IRG1.

      Interestingly, sequence analysis of both paralogues showed that many IRG1L genes contain an N-terminal mitochondrial targeting sequence (MTS) that is absent from most IRG1 sequences. Limited proteolysis of submitochondrial localization confirmed that zebrafish IRG1L is only sensitive to proteases in the presence of high Triton X-100, indicative of association with mitochondrial matrix. In contrast, a recent paper from the Galan lab (Lian 2003 Nature Microbiology) reported that human IRG1 is not localized to the mitochondrial matrix, although enriched in mitochondria. Here, the authors generated a matrix-targeted human IRG1 by adding the N-terminal MTS and found that it localizes to the matrix based on a limited proteolysis assay. The loss of MTS-containing IRG1L from most mammals appears, therefore, to indicate that itaconate generation is directed to the cytoplasm, potentially reducing inhibition of TCA cycle activity in the mitochondria.

      Next, the authors confirmed that the recombinant IRG1L protein has CAD activity in vitro. The last part of the manuscript addresses the expression of paleo-IRG1 in oysters and amphioxus, where they found high mRNA levels in oyster hemocytes which was further increased by poly(I:C), which was also the case in amphioxus tissues after feeding of LPS or poly(I:C), indicating a role for paleo-IRG1/itaconate in early metazoan innate immunity.

      Strengths

      (1) Phylogenetic perspective largely lacking so far in the IRG1/itaconate field.

      (2) Manuscript clearly written and understandable across disciplines.

      (3) Phylogenetic analyses complemented by biochemical and gene expression analyses to link to function.

      (4) Lack of MTS in IRG1 and change in localization from mitochondria, highly relevant antimicrobial and cellular effects of itaconate.

      Weaknesses:

      (1) Biochemical and functional analysis of different CAD mRNA and proteins lacks depth.

      (2) The submitochondrial localization assay lacks a native human IRG1 control.

      (3) CAD activity shown for IRG1L but not paleo-IRG1.

      (4) Itaconate production by early metazoans after PAMP stimulation?

      (5) No measurement of energy metabolism (trade-offs?).

      I acknowledge that some of these limitations are inevitable because the range of detailed experimental analysis is necessarily limited. However, some of these data would be important to support central claims of the manuscript (further discussed below).

    1. Reviewer #3 (Public review):

      Summary:

      Large Language Models have revolutionized Artificial Intelligence and can now match or surpass human language abilities on many tasks. This has fueled interest in cognitive neuroscience in exposing representational similarities between Language Models and brain recordings of language comprehension. The current study breaks from this mold by: (1) Systematically identifying sentence structures for which brain and Large Language Model representations diverge. (2) Demonstrating that brain representations for these sentences can be better accounted for by a model structured by the semantic roles of words in the sentence. As such, the study may now fuel interest in characterizing how Large Language Models and brain representations differ, which may prompt new, more brain-like language models.

      Strengths:

      (1) This study presents a bold and solid challenge to a literature trend that has touted similarities between Transformer models and human cognition based on representational correlations with brain activity. This challenge is substantiated by identifying sentences for which brain and model representations of sentences diverge and explaining those divergences using models structured by semantic roles/syntax.

      (2) This study conducts a rigorous pre-registered analysis of a comprehensive selection of the state-of-the-art Large Language Models, on a controlled sentence comprehension fMRI dataset. The analysis is conducted within a Representation Similarity framework to support similarity comparisons between graph structures and brain activity without needing to vectorize graphs. Transformer models are predicted and shown to diverge from brain representations on subsets of sentences with similar word-level content but different sentence structures.

      (3) The study introduces a 7T fMRI sentence comprehension dataset and accompanying human sentence similarity ratings, which may be a fruitful resource for developing more human-like language models. Unlike other model-based sentence datasets, the relation between grammatical structure and word-level content is controlled, and subsets of sentences for which models and brains diverge are identified.

      Weaknesses:

      (1) The interpretation of findings is nuanced. Although Transformers underperform as brain models on the critical subsets of controlled sentences, a Transformer outperforms all other models when evaluated on the union of all sentences when both word-level content and structure vary. Transformers also yield equivalent or better models of human behavioral data. Thus, although Transformers have demonstrable flaws as human models, which are pinpointed here, in the general case, (some) Transformers are more human-like than the other models considered.

      (2) There may be confounds between the critical sentence structure manipulations and visual representations of sentence stimuli. This is inconvenient because activation in brain regions that process semantics tends to partially correlate with visual cortex representations, and computational models tend to reflect the number of words/tokens/elements in sentences. Although the study commendably controls for confounds associated with sentence length, there could still be residual effects that remain. For instance, the Graph model correlates most strongly with the visual cortex despite these sentence length controls.

      (3) Sentence similarity computations are emphasized as the basis for unifying comparative analyses of graph structures and vector data. A strength of this approach is that correlation is not always the ideal similarity metric. However, a weakness is that similarity computations are not unified across models. This has practical consequences here because different similarity metrics applied to the same model produce positive or negative correlations with brain data.

    1. Reviewer #3 (Public review):

      Summary:

      This manuscript introduces a new platform termed "TrueProbes" for designing mRNA FISH probes. In comparison to existing design strategies, the authors incorporate a comprehensive thermodynamic and kinetic model to account for probe states that may contribute to nonspecific background. The authors validate their design pipeline using Jurkat cells and provide evidence of improved probe performance.

      Strengths:

      A notable strength of TrueProbes is the consideration of genome-wide binding affinities, which aims to minimize off-target signals. The work will be of interest to researchers employing mRNA FISH in certain human cell lines.

      Weaknesses:

      However, in my view, the experimental validation is not sufficient to justify the broad claims of the platform. Given the number of assumptions in the model, additional experimental comparisons across probe design methods, ideally targeting transcripts with different expression levels, would be necessary to establish the general superiority of this approach.

    1. Reviewer #3 (Public review):

      Summary:

      This is a really nice manuscript with different lines of evidence to show that the IL encodes inhibitory memories that can then be manipulated by optogenetic stimulation of these neurons during extinction. The behavioral designs are excellent, with converging evidence using extinction/re-extinction, backwards/forwards aversive conditioning, and backwards appetitive/forwards aversive conditioning. Additional factors, such as nonassociative effects of the CS or US, are also considered, and the authors evaluate the inhibitory properties of the CS with tests of conditioned inhibition.

      Strengths:

      The experimental designs are very rigorous with an unusual level of behavioral sophistication.

      Weaknesses:

      (1) More justification for parametric choices (number of days of backwards vs forwards conditioning) could be provided.

      (2) The current discussion could be condensed and could focus on broader implications for the literature.

    1. Reviewer #3 (Public review):

      Summary:

      In this manuscript, Okuno et al. re-analyze whole-brain imaging data collected in another paper (Brezovec et al., 2024) in the context of the two currently available Drosophila connectome datasets: the partial "FlyEM" (hemibrain) dataset (Scheffer et al., 2020) and the whole-brain "FlyWire" dataset (Dorkenwald et al., 2024). They apply existing fMRI signal processing algorithms to the fly imaging data and compute function-structure correlations across a variety of post-processing parameters (noise reduction methods, ROI size), demonstrating an inverse relationship between ROI size and FC-SC correlation. The authors go on to look at structural connectivity amongst more polarized or less polarized neurons, and suggest that stronger FC-SC correlations are driven by more polarized neurons.

      Strengths:

      (1) The result that larger mesoscale ROIs have a higher correlation with structural data is interesting. This has been previously discussed in Drosophila in Turner et al., 2021, but here it is quantified more extensively.

      (2) The quantification of neuron polarization (PPSSI) as applied to these structural data is a promising approach for quantifying differences in spatial synapse distribution.

      Weaknesses:

      One should not score noise/nuisance removal methods solely by their impact on FC-SC correlation values, because we do not know a priori that direct structural connections correspond with strong functional correlations. In fact, work in C. elegans, where we have access to both a connectome and neuron-resolution functional data, suggests that this relationship is weak (Yemini et al., 2021; Randi et al., 2023). Similarly, I don't think it's appropriate to tune the confidence scores on the EM datasets using FC-SC correlations as an output metric.

      Any discussion of FC-SC comparisons should include an analysis of excitatory/inhibitory neurotransmitters, which are available in the fly connectome dataset. However, here the authors do not perform any analyses with neurotransmitter information.<br /> Comparisons between fly and human MRI data are also premature here. Firstly, the fly connectomes, which are derived from neuron-scale EM reconstructions, are a qualitatively different kind of data from human connectomes, which are derived from DSI imaging of large-scale tracts. Likewise, calcium data and fMRI data are very different functional data acquisition methods-the fact that similar processing steps can be used on time-series data does not make them surprisingly similar, and does not in my view, constitute evidence of "similar design concepts."

      The comparison of FlyEM/FlyWire connectomes concludes that differences are more likely a result of data processing than of inter-individual variability. If this is the case, the title should not claim that the manuscript covers individual variability.<br /> The analysis of the wedge-AVLP neuron strikes me as highly speculative, given that the alignment precision between the connectome and the functional data is around 5 microns (Brezovec* et al, PNAS 2024).

    1. Reviewer #3 (Public review):

      In the manuscript by Lapao et al., the authors uncover a role for the RAB27A effector protein SYTL5 in regulating mitochondrial function and apparent selective turnover of mitochondrial components. The authors find that SYTL5 localizes to mitochondria in a RAB27A dependent way and that loss of SYTL5 (or RAB27A) impairs lysosomal turnover of MTCO1 (but not a matrix-based reporter/other mitochondrial proteins). The authors go on to show that loss of SYTL5 impacts mitochondrial respiration and ECAR and as such may influence the Warburg effect and tumorigenesis. Of relevance here, the authors go on to show that SYTL5 expression is reduced in adrenocortical carcinomas and this correlates with reduced survival rates.

      As previously reviewed, this is a very intriguing body of work and reveals a new role for SYTL5/RAB27A at the mitochondria. Unfortunately, it appears that SYTL5 is challenging protein to detect endogenously and the authors' cell lines "comprise a heterogenous pool with high variability", which means that a lot of my original concerns remain. It is still also not clear if the conventional autophagy machinery is required for this pathway, especially if SYTL5/RAB27A mitochondrial recruitment is upstream of this. Hopefully, in future work, the authors (and/or others) will be able to address this and build on the mechanisms of this interesting and potentially important pathway.

  2. Oct 2025
    1. Reviewer #3 (Public Review):

      This manuscript by Akabuogu et al. investigates membrane potential dynamics in E. coli. Membrane potential fluctuations have been observed in bacteria by several research groups in recent years, including in the context of bacterial biofilms where they have been proposed to play a role in cellular communication. Here, these authors investigate membrane potential in E. coli, in both single cells and biofilms. I have reviewed the revised manuscript provided by the authors, as well as their responses to the initial reviews; my opinion about the manuscript is largely unchanged. I have focused my public review on those issues that I believe to be most pressing, with additional comments included in the review to authors. Although these authors are working in an exciting research area, the evidence they provide for their claims is inadequate, and several key control experiments are still missing. In some cases, the authors allude to potentially relevant data in their responses to the initial reviews, but unfortunately these data are not shown. Furthermore, I cannot identify any traveling wavefronts in the data included in this manuscript. In addition to the challenges associated with the use of Thioflavin-T (ThT) raised by the second reviewer, these caveats make the work presented in this manuscript difficult to interpret.

      First, some of the key experiments presented in the paper lack required controls:

      (1) This paper asserts that the observed ThT fluorescence dynamics are induced by blue light. This is a fundamental claim in the paper, since the authors go on to argue that these dynamics are part of a blue light response. This claim must be supported by the appropriate negative control experiment measuring ThT fluorescence dynamics in the absence of blue light- if this idea is correct, these dynamics should not be observed in the absence of blue light exposure. If this experiment cannot be performed with ThT since blue light is used for its excitation, TMRM can be used instead.

      In response to this, the authors wrote that "the fluorescent baseline is too weak to measure cleanly in this experiment." If they observe no ThT signal above noise in their time lapse data in the absence of blue light, this should be reported in the manuscript- this would be a satisfactory negative control. They then wrote that "It appears the collective response of all the bacteria hyperpolarization at the same time appears to dominate the signal." I am not sure what they mean by this- perhaps that ThT fluorescence changes strongly only in response to blue light? This is a fundamental control for this experiment that ought to be presented to the reader.

      (2) The authors claim that a ∆kch mutant is more susceptible to blue light stress, as evidenced by PI staining. The premise that the cells are mounting a protective response to blue light via these channels rests on this claim. However, they do not perform the negative control experiment, conducting PI staining for WT the ∆kch mutant in the absence of blue light. In the absence of this control it is not possible to rule out effects of the ∆kch mutation on overall viability and/or PI uptake. The authors do include a growth curve for comparison, but planktonic growth is a very different context than surface-attached biofilm growth. Additionally, the ∆kch mutation may have impacts on PI permeability specifically that are not addressed by a growth curve. The negative control experiment is of key importance here.

      Second, the ideas presented in this manuscript rely entirely on analysis of ThT fluorescence data, specifically a time course of cellular fluorescence following blue light treatment. However, alternate explanations for and potential confounders of the observed dynamics are not sufficiently addressed:

      (1) Bacterial cells are autofluorescent, and this fluorescence can change significantly in response to stress (e.g. blue light exposure). To characterize and/or rule out autofluorescence contributions to the measurement, the authors should present time lapse fluorescence traces of unstained cells for comparison, acquired under the same imaging conditions in both wild type and ∆kch mutant cells. In their response to reviewers the authors suggested that they have conducted this experiment and found that the autofluorescence contribution is negligible, which is good, but these data should be included in the manuscript along with a description of how these controls were conducted.

      (2) Similarly, in my initial review I raised a concern about the possible contributions of photobleaching to the observed fluorescence dynamics. This is particularly relevant for the interpretation of the experiment in which catalase appears to attenuate the decay of the ThT signal; this attenuation could alternatively be due to catalase decreasing ThT photobleaching. In their response, the authors indicated that photobleaching is negligible, which would be good, but they do not share any evidence to support this claim. Photobleaching can be assessed in this experiment by varying the light dosage (illumination power, frequency, and/or duration) and confirming that the observed fluorescence dynamics are unaffected.

      Third, the paper claims in two instances that there are propagating waves of ThT fluorescence that move through biofilms, but I do not observe these waves in any case:

      (1) The first wavefront claim relates to small cell clusters, in Fig. 2A and Video S2 and S3 (with Fig. 2A and Video S2 showing the same biofilm.) I simply do not see any evidence of propagation in either case- rather, all cells get brighter and dimmer in tandem. I downloaded and analyzed Video S3 in several ways (plotting intensity profiles for different regions at different distances from the cluster center, drawing a kymograph across the cluster, etc.) and in no case did I see any evidence of a propagating wavefront. (I attempted this same analysis on the biofilm shown in Fig. 2A and Video S2 with similar results, but the images shown in the figure panels and especially the video are still both so saturated that the quantification is difficult to interpret.) If there is evidence for wavefronts, it should be demonstrated explicitly by analysis of several clusters. For example, a figure of time-to-peak vs. position in the cluster demonstrating a propagating wave would satisfy this. Currently, I do not see any wavefronts in this data.

      (2) The other wavefront claim relates to biofilms, and the relevant data is presented in Fig. S4 (and I believe also in what is now Video S8, but no supplemental video legends are provided, and this video is not cited in text.) As before, I cannot discern any wavefronts in the image and video provided; Reviewer 1 was also not able to detect wave propagation in this video by kymograph. Some mean squared displacements are shown in Fig. 7. As before, the methods for how these were obtained are not clearly documented either in this manuscript or in the BioRXiv preprint linked in the initial response to reviewers, and since wavefronts are not evident in the video it is hard to understand what is being measured here- radial distance from where? (The methods section mentions radial distance from the substrate, this should mean Z position above the imaging surface, and no wavefronts are evident in Z in the figure panels or movie.) Thus, clear demonstration of these wavefronts is still missing here as well.

      Fourth, I have some specific questions about the study of blue light stress and the use of PI as a cell viability indicator:

      (1) The logic of this paper includes the premise that blue light exposure is a stressor under the experimental conditions employed in the paper. Although it is of course generally true that blue light can be damaging to bacteria, this is dependent on light power and dosage. The control I recommended above, staining cells with PI in the presence and absence of blue light, will also allow the authors to confirm that this blue light treatment is indeed a stressor- the PI staining would be expected to increase in the presence of blue light if this is so.

      (2) The presence of ThT may complicate the study of the blue light stress response, since ThT enhances the photodynamic effects of blue light in E. coli (Bondia et al. 2021 Chemical Communications). The authors could investigate ThT toxicity under these conditions by staining cells with PI after exposing them to blue light with or without ThT staining.

      (3) In my initial review, I wrote the following: "In Figures 4D - E, the interpretation of this experiment can be confounded by the fact that PI uptake can sometimes be seen in bacterial cells with high membrane potential (Kirchhoff & Cypionka 2017 J Microbial Methods); the interpretation is that high membrane potential can lead to increased PI permeability. Because the membrane potential is largely higher throughout blue light treatment in the ∆kch mutant (Fig. 3[BC]), this complicates the interpretation of this experiment." In their response, the authors suggested that these results are not relevant in this case because "In our experiment methodology, cell death was not forced on the cells by introducing an extra burden or via anoxia." However, the logic of the paper is that the cells are in fact dying due to an imposed external stressor, which presumably also confers an increased burden as the cells try to deal with the stress. Instead, the authors should simply use a parallel method to confirm the results of PI staining. For example, the experiment could be repeated with other stains, or the viability of blue light-treated cells could be addressed more directly by outgrowth or colony-forming unit assays.

      The CFU assay suggested above has the additional advantage that it can also be performed on planktonic cells in liquid culture that are exposed to blue light. If, as the paper suggests, a protective response to blue light is being coordinated at the biofilm level by these membrane potential fluctuations, the WT strain might be expected to lose its survival advantage vs. the ∆kch mutant in the absence of a biofilm.

      Fifth, in several cases the data are presented in a way that are difficult to interpret, or the paper makes claims that are different to observe in the data:

      (1) The authors suggest that the ThT and TMRM traces presented in Fig. S1D have similar shapes, but this is not obvious to me- the TMRM curve has very little decrease after the initial peak and only a modest, gradual rise thereafter. The authors suggest that this is due to increased TMRM photobleaching, but I would expect that photobleaching should exacerbate the signal decrease after the initial peak. Since this figure is used to support the use of ThT as a membrane potential indicator, and since this is the only alternative measurement of membrane potential presented in text, the authors should discuss this discrepancy in more detail.

      (2) The comparison of single cells to microcolonies presented in figures 1B and D still needs revision:

      First, both reviewer 1 and I commented in our initial reviews that the ThT traces, here and elsewhere, should not be normalized- this will help with the interpretation of some of the claims throughout the manuscript.

      Second, the way these figures are shown with all traces overlaid at full opacity makes it very difficult to see what is being compared. Since the point of the comparison is the time to first peak (and the standard deviation thereof), histograms of the distributions of time to first peak in both cases should be plotted as a separate figure panel.<br /> Third, statistical significance tests ought to be used to evaluate the statistical strength of the comparisons between these curves. The authors compare both means and standard deviations of the time to first peak, and there are appropriate statistical tests for both types of comparisons.

      (3) The authors claim that the curve shown in Fig. S4B is similar to the simulation result shown in Fig. 7B. I remain unconvinced that this is so, particularly with respect to the kinetics of the second peak- at least it seems to me that the differences should be acknowledged and discussed. In any case, the best thing to do would be to move Fig. S4B to the main text alongside Fig. 7B so that the readers can make the comparison more easily.

      (4) As I wrote in my first review, in the discussion of voltage-gated calcium channels, the authors refer to "spiking events", but these are not obvious in Figure S3E. Although the fluorescence intensity changes over time, these fluctuations cannot be distinguished from measurement noise. A no-light control could help clarify this.

      (5) In the lower irradiance conditions in Fig. 4A, the ThT dynamics are slower overall, and it looks like the ThT intensity is beginning to rise at the end of the measurement. The authors write that no second peak is observed below an irradiance threshold of 15.99 µW/mm2. However, could a more prominent second peak be observed in these cases if the measurement time was extended? Additionally, the end of these curves looks similar to the curve in Fig. S4B, in which the authors write that the slow rise is evidence of the presence of a second peak, in contrast to their interpretation here.

      Additional considerations:

      (1) The analysis and interpretation of the first peak, and particularly of the time-to-fire data is challenging throughout the manuscript the time resolution of the data set is quite limited. It seems that a large proportion of cells have already fired after a single acquisition frame. It would be ideal to increase the time resolution on this measurement to improve precision. This could be done by imaging more quickly, but that would perhaps necessitate more blue light exposure; an alternative is to do this experiment under lower blue light irradiance where the first spike time is increased (Figure 4A).

      (2) The authors suggest in the manuscript that "E. coli biofilms use electrical signalling to coordinate long-range responses to light stress." In addition to the technical caveats discussed above, I am missing a discussion about what these responses might be. What constitutes a long-range response to light stress, and are there known examples of such responses in bacteria?

      (3) The presence of long-range blue light responses can also be interrogated experimentally, for example, by repeating the Live/Dead experiment in planktonic culture or the single-cell condition. If the protection from blue light specifically emerges due to coordinated activity of the biofilm, the ∆kch mutant would not be expected to show a change in Live/Dead staining in non-biofilm conditions. The CFU experiment I mentioned above could also implicate coordinated long-range responses specifically, if biofilms and liquid culture experiments can be compared (although I know that recovering cells from biofilms is challenging.)

      4. At the end of the results section, the authors suggest a critical biofilm size of only 4 μm for wavefront propagation (not much larger than a single cell!) The authors show responses for various biofilm sizes in Fig. 2C, but these are all substantially larger (and this figure also does not contain wavefront information.) Are there data for cell clusters above and below this size that could support this claim more directly?

      (5) In Fig. 4C, the overall trajectories of extracellular potassium are indeed similar, but the kinetics of the second peak of potassium are different than those observed by ThT (it rises minutes earlier)- is this consistent with the idea that Kch is responsible for that peak? Additionally, the potassium dynamics also include the first ThT peak- is this surprising given that the Kch channel has no effect on this peak according to the model?

      Detailed comments:

      Why are Fig. 2A and Video S2 called a microcluster, whereas Video S3, which is smaller, is called a biofilm?

      "We observed a spontaneous rapid rise in spikes within cells in the center of the biofilm" (Line 140): What does "spontaneous" mean here?

      "This demonstrates that the ion-channel mediated membrane potential dynamics is a light stress relief process.", "E. coli cells employ ion-channel mediated dynamics to manage ROS-induced stress linked to light irradiation." (Line 268 and the second sentence of the Fig. 4F legend): This claim is not well-supported. There are several possible interpretations of the catalase experiment (which should be discussed); this experiment perhaps suggests that ROS impacts membrane potential but does not indicate that these membrane potential fluctuations help the cells respond to blue light stress. The loss of viability in the ∆kch mutant might indicate a link between these membrane potential experiments and viability, but it is hard to interpret without the no light controls I mention above.

      "The model also predicts... the external light stress" (Lines 338-341): Please clarify this section. Where does this prediction arise from in the modeling work? Second, I am not sure what is meant by "modulates the light stress" or "keeps the cell dynamics robust to the intensity of external light stress" (especially since the dynamics clearly vary with irradiance, as seen in Figure 4A).

      "We hypothesized that E. coli not only modulates the light-induced stress but also handles the increase of the ROS by adjusting the profile of the membrane potential dynamics" (Line 347): I am not sure what "handles the ROS by adjusting the profile of the membrane potential dynamics" means. What is meant by "handling" ROS? Is the hypothesis that membrane potential dynamics themselves are protective against ROS, or that they induce a ROS-protective response downstream, or something else? Later the authors write that changes in the response to ROS in the model agree with the hypothesis, but just showing that ROS impacts the membrane potential does not seem to demonstrate that this has a protective effect against ROS.

      "Mechanosensitive ion channels (MS) are vital for the first hyperpolarization event in E. coli." (Line 391): This is misleading- mechanosensitive ion channels totally ablate membrane potential dynamics, they don't have a specific effect on the first hyperpolarization event. The claim that mechanonsensitive ion channels are specifically involved in the first event also appears in the abstract.

      Also, the apparent membrane potential is much lower even at the start of the experiment in these mutants (Fig. 6C-D)- is this expected? This seems to imply that these ion channels also have a blue light-independent effect.

      Throughout the paper, there are claims that the initial ThT spike is involved in "registering the presence of the light stress" and similar. What is the evidence for this claim?

      "We have presented much better quantitative agreement of our model with the propagating wavefronts in E. coli biofilms..." (Line 619): It is not evident to me that the agreement between model and prediction is "much better" in this work than in the cited work (reference 57, Hennes et al. 2023). The model in Figure 4 of ref. 57 seems to capture the key features of their data.

      In methods, "Only cells that are hyperpolarized were counted in the experiment as live" (Line 745): what percentage of cells did not hyperpolarize in these experiments?

      Some indication of standard deviation (error bars or shading) should be added to all figures where mean traces are plotted.

      Video S8 is very confusing- why does the video play first forwards and then backwards? It is easy to misinterpret this as a rise in the intensity at the end of the experiment.

    1. Reviewer #3 (Public review):

      Summary:In this study, the authors perform multimodal single-cell transcriptomic and epigenomic profiling of 9,394 mouse TM cells, identifying three transcriptionally distinct TM subtypes with validated molecular signatures. TM1 cells are enriched for extracellular matrix genes, TM2 for secreted ligands supporting Schlemm's canal, and TM3 for contractile and mitochondrial/metabolic functions. The transcription factor LMX1B, previously linked to glaucoma, shows the highest expression in TM3 cells and appears to regulate mitochondrial pathways. In Lmx1bV265D mutant mice, TM3 cells exhibit transcriptional signs of mitochondrial dysfunction associated with elevated IOP. Notably, vitamin B3 treatment significantly mitigates IOP elevation, suggesting a potential therapeutic avenue.

      This is an excellent and collaborative study involving investigators from two institutions, offering the most detailed single-cell transcriptomic and epigenetic profiling of the mouse limbal tissues-including both TM and Schlemm's canal (SC), from wild-type and Lmx1bV265D mutant mice. The study defines three TM subtypes and characterizes their distinct molecular signatures, associated pathways, and transcriptional regulators. The authors also compare their dataset with previously published murine and human studies, including those by Van Zyl et al., providing valuable cross-species insights.

      Strengths:

      (1) Comprehensive dataset with high single-cell resolution<br /> (2) Use of multiple bioinformatic and cross-comparative approaches<br /> (3) Integration of 3D imaging of TM and SC for anatomical context<br /> (4) Convincing identification and validation of three TM subtypes using molecular markers.

      Weaknesses:

      (1) Insufficient evidence linking mitochondrial dysfunction to TM3 cells in Lmx1bV265D mice: While the identification of TM3 cells as metabolically specialized and Lmx1b-enriched is compelling, the proposed link between Lmx1b mutation and mitochondrial dysfunction remains underdeveloped. It is unclear whether mitochondrial defects are a primary consequence of Lmx1b-mediated transcriptional dysregulation or a secondary response to elevated IOP. Additional evidence is needed to clarify whether Lmx1b directly regulates mitochondrial genes (e.g., via ChIP-seq, motif analysis, or ATAC-seq), or whether mitochondrial changes are downstream effects.<br /> Furthermore, the protective effects of nicotinamide (NAM) are interpreted as evidence of mitochondrial involvement, but no direct mitochondrial measurements (e.g., immunostaining, electron microscopy, OCR assays) are provided. It is essential to validate mitochondrial dysfunction in TM3 cells using in vivo functional assays to support the central conclusion of the paper. Without this, the claim that mitochondrial dysfunction drives IOP elevation in Lmx1bV265D mice remains speculative. Alternatively, authors should consider revising their claims that mitochondrial dysfunction in these mice is a central driver of TM dysfunction.

      (2) Mechanism of NAM-mediated protection is unclear: The manuscript states that NAM treatment prevents IOP elevation in Lmx1bV265D mice via metabolic support, yet no data are shown to confirm that NAM specifically rescues mitochondrial function. Do NAM-treated TM3 cells show improved mitochondrial integrity? Are reactive oxygen species (ROS) reduced? Does NAM also protect RGCs from glaucomatous damage? Addressing these points would clarify whether the therapeutic effects of NAM are indeed mitochondrial.

      (3) Lack of direct evidence that LMX1B regulates mitochondrial genes: While transcriptomic and motif accessibility analyses suggest that LMX1B is enriched in TM3 cells and may influence mitochondrial function, no mechanistic data are provided to demonstrate direct regulation of mitochondrial genes. Including ChIP-seq data, motif enrichment at mitochondrial gene loci, or perturbation studies (e.g., Lmx1b knockout or overexpression in TM3 cells) would greatly strengthen this central claim.

      (4)Focus on LMX1B in Fig. 5F lacks broader context: Figure 5F shows that several transcription factors (TFs)-including Tcf21, Foxs1, Arid3b, Myc, Gli2, Patz1, Plag1, Npas2, Nr1h4, and Nfatc2-exhibit stronger positive correlations or motif accessibility changes than LMX1B. Yet the manuscript focuses almost exclusively on LMX1B. The rationale for this focus should be clarified, especially given LMX1B's relatively lower ranking in the correlation analysis. Were the functions of these other highly ranked TFs examined or considered in the context of TM biology or glaucoma? Discussing their potential roles would enhance the interpretation of the transcriptional regulatory landscape and demonstrate the broader relevance of the findings.

      Other weaknesses:

      (1) In abstract, they say a number of 9,394 wild-type TM cell transcriptomes. The number of Lmx1bV265D/+ TM cell transcriptomes analyzed is not provided. This information is essential for evaluating the comparative analysis and should be clearly stated in the Abstract and again in the main text (e.g., lines 121-123). Including both wild-type and mutant cell counts will help readers assess the balance and robustness of the dataset.

      (2) Did the authors monitor mouse weight or other health parameters to assess potential systemic effects of treatment? It is known that the taste of compounds in drinking water can alter fluid or food intake, which may influence general health. Also, does Lmx1bV265D/+ have mice exhibit non-ocular phenotypes, and if so, does nicotinamide confer protection in those tissues as well? Additionally, starting the dose of the nicotinamide at postnatal day 2, how long the mice were treated with water containing nicotinamide, and after how many days or weeks IOP was reduced, and how long the decrease in the IOP was sustained.<br /> (3) While the IOP reduction observed in NAM-treated Lmx1bV265D/+ mice appears statistically significant, it is unclear whether this reflects meaningful biological protection. Several untreated mice exhibit very high IOP values, which may skew the analysis. The authors should report the mean values for IOP in both untreated and NAM-treated groups to clarify the magnitude and variability of the response.<br /> (4) Additionally, since NAM has been shown to protect RGCs in other glaucoma models directly, the authors should assess whether RGCs are preserved in NAM-treated Lmx1b V265D/+ mice. Demonstrating RGC protection would support a synergistic effect of NAM through both IOP reduction and direct neuroprotection, strengthening the translational relevance of the treatment.<br /> (5) Can the authors add any other functional validation studies to explore to understand the pathways enriched in all the subtypes of TM1, TM2, and TM3 cells, in addition to the ICH/IF/RNAscope validation?<br /> (6) The authors should include a representative image of the limbal dissection. While Figure S1 provides a schematic, mouse eyes are very small, and dissecting unfixed limbal tissue is technically challenging. It is also difficult to reconcile the claim that the majority of cells in the limbal region are TM and endothelium. As shown in Figure S6, DAPI staining suggests a much higher abundance of scleral cells compared to TM cells within the limbal strip. Additional clarification or visual evidence would help validate the dissection strategy and cellular composition of the captured region.

    1. Reviewer #3 (Public review):

      Summary:

      The authors performed wide-field and 2-photon imaging in vivo in awake head-fixed mice, to compare receptive fields and tonotopic organization in thalamocortical recipient (TR) neurons vs corticothalamic (CT) neurons of mouse auditory cortex. TR neurons were found in all cortical layers while CT neurons were restricted to layer 6. The TR neurons at nominal depths of 200-400 microns have a remarkable degree of tonotopy (as good if not better than tonotopic maps reported by multiunit recordings). In contrast, CT neurons were very heterogenous in terms of their best frequency (BF), even when focusing on the low vs high frequency regions of primary auditory cortex. CT neurons also had wider tuning.

      Strengths:

      This is a thorough examination using modern methods, helping to resolve a question in the field with projection-specific mapping.

      Weaknesses:

      There are some limitations due to the methods, and it's unclear what the importance of these responses are outside of behavioral context or measured at single timepoints given the plasticity, context-dependence, and receptive field 'drift' that can occur in cortex.

      (1) Probably the biggest conceptual difficulty I have with the paper is comparing these results to past studies mapping auditory cortex topography, mainly due to differences in methods. Conventionally, tonotopic organization is observed for characteristic frequency maps (not best frequency maps), as tuning precision degrades and best frequency can shift as sound intensity increases. The authors used six attenuation levels (30-80 dB SPL) and report that the background noise of the 2-photon scope is <30 dB SPL, which seems very quiet. The authors should at least describe the sound-proofing they used to get the noise level that low, and some sense of noise across the 2-40 kHz frequency range would be nice as a supplementary figure. It also remains unclear just what the 2-photon dF/F response represents in terms of spikes. Classic mapping using single-unit or multi-unit electrodes might be sensitive to single spikes (as might be emitted at characteristic frequency), but this might not be as obvious for Ca2+ imaging. This isn't a concern for the internal comparison here between TR and CT cells as conditions are similar, but is a concern for relating the tonotopy or lack thereof reported here to other studies.

      (2) It seems a bit peculiar that while 2721 CT neurons (N=10 mice) were imaged, less than half as many TR cells were imaged (n=1041 cells from N=5 mice). I would have expected there to be many more TR neurons even mouse for mouse (normalizing by number of neurons per mouse), but perhaps the authors were just interested in a comparison data set and not being as thorough or complete with the TR imaging?

      (3) The authors definitions of neuronal response type in the methods needs more quantitative detail. The authors state: ""Irregular" neurons exhibited spontaneous activity with highly variable responses to sound stimulation. "Tuned" neurons were responsive neurons that demonstrated significant selectivity for certain stimuli. "Silent" neurons were defined as those that remained completely inactive during our recording period (> 30 min). For tuned neurons, the best frequency (BF) was defined as the sound frequency associated with the highest response averaged across all sound levels." The authors need to define what their thresholds are for 'highly variable', 'significant', and 'completely inactive'. Is best frequency the most significant response, the global max (even if another stimulus evokes a very close amplitude response), etc.

      Comments on revisions:

      I think the authors misunderstood my point about sound level and characteristic frequency vs best frequency tonotopic maps. Yes, many studies of cortical responses present stimuli at higher intensities than the characteristic frequencies, but as tuning curves widen with sound level, the macroscopic tonotopic organization of primary auditory cortex breaks down at higher intensities. This is why most of the classic studies of tonotopy e.g., from the Merzenich lab) generated maps of characteristic frequency. As I mentioned before, this isn't so much of an issue for the authors' comparisons of TR vs CT organization in their own study, but in general, this makes it difficult to compare aspects of spatially-organized tonotopy from imaging studies with the older electrophysiological 'truer' tonotopic maps. That said, this means that CT cells also might be tonotopically organized if the authors had been able to look at lower intensity tuning properties.

    1. Reviewer #3 (Public review):

      Summary:

      Here the authors describe the role of mORs in synaptic glutamate release from substance P and cholinergic neurons in the medial habenula to interpeduncular nucleus (IPN) circuit in adult mice. They show that mOR activation reduces evoked glutamate release from substance P neurons yet increases evoked glutamate release and Ach release from cholinergic neurons. Unlike glutamate release, Ach release is only detected when potassium channels are blocked with 4-AP or dendrotoxin. The authors also report a previously unidentified glutamatergic input to IPR from SP neurons and describe the developmental timing of mOR- facilitation in adolescent mice.

      Strengths:

      - The experiments provide new insight into the role of mORs in controlling evoked glutamate release in a circuit with high levels of mORs and established roles in relevant behaviors.

      - The experiments are rigorous, and the results are clear cut. The conclusions are supported by the data.

      - The findings will be of interest to those working in the field of synaptic transmission and those interested in the function of the medial habenula or interpeduncular nucleus, as well as those seeking to understand the role of opioids on normal and pathological behaviors.

      Weaknesses:

      - The mechanistic underpinnings of these interesting and novel results are not pursued.

    1. Reviewer #3 (Public review):

      Summary:

      Lin et al report on the dynamic localization of EXOC6A and Myo-Va at pre-ciliary vesicles, ciliary vesicles, and ciliary sheath membrane during ciliogenesis using three-dimensional structured illumination microscopy and ultrastructure expansion microscopy. The authors further confirm the interaction of EXOC6A and Myo-Va by co-immunoprecipitation experiments and demonstrated the requirement of EHD1 for the EXOC6A-labeled ciliary vesicles formation. Additional experiments using gene-silencing by siRNA and pharmacological tools identified the involvement of dynein-, microtubule-, and actin in the transport mechanism of EXOC6A-labeled vesicles to the centriole, as they have previously reported for Myo-Va. Notably, loss of EXOC6A severely disrupts ciliogenesis, with the majority of cells becoming arrested at the ciliary vesicle (CV) stage, highlighting the involvement of EXOC6A at later stages of ciliogenesis. As the authors observe dynamic EXOC6A-positive vesicle release and fusion with the ciliary sheath, this suggests a role in membrane and potentially membrane protein delivery to the growing cilium past the ciliary vesicle stage. While CEP290 localization at the forming cilium appears normal, the recruitment of other transition zone components, exemplified by several MKS and NPHP module components, was also impaired in EXOC6A-deficient cells.

      Strengths:

      (1) By applying different microscopy approaches, the study provides deeper insight into the spatial and temporal localization of EXOC6A and Myo-Va during ciliogenesis.

      (2) The combination of complementary siRNA and pharmacological tools targeting different components strengthens the conclusions.

      (3) This study reveals a new function of EXOC6A in delivering membrane and membrane proteins during ciliogenesis, both to the ciliary vesicle as well as to the ciliary sheath.

      (4) The overall data quality is high. The investigation of EXOC6A at different time points during ciliogenesis is well schematized and explained.

      Weaknesses:

      (1) Since many conclusions are based on EXOC6A immunostaining, it would strengthen the study to validate antibody specificity by demonstrating the absence of staining in EXOC6A-deficient cells.

      (2) While the authors generated an EXOC6A-deficient cell line, off-target effects can be clone-specific. Validating key experiments in a second independent knockout clone or rescuing the phenotype of the existing clone by re-expressing EXOC6A would ensure that the observed phenotypes are due to EXOC6A loss rather than unintended off-target effects.

      (3) Some experimental details are lacking from the materials and methods section. No information on how the co-immunoprecipitation experiments have been performed can be found. The concentrations of pharmacological agents should be provided to allow proper interpretation of the results, as higher or lower doses can produce nonspecific effects. For example, the concentrations of ciliobrevin and nocodazole used to treat RPE1 cells are not specified and should be included. More precise settings for the FRAP experiments would help others reproduce the presented data. Some details for the siRNA-based knockdowns, such as incubation times, can only be found in the figure legends.

      Taken together, the authors achieved their goal of elucidating the role of EXOC6A in ciliogenesis, demonstrating its involvement in vesicle trafficking and membrane remodeling in both early and late stages of ciliogenesis. Their findings are supported by experimental evidence. This work is likely to have an impact on the field by expanding our understanding of the molecular machinery underlying cilia biogenesis, particularly the coordination between the exocyst complex and cytoskeletal transport systems. The methods and data presented offer valuable tools for dissecting vesicle dynamics and cilium formation, providing a foundation for future research into ciliary dysfunction and related diseases. By connecting vesicle trafficking to structural maturation of an organelle, the study adds important context to the broader description of cellular architecture and organelle biogenesis.

    1. Reviewer #3 (Public review):

      Summary:

      The author's research here was to understand the role of hypoxia and hypoxia-induced transcription factors Hif-1a in the epicardium. The authors noted that hypoxia was prevalent in the embryonic heart and this persisted into neonatal stages until post natal day 7 (P7). Hypoxic regions in the heart were noted in the outer layer of the heart and expression of Hif-1a coincided with the epicardial gene WT1. It has been documented that at P7, the mouse heart cannot regenerate after myocardial infarction and the authors speculated that the change in epicardial hypoxic conditions could play a role in regeneration. The authors then used genetic and pharmacological tools to increase the activity of Hif genes in the heart and noted that there was a significant improvement in cardiac function when Hif-1a was active in the epicardium. The authors speculated that the presence of Hif-1a improved cell survival.

      Strengths:

      A focus on hypoxia and its effects on the epicardium in development and after myocardial infraction. This study outlines a potential to extend the regenerative time window in neonatal mammalian hearts.

      Weaknesses:

      While the observations of improved cardiac function is clear, the exact mechanism of how increased Hif-1a activity causes these effects is not completely revealed. The authors mention improved myocardium survival, but do not include studies to demonstrate this.

      There is an indication that fibrosis is decreased in hearts where Hif activity is prolonged, but there are no studies to link hypoxia and fibrosis.

      Comments on revisions:

      In the manuscript revision, the authors address my comments. They outline differences between genetic disruption of Phd2 and chemical inactivation could be due to dosing and drug half-life of Molidustat. The other comments are addressed by explaining that they have analyzed enough heart sections and hearts to come to their conclusions. The authors also state they cannot generate more numbers for this study, therefore I accept their conclusions as stated.

  3. drive.google.com drive.google.com
    1. We dug in. We ace everything there was to eat on the cable.We ate like there was no tomorrow. We didn't talk. We ace.We scarl'ed. We grazed chat table. We were into serious eating.The blind man had right away located his foods, he knew justwhere everything was on his place. I watched'wich admirationas he used his knife and fork on the meat. He'd cue two piecesof. meat, fork the meat into his mouth, and then go all outfor the scalloped potatoes, the beans next, and then he'd tearoff a hunk of buttered bread and eat chat. He'd follow chis upwith a big drink of milk.

      This paragraph is very interesting that the narrator says that the feast is so many but the ambience is empty.

    2. On her last day in the office, the blindman asked if he could touch her face. She agreed to this. Shetold me he touched his fingers to every part of her face, hernose---even her neck!

      I was surprised that the man has touched the woman’s face and even her neck. If I were the woman, I wouldn’t let the man touch it.

    3. her lastthought maybe this: that he never even knew what she lookedlike, and she on an express to the grave.

      It’s troubling that the narrator thought, I believe the woman didn’t care about whether the blind man knew what she looked like. She just knew her husband sincerely loved her.

    4. On her last day in the office, the blindman asked if he could touch her face. She agreed to this. Shetold me he touched his fingers to every part of her face, hernose---even her neck!

      I am surprised that the woman would allow the blind man to touch her face since it’s not a common request.

    1. And it is like a woman stooping down and creeping aboutbehind that pattern. I don’t like it a bit. I wonder— I begin tothink— Iwish John would take me away from here!

      It’s quite scary if the pattern of my wall paper is like a woman stooping and creeping.

    2. But John says if I feel so I shall neglect proper self-control;so I take pains to control myself,— before him, at least,— andthat makes me very tired.

      I am surprised that a how come the wife should pretend she was fine but not in front of her physician husband.

    3. My br other is also a physician, and also of high standing,and he says the same thing.

      It’s interesting that either her husband or her brother are all physician and had same idea about her. It shows that how stressful the narrator would be if none of them believed she was sick.

    1. Reviewer #3 (Public review):

      Summary:

      The authors aimed to elucidate the relationship between physiological state (i.e., behavioral status and thermogenic sympathetic activity) and the activity of hypothalamic paraventricular oxytocin (PVNOT) neurons in female mice. They studied this by combining automated classification of mouse behavior via video-based analysis with calcium imaging of PVNOT neuron activity. Sympathetic thermogenesis was inferred from surface temperature changes captured by infrared thermography, and the authors provided their custom analysis scripts in the manuscript. Notably, they found that a strong, pulsatile activation of PVNOT neurons was "occasionally" observed immediately before the animals transitioned from a resting to an active state. This pulsatile activity was observed in both pair-housed and individually housed animals. While PVNOT neurons are often associated with social behaviors, this finding suggests that the oxytocinergic system is also engaged during naturalistic behaviors, even in the absence of social interactions. If experiments were more convincingly performed and presented, the results would point to a broader physiological role of central oxytocin, including in the regulation of fundamental brain states and homeostatic processes, and offer a new perspective on the functional significance of central oxytocin signaling.

      Strengths:

      The oxytocinergic neural system is believed to subserve a wide range of physiological functions, and elucidating these roles requires monitoring PVNOT neuronal activity under various behavioral contexts, as well as manipulating this activity to establish causal links. In the present study, the authors show a technically sound experimental framework that integrates behavioral tracking in both individually and group-housed mice with the observation and manipulation of PVNOT neuron activity. This experimental setup represents a valuable methodological resource for researchers investigating the physiological functions of oxytocin.

      Weaknesses:

      While this study successfully established a new experimental setup for simultaneous analyses of behavior and PVNOT neuronal activity, there are several concerns regarding the interpretation of the results and the robustness of the conclusions, which should be more thoroughly addressed.

      (1) The study relies on the assumption that calcium imaging and optogenetic manipulation were restricted only to PVNOT neurons. However, the specificity of AAV-mediated gene expression was not verified quantitatively. A fair number of cell bodies in the PVN expressed GCaMP8s, but not OT, indicating potential off-target expression (see Figure S2A, B). The lack of quantitative validation weakens confidence in the causal interpretation of the results.

      (2) The study focuses on the transition from rest to active states following pulsatile activity of PVNOT neurons. However, the physiological significance of this pulsatile activity remains unclear. According to the authors, pulsatile activity occurred with an approximately 20% probability within 100 seconds prior to the end of the resting state. This implies that, in the remaining 80% of rest-to-active transitions, pulsatile PVNOT activity did not occur, suggesting that it is not essential for initiating the transition. A comparative analysis of behavioral and thermogenic changes between transitions with and without pulsatile PVNOT activity would help to further clarify the functional relevance of this phenomenon and strengthen the authors' interpretation of the findings.

      (3) The study identifies a correlation between pulsatile activity of PVNOT neurons and rest-to-active transitions, and tests for a causal relationship using optogenetic stimulation. However, since PVNOT neurons are known to co-release other neurotransmitters such as glutamate, it remains unclear whether the observed effects are mediated specifically through oxytocin receptor signaling. To address this question, functional intervention experiments using oxytocin receptor antagonists or receptor knockout mice are necessary.

      (4) The authors attempted to detect BAT thermogenesis and skin vasomotion using infrared thermography. This technique measures only skin hair temperatures (since the skin was not shaved), but does not measure "BAT temperature" or "vasomotor tone". As seen in Figure 5E, the temperatures of the body surface areas ("BAT", "Rump", and "Dorsal surface") mostly changed in parallel, indicating that these temperatures are strongly affected by body core temperature. Therefore, the thermographic measurements in this study did not provide convincing information on BAT thermogenesis or skin vasomotion. To avoid misleading reports, the authors need to use other techniques to directly measure temperatures, such as telemetry.

      (5) Photostimulation of PVNOT neurons increased Tb after 400 sec (6.6 min) (Figure 5). This latency is too long to conclude that the neuronal stimulation elicited BAT thermogenesis. A more reasonable explanation is that the increase in Tb was caused by the induction of physical activity (Figure S4C), which slowly generates heat and contributes to the elevation of Tb. However, this view contradicts the authors' claim. To address this concern, the authors should directly measure BAT thermogenesis and compare it with the rate of Tb elevation. If BAT thermogenesis occurs, the rate at which the BAT temperature increases must exceed the rate at which Tb rises.

    1. Reviewer #3 (Public review):

      Summary:

      Aghabi et al set out to characterize a T. gondii transmembrane protein with a ZIP domain, termed ZFT. The authors investigate the consequences of ZFT downregulation and overexpression for parasite fitness. Downregulation of ZFT causes defects in the parasite's endosymbiotic organelles, the apicoplast and the mitochondrion. Specifically, lack of ZFT causes a decrease in mitochondrial respiration, consistent with its role as an iron transporter. This impact on the mitochondria appears to trigger partial differentiation to bradyzoites. The authors furthermore demonstrate that expression of TgZFT can rescue a yeast mutant lacking its zinc transporter and perform an array of direct metal ion measurements, including X-ray fluorescence microscopy and inductively coupled mass spectrometry (ICP-MS). These reveal reduced metal ions in parasites depleted in ZFT. Overall, the data by Aghabi et al. reveal that ZFT is a major metal ion transporter in T. gondii, importing iron and zinc for diverse essential processes.

      Strengths:

      This study's strength lies in the thorough characterization of the transporter. The authors combine a number of techniques to measure the impact of ZFT depletion, ranging from the direct measurement of metal ions to determining the consequences for the parasite's metabolism (mitochondrial respiration), as well as performing a yeast mutant complementation. This work is very thorough and clearly presented, leaving little doubt about this protein's function.

      Weaknesses:

      This study offers no major novel insights into the biology of T. gondii. The transporter was already annotated as a zinc transporter (ToxoDB), was deemed essential (PMID: 27594426), and localized to the plasma membrane (PMID: 33053376). This study mostly confirms and validates these previous datasets. The authors identify three other proteins with a ZIT domain. Particularly, the role of TGME49_225530 is intriguing, as it is likely fitness-conferring (score: -2.8, PMID: 27594426) and has no subcellular localization assigned. Characterizing this protein as well, revealing its localization, and identifying if and how these transporters coordinate metal ion transport would have been worthwhile.

      Another weakness is the data related to the impact of ZFT downregulation on the apicoplast in Figure 4. The authors show that downregulation of ZFT causes an increase in elongated apicoplasts (Figure 4d). The subsequent panels seem to show that the parasites present a dramatic growth defect at that time point. This growth arrest can directly explain the elongated apicoplast, but does not allow any conclusion about an impact on the organelle. In any case, an assessment of 'delayed death' as presented in Figure 4c seems futile, since the many other processes affected by zinc and iron depletion likely cause a rapid death, masking any potential delayed death.

    1. Reviewer #3 (Public review):

      Summary:

      In this study the authors set out to investigate whether and how Shigella avoids cell autonomous immunity initiated through M1-linked ubiquitin and the immune sensor and E3 ligase RNF213. The key findings are that the Shigella flexneri T3SS effector, IpaH1.4 induces degradation of RNF213. Without IpaH1.4, the bacteria are marked with RNF213 and ubiquitin following stimulation with IFNg. Interestingly, this is not sufficient to initiate the destruction of the bacteria, leading the authors to conclude that Shigella deploys additional virulence factors to avoid this host immune response. The second key finding of this study is that M1 chains decorate the mxiE/ipaH Shigella mutant independent of LUBAC, which is by and large, considered the only enzyme capable of generating M1-linked ubiquitin chains. These findings are fundamental in nature and of general interest.

      Strengths and weaknesses:

      The data is well-controlled and clearly presented with appropriate methodology. The authors provide compelling evidence that demonstrates that IpaH1.4 is the effector responsible for the degradation of RNF213 via the proteasome and their conclusions are well supported. They have clearly demonstrated how Shigella disarms RNF213-mediated immunity.

      This work builds on prior work from the same laboratory that suggests that M1 ubiquitin chains can be formed independently of LUBAC (in the prior publication this related to Chlamydia inclusions). Two key pieces of evidence support this statement - fluorescence microscopy-based images and accompanying quantification in Hoip and Hoil knockout cells for association of M1-ub, using an M1 specific antibody, and the use of an internally tagged Ub-K7R mutant. Whilst it remains possible that the M1 antibody is non-specific, as acknowledged by the authors, the data in supplementary figure 1, comparing K7R-ub and the N-terminally tagged K7R ub variant, provides evidence that during Shigella infection, LUBAC independent M1-ubiquitin chains are indeed formed. This represents an important new angle in ubiquitin biology.

      The importance of IFNgamma priming for RNF213 association to the mxiE or ipaH1.4 remains an interesting question that awaits future studies that compare different intracellular bacteria and the role of RNF213.

      Overall, the findings are important for the host-pathogen field, cell autonomous/innate immune signaling fields and microbial pathogenesis fields and the work is a very valuable addition to the recent advances in understanding the role of RNF213 in host immune responses to bacteria.

    1. Reviewer #3 (Public review):

      Summary:

      The authors perform deep transcriptomic and epigenetic comparisons between mouse and 13-lined ground squirrel (13LGS) to identify mechanisms that drive rod vs cone-rich retina development. Through cross-species analysis, the authors find extended cone generation in 13LGS, gene expression within progenitor/photoreceptor precursor cells consistent with a lengthened cone window, and differential regulatory element usage. Two of the transcription factors, Mef2c and Zic3, were subsequently validated using OE and KO mouse lines to verify the role of these genes in regulating competence to generate cone photoreceptors.

      Strengths:

      Overall, this is an impactful manuscript with broad implications toward our understanding of retinal development, cell fate specification, and TF network dynamics across evolution and with the potential to influence our future ability to treat vision loss in human patients. The generation of this rich new dataset profiling the transcriptome and epigenome of the 13LGS is a tremendous addition to the field that assuredly will be useful for numerous other investigations and questions of a variety of interests. In this manuscript, the authors use this dataset and compare it to data they previously generated for mouse retinal development to identify 2 new regulators of cone generation and shed insights into their regulation and their integration into the network of regulatory elements within the 13LGS compared to mouse.

      Weaknesses:

      (1) The authors chose to omit several cell classes from analyses and visualizations that would have added to their interpretations. In particular, I worry that the omission of 13LGS rods, early RPCs, and early NG from Figures 2C, D, and F is notable and would have added to the understanding of gene expression dynamics. In other words, (a) are these genes of interest unique to late RPCs or maintained from early RPCs, and (b) are rod networks suppressed compared to the mouse?

      (2) The authors claim that the majority of cones are generated by late RPCs and that this is driven primarily by the enriched enhancer network around cone-promoting genes. With the temporal scRNA/ATACseq data at their disposal, the authors should compare early vs late born cones and RPCs to determine whether the same enhancers and genes are hyperactivated in early RPCs as well as in the 13LGS. This analysis will answer the important question of whether the enhancers activated/evolved to promote all cones, or are only and specifically activated within late RPCs to drive cone genesis at the expense of rods.

      (3) The authors repeatedly use the term 'evolved' to describe the increased number of local enhancer elements of genes that increase in expression in 13LGS late RPCs and cones. Evolution can act at multiple levels on the genome and its regulation. The authors should consider analysis of sequence level changes between mouse, 13LGS, and other species to test whether the enhancer sequences claimed to be novel in the 13LGS are, in fact, newly evolved sequence/binding sites or if the binding sites are present in mouse but only used in late RPCs of the 13LGS.

      (4) The authors state that 'Enhancer elements in 13LGS are predicted to be directly targeted by a considerably greater number of transcription factors than in mice'. This statement can easily be misread to suggest that all enhancers display this, when in fact, this is only the cone-promoting enhancers of late 13LGS RPCs. In a way, this is not surprising since these genes are largely less expressed in mouse vs 13LGS late RPCs, as shown in Figure 2. The manuscript is written to suggest this mechanism of enhancer number is specific to cone production in the 13LGS- it would help prove this point if the authors asked the opposite question and showed that mouse late RPCs do not have similar increased predicted binding of TFs near rod-promoting genes in C7-8.

    1. Reviewer #3 (Public review):

      Summary:

      This work provides an overview of the motor neuron landscape in the male reproductive system. Some work had been done to elucidate the circuits of ejaculation in the spine, as well as the cord, but this work fills a gap in knowledge at the level of the reproductive organs. Using complementary approaches, the authors show that there are two types of motor neurons that are mutually exclusive: neurons that co-express octopamine and glutamate and neurons that co-express serotonin and glutamate. They also show evidence that both types of neurons express large dense core vesicles, indicating that neuropeptides play a role in male fertility. This paper provides a thorough characterization of the expression of the different glutamate, octopamine, and serotonin receptors in the different organs and tissues of the male reproductive system. The differential expression in different tissues and organs allows building initial theories on the control of emission and expulsion. Additionally, the authors characterize the expression of synaptic proteins and the neuromuscular junction sites. On a mechanistic level, the authors show that neither octopamine/glutamate neuron transmission nor glutamate transmission in serotonin/glutamate neurons is required for male fertility. This final result is quite surprising and opens up many questions on how ejaculation is coordinated.

      Strengths:

      This work fills an important gap in the characterization of innervation of the male reproductive system by providing an extensive characterization of the motor neurons and the potential receptors of motor neuron release. The authors show convincing evidence of glutamate/monoamine co-release and of mutual exclusivity of serotonin/glutamate and octopamine/glutamate neurons.

      Weaknesses:

      (1) Often, it is mentioned that the expression is higher or lower or regional without quantification or an indication of the number of samples analysed.

      (2) The experiment aimed at tracking sperm in the male reproductive system is difficult to interpret when it is not assessed whether ejaculation has occurred.

      (3) The experiment looking at peristaltic waves in the male organs is missing labeling of the different regions and quantification of the observed waves.

    1. Reviewer #3 (Public review):

      Summary:<br /> The manuscript "Comparing the outputs of intramural and extramural grants funded by National Institutes of Health" demonstrates a comparative study on two funding mechanisms adopted by the National Institutes of Health (NIH). The authors adopted a quantitative approach and introduced five metrics to compare the output of intramural and extramural grants. These findings reveal the impacts of intramural and extramural grants on the scientific community, providing funders with insights into the future decisions of funding mechanisms they should take.

      Strengths:<br /> The authors clearly presented their methods for processing the NIH project data and classifying projects into either intramural or extramural categories. The limitations of the study are also well-addressed.

      Weaknesses:<br /> The article would benefit from a more thorough discussion of the literature, a clearer presentation of the results (especially in the figure captions), and the inclusion of evidence to support some of the claims.

    1. Reviewer #3 (Public review):

      Summary:

      The authors provide estimates of the efficacy of the dengue vaccine, which is notoriously complex given the different serotypes and complex immunity. Through their method using publicly available data, the estimates have less uncertainty and are of use to the field in understanding the future possible impact of the vaccine.

      Strengths:

      This is an elegant analysis addressing an important question. The pooling of common factors for estimation is nice and adds strength to the analysis. It is an important analysis for the field and our understanding of the vaccine, and for the analysis of future multi-site trials for the dengue vaccine.

      Weaknesses:

      It would be useful to have more understanding of how the way the vaccine efficacy is defined here is related to the previous estimates and a greater understanding of how the estimated impact changes over time.

    1. Reviewer #3 (Public review):

      The goal of this work is to understand the regulation of double-strand break formation during meiosis in C. elegans. The authors have analyzed physical and genetic interactions among a subset of factors that have been previously implicated in DSB formation or the number of timing of DSBs: CEP-1, DSB-1, DSB-2, DSB-3, HIM-5, HIM-17, MRE-11, REC-1, PARG-1, and XND-1.

      The 10 proteins that are analyzed here include a diverse set of factors with different functions, based on prior analyses in many published studies. The term "Spo11 accessory factors" has been used in the meiosis literature to describe proteins that directly promote Spo11 cleavage activity, rather than factors that are important for the expression of meiotic proteins or that influence the genome-wide distribution or timing of DSBs. Based on this definition, the known SPO-11 accessory factors in C. elegans include DSB-1, DSB-2, DSB-3, and the MRN complex (at least MRE-11 and RAD-50). These are all homologs of proteins that have been studied biochemically and structurally in other organisms. DSB-1 & DSB-2 are homologs of Rec114, while DSB-3 is a homolog of Mei4. Biochemical and structural studies have shown that Rec114 and Mei4 directly modulate Spo11 activity by recruiting Spo11 to chromatin and promoting its dimerization, which is essential for cleavage. The other factors analyzed in this study affect the timing, distribution, or number of RAD-51 foci, but they likely do so indirectly. As elaborated below, XND-1 and HIM-17 are transcription factors that modulate the expression of other meiotic genes, and their role in DSB formation is parsimoniously explained by this regulatory activity. The roles of HIM-5 and REC-1 remain unclear; the reported localization of HIM-5 to autosomes is consistent with a role in transcription (the autosomes are transcriptionally active in the germline, while the X chromosome is largely silent), but its loss-of-function phenotypes are much more limited than those of HIM-17 and XND-1, so it may play a more direct role in DSB formation. The roles of CEP-1 (a Rad53 homolog) and PARG-1 are also ambiguous, but their homologs in other organisms contribute to DNA repair rather than DSB formation.

      An additional significant limitation of the study, as stated in my initial review, is that much of the analysis here relies on cytological visualization of RAD-51 foci as a proxy for DSBs. RAD-51 associates transiently with DSB sites as they undergo repair and is thus limited in its ability to reveal details about the timing or abundance of DSBs since its loading and removal involve additional steps that may be influenced by the factors being analyzed.

      The paper focuses extensively on HIM-5, which was previously shown through genetic and cytological analysis to be important for breaks on the X chromosome. The revised manuscript still claims that "HIM-5 mediates interactions with the different accessory factors sub-groups, providing insights into how components on the DNA loops may interact with the chromosome axis." The weak interactions between HIM-5 and DSB-1/2 detected in the Y2H assay do not convincingly support such a role. The idea that HIM-5 directly promotes break formation is also inconsistent with genetic data showing that him-5 mutants lack breaks on the X chromosomes, while HIM-5 has been shown to be is enriched on autosomes. Additionally, as noted in my comment to the authors, the localization data for HIM-5 shown in this paper are discordant with prior studies; this discrepancy should be addressed experimentally.

      This paper describes REC-1 and HIM-5 as paralogs, based on prior analysis in a paper that included some of the same authors (Chung et al., 2015; DOI 10.1101/gad.266056.115). In my initial review I mentioned that this earlier conclusion was likely incorrect and should not be propagated uncritically here. Since the authors have rebutted this comment rather than amending it, I feel it is important to explain my concerns about the conclusions of previous study. Chung et al. found a small region of potential homology between the C. elegans rec-1 and him-5 genes and also reported that him-5; rec-1 double mutants have more severe defects than either single mutant, indicative of a stronger reduction in DSBs. Based on these observations and an additional argument based on microsynteny, they concluded that these two genes arose through recent duplication and divergence. However, as they noted, genes resembling rec-1 are absent from all other Caenorhabditis species, even those most closely related to C. elegans. The hypothesis that two genes are paralogs that arose through duplication and divergence is thus based on their presence in a single species, in the absence of extensive homology or evidence for conserved molecular function. Further, the hypothesis that gene duplication and divergence has given rise to two paralogs that share no evident structural similarity or common interaction partners in the few million years since C. elegans diverged from its closest known relatives is implausible. In contrast, DSB-1 and DSB-2 are both homologs of Rec114 that clearly arose through duplication and divergence within the Caenorhabditis lineage, but much earlier than the proposed split between REC-1 and HIM-5. Two genes that can be unambiguously identified as dsb-1 and dsb-2 are present in genomes throughout the Elegans supergroup and absent in the Angaria supergroup, placing the duplication event at around 18-30 MYA, yet DSB-1 and DSB-2 share much greater similarity in their amino acid sequence, predicted structure, and function than HIM-5 and REC-1. Further, Raices place HIM-5 and REC-1 in different functional complexes (Figure 3B).

      The authors acknowledge that HIM-17 is a transcription factor that regulates many meiotic genes. Like HIM-17, XND-1 is cytologically enriched along the autosomes in germline nuclei, suggestive of a role in transcription. The Reinke lab performed ChIP-seq in a strain expressing an XND-1::GFP fusion protein and showed that it binds to promoter regions, many of which overlap with the HIM-17-regulated promoters characterized by the Ahringer lab (doi: 10.1126/sciadv.abo4082). Work from the Yanowitz lab has shown that XND-1 influences the transcription of many other genes involved in meiosis (doi: 10.1534/g3.116.035725) and work from the Colaiacovo lab has shown that XND-1 regulates the expression of CRA-1 (doi: 10.1371/journal.pgen.1005029). Additionally, loss of HIM-17 or XND-1 causes pleiotropic phenotypes, consistent with a broad role in gene regulation. Collectively, these data indicate that XND-1 and HIM-17 are transcription factors that are important for the proper expression of many germline-expressed genes. Thus, as stated above, the roles of HIM-17 and XND-1 in DSB formation, as well as their effects on histone modification, are parsimoniously explained by their regulation of the expression of factors that contribute more directly to DSB formation and chromatin modification. I feel strongly that transcription factors should not be described as "SPO-11 accessory factors."

  4. Sep 2025
    1. Reviewer #3 (Public review):

      Summary:

      The present work was aimed at investigating the specific contributions of thalamic nuclei to associative threat learning and extinction. Using fMRI, they examined activation patterns across pulvinar divisions, the lateral geniculate nucleus (LGN), and the mediodorsal thalamus (MD) during threat acquisition, extinction, and recall. Their goal was to uncover whether distinct thalamic systems support different modes of learning-automatic survival mechanisms versus more deliberate processes - and to propose a hierarchical pulvinar model of fear conditioning. They also try to refine current neuroanatomical models of threat learning and memory, highlighting the role of thalamic nuclei in it.

      Strengths:

      (1) Valuable theoretical elaboration and modeling regarding the differential role of pulvinar subdivisions on feedforward (inferior, lateral) and higher-order integration (anterior), and their functional interplay with other relevant subcortical and cortical structures in associative threat and extinction learning.

      (2) Large sample sizes and multipronged analytical approaches were used for hypothesis testing.

      (3) Exhaustive literature review in the field of associative threat, as well as regarding the role of thalamic nuclei and other brain structures in it.

      Weaknesses:

      (1) Several weaknesses should be pointed out regarding how fMRI data were collected, as well as decisions regarding how the fMRI data were preprocessed and analyzed:

      a) fMRI data have low resolution (3 cubic mm), which certainly limits the examination of small nuclei such as the ones investigated here, and especially the examination of the LGN and inferior pulvinar.

      b) fMRI was normalized to standard space. Analyzing the data in individual-subject space would have given you the options of avoiding altering every participant's brain and of using a probabilistic thalamic atlas that better adapts to each subject's brain and thalamic nuclei (see, for instance, Iglesias et al., 2018). This would have been ideal and would have given the authors more precision, especially considering the low resolution of the fMRI data and the size of the thalamic nuclei of interest.

      c) On top of the two previous points, the authors decided to smooth the data to 6mm, which means that every single voxel within these small nuclei was blurred/mixed with the 2 immediately contiguous voxels (if they followed the standard SPM12 normalization resampling default which resamples, or upsamples the data in this case, to 2 x 2 x 2mm). Given the strong changes in structural connectivity and function that can occur, especially in the thalamus, on voxels of this size, this and the previous 2 decisions do not favor anatomical precision.

      d) Motion during scanning was poorly controlled in the preprocessing. Including the motion parameters as covariates of no interest in the GLM does not fully guarantee that motion is not influencing the results, and that motion is not differentially influencing some experimental conditions more than others.

      (2) It is not clearly indicated in the manuscript how many subjects and how many trials went into each of the analyses. It would be important to indicate this in the text and/or the figures.

      (3) It is not clear either, why, given the large sample size, some of the results were not conducted using reproducibility strategies such as dividing the sample into 2 or 3 groups or using further cross-validation strategies.

      (4) Limited testing of alternative hypotheses. The results clearly seem to be a selection of the findings supporting the hypotheses that the authors sought to confirm. (just one example: in the analysis reported in Figures 1-2; are there other correlations between the activation of the anterior pulvinar and MD with other pulvinar nuclei? only the MD-anterior Puv is reported).

      (5) The manuscript does not contain a limitations subsection. Practically every study has limitations, and this one is not an exception. Better to tell the limitations to the readers upfront so they can factor them into their evaluation of the relevance of the manuscript and reported evidence.

      (6) Data should be made available to the scientific community. Code too. Even if you just used standard fMRI toolboxes, any code used to run analyses will be helpful to the community, or if someone decides to try to replicate your findings.

      Despite these weaknesses and what can be derived from them, this manuscript constitutes a valuable contribution to the field to start characterizing and conceptualizing the involvement of thalamic nuclei and their interactions with other brain regions in the associative threat learning circuitries. It also paves the road for further testing of the functional dynamics among these regions and circuitries, and modeling testing.

    1. Reviewer #3 (Public review):

      Summary:

      Knoerzer-Suckow et al. explore the mechanisms of organelle inheritance during endodyogeny in Toxoplasma gondii using an innovative dual-labeling approach to track the distribution of maternal organelles into daughter parasites. They can clearly distinguish between maternal and daughter-derived organelles using their dual-labeling Halo Tag approach. They reveal that different organelles are trafficked to daughter parasites in three broad patterns, which they have binned into groups. Their findings reveal a role for MyoF in the inheritance of micronemes and rhoptries, and notably, they observe that the inner membrane complex (IMC) is not recycled. Instead, the IMC undergoes a pronounced relocalization to the posterior of the maternal cell, where it is likely targeted for degradation.

      Strengths:

      The data surrounding their MyoF knockdown experiments, IMC degradation, and trafficking of MIC2 after auxin washout are compelling. These data add to the knowledge of how organelle inheritance occurs in T. gondii, increasing the field's understanding of endodyogeny.

      Weaknesses:

      (1) The evidence provided to support the claim that microneme and rhoptry inheritance specifically traffics through the residual body does not sufficiently substantiate the claim. The temporal resolution of the imaging is inadequate to precisely trace the path of microneme and rhoptry inheritance. From the data shown in the manuscript, it can be concluded that at least some of the micronemes and rhoptries might be recycled through the residual body, but it is unclear whether many or most of these organelles do so.

      (2) The absence of specific markers for the residual body brings into question whether microneme inheritance occurs through a discrete residual body or simply via the basal end of the maternal parasite. The authors need a robust way to visualize and define the residual body to claim that micronemes and rhoptries are specifically transported through this structure.

    1. Reviewer #3 (Public review):

      Summary:

      Fan et al utilize large omics data sets to give an overview of proteomic and gene expression changes after 4 months of intermittent fasting (IF) in liver, muscle, and brain tissue. They describe common and distinct pathways altered under IF across tissues using different analysis approaches. The main conclusions presented are the variability in responses across tissues with IF. Some common pathways were observed, but there were notable distinctions between tissues.

      Strengths:

      (1) The IF study was well conducted and ran out to 4 months, which was a nice long-term design.

      (2) The multiomics approach was solid, and additional integrative analysis was complementary to illustrate the differential pathways and interactions across tissues.

      (3) The authors did not overstep their conclusions and imply an overreached mechanism.

      Weaknesses:

      The weaknesses, which are minor, include the use of only male mice and the early start (6 weeks) of the IF treatment. See specifics in the recommendations section.

    1. Reviewer #3 (Public review):

      Summary:

      This manuscript provides a comprehensive characterization of the Plasmodium falciparum protein LSA3, combining biochemical, genetic, and in vivo approaches. The authors convincingly demonstrate that LSA3 is expressed during liver stage infection and that disruption of the gene leads to a modest but reproducible reduction in liver stage parasite load in humanized mice.

      Strengths:

      Their biochemical and cell biological analysis of blood stages provides strong evidence that LSA3 is exported to the infected erythrocyte, and the detailed analysis of its PEXEL motif processing is well executed.

      Weaknesses:

      The study suggests LSA3 as one of only two known P. falciparum PEXEL proteins contributing to this stage, although there is no evidence for the export beyond the vacuolar membrane. Several key conclusions, particularly regarding antibody specificity, localization in liver stage parasites, and the interpretation of the phenotypic data, are not fully supported by the current experiments.

    1. Reviewer #3 (Public review):

      This work aims to establish cell-type specific changes in gene expression upon exposure to different flavors of commercial e-cigarette aerosols compared to control or vehicle. Kaur et al. conclude that immune cells are most affected, with the greatest dysregulation found in myeloid cells exposed to tobacco-flavored e-cigs and lymphoid cells exposed to fruit-flavored e-cigs. The up- and down-regulated genes are heavily associated with innate immune response. The authors suggest that a Ly6G-deficient subset of neutrophils is found to be increased in abundance for the treatment groups, while gene expression remains consistent, which could indicate impaired function. Increased expression of CD4+ and CD8+ T cells along with their associated markers for proliferation and cytotoxicity is thought to be a result of activation following this decline in neutrophil-mediated immune response.

      Strengths:

      - Single cell sequencing data can be very valuable in identifying potential health risks and clinical pathologies of lung conditions associated with e-cigarettes considering they are still relatively new.

      - Not many studies have been performed on cell-type specific differential gene expression following exposure to e-cig aerosols.

      - The assays performed address several factors of e-cig exposure such as metal concentration in the liquid and condensate, coil composition, cotinine/nicotine levels in serum and the product itself, cell types affected, which genes are up- or down-regulated and what pathways they control.

      - Considerations were made to ensure clinical relevance such as selecting mice whose ages corresponded with human adolescents so that data collected was relevant.

      Weaknesses:

      - The exposure period of 1 hour a day for 5 days is not representative of chronic use and this time point may be too short to see a full response in all cell types. The experimental design is not well-supported based on the literature available for similar mouse models. Clinical relevance of this short exposure remains unclear.

      - Several claims lack supporting evidence or use data that is not statistically significant. In particular, there were no statistical analyses to compare results across sex, so conclusions stating there is a sex bias for things like Ly6G+ neutrophil percentage by condition are observational.

      - Overall, the paper and its discussion are relatively surface-level and do not delve into the significance of the findings or how they fit into the bigger picture of the field. It is not clear whether this paper is intended to be used as a resource for other researchers or as an original research article.

      - The manuscript has some validation of findings but not very comprehensive.

      This paper provides a strong foundation for follow-up experiments that take a closer look at the effects of e-cig exposure on innate immunity. There is still room to elaborate on the differential gene expression within and between various cell types.

      Comments on revisions:

      The reviewers have addressed major concerns with better validation of data and improved organization of the paper. However, we still have some concerns and suggestions pertaining to the statistical analyses and justifications for experimental design.

      - We appreciate the nuance of this experimental design, and the reviewers have adequately commented on why they chose nose-only exposure over whole body exposure. However, the justification for the duration of the exposure, and the clinical relevance of a short exposure, have not been addressed in the revised manuscript.

      - The presentation of cell counts should be represented by a percentage/proportion rather than a raw number of cells. Without normalization to the total number of cells, comparisons cannot be made across groups/conditions. This comment applies to several figures.

      - We appreciate that the authors have taken the reviewers' advice to validate their findings. However, we have concerns regarding the immunofluorescent staining shown in Figure 4. If the red channel is showing a pan-neutrophil marker (S100A8) and the green channel is showing only a subset of neutrophils (LY6G+), then the green channel should have far less signal than the red channel. This expected pattern is not what is shown in the figure, with the Ly6G marker apparently showing more expression than S100A8. Additionally, the FACS data states that only 4-5% of cells are neutrophils, but the red channel co-localizes with far more than 4-5% of the DAPI stain, meaning this population is overrepresented, potentially due to background fluorescence (noise). In addition, some of the shapes in the staining pattern do not look like true neutrophils, although it is difficult to tell because there remains a lot of background staining. The authors need to verify that their S100A8 and Ly6G antibodies work and are specific to the populations they intend to target. It is possible that only the brightest spots are truly S100A8+ or Ly6G+.

      - Paraffin sections do not always yield the best immunostaining results and the images themselves are low magnification and low resolution.

      - Please change the scale bars to white so they are more visible in each channel.

      - We appreciate that this is a preliminary test used as a resource for the community, but there is interesting biology regarding immune cells that warrants DEG analysis by the authors. This computational analysis can be easily added with no additional experiments required.

    1. Reviewer #3 (Public review):

      Summary:

      The aim of this study was to investigate the temporal progression of the neural response to event boundaries in relation to uncertainty and error. Specifically, the authors asked (1) how neural activity changes before and after event boundaries, (2) if uncertainty and error both contribute to explaining the occurrence of event boundaries, and (3) if uncertainty and error have unique contributions to explaining the temporal progression of neural activity.

      Strengths:

      One strength of this paper is that it builds on an already validated computational model. It relies on straightforward and interpretable analysis techniques to answer the main question, with a smart combination of pattern similarity metrics and FIR. This combination of methods may also be an inspiration to other researchers in the field working on similar questions. The paper is well written and easy to follow. The paper convincingly shows that (1) there is a temporal progression of neural activity change before and after an event boundary, and (2) event boundaries are predicted best by the combination of uncertainty and error signals.

      Weaknesses:

      Regarding question 3, I am less convinced by the results. They show that overlapping but somewhat distinct sets of brain regions relate to uncertainty and error boundaries over time. And that some regions show distinct patterns of temporal progressions in pattern change with both types of boundaries. However, most of the effects they observe in this analysis may still be driven by shared variance, as suggested by the results in Figure 6 and the high correlation between the two boundary time series. More specific comments are provided below.

      Impact:

      If these comments can be addressed sufficiently, I expect that this work will impact the field in its thinking on what drives event boundaries and spur interest in understanding the mechanisms behind the temporal progression of neural activity around these boundaries.

      Comments

      (1) The current analysis of the neural data does not convincingly show that uncertainty and prediction error both contribute to the neural responses. As both terms are modelled in separate FIR models, it may be that the responses we see for both are mostly driven by shared variance. Given that the correlation between the two is very high (r=0.49), this seems likely. The strong overlap in the neural responses elicited by both, as shown in Figure 6, also suggests that what we see may mainly be shared variance. To improve the interpretability of these effects, I think it is essential to know whether uncertainty and error explain similar or unique parts of the variance. The observation that they have distinct temporal profiles is suggestive of some dissociation, but not as convincing as adding them both to a single model.

      (2) The results for uncertainty and error show that uncertainty has strong effects before or at boundary onset, while error is related to more stabilization after boundary onset. This makes me wonder about the temporal contribution of each of these. Could it be the case that increases in uncertainty are early indicators of a boundary, and errors tend to occur later?

      (3) Given that there is a 24-second period during which the neural responses are shaped by event boundaries, it would be important to know more about the average distance between boundaries and the variability of this distance. This will help establish whether the FIR model can properly capture a return to baseline.

      (4) Given that there is an early onset and long-lasting response of the brain to these event boundaries, I wonder what causes this. Is it the case that uncertainty or errors already increase at 12 seconds before the boundaries occur? Or if there are other makers in the movie that the brain can use to foreshadow an event boundary? And if uncertainty or errors do increase already 12 seconds before an event boundary, do you see a similar neural response at moments with similar levels of error or uncertainty, which are not followed by a boundary? This would reveal whether the neural activity patterns are specific to event boundaries or whether these are general markers of error and uncertainty.

      (5) It is known that different brain regions have different delays of their BOLD response. Could these delays contribute to the propagation of the neural activity across different brain areas in this study?

      (6) In the FIR plots, timepoints -12, 0, and 12 are shown. These long intervals preclude an understanding of the full temporal progression of these effects.

    1. Reviewer #3 (Public review):

      Summary:

      The author showed expression of the viral proteases 2Apro and 3Cpro of EV-D68, which cleaved specific components of the nuclear pore complex (Nup98 and POM121 by 2Apro), and 2A but not 3C expression altered nuclear import and export. Similar nucleocytoplasmic transport deficits are observed in EV-D68-infected RD cells and iPSC-derived motor neurons (diMNs). 2A inhibitor telaprevir partially rescued the nucleocytoplasmic transport deficits and suppressed neuronal cell death after infection. While it's clear that 2A can cleave NPC proteins and affect nuclear transport, the link to neurotoxicity after EV-D68 infection is less convincing.

      This study opens up a very intriguing hypothesis: that EV-D68 2Apro could be directly responsible for motor neuron cell death, mediated by POM121 and possibly Nup98 cleavage, that ultimately results in paralysis known as acute flaccid myelitis. This hypothesis notably does run counter to other published data showing that human neuronal organoids derived from iPSCs can support productive EV-D68 infection for weeks without cell death and that EV-D68-infected mice can have paralysis prevented by depletion of CD8 T cells, still with EV-D68 infection of the spinal cord. However, even if 2Apro is not ultimately responsible for motor neurons dying in human infections, that does not exclude the possibility that cleavage of nups could still disrupt motor neuron function. Notably, most children with AFM have some amount of motor function return after their acute period of paralysis, but most still have some residual paralysis for years to life. It is possible that 2A pro could mediate the acute onset of weakness, while T cells killing neurons could determine the amount of long-term, residual paralysis.

      Strengths:

      The characterization of nuclear pore complex components that appear to be targets of both poliovirus and EV-D68 proteases is quite thorough and expansive, so this data set alone will be useful for reference to the field. And the process by which the authors narrowed their focus to EV-D68 2Apro reducing Nup98 and POM121 as consequential to both import and export of nuclear cargo but not RNA was technically impressive, thorough, and convincing. As will be detailed below, when the authors move from studying over-expressed proteases in transformed cell lines to studying actual virus infection in both transformed cell lines and iPSC-derived neurons, some of the data only indirectly support their conclusions; however, the quality of the experiments performed is still high. So even if the claim that 2Apro causes neurotoxicity is circumstantial, the data certainly are intriguing and certainly justify further study of the effects of EV-D68 2Apro on the NPC and how this impacts pathogenesis. This is a convincing start to an intriguing line of inquiry.

      Weaknesses:

      This study falls a bit shy of actually showing that 2Apro effects are causing motor neuron toxicity because the evidence of this is fairly indirect. At points, the authors do admit these limitations, but at other times, they claim to have shown the link directly. The following are reasons why these claims are only indirectly supported:

      (1) Cleavage of Nup98 and POM121 after EV-D68 infection in RD cells and diMNs is never demonstrated.

      (2) Telaprevir was able to rescue nucleocytoplasmic transport in RD cells at low concentrations (Figure 4A). It is not shown if this correlates with its antiviral effect in RD cells, or could this correlate with inhibition of 2A cleavage of Nup98 or POM121, which is never measured.

      (3) Building off of the prior point, the authors' claim that the neuroprotective effect of telaprevir is independent of its antiviral effect is not well-founded. Figure 4E (neuroprotection) was done with MOI 5, and Figure 4G (virus growth) was MOI 0.5. Telaprevir neuroprotection is not shown at MOI 0.5, nor is the neuroprotective effect correlated with inhibition of 2A cleavage of Nup98 or POM121.

      (4) The use of mixed virus isolates only in the diMNs is problematic because different EV-D68 isolates are known to have drastically different effects on pathogenesis in mice. Since all initial data were generated with the MO isolate, adding the additional MD isolate to the diMN experiments actually adds uncertainty to the conclusions. It is not clear if the authors infected different cultures with the different isolates and combined the data or infected all cultures with a mixture of the two isolates. If the former, then the data should be reported separately to see the effect of each individual strain, which would be interesting to EV-D68 virologists. If the latter, then there is no way to know from these data whether one of the two isolates had increased fitness over the other and exerted a dominant effect. If the MD isolate overtook the MO isolate, from which all other data in this manuscript are derived, then we have much less of an idea how much the data from the first three figures supports the final figure.

    1. Reviewer #3 (Public review):

      Summary:

      The manuscript by Zhang et al. demonstrates that MORC2 undergoes liquid-liquid phase separation (LLPS) to form nuclear condensates critical for transcriptional repression. Using a combination of in vitro LLPS assays, cellular studies, NMR spectroscopy, and crystallography, the authors show that a dimeric scaffold formed by CC3 drives phase separation, while multivalent interactions between an intrinsically disordered region (IDR) and a newly defined IDR-binding domain (IBD) further promote condensate formation. Notably, LLPS enhances MORC2 ATPase activity in a DNA-dependent manner and contributes to transcriptional regulation, establishing a functional link between phase separation, DNA binding, and transcriptional control. Overall, the manuscript is well-organized and logically structured, offering mechanistic insights into MORC2 function, and most conclusions are supported by the presented data. Nevertheless, some of the claims are not sufficiently supported by the current data and would benefit from additional evidence to strengthen the conclusions.

      The following suggestions may help strengthen the manuscript:

      Major comments:

      (1) The central model proposes that multivalent interactions between the IDR and IBD promote MORC2 LLPS. However, the characterization of these interactions is currently limited. It is recommended that the authors perform more systematic analyses to investigate the contribution of these interactions to LLPS, for example, by in vitro assays assessing how the IDR or IBD individually influence MORC2 phase separation.

      (2) The authors mention that DNA binding can promote MORC2 LLPS. It is recommended that they generate a phase diagram to systematically assess how DNA influences phase separation.

      (3) The authors use the N39A mutant as a negative control to study the effect of DNA binding on ATP hydrolysis. Given that N39A is defective in DNA binding, it could also be employed to directly test whether DNA binding influences MORC2 phase separation.

      (4) Many of the cellular and in vitro LLPS experiments employ EGFP fusions. The authors should evaluate whether the EGFP tag influences MORC2 phase separation behavior.

    1. Reviewer #3 (Public review):

      Summary:

      The manuscript by Stahl and colleagues reports an approach to generate ocular organoids composed of retinal and lens structures, derived from Medaka blastula cells. The authors present a comprehensive characterisation of the timeline followed by lens and retinal progenitors, showing these have distinct origins, and that they recapitulate the expression of differentiation markers found in vivo. Despite this molecular recapitulation, morphogenesis is strikingly different, with lens progenitors arising at the centre of the organoid, and subsequently translocating to the outside.

      Major Comments:

      - The manuscript presents a beautiful set of high-quality images showing expression of lens differentiation markers over time in the organoids. The set of experiments is very robust, with high numbers of organoids analysed and reproducible data. The mechanism by which lens specification is promoted in these organoids is, however, poorly analysed, and the reader does not get a clear understanding of what is different in these experiments, as compared to previous attempts, to support lens differentiation. There is a mention to HEPES supplementation, but no further analysis is provided, and the fact that the process is independent of ECM contradicts, as the authors point out, previous reports. The manuscript would benefit from a more detailed analysis of the mechanisms that lead to lens differentiation in this setting.

      - The markers analysed to show onset of lens differentiation in the organoids seem to start being expressed, in vivo, when the lens placode starts invaginating. An analysis of earlier stages is not presented. This would be very informative, allowing to determine whether progenitors differentiate as placode and neuroepithelium first, to subsequently continue differentiating into lens and retina, respectively. Could early placodal and anterior neural plate markers be analysed in the organoids? This would provide a more complete sequence of lens vs retina differentiation in this model.

      - The analysis of BMP and Fgf requirement for lens formation and differentiation is suggestive, but the source of these signals is not resolved or mentioned in the manuscript. Are BMP4 and Fgf8 expressed by the organoids? Where are they coming from?

      - The fact that the lens becomes specified in the centre of the organoid is striking, but it is for me difficult to visualise how it ends up being extruded from the organoid. Did the authors try to follow this process in movies? I understand that this may be technically challenging, but it would certainly help to understand the process that leads to the final organisation of retinal and lens tissues in the organoid. There is no discussion of why the morphogenetic mechanism is so different from the in vivo situation. The manuscript would benefit from explicitly discussing this.

      Significance:

      This study describes a reproducible approach to differentiate ocular organoids composed of lens and retinal tissues. The characterisation of lens differentiation in this model is very detailed, and despite the morphogenetic differences, the molecular mechanisms show many similarities to the in vivo situation. The manuscript however does not highlight, in my opinion, why this model may be relevant. Clearly articulating this relevance, particularly in the discussion, will enhance the study and provide more clarity to the readers regarding the significance of the study for the field of organoid research, ocular research and regenerative studies.

    1. Reviewer #3 (Public review):

      Summary:

      This perspective article by Reichmann et al. highlights the importance of moving beyond the search for a single, unified immune mechanism to explain host-Mtb interactions. Drawing from studies in immune profiling, host and bacterial genetics, the authors emphasize inconsistencies in the literature and argue for broader, more integrative models. Overall, the article is thought-provoking and well-articulated, raising a concept that is worth further exploration in the TB field.

      Strengths:

      Timely and relevant in the context of the rapidly expanding multi-omics datasets that provide unprecedented insights into host-Mtb interactions.

      Weaknesses (Minor):

      (1) Clarity on the notion of a "unified mechanism". It remains unclear whether prior studies explicitly proposed a single unifying immunological model. While inconsistencies in findings exist, they do not necessarily demonstrate that earlier work was uniformly "single-minded". Moreover, heterogeneity in TB has been recognized previously (PMIDs: 19855401, 28736436), which the authors could acknowledge.

      (2) Evolutionary timeline and industrial-era framing. The evolutionary model is outdated. Ancient DNA studies place the Mtb's most recent common ancestor at ~6,000 years BP (PMIDs: 25141181; 25848958). The Industrial Revolution is cited as a driver of TB expansion, but this remains speculative without bacterial-genomics evidence and should be framed as a hypothesis. Additionally, the claim that Mtb genomes have been conserved only since the Industrial Revolution (lines 165-167) is inaccurate; conservation extends back to the MRCA (PMID: 31448322).

      (3) Trained immunity and TB infection. The treatment of trained immunity is incomplete. While BCG vaccination is known to induce trained immunity (ref 59), revaccination does not provide sustained protection (ref 8), and importantly, Mtb infection itself can also impart trained immunity (PMID: 33125891). Including these nuances would strengthen the discussion.

    1. Reviewer #3 (Public Review):

      It is rare to find systems in neuroscience where a detailed mechanistic link can be made between the biophysical properties of individual neurons and observable behaviors. In this study, Medina and Margoliash examined how the intrinsic physiological properties of a subclass of neurons in HVC, the main nucleus orchestrating the production of birdsong, might have an effect on the temporal structure of a song. This builds on prior work from this lab demonstrating that intrinsic properties of these neurons are highly consistent within individual animals and more similar between animals with similar songs, by identifying specific acoustic features of the song that covary with intrinsic properties and by setting forth a detailed biophysical network model to explain the relationship.

      The main experimental finding is that excitability, hyperpolarization-evoked sag, and rebound depolarization are correlated with song duration and the duration of long harmonic elements. This motivates the hypothesis that rebound depolarization acts as a coincidence detector for the offset of inhibition associated with the previous song element and excitation associated with the start of the next element, with the delay and other characteristics of the window determined primarily by Ih. The idea is then that the temporal sensitivity of coincidence detection, which is common to all HVCx neurons, sets a global tempo that relates to the temporal characteristics of a song. This model is supported by some experimental data showing variation in the temporal integration of rebound spiking and by a Hodgkin-Huxley-based computational model that demonstrates proof of principle, including the emergence of a narrow (~50 ms) post-inhibitory window when excitatory input from other principal neurons can effectively evoke spiking.

      Overall, the data are convincing and the model is compelling. The manuscript plays to the strengths of zebra finch song learning and the well-characterized microcircuitry and network dynamics of HVC. Of particular note, the design for the electrophysiology experiments employed both a correlational approach exploiting the natural variation in zebra finch song and a more controlled approach comparing birds that were tutored to produce songs that differed primarily along a single acoustical dimension. The modeling is based on Hodgkin-Huxley ionic conductances that have been pharmacologically validated, and the connections and functional properties of the network are consistent with prior work. This makes for a level of mechanistic detail that will likely be fruitful for future work.

      Comments on revised version:

      I read through everything and I also feel that my comments have been adequately addressed.

    1. Reviewer #3 (Public review):

      Summary:

      This paper by Stribling and colleagues sheds light on a decade-long P. aeruginosa outbreak of the high-risk lineage ST-621 in a US Military hospital. The origins of the outbreak date back to the late 90s and it was mainly caused by two distinct subclones SC1 and SC2. The data of this outbreak showed the emergence of antibiotic resistance to cephalosporin, carbapenems and colistin over time highlighting the emerging risk of extensively resistant infections due to P. aeruginosa and the need for ongoing surveillance.

      Strengths:

      This study, overall, is well constructed and clearly written. Since detailed information on floor plans of the building and transfers between facilities was available, the authors were able to show that these two subclones emerged in two separate buildings of the hospital. The authors support their conclusions with prospective environmental sampling in 2021 and 2022 and link the role of persistent environmental contamination to sustaining nosocomial transmission. Information on resistance genes in repeat isolates for the same patients allowed the authors to detect the emergence of resistance within patients. The conclusions have broader implications for infection control at other facilities. In particular, the paper highlights the value of real-time surveillance and environmental sampling in slowing nosocomial transmission of P. aeruginosa.

      Weaknesses:

      My major concern is that the authors used fixed thresholds and definitions to classify the origin of an infection. As such, they were not able to give uncertainty measures around transmission routes nor quantify the relative contribution of persistent environmental contamination vs patient-to-patient transmission. The latter would allow the authors to quantify the impact of certain interventions. In addition, these results represent a specific US military facility and the transmission patterns might be specific to that facility. The study also lacked any data on antibiotic use that could have been used to relate to and discuss the temporal trends of antimicrobial resistance.

      Comments on revisions:

      The authors have addressed my concerns adequately in the revised manuscript.

    1. Reviewer #3 (Public review):

      Summary:

      Cholecystokinin (CCK) is highly expressed in auditory thalamocortical (MGB) neurons and CCK has been found to shape cortical plasticity dynamics. In order to understand how CCK shapes synaptic plasticity in the auditory thalamocortical pathway, they assessed the role of CCK signaling across multiple mechanisms of LTP induction with the auditory thalamocortical (MGB - layer IV Auditory Cortex) circuit in mice. In these physiology experiments that leverage multiple mechanisms of LTP induction and a rigorous manipulation of CCK and CCK-dependent signaling, they establish an essential role of auditory thalamocortical LTP on the co-release of CCK from auditory thalamic neurons. By carefully assessing the development of this plasticity over time and CCK expression, they go on to identify a window of time that CCK is produced throughout early and middle adulthood in auditory thalamocortical neurons to establish a window for plasticity from 3 weeks to 1.5 years in mice, with limited LTP occurring outside of this window. The authors go on to show that CCK signaling and its effect on LTP in the auditory cortex is also capable of modifying frequency discrimination accuracy in an auditory PPI task. In evaluating the impact of CCK on modulating PPI task performance, it also seems that in mice <1.5 years old CCK-dependent effects on cortical plasticity is almost saturated. While exogenous CCK can modestly improve discrimination of only very similar tones, exogenous focal delivery of CCK in older mice can significantly improve learning in a PPI task to bring their discrimination ability in line with those from young adult mice.

      Strengths:

      (1) The clarity of the results along with the rigor multi-angled approach provide significant support for the claim that CCK is essential for auditory thalamocortical synaptic LTP. This approach uses a combination of electrical, acoustic, and optogenetic pathway stimulation alongside conditional expression approaches, germline knockout, viral RNA downregulation and pharmacological blockade. Through the combination of these experimental configures the authors demonstrate that high-frequency stimulation-induced LTP is reliant on co-release of CCK from glutamatergic MGB terminals projecting to the auditory cortex.

      (2) The careful analysis of the CCK, CCKB receptor, and LTP expression is also a strength that puts the finding into the context of mechanistic causes and potential therapies for age-dependent sensory/auditory processing changes. Similarly, not only do these data identify a fundamental biological mechanism, but they also provide support for the idea that exogenous asynchronous stimulation of the CCKBR is capable of restoring an age-dependent loss in plasticity.

      (3) Although experiments to simultaneously relate LTP and behavioral change or identify a causal relationship between LTP and frequency discrimination are not made, there is convincing evidence that CCK signaling in the auditory cortex (known to determine synaptic LTP) is important for auditory processing/frequency discrimination. These experiments are key for establishing the relevance of this mechanism.

      Weaknesses:

      The following are weaknesses or limitations of the study that may also fall outside of the scope of this work, but which could be addressed in the future.

      (1) Given the magnitude of the evoked responses, one expects that pyramidal neurons in layer IV are primarily those that undergo CCK-dependent plasticity, but the degree to which PV-interneurons and pyramidal neurons participate in this process differently is unclear.

      (2) While these data support an important role for CCK in synaptic LTP in the auditory thalamocortical pathway, perhaps temporal processing of acoustic stimuli is as or more important than frequency discrimination. Given the enhanced responsivity of the system, it is unclear whether this mechanism would improve or reduce the fidelity of temporal processing in this circuit. Understanding this dynamic may also require consideration of cell type as raised in weakness #1.

      (3) In Figure 1, an example of increased spontaneous and evoked firing activity of single neurons after HFS is provided. Yet it is surprising that the group data are analyzed only for the fEPSP. It seems that single neuron data would also be useful at this point to provide insight into how CCK and HFS affect temporal processing and spontaneous activity/excitability.

    1. Reviewer #3 (Public review):

      Bogdan et al. present an intriguing and timely investigation into the intrinsic dynamics of prediction error (PE)-related brain states. The manuscript is grounded in an intuitive and compelling theoretical idea: that the brain alternates between high and low PE states even at rest, potentially reflecting an intrinsic drive toward predictive minimization. The authors employ a creative analytic framework combining different prediction tasks and imaging modalities. They shared open code, which will be valuable for future work.

      However, the current manuscript would benefit from further clarification and empirical grounding, especially with regard to its theoretical framing (that PE-like state fluctuations are intrinsic and help us minimize PE), interpretation of results, and broader functional significance. Below, I outline a few major comments and suggestions that I think would strengthen the contribution.

      (1) Consistency in Theoretical Framing

      The title, abstract, and introduction suggest inconsistent theoretical goals of the study.

      The title suggests that the goal is to test whether there are intrinsic fluctuations in high and low PE states at rest. The abstract and introduction suggest that the goal is to test whether the brain intrinsically minimizes PE and whether this minimization recruits global brain networks. My comments here are that a) these are fundamentally different claims, and b) both are challenging to falsify. For one, task-like recurrence of PE states during resting might reflect the wiring and geometry of the functional organization of the brain emerging from neurobiological constraints or developmental processes (e.g., experience), but showing that mirroring exists because of the need to minimize PE requires establishing a robust relationship with behavior or showing a causal effect (e.g., that interrupting intrinsic PE state fluctuations affects prediction).

      The global PE hypothesis-"PE minimization is a principle that broadly coordinates brain functions of all sorts, including abstract cognitive functions"-is more suitable for discussion rather than the main claim in the abstract, introduction, and all throughout the paper.

      Given the above, I recommend that the authors clarify and align their core theoretical goals across the title, abstract, introduction, and results. If the focus is on identifying fluctuations that resemble task-defined PE states at rest, the language should reflect that more narrowly, and save broader claims about global PE minimization for the discussion. This hypothesis also needs to be contextualized within prior work. I'd like to see if there is similar evidence in the literature using animal models.

      (2) Interpretation of PE-Related Fluctuations at Rest and Its Functional Relevance

      It would strengthen the paper to clarify what is meant by "intrinsic" state fluctuations. Intrinsic might mean task-independent, trait-like, or spontaneously generated. Which do the authors mean here? Is the key prediction that these fluctuations will persist in the absence of a prediction task?

      Regardless of the intrinsic argument, I find it challenging to interpret the results as evidence of PE fluctuations at rest. What the authors show directly is that the degree to which a subset of regions within a PE network discriminates high vs. low PE during task correlates with the magnitude of separation between high and low PE states during rest. While this is an interesting relationship, it does not establish that the resting-state brain spontaneously alternates between high and low PE states, nor that it does so in a functionally meaningful way that is related to behavior. How can we rule out brain dynamics of other processes, such as arousal, that also rise and fall with PE? I understand the authors' intention to address the reverse inference concern by testing whether "a participant's unique connectivity response to PE in the reward-processing task should match their specific patterns of resting-state fluctuation". However, I'm not fully convinced that this analysis establishes the functional role of the identified modules to PE because of the following:

      Theoretically, relating the activities of the identified modules directly to behavior would demonstrate a stronger functional role.

      a) Across participants: Do individuals who exhibit stronger or more distinct PE-related fluctuations at rest also perform better on tasks that require prediction or inference? This could be assessed using the HCP prediction task, though if individual variability is limited (e.g., due to ceiling effects), I would suggest exploring a dataset with a prediction task that has greater behavioral variance.

      Or even more broadly, does this variability in resting state PE state fluctuations predict general cognitive abilities like WM and attention (which the HCP dataset also provides)? I appreciate the inclusion of the win-loss control, and I can see the intention to address specificity. This would test whether PE state fluctuations reflect something about general cognition, but also above and beyond these attentional or WM processes that we know are fluctuating.

      b) Within participants: Do momentary increases in PE-network expression during tasks relate to better or faster prediction? In other words, is there evidence that stronger expression of PE-related states is associated with better behavioral outcomes?

      (3) Apriori Hypothesis for EEG Frequency Analysis

      It's unclear how to interpret the finding that fMRI fluctuations in the defined modules correlate with frontal Delta/Theta power, specifically in the 3-6 Hz range. However, in the EEG literature, this frequency band is most commonly associated with low arousal, drowsiness, and mind wandering in resting, awake adults, not uniquely with prediction error processing. An a priori hypothesis is lacking here: what specific frequency band would we expect to track spontaneous PE signals at rest, and why? Without this, it is difficult to separate a PE-based interpretation from more general arousal or vigilance fluctuations.

      (4) Significance Assessment

      The significance of the correlation above and all other correlation analyses should be assessed through a permutation test rather than a single parametric t-test against zero. There are a few reasons: a) EEG and fMRI time series are autocorrelated, violating the independence assumption of parametric tests;<br /> b) Standard t-tests can underestimate the true null distribution's variance, because EEG-fMRI correlations often involve shared slow drifts or noise sources, which can yield spurious correlations and inflating false positives unless tested against an appropriate null.

      Building a null distribution that preserves the slow drifts, for example, would help us understand how likely it is for the two time series to be correlated when the slow drifts are still present, and how much better the current correlation is, compared to this more conservative null. You can perform this by phase randomizing one of the two time courses N times (e.g., N=1000), which maintains the autocorrelation structure while breaking any true co-occurrence in patterns between the two time series, and compute a non-parametric p-value. I suggest using this approach in all correlation analyses between two time series.

      (5) Analysis choices

      If I'm understanding correctly, the algorithm used to identify modules does so by assigning nodes to communities, but it does not itself restrict what edges can be formed from these modules. This makes me wonder whether the decision to focus only on connections between adjacent modules, rather than considering the full connectivity, was an analytic choice by the authors. If so, could you clarify the rationale? In particular, what justifies assuming that the gradient of PE states should be captured by edges formed only between nearby modules (as shown in Figure 2E and Figure 4), rather than by the full connectivity matrix? If this restriction is instead a by-product of the algorithm, please explain why this outcome is appropriate for detecting a global signature of PE states in both task and rest.

      When assessing the correspondence across task-fMRI and rs-fMRI in section 2.2.2, why was the pattern during task calculated from selecting a pair of bilateral ROIs (resulting in a group of eight ROIs), and the resting state pattern calculated from posterior-anterior/ventral-dorsal fluctuation modules? Doesn't it make more sense to align the two measures? For example, calculating task effects on these same modules during task and rest?

    1. Reviewer #3 (Public review):

      Summary:

      This manuscript presents a novel investigation into unidirectionally propagating waves observed on the surface of Pseudomonas nitroreducens bacterial biofilms. The authors explore how these waves, initially spiral in form, transition into combinations of spiral, target, and planar patterns. The study identifies the periodic extension-retraction cycles of type IV pili as the driving mechanism for wave propagation, which preferentially moves from the colony's edge to its center. Furthermore, the manuscript proposes two theoretical models-a phase-oscillator model and a continuum active solid model-to reproduce these phenomena, and demonstrates how external manipulations (e.g., water droplets, temperature, PEG) can control wave patterns and direction, often correlating with oscillation frequency gradients. The work aims to bridge the fields of active-matter physics and bacterial biophysics by providing both experimental observations and theoretical frameworks for understanding these complex biological wave phenomena.

      Strengths:

      The experimental discovery of unidirectionally propagating waves on bacterial biofilms is highly intriguing and represents a significant contribution to both microbiology and active-matter physics. The detailed observations of wave pattern transitions (spiral to target to planar) and their response to various environmental perturbations (water, temperature, PEG) provide valuable empirical data. The identification of type IV pili as the driving force offers a concrete biological mechanism. The observed correlation between frequency gradients and wave direction is a compelling finding with potential for broader implications in understanding biological pattern formation. This work has the potential to stimulate further research in the collective behavior of living systems and the physical principles underlying biological organization.

      Weaknesses:

      The manuscript attempts to link unidirectional wave propagation to non-reciprocal couplings but ultimately shows that the wave direction is determined by the gradient of the oscillation frequency. The couplings in the two theoretical models are both isotropic and thus cannot dictate the wave direction. A clear distinction should be made between non-reciprocity as a source of wave generation and non-uniformity as a controlling factor of wave direction.

      The relationship between the phase oscillator model and the active solid model is unclear. Given that U and P are both dynamical variables evolving in three-dimensional space, defining the phase Φ precisely in the phase space spanned by U and P could be challenging. A graphical illustration of the definition of Φ would be beneficial. To ensure reproducibility of the numerical results, the parameter values used in the numerical simulations and an explicit definition of the elastic force in the active solid model should be provided.

      The link between the theoretical models and experimental results is weak. For example, the propagation of the kink from the lower to the higher part of the surface (Figure 1e) could be addressed within the framework of the active solid model. The mechanism of transition from spiral to target waves (Figure 3a), b)) requires clarification, identifying which model parameter is crucial for inducing this transition. The wave propagation toward the lower frequency side is numerically demonstrated using the phase oscillator model, but a physical or intuitive explanation for this phenomenon is missing. Also, the wave transitions induced by the addition of water droplets and temperature rise are not linked to specific parameters in the theoretical models.

    1. Reviewer #3 (Public review):

      Summary:

      The authors in this paper introduce BuzzWatch, an open-source, low-cost (200-300 Euros) platform for long-term monitoring of mosquito flight and behavior. They use a Raspberry Pi with a Noirv2 Camera set up under laboratory conditions to observe 3 different species of mosquitoes. The system captures a variety of multimodal data, like flight activity, sugar feeding, and host-seeking responses, with the help of external modules like CO2 and fructose-soaked cottons. They also release a GUI in addition to automated tracking and behaviour analysis, which doesn't run on Pi but rather on a personal laptop.

      Four main use cases are demonstrated:

      (1) Characterizing diel rhythms in various Aedes aegypti populations.

      (2) Differentiating behaviors of native African vs. invasive human-adapted subspecies.

      (3) Assessing physiological (blood-feeding) and environmental (light regime) perturbations.

      (4) Testing time-of-day variation in responses to host-associated cues like CO₂ and heat.

      Description (Strengths):

      (1) The authors introduce a low-cost, scalable system that uses flight tracking in 2D as an alternative to 3D multi-camera systems.

      (2) Due to the low pixel quality required by the system, they can record for weeks at a time, capturing long temporal and behavioral activities.

      (3) They also integrate external modules such as lights, CO2, and heat as a way to measure responses to a variety of stimuli.

      (4) They also introduce a wiki as a guide for building replication and a help in using the GUI module.

      (5) They implement both GLMM hourly and PCA of behavior data.

      Limitations - Major Comments:

      (1) Most experiments are only done with single replicates per colony. If the setup is claimed to be cheap and replicable, there should be clearer replicates across experiments.

      (2) No external validation for the flight tracking algorithm using manual annotation or comparison with field data. The authors focus early on biological proof of principle, but the validity of the tracking algorithm is not presented. How accurate is the algorithm at classifying behaviours (e.g., vs human ground truth)? How reliable is tracking?

      (3) Why develop a custom GUI instead of using established packages such as rethomics (https://rethomics.github.io/) that are already available for behavioral analysis?

      (4) Why use RGB light strips when perceptual white light for humans is not relevant for mosquitoes? The choice of lighting should be based on the mosquito's visual perception. - https://pmc.ncbi.nlm.nih.gov/articles/PMC12077400/ .

      (5) Why use GLMMs instead of GAMs (with explicit periodic components)? With GLMMs, you do not account for temporal structure, which is highly relevant and autocorrelated in behavioral time series data.

      (6) What is the proportion of mosquitoes that stay alive throughout the experiments? How do you address dead animals in tracking? No data are available on whether all mosquitoes made it through the monitoring period. No survival data is mentioned in the paper, and in the wiki, it is not clear how it is used or how it affects the analyses - https://theomaire.github.io/buzzwatch/analyze.html#diff-cond .

      (7 )The sugar feeding behavior is not manually validated.

      (8) Figure 4d is difficult to understand - how did you align time? Why is ZT4 aligning with ZT0? Should you "warp" the time series to compare them (e.g., from dawn to dusk)?

      (9) No video recordings are made available for demonstration or validation purposes.

      Appraisal

      (1) The core conclusions---that BuzzWatch can capture multiscale mosquito behavioral rhythms and quantify the effect of genetic, environmental, and physiological variation - show promise but require stronger validation.

      (2) Statistical approaches (GLMM, PCA) are chosen but may not be optimal for temporal data with autocorrelation.

      (3) The host-seeking module shows a differential response, which is a potentially valuable feature.

    1. Reviewer #3 (Public review):

      These findings suggest that Nup107 is involved in regulating ecdysone signaling during developmental transitions, with depletion of Nup107 disrupting hormone-regulated processes. Moreover, the rescue experiments hint that Nup107 might directly influence EcR signaling and ecdysone biosynthesis, though the precise molecular mechanism remains unclear.

      Overall, the manuscript presents compelling data supporting Nup107's role in regulating developmental transitions.

      Comments on revisions:

      RNAi specificity: The authors now provide a more thorough discussion of off-target effects and justify their reliance on the Nup107KK RNAi line. The explanation regarding the predicted off-target for the GD line and their choice to use the KK line with a known insertion site is appropriate and adequately addresses the original concern.

      NPC component specificity: The authors clarify that among the Nup107 complex members tested, only Nup107 knockdown induced developmental arrest. Their inclusion of Nup153 as a control helps to support the specificity of the phenotype, although expanding this analysis beyond a single additional Nup would further strengthen the claim.

      Mechanistic clarity: The authors now distinguish between Nup107's upstream role in regulating torso and ecdysone biosynthetic genes versus direct control of EcR translocation. The clarification that EcR nuclear localization is 20E-dependent but Nup107-independent improves interpretive clarity.

      The molecular mechanism linking Nup107 to torso regulation remains somewhat speculative. A deeper exploration of whether Nup107 influences transcriptional regulation through chromatin association (as the authors suggest) would strengthen the mechanistic narrative.

      Conclusion:

      Overall, the authors have addressed the major concerns raised in the initial review, and the revised manuscript presents a more coherent and compelling case for Nup107 as a regulator of developmental timing via the ecdysone signaling axis. While some mechanistic questions remain, the core findings are supported by the data, and the work provides novel insights into NPC function in development.

    1. Reviewer #3 (Public review):

      Gonzaga-Saavedra et al report an analysis on genomic binding of Polycomb group proteins, and of H2Aub1 and H3K27me3 domain formation in the early Drosophila embryo. Using carefully staged embryos during the nuclear cycles (NC) leading up to the cellular blastoderm stage, the authors provide compelling evidence that H3K27me3 domains at PcG target genes are only established during NC14 and do not exist in NC13. In contrast, H2Aub1 domains already start to appear during NC13. The authors show that E(z), the catalytic subunit of the H3K27 histone methyltransferase PRC2, is readily detected in interphase nuclei during the rapid nuclear divisions in pre-blastoderm embryos. In contrast, the DNA-binding proteins Pho, Cg, and GAF that are known (Pho) or have been postulated (Cg, GAF) to anchor PRC2 and PRC1 to Polycomb Response Elements (PREs) in Polycomb target genes only start to show nuclear localization from NC10 onwards with gradually increasing nuclear concentrations, reaching a maximum during NC14. These data strongly corroborate the simple, straightforward view that targeting of PRC2 and PRC1 to PREs by sequence-specific DNA-binding proteins is a prerequisite for the formation of H3K27me3 and H2Aub1 domains at Polycomb target genes.

      The authors then explore the potential role of GAF/Trl in this process. They find that in embryos depleted of GAF/Trl, H3K27me3 domain formation is largely unperturbed.

      The authors also depleted the pioneer factor Zelda (Zld) and found that removal of Zld results in a more complex outcome. Zelda appears to counteract the accumulation of H3K27me3 at the Polycomb targets eve and zen, but also appears to be required for effective H3K27me3 domain formation at Polycomb targets such as amos or atonal.

      This is a very thorough study that reports data of superior technical quality that are highly relevant for the field. The study by Gonzaga-Saavedra et al extends and strengthens previous work from the labs of Eisen (Li et al, eLife 2014) and Zeitlinger (Chen et al, eLife 2013) to convincingly demonstrate that Polycomb domain formation in the early embryo occurs during ZGA but that such domains do not exist prior to ZGA. This should now finally put to rest earlier claims by the Iovino lab (Zenk et al, Science 2017) that H3K27me3 domains present in the zygote nucleus would be propagated and partially maintained during the rapid nuclear cleavage cycles and serve as seeds for H3K27me3 domain formation during ZGA.

      The experiments analyzing H3K27me3 domain formation in embryos depleted of GAF/Trl or Zelda will be of great interest to the field.

    1. Reviewer #3 (Public review):

      Summary:

      This is an interesting and clinically relevant in vitro study by Taber et al., exploring how mutations in PHD2 contribute to erythrocytosis and/or neuroendocrine tumors. PHD2 regulates HIFα degradation through prolyl-hydroxylation, a key step in the cellular oxygen-sensing pathway.

      Using a time-resolved NMR-based assay, the authors systematically analyze seven patient-derived PHD2 mutants and demonstrate that all exhibit structural and/or catalytic defects. Strikingly, the P317R variant retains normal activity toward the C-terminal proline but fails to hydroxylate the N-terminal site. This provides the first direct evidence that N-terminal prolyl-hydroxylation is not dispensable, as previously thought.

      The findings offer valuable mechanistic insight into PHD2-driven effects and refine our understanding of HIF regulation in hypoxia-related diseases.

      Strengths:

      The manuscript has several notable strengths. By applying a novel time-resolved NMR approach, the authors directly assess hydroxylation at both HIF1α ODD sites, offering a clear functional readout. This method allows them to identify the P317R variant as uniquely defective in NODD hydroxylation, despite retaining normal activity toward CODD, thereby challenging the long-held view that the N-terminal proline is biologically dispensable. The work significantly advances our understanding of PHD2 function and its role in oxygen sensing, and might help in the future interpretation and clinical management of associated erythrocytosis.

      Weaknesses:

      There is a lack of in vivo/ex vivo validation. This is actually required to confirm whether the observed defects in hydroxylation-especially the selective NODD impairment in P317R-are sufficient to drive disease phenotypes such as erythrocytosis.

      The reliance on HRE-luciferase reporter assays may not reliably reflect the PHD2 function and highlights a limitation in the assessment of downstream hypoxic signaling.

      The study clearly documents the selective defect of the P317R mutant, but the structural basis for this selectivity is not addressed through high-resolution structural analysis (e.g., cryo-EM).

      Given the proposed central role of HIF2α in erythrocytosis, direct assessment of HIF2α hydroxylation by the mutants would have strengthened the conclusions.

      Comments on revision:

      The revised manuscript by Taber et al. addresses the key points raised during the review process in a comprehensive and appropriate manner. While some limitations remain, such as the lack of in vivo validation or direct HIF2α assessment, I agree with the authors that these are beyond the scope of the current in vitro-focused study. The authors' primary goal was to define the structural and functional defects caused by disease-associated PHD2 mutations. In this respect, the evidence they present is largely convincing and methodologically appropriate. Additional clarifications and an expanded discussion of the luciferase assay's limitations and the P317R structural context strengthen the manuscript further.

    1. Reviewer #3 (Public review):

      Summary:

      In this article, Toshniwal et al. investigate the role of pyruvate metabolism in controlling cell growth. They find that elevated expression of the mitochondrial pyruvate carrier (MPC) leads to decreased cell size in the Drosophila fat body, a transformed human hepatocyte cell line (HepG2), and primary rat hepatocytes. Using genetic approaches and metabolic assays, the authors find that elevated pyruvate import into cells with forced expression of MPC increases the cellular NADH/NAD+ ratio, which drives the production of oxaloacetate via pyruvate carboxylase. Genetic, pharmacological, and metabolic approaches suggest that oxaloacetate is used to support gluconeogenesis rather than amino acid synthesis in cells over-expressing MPC. The reduction in cellular amino acids impairs protein synthesis, leading to impaired cell growth.

      Strengths:

      This study shows that the metabolic program of a cell, and especially its NADH/NAD+ ratio, can play a dominant role in regulating cell growth.

      The combination of complementary approaches, ranging from Drosophila genetics to metabolic flux measurements in mammalian cells, strengthens the findings of the paper and shows a conservation of MPC effects across evolution.

    1. Reviewer #3 (Public review):

      Summary:

      In this manuscript, the authors describe the results of a high-throughput screen for small-molecule activators of GCN2. Ultimately, they find 3 promising compounds. One of these three, compound 20 (C20), is of the most interest both for its potency and specificity. The major new finding is that this molecule appears to activate GCN2 independent of GCN1, which suggests that it works by a potentially novel mechanism. Biochemical analysis suggests that each binds in the ATP-binding pocket of GCN2, and that at least in vitro, C20 is a potent agonist. Structural modeling provides insight into how the three compounds might dock in the pocket and generates testable hypotheses as to why C20 perhaps acts through a different mechanism than other molecules.

      Strengths:

      Of the 3 compounds identified by the authors, C20 is the most interesting, not just for its intriguing mechanistic distinction as being GCN1-independent (shown genetically in two distinct cell lines, CHO and 293T in Figure 4, and in contrast to other GCN2 activators) but also for its potency. In in-cellulo assays, compound 21 appears as more of an ISR enhancer than an activator per se, and although compound 18 and compound 21 lead to upregulation of the ISR targets (Figure 2), that degree of upregulation is probably not significantly different from that induced by those compounds in Gcn2-/- cells. For C20, the effect appears stronger (although it is unclear whether the authors performed statistical analysis comparing the two genotypes in Figure 2D). In Figure 3, only C20 activates the ISR robustly in both CHO and 293T. Ultimately, C20 might be a tool for providing mechanistic insight into the details of GCN2 activation and regulation, and could be exploited therapeutically.

      Weaknesses:

      There are some limitations to the existing work. As the authors acknowledge, they do not use any of the compounds in animals; their in vivo efficacy, toxicity, and pharmacokinetics are unknown. But even in the context of the in cellulo experiments, it is puzzling that none of the three compounds, including C20, has any effects in HeLa cells when Neratinib does. It's beyond the scope of this paper to address definitively why that is, but it would at least be reassuring to know that C20 activates the ISR in a wider range of cells, including ideally some primary, non-immortalized cells. In addition, the ISR is a complex, feedback-regulated response whose output varies depending on the time point examined. The in cellulo analysis in this paper is limited to reporter assays at 18 hours and qRT-PCR assays at 4 and 8 hours. A more extensive examination of the behavior of the relevant ISR mRNAs and proteins (eIF2, ATF4, CHOP, cell viability, etc.) for C20 across a more extensive time course would give the reader a clearer sense of how this molecule affects ISR output. I also find it a bit strange that the authors describe C20 as "demonstrat(ing) weak inhibition of ... PKR"-the measured IC50 is ~4 μM, which is right around its EC50 for GCN2 activation. This raises the confounding possibility that C20 would simultaneously activate GCN2 while inhibiting PKR. While perhaps inhibition of PKR is not relevant under the conditions when GCN2 would be activated either experimentally or therapeutically, examining in cells the effects of C20 on GCN2 and PKR across a dose range would shed light on whether this cross-reactivity is likely to be of concern.

    1. Reviewer #3 (Public review):

      Summary:

      The manuscript by Raiola and colleagues entitled "Quantitative computerized analysis demonstrates strongly compartmentalized tissue deformation patterns underlying mammalian heart tube formation" takes a highly quantitative approach to interrogating the earliest stages of cardiogenesis (12 hours, from early cardiac crescent to early heart tube) in a new and innovative way. The paper presents a new computational framework to help identify both regional and temporal patterns of tissue deformation at cellular resolution. The method is applied to live embryo imaging data (newly generated and from the group's previous pioneering work). In the initial setup, the new model was applied directly to raw time-lapse data, and the results were compared to actual cell tracks identified manually, showing close correlations of the model with the manual tracking. Next, they integrated spatial and temporal information from different embryos to generate a new model for tissue movement, driven by parameters such as tissue growth and anisotropy. Key findings from their model suggest that there are distinct compartments of tissue deformation patterns as the bilateral cardiac crescent develops into the linear heart tube, and that the ventricular chamber forms by a defined expansion pattern, as a 'hemi-barrel shape', with the aterial and venous poles (IFT and OFT) acting as the harnessing belts constraining the expansion of the chamber further. Lastly, the model is tested for its ability to predict future residence of cardiac crescent cells in the heart tube, which it seems to be able to do successfully based on fate tracking validation experiments.

      Strengths:

      The manuscript provides an exceptionally careful analysis of a critical stage during heart development - that of the earliest stages of morphogenesis, when the heart forms its first tube and chamber structures. While numerous studies have interrogated this stage of heart development, few studies have performed time-lapse imaging, and, to my knowledge, no other report has performed such in in-depth quantitative analysis and modeling of this complex process. The computational model applied to normal heart development of the myocardium (labelled by Nkx2-5) has revealed multiple new and interesting concepts, such as the distinct compartments of tissue deformation patterns and the growth trajectories of the emerging ventricle. The fact that the model operates at cellular resolution and over a nearly continuous time period of approximately 12 hours allows for unprecedented depth of the analysis in a largely unbiased manner. Going forward, one can imagine such models revealing additional information on these processes, performing analyses of subpopulations that form the heart, and maybe most importantly, applying the model to various perturbation models (genetic or otherwise). The manuscript is very well written, and the data display is accessible and transparent.

      Weaknesses:

      No major weaknesses are noted with the study. It would have been very exciting to see the model applied to any kind of perturbation, for example, a left-right defect model, or a model with compromised cardiac progenitor populations. However, the amount of live imaging required for such analyses renders this out of scope for the current study.

    1. Reviewer #3 (Public review):

      Summary:

      This manuscript presents a comprehensive and well-executed investigation into the metabolic role of D-serine in the central nervous system. The authors provide solid evidence that D-serine competitively inhibits mitochondrial L-serine transport, thereby impairing one-carbon metabolism. This stereoselective mechanism reduces glycine and formate production, suppresses cellular proliferation, and induces apoptosis in immature neural cells and glioblastoma stem cells. Developmental analyses further reveal a physiological enantiomeric shift in serine metabolism during neurogenesis, aligning with the transition from proliferation to maturation. Overall, the study bridges developmental neurobiology, cancer metabolism, and amino acid transport, uncovering a previously unrecognized metabolic function of D-serine beyond its role in neurotransmission.

      Strengths:

      (1) The discovery that D-serine inhibits one-carbon metabolism by competing for mitochondrial L-serine transport-rather than through enzymatic inhibition or receptor-mediated signaling-represents a significant and previously underappreciated mechanism. This finding has broad implications for understanding metabolic regulation during neurodevelopment and offers potential relevance for targeting metabolic vulnerabilities in cancer.

      (2) The authors integrate metabolomics, mitochondrial transport assays, molecular dynamics simulations, genetic and pharmacologic perturbations, transcriptomics, and both in vitro and ex vivo models. The breadth of experimental approaches, combined with the coherence of the findings across systems, provides strong support for the central conclusions and enhances the overall impact of the study.

      (3) The temporal shift in D-/L-serine levels during neurodevelopment is elegantly linked to the transition from proliferative to mature neuronal states. The selective vulnerability of neural progenitors and tumor cells-contrasted with the resistance of mature neurons-highlights a biologically meaningful and potentially targetable metabolic distinction.

      Weaknesses:

      (1) While the authors attribute D-serine's metabolic effects to competition with mitochondrial L-serine transport, the specific identity of the transporter(s) mediating this process remains undefined. This represents a meaningful mechanistic gap, as the central conclusion depends on D-serine limiting mitochondrial L-serine availability to inhibit one-carbon metabolism.

      (2) The effective concentrations of D-serine used in vitro (IC₅₀ ≈ 1-2 mM) exceed typical brain levels (~0.3 mM). While the authors acknowledge this, a more focused discussion on whether higher local D-serine concentrations could arise in specific microenvironments - such as synaptic compartments, tumor niches, or pathological states-would help contextualize the in vitro findings and strengthen their physiological relevance. For example, disruptions in D-serine clearance or altered expression of serine racemase and transporters in disease contexts could lead to localized accumulation. Moreover, differences between extracellular and intracellular D-serine pools - and the mechanisms governing their regulation - may further influence its metabolic impact in vivo.

      (3) While the manuscript focuses on neural stem/progenitor cells and neural tumors, it remains unclear whether the anti-proliferative effects of D-serine are specific to neural lineages or extend to other highly proliferative non-neural cell types. A brief discussion addressing this point would help clarify the scope of D-serine's metabolic impact and whether its mechanism of action reflects a unique vulnerability in neural cells or a more general feature of proliferative metabolism. This distinction is particularly relevant for assessing the broader therapeutic potential of targeting mitochondrial L-serine transport.

    1. Reviewer #3 (Public review):

      Summary:

      This manuscript presents a step towards testing the hypothesis that plasmodesmata have homology to nuclear pores. The similarities between the two structures have long been noted as both structures allow the transport of proteins and nucleic acids, and both structures are composed of curved membranes. The manuscript has identified nuclear pore proteins (NUPs) in plasmodesmal protein fractions and uses live imaging in a non-endogenous system and functional assays of a mutant to propose that this might be a bona fide association.

      The conclusions the authors seek to draw are that: NUPs are present in plasmodesmal protein fractions; NUPs localise at plasmodesmata; NUPs might form a pore-gating complex at plasmodesmata, regulating non-specific (2xGFP) and specific (SHR) transport through plasmodesmata

      The authors then use these conclusions to propose the possibility that phase separation mediates transport through plasmodesmata. If there is phase separation at plasmodesmata or a nuclear pore-like complex, it would revolutionise the community. However, this data is insufficient to act as a cornerstone for such a discovery.

      Strengths:

      The strength of the manuscript lies in the boldness and novelty of the idea.

      Weaknesses:

      The weaknesses lie in the lack of informative controls. The authors' own assessments of their data suggest they agree with this - in their abstract alone, they point out that the transport defects they observe might be off-target effects, and suggest there is a requirement in the future to determine whether the NUPs are bona fide PD components.

      Across the proteomic and live imaging experiments, the conclusions could be stronger if they compared the NUP localisation and accumulation with ER proteins - the question of whether NUPs behave like other ER proteins is not addressed. As NUPs reside in the nuclear envelope, continuous with the ER, and the ER traverses plasmodesmata, a comparison between the NUPs and ER proteins would be extremely informative.

      Regarding the proteomic identification of NUPs in plasmodesmal fractions, the authors place significant weight on their own metric for PD enrichment, the PD score. As I understand it, this a metric derived from addition of two factors: a two component enrichment score that is the difference between intensity of peptides of a given protein in the PD fraction and cell wall fraction, added to the difference between intensity of peptides of a given protein in the PD fraction and total cell fraction, and a feature score that is a factor that describes representation of protein domains contained in said given protein in the plasmodesmal fraction relative to the representation of that domain in proteins in the whole proteome. The features chosen for analysis are not indicated, and the feature factor, as I understand it, is a score common to all proteins with a given feature. While each of the factors carries a measure of meaning and information, I do not understand how adding them is mathematically or biologically meaningful.

    1. Reviewer #3 (Public review):

      Summary:

      Mutations that result in consistent RAS activation constitute a major driver of cancer. Therefore, RAS is a favorable target for cancer therapy. However, since normal RAS activity is essential for the function of normal cells, a mechanism that differentiates aberrant RAS activity from normal one is required to avoid severe adverse effects. To this end, the authors designed and optimized a synthetic gene circuit that is induced by active RAS-GTP. The circuit components, such as RAS-GTP sensors, dimerization domains, and linkers. To enhance the circuit selectivity and dynamic range, the authors designed a synthetic promoter comprised of MAPK-responsive elements to regulate the expression of the RAS sensors, thus generating a feed-forward loop regulating the circuit components. Circuit outputs with respect to circuit design modification were characterized in standard model cell lines using basal RAS activity, active RAS mutants, and RAS inactivation.

      This approach is interesting. The design is novel and could be implemented for other RAS-mediated applications. The data support the claims, and while this circuit may require further optimization for clinical application, it is an interesting proof of concept for targeting of aberrant RAS activity. I therefore recommend accepting this paper.

      Strengths:

      Novel circuit design, through optimization and characterization of the circuit components, solid data.

      Weaknesses:

      This manuscript could significantly benefit from testing the circuit performance in more realistic cell lines, such as patient-derived cells driven by RAS mutations, as well as in corresponding non-cancer cell lines with normal RAS activity. Furthermore, testing with therapeutic output proteins in vitro, and especially in vivo, would significantly strengthen the findings and claims.

      Summary:

      Given the revision made, I would recommend a minor revision that discusses the specificity limitations of this experimental setup.

    1. Reviewer #3 (Public review):

      Summary:

      This manuscript reports the discovery of new compounds that selectively inhibit SMARCA4/SMARCA2 ATPase activity and have pronounced effects on uveal melanoma cell proliferation. They induce apoptosis and suppress tumor growth, with no toxicity in vivo. The report provides biological significance by demonstrating that the drugs alter chromatin accessibility at lineage specific gene enhancer regions and decrease expression of lineage specific genes, including SOX10 and SOX10 target genes.

      Strengths:

      The study provides compelling evidence for the therapeutic use of these compounds and does a thorough job at elucidating the mechanisms by which the drugs work. The study will likely have a high impact on the chromatin remodeling and cancer fields. The datasets will be highly useful to these communities.

      Weaknesses:

      The authors have addressed all my concerns.

    1. Reviewer #3 (Public review):

      This manuscript describes a careful and thorough evaluation of an evolutionary simulation model published previously. The model and this report address the question, whether heterozygote advantage (HA) by itself as a selection mechanism can explain a substantial level of allelic diversity as it is often seen in MHC immune genes. Despite decades of research on the topic of pathogen-mediated selection for MHC diversity, it remains an open question by which specific selection mechanisms this exceptional allelic diversity is maintained.

      The previously published paper posits, in contrast to various previous studies, that HA is, in fact, able to maintain a level of allelic diversity as seen in many populations, just by itself, given certain conditions. The current manuscript now challenges this conclusion by highlighting that the previous model results only hold under very narrow parameter ranges.

      Besides criticizing some of the conceptual points of the previous paper, the author carefully rebuilt the previously published model and replicated their results, before then evaluating the robustness of the model results to reasonable variation in different parameters. From this evaluation, it becomes clear that the previously reported results hinge strongly on a certain scaling or weighing factor that is adjusted for every parameter setting and essentially counteracts the changes induced by changing the parameters. The critical impact of this one parameter is not clearly stated in the previous paper, but raises serious doubts about the generalizability of the model to explain MHC allelic variation across diverse vertebrate species.

      Given the fact that the MHC genes are among the most widely studied genes in vertebrates, and that understanding their evolution will shed light on their association with various complex diseases, the insights from this report and the general discussion of how MHC diversity evolved are of interest to at least some of the community. The manuscript is very well written and makes it easy to follow the theoretical and methodological details of the model and the arguments. I have only a few minor comments that I am detailing below. Furthermore, I would be very interested to read a response by the previous authors, especially on the relevance of this scaling/weighing factor that they introduced into their model, as it is possible that I might have missed something about its meaning.

    1. Reviewer #3 (Public review):

      Summary:

      The authors have extended their previous research to develop TOPBP1 as a potential drug target for colorectal cancer by inhibiting its condensation. Utilizing an optogenetic approach, they identified the small molecule AZD2858, which inhibits TOPBP1 condensation and works synergistically with first-line chemotherapy to suppress colorectal cancer cell growth. The authors investigated the mechanism and discovered that disrupting TOPBP1 assembly inhibits the ATR/Chk1 signaling pathway, leading to increased DNA damage and apoptosis, even in drug-resistant colorectal cancer cell lines.

      Comments on latest version:

      This reviewer does not have further comments to the paper.

    1. Reviewer #3 (Public review):

      Summary:

      In multicellular organisms, autophagosomes are formed throughout the cytosol, while late endosomes/lysosomes are relatively enriched in the perinuclear region. It is known that autophagosomes gain access to the lysosome-enriched region by microtubule-based trafficking. The mechanism by which autophagosomes move along microtubules remains incompletely understood. In this manuscript, Péter Lőrincz and colleagues investigated the mechanism driving the movement of nascent autophagosomes along microtubule towards non-centrosomal microtubule organizing center (ncMTOC) using fly fat body as a model system. The authors took an approach by examining autophagosome positioning in cells where autophagosome-lysosome fusion was inhibited by knocking down the HOPS subunit Vps16A. Despite being generated at random positions in the cytosol, autophagosomes accumulate around the nucleus when Vps16A is depleted. They then performed an RNA interference screen to identify the factors involved in autophagosome positioning. They found that the dynein-dynactin complex is required for trafficking of autophagosomes toward ncMTOC. Dynein loss leads to the peripheral relocation of autophagosomes. They further revealed that a pair of small GTPases and their effectors, Rab7-Epg5 and Rab39-ema, are required for bidirectional autophagosome transport. Knockdown of these factors in Vps16a RNAi cells causes scattering of autophagosomes throughout the cytosol.

      Strengths:

      The data presented in this study help us to understand the mechanism underlying the trafficking and positioning of autophagosomes.

      Weaknesses:

      (1) The experiments were performed in Vps16A RNAi KD cells. Vps16A knockdown blocks fusion of vesicles derived from the endolysosomal compartments such as fusion between lysosomes. The pleiotropic effect of Vps16A RNAi may complicate the interpretation.

      (2) In this study, the transport of autophagosomes is investigated in fly fat cells. In fat cells, a large number of large lipid droplets accumulate and the endomembrane systems are distinct from that in other cell types. The knowledge gain from this study may not apply to other cell types.

    1. Reviewer #3 (Public review):

      Significance:

      About 5% of metastatic castration-resistant prostate cancers (mCRPC) display genomic alterations in the transcriptional kinase CDK12. The mechanisms by which CDK12 alterations drive tumorigenesis in this molecularly-defined subset of mCRPC have remained elusive. In particular, some studies have suggested that CDK12 loss confers a homologous recombination deficiency (HRd) phenotype, However, clinical studies have not borne out the benefit to PARP inhibitors in patients with CDK12 alterations, despite the fact that these agents are typically active against tumors with HRd.

      In this study, Frank et al. reconcile these findings by showing that: (1) tumors with biallelic CDK12 alterations do not have genomic features of HRd; (2) in vitro, HR gene downregulation occurs with acute depletion of CDK12 but is far less pronounced with chronic CDK12 loss; (3) CDK12-altered cells are uniquely sensitive to genetic or pharmacologic inhibition of CDK13.

      Strengths:

      Overall, this is an important study that reconciles disparate experimental and clinical observations. The genomic analyses are comprehensive and conducted with a high degree of rigor and represent an important resource to the community regarding the features of this molecular subtype of mCRPC.

      Weaknesses:

      (1) It is generally assumed that CDK12 alterations are inactivating, but it is noteworthy that homozygous deletions are comparatively uncommon (Figure 1a). Instead many tumors show missense mutations on either one or both alleles, and many of these mutations are outside of the kinase domain (Figure 1b). It remains possible that the CDK12 alterations that occur in some tumors may retain residual CDK12 function, or may confer some other neomorphic function, and therefore may not be accurately modeled by CDK12 knockout or knockdown in vitro. This would also reconcile the observation that knockout of CDK12 is cell-essential while the human genetic data suggest that CDK12 functions as a tumor suppressor gene.

      (2) It is not entirely clear whether CDK12 altered tumors may require a co-occurring mutation to prevent loss of fitness, either in vitro or in vivo (e.g. perhaps one or more of the alterations that occur as a result of the TDP may mitigate against the essentiality of CDK12 loss).

    1. Reviewer #3 (Public review):

      Summary:

      Sethi and Zou present a new neural network to study the importance of epistatic interactions in pairs and groups of amino acids to the function of proteins. Their new model is validated on a small simulated data set and then applied to 10 empirical data sets. Results show that epistatic interactions in groups of amino acids can be important to predict the function of a protein, especially for sequences that are not very similar to the training data.

      Strengths:

      The manuscript relies on a novel neural network architecture that makes it easy to study specifically the contribution of interactions between 2, 3, 4, or more amino acids. The study of 10 different protein families shows that there is variation among protein families.

      Weaknesses:

      The manuscript is good overall, but could have gone a bit deeper by comparing the new architecture to standard transformers, and by investigating whether differences between protein families explain some of the differences in the importance of interactions between amino acids. Finally, the GitHub repository needs some more information to be usable.

    1. Reviewer #3 (Public review):

      In this manuscript, the authors propose a product-dependent negative-feedback mechanism of human glutamine synthetase, whereby the product glutamine facilitates filament formation, leading to reduced catalytic specificity for ammonia. Using time-resolved cryo-EM, the authors demonstrate filament formation under product-rich conditions. Multiple high-quality structures, including decameric and di-decameric assemblies, were resolved under different biochemical states and combined with MD simulations, revealing that the conformational space of the active site loop is critical for the GS catalysis. The study also includes extensive steady-state kinetic assays, supporting the view that glutamine regulates GS assembly and its catalytic activity. Overall, this is a detailed and comprehensive study. However, I would advise that a few points be addressed and clarified.

      (1) In Figure 2D and Supplementary Figure 7, the extra density observed between the two decamers does not appear to have the defining features of a glutamine. A less defined density may be expected given the nature of the complex, but even though mutagenesis assays were performed to support this assignment, none of these results constitutes direct and conclusive evidence for glutamine binding at this site. I would thus suggest showing the density maps at multiple contour thresholds to allow readers to also better evaluate the various small molecules under turnover conditions that cannot be well fitted based on this density map, helping to provide a more balanced interpretation of the results.

      (2) On the same point regarding the density for the enzyme under turnover conditions, more details should be provided about the symmetry expansion and classification performed, and also show the approximate ratio of reconstructions that include this density. Did you try symmetry expansion followed by focused classification, especially on the interface region?

      (3) The interface between the two decamers of the model needs to be double-checked and reassigned, especially for the residues surrounding the fitted glutamine. For example, the side chain of the Lys residue shown in the attached figure is most likely modeled incorrectly.

    1. Reviewer #3 (Public review):

      Summary:

      Using a specparam (1/f) analysis of task-evoked activity, the authors propose that "substantial changes traditionally attributed to theta oscillations in working memory tasks are, in fact, due to shifts in the spectral slope of aperiodic activity." This is a very bold and ambitious statement, and the field of event-related EEG would benefit from more critical assessments of the role of aperiodic changes during task events. Unfortunately, the data shown here does not support the main conclusion advanced by the authors.

      Strengths:

      The field of event-related EEG would benefit from more critical assessments of the role of aperiodic changes during task events. The authors perform a number of additional control analyses, including different types of baseline correction, ERP subtraction, as well as replication of the experiment with two additional datasets.

      Comments on previous revisions:

      The authors have completed a substantial revision based on the comments from all of the reviewers. Overall, the major claims of the initial report have been profoundly tempered.

      [Editors' note: We determined that this revised version appropriately tempers some of the prior claims and addresses the concerns raised by the reviewers through two rounds of review.]

    1. Reviewer #3 (Public review):

      Summary:

      The authors aimed to test whether hypoxia disrupts the migration of human cortical interneurons, a process long suspected to underlie brain injury in preterm infants but previously inaccessible for direct study. Using human forebrain assembloids and ex vivo developing brain tissue, they visualized and quantified interneuron migration under hypoxic conditions, identified molecular components of the response, and explored the effect of pharmacological intervention (specifically ADM) on restoring the migration deficits.

      Strengths:

      The major strength of this study lies in its use of human forebrain assembloids and ex vivo prenatal brain tissue, which provide a direct system to study interneuron migration under hypoxic conditions. The authors combine multiple approaches: long-term live imaging to directly visualize interneuron migration, bulk and single-cell transcriptomics to identify hypoxia-induced molecular responses, pharmacological rescue experiments with ADM to establish therapeutic potential, and mechanistic assays implicating the cAMP/PKA/pCREB pathway and GABA receptor expression in mediating the effect. Together, this rigorous and multifaceted strategy convincingly demonstrates that hypoxia disrupts interneuron migration and that ADM can restore this defect through defined molecular mechanisms.

      Overall, the authors achieve their stated aims, and the results strongly support their conclusions. The work has a significant impact by providing the first direct evidence of hypoxia-induced interneuron migration deficits in the human context, while also nominating a candidate therapeutic avenue. Beyond the specific findings, the methodological platform - particularly the combination of assembloids and live imaging - will be broadly useful to the community for probing neurodevelopmental processes in health and disease.

      Weaknesses:

      The main weakness of the study lies in the extent to which forebrain assembloids recapitulate in vivo conditions, as the migration of interneurons from hSO to hCO does not fully reflect the native environment or migratory context of these cells. Nevertheless, this limitation is tempered by the fact that the work provides the first direct observation of human interneuron migration under hypoxia, representing a major advance for the field. In addition, while the transcriptomic analyses are valuable and highlight promising candidates, more in-depth exploration will be needed to fully elucidate the molecular mechanisms governing neuronal migration and maturation under hypoxic conditions.

    1. Reviewer #3 (Public review):

      Summary

      This manuscript, from the developers of the novel DREADD-selective agonist DCZ (Nagai et al., 2020), utilizes a unique dataset where multiple PET scans in a large number of monkeys, including baseline scans before AAV injection, 30-120 days post-injection, and then periodically over the course of the prolonged experiments, were performed to access short- and long-term dynamics of DREADD expression in vivo, and to associate DREADD expression with the efficacy of manipulating the neuronal activity or behavior. The goal was to provide critical insights into practicality and design of multi-year studies using chemogenetics, and to elucidate factors affecting expression stability.

      Strengths are systematic quantitative assessment of the effects of both excitatory and inhibitory DREADDs, quantification of both the short-term and longer-term dynamics, a wide range of functional assessment approaches (behavior, electrophysiology, imaging), and assessment of factors affecting DREADD expression levels, such as serotype, promoter, titer (concentration), tag, and DREADD type.

      These finding will undoubtedly have a very significant impact on the rapidly growing, but still highly challenging field of primate chemogenetic manipulations. As such, the work represents an invaluable resource for the community.

    1. Reviewer #3 (Public review):

      Summary:

      This is an exciting, comprehensive paper that demonstrates the role of GATA4 on OA-like changes in chondrocytes. The authors present elegant reverse translational experiments that justify this mechanism and demonstrate the sufficiency of GATA4 in a mouse model of osteoarthritis (DMM), where GATA4 drove cartilage degeneration and pain in a manner that was significantly worse than DMM alone. This could pave the way for new therapies for OA that account for both structural changes and pain.

      Strengths:

      (1) GATA4 was identified from human chondrocytes.

      (2) IHC and sequencing confirmed GATA4 presence.

      (3) Activation of SMADs is clearly shown in vitro with GATA4 overexpression.

      (4) The role of GATA4 was functionally assessed in vivo using the mouse DMM model, where the authors uncovered that GATA4 worsens OA structure and hyperalgesia in male mice.

      (5) It is interesting that GATA4 is largely known to be found in cardiac cells and to have a role in cardiac repair, metabolism, and inflammation, among other things listed by the authors in the discussion (in liver, lung, pancreas). What could this new knowledge of GATA4 mean for OA as a potentially systemically mediated disease, where cardiac disease and metabolic syndrome are often co-morbid?

      Weaknesses:

      I do not have further comments. Thank you for addressing the previously mentioned concerns.

    1. Reviewer #3 (Public review):

      The manuscript by Rios-Jimenez developed a software tool, BEHAV3D Tumor Profiler, to analyze 3D intravital imaging data and identify distinctive tumor cell migratory phenotypes based on the quantified 3D image data. Moreover, the heterogeneity module in this software tool can correlate the different cell migration phenotypes with variable features of the tumor microenvironment. Overall, this is a useful tool for intravital imaging data analysis and its open-source nature makes it accessible to all interested users.

      Strengths:

      An open-source software tool that can quantify cell migratory dynamics from intravital imaging data and identify distinctive migratory phenotypes that correlate with variable features of the tumor microenvironment.

      Weaknesses:

      Motility is the main tumor cell feature analyzed in the study together with some other tumor-intrinsic features, such as morphology. However, these features are insufficient to characterize and identify the heterogeneity of the tumor cell population that impacts their behaviors in the complex tumor microenvironment (TME). For instance, there are important non-tumor cell types in the TME, and the interaction dynamics of tumor cells with other cell types, e.g., fibroblasts and distinct immune cells, play a crucial role in regulating tumor behaviors. BEHAV3D-TP focuses on analysis of tumor-alone features, and cannot be applied to analyze important cell-cell interaction dynamics in 3D.

    1. Reviewer #3 (Public review):

      Summary:

      This manuscript by Duan and Song interrogates the gating mechanisms and specifically force transmission in mechanosensitive NOMPC channels using steered molecular dynamics simulations. They propose that the ankyrin spring can transmit force to the gate through torsional forces adding molecular detail to the force transduction pathways in this channel.

      Strengths:

      Detailed, rigorous simulations coupled with a novel model for force transduction.

      Weaknesses:

      Experimental validation of reduced mechanosensitivity through mutagenesis of proposed ankyrin/TRP domain coupling interactions would greatly enhance the manuscript.

    1. Reviewer #3 (Public review):

      Summary:

      In the submitted manuscript, the authors investigate the role of Synaptotagmins (Syt1) and (Syt7) in MR1 presentation of MtB.

      Strengths:

      In the first series of experiments, the authors determined that knocking down Syt1 and Sy7 in antigen-presenting cells decreases IFN-γ production following cellular infection with Mtb. These experiments are well performed and controlled.

      Weaknesses:

      Next, they aim to mechanistically investigate how Syt1 and Syt7 affect MtB presentation. In particular, they focus on MR1, a non-classical MHC-I molecule known to present endogenous and exogenous metabolites, including MtB metabolites.

      Results from these next series of experiments are less clear. Firstly, they show that knocking down Syt1 and Sy7 does not change MtB phagocytosis as well as MR1 ER-plasma membrane translocation. Based on this, they suggest that Syt1 and Syt7 may affect MR1 trafficking in endosomal compartments. However, neither subcellular compartment analysis nor flow organelleometry clearly establishes the role of Syt1 and Syt7 in MtB trafficking.

      Altogether, the notion that Synaptotagmins facilitate MR1 interaction with Mtb-containing compartments and its vesicular transport was already known. As such, the manuscript should add additional insight on where/how the interaction occurs. The reviewer is left with the notion that Syt1 and Sy7 may affect MR1 presentation, facilitating the trafficking of MR1 vesicles from endosomal compartments to either the cell surface or other endosomal compartments. The analysis is observational and additional data or discussion could address what the insight gained beyond what is already known from the literature.

    1. Reviewer #3 (Public review):

      Summary:

      Thapliyal and Glauser show that hunger alters how C. elegans respond to noxious thermal stimuli. Using targeted neural ablation, mutant analysis, and live-cell functional imaging the authors demonstrate that hunger changes the properties of AWC sensory neurons, which sense noxious heat. The authors further show that effects of hunger on nociception require ASI neurons, which are known to respond to hunger and mediate effects of food deprivation on behavior. Finally, the study uses mutant analysis to implicate glutamate and specific neuropeptides in thermal nociception and in modulation of nociceptors by hunger-responsive neurons.

      Strengths:

      The study clearly shows a strong effect of hunger on nociception and documents a striking effect of hunger on the intrinsic properties of AWC sensory neurons, which respond to noxious heat. The study also clearly and compellingly demonstrates that ablation of hunger-responsive ASI neurons blocks effects of hunger on nociceptive AWCs. These data, which constitute the kernel of the manuscript, are striking and exciting.

      Weaknesses:

      The study has some weaknesses that the authors should address.

      (1) Ablation of AWC neurons alters the basal sensitivity to noxious heat stimuli. This should be clearly noted in the description of the result and warrants some discussion.

      (2) Throughout the study it seems that data are replotted in multiple figure panels. The authors should clearly indicate in figure legends when this occurs. Also, the authors should ensure that statistical tests requiring multiple comparisons are correctly implemented and reflect the number of times experimental data are compared to a single set of control data.

      (3) How ASIs modulate AWCs remains unclear. The authors find that loss of INS-6, an insulin-like peptide provided by ASIs, partially recapitulates the effect of ASI ablation. This is observation is not further developed and instead the authors characterize other secreted factors that seem to mediate sensitization of animals to noxious heat stimuli. While it is interesting that there are multiple opposing inputs into the nociceptor circuit, the essential connection between ASIs and AWCs that underlies the foundational observations in figures 1 and 2 is not sufficiently characterized.

      (4) The assertion that 'starvation reshapes AWC responses from deterministic to stochastic' is not clearly supported by the data. AWC neurons seem capable of showing different responses to thermal stimuli, and the probabilities associated with these responses change after fasting. The different kinds of responses are seen under basal and fasted conditions.

    1. Reviewer #3 (Public review):

      Summary:

      In this paper, the authors developed a simple algorithm to analyse live imaging transcription data (MS2) and infer various kinetic parameters. They then applied it to analyse data from previous publications on Drosophila that measured the dynamics of reporter genes driven by various enhancers alone (sna, Kr, rho), or in an endogenous context (eve).

      The authors find that the main correlate with mean gene expression levels is the activity time, that is, the time during which the gene is bursting. They also find a correlation with the variation of the off time.

      Strengths:

      (1) The findings are very clearly presented.

      (2) The simplicity of the algorithm is nice, and the comparative analysis among the various enhancers can be helpful for the field.

      Weaknesses:

      (1) The algorithm is not benchmarked against previously used algorithms in the field to infer ON and OFF times, for example, those based on Hidden Markov models. A comparison would help strengthen the support for this algorithm (if it really works well) or show at which point one must be careful when interpreting this data.

      (2) More broadly, the novelty of the findings and how those fit within the knowledge of the field is not super clear. A better account of previous findings that have already quantified ON, OFF times and so on, and how the current findings fit within those, would help better appreciate the significance of the work.

    1. Reviewer #3 (Public review):

      Summary:

      This manuscript by Mukherjee and colleagues extended earlier studies on the coordination of the SidC and SidE effector families on the generation of a unique ubiquitin layer on the surface of the vacuoles containing the bacterial pathogen Legionella pneumophila (LCV).

      Strengths:

      The main strength of the manuscript is the identification of the small GTPase Rab5 as a major "carrier" of these differently modified ubiquitin and ubiquitin chains, which was nicely quantified.

      Weaknesses:

      (1) The results are mostly descriptive, based on mechanistic studies from earlier works.

      (2) The majority of the work was dedicated to the characterization of the unique ubiquitin layer on the LCV. One important question was ignored: what is the role of Rab5 in this process? Is the GTPase activity of Rab5 required for its ubiquitination by SidC and SidE? The authors should create a Rab5 KO cell line, complement the line with different mutants of Rab5, and examine their ubiquitination and association with the LCV.

      (3) The finding that Rab5 is associated with the LCV supports the notion that the LCV has characteristics of endo- or/late endosomes. The positioning of the LCV in the endocytic pathway should be discussed in the context of earlier studies (e.g.,PMID: 38739652; PMID: 11067875; PMID: 11067875).

    1. Reviewer #3 (Public review):

      Summary:

      This is a very nice and interesting paper to read about motif conservation in protein sequences and mainly in IDRs regions using the ESM2 language model. The topic of the paper is timely, with strong biological significance. The paper can be of great interest to the scientific community in the field of protein phase transitions and future applications using the ESM models. The ability of ESM2 to identify conserved motifs is crucial for disease prediction, as these regions may serve as potential drug targets. Therefore, I find these findings highly significant, and the authors strongly support them throughout the paper. The work motivates the scientific community towards further motif exploration related to diseases.

      Strengths:

      (1) Revealing conserved regions in IDRs by the ESM-2 language model.

      (2) Identification of functionally significant residues within protein sequences, especially in IDRs.

      (3) Findings supported by useful analyses.

      Weaknesses:

      (1) Lack of examples demonstrating the potential biological functions of these conserved regions

      (2) Very limited discussion of potential future work and of limitations.

    1. Reviewer #3 (Public review):

      Summary & Strengths:

      This review by Yu-Tung Li sheds new light on the processes involved in leukocyte extravasation, with a focus on the interaction between leukocytes and the extracellular matrix. In doing so, it presents a fresh perspective on the topic of leukocyte extravasation, which has been extensively covered in numerous excellent reviews. Notably, the role of the extracellular matrix in leukocyte extravasation has received relatively little attention until recently, with a few exceptions, such as a study focusing on the central nervous system (J Inflamm 21, 53 (2024) doi.org/10.1186/s12950-024-00426-6) and another on transmigration hotspots (J Cell Sci (2025) 138 (11): jcs263862 doi.org/10.1242/jcs.263862). This review synthesizes the substantial knowledge accumulated over the past two decades in a novel and compelling manner.

      The author dedicates two sections to discussing the relevant barriers, namely, endothelial cell-cell junctions and the basement membrane. The following three paragraphs address how leukocytes interact with and transmigrate through endothelial junctions, the mechanisms supporting extravasation, and how minimal plasma leakage is achieved during this process. The subsequent question of whether the extravasation process affects leukocyte differentiation and properties is original and thought-provoking, having received limited consideration thus far. The consequences of the interaction between leukocytes and the extracellular matrix, particularly regarding efferocytosis, macrophage polarization, and the outcome of inflammation, are explored in the subsequent three chapters. The review concludes by examining tissue-specific states of macrophage identity.

      Weaknesses:

      Firstly, the first ten sections provide a comprehensive overview of the topic, presenting logical and well-formulated arguments that are easily accessible to a general audience. In stark contrast, the final section (Chapter 11) fails to connect coherently with the preceding review and is nearly incomprehensible without prior knowledge of the author's recent publication in Cell. Mol. Life Sci. CMLS 772 82, 14 (2024). This chapter requires significantly more background information for the general reader, including an introduction to the Macrophage Identity Kinetics Archive (MIKA), which is not even introduced in this review, its basis (meta-analysis of published scRNA-seq data), its significance (identification of major populations), and the reasons behind the revision of the proposed macrophage states and their further development. Secondly, while the attempt to integrate a vast amount of information into fewer figures is commendable, it results in figures that resemble a complex puzzle. The author may consider increasing the number of figures and providing additional, larger "zoom-in" panels, particularly for the topics of clot formation at transmigration hotspots and the interaction between ECM/ECM fragments and integrins. Specifically, the color coding (purple for leukocyte α6-integrins, blue for interacting laminins, also blue for EC α6 integrins, and red for interacting 5-1-1 laminins) is confusing, and the structures are small and difficult to recognize.

    1. Reviewer #3 (Public Review):

      Summary:

      In this article, Barnett examines a pressing question regarding citing behavior of authors during the peer review process. In particular, the author studies the interaction between reviewers and authors, focusing on the odds of acceptance, and how this may be affected by whether or not the authors cited the reviewers' prior work, whether the reviewer requested such citations be added, and whether the authors complied/how that affected the reviewer decision-making.

      Strengths:

      The author uses a clever analytical design, examining four journals that use the same open peer review system, in which the identities of the authors and reviewers are both available and linkable to structured data. Categorical information about the approval is also available as structured data. This design allows a large scale investigation of this question.

      Weaknesses:

      My concerns pertain to the interpretability of the data as presented and the overly terse writing style.

      Regarding interpretability, it is often unclear what subset of the data are being used both in the prose and figures. For example, the descriptive statistics show many more Version 1 articles than Version 2+. How are the data subset among the different possible methods?

      Likewise, the methods indicate that a matching procedure was used comparing two reviewers for the same manuscript in order to control for potential confounds. However, the number of reviews is less than double the number of Version 1 articles, making it unclear which data were used in the final analysis. The methods also state that data were stratified by version. This raises a question about which articles/reviews were included in each of the analyses. I suggest spending more space describing how the data are subset and stratified. This should include any conditional subsetting as in the analysis on the 441 reviews where the reviewer was not cited in Version 1 but requested a citation for Version 2. Each of the figures and tables, as well as statistics provided in the text should provide this information, which would make this paper much more accessible to the reader. [Note from editor: Please see "Editorial feedback" for more on this]

      Finally, I would caution against imputing motivations to the reviewers, despite the important findings provided here. This is because the data as presented suggest a more nuanced interpretation is warranted. First, the author observes similar patterns of accept/reject decisions whether the suggested citation is a citation to the reviewer or not (Figs 3 and 4). Second, much of the observed reviewer behavior disappears or has much lower effect sizes depending on whether "Accept with Reservations" is considered an Accept or a Reject. This is acknowledged in the results text, but largely left out of the discussion. The conditional analysis on the 441 reviews mentioned above does support a more cautious version of the conclusion drawn here, especially when considered alongside the specific comments left by reviewers that were mentioned in the results and information in Table S.3. However, I recommend toning the language down to match the strength of the data.

    1. Reviewer #5 (Public review):

      Summary:

      In the research article, "Functional genomics reveals strain-specific genetic requirements conferring hypoxic growth in Mycobacterium intracellulare" Tateshi et al focussed their research on pulmonary disease caused by Mycobacterium avium-intracellulare complex which has recently become a major health concern. The authors were interested in identifying the genetic requirements necessary for growth/survival within host and used hypoxia and biofilm conditions that partly replicate some of the stress conditions experienced by bacteria in vivo. An important finding of this analysis was the observation that genes involved in gluconeogenesis, type VII secretion system and cysteine desulphurase were crucial for the clinical isolates during standard culture while the same were necessary during hypoxia in the ATCC type strain.

      Strength of the study:

      Transposon mutagenesis has been a powerful genetic tool to identify essential genes/pathways necessary for bacteria under various in vitro stress conditions and for in vivo survival. The authors extended the TnSeq methodology not only to the ATCC strain but also to the recently clinical isolates to identify the differences between the two categories of bacterial strains. Using this approach they dissected the similarities and differences in the genetic requirement for bacterial survival between ATCC type strains and clinical isolates. They observed that the clinical strains performed much better in terms of growth during hypoxia than the type strain. These in vitro findings were further extended to mouse infection models and similar outcomes were observed in vivo further emphasising the relevance of hypoxic adaptation crucial for the clinical strains which could be explored as potential drug targets.

      Weakness:

      The authors have performed extensive TnSeq analysis but fail to present the data coherently. The data could have been well presented both in Figures and text. In my view this is one of the major weakness of the study.

    1. Reviewer #3 (Public review):

      Summary

      This study aimed to investigate whether the differences observed in the organization of visual brain networks between blind and sighted adults result from a reorganization of an early functional architecture due to blindness, or whether the early architecture is immature at birth and requires visual experience to develop functional connections. This question was investigated through the comparison of 3 groups of subjects with resting-state functional MRI (rs-fMRI). Based on convincing analyses, the study suggests that: 1) secondary visual cortices showed higher connectivity to prefrontal cortical regions (PFC) than to non-visual sensory areas (S1/M1 and A1) in infants like in blind adults, in contrast to sighted adults; 2) the V1 connectivity pattern of infants lies between that of sighted adults (showing stronger functional connectivity with non-visual sensory areas than with PFC) and that of blind adults (showing stronger functional connectivity with PFC than with non-visual sensory areas); 3) the laterality of the connectivity patterns of infants resembled those of sighted adults more than those of blind adults, but infants showed a less differentiated fronto-occipital connectivity pattern than adults.

      Strengths

      The question investigated in this article is important for understanding the mechanisms of plasticity during typical and impaired development, and the approach considered, which compares different groups of subjects including, neonates/infants and blind adults, is highly original.

      Overall, the presented analyses are solid and well detailed, and the results and discussion are convincing.

      Weaknesses

      While it is informative to compare the "initial" state (close to birth) and the "final" states in blind and sighted adults to study the impact of post-natal and visual experience, this study does not analyze the chronology of this development and when the specialization of functional connections is completed. This would require investigating the evolution of functional connectivity of the visual system as a function of visual experience and thus as a function of age, at least during toddlerhood given the early and intense maturation of the visual system after birth. This could be achieved by analyzing different developmental periods using open databases such as the Baby Connectome Project.

      The rationale for grouping full-term neonates and preterm infants (scanned at term-equivalent age) is not understandable when seeking to perform comparisons with adults. Even if the study results do not show differences between full-terms and preterms in terms of functional connectivity differences between regions and of connectivity patterns, preterms group had different neurodevelopment and post-natal (including visual) experiences (even a few weeks might have an impact). And actually they show reduced connectivity strength systematically for all regions compared with full-terms (Sup Fig 7). Considering a more homogeneous group of neonates would have strengthen the study design.

      The rationale for presenting results on the connectivity of secondary visual cortices before the one of primary cortices (V1) could be clarified.

      The authors acknowledge the methodological difficulties for defining regions of interest (ROIs) in infants in a similar way as adults. Since the brain development is not homogeneous and synchronous across brain regions (in particular with the frontal and parietal lobes showing a delayed growth), this poses major problems for registration. This raises the question of whether the study findings could be biased by differences in ROI positioning across groups.

    1. Reviewer #3 (Public review):

      Summary:

      The authors generated knockout mice for Atad2, a conserved bromodomain-containing factor expressed during spermatogenesis. In Atad2 KO mice, HIRA, a chaperone for histone variant H3.3, was upregulated in round spermatids, accompanied by an apparent increase in H3.3 levels. Furthermore, the sequential incorporation and removal of TH2B and PRM1 during spermiogenesis were partially disrupted in the absence of ATAD2, possibly due to delayed histone removal. Despite these abnormalities, Atad2 KO male mice were able to produce offspring normally.

      Strengths:

      The manuscript addresses the biological role of ATAD2 in spermatogenesis using a knockout mouse model, providing a valuable in vivo framework to study chromatin regulation during male germ cell development. The observed redistribution of H3.3 in round spermatids is clearly presented and suggests a previously unappreciated role of ATAD2 in histone variant dynamics. The authors also document defects in the sequential incorporation and removal of TH2B and PRM1 during spermiogenesis, providing phenotypic insight into chromatin transitions in late spermatogenic stages. Overall, the study presents a solid foundation for further mechanistic investigation into ATAD2 function.

      Weaknesses:

      While the manuscript reports the gross phenotype of Atad2 KO mice, the findings remain largely superficial and do not convincingly demonstrate how ATAD2 deficiency affects chromatin dynamics. Moreover, the phenotype appears too mild to elucidate the functional significance of ATAD2 during spermatogenesis.

      (1) Figures 4-5: The analyses of differential gene expression and chromatin organization should be more comprehensive. First, Venn diagrams comparing the sets of significantly differentially expressed genes between this study and previous work should be shown for each developmental stage. Second, given the established role of H3.3 in MSCI, the effect of Atad2 knockout on sex chromosome gene expression should be analyzed. Third, integrated analysis of RNA-seq and ATAC-seq data is needed to evaluate how ATAD2 loss affects gene expression. Finally, H3.3 ChIP-seq should be performed to directly assess changes in H3.3 distribution following Atad2 knockout.

      (2) Figure 3: The altered distribution of H3.3 is compelling. This raises the possibility that histone marks associated with H3.3 may also be affected, although this has not been investigated. It would therefore be important to examine the distribution of histone modifications typically associated with H3.3. If any alterations are observed, ChIP-seq analyses should be performed to explore them further.

      (3) Figure 7: While the authors suggest that pre-PRM2 processing is impaired in Atad2 KO, no direct evidence is provided. It is essential to conduct acid-urea polyacrylamide gel electrophoresis (AU-PAGE) followed by western blotting, or a comparable experiment, to substantiate this claim.

      (4) HIRA and ATAD2: Does the upregulation of HIRA fully account for the phenotypes observed in Atad2 KO? If so, would overexpression of HIRA alone be sufficient to phenocopy the Atad2 KO phenotype? Alternatively, would partial reduction of HIRA (e.g., through heterozygous deletion) in the Atad2 KO background be sufficient to rescue the phenotype?

      (5) The mechanism by which ATAD2 regulates HIRA turnover on chromatin and the deposition of H3.3 remains unclear from the manuscript and warrants further investigation.

    1. Reviewer #3 (Public review):

      A bias in how people infer the amount of control they have over their environment is widely believed to be a key component of several mental illnesses including depression, anxiety, and addiction. Accordingly, this bias has been a major focus in computational models of those disorders. However, all of these models treat control as a unidimensional property, roughly, how strongly outcomes depend on action. This paper proposes---correctly, I think---that the intuitive notion of "control" captures multiple dimensions in the relationship between action and outcome. In particular, the authors identify one key dimension: the degree to which outcome depends on how much *effort* we exert, calling this dimension the "elasticity of control". They additionally argue that this dimension (rather than the more holistic notion of controllability) may be specifically impaired in certain types of psychopathology. This idea has the potential to change how we think about several major mental disorders in a substantial way, and can additionally help us better understand how healthy people navigate challenging decision-making problems. More concisely, it is a *very good idea*.

      The more concrete contributions, however, are not as strong. In particular, evidence for the paper's most striking claims is weak. Quoting the abstract, these claims are (1) "the elasticity of control [is] a distinct cognitive construct guiding adaptive behavior" and (2) "overestimation of elasticity is associated with elevated psychopathology involving an impaired sense of control."

      Main issues

      I'll highlight the key points.

      - The task cannot distinguish elasticity inference from general learning processes

      - Participants were explicitly instructed about elasticity, with labeled examples

      - The psychopathology claims rely on an invalid interpretation of CCA, and are contradicted by simple correlations (elasticity bias and the sense of agency scale is r=0.03)

      Distinct construct

      Starting with claim 1, there are three subclaims here. (1A) People's behavior is sensitive to differences in elasticity; (1B) there are mental processes specific to elasticity inference, i.e., not falling out of general learning mechanisms; and, implicitly, (1C) people infer elasticity naturally as they go about their daily lives. The results clearly support 1A. However, 1B and 1C are not well supported.

      (1B) The data cannot support the "distinct cognitive construct" claim because the task is too simple to dissociate elasticity inference from more general learning processes (also raised by Reviewer 1). The key behavioral signature for elasticity inference (vs. generic controllability inference) is the transfer across ticket numbers, illustrated in Fig 4. However, this pattern is also predicted by a standard Bayesian learner equipped with an intuitive causal model of the task. Each ticket gives you another chance to board and the agent infers the probability that each attempt succeeds. Crucially, this logic is not at all specific to elasticity or even control. An identical model could be applied to inferring the bias of a coin from observations of whether any of N tosses were heads-a task that is formally identical to this one (at least, the intuitive model of the task; see first minor comment).

      Importantly, this point cannot be addressed by showing that the author's model fits data better than this or any other specific Bayesian model. It is not a question of whether one particular updating rule explains data better than another. Rather, it is a question of whether the task can distinguish between biases in *elasticity* inference versus biases in probabilistic inference more generally. The present task cannot make this distinction because it does not make separate measurements of the two types of inference. To provide compelling evidence that elasticity inference is a "distinct cognitive construct", one would need to show that there are reliable individual differences in elasticity inference that generalize across contexts but do not generalize to computationally similar types of probabilistic inference (e.g. the coin flipping example).

      (1C) The implicit claim that people infer elasticity outside of the experimental task is undermined by the experimental design. The authors explicitly tell people about the two notions of control as part of the training phase: "To reinforce participants' understanding of how elasticity and controllability were manifested in each planet, [participants] were informed of the planet type they had visited after every 15 trips."

      In the revisions, the authors seem to go back and forth on whether they are claiming that people infer elasticity without instruction (I won't quote it here). I'll just note that the examples they provide in the most recent rebuttal are all cases in which one never receives explicit labels about elasticity. If people only infer elasticity when it is explicitly labeled, I struggle to see its relevance for understanding human cognition and behavior.

      Psychopathology

      Finally, I turn to claim 2, that "overestimation of elasticity is associated with elevated psychopathology involving an impaired sense of control." The CCA analysis is in principle unable to support this claim. As the authors correctly note in their latest rebuttal, the CCA does show that "there is a relationship between psychopathology traits and task parameters". The lesion analysis further shows that "elasticity bias specifically contributes to this relationship" (and similarly for the Sense of Agency scale). Crucially, however, this does *not* imply that there is a relationship between those two variables. The most direct test of that relationship is the simple correlation, which the authors report only in a supplemental figure: there is no relationship (r=0.03). Although it is of course possible that there is a relationship that is obscured by confounding variables, the paper provides no evidence-statistical or otherwise-that such a relationship exists.

      Minor comments

      The statistical structure of the task is inconsistent with the framing. In the framing, participants can make either one or two second boarding attempts (jumps) by purchasing extra tickets. The additional attempt(s) will thus succeed with probability p for one ticket and 2p - p^2 for two tickets; the p^2 captures the fact that you only take the second attempt if you fail on the first. A consequence of this is buying more tickets has diminishing returns. In contrast, in the task, participants always jumped twice after purchasing two tickets, and the probability of success with two tickets was exactly double that with one ticket. Thus, if participants are applying an intuitive causal model to the task, the researcher could infer "biases" in elasticity inference that are probably better characterized as effective use of prior information (encoded in the causal model).

      The model is heuristically defined and does not reflect Bayesian updating. For example, it over-estimates maximum control by not using losses with less than 3 tickets (intuitively, the inference here depends on what your beliefs about elasticity). Including forced three-ticket trials at the beginning of each round makes this less of an issue; but if you want to remove those trials, you might need to adjust the model. The need to introduce the modified model with kappa is likely another symptom of the heuristic nature of the model updating equations.

    1. Reviewer #3 (Public review):

      Summary:

      Developing consistent and reliable biomarkers is critically important for developing new pharmacological therapies in autism spectrum disorders (ASDs). Altered sensory perception is one of the hallmarks of autism and has been recently added to DSM-5 as one of the core symptoms of autism. Touch is one of the fundamental sensory modalities, yet it is currently understudied. Furthermore, there seems to be a discrepancy between different studies from different groups focusing on tactile discrimination. It is not clear if this discrepancy can be explained by different experimental setups, inconsistent terminology, or the heterogeneity of sensory processing alterations in ASDs. The authors aim to investigate the interplay between tactile discrimination and cognitive processes during perceptual decisions. They have developed a forepaw-based 2-alternative choice task for mice and investigated tactile perception and learning in Fmr1-/y mice

      Strengths:

      There are several strengths of this task: translational relevance to human psychophysical protocols, including controlled vibrotactile stimulation. In addition to the experimental setup, there are also several interesting findings: Fmr1-/y mice demonstrated choice consistency bias, which may result in impaired perceptual learning, and enhanced tactile discrimination in low-salience conditions, as well as attentional deficits with increased cognitive load. The increase in the error rates for low salience stimuli is interesting. These observations, together with the behavioral design, may have a promising translational potential and, if confirmed in humans, may be potentially used as biomarkers in ASD.

      Weaknesses:

      Some weaknesses are related to the lack of the original raster plots and density plots of licks under different conditions, learning rate vs time, and evaluation of the learning rate at different stages of learning. Overall, these data would help to answer the question of whether there are differences in learning strategies or neural circuit compensation in Fmr1-/y mice. It is also not clear if reversal learning is impaired in Fmr1-/y mice.

    1. Reviewer #3 (Public review):

      Summary:

      The manuscript by Shaikh and Assisi addresses a timely and important question related to the neural circuit mechanisms underlying spatial representations during navigation. Concretely, they present a model of the medial entorhinal cortex (MEC) with biophysically detailed conductance-based stellate cells that can perform path integration and reveal two potential mechanisms underlying two forms of predictive coding by grid cells in the MEC. One mechanism uses HCN channels to explain predictive coding in MEC layer II grid cells equivalent to ~5% of the diameter of a grid field, and the other uses asymmetric connections between interneurons and stellate cells, resulting in a ~25% predictive bias of layer III grid cells. The methods and model are technically sound, and the model is expected to be useful for computational neuroscientists studying the neural mechanisms of spatial navigation.

      Strengths:

      One strength of the model is its use of conductance-based neuron models of stellate cells and interneurons, adding important biophysical constraints and details to existing continuous attractor network models of grid cells. The model fills a gap in the literature by providing mechanisms for predictive coding constrained by biophysical properties of stellate cells and simplified network topology.

      Weaknesses:

      A weakness of the model is that the neural network is relatively small (five sheets with 71 × 71 neurons each), and the 2-D toroidal topology is further simplified to a 1-D ring attractor consisting of three rings with 192 neurons each. The model incorporates biophysical detail at the single-neuron level, but not at the network level. For example, it includes only stellate cells and a generic interneuron type, and does not implement data-driven connectivity patterns.

      The restricted network size and the limited experimental knowledge about connectivity among stellate cells, principal cells, and different interneuron types in the MEC could be addressed in more detail. Moreover, the manuscript lacks a thorough discussion of assumptions common to most continuous attractor network (CAN) models of grid cells, such as the use of "hand-crafted" connections between direction-sensitive conjunctive grid cells and network cells to drive attractor shifts. Including such a discussion would strengthen the manuscript. This is especially relevant given the authors' explicit claim that they have revealed two mechanisms underlying the emergence of a predictive code in the MEC. In this reviewer's view, the work demonstrates a potential mechanism, but one that requires experimental verification. The significance of the model would thus be increased by providing more experimentally testable predictions of the model.

    1. Reviewer #3 (Public review):

      Summary:

      This study provides the Drosophila community with a large collection of new split-Gal4 descending neuron genetic lines. They extend previous efforts to characterize and identify genetic lines for this important class of neurons by providing images of descending neurons and a metric for genetic lines based on specificity and consistency. Their discussion highlights several applications of this collection, for example, to understand the function of new descending neurons through optogenetic and/or physiological characterization. They also helpfully discuss caveats, encouraging users of this collection to validate expression patterns and to be careful when interpreting optogenetic experimental results, considering potential off-target labeling in the lines. Overall, members of the Drosophila community interested in understanding the function of descending neurons and their role in behavior will find this a helpful resource.

      Strengths:

      (1) The authors extend the previous genetic access of descending neurons in Drosophila to over 800 split-Gal4 lines and 190 cell types (nearly half of the known population of descending neurons). The authors update and at times correct the previous identification of descending neurons from a previous, large-scale analysis. The authors extend and, at times, correct previous efforts at characterizing these neurons.

      (2) Clear images of descending neurons labeled by new genetic lines are presented in the main figure papers for reference.

      (3) This study classifies lines labeling descending neurons using a quality score to indicate specificity and consistency. They provide this for the entire set of genetic lines, a valuable assessment for researchers interested in targeting these neurons for optogenetic or physiological characterization.

      Weaknesses:

      Although this paper represents a substantial effort and useful contribution to the Drosophila community, a few weaknesses, primarily regarding the specificity and reliability of genetic lines, remain:

      (1) The authors state that optogenetic activation of DN types using the new split-GAL4 lines is expected to reliably activate the target neurons with virtually no off-target effects in the rest of the central nervous system. More data supporting this conclusion, including both qualitative and quantitative anatomical evidence, would strengthen this claim.

      (2) The authors do recommend that researchers using these lines examine expression patterns themselves to evaluate line cleanliness and consistency, but some analysis by the authors would be useful, for example, providing guidelines for best practices to perform this evaluation.

      (3) Changes in expression patterns after several generations are noted by the authors, weakening confidence somewhat in the long-term usefulness of this collection of genetic lines.

    1. Reviewer #3 (Public review):

      Summary:

      The authors were trying to validate SARS-CoV-2 Mac1 as a drug discovery target and by extension other viral macrodomains.

      Strengths:

      The medicinal chemistry and structure based optimization is exemplary. Macrodomains and ADPribosyl hydrolases have the reputation for being undruggable, yet the authors managed to optimize hits from a fragment screen using structure based approaches and fragment linking to make a 20nM inhibitor as a tool compound to validate the target.<br /> In addition, the in vivo work is also a strength. The ability to reduce the viral count at a rate comparable to nirmatrelvir is impressive. Tracking the cytokine expression levels also supports much of the genetic data and mechanism of action for macrodomains.

      Weaknesses:

      The main compound AVI-4206, while being very potent and selective is not appreciably orally bioavailable. The fact that they have to use high doses of the compound IP to see in vivo effects may lead to questions regarding off target effects. The authors acknowledge this and point it out as a potential avenue for further optimization.

      The cellular models are not as predictive of antiviral activity as one would expect. However, the authors had enough chutzpah to test the compound in vivo knowing that cellular models might not be an accurate representation of a living system with a fully functional immune system all of which is most likely needed in an antiviral response to test the importance of Mac1 as a target.

      Comments on revisions:

      All previous suggestions were addressed. I am satisfied with the author's modifications.

    1. Reviewer #3 (Public review):

      Summary:

      Mirkovic et al explore the cause underlying development of aneuploidy during aging. This paper provides a compelling insight into the basis of chromosome missegregation in aged cells, tying this phenomenon to the established Nuclear Pore Complex architecture remodeling that occurs with aging across a large span of diverse organisms. The authors first establish that aged mother cells exhibit aberrant error correction during mitosis. As extrachromosomal rDNA circles (ERCs) are known to increase with age and lead to NPC dysfunction that can result in leakage of unspliced pre-mRNAs, Mirkovic et al search for intron-containing genes in yeast that may be underlying chromosome missegregation, identifying three genes in the aurora B-dependent error correction pathway: MCM21, NBL1, and GLC7. Interestingly, intron-less mutants in these genes suppress chromosome loss in aged cells, with a significant impact observed when all three introns were deleted (3x∆i). The 3x∆i mutant also suppresses the increased chromosome loss resulting from nuclear basket destabilization in a mlp1∆ mutant. The authors then directly test if aged cells do exhibit aberrant mRNA export, using RNA FISH to identify that old cells indeed leak intron-containing pre-mRNA into the cytoplasm, as well as a reporter assay to demonstrate translation of leaked pre-mRNA, and that this is suppressed in cells producing less ERCs. Mutants causing increased pre-mRNA leakage are sufficient to induce chromosome missegregation, which is suppressed by the 3x∆i.

      Strengths:

      The finding that deleting the introns of 3 genes in the Aurora B pathway can suppress age-related chromosome missegregation is highly compelling. Additionally, the rationale behind the various experiments in this paper is well-reasoned and clearly explained.

      Weaknesses:

      My main concerns have been thoroughly addressed by the authors.

    1. Reviewer #3 (Public review):

      Summary:

      Shimagaki et al. investigate the virus-antibody coevolutionary processes that drive the development of broadly neutralizing antibodies (bnAbs). The study's primary goal is to characterize the evolutionary dynamics of HIV-1 within hosts that accompany the emergence of bnAbs, with a particular focus on inferring the landscape of selective pressures shaping viral evolution. To assess the generality of these evolutionary patterns, the study extends its analysis to rhesus macaques (RMs) infected with simian-human immunodeficiency viruses (SHIV) incorporating HIV-1 Env proteins derived from two human individuals.

      Strengths:

      A key strength of the study is its rigorous assessment of the similarity in evolutionary trajectories between humans and macaques. This cross-species comparison is particularly compelling, as it quantitatively establishes a shared pattern of viral evolution using a sophisticated inference method. The finding that similar selective pressures operate in both species adds robustness to the study's conclusions and suggests broader biological relevance. In the revised version, the Authors included a simple but clear explanation of the statistical method for inferring the model's parameters in the main text. Moreover, I find the potential implications of the methodology absent in the original submission very interesting.

      Conclusions:

      Overall, the study presents a compelling analysis of HIV-1 evolution and its parallels in SHIV-infected macaques.

    1. Reviewer #3 (Public review):

      Summary:

      Gazal et al present convincing evidence supporting a new model of MPS formation where a gap-and-patch MPS pattern coalesces laterally to give rise to a lattice covering the entire axon shaft.

      Strengths:

      (1) This is a very interesting study that supports a change in paradigm in the model of MPS lattice formation.

      (2) Knowledge on MPS organization is mainly derived from studies using rat hippocampal neurons. In the current manuscript, Gazal et al use human IPS-derived motor neurons, a highly relevant neuron type, to further the current knowledge on MPS biology.

      (3) The quality of the images provided, specifically of those involving super-resolution, is of a high standard. This adequately supports the conclusions of the authors.

      Weaknesses:

      (1) The main concern raised by the manuscript is the assumption that staudosporine-induced gap and patch formation recapitulates the physiological assembly of gaps and patches of betaII-spectrin.

      (2) One technical challenge that limits a more compelling support of the new model of MPS formation is that fixed neurons are imaged, which precludes the observation of patch coalescence.

    1. Reviewer #3 (Public review):

      Summary:

      Mou and Ji investigated neuro-computational mechanisms behind observational spatial learning in rats and reported several signs of functional coupling between the ACC and CA1 at the single neuron level. Using multi-site tetrode recording, they found that ACC cells encoding a path in a maze were activated while a rat observed another rat taking that path. This activation was also correlated with the activation of CA1 cells encoding the same path and facilitated their replay during sharp-wave ripples (SWRs) before the recording rat ran on the maze by itself. These activity patterns were associated with correct path choice during self-running and were absent in control conditions where the recording rat did not learn the correct choice through observations. Based on these findings, the authors argue that ACC cells capture the critical information during observation to organize hippocampal cell activity for subsequent spatial decisions.

      Strengths:

      The authors used multiple outcome measures to build a strong case for path-specific spike coordination between ACC and CA1 cells. The analyses were conducted carefully, and proper control measures were used to establish the statistical significance of the detected effects. The authors also demonstrated tight correlations between the spike coordination patterns and the successful use of observed information for future decisions.

      Weaknesses:

      (1) As evidence for the activation of path information in the ACC during observation, the authors showed positive correlations between firing rates during observation and those during self-running. This argument will be solidified if the authors use a decoding approach to demonstrate the activation of path-selective ACC ensemble activity patterns during observation. This approach will also open the door to uncovering how the activation of ACC path representation is related to the moment-to-moment position of the demonstrator rat and whether it is coupled with the timing of SWRs.

      (2) The authors argued that the ACC biases the content of awake replay in CA1 during SWRs in the observation period. The reviewer wonders if a similar bias also occurs during SWRs in the self-run period (i.e., water consumption after the correct choice). This analysis will help test whether the biased replay occurs due to the need to convert observed information into future choices.

      (3) Although the authors demonstrated the necessity of the ACC for the task, it remains to be determined whether firing coordination between the ACC and CA1 during observation is necessary for the correct path choice during self-runs. Some discussion on this point, along with future direction, would be beneficial for readers.

      Comments on revisions:

      The authors fully addressed my recommendations. I do not have any further comments.

    1. Reviewer #3 (Public review):

      Summary:

      The authors present a method to address class imbalance in T cell receptor (TCR)-epitope binding datasets by generating synthetic positive binding examples using generative models, specifically BERT-based architectures and Restricted Boltzmann Machines (RBMs). They hypothesize that improving class balance can enhance model performance in predicting TCR-peptide binding.

      Strengths:

      (1) Interesting biological as well as technical topic.

      (2) Solid technical foundations.

      Weaknesses:

      (1) Fundamental Biological Oversight:

      While the computational strategy of augmenting positive samples via generative models is technically interesting, the manuscript falls short in addressing key biological considerations. Specifically, the authors simulate and evaluate only CDR3β-peptide binding interactions. However, antigen recognition by T cells involves both the α- and β-chains of the TCR. The omission of CDR3α undermines the biological realism and limits the generalizability of the findings.

      (2) Validation of Simulated Data:

      The central claim of the manuscript is that simulated positive examples improve predictive performance. However, there is no rigorous validation of the biological plausibility or realism of the generated TCR sequences. Without independent evaluation (e.g., testing whether synthetic TCR-peptide pairs are truly binding), it remains unclear whether the performance gains are biologically meaningful or merely reflect artifacts of the generation process.

      (3) Risk of Bias and Overfitting:

      Training and evaluating models with generated data introduces a risk of circularity and bias. The observed improvements may not reflect better generalization to real-world TCR-epitope interactions but could instead arise from overfitting to synthetic patterns. Additional testing on independent, biologically validated datasets would help clarify this point.

    1. Reviewer #3 (Public review):

      Summary:

      In this manuscript, Guin et al. use a CRISPR KO screen of ~1000 candidates in two human cell lines, along with high-throughput image analysis, to demonstrate that orderly progression through mitosis shapes centromere organization. They identify ~50 genes that perturb centromere clustering when depleted in both RPE1 and HCT116 cells and validate many of these hits using RNAi. They then use auxin-mediated acute depletion of four factors (NCAPH2, KI67, SPC24, and NUF2) to demonstrate that their effects on centromere clustering require passage through mitosis. They further suggest that the lack of these factors during mitosis leads to the disorganization of centromeres on the mitotic spindle, and these effects persist in the subsequent interphase. Overall, the manuscript is clear, well-written, the experiments performed are appropriate, and the data are interpreted accurately. In my opinion, the main strength of this manuscript is the discovery of several hits associated with altered centromere organization. These hits will serve as a solid foundation for future work investigating genome organization in human cells. On the other hand, how the changes in centromere organization relate to other aspects of interphase genome architecture (A/B compartments, chromosome territories, etc) remains unclear and represents the main shortcoming of this manuscript.

      Comments:

      (1) Given the authors' suggestion that disorderly mitotic progression underlies the changes in centromere clustering in the subsequent interphase, I think it would be beneficial to showcase examples of disorderly mitosis in the AID samples and perhaps even quantify the misalignment on the metaphase plate.

      (2) I don't quite agree with the description that centromeres cluster into chromocenters (p4 para 2, p17 para 1, and other instances in the manuscript). To the best of my knowledge, chromocenters primarily consist of clustered pericentromeric heterochromatin, while the centromeres are studded on the chromocenter surface. This has been beautifully demonstrated in mouse cells (Guenatri et al., JCB, 2004), but it is true in other systems like flies and plants as well.

    1. Reviewer #3 (Public review):

      Summary:

      The authors present a technically impressive dataset showing that repeated excitation or restraint stress internalises somatodendritic α2A adrenergic autoreceptors (α2A ARs) in locus coeruleus (LC) neurons. Loss of these receptors weakens GIRK-dependent autoinhibition, raises neuronal excitability, and is accompanied by higher MAO A, DOPEGAL, AEP, and tau N368 levels. The work combines rigorous whole-cell electrophysiology with barbadin-based trafficking assays, qPCR, Western blotting, and immunohistochemistry. The final schematic is appealing and, in principle, could explain early LC hyperactivity followed by degeneration in ageing and Alzheimer's disease.

      Strengths:

      - Multi-level approach - The study integrates electrophysiology, pharmacology, mRNA quantification, and protein-level analysis.

      -Use of barbadin to block β-arrestin/AP-2-dependent internalisation is both technically precise and mechanistically informative

      -Well-executed electrophysiology

      -translation relevance

      -converges to a model that peers discussed (scientists can only discuss models - not data!)

      Weaknesses:

      Nevertheless, the manuscript currently reads as a sequence of discrete experiments rather than a single causal chain.

    1. Reviewer #3 (Public review):

      The manuscript investigated the kinetics of molecule transport across interfaces in phase-separated mixtures. Through the development of a theoretical approach for a binary mixture in a sharp interface limit, the authors found that interface resistance leads to a slowdown in interfacial movement. Subsequently, they extended this approach to multiple molecular species (incorporating both labeled and unlabeled molecules) and continuous transport models. Finally, they proposed experimental settings in vitro and commented on the necessary optical resolution to detect signatures of interfacial kinetics associated with resistance.

      The investigation of transport kinetics across biomolecular condensate interfaces holds significant relevance for understanding cellular function and dysfunction mechanisms; thus, the topic is important and timely. However, the current manuscript presentation requires improvement. Firstly, the inclusion of numerous equations in the main text substantially compromises readability, and relocation of a part of the formulae and derivations to the Appendix would be more appropriate. Secondly, the manuscript would benefit from more comprehensive comparisons with existing theoretical studies on molecular transport kinetics. The text should also be written to be more approachable for a general readership. Modifications and sufficient responses to the specific points outlined below are recommended.

      (1) The authors introduced a theoretical framework to study the kinetics of molecules across an interface between two coexisting liquid phases and found that interface resistance leads to a slowdown in interfacial movement in a binary mixture and a decelerated molecule exchange between labeled and unlabeled molecules across the phase boundary. However, these findings appear rather expected. The work would be strengthened by a more thorough discussion of the kinetics of molecule transport across interfaces (such as the physical origin of the interface resistance and its specific impact on transport kinetics).

      (2) The formulae in the manuscript should be checked and corrected. Notably, Equation 10 contains "\phi_2\ln\phi_2" while Eq. 11b shows "n^{-1}\ln\phi_2", suggesting a missing factor of "n^{-1}". Similarly, Equation 18 obtained from Equation 11: the logarithmic term in Eq.11a is "n^{-1}\ln phi_1-\ln(1-\phi)" but the pre-exponential factor in Equation 18a is just "\phi_1/(1-\phi*)", where is "n^{-1}"? Additionally, there is a unit inconsistency in Equation 36, where the unit of \rho (s/m) does not match that of the right-hand side expression (s/m^2).

      (3) The authors stated that the numerical solutions are obtained using a custom finite difference scheme implemented in MATLAB in the Appendix. The description of numerical methods is insufficiently detailed and needs to be expanded, including specific equations or models used to obtain specific figures, the introduction of initial and boundary conditions, the choices of parameters and their reasons in terms of the biology.

      (4) The authors claimed that their framework naturally extends to multiple molecular species, but only showed the situation of labeled and unlabeled molecules across a phase boundary. How about three or more molecular species? Does this framework still work? This should be added to strengthen the manuscript and confirm the framework's general applicability.

    1. Reviewer #3 (Public review):

      Summary:

      In this delightful study, the authors use local indentation of the cell surface combined with out-of-focus microscopy to measure the rates of pressure spread in the cell and to argue that the results can be explained with the poroelastic model. Osmotic shock that decreases cytoskeletal mesh size supports this notion. Experiments with water injection and water suction further support it, and also, together with a mechanical model and elegant measurements of decreasing fluorescence in the cell 'flashed' by external flow, demonstrate that the membrane is permeable, and that steady flow and pressure gradient can exist in a cell with water source/sink in different locations. Use of blebs as indicators of the internal pressure further supports the notion of differential cytoplasmic pressure.

      Strengths:

      The study is very imaginative, interesting, novel and important.

      Weaknesses: I have two broad critical comments:

      (1) I sense that the authors are correct that the best explanation of their results is the passive poroelastic model. Yet, to be thorough, they have to try to explain the experiments with other models and show why their explanation is parsimonious. For example, one potential explanation could be some mechanosensitive mechanism that does not involve cytoplasmic flow; another could be viscoelastic cytoskeletal mesh, again not involving poroelasticity. I can imagine more possibilities. Basically, be more thorough in the critical evaluation of your results. Besides, discuss potential effect of significant heterogeneity of the cell.

      (2) The study is rich in biophysics but a bit light on chemical/genetic perturbations. It could be good to use low levels of chemical inhibitors for, for example, Arp2/3, PI3K, myosin etc, and see the effect and try to interpret it. Another interesting question - how adhesive strength affects the results. A different interesting avenue - one can perturb aquaporins. Etc. At least one perturbation experiment would be good.

      Comments on revisions: I am satisfied with the revisions

    1. Reviewer #3 (Public review):

      Summary:

      In their article "Range geography and temperature variability explain cross-continental convergence in range and phenology shifts in a model insect taxon" the authors rigorously investigate the spatial and temporal trends in the occurrence of odonate species and their potential drivers. Specifically, they examine whether species shift their geographic ranges poleward or alter their phenology to cope with changing conditions. Leveraging opportunistic observations of European and North American odonates, they find that species showing significant range shifts also exhibited shifts to earlier emergence. Considering a broad range of potential predictors, their results reveal that geographical factors, but not functional traits, are associated with these shifts.

      Strengths:

      The article addresses an important topic in ecology and conservation that is particularly timely in the face of reports of substantial insects declines in North America and Europe over the past decades. Through data integration the authors leverage the rich natural history record for odonates, broadening the taxonomic scope of analyses of temporal trends in phenology and distribution. The combination of phenological and range shifts in one framework presents an elegant way to reconcile previous findings and informs about the drivers of biodiversity loss.

      Weaknesses:

      To better understand whether species shifting both their ranges and phenology are more successful, or as stated here are 'clear winners', and hence whether those that do neither are more vulnerable would require integrating population trends alongside the discussed response. The ~10% species that have not shifted their distribution or phenology might have not declined in abundance, if they have rapidly adapted to local changes in climatic conditions (i.e. they might show a plastic response). These species might be the real 'winners', while species that have recently shifted their ranges or phenology may eventually reach hard limits. The authors are discussing this limitation but might want to adapt their wording, given the potential for misinterpretation. The finding that species with more northern ranges showed lesser northward shifts would speak to the fact that some species have already reached such a geographical range limit.

      Achievements and impact:

      The results support broad differences in the response of odonate species to climate change, and the prediction that range geography and temperature seasonality are more important predictors of these changes than functional traits. Simultaneously addressing range and phenological shifts highlights that most species exhibit coupled responses but also identifies a significant portion of species that do not respond in these ways that are of critical conservation concern. These results are important for improving forecasts of species' responses to climate change and identifying species of particularly conservation concern. Although not exhaustive regarding abundance trends, the study presents an important step towards a general framework for investigating the drivers of multifaceted species responses.

    1. Reviewer #3 (Public review):

      Summary:

      Using three strains of mice that are founders of the Diversity Outbred Population of mice, this paper attempts to identify key genetic drivers of obesity and metabolic dysfunction. Through a series of in-depth phenotyping experiments, the authors describe substantial differences in the propensity of these strains to develop obesity and complications associated with obesity. The key here was the careful selection of these strains, as they mostly spanned the spectrum of minor susceptibility (C57BL/6J), major susceptibility (NZO/HILtJ), and complete resistance to diet-induced obesity (CAST/EiJ). This was done in the setting of both a normal diet and a high-fat diet. These studies identified that one of the most transcriptionally activated tissues in this setting across the strains was adipose tissue. Furthermore, a critical pathway in adipose tissue that inferred protection against obesity in the CAST strain was related to immune infiltration. Subsequently, the authors extended their studies into this phenotype using their existing access to the vast array of genetic information from the DO datasets. From this analysis, it was identified that a key region on Chr19 had a significant influence on this phenotype, and subsequent work investigated the potentially causal genes. Overall, this study encompasses an impressive amount of in vivo and genetic work and identifies some new gene regulators associated with obesity complications, which warrant further investigation.

      Strengths:

      This study engages multiple mouse lines with diet intervention, as well as powerful genetic mapping tools to isolate genetic drivers of various obesity related phenotypes. The animal studies are thorough and well performed, and they also include detailed omics analysis of several tissues. Subsequent genetic mapping uses some of the world's most powerful preclinical genetic approaches, and findings identify some novel genes associated with obesity.

      Weaknesses:

      These mouse lines and hybrid genetic screens in this paper have been used for some years now to map similar phenotypes, so in that sense, the approach is not overly novel. Moreover, the most compelling and exciting part of the study, in this reviewer's opinion, is the DO mapping of the immune phenotype in adipose tissue. In some ways, the authors could have potentially come to this same conclusion without the need to perform the mouse studies in the three different strains (other than the nice storytelling of finding the phenotype initially in CAST). Likewise, with this being the most novel aspect of the study, it was a shame that the genes identified at Chr19 were not investigated in more detail in the manuscript, other than just some associative outcomes in mice and humans. It would have been pleasing to see some attempt to validate one of these genes in a mouse model, linking it to either obesity or immune phenotypes in WAT.

    1. Reviewer #3 (Public review):

      Summary:

      This work aims to understand how cells repair damage to the plasma membrane (PM). This is important, as failure to do so will result in cell lysis and death. Therefore, this is an important fundamental question with broad implications for all eukaryotic cells. Despite this importance, there are relatively few proteins known to contribute to this repair process. This study expands the number of experimentally validated PM from 8 to 80. Further, they use precise laser-induced damage of the PM/cell wall and use live-cell imaging to track the recruitment of repair proteins to these damage sites. They focus on repair proteins that are involved in either exocytosis or clathrin-mediated endocytosis (CME) to understand how these membrane remodeling processes contribute to PM repair. Through these experiments, they find that while exocytosis and CME both occur at the sites of PM damage, exocytosis predominates in the early stages of repairs, while CME predominates in the later stages of repairs. Lastly, they propose that CME is responsible for diverting repair proteins localized to the growing bud cell to the site of PM damage.

      Strengths:

      The manuscript is very well written, and the experiments presented flow logically. The use of laser-induced damage and live-cell imaging to validate the proteome-wide screen using SDS-induced damage strengthens the role of the identified candidates in PM/cell wall repair.

      Weaknesses:

      (1) Could the authors estimate the fraction of their candidates that are associated with cell wall repair versus plasma membrane repair? Understanding how many of these proteins may be associated with the repair of the cell wall or PM may be useful for thinking about how these results are relevant to systems that do or do not have a cell wall. Perhaps this is already in their GO analysis, but I don't see it mentioned in the manuscript.

      (2) Do the authors identify actin cable-associated proteins or formin regulators associated with sites of PM damage? Prior work from the senior author (reference 26) shows that the formin Bnr1 relocalizes to sites of PM damage, so it would be interesting if Bnr1 and its regulators (e.g., Bud14, Smy1, etc) are recruited to these sites as well. These may play a role in directing PM repair proteins (see more below).

      (3) Do the authors suspect that actin cables play a role in the relocalization of material from the bud tip to PM damage sites? They mention that TMD proteins are secretory vesicle cargo (lines 134-143) and that Myo2 localizes to damage sites. Together, this suggests a possible role for cable-based transport of repair proteins. While this may be the focus of future work, some additional discussion of the role of cables would strengthen their proposed mechanism (steps 3 and 4 in Figure 7).

      (4) Lines 248-249: I find the rationale for using an inducible Gal promoter here unclear. Some clarification is needed.

    1. Reviewer #3 (Public review):

      Summary:

      Ioakeimidis and colleagues studied microstructural abnormalities in N=56 Huntington's disease (HD) patients compared to N=57 normative controls. The authors used a powerful MRI Connectom scanner and applied the SANDI model to estimate the soma size, neurite size, soma density, and extracellular fraction in key subcortical nuclei related to HD. In the striatum, they found decreased soma density and increased soma size, which also seemed to become more pronounced in advanced HD individuals in the final exploratory analyses. The authors conducted important analyses to find whether the SANDI measures correlate with clinical scores (i.e., QMotor) and whether the variance of the striatal volume is explained by the SANDI measures. They found a relationship between SANDI measures for both.

      Strengths:

      The study is both innovative and of high interest for the HD community. The authors provide a rich pool of statistical analyses and results that anticipate the questions that may emerge in the HD research community. Statistics are carefully chosen and image processing is done with state-of-the-art methods and tools. The sample size gives sufficient credibility to the findings. Altogether, I think this study sets a milestone in the attempts of the HD community to understand neuropathological processes with non-invasive methods, and extends the current knowledge of microstructural anomalies identified in HD with diffusion MRI. More importantly, the newly identified anomalies in soma size and soma density open new avenues for studying these biological effects further and perhaps developing these biomarkers for use in clinical trials.

      Weaknesses:

      (1) An important question is whether the SANDI measures, which require an expensive scanner and elaborate processing, are better biomarkers than the more traditional DTI measures. Can the authors compare the effect size of FA/MD with SANDI measures? In some of the plots and tables, FA/MD seem to have comparable, if not higher, correlations with QMotor or CAP scores. On the same vein, it is unclear whether DTI measures were included in hierarchical stepwise regression. I wonder if the stepwise models may have picked up FA/MD instead of SANDI measures if they are given a chance. Overall, I hope the authors can discuss their findings also in this light of cost vs. benefit of adopting SANDI in future studies, which is an important topic for clinical trials.

      (2) Similar to the above point, it is very important to consider how strong the biomarking signal is from SANDI measures compared to the good old striatal volume. Some plots seem to indicate that volumes still have the highest correlation with QMotor and the highest effect size in group comparisons. It would be helpful for the community to know where the new SANDI measures stand compared to the most typically used volumes in terms of effect size.

      (3) The diffusion measures are inevitably correlated to some degree. Please provide a correlation matrix in the supplementary material, including all DWI measures, to enable readers to better understand how similar SANDI measures are to each other or vs. other DTI measures. Perhaps adding volumes to this correlation matrix may also be a good future reference.

      (4) ISS stages:

      a) The online ISS calculator requires cut-offs derived from the longitudinal Freesurfer pipeline, while the authors do not have longitudinal data. Thus, the ISS classification might be inaccurate to some degree if the authors used the FS cross-sectional pipeline. Please review this issue and see if updated cut-offs should be used to classify participants.

      b) Were there really no participants with ISS 0 among the 56 HD individuals? Please clarify in the manuscript.

      (5) A note on terminology that might be confusing to some readers. According to the creators of ISS, the ISS stages are created for research only; they are not used or applied in the clinic. On the other hand, the terms "premanifest" and "manifest" have a clinical meaning, typically based on the diagnostic confidence level. The assignment of ISS0-1 to premanifest and ISS2-3 to manifest may create some non-trivial confusion, if not opposition, in some segments of the HD community. The authors can keep their current terminology, but will need to at least clarify to the reader that this assignment is speculative, does not fully match the clinically-based categories, and should not be confused with similarly named groups in the previous literature.

    1. Reviewer #3 (Public review):

      Summary:

      The melibiose permease from Salmonella enterica serovar Typhimurium (MelBSt) is a member of the Major Facilitator Superfamily (MFS). It catalyzes the symport of a galactopyranoside with Na⁺, H⁺, or Li⁺, and serves as a prototype model system for investigating cation-coupled transport mechanisms. In cation-coupled symporters, a coupling cation typically moves down its electrochemical gradient to drive the uphill transport of a primary substrate; however, the precise role and molecular contribution of the cation in substrate binding and translocation remain unclear. In a prior study, the authors showed that the binding affinity for melibiose is increased in the presence of Na+ by about 8-fold, but the molecular basis for the cooperative mechanism remains unclear. The objective of this study was to better understand the allosteric coupling between the Na+ and melibiose binding sites. To verify the sugar-recognition specific determinants, the authors solved the outward-facing crystal structures of a uniport mutant D59C with four sugar ligands containing different numbers of monosaccharide units (α-NPG, melibiose, raffinose, or α-MG). The structure with α-NPG bound has improved resolution (2.7 Å) compared to a previously published structure and to those with other sugars. These structures show that the specificity is clearly directed toward the galactosyl moiety. However, the increased affinity for α-NPG involves its hydrophobic phenyl group, positioned at 4 Å-distance from the phenyl group of Tyr26 forms a strong stacking interaction. Moreover, a water molecule bound to OH-4 in the structure with α-NPG was proposed to contribute to the sugar recognition and appears on the pathway between the two specificity-determining pockets. Next, the authors analyzed by hydrogen-to-deuterium exchange coupled to mass spectrometry (HDX-MS) the changes in structural dynamics of the transporter induced by melibiose, Na+, or both. The data support the conclusion that the binding of the coupling cation at a remote location stabilizes the sugar-binding residues to switch to a higher-affinity state. Therefore, the coupling cation in this symporter was proposed to be an allosteric activator.

      Strengths:

      (1) The manuscript is generally well written.

      (2) This study builds on the authors' accumulated knowledge of the melibiose permease and integrates structural and HDX-MS analyses to better understand the communication between the sodium ion and sugar binding sites. A high sequence coverage was obtained for the HDX-MS data (86-87%), which is high for a membrane protein.

      Weaknesses:

      (1) I am not sure that the resolution of the structure (2.7 Å) is sufficiently high to unambiguously establish the presence of a water molecule bound to OH-4 of the α-NPG sugar. In Figure 2, the density for water 1 is not obvious to me, although it is indeed plausible that water mediates the interaction between OH4/OH6 and the residues Q372 and T373.

      (2) Site-directed mutagenesis could help strengthen the conclusions of the authors. Would the mutation(s) of Q372 and/or T373 support the water hypothesis by decreasing the affinity for sugars? Mutations of Thr 121, Arg 295, combined with functional and/or HDX-MS analyses, may also help support some of the claims of the authors regarding the allosteric communication between the two substrate-binding sites.

      (3) The main conclusion of the authors is that the binding of the coupling cation stabilizes those dynamic sidechains in the sugar-binding pocket, leading to a high-affinity state. This is visible when comparing panels c and a from Figure S5. However, there is both increased protection (blue, near the sugar) and decreased protection in other areas (red). The latter was less commented, could the increased flexibility in these red regions facilitate the transition between inward- and outward-facing conformations? The HDX changes induced by the different ligands were compared to the apo form (see Figure S5). It might be worth it for data presentation to also analyze the deuterium uptake difference by comparing the conditions sodium ion+melibiose vs melibiose alone. It would make the effect of Na+ on the structural dynamics of the melibiose-bound transporter more visible. Similarly, the deuterium uptake difference between sodium ion+melibiose vs sodium ion alone could be analyzed too, in order to plot the effect of melibiose on the Na+-bound transporter.

      (4) For non-specialists, it would be beneficial to better introduce and explain the choice of using D59C for the structural analyses.

      (5) In Figure 5a, deuterium changes are plotted as a function of peptide ID number. It is hardly informative without making it clearer which regions it corresponds to. Only one peptide is indicated (213-226), I would recommend indicating more of them in areas where deuterium changes are substantial.

      (6) From prior work of the authors, melibiose binding also substantially increases the affinity of the sodium ion. Can the authors interpret this observation based on the HDX data?

    1. Reviewer #3 (Public review):

      Summary:

      Kern et al. critically assess the sensitivity of temporally delayed linear modelling (TDLM), a relatively new method used to detect memory replay in humans via MEG. While TDLM has recently gained traction and been used to report many exciting links between replay and behavior in humans, Kern et al. were unable to detect replay during a post-learning rest period. To determine whether this null result reflected an actual absence of replay or sensitivity of the method, the authors ran a simulation: synthetic replay events were inserted into a control dataset, and TDLM was used to decode them, varying both replay density and its correlation with behavior. The results revealed that TDLM could only reliably detect replay at unrealistically (not-physiological) high replay densities, and the authors were unable to induce strong behavior correlations. These findings highlight important limitations of TDLM, particularly for detecting replay over extended, minutes-long time periods.

      Strengths:

      Overall, I think this is an extremely important paper, given the growing use of TDLM to report exciting relationships between replay and behavior in humans. I found the text clear, the results compelling, and the critique of TDLM quite fair: it is not that this method can never be applied, but just that it has limits in its sensitivity to detect replay during minutes-long periods. Further, I greatly appreciated the authors' efforts to describe ways to improve TDLM: developing better decoders and applying them to smaller time windows.

      The power of this paper comes from the simulation, whereby the authors inserted replay events and attempted to detect them using TDLM. Regarding their first study, there are many alternative explanations or possible analysis strategies that the authors do not discuss; however, none of these are relevant if, under conditions where it is synthetically inserted, replay cannot be detected.

      Additionally, the authors are relatively clear about which parameters they chose, why they chose them, and how well they match previous literature (they seem well matched).

      Finally, I found the application of TDLM to a baseline period particularly important, as it demonstrated that there are fluctuations in sequenceness in control conditions (where no replay would be expected); it is important to contrast/calculate the difference between control (pre-resting state) and target (post-resting state) sequenceness values.

      Weaknesses:

      While I found this paper compelling, I was left with a series of questions.

      (1) I am still left wondering why other studies were able to detect replay using this method. My takeaway from this paper is that large time windows lead to high significance thresholds/required replay density, making it extremely challenging to detect replay at physiological levels during resting periods. While it is true that some previous studies applying TDLM used smaller time windows (e.g., Kern's previous paper detected replay in 1500ms windows), others, including Liu et al. (2019), successfully detected replay during a 5-minute resting period. Why do the authors believe others have nevertheless been able to detect replay during multi-minute time windows?

      For example, some studies using TDLM report evidence of sequenceness as a contrast between evidence of forwards (f) versus backwards (b) sequenceness; sequenceness was defined as ZfΔt - ZbΔt (where Z refers to the sequence alignment coefficient for a transition matrix at a specific time lag). This use case is not discussed in the present paper, despite its prevalence in the literature. If the same logic were applied to the data in this study, would significant sequenceness have been uncovered? Whether it would or not, I believe this point is important for understanding methodological differences between this paper and others.

      (2) Relatedly, while the authors note that smaller time windows are necessary for TDLM to succeed, a more precise description of the appropriate window size would greatly improve the utility of this paper. As it stands, the discussion feels incomplete without this information, as providing explicit guidance on optimal window sizes would help future researchers apply TDLM effectively. Under what window size range can physiological levels of replay actually be detected using TDLM? Or, is there some scaling factor that should be considered, in terms of window size and significance threshold/replay density? If the authors are unable to provide a concrete recommendation, they could add information about time windows used in previous studies (perhaps, is 1500ms as used in their previous paper a good recommendation?).

      (3) In their simulation, the authors define a replay event as a single transition from one item to another (example: A to B). However, in rodents, replay often traverses more than a single transition (example: A to B to C, even to D and E). Observing multistep sequences increases confidence that true replay is present. How does sequence length impact the authors' conclusions? Similarly, can the authors comment on how the length of the inserted events impacts TDLM sensitivity, if at all?

      For example, regarding sequence length, is it possible that TDLM would detect multiple parts of a longer sequence independently, meaning that the high density needed to detect replay is actually not quite so dense? (example: if 20 four-step sequences (A to B to C to D to E) were sampled by TDLM such that it recorded each transition separately, that would lead to a density of 80 events/min).

    1. Reviewer #3 (Public review):

      Summary:

      Borghi and colleagues present results from 4 experiments aimed at investigating the effects of dual γtACS and iTBS stimulation of the precuneus on behavioral and neural markers of memory formation. In their first experiment (n = 20), they find that a 3-minute offline (i.e., prior to task completion) stimulation that combines both techniques leads to superior memory recall performance in an associative memory task immediately after learning associations between pictures of faces, names, and occupation, as well as after a 15-minute delay, compared to iTBS alone (+ tACS sham) or no stimulation (sham for both iTBS and tACS). Performance in a second task probing short-term memory was unaffected by the stimulation condition. In a second experiment (n = 10), they show that these effects persist over 24 hours and up to a full week after initial stimulation. A third (n = 14) and fourth (n = 16) experiment were conducted to investigate neural effects of the stimulation protocol. The authors report that, once again, only combined iTBS and γtACS increases gamma oscillatory activity and neural excitability (as measured by concurrent TMS-EEG) specific to the stimulated area at the precuneus compared to a control region, as well as precuneus-hippocampus functional connectivity (measured by resting state MRI), which seemed to be associated with structural white matter integrity of the bilateral middle longitudinal fasciculus (measured by DTI).

      Strengths:

      Combining non-invasive brain stimulation techniques is a novel, potentially very powerful method to maximize the effects of these kinds of interventions that are usually well-tolerated and thus accepted by patients and healthy participants. It is also very impressive that the stimulation-induced improvements in memory performance resulted from a short (3 min) intervention protocol. If the effects reported here turn out to be as clinically meaningful and generalizable across populations as implied, this approach could represent a promising avenue for treatment of impaired memory functions in many conditions.

      Methodologically, this study is expertly done! I don't see any serious issues with the technical setup in any of the experiments. It is also very commendable that the authors conceptually replicated the behavioral effects of experiment 1 in experiment 2 and then conducted two additional experiments to probe the neural mechanisms associated with these effects. This certainly increases the value of the study and the confidence in the results considerably.

      The authors used a within-subject approach in their experiments, which increases statistical power and allows for stronger inferences about the tested effects. They also used to individualize stimulation locations and intensities, which should further optimize the signal-to-noise ratio.

    1. Reviewer #3 (Public review):

      Summary:

      In the manuscript by Shen, Yeung, and colleagues, the authors generate an improved and expanded Mosaic analysis by gRNA-induced crossing-over (MAGIC) toolkit for use in making mosaic clones in Drosophila. This is a clever method by which mitotic clones can be induced in dividing cells by using CRISPR/Cas9 to generate double-strand breaks at specific locations that induce crossing over at those locations. This is conceptually similar to previous mosaic methods in flies that utilized FRT sites that had been inserted near centromeres along with heat-shock inducible FLPase. The advantage of the MAGIC system is that it can be used along with chromosomes lacking FRT sites already introduced, such as those found in many deficiency collections or in EMS mutant lines. It may also be simpler to implement than FRT-based mosaic systems. There are two flavors of the MAGIC system: nMAGIC and pMAGIC. In nMAGIC, the main constituents are a transgene insertion that contains gRNAs that target DNA near the centromere, along with a fluorescent marker. In pMAGIC, the main constituents are a transgenic insertion that contains gRNAs that target DNA near the centromere, along with ubiquitous expression of GAL80. As such, nMAGIC can be used to generate clones that are not labelled, whereas pMAGIC (along with a GAL4 line and UAS-marker) can be used much like MARCM to positively label a clone of cells. This manuscript introduces MAGIC transgenic reagents that allow all 4 chromosomes to be targeted. They demonstrate its use in a variety of tissues, including with mutants not compatible with current FLP/FRT methods, and also show it works well in tissues that prove challenging for FLP/FRT mosaic analyses (such as motor neurons). They further demonstrate that it can be used to generate mosaic clones in non-melanogaster hybrid tissues. Overall, this work represents a valuable improvement to the MAGIC method that should promote even more widespread adoption of this powerful genetic technique.

      Strengths:

      (1) Improves the design of the gRNA-marker by updating the gRNA backbone and also the markers used. GAL80 now includes a DE region that reduces the perdurance of the protein and thus better labeling of pMAGIC clones. The data presented to demonstrate these improvements is rigorous and of high quality.

      (2) Introduces a toolkit that now covers all chromosome arms in Drosophila. In addition, the efficiency of 3 target different sites is characterized for each chromosome arm (e.g., 3 different gRNA-Marker combinations), which demonstrate differences in efficiency. This could be useful to titrate how many clones an experimenter might want (e.g., lower efficiency combinations might prove advantageous).

      (3) The manuscript is well written and easy to follow. The authors achieved their aims of creating and demonstrating MAGIC reagents suitable for mosaic analysis of any Drosophila chromosome arm.

      (4) The MAGIC method is a valuable addition to the Drosophila genetics toolkit, and the new reagents described in this manuscript should allow it to become more widely adopted.

      Weaknesses:

      (1) The MAGIC method might not be well known to most readers, and the manuscript could have benefited from schematics introducing the technique.

      (2) Traditional mosaic analyses using the FLP/FRT system have strongly utilized heat-shock FLPase for inducible temporal control over mitotic clones, as well as a way to titrate how many clones are induced (e.g., shorter heat shocks will induce fewer clones). This has proven highly valuable, especially for developmental studies. A heat-shock Cas9 is available, and it would have been beneficial to determine the efficiency of inducing MAGIC clones using this Cas9 source.

    1. Reviewer #3 (Public review):

      Leshem et al have generated a transcriptional cell atlas of the human outflow tract at two developmental timepoints and its adult valvular derivatives. This carefully performed study provides a useful resource for the study of known genes implicated in outflow tract defects and potentially also for discovering new disease genes. The authors reveal neural crest and mesodermal contributions to different outflow tract components and show that GATA6, known to play a role in arterial valve development, controls a set of genes expressed in endocardium-derived cells during valve development. Interestingly, the results suggest lineage persistence of expression of certain genes through to the adult timepoint, a main new finding of this study.

      The following points should be addressed to reinforce the conclusions and emphasize the novel features of this study.

      (1) It would be helpful to clarify how these new findings confirm or diverge from what is known from analysis of neural crest and mesodermal lineage contributions to different cell populations in the mouse heart. Did the authors identify any human-specific populations of cells, such as the LGR5 population reported by Sahara et al?

      (2) The authors should clarify in the introduction and results that they consider the endocardium to be on the SHF trajectory as indicated in Figure S4C. Please add a reference for this point.

      (3) The GATA6 results are interesting and support this experimental approach. The paper would be reinforced if the authors could provide any functional validation (in addition to their GATA6 genomic occupancy data) that the designated target genes are regulated by GATA6. This might involve looking at mutant mouse embryos or cultured cells. Do the authors consider that GATA6 may regulate the endocardial to mesenchymal transition during the early stages of valve development? Or the valve interstitial cell versus fibroblast fate choice?

      (4) Do the new findings reveal whether human valves have a direct SHF to VIC trajectory (ie, without transiting through endocardium) as has been recently shown in the murine non-coronary valve leaflet? Relevant to this point, Figure 5E appears to show contributions to a single adult aortic valve leaflet - this should be explained, or corrected.

    1. Reviewer #3 (Public review):

      Summary:

      In this manuscript, Sumegi et al. use calcium imaging in head-fixed mice to test whether new place fields tend to emerge due to events that resemble behavioral time scale plasticity (BTSP) or other mechanisms. An impressive dataset was amassed (163 sessions from 45 mice with 500-1000 neurons per sample) to study spontaneous emergence of new place fields in area CA1 that had the signature of BTSP. The authors observed that place fields could emerge due to BTSP and non-BTSP-like mechanisms. Interestingly, when non-BTSP mechanisms seemed to generate a place field, this tended to occur on a trial with a spontaneous reset in neural coding (a remapping event). Novelty seemed to upregulate non-BTSP events relative to BTSP events. Finally, large calcium transients (presumed plateau potentials) were not sufficient to generate a place field.

      Strengths:

      I found this manuscript to be exceptionally well written, well powered, and timely given the outstanding debate and confusion surrounding whether all place fields must arise from BTSP event. Working at the same institute, Albert Lee (e.g. Epszstein et al., 2011 - which should be cited) and Jeff Magee (e.g. Bittner et al., 2017) showed contradictory results for how place fields arise. These accounts have not fully been put toe-to-toe and reconciled in the literature. This manuscript addresses this gap and shows that both accounts are correct - place fields can emerge due to a pre-existing map and due to BTSP.

      Weaknesses:

      I find only three significant areas for improvement in the present study:

      First, can it be concluded that non-BTSP events occur exclusively due to a global remapping event, as stated in the manuscript "these PFF surges included a high fraction of both non-BTSP- and BTSP-like PFF events, and were associated with global remapping of the CA1 representation"? Global remapping has a precise definition that involves quantifying the stability of all place fields recorded. Without a color scale bar in Figure 3D (which should be added), we cannot know whether the overall representations were independent before and after the spontaneous reset. It would be good to know if some neurons are able to maintain place coding (more often than expected by chance), suggestive of a partial-remapping phenomenon.

      Second, BTSP has a flip side that involves weakening of existing place fields when a novel field emerges. Was this observed in the present study? Presumably place fields can disappear due to this bidirectional-BTSP or due to global remapping. For a full comparison of the two phenomena, the disappearance of place fields must also be assessed.

      Finally, it would be good to know if place fields differ according to how they are born. For example, are there differences in reliability, width, peak rate, out of field firing, etc for those that arise due BTSP vs non-BTSP.

      Comments on revisions:

      The authors have mostly addressed my feedback. Compelling evidence for a fundamental observation.

    1. Reviewer #3 (Public review):

      Summary:

      The authors tackle an important problem: defining the topological changes that occur during tumorigenesis. To study this, they use an established stepwise cell model of breast cancer. A strength of their study is a careful, robust differential analysis of topological features across each cell state, which is presented clearly and rigorously. They define changes in compartmentalization, TAD structure, and chromatin looping. Intriguingly, when the authors integrate differential gene expression with chromatin looping, they see that most differentially regulated genes are not involved in loop changes, suggesting that changes in promoter or enhancer chromatin marks may play a bigger role in regulating transcription than differential loops. The differential topology analysis and its integration with transcription is very well done- one of the best versions of this I have read in the 3D genome field! However, the paper is framed largely as a cancer biology study, and it teaches us much less about this. I am worried that some of the trends for each topologic feature are not going to be consistent across the pre-malignant-malignant-metastatic spectrum and would like the authors to soften some of their claims a bit regarding how this clarifies our understanding of cancer evolution.

      Weaknesses:

      Major Concerns:

      (1) The integration of gene expression and chromatin loops is intriguing. The authors' differential analysis, however, omits consideration of genes that are on and simply further upregulated versus genes that transition on/off or off/on. It would be nice to see the authors break out looping patterns for these two different patterns of regulation, as it may be instructive regarding the rules for how EP loops govern transcription.

      (2) Given the paucity of differential loops at the majority of genes whose expression changes, the authors should examine chromatin subcompartments, as these may associate more with differential transcription.

      (3) The authors could push their TAD analysis further by integrating it with transcription. Can they look at genes and their enhancers that span these altered boundaries to see if these shifts impact transcription?

      (4) The progression of cancer critically goes from a benign -> pre-malignant -> malignant -> metastatic series of steps. The AT1 line is described as 'premalignant' and thus the authors' series omits a malignant line. While I think adding such a sample is an unreasonable request at this point (as it would have had to have been studied in 'batch' with these other samples), the authors should acknowledge that they omit this step and spend some time discussing the genetic, morphologic, and phenotypic features for their 3 conditions. The images in Figure 1S aren't particularly useful- they don't tell the reader that these cells are malignant/benign. The karyotypic data are intriguing but not fully analyzed, so it is hard to know what true phenotype these cells represent. For example, malignant means DCIS/invasive carcinoma - so then what does this pre-malignant cell model represent? The described alteration in the AT1 line is a Ras oncogene, so in some sense, the transition to this line really is just +/- Ras. The authors could spend some time thinking about the effects of Ras specifically on the 3D genome.

    1. Reviewer #3 (Public review):

      Summary:

      This paper seeks to identify underlying mechanisms contributing to memory deficits observed in Alzheimer's disease (AD) mouse models. By understanding these mechanisms, they hope to uncover insights into subtle cognitive changes early in AD to inform interventions for early-stage decline.

      Strengths:

      The paper provides a comprehensive exploration of memory deficits in an AD mouse model, covering early and late stages of the disease. The experimental design was robust, confirming age-dependent increases in Aβ plaque accumulation in the AD model mice and using multiple behavior tasks that collectively highlighted difficulties in maintaining multiple competing memory cues, with deficits most pronounced in older mice.

      In the fear acquisition, extinction, and reinstatement task, AD model mice exhibited a significantly higher fear response after acquisition compared to controls, as well as a greater drop in fear response during reinstatement. These findings suggest that AD mice struggle to retain the fear memory associated with the conditioned stimulus, with the group differences being more pronounced in the older mice.

      In the reversal Barnes maze task, the AD model mice displayed a tendency to explore the maze perimeter rather than the two potential target holes, indicating a failure to integrate multiple memory cues into their strategy. This contrasted with the control mice, which used the more confirmatory strategy of focusing on the two target holes. Despite this, the AD mice were quicker to reach the target hole, suggesting that their impairments were specific to memory retrieval rather than basic task performance.

      The authors strengthened their findings by analyzing their data with a leading computational model, which describes how animals balance competing memories. They found that AD mice showed somewhat of a contradiction: a tendency to both treat trials as more alike than they are (lower α) and similar stimuli as more distinct than they are (lower σx) compared to controls.

      Weaknesses:

      While conceptually solid, the model struggles to fit the data and to support the key hypothesis about AD mice's inability to retain competing memories. These issues are evident in Figure 3:

      (1) The model misses trends in the data, including the gradual learning of fear in all groups during acquisition, the absence of a fear response at the start of the experiment, and the faster return of fear during reinstatement compared to the gradual learning of fear during acquisition. It also underestimates the increase in fear at the start of day 2 of extinction, particularly in controls.

      (2) The model explains the higher fear response in controls during reinstatement largely through a stronger association to the context formed during the unsignaled shock phase, rather than to any memory of the conditioned stimulus from acquisition (as seen in Figure 3C). In the experiment, however, this memory does seem to be important for explaining the higher fear response in controls during reinstatement (as seen in Author Response Figure 3). The model does show a necessary condition for memory retrieval, which is that controls rely more on the latent causes from acquisition. But this alone is not sufficient, since the associations within that cause may have been overwritten during extinction. The Rescorla-Wagner model illustrates this point: it too uses the latent cause from acquisition (as it only ever uses a single cause across phases) but does not retain the original stimulus-shock memory, updating and overwriting it continuously. Similarly, the latent cause model may reuse a cause from acquisition without preserving its original stimulus-shock association.

      These issues lead to potential overinterpretation of the model parameters. The differences in α and σx are being used to make claims about cognitive processes (e.g., overgeneralization vs. over differentiation), but the model itself does not appear to capture these processes accurately.

      The authors could benefit from a model that better matches the data and captures the retention and retrieval of fear memories across phases. While they explored alternatives, including the Rescorla-Wagner model and a latent state model, these showed no meaningful improvement in fit. This highlights a broader issue: these models are well-motivated but may not fully capture observed behavior.

      Conclusion:

      Overall, the data support the authors' hypothesis that AD model mice struggle to retain competing memories, with the effect becoming more pronounced with age. While I believe the right computational model could highlight these differences, the current models fall short in doing so.

    1. Reviewer #3 (Public review):

      Summary:

      Kamal L. Nahas et al. demonstrated that pUL16, pUL21, pUL34, VP16, and pUS3 are involved in the egress of the capsids from the nucleous, since mutant viruses ΔpUL16, ΔpUL21, ΔUL34, ΔVP16, and ΔUS3 HSV-1 show nuclear egress attenuation determined by measuring the nuclear:cytoplasmic ratio of the capsids, the dfParental, or the mutants. Then, they showed that gM-mCherry+ endomembrane association and capsid clustering were different in pUL11, pUL51, gE, gK, and VP16 mutants. Furthermore, the 3D view of cytoplasmic budding events suggests an envelopment mechanism where capsid budding into spherical/ellipsoidal vesicles drives the envelopment.

      Strengths:

      The authors employed both structured illumination microscopy and cellular ultrastructure analysis to examine the same infected cells, using cryo-soft-X-ray tomography to capture images. This combination, set here for the first time, enabled the authors to obtain holistic data regarding a biological process, as a viral assembly. Using this approach, the researchers studied various stages of HSV-1 assembly. For this, they constructed a dual-fluorescently labelled recombinant virus, consisting of eYFP-tagged capsids and mCherry-tagged envelopes, allowing for the independent identification of both unenveloped and enveloped particles. They then constructed nine mutants, each targeting a single viral protein known to be involved in nuclear egress and envelopment in the cytoplasm, using this dual-fluorescent as the parental one. The experimental setting, both the microscopic and the virological, is robust and well-controlled. The manuscript is well-written, and the data generated is robust and consistent with previous observations made in the field.

      I congratulate the authors. The work is robust, and I personally highlight the way they managed to include others' results merged among their own, providing a complete view of the story.

      Comments on the latest version:

      I reviewed the responses and the updated manuscript, and I agree with the reviewer's #1 words: "The manuscript was already strong, but with the addition of the summary table and the separated images, it is now excellent."

    1. Reviewer #3 (Public review):

      Summary:

      The authors seek to determine the underlying traits that support the exceptional capacity of Aspergillus oryzae to secrete enzymes and heterologous proteins. To do so, they leverage the availability of multiple domesticated isolates of A. oryzae along with other Aspergillus species to perform comparative imaging and genomic analysis.

      Strengths:

      The strength of this study lies in the use of multifaceted approaches to identify significant differences in hyphal morphology that correlate with enzyme secretion, which is then followed by the use of genomics to identify candidate functions that underlie these differences.

      Weaknesses:

      The authors addressed all suggestions satisfactorily.

    1. Reviewer #3 (Public review):

      The authors have satisfactorily addressed my inquiries. However, I had to look quite hard to find where they responded to my final comment regarding the potential role of Arpc2 post-fusion during myofiber growth and/or maintenance, which I eventually located on page 7. I would appreciate it if the authors could state this point more explicitly, perhaps by adding a sentence such as "However, we cannot rule out the possibility that Arpc2 may also play a role in....." to improve clarity of communication.

      While I understood from the original version that this issue falls beyond the immediate scope of the study, I believe it is important to adopt a more cautious and rigorous interpretative framework, especially given the widespread use of this experimental approach. In particular, when a gene could potentially have additional roles in myofibers, it may be helpful to explicitly acknowledge that possibility. Even if Arpc2 may not necessarily be one of them, such roles cannot be fully excluded without direct testing.

    1. Reviewer #3 (Public review):

      Mondal et al. use computational modeling to investigate how activity-dependent shifts in voltage-dependent (in)activation curves can complement changes in ion channel conductance to support homeostatic plasticity. While it is well established that the voltage-dependent properties of ion channels influence neuronal excitability, their potential role in homeostatic regulation, alongside conductance changes, has remained largely unexplored. The results presented here demonstrate that activity-dependent regulation of voltage dependence can interact with conductance plasticity to enable neurons to attain and maintain target activity patterns, in this case, intrinsic bursting. Notably, the timescale of these voltage-dependent shifts influences the final steady-state configuration of the model, shaping both channel parameters and activity features such as burst period and duration. A major conclusion of the study is that altering this timescale can seamlessly modulate a neuron's intrinsic properties, which the authors suggest may be a mechanism for adaptation to perturbations.

      While this conclusion is largely well-supported, additional analyses could help clarify its scope. For instance, the effects of timescale alterations are clearly demonstrated when the model transitions from an initial state that does not meet the target activity pattern to a new stable state. However, Fig. 6 and the accompanying discussion appear to suggest that changing the timescale alone is sufficient to shift neuronal activity more generally. It would be helpful to clarify that this effect primarily applies during periods of adaptation, such as neurodevelopment or in response to perturbations, and not necessarily once the system has reached a stable, steady state. As currently presented, the simulations do not test whether modifying the timescale can influence activity after the model has stabilized. In such conditions, changes in timescale are unlikely to affect network dynamics unless they somehow alter the stability of the solution, which is not shown here. That said, it seems plausible that real neurons experience ongoing small perturbations which, in conjunction with changes in timescale, could allow gradual shifts toward new solutions. This possibility is not discussed but could be a fruitful direction for future work.

      Editor's note: The authors have adequately addressed the concerns raised in the public reviews above, as well as the previous recommendations, and revised the manuscript where necessary.

    1. Reviewer #3 (Public review):

      This study is a part of the ongoing series of rigorous work from this group exploring neural coding deficits in the auditory nerve, and dissociating the effects of cochlear synaptopathy from other age-related deficits. They have previously shown no evidence of phase-locking deficits in the remaining auditory nerve fibers in quiet-aged gerbils. Here, they study the effects of aging on the perception and neural coding of temporal fine structure cues in the same Mongolian gerbil model.

      They measure TFS coding in the auditory nerve using the TFS1 task which uses a combination of harmonic and tone-shifted inharmonic tones which differ primarily in their TFS cues (and not the envelope). They then follow this up with a behavioral paradigm using the TFS1 task in these gerbils. They test young normal hearing gerbils, aged gerbils, and young gerbils with cochlear synaptopathy induced using the neurotoxin ouabain to mimic synapse losses seen with age.

      In the behavioral paradigm, they find that aging is associated with decreased performance compared to the young gerbils, whereas young gerbils with similar levels of synapse loss do not show these deficits. When looking at the auditory nerve responses, they find no differences in neural coding of TFS cues across any of the groups. However, aged gerbils show an increase in the representation of periodicity envelope cues (around f0) compared to young gerbils or those with induced synapse loss. The authors hence conclude that synapse loss by itself doesn't seem to be important for distinguishing TFS cues, and rather the behavioral deficits with age are likely having to do with the misrepresented envelope cues instead.

      The manuscript is well written, and the data presented are robust. Some of the points below will need to be considered while interpreting the results of the study, in its current form. These considerations are addressable if deemed necessary, with some additional analysis in future versions of the manuscript.

      Spontaneous rates - Figure S2 shows no differences in median spontaneous rates across groups. But taking the median glosses over some of the nuances there. Ouabain (in the Bourien study) famously affects low spont rates first, and at a higher degree than median or high spont rates. It seems to be the case (qualitatively) in figure S2 as well, with almost no units in the low spont region in the ouabain group, compared to the other groups. Looking at distributions within each spont rate category and comparing differences across the groups might reveal some of the underlying causes for these changes. Given that overall, the study reports that low-SR fibers had a higher ENV/TFS log-z-ratio, the distribution of these fibers across groups may reveal specific effects of TFS coding by group.

      [Update: The revised manuscript has addressed these issues]

      Threshold shifts - It is unclear from the current version if the older gerbils have changes in hearing thresholds, and whether those changes may be affecting behavioral thresholds. The behavioral stimuli appear to have been presented at a fixed sound level for both young and aged gerbils, similar to the single unit recordings. Hence, age-related differences in behavior may have been due to changes in relative sensation level. Approaches such as using hearing thresholds as covariates in the analysis will help explore if older gerbils still show behavioral deficits.

      [Update: The issue of threshold shifts with aging gerbils is still unresolved in my opinion. From the revised manuscript, it appears that aged gerbils have a 36dB shift in thresholds. While the revised manuscript provides convincing evidence that these threshold shifts do not affect the auditory nerve tuning properties, the behavioral paradigm was still presented at the same sound level for young and aged animals. But a potential 36 dB change in sensation level may affect behavioral results. The authors may consider adding thresholds as covariates in analyses or present any evidence that behavioral thresholds are plateaued along that 30dB range].

      Task learning in aged gerbils - It is unclear if the aged gerbils really learn the task well in two of the three TFS1 test conditions. The d' of 1 which is usually used as the criterion for learning was not reached in even the easiest condition for aged gerbils in all but one condition for the aged gerbils (Fig. 5H) and in that condition, there doesn't seem to be any age-related deficits in behavioral performance (Fig. 6B). Hence dissociating the inability to learn the task from the inability to perceive TFS 1 cues in those animals becomes challenging.

      [Update: The revised manuscript sufficiently addresses these issues, with the caveat of hearing threshold changes affecting behavioral thresholds mentioned above].

      Increased representation of periodicity envelope in the AN - the mechanisms for increased representation of periodicity envelope cues is unclear. The authors point to some potential central mechanisms but given that these are recordings from the auditory nerve what central mechanisms these may be is unclear. If the authors are suggesting some form of efferent modulation only at the f0 frequency, no evidence for this is presented. It appears more likely that the enhancement may be due to outer hair cell dysfunction (widened tuning, distorted tonotopy). Given this increased envelope coding, the potential change in sensation level for the behavior (from the comment above), and no change in neural coding of TFS cues across any of the groups, a simpler interpretation may be -TFS coding is not affected in remaining auditory nerve fibers after age-related or ouabain induced synapse loss, but behavioral performance is affected by altered outer hair cell dysfunction with age.

      [Update: The revised manuscript has addressed these issues]

      Emerging evidence seems to suggest that cochlear synaptopathy and/or TFS encoding abilities might be reflected in listening effort rather than behavioral performance. Measuring some proxy of listening effort in these gerbils (like reaction time) to see if that has changed with synapse loss, especially in the young animals with induced synaptopathy, would make an interesting addition to explore perceptual deficits of TFS coding with synapse loss.

      [Update: The revised manuscript has addressed these issues]

    1. Reviewer #3 (Public review):

      Summary:

      Submitted to the Tools and Resources series, this study reports on the use of a single-domain antibody targeting the nucleoporin Nup84 to probe and track NPCs in budding yeast. The authors demonstrate their ability to rapidly label or pull down NPCs by inducing the expression of a tagged version of the nanobody (Figure 1).

      Strengths:

      This tool's main strength is its versatility as an inexpensive, easy-to-set-up alternative to metabolic labelling or optical switching. This same rationale could, in principle, be applied to the study of other multiprotein complexes using similar strategies, provided that single-chain antibodies are available.

      Weaknesses:

      This approach has no inherent weaknesses, but it would be useful for the authors to verify that their pulse labelling strategy can also be used to detect assembly intermediates, structural variants, or damaged NPCs.

      Overall, the data clearly show that Nup84 nanobodies are a valuable tool for imaging NPC dynamics and investigating their interactomes through affinity purification.

    1. Reviewer #4 (Public review):

      The manuscript reports on a large-scale study correlating genomic architecture with splicing complexity over almost 1,500 species. We still know relatively little about alternative splicing functional consequences and evolution, and thus, the study is relevant and timely. The methodology relies on annotations from NCBI for high-quality genomes and a main metric proposed by the authors and named Alternative Splicing Ratio (ASR). It quantifies the level of redundancy of each coding nucleotide in the annotated isoforms.

      According to the authors' response to the first reviewers' comments, the present version of the manuscript seems to be a profoundly revised version compared to the original submission. I did not have access to the reviewers' comments.

      Although the study addresses an important question and the authors have visibly made an important effort to make their claims more statistically robust, I have a number of major concerns regarding the methodology and its presentation.

      (1) A large part of the manuscript is speculative and vague. For instance, the Discussion is very long (almost longer than the Results section) and the items discussed are sometimes not in direct connection with the present work. I would suggest merging the last 2 paragraphs, for instance, since the before last paragraph is essentially a review of the literature without direct connection to the present work.

      (2) The Methods section lacks clarity and precision. A large part is devoted to explaining the biases in the data without any reference or quantification. The definition of ASR is very confusing. It is first defined in equation 2, with a different name, and then again in the next subsection from a different perspective on lines 512-518. Why build matrices of co-occurrences if these are, in practice, never used? It seems the authors exploit only the trace. A major revision, if I understood correctly, was the correction/normalisation of the ASR metric. This normalisation is not explained. The authors argue that they will write another paper about it, I do not think this is acceptable for the publication of the present manuscript. Furthermore, there is no information about the technical details of the implementation: which packages did the authors use?

      (3) Could the authors motivate why they do not directly focus on the MC permutation test? They motivate the use of permutations because the data contains extreme outliers and are non normal in most cases. Hence, it seems the Welch's ANOVA is not adapted. "To further validate our findings, we also conducted<br /> 148 a Monte Carlo permutation test, which supported the conclusions (see Methods)." Where is the comparison shown? I did not see any report of the results for the non-permuted version of the Welch's ANOVA.

      (4) What are the assumptions for the Phylogenetic Generalized Least Squares? Which evolution model was chosen and why? What is the impact of changing the model? Could the authors define more precisely (e.g. with equations) what is lambda? Is it estimated or fixed?

      (5) I think the authors could improve their account of recent literature on the topic. For instance, the paper https://doi.org/10.7554/eLife.93629.3, published in the same journal last year, should be discussed. It perfectly fits in the scope of the subsection "Evidence for the adaptive role of alternative splicing". Methods and findings reported in https://doi.org/10.1186/s13059-021-02441-9 and https://www.genome.org/cgi/doi/10.1101/gr.274696.120 directly concern the assessment of AS evolutionary conservation across long evolutionary times and/or across many species. These aspects are mentioned in the introduction on p.3. but without pointing to such works. Can we really qualify a work published in 2011 as "recent" (line 348-350)?

      The generated data and codes are available on Zenodo, which is a good point for reproducibility and knowledge sharing with the community.

    1. Reviewer #3 (Public review):

      Summary:

      Su et al. sought to understand how the opportunistic pathogen Staphylococcus aureus responds to multiple selection pressures during infection. Specifically, the authors were interested in how the host environment and antibiotic exposure impact the evolution of both virulence and antibiotic resistance in S. aureus. To accomplish this, the authors performed an evolution experiment where S. aureus was fed to Caenorhabditis elegans as a model system to study the host environment and then either subjected to the antibiotic oxacillin or not. Additionally, the authors investigated the difference in evolution between an antibiotic-resistant strain, MRSA, and an isogenic susceptible strain, MSSA. They found that MRSA strains evolved in both antibiotic and host conditions became more virulent, and that strains evolved outside these conditions lost virulence. Looking at the strains evolved in just antibiotic conditions, the authors found that S. aureus maintained its ability to lyse blood cells. Mutations in codY, gdpP, and pbpA were found to be associated with increased virulence. Additionally, these mutations identified in these experiments were found in S. aureus strains isolated from human infections.

      Strengths:

      The data are well-presented, thorough, and are an important addition to the understanding of how certain pathogens might adapt to different selective pressures in complex environments.

      Weaknesses:

      There are a few clarifications that could be made to better understand and contextualize the results. Primarily, when comparing the number of mutations and selection across conditions in an evolution experiment, information about population sizes is important to be able to calculate the mutation supply and number of generations throughout the experiment. These calculations can be difficult in vivo, but since several steps in the methodology require plating and regrowth, those population sizes could be determined. There was also no mention of how the authors controlled the inoculation density of bacteria introduced to each host. This would need to be known to calculate the generation time within the host. These caveats should be addressed in the manuscript.

      Another concern is the number of generations the populations of S. aureus spent either with relaxed selection in rich media or under antibiotic pressure in between the host exposure periods. It is probable then that the majority of mutations were selected for in these intervening periods between host infection. Again, a more detailed understanding of population sizes would contribute to the understanding of which phase of the experiment contributed to the mutation profile observed.

    1. Reviewer #3 (Public review):

      Summary:

      This study aimed to investigate pseudouridylation across various RNA species in multiple bacterial strains using an optimized BID-seq approach. It examined both conserved and divergent modification patterns, the potential functional roles of pseudouridylation, and its dynamic regulation across different growth conditions.

      Strengths:

      The authors optimized the BID-seq method and applied this important technique to bacterial systems, identifying multiple pseudouridylation sites across different species. They investigated the distribution of these modifications, associated sequence motifs, their dynamics across growth phases, and potential functional roles. These data are of great interest to researchers focused on understanding the significance of RNA modifications, particularly mRNA modifications, in bacteria.

      Weaknesses:

      (1) The reliability of BID-seq data is questionable due to a lack of experimental validations.

      (2) The manuscript is not well-written, and the presented work shows a major lack of scientific rigor, as several key pieces of information are missing.

      (3) The manuscript's organization requires significant improvement, and numerous instances of missing or inconsistent information make it difficult to understand the key objectives and conclusions of the study.

      (4) The rationale for selecting specific bacterial species is not clearly explained, and the manuscript lacks a systematic comparison of pseudouridylation among these species.

    1. Reviewer #3 (Public review):

      Summary:

      This is a well-done study. It shows, in a comprehensive manner, that Sp5 and Sp8 play essential roles in maintaining the complicated positive feedback circuitry needed for specification of neuromesodermal competent progenitors (NMCs) in caudal mesodermal development in murine embryos.

      Strengths:

      The developmental genetics, transcriptomic, and genomic survey of TF binding are all satisfactory and make a compelling story. The CRISPR deletion of the Wnt3a downstream enhancer clearly demonstrates that it plays an important role in the positive feedback circuit.

      Weaknesses:

      My only concerns are some of the language surrounding the mechanistic interpretation of the Wnt3a downstream enhancer and the relationship between TCF and TLE binding.

    1. Reviewer #3 (Public review):

      Summary:

      It has been a long time since I enjoyed reviewing a paper as much as this one. In it, the authors generate an unprecedented view of the aboral organ of a 5-day-old ctenophore. They proceed to derive numerous insights by reconstructing the populations and connections of cell types, with up to 150 connections from the main Q1-4 neuron.

      Strengths:

      The strengths of the analysis are the sophisticated imaging methods used, the labor-intensive reconstruction of individual neurons and organelles, and especially the mapping of synapses. The synaptic connections to and from the main coordinating neurons allow the authors to create a polarized network diagram for these components of the aboral organ. These connections give insight into the potential functions of the major neurons. This also gives some unexpected results, particularly the lack of connections from the balancer system to the coordinating system.

      Weaknesses:

      There were no significant weaknesses in the paper - only a slate of interesting unanswered questions to motivate future studies.

    1. Reviewer #3 (Public review):

      Summary:

      The authors build on a recent computational model of planning, the "value-guided construal" framework by Ho et al. (2022), which proposes that people plan by constructing simple models of a task, such as by attending to a subset of obstacles in a maze. They analyze both published experimental data and new experimental data from a task in which participants report attention to objects in mazes. The authors find that attention to objects is affected by spatial proximity to other objects (i.e., attentional overspill) as well as whether relevant objects are lateralized to the same hemifield. To account for these results, the authors propose a "spotlight-VGC" model, in which, after calculating attention scores based on the original VGC model, attention to objects is enhanced based on distance. They find that this model better explains participant responses when objects are lateralized to different hemifields. These results demonstrate complex interactions between filtering of task-relevant information and more classical signatures of attentional selection.

      Strengths:

      (1) The paper builds on existing modeling work in a novel manner and integrates classic results on attention into the computational framework.

      (2) The authors report new and extensive analyses of existing data that shed light on additional sources of systematic variability in responses related to attentional spillover effects

      (3) They collect new data using new stimuli in the original paradigm that directly test predictions related to the lateralization of task-relevant information, including eye tracking data that allows them to control for possible confounds.

      (4) The extended model (spotlight-VGC) provides a formal account of these new results.

      Weaknesses:

      (1) The spotlight-VGC model has a free parameter - the "width" of the attentional spotlight. This seems to have been fixed to be 3 squares. It would be good if the authors could describe a more principled procedure for selecting the width so that others can use the model in other contexts.

      (2) Have the authors considered other ways in which factors such as attentional spillover and lateralization could be incorporated into the model? The spotlight-VGC model, as presented, involves first computing VGC predictions and only afterwards computing spillover. This seems psychologically implausible, since it supposes that the "optimal" representation is first formed and then it gets corrupted. Is there a way to integrate these biases directly into the VGC framework, perhaps as a prior on construals? The authors gesture towards this when they talk about "inductive biases", but this is not formalized.

      (3) Can the authors rule out that the lateralization effects are the result of memory biases since the main measure used is a self-report of attention?

    1. Reviewer #3 (Public review):

      Summary:

      Zhu et al. set out to elucidate how the moral emotions of guilt and shame emerge from specific cognitive antecedents - harm and responsibility - and how these emotions subsequently drive compensatory behavior. Consistent with their prediction derived from functionalist theories of emotion, their behavioral findings indicate that guilt is more influenced by harm, whereas shame is more influenced by responsibility. In line with previous research, their results also demonstrate that guilt has a stronger facilitating effect on compensatory behavior than shame. Furthermore, computational modeling and neuroimaging results suggest that individuals integrate harm and responsibility information into a composite representation of the individual's share of the harm caused. Brain areas such as the striatum, insula, temporoparietal junction, lateral prefrontal cortex, and cingulate cortex were implicated in distinct stages of the processing of guilt and/or shame. In general, this work makes an important contribution to the field of moral emotions. Its impact could be further enhanced by clarifying methodological details, offering a more nuanced interpretation of the findings, and discussing their potential practical implications in greater depth.

      Strengths:

      First, this work conceptualizes guilt and shame as processes unfolding across distinct stages (cognitive appraisal, emotional experience, and behavioral response) and investigates the psychological and neural characteristics associated with their transitions from one stage to the next.

      Second, the well-designed experiment effectively manipulates harm and responsibility - two critical antecedents of guilt and shame.

      Third, the findings deepen our understanding of the mechanisms underlying guilt and shame beyond what has been established in previous research.

      Weaknesses:

      (1) Over the course of the task, participants may gradually become aware of their high error rate in the dot estimation task. This could lead them to discount their own judgments and become inclined to rely on the choices of other deciders. It is unclear whether participants in the experiment had the opportunity to observe or inquire about others' choices. This point is important, as the compensatory decision-making process may differ depending on whether choices are made independently or influenced by external input.

      (2) Given the inherent complexity of human decision-making, it is crucial to acknowledge that, although the authors compared eight candidate models, other plausible alternatives may exist. As such, caution is warranted when interpreting the computational modeling results.

      (3) I do not agree with the authors' claim that "computational modeling results indicated that individuals integrate harm and responsibility in the form of a quotient" (i.e., harm/responsibility). Rather, the findings appear to suggest that individuals may form a composite representation of the harm attributable to each individual (i.e., harm/the number of people involved). The explanation of the modeling results ought to be precise.

      (4) Many studies have reported positive associations between trait gratitude, social value orientation, and altruistic behavior. It would be helpful if the authors could provide an explanation about why this study failed to replicate these associations.

      (5) As the authors noted, guilt and shame are closely linked to various psychiatric disorders. It would be valuable to discuss whether this study has any implications for understanding or even informing the treatment of these disorders.

    1. Reviewer #3 (Public review):

      This study is a follow-up to a recent study of synaptic development based on a powerful data set that combines anterograde labeling, immunofluorescence labeling of synaptic proteins, and STORM imaging (Cell Reports, 2023). Specifically, they use anti-Vglut2 label to determine the size of the presynaptic structure (which they describe as the vesicle pool size), anti-Bassoon to label active zones with the resolution to count them, and anti-Homer to identify postsynaptic densities. Their previous study compared the detailed synaptic structure across the development of synapses made with contra-projecting vs. ipsi-projecting RGCs and compared this developmental profile with a mouse model with reduced retinal waves. In this study, they produce a new detailed analysis on the same data set in which they classify synapses into "multi-active zone" vs. "single-active zone" synapses and assess the number and spacing of these synapses. The authors use measurements to make conclusions about the role of retinal waves in the generation of same-eye synaptic clusters. The authors interpret these results as providing insight into how neural activity drives synapse maturation, the strength of their conclusions is not directly tested by their analysis.

      Strengths:

      This is a fantastic data set for describing the structural details of synapse development in a part of the brain undergoing activity-dependent synaptic rearrangements. The fact that they can differentiate the eye of origin is what makes this data set unique over previous structural work. The addition of example images from the EM dataset provides confidence in their categorization scheme.

      Weaknesses:

      Though the descriptions of single vs multi-active zone synapses are important and represent a significant advance, the authors continue to make unsupported conclusions regarding the biological processes driving these changes. Although this revision includes additional information about the populations tested and the tests conducted, the authors do not address the issue raised by previous reviews. Specifically, they provide no assessment of what effect size represents a biologically meaningful result. For example, a more appropriate title is "The distribution of eye-specific single vs multi-active zone is altered in mice with reduced spontaneous activity" rather than concluding that this difference in clustering is somehow related to synaptic competition. Of course, the authors are free to speculate, but many of the conclusions of the paper are not supported by their results.

    1. Reviewer #3 (Public review):

      Summary:

      The present manuscript investigates and proposes different mechanisms for the effects of two therapeutic approaches - cognitive distancing technique and use of antidepressants - on subjective ratings of happiness, confidence, and task engagement, and on the influence of such subjective experiences on choice behavior. Both approaches were found to link to changes in affective state dynamics in a choice task, specifically reduced drift (cognitive distancing) and increased baseline (antidepressant use). Results also suggest that cognitive distancing may reduce the weighing of recent expected values in the happiness model, while antidepressant use may reduce forgetting of choices and outcomes.

      Strengths:

      This is a timely topic and a significant contribution to ongoing efforts to improve our mechanistic understanding of psychopathology and devise effective novel interventions. The relevance of the manuscript's central question is clear, and the links to previous literature and the broader field of computational psychiatry are well established. The modelling approaches are thoughtful and rigorously tested, with appropriate model checks and persuasive evidence that modelling complements the theoretical argument and empirical findings.

      Weaknesses:

      Some vagueness and lack of clarity in theoretical mechanisms and interpretation of results leave outstanding questions regarding (a) the specific links drawn between affective biases, therapies aimed at mitigating them, and mental health function, and (b) the structure and assumptions of the modelling, and how they support the manuscript's central claims. Broadly, I do not fully understand the distinction between how choice behavior vs. affect are impacted separately or together by cognitive distancing. Clarification on this point is needed, possibly through a more explicit proposal of a mechanism (or several alternative mechanisms?) in the introduction and more explicit interpretation of the modelling results in the context of the cyclical choice-affect mechanism.

      (1) Theoretical framework and proposed mechanisms

      The link between affective biases and negative thinking patterns is a bit unclear. The authors seem to make a causal claim that "affective biases are precipitated and maintained by negative thinking patterns", but it is unclear what precisely these negative patterns are; earlier in the same paragraph, they state that affective biases "cause low mood" and possibly shift choices toward those that maintain low mood. So the directionality of the mechanism here is unclear - possibly explaining a bit more of the cyclic nature of this mechanism, and maybe clarifying what "negative thinking patterns" refer to will be helpful.

      More generally, this link between affect and choices, especially given the modelling results later on, should be clarified further. What is the mechanism by which these two impact each other? How do the models of choice and affect ratings in the RL task test this mechanism? I'm not quite sure the paper answers these questions clearly right now.

      The authors also seem to implicitly make the claim that symptoms of mental ill-health are at least in part related to choice behavior. I find this a persuasive claim generally; however, it is understated and undersupported in the introduction, to the point where a reader may need to rely on significant prior knowledge to understand why mitigating the impact of affective biases on choice behavior would make sense as the target of therapeutic interventions. This is a core tenet of the paper, and it would be beneficial to clarify this earlier on.

      It would be helpful to interpret a bit more clearly the findings from 3.4. on decreased drift in all three subjective assessments in the cognitive distancing group. What is the proposed mechanism for this? The discussion mentions that "attenuated declines [...] over time, [add] to our previously reported findings that this psychotherapeutic technique alters aspects of reward learning" - but this is vague and I do not understand, if an explanation for how this happens is offered, what that explanation is. Given the strong correlation of the drift with fatigue, is the explanation that cognitive distancing mitigates affect drift under fatigue? Or is this merely reporting the result without an interpretation around potential mechanisms?

      (Relatedly, aside from possibly explaining the drift parameter, do the fatigue ratings link with choice behavior in any way? Is it possible that the cognitive distancing was helping participants improve choices under fatigue?)

      (2) Task Structure and Modelling

      It is unclear what counted as a "rewarding" vs. "unrewarding" trial in the model. From my understanding of the task description, participants obtained positive or no reward (no losses), and verbal feedback, Correct/Incorrect. But given the probabilistic nature of the task, it follows that even some correct choices likely had unrewarding results. Was the verbal feedback still "Correct" in those cases, but with no points shown? I did not see any discussion on whether it is the #points earned or the verbal feedback that is considered a reward in the model. I am assuming the former, but based on previous literature, likely both play a role; so it would be interesting - and possibly necessary to strengthen the paper's argument - to see a model that assigns value to positive/negative feedback and earned points separately.

      From a theory perspective, it's interesting that the authors chose to assume separate learning rates for rewarding and non-rewarding trials. Why not, for example, separate reward sensitivity parameters? E.g., rather than a scaling parameter on the PE, a parameter modifying the r term inside the PE equation to, perhaps, assign different values to positive and zero points? (While I think overall the math works out similarly at the fitting time, this type of model should be less flexible on scaling the expected value and more flexible on scaling the actual #points / the subjective experience of the obtained verbal feedback, which seems more in line with the theoretical argument made in the introduction). The introduction explicitly states that negative biases "may cause low mood by making outcomes appear less rewarding" - which in modelling equations seems more likely to translate to different reward-perception biases, and not different learning rates. Alternatively, one might incorporate a perseveration parameter (e.g., similar to Collins et al. 2014) that would also accomplish a negative bias. Either of these two mechanisms seems perhaps worth testing out in a model - especially in a model that defines more clearly what rewarding vs. unrewarding may mean to the participant.

      If I understand correctly, the affect ratings models assume that the Q-value and the PE independently impact rating (so they have different weights, w2 and w3), but there is no parameter allowing for different impact for perceived rewarding and unrewarding outcomes? (I may be misreading equations 4-5, but if not, Q-value and PE impact the model via static rather than dynamic parameters.) Given the joint RL-affect fit, this seems to carry the assumption that any perceptual processing differences leading to different subjective perceptions of reward associated with each outcome only impact choice behavior, but not affect? (whereas affect is more broadly impacted, if I'm understanding this correctly, just by the magnitude of the values and PEs?) This is an interesting assumption, and the authors seem to have tested it a bit more in the Supplementary material, as shown in Figure S4. I'm wondering why this was excluded from the main text - it seems like the more flexible model found some potentially interesting differences which may be worth including, especially as they might shed additional insight into the influence of cognitive distancing on the cyclical choice-affect mechanisms proposed.

      Minor comments:

      If fatigue ratings were strongly associated with drift in the best-fitting model (as per page 13), I wonder if it would make sense to use those fatigue ratings as a proxy rather than allow the parameter to vary freely? (This does not in any way detract from the winning model's explanatory power, but if a parameter seems to be strongly explained by a variable we have empirical data for, it's not clear what extra benefit is earned by having that parameter in the model).

    1. Reviewer #3 (Public review):

      Summary:

      This report describes the development and initial applications of the ARM (Automated Reproducible Mechano-stimulator), a programmable tool that delivers various mechanical stimuli to a select target (most frequently, a rodent hindpaw). Comparisons to traditional testing methods (e.g., experimenter application of stimuli) reveal that the ARM reduces variability in the anatomical targeting, height, velocity, and total time of stimulus application. Given that the ARM can be controlled remotely, this device was also used to assess effects of experimenter presence on reflexive responses to mechanical stimulation. Although not every experimenter had notable sex-dependent effects on animal behavior, use of the ARM never had this effect (for obvious reasons!). Lastly, the ARM was used to stimulate rodent hindpaws while measuring neuronal activity in the basolateral nucleus of the amygdala (BLA), a brain region that is associated with the negative affect of pain. This device, and similar automated devices, will undoubtedly reduce experimenter-related variability in reflexive mechanical behavior tests; this may increase experimental reproducibility between laboratories who are able to invest in this type of technology.

      Strengths:

      Clear examples of variability in experimenter stimulus application are provided and then contrasted with uniform stimulus application that is inherent to the ARM.

      The ARM is able to quickly oscillate between delivery of various mechanical stimuli; this is advantageous for experimental efficiency.

      New additions to the ARM and PAWS platforms have been methodically tested to ensure reproducibility and reliability.

    1. Reviewer #3 (Public review):

      Summary:

      The authors have identified novel dRTA causing SLC4A1 mutations and studied the resulting kAE1 proteins to determine how they cause dRTA. Based on a previous study on mice expressing the dRTA kAE1 R607H variant, the authors hypothesize that kAE1 variants cause an increase in intracellular pH, which disrupts autophagic and degradative flux pathways. The authors clone these new kAE1 variants and study their transport function and subcellular localization in mIMCD cells. The authors show increased abundance of LC3B II in mIMCD cells expressing some of the kAE1 variants, as well as reduced autophagic flux using eGFP-RFP-LC3. These data, as well as the abundance of autophagosomes, serve as the key evidence that these kAE1 mutants disrupt autophagy. Furthermore, the authors demonstrate that decreasing the intracellular pH abrogates the expression of LC3B II in mIMCD cells expressing mutant SLC4A1. Lastly, the authors argue that mitochondrial function, and specifically ATP synthesis, is suppressed in mIMCD cells expressing dRTA variants and that mitochondria are less abundant in AICs from the kidney of R607H kAE1 mice. While the manuscript does reveal some interesting new results about novel dRTA causing kAE1 mutations, the quality of the data to support the hypothesis that these mutations cause a reduction in autophagic flux can be improved. In particular, the precise method of how the western blots and the immunofluorescence data were quantified, with included controls, would enhance the quality of the data and offer more supportive evidence of the authors' conclusions.

      Strengths:

      The authors cloned novel dRTA causing kAE1 mutants into expression vectors to study the subcellular localization and transport properties of the variants. The immunofluorescence images are generally of high quality, and the authors do well to include multiple samples for all of their western blots.

      Weaknesses:

      Inconsistent results are reported for some of the variants. For example, R295H causes intracellular alkalinization but also has no effect on intracellular pH when measured by BCECF. The authors also appear to have performed these in vitro studies on mIMCD cells that were not polarized, and therefore, the localization of kAE1 to the basolateral membrane seems unlikely, based upon images included in the manuscript. Additionally, there is no in vivo work to demonstrate that these kAE1 variants alter intracellular pH, including the R607H mouse, which is available to the authors. The western blots are of varying quality, and it is often unclear which of the bands are being quantified. For example, LAMP1 is reported at 100kDa, the authors show three bands, and it is unclear which one(s) are used to quantify protein abundance. Strikingly, the authors report a nonsensical value for their quantification of LCRB II in Figure 2, where the ratio of LCRB II to total LCRB (I + II) is greater than one. The control experiments with starvation and bafilomyocin are not supportive and significantly reduce enthusiasm for the authors' findings regarding autophagy. There are labeling errors between the manuscript and the figures, which suggest a lack of vigilance in the drafting process.

    1. Reviewer #3 (Public review):

      Summary:

      The response to lysosomal damage is a fast-moving and timely field. Besides repair and degradation pathways, increasing interest has been focusing on damaged-induced signaling. The authors conducted both transcriptomics and proteomics to characterize the cellular response to lysosomal damage. They identify a signaling pathway leading to activation of NFkappaB. Based on this and supported by Western blot and microscopy data, the authors nicely show that TAB2/3 and TAK1 are activated at damaged lysosomes and kick off the pathway to alter gene expression, which induces cytokines and protect from cell death. TAB2/3 activation is proposed to occur through K63 ubiquitin chain formation. Generally, this is a careful and well conducted study that nicely delineates the pathway under lysosomal stress. The "omics" data serves a valuable resource for the field. More work should be invested into how TAB2/3 are activated at the damaged lysosomes, also to increase novelty in light of previous reports.

      Strengths:

      Generally, this is a careful and well-conducted study that nicely delineates how the NFkB pathway is activated under lysosomal stress and modulates cell behavior. The "omics" data serves as a valuable resource for the field.

      Weaknesses:

      While activation of TAB2/3 by K63-linked Ub chains is convincing, more work needs to be done on how they are recruited by distinct damage types to probe relevance for different pathophysiological conditions."

      Comments on revisions:

      The authors have addressed much of my criticism. Specifically, they have put (with new experiments) the data on the TAB2/3-TAK1 pathway in perspective to the previously reported LUBAC-mediated activation of NFkB. They also addressed the question about the significance of K63-linked chains for TAB2/3 activation with new complementation experiments (a K63-specific NZF mutant failed to rescue).

      The third point (types of damage as triggers) raises more questions, though. The authors find that, in contrast to LLOMe, GPN or DC661-induced damage does not activate TAK1 (consistent with lower damage levels). However, the authors still observe K63 ubiquitylation. This goes along with their finding that TAB2 is recruited in the absence of any ubiquitylation (blocked by TAK-243). It argues that TAB2 is recruited by an unknown cue (that may be damage-specific) and then activated by K63. The authors need to clarify whether TAB2 is or is not recruited in the GPN/DC661 conditions (in which K63 occurs, but TAK1 is not activated). The point about the effects of other damage types was also raised by reviewer #1 and should be solved. The fact that TAB2 is recruited independently of K63 should also be visualized in the model. The manuscript will then be an important contribution to the field.

    1. Reviewer #3 (Public review):

      Summary:

      This study by Bushey et al. adapts and evaluates two newly developed red-shifted optogenetic inhibitors, A1ACR1 and HfACR1, collectively referred to as RubyACRs, for neuronal silencing in Drosophila melanogaster. Traditional optogenetic inhibitors such as GtACR1 and GtACR2 are activated by green (~515 nm) and blue (~470 nm) light, respectively, which poses several limitations in Drosophila. Specifically, shorter-wavelength light suffers from reduced tissue penetration and increased absorption, and is visible to flies, potentially confounding behavioral assays, particularly those involving visual processing. In contrast, RubyACRs are activated by red light (~610-660 nm), which penetrates the cuticle more effectively and thus can be more potent in manipulating fly behavior. In the current manuscript, the authors first demonstrate that both A1ACR1 and HfACR1 can be robustly expressed in fly neurons and are properly trafficked to the plasma membrane. Upon red-light stimulation, both opsins produce strong and sustained hyperpolarization in larval motor neurons, outperforming GtACR1 in both magnitude and temporal dynamics. Next, using two-photon calcium imaging in the visual system, the authors further demonstrate that activation of RubyACRs significantly reduces GCaMP6s signal, indicating that they can reliably inhibit neuronal activity. Importantly, unlike reported in some mammalian studies, RubyACRs do not appear to trigger paradoxical depolarization at axon terminals in the fly visual system, as no evidence of aberrant depolarization is observed in motion-detecting Mi1 neurons.

      In the second part of the manuscript, the authors characterize the effects of RubyACRs on fly behavior (walking, learning, and courtship song). Using the inhibition of genetically labelled neurons that regulate these behaviors, the authors demonstrate that stimulation of RubyACRs leads to potent suppression of locomotion, courtship song, or dopamine-dependent associative learning.

      Strengths:

      Altogether, the experiments conducted in this manuscript demonstrate that RubyACRs are powerful tools for optogenetic inhibition in Drosophila, with advantages in spectral compatibility, behavioral specificity, and potential applications in vivo two-photon calcium imaging.

      Weaknesses:

      The manuscript is strong, but it can be further improved with a few additional analyses and minor revisions. Especially, a more detailed evaluation of RubyACRs with two-photon excitation will help clarify to what extent these opsins can be simultaneously used together with green GECIs, such as GCaMPs.

    1. Reviewer #3 (Public review):

      Summary:

      In this manuscript titled "Mycobacterial Metallophosphatase MmpE Acts as a Nucleomodulin to Regulate Host Gene Expression and Promote Intracellular Survival", Chen et al describe biochemical characterisation, localisation and potential functions of the gene using a genetic approach in M. bovis BCG and perform macrophage and mice infections to understand the roles of this potentially secreted protein in the host cell nucleus. The findings demonstrate the role of a secreted phosphatase of M. bovis BCG in shaping the transcriptional profile of infected macrophages, potentially through nuclear localisation and direct binding to transcriptional start sites, thereby regulating the inflammatory response to infection.

      Strengths:

      The authors demonstrate using a transient transfection method that MmpE when expressed as a GFP-tagged protein in HEK293T cells, exhibits nuclear localisation. The authors identify two NLS motifs that together are required for nuclear localisation of the protein. A deletion of the gene in M. bovis BCG results in poorer survival compared to the wild-type parent strain, which is also killed by macrophages. Relative to the WT strain-infected macrophages, macrophages infected with the ∆mmpE strain exhibited differential gene expression. Overexpression of the gene in HEK293T led to occupancy of the transcription start site of several genes, including the Vitamin D Receptor. Expression of VDR in THP1 macrophages was lower in the case of ∆mmpE infection compared to WT infection. This data supports the utility of the overexpression system in identifying potential target loci of MmpE using the HEK293T transfection model. The authors also demonstrate that the protein is a phosphatase, and the phosphatase activity of the protein is partially required for bacterial survival but not for the regulation of the VDR gene expression.

      Weaknesses:

      (1) While the motifs can most certainly behave as NLSs, the overexpression of a mycobacterial protein in HEK293T cells can also result in artefacts of nuclear localisation. This is not unprecedented. Therefore, to prove that the protein is indeed secreted from BCG, and is able to elicit transcriptional changes during infection, I recommend that the authors (i) establish that the protein is indeed secreted into the host cell nucleus, and (ii) the NLS mutation prevents its localisation to the nucleus without disrupting its secretion.

      Demonstration that the protein is secreted: Supplementary Figure 3 - Immunoblotting should be performed for a cytosolic protein, also to rule out detection of proteins from lysis of dead cells. Also, for detecting proteins in the secreted fraction, it would be better to use Sauton's media without detergent, and grow the cultures without agitation or with gentle agitation. The method used by the authors is not a recommended protocol for obtaining the secreted fraction of mycobacteria.

      Demonstration that the protein localises to the host cell nucleus upon infection: Perform an infection followed by immunofluorescence to demonstrate that the endogenous protein of BCG can translocate to the host cell nucleus. This should be done for an NLS1-2 mutant expressing cell also.

      (2) In the RNA-seq analysis, the directionality of change of each of the reported pathways is not apparent in the way the data have been presented. For example, are genes in the cytokine-cytokine receptor interaction or TNF signalling pathway expressed more, or less in the ∆mmpE strain?

      (3) Several of these pathways are affected as a result of infection, while others are not induced by BCG infection. For example, BCG infection does not, on its own, produce changes in IL1β levels. As the authors did not compare the uninfected macrophages as a control, it is difficult to interpret whether ∆mmpE induced higher expression than the WT strain, or simply did not induce a gene while the WT strain suppressed expression of a gene. This is particularly important because the strain is attenuated. Does the attenuation have anything to do with the ability of the protein to induce lysosomal pathway genes? Does induction of this pathway lead to attenuation of the strain? Similarly, for pathways that seem to be downregulated in the ∆mmpE strain compared to the WT strain, these might have been induced upon infection with the WT strain but not sufficiently by the ∆mmpE strain due to its attenuation/ lower bacterial burden.

      (4) CHIP-seq should be performed in THP1 macrophages, and not in HEK293T. Overexpression of a nuclear-localised protein in a non-relevant line is likely to lead to several transcriptional changes that do not inform us of the role of the gene as a transcriptional regulator during infection.

      (5) I would not expect to see such large inflammatory reactions persisting 56 days post-infection with M. bovis BCG. Is this something peculiar for an intratracheal infection with 1x107 bacilli? For images of animal tissue, the authors should provide images of the entire lung lobe with the zoomed-in image indicated as an inset.

      (6) For the qRT-PCR based validation, infections should be performed with the MmpE-complemented strain in the same experiments as those for the WT and ∆mmpE strain so that they can be on the same graph, in the main manuscript file. Supplementary Figure 4 has three complementary strains. Again, the absence of the uninfected, WT, and ∆mmpE infected condition makes interpretation of these data very difficult.

      (7) The abstract mentions that MmpE represses the PI3K-Akt-mTOR pathway, which arrests phagosome maturation. There is not enough data in this manuscript in support of this claim. Supplementary Figure 5 does provide qRT-PCR validation of genes of this pathway, but the data do not indicate that higher expression of these pathways, whether by VDR repression or otherwise, is driving the growth restriction of the ∆mmpE strain.

      (8) The relevance of the NLS and the phosphatase activity is not completely clear in the CFU assays and in the gene expression data. Firstly, there needs to be immunoblot data provided for the expression and secretion of the NLS-deficient and phosphatase mutants. Secondly, CFU data in Figure 3A, C, and E must consistently include both the WT and ∆mmpE strain.

    1. Reviewer #3 (Public review):

      Summary:

      In this manuscript, the authors examine the processing stages involved in perceptual decision-making using a new approach to analysing EEG data, combined with a critical stimulus manipulation. This new EEG analysis method enables single-trial estimates of the timing and amplitude of transient changes in EEG time-series, recurrent across trials in a behavioural task. The authors find evidence for three events between stimulus onset and the response in a two-spatial-interval visual discrimination task. By analysing the timing and amplitude of these events in relation to behaviour and the stimulus manipulation, the authors interpret these events as related to separable processing stages for stimulus encoding, attention orientation, and decision (deliberation). This is largely consistent with previous findings from both event-related potentials (across trials) and single-trial estimates using decoding techniques and neural network approaches.

      Strengths:

      This work is not only important for the conceptual advance, but also in promoting this new analysis technique, which will likely prove useful in future research. For the broader picture, this work is an excellent example of the utility of neural measures for mental chronometry.

      Weaknesses:

      The manuscript would benefit from some conceptual clarifications, which are important for readers to understand this manuscript as a stand-alone work. This includes clearer definitions of Piéron's and Fechner's laws, and a fuller description of the EEG analysis technique. The manuscript, broadly, but the introduction especially, may be improved by clearly delineating the multiple aims of this project: examining the processes for decision-making, obtaining single-trial estimates of meaningful EEG-events, and whether central parietal positivity reflects ramping activity or steps averaged across trials. A fuller discussion of the limitations of the work, in particular, the absence of motor contributions to reaction time, would also be appreciated.

      At times, the novelty of the work is perhaps overstated. Rather, readers may appreciate a more comprehensive discussion of the distinctions between the current work and previous techniques to gauge single-trial estimates of decision-related activity, as well as previous findings concerning distinct processing stages in decision-making. Moreover, a discussion of how the events described in this study might generalise to different decision-making tasks in different contexts (for example, in auditory perception, or even value-based decision-making) would also be appreciated.

    1. Reviewer #3 (Public review):

      Summary:

      This manuscript presents a well-designed and insightful behavioural study examining human adaptation to room acoustics, building on prior work by Brandewie & Zahorik. The psychophysical results are convincing and add incremental but meaningful knowledge to our understanding of reverberation learning. However, I find the transcranial magnetic stimulation (TMS) component to be over-interpreted. The TMS protocol, while interesting, lacks sufficient anatomical specificity and mechanistic explanation to support the strong claims made regarding a unique role of the dorsolateral prefrontal cortex (dlPFC) in this learning process. More cautious interpretation is warranted, especially given the modest statistical effects, the fact that the main TMS result of interest is a null result, the imprecise targeting of dlPFC (which is not validated), and the lack of knowledge about the timescale of TMS effects in relation to the behavioural task. I recommend revising the manuscript to shift emphasis toward the stronger behavioural findings and to present a more measured and transparent discussion of the TMS results and their limitations.

      Strengths:

      (1) Well-designed acoustical stimuli and psychophysical task.

      (2) Comparisons across room combinations are well conducted.

      (3) The virtual acoustic environment is impressive and applied well here.

      (4) A timely study with interesting behavioural results.

      Weaknesses:

      (1) Lack of hypotheses, particularly for TMS.

      (2) Lack of evidence for targeting TMS in [brain] space and time.

      (3) The most interesting effect of TMS is a null result compared to a weak statistical effect for "meta adaptation"

    1. Reviewer #3 (Public review):

      Summary:

      The authors review published literature and propose that a visual cortical region in the mouse that is widely considered to contain multiple visual areas should be considered a single visual area.

      Strengths:

      The authors point out that relatively new data showing reversals of visual-field sign within known, single visual areas of some species require that a visual field sign change by itself should not be considered evidence for a border between visual areas.

      Weaknesses:

      The existing data are not consistent with the authors' proposal to consolidate multiple mouse areas into a single "V2". This is because the existing definition of a single area is that it cannot have redundant representations of the visual field. The authors ignore this requirement, as well as the data and definitions found in published manuscripts, and make an inaccurate claim that "higher order visual areas in the mouse do not have overlapping representations of the visual field". For quantification of the extent of overlap of representations between 11 mouse visual areas, see Figure 6G of Garrett et al. 2014. [Garrett, M.E., Nauhaus, I., Marshel, J.H., and Callaway, E.M. (2014). Topography and areal organization of mouse visual cortex. The Journal of neuroscience 34, 12587-12600. 10.1523/JNEUROSCI.1124-14.2014.

    1. Reviewer #3 (Public review):

      Summary:

      The authors use calcium recordings from STN to measure STN activity during spontaneous movement and in a multi-stage avoidance paradigm. They also use optogenetic excitation, optogenetic inhibition, and lesion approaches to increase or decrease the activity of STN during the avoidance paradigm. The paper reports a large amount of data and makes many claims, some seem well supported to this Reviewer, others not so much.

      Strengths:

      Well-supported claims include data showing that during spontaneous movements, especially contraversive ones, STN calcium activity is increased using bulk photometry measurements. Single-cell measures back this claim but also show that it is only a modest minority of STN cells that respond strongly, with most showing no response during movement, and a similar number showing smaller inhibitions during movement.

      Similar data during cued active avoidance procedures show that STN calcium activity sharply increases in response to auditory cues, and during cued movements to avoid a footshock. Optogenetic and lesion experiments are consistent with an important role for STN in generating cue-evoked avoidance. And a strength of these results is that multiple bi-directional approaches were used.

      Weaknesses:

      I found the experimental design and presentation convoluted and the results over-interpreted.

      (1) I really don't understand or accept this idea that delayed movement is necessarily indicative of cautious movements. Is the distribution of responses multi-modal in a way that might support this idea, or do the authors simply take a normal distribution and assert that the slower responses represent 'caution'? Even if responses are multi-modal and clearly distinguished by 'type', why should readers think this that delayed responses imply cautious responding instead of say: habituation or sensitization to cue/shock, variability in attention, motivation, or stress; or merely uncertainty which seems plausible given what I understand of the task design where the same mice are repeatedly tested in changing conditions. This relates to a major claim (i.e., in the work's title).

      (2) Related to the last, I'm struggling to understand the rationale for dividing cells into 'types' based the their physiological responses in some experiments (e.g., Figure 7).

      (3) The description and discussion of orienting head movements were not well supported, but were much discussed in the avoidance datasets. The initial speed peaks to cue seem to be the supporting data upon which these claims rest, but nothing here suggests head movement or orientation responses.

      (4) Similar to the last, the authors note in several places, including abstract, the importance of STN in response timing, i.e., particularly when there must be careful or precise timing, but I don't think their data or task design provides a strong basis for this claim.

      (5) I think that other reports show that STN calcium activity is recruited by inescapable foot shock as well. What do these authors see? Is shock, independent of movement, contributing to sharp signals during escapes?

      (6) In particular, and related to the last point, the following work is very relevant and should be cited: https://elifesciences.org/reviewed-preprints/104643#tab-content. Note that the focus of this other paper is on a subset of VGLUT2+ Tac1 neurons in paraSTN, but using VGLUT2-Cre to target STN will target both STN and paraSTN.

      (7) In multiple other instances, claims that were more tangential to the main claims were made without clearly supporting data or statistics. E.g., claim that STN activation is related to translational more than rotational movement; claim that GCaMP and movement responses to auditory cues were small; claims that 'some animals' responded differently without showing individual data.

      (8) In several figures, the number of subjects used was not described. This is necessary. Also necessary is some assessment of the variability across subjects. The only measure of error shown in many figures relates to trial-to-trial or event variability, which is minimal because, in many cases, it appears that hundreds of trials may have been averaged per animal, but this doesn't provide a strong view of biological variability. When bar/line plots are used to display data, I recommend showing individual animals where feasible.

      (9) Can the authors consider the extent to which calcium imaging may be better suited to identify increases compared to decreases and how this may affect the results, particularly related to the GRIN data when similar numbers of cells show responses in both directions (e.g., Figure 3)?

      (10) Raw example traces are not provided.

      (11) The timeline of the spontaneous movement and avoidance sessions was not clear, nor was the number of events or sessions per animal nor how this was set. It is not clear if there was pre-training or habituation, if many or variable sessions were combined per animal, or what the time gaps between sessions were, or if or how any of these parameters might influence interpretation of the results.

      (12) It is not clear if or how the spread of expression outside of the target STN was evaluated, and if or how many mice were excluded due to spread or fiber placements.

    1. Reviewer #3 (Public review):

      Summary:

      The authors recorded brain responses while participants viewed images and captions. The images and captions were taken from the COCO dataset, so each image has a corresponding caption, and each caption has a corresponding image. This enabled the authors to extract features from either the presented stimulus or the corresponding stimulus in the other modality. The authors trained linear decoders to take brain responses and predict stimulus features. "Modality-specific" decoders were trained on brain responses to either images or captions, while "modality-agnostic" decoders were trained on brain responses to both stimulus modalities. The decoders were evaluated on brain responses while the participants viewed and imagined new stimuli, and prediction performance was quantified using pairwise accuracy. The authors reported the following results:

      (1) Decoders trained on brain responses to both images and captions can predict new brain responses to either modality.

      (2) Decoders trained on brain responses to both images and captions outperform decoders trained on brain responses to a single modality.

      (3) Many cortical regions represent the same concepts in vision and language.

      (4) Decoders trained on brain responses to both images and captions can decode brain responses to imagined scenes.

      Strengths:

      This is an interesting study that addresses important questions about modality-agnostic representations. Previous work has shown that decoders trained on brain responses to one modality can be used to decode brain responses to another modality. The authors build on these findings by collecting a new multimodal dataset and training decoders on brain responses to both modalities.

      To my knowledge, SemReps-8K is the first dataset of brain responses to vision and language where each stimulus item has a corresponding stimulus item in the other modality. This means that brain responses to a stimulus item can be modeled using visual features of the image, linguistic features of the caption, or multimodal features derived from both the image and the caption. The authors also employed a multimodal one-back matching task, which forces the participants to activate modality-agnostic representations. Overall, SemReps-8K is a valuable resource that will help researchers answer more questions about modality-agnostic representations.

      The analyses are also very comprehensive. The authors trained decoders on brain responses to images, captions, and both modalities, and they tested the decoders on brain responses to images, captions, and imagined scenes. They extracted stimulus features using a range of visual, linguistic, and multimodal models. The modeling framework appears rigorous, and the results offer new insights into the relationship between vision, language, and imagery. In particular, the authors found that decoders trained on brain responses to both images and captions were more effective at decoding brain responses to imagined scenes than decoders trained on brain responses to either modality in isolation. The authors also found that imagined scenes can be decoded from a broad network of cortical regions.

      Weaknesses:

      The characterization of "modality-agnostic" and "modality-specific" decoders seems a bit contradictory. There are three major choices when fitting a decoder: the modality of the training stimuli, the modality of the testing stimuli, and the model used to extract stimulus features. However, the authors characterize their decoders based on only the first choice-"modality-specific" decoders were trained on brain responses to either images or captions, while "modality-agnostic" decoders were trained on brain responses to both stimulus modalities. I think that this leads to some instances where the conclusions are inconsistent with the methods and results.

      First, the authors suggest that "modality-specific decoders are not explicitly encouraged to pick up on modality-agnostic features during training" (line 137) while "modality-agnostic decoders may be more likely to leverage representations that are modality-agnostic" (line 140). However, whether a decoder is required to learn modality-agnostic representations depends on both the training responses and the stimulus features. Consider the case where the stimuli are represented using linguistic features of the captions. When you train a "modality-specific" decoder on image responses, the decoder is forced to rely on modality-agnostic information that is shared between the image responses and the caption features. On the other hand, when you train a "modality-agnostic" decoder on both image responses and caption responses, the decoder has access to the modality-specific information that is shared by the caption responses and the caption features, so it is not explicitly required to learn modality-agnostic features. As a result, while the authors show that "modality-agnostic" decoders outperform "modality-specific" decoders in most conditions, I am not convinced that this is because they are forced to learn more modality-agnostic features.

      Second, the authors claim that "modality-specific decoders can be applied only in the modality that they were trained on, while "modality-agnostic decoders can be applied to decode stimuli from multiple modalities, even without knowing a priori the modality the stimulus was presented in" (line 47). While "modality-agnostic" decoders do outperform "modality-specific" decoders in the cross-modality conditions, it is important to note that "modality-specific" decoders still perform better than expected by chance (figure 5). It is also important to note that knowing about the input modality still improves decoding performance even for "modality-agnostic" decoders, since it determines the optimal feature space-it is better to decode brain responses to images using decoders trained on image features, and it is better to decode brain responses to captions using decoders trained on caption features.

    1. Reviewer #3 (Public review):

      Summary

      This paper investigates how disinformation affects reward learning processes in the context of a two-armed bandit task, where feedback is provided by agents with varying reliability (with lying probability explicitly instructed). They find that people learn more from credible sources, but also deviate systematically from optimal Bayesian learning: They learned from uninformative random feedback, learned more from positive feedback, and updated too quickly from fully credible feedback (especially following low-credibility feedback). Overall, this study highlights how misinformation could distort basic reward learning processes, without appeal to higher order social constructs like identity.

      Strengths

      • The experimental design is simple and well-controlled; in particular, it isolates basic learning processes by abstracting away from social context
      • Modeling and statistics meet or exceed standards of rigor
      • Limitations are acknowledged where appropriate, especially those regarding external validity
      • The comparison model, Bayes with biased credibility estimates, is strong; deviations are much more compelling than e.g. a purely optimal model
      • The conclusions are of substantial interest from both a theoretical and applied perspective

      Weaknesses

      The authors have addressed most of my concerns with the initial submission. However, in my view, evidence for the conclusion that less credible feedback yields a stronger positivity bias remains weak. This is due to two issues.

      Absolute or relative positivity bias?

      The conclusion of greater positivity bias for lower credible feedback (Fig 5) hinges on the specific way in which positivity bias is defined. Specifically, we only see the effect when normalizing the difference in sensitivity to positive vs. negative feedback by the sum. I appreciate that the authors present both and add the caveat whenever they mention the conclusion. However, without an argument that the relative definition is more appropriate, the fact of the matter is that the evidence is equivocal.

      There is also a good reason to think that the absolute definition is more appropriate. As expected, participants learn more from credible feedback. Thus, normalizing by average learning (as in the relative definition) amounts to dividing the absolute difference by increasingly large numbers for more credible feedback. If there is a fixed absolute positivity bias (or something that looks like it), the relative bias will necessarily be lower for more credible feedback. In fact, the authors own results demonstrate this phenomenon (see below). A reduction in relative bias thus provides weak evidence for the claim.

      It is interesting that the discovery study shows evidence of a drop in absolute bias. However, for me, this just raises questions. Why is there a difference? Was one a just a fluke? If so, which one?

      Positivity bias or perseveration?

      Positivity bias and perseveration will both predict a stronger relationship between positive (vs. negative) feedback and future choice. They can thus be confused for each other when inferred from choice data. This potentially calls into question all the results on positivity bias.

      The authors clearly identify this concern in the text and go to considerable lengths to rule it out. However, the new results (in revision 1) show that a perseveration-only model can in fact account for the qualitative pattern in the human data (the CA parameters). This contradicts the current conclusion:

      Critically, however, these analyses also confirmed that perseveration cannot account for our main finding of increased positivity bias, relative to the overall extent of CA, for low-credibility feedback.

      Figure 24c shows that the credibility-CA model does in fact show stronger positivity bias for less credible feedback. The model distribution for credibility 1 is visibly lower than for credibilities 0.5 and 0.75.

      The authors need to be clear that it is the magnitude of the effect that the perseveration-only model cannot account for. Furthermore, they should additionally clarify that this is true only for models fit to data; it is possible that the credibility-CA model could capture the full size of the effect with different parameters (which could fit best if the model was implemented slightly differently).

      The authors could make the new analyses somewhat stronger by using parameters optimized to capture just the pattern in CA parameters (for example by MSE). This would show that the models are in principle incapable of capturing the effect. However, this would be a marginal improvement because the conclusion would still rest on a quantitative difference that depends on specific modeling assumptions.

      New simulations clearly demonstrate the confound in relative bias

      Figure 24 also speaks to the relative vs. absolute question. The model without positivity bias shows a slightly stronger absolute "positivity bias" for the most credible feedback, but a weaker relative bias. This is exactly in line with the logic laid out above. In standard bandit tasks, perseveration can be quite well-captured by a fixed absolute positivity bias, which is roughly what we see in the simulations (I'm not sure what to make of the slight increase; perhaps a useful lead for the authors). However, when we divide by average credit assignment, we now see a reduction. This clearly demonstrates that a reduction in relative bias can emerge without any true differences in positivity bias.

      Given everything above, I think it is unlikely that the present data can provide even "solid" evidence for the claim that positivity bias is greater with less credible feedback. This confound could be quickly ruled out, however, by a study in which feedback is sometimes provided in the absence of a choice. This would empirically isolate positivity bias from choice-related effects, including perseveration.

    1. Reviewer #3 (Public review):

      This manuscript investigates computational mechanisms underlying increased risk-taking behavior in adolescent patients with suicidal thoughts and behaviors. Using a well-established gambling task that incorporates momentary mood ratings and previously established computational modeling approaches, the authors identify particular aspects of choice behavior (which they term approach bias) and mood responsivity (to certain rewards) that differ as a function of suicidality. The authors replicate their findings on both clinical and large-scale non-clinical samples.

      The main problem, however, is that the results do not seem to support a specific conclusion with regard to suicidality. The S+ and S- groups differ substantially in the severity of symptoms, as can be seen by all symptom questionnaires and the baseline and mean mood, where S- is closer to HC than it is to S+. The main analyses control for illness duration and medication but not for symptom severity. The supplementary analysis in Figure S11 is insufficient as it mistakes the absence of evidence (i.e., p > 0.05) for evidence of absence. Therefore, the results do not adequately deconfound suicidality from general symptom severity.

      The second main issue is that the relationship between an increased approach bias and decreased mood response to CR is conceptually unclear. In this respect, it would be natural to test whether mood responses influence subsequent gambling choices. This could be done either within the model by having mood moderate the approach bias or outside the model using model-agnostic analyses.

      Additionally, there is a conceptual inconsistency between the choice and mood findings that partly results from the analytic strategy. The approach bias is implemented in choice as a categorical value-independent effect, whereas the mood responses always scale linearly with the magnitude of outcomes. One way to make the models more conceptually related would be to include a categorical value-independent mood response to choosing to gamble/not to gamble.

      The manuscript requires editing to improve clarity and precision. The use of terms such as "mood" and "approach motivation" is often inaccurate or not sufficiently specific. There are also many grammatical errors throughout the text.

      Claims of clinical relevance should be toned down, given that the findings are based on noisy parameter estimates whose clinical utility for the treatment of an individual patient is doubtful at best.

    1. Reviewer #3 (Public review):

      Chen et al. identify endophilin A1 as a novel component of the inhibitory postsynaptic scaffold. Their data show impaired evoked inhibitory synaptic transmission in CA1 neurons of mice lacking endophilin A1, and an increased susceptibility to seizures. Endophilin can interact with the postsynaptic scaffold protein gephyrin and promotes assembly of the inhibitory postsynaptic element. Endophilin A1 is known to play a role in presynaptic terminals and in dendritic spines, but a role for endophilin A1 at inhibitory postsynaptic densities has not yet been described, providing a valuable addition to the field.

      To investigate the role of endophilin A1 at inhibitory postsynapses, the authors used a broad array of experimental approaches, including tests of seizure susceptibility, electrophysiology, biochemistry, neuronal culture and image analysis. The authors have addressed the remaining concerns in their revision. Taken together, their results expand the synaptic role of endophilin-A1 to include the inhibitory post synaptic element.

    1. Reviewer #3 (Public review):

      This study provides insights into the growth kinetics of a diverse collection of Streptococcus pneumoniae, identifying capsule and lineage differences. It was not able to identify any specific loci from the GWAS that were associated with the growth features. It does provide a useful study linking phenotypic data with large scale genomic population data.

      In the revised version, the authors have addressed the points raised by the reviewers. The authors have provided additional detail in the Introduction and Methods that both improves the general accessibility for the broad readership of eLife, and the ability of other researchers to reproduce the approaches used in this study. They have expanded the Results and Discussion text in some sections to provide greater clarity and accuracy in reporting their data.

      The inclusion of a Data Availability statement was a useful addition and will help ensure the manuscript adheres to eLife's publishing policies.

    1. Reviewer #3 (Public review):

      Summary:

      The authors aimed to develop Channelrhodopsins (ChRs), light-gated ion channels, with high potency and blue action spectra for use in multicolor (multiplex) optogenetics applications. To achieve this, they performed a bioinformatics analysis to identify ChR homologues in several protist species, focusing on ChRs from ancyromonads, which exhibited the highest photocurrents and the most blue-shifted action spectra among the tested candidates. Within the ancyromonad clade, the authors identified two new anion-conducting ChRs and one cation-conducting ChR. These were characterized in detail using a combination of manual and automated patch-clamp electrophysiology, absorption spectroscopy, and flash photolysis. The authors also explored sequence features that may explain the blue-shifted action spectra and differences in ion selectivity among closely related ChRs.

      Strengths:

      A key strength of this study is the high-quality experimental data, which were obtained using well-established techniques such as manual patch-clamp and absorption spectroscopy, complemented by modern automated patch-clamp approaches. These data convincingly support most of the claims. The newly characterized ChRs expand the optogenetics toolkit and will be of significant interest to researchers working with microbial rhodopsins, those developing new optogenetic tools, as well as neuro- and cardioscientists employing optogenetic methods.

      Weaknesses:

      This study does not exhibit major methodological weaknesses.

    1. Reviewer #3 (Public review):

      Summary:

      This manuscript demonstrates that mice lacking the denitrosylase enzyme SCoR2/AKR1A1 demonstrate a robust cardioprotection resulting from reprogramming of multiple metabolic pathways, revealing<br /> widespread, coordinated metabolic regulation by SCoR2.

      Strengths:

      The extensive experimental evidence provided the use of the knockout model

      Weaknesses:

      No direct evidence for the underlying mechanism.

      The mouse model used is not a tissue-specific knock-out.

    1. Reviewer #3 (Public review):

      Summary:

      This manuscript from Mudgett et al. explores the relative roles of PID and NPY1 in auxin-dependent floral initiation in Arabidopsis. Micro vectorial auxin flows directed by PIN1 are essential to flower initiation, and loss of PIN1 or two of its regulators, PID and NPY1 (in a yucca-deficient background) phenocopies the pinformed phenotype. This group has previously shown that PID-PIN1 interactions and function are dosage-dependent. The authors pick up this thread by demonstrating that a heterozygote containing a CRISPR deletion of one copy of PIN1 can restore quasi-wild type floral initiation to pid.

      The authors then show that overexpression of NPY1 is sufficient to more or less restore wild-type floral initiation to the pid mutant. The authors claim that this result demonstrates that NPY1 functions downstream of PID, as this ectopic abundance of NPY1 resulted in phosphorylation of PIN1 at sites that differ from sites of action of PID. The authors pursue evidence that PID action via NPY1 is analogous to the mode of action by which phot1/2 act on NPH3 in seedling phototropism. Such a model is supported by the evidence presented herein that the C terminus of NPY1, which has abundant Ser/Thr content, is phosphorylated, and that the deletion of this domain prevents overexpression compensation of the pinformed phenotype.<br /> While the results presented support evidence in the literature that PID acts on NPY1 to regulate PIN1 function, it is also possible that NPY1 overexpression results in limited expansion of phosphorylation targets observed with other AGC kinases. And if the phot model is any indication, there may be other PID targets that modulate PIN1-dependent floral initiation.

      However, overexpression of the NPY1 C-terminal deletion construct resulted in phosphorylation of both PIN1 and PIN2 and agravitropic root growth similar to what is observed in pin2 mutants. This suggests that direct PID phosphorylation of PINs and action via NPY1 can be distinguished by phosphorylation sites and by growth phenotypes.

      Strengths:

      A very important effort that places NPY1 downstream of PID in floral initiation.

      Weaknesses:

      As PID has been shown to act on sites that regulate PIN protein polarity as well as PIN protein function, it would be useful if the authors consider how their results would fit/not fit with a model where combinatorial function of NPY1 and PID regulate PIN1 in a manner similar to the way that PID appears to function combinatorially with D6PK on PIN3.

    1. Reviewer #3 (Public Review):

      The manuscript by Carayon and Strutt addresses the role of cell-scale signaling during the establishment of planar cell polarity (PCP) in the Drosophila pupal wing. The authors induce locally the expression of a tagged core PCP protein, Frizzled, and observe and analyze the de novo establishment of planar cell polarity. Using this system, the authors show that PCP can be established within several hours, that PCP is robust towards variation in core PCP protein levels, that PCP proteins do not orient microtubules, and that PCP is robust towards 'extrinsic' re-polarization. The authors conclude that the polarization at the cell-scale is strongly intrinsic and only weakly affected by the polarity of neighboring cells.

      Major comments:

      The data are clearly presented and the manuscript is well written. The conclusions are well supported by the data. 

      (1) The authors use a system to de novo establish PCP, which has the advantage of excluding global cues orienting PCP and thus to focus on the cell-intrinsic mechanisms. At the same time, the system has the limitation that it is unclear to what extent de novo PCP establishment reflects 'normal' cell scale PCP establishment, in particular because the Gal4/UAS expression system that is used to induce Fz expression will likely result in much higher Fz levels compared with the endogenous levels. The authors should briefly discuss this limitation.

      (2) Fig. 3. The authors use heterozygous mutant backgrounds to test the robustness of de novo PCP establishment towards (partial) depletion in core PCP proteins. The authors conclude that de novo polarization is 'extremely robust to variation in protein level'. Since the authors (presumably) lowered protein levels by 50%, this conclusion appears to be somewhat overstated. The authors should tune down their conclusion.

      Significance: 

      The manuscript contributes to our understanding of how planar cell polarity is established. It extends previous work by the authors (Strutt and Strutt, 2002,2007) that already showed that induction of core PCP pathway activity by itself is sufficient to induce de novo PCP. This manuscript further explores the underlying mechanisms. The authors test whether de novo PCP establishment depends on an 'inhibitory signal', as previously postulated (Meinhardt, 2007), but do not find evidence. They also test whether core PCP proteins help to orient microtubules (which could enhance cell intrinsic polarization of core PCP proteins), but, again, do not find evidence, corroborating previous work (Harumoto et al, 2010). The most significant finding of this manuscript, perhaps, is the observation that local de novo PCP establishment does not propagate far through the tissue. A limitation of the study is that the mechanisms establishing intrinsic cell scale polarity remain unknown. The work will likely be of interest to specialists in the field of PCP.

  5. Aug 2025
    1. Reviewer #3 (Public review):

      Summary:

      The study explores a molecular mechanism by which C. elegans detects low-quality food through neuron-digestive crosstalk, offering new insights into food quality control systems. Liu and colleagues demonstrated that NSY-1, expressed in AWC neurons, is a key regulator for sensing Staphylococcus saprophyticus (SS), inducing avoidance behavior and shutting down the digestive system via intestinal BCF-1. They further revealed that INS-23, an insulin peptide, interacts with the DAF-2 receptor in the gut to modulate SS digestion. The study uncovers a food quality control system connecting neural and intestinal responses, enabling C. elegans to adapt to environmental challenges.

      Strengths:

      The study employs a genetic screening approach to identify nsy-1 as a critical regulator in detecting food quality and initiating adaptive responses in C. elegans. The use of RNA-seq analysis is particularly noteworthy, as it reveals distinct regulatory pathways involved in food sensing (Figure 4) and digestion of Staphylococcus saprophyticus (Figure 5). The strategic application of both positive and negative data mining enhances the depth of analysis. Importantly, the discovery that C. elegans halts digestion in response to harmful food and employs avoidance behavior highlights a physiological adaptation mechanism.

      Weaknesses:

      Major weaknesses have been addressed.

    1. Reviewer #3 (Public review):

      Hawes et al. combined behavioral, optical imaging, and activity manipulation techniques to investigate the role of striatal patch SPNs in locomotion regulation. Using Sepw1-Cre transgenic mice, they found that patch SPNs encode locomotion deceleration in a light-dark box procedure through optical imaging techniques. Moreover, genetic ablation of patch SPNs increased locomotion speed, while chemogenetic activation of these neurons decreased it. The authors concluded that a subtype of patch striatonigral neurons modulates locomotion speed based on external environmental cues.

      In the revision, the authors have largely addressed my concerns with additional explanation and discussion, although some of the key experiments to strengthen the authors' claim by identifying the function of specific cell populations remain to be conducted due to technical challenges. Nevertheless, the current results remain valuable and interesting to a wide audience in the field.

    1. Reviewer #3 (Public review):

      Summary:

      The authors present a novel method to measure passive joint torques - torques due to internal forces other than active muscle contraction - in the fruit fly: genetically inactivating all motor neurons in intact limb acted upon by a gravitational load results in a change in limb configuration; evaluating the moment equilibrium condition about the limb joints then yields a direct estimate of the passive joint torques. Deactivating all motor neurons in an intact standing fly provided two further conclusions: First, because deactivation causes the fly to drop to the floor, the passive joint torques are deemed insufficient to maintain rotational equilibrium against the body weight; using a multi-body-dynamics simulation, the authors estimate that the passive torques would need to be about 40-80 times higher to maintain a typical posture without active muscle action. Second, a delay between the motor neuron inactivation and the onset of the "free fall" motivates the authors to invoke a simple exponential decay model, which is then used to derive a time constant for muscle deactivation, in robust agreement with direct electro-physiological recordings.

      Strengths:

      The experimental design that permits determination of passive joint torques is elegant, effective, novel, and altogether excellent; it permits measurements previously impossible. A careful error analysis is presented, and a spectrum of technically challenging methods, including multi-body dynamics and e-phys, is deployed to further interpret and contextualise the results.

      Weaknesses:

      (1) Passive torques are measured, but only some short speculative statements, largely based on previous work, are offered on their functional significance; some of these claims are not well supported by experimental evidence or theoretical arguments. Passive forces are judged as "large" compared to the weight force of the limb, but the arguably more relevant force is the force limb muscles can generate, which, even in equilibrium conditions, is already about two orders of magnitude larger. The conclusion that passive forces are dynamically irrelevant seems natural, but contrasts with the assertion that "passive forces [...] will have a strong influence on limb kinematics". As a result, the functional significance of passive joint torques in the fruit fly, if any, remains unclear, and this ambiguity represents a missed opportunity. We now know the magnitude of passive joint torques - do they matter and for what? Are they helpful, for example, to maintain robust neuronal control, or a mechanical constraint that negatively impacts performance, e.g., because they present a sink for muscle work?

      (2) The work is framed with a scaling argument, but the assumptions that underpin the associated claims are not explicit and can thus not be evaluated. This is problematic because at least some arguments appear to contradict textbook scaling theory or everyday experience. For example, active forces are assumed to scale with limb volume, when every textbook would have them scale with area instead; and the asserted scaling of passive forces involves some hidden assumptions that demand more explicit discussion to alert the reader to associated limitations. Passive forces are said to be important only in small animals, but a quick self-experiment confirms that they are sufficient to stabilize human fingers or ankles against gravity, systems orders of magnitude larger than an insect limb, in seeming contradiction with the alleged dominance of scale. Throughout the manuscript, there are such and similar inaccuracies or ambiguities in the mechanical framing and interpretation, making it hard to fairly evaluate some claims, and rendering others likely incorrect.

    1. Reviewer #3 (Public review):

      Summary:

      In this manuscript Pinon et al. describe the development of a 3D model of human vasculature within a microchip to study Neisseria meningitidis (Nm)- host interactions and validate it through its comparison to the current gold-standard model consisting of human skin engrafted onto a mouse. There is a pressing need for robust biomimetic models with which to study Nm-host interactions because Nm is a human-specific pathogen for which research has been primarily limited to simple 2D human cell culture assays. Their investigation relies primarily on data derived from microscopy and its quantitative analysis, which support the authors' goal of validating their Vessel-on-Chip (VOC) as a useful tool for studying vascular infections by Nm, and by extension, other pathogens associated with blood vessels.

      Strengths:<br /> • Introduces a novel human in vitro system that promotes control of experimental variables and permits greater quantitative analysis than previous models<br /> • The VOC model is validated by direct comparison to the state-of-the-art human skin graft on mouse model<br /> • The authors make significant efforts to quantify, model, and statistically analyze their data<br /> • The laser ablation approach permits defining custom vascular architecture<br /> • The VOC model permits the addition and/or alteration of cell types and microbes added to the model<br /> • The VOC model permits the establishment of an endothelium developed by shear stress and active infusion of reagents into the system

      Weaknesses:<br /> • The work presented here is mostly descriptive, with little new information that is learned about the biology of Nm or endothelial cells. However, the goal of this study was to establish the VOC model, and the validation presented here is necessary for follow-on studies on Nm pathogenesis and host response.<br /> • The VOC model contains one cell type, human umbilical cord vascular endothelial cells (HUVECs), while true vasculature contains a number of other cell types that associate with and affect the endothelium, such as smooth muscle cells, pericytes, and components of the immune system. These and other shortcomings of the VOC model as it currently stands warrant additional discussion.

      Impact:<br /> The VOC model presented by Pinon et al. is an exciting advancement in the set of tools available to study human pathogens interacting with the vasculature. This manuscript focuses on validating the model, and as such sets the foundation for impactful research in the future. Of particular value is the photoablation technique that permits the custom design of vascular architecture without the use of artificial scaffolding structures described in previously published works.

    1. Reviewer #3 (Public review):

      Summary:

      This paper investigates changes in brain oscillations in V1 in response to experimentally manipulating visual stimulus features (size, contrast at optimal size) and examines whether these effects are of perceptual relevance. The results reveal prominent stimulus-related theta oscillations in V1 that match in frequency the rhythms of behavioural performance (response speed in detecting targets in the visual display). Phase analyses relate these fluctuations of detection performance more formally to opposite theta phase angles in V1.

      Strengths:

      The non-human primate model provides unique findings on how brain oscillations relate to rhythms in perception (in two rhesus monkeys) that align well with findings from human studies (as occurring in the theta band). However, theta rhythms in humans are typically associated with fronto-parietal activity in the domain of spatial orienting, attentional sampling, while here the focus is on V1. Importantly, microsaccade-controls seem to speak against a spatial orienting/ attentional sampling mechanism to explain the observed effects (at least regarding overt attention).

      Weaknesses:

      This study provides interesting clues on perceptually relevant brain oscillations. Despite the microsaccade-control, I believe it remains an open question whether the V1 rhythmicity is of pure V1 origin, or driven by top-down input, as it is conceivable that specific stimuli capture attention differently (and hence induce specific covert attentional (re)orienting patterns). For perceptually relevant (yet beta) rhythmicity over occipital areas that are top-down generated, see e.g., Veniero et al., 2019.

    1. Reviewer #3 (Public review):

      Summary:

      This paper demonstrates that membrane depolarization induces a small increase in cell entry into mitosis. Based on previous work from another lab, the authors propose that ERK activation might be involved. They show convincingly using a combination of assays that ERK is activated by membrane depolarization. They show this is Ca2+ independent and is a result of activation of the whole K-Ras/ERK cascade which results from changed dynamics of phosphatidylserine in the plasma membrane that activates K-Ras. Although the activation of the Ras/ERK pathway by membrane depolarization is not new, linking it to an increase in cell proliferation is novel.

      Strengths

      A major strength of the study is the use of different techniques - live imaging with ERK reporters, as well as Western blotting to demonstrate ERK activation as well as different methods for inducing membrane depolarization. They also use a number of different cell lines. Via Western blotting the authors are also able to show that the whole MAPK cascade is activated.

      Weaknesses

      A weakness of the study is the data in Figure 1 showing that membrane depolarization results in an increase of cells entering mitosis. There are very few cells entering mitosis in their sample in any condition. This should be done with many more cells to increase the confidence in the results. The study also lacks a mechanistic link between ERK activation by membrane depolarization and increased cell proliferation.

      The authors did achieve their aims with the caveat that the cell proliferation results could be strengthened. The results, for the most par,t support the conclusions.

      This work suggests that alterations in membrane potential may have more physiological functions than action potential in the neural system as it has an effect on intracellular signalling and potentially cell proliferation.

      In the revised manuscript, the authors have now addressed the issues with Figure 1, and the data presented are much clearer. They did also attempt to pinpoint when in the cell cycle ERK is having its activity, but unfortunately, this was not conclusive.

    1. Reviewer #3 (Public review):

      Summary:

      The tissue regeneration enhancer elements (TREEs) identified in zebrafish have been shown to drive injury-activated temporal-spatial gene expression in mice and large animals. These findings increase the translational potential of findings in zebrafish to mammals. In this manuscript, the authors tested TREEs in combination with different adeno-associated viral (AAV) vectors using in vivo luciferase bioluminescent imaging that allows for longitudinal tracking. The TREE-driven luciferase delivered by a liver de-targeted AAV.cc84 decreased off-target transduction in liver. They further screened an AAV library to identify capsid variants that display enhanced transduction for infarcted myocardium post ischemia reperfusion and myocardial infarction. A new capsid variant, AAV.IR41, was found to show increased transduction post I/R and MI.

      Strengths:

      The authors injected AAV-cargo several days after ischemia/reperfusion (I/R) injury as a clinically relevant approach. Overall, this study is significant in that it identifies new AAV vectors that can be used to deliver promising genes as potential new gene therapies in the future. The manuscript is well-written and the data are also of high quality.

      Weaknesses:

      The authors have addressed my previous concerns.

    1. Reviewer #3 (Public review):

      Summary:

      The authors seek to determine the underlying traits that support the exceptional capacity of Aspergillus oryzae to secrete enzymes and heterologous proteins. To do so, they leverage the availability of multiple domesticated isolates of A. oryzae along with other Aspergillus species to perform comparative imaging and genomic analysis.

      Strengths:

      The strength of this study lies in the use of multifaceted approaches to identify significant differences in hyphal morphology that correlate with enzyme secretion, which is then followed by the use of genomics to identify candidate functions that underlie these differences.

      Weaknesses:

      Although the image analysis and data interpretation is convincing, the genetic data supporting the author's model is somewhat more speculative and will likely require additional investigation.

      Overall, the authors have achieved their aims in that they are able to clearly document the presence of two distinct hyphal forms in A. oryzae and other Aspergillus species, and to correlate the presence of the thicker rapidly growing form with enhanced enzyme secretion. The image analysis is convincing. The discovery that addition of yeast extract and specific amino acids can stimulate formation of the novel hyphal form is also notable. Although the conclusions are generally supported by the results, this is perhaps less so for the genetic analysis as it remains unclear how direct the role of RseA and the calcium transporters might be in supporting the formation of the thicker hyphae.

      The results presented here will impact the field. The complexity of hyphal morphology and how it affects secretion are not well understood despite the importance of these processes for the fungal lifestyle. In addition, the description of approaches that can be used to facilitate the study of these different hyphal forms (i.e., stimulation using yeast extract or specific animo acids) will benefit future efforts to understand the molecular basis of their formation.

    1. Reviewer #3 (Public review):

      The manuscript is focused on local bulbar mechanisms to solve the flexibility-stability dilemma in contrast to long range interactions documented in other systems (hippocampus-cortex). The network performance is assessed in a perceptual learning task: the network is presented with alternating, similar artificial stimuli (defined as enrichment) and the authors assess its ability to discriminate between these stimuli by comparing the mitral cell representations quantified by Fisher discriminant analysis. The authors use enhancement in discriminability between stimuli as function of the degree of specificity of connectivity in the network to quantify the formation of an odor-specific network structure which as such has memory - they quantify memory as the specificity of that connectivity.

      The focus on neurogenesis, excitability and synaptic connectivity of abGCs is topical, and the authors systematically built their model, clearly stating their assumptions and setting up the questions and answers. In my opinion, the combination of latent dendritic representations, excitability and apoptosis in an age-dependent manner is interesting and as the authors point out leads to experimentally testable hypotheses.

      In the revised manuscript, the authors have systematically addressed my previous concerns. In particular, they now refer to previous work on granule cells-mitral cell interactions more generally, they explain the pros and cons for usage of specificity in connectivity as a proxy for memory capacity, and the biological plausibility of the model.

    1. Reviewer #3 (Public review):

      Summary:

      This manuscript by Fontana et al. sets out to fill a critical gap in our understanding of how individuality in fear responses corresponds to changes in brain activity. Previous work has shown in myriad species that fear behaviors are highly variable, and these variabilities correlate with sex and strain, with epigenetic modifications, and neural activity in specific regions of the brain, such as the amygdala. However, a whole-brain functional assessment of whether activity in different regions of the brain is associated with fear behavior has been difficult to assess, in part due to the large size and opacity of the brain. The Kenney group overcomes these limitations using the zebrafish, together with powerful behavioral and brain imaging approaches pioneered by their lab. To overcome the technical obstacles of delivering a reproducible unconditioned stimulus in water and quantifying nuanced behavioral responses, the authors developed a three-day conditioning paradigm in which fish were repeatedly exposed to CAS in one tank context and to control water in another. Leveraging automated cluster analysis across over 300 individuals from four inbred strains, they identified four distinct memory-recall phenotypes - non-reactive, evaders, evading freezers, and freezers - demonstrating both the robustness of their assay and the influence of genetic background and sex on fear learning. Finally, whole-brain imaging using the AZBA atlas (Kenney et al. eLife) and cfos mapping coupled with multivariate analysis revealed that although all fish reengaged telencephalic regions during recall, high-freezing phenotypes uniquely recruited cerebellar, preglomerular, and pretectal nuclei, whereas mixed evasion-freezing fish showed preferential activation of preoptic and hypothalamic areas - a finding that lays the groundwork for dissecting the distributed neural substrates of associative fear in zebrafish.

      Strengths:

      The strengths of the study lie in the use of zeberarish and the innovative behavioral, modeling, and brain imaging tools applied to address this question. The question of how brain-wide activity correlates with variations in fear behavior is fundamental, and arguably, this system is the only system that could be used to address this. The statistics are appropriate, and the study is well reasoned. Overall, I like this manuscript very much and think it adds invaluable information to the field of fear/anxiety.

      Weaknesses:

      I have a few questions and suggestions.

      (1) The three-day contextual fear paradigm, as implemented - one CAS pairing on day 2 followed by a single recall test on day 3 - inevitably conflates acquisition and long-term memory, making it impossible to know whether strains like TU truly recall the association poorly or simply learn it more slowly. For example, given that TU fish extinguish fear faster than AB or TL strains in extended protocols, they may simply require additional or repeated CAS pairings to achieve the same asymptotic performance. To disentangle learning kinetics from recall strength, the assay could be revised to include multiple acquisition trials (e.g., conditioning on two or more consecutive days) with an immediate post-conditioning probe to assess acquisition independent of consolidation, and continuous measurement of freezing and evasive behaviors across each trial to fit learning curves for each strain. Such refinements - even if on a subset of the strains - would reveal whether "non-reactive" phenotypes reflect genuine recall deficits or merely delayed acquisition.

      (2) My second major question is with respect to Figure 3 panel B. This is a complex figure, and I can understand the gist of what the authors are attempting to show, but it is difficult to understand as it is. Can this be represented in a way that is clearer and explained a bit more easily?

      (3) The brain mapping is by far one of the most interesting aspects of this study, and the methods that the group used are interesting. The brain mapping, however, relies on generating "contrasting" groups (Figure 6A), and I was not clear as to how these two groups were formed. Could the authors elaborate a bit?

    1. Reviewer #3 (Public review):

      Summary:

      The heat shock response (HSR) is an inducible transcriptional program that has provided paradigmatic insight into how stress cues feed information into the control of gene expression. The recent elucidation that the chaperone Hsp70 controls the DNA binding activity of the central HSR transcription factor Hsf1 by direct binding has spurred the question how such a general chaperone obtains specificity. This study has addressed the next logical question, how J-domain proteins execute this task in budding yeast, the leading cell model for studying the HSR. While an involvement and in part overlapping function of general class A and B J-domain proteins, Ydj1 and Sis1 are indicated by the genetic analysis a highly specific role for the class A Apj1 in displacing Hsf1 from the promoters is found unveiling specificity in the system.

      Strengths

      The central strong point of the paper is the identification of class A J-domain protein Apj1 as a specific regulator of the attenuation of the HSR by removing Hsf1 from HSEs at the promoters. The genetic evidence and the ChIP data strongly support this claim. This identification of a specific role for a lowly expressed nuclear J-domain protein changes how the wiring of the HSR should be viewed. It also raises important questions regarding the model of chaperone titration, the concept that a chaperone with limiting availability is involved in a thug of war involving competing interactions with misfolded protein substrates and regulatory interactions with Hsf1. Perhaps Apj1 with its low levels and interactions with misfolded and aggregated proteins in the nucleus is the titrated Hsp70 (co)chaperone that determines the extent of the HSR? This would mean that Apj1 is at the nexus of the chaperone titration mechanism. Although Apj1 is not a highly conserved J domain protein among eukaryotes the strength of the study is that is provides a conceptual framework for what may be required for chaperone titration in other eukaryotes: One or more nuclear J-domain proteins with low nuclear levels that has an affinity for Hsf1 and that can become limiting due to interactions with misfolded Hsp70 proteins. The provides a pathway for how these may be identified using for example ChIP-seq.

      Weakness

      A built-in challenge when studying the mechanism of the HSR is the general role of Hsp70 chaperone system and its J domain proteins. Indeed, a weakness of the study is that it is unclear what of the phenotypic effects have to do with directly recruiting Hsp70 to Hsf1 dependent on a J domain protein and what instead is an indirect effect of protein misfolding caused by the mutation. This interpretation problem is clearly and appropriately dealt with in the manuscript text and in experiments but is of such fundamental nature that it cannot easily be fully ruled out.

    1. Reviewer #3 (Public review):

      Summary:

      In this paper, it is established that high fever-like 39{degree sign}C temperatures cause parasite-infected red blood cells to become stickier. It is thought that high temperatures might help the spleen to destroy parasite-infected cells, and they become stickier in order to remain trapped in blood vessels, so they stop passing through the spleen.

      Strengths:

      The strength of this research is that it shows that fever-like temperatures can cause parasite-infected red blood cells to stick to surfaces designed to mimic the walls of small blood vessels. In a natural infection, this would cause parasite-infected red blood cells to stop circulating through the spleen, where the parasites would be destroyed by the immune system. It is thought that fevers could lead to infected red blood cells becoming stiffer and therefore more easily destroyed in the spleen. Parasites respond to fevers by making their red blood cells stickier, so they stop flowing around the body and into the spleen. The experiments here prove that fever temperatures increase the export of Velcro-like sticky proteins onto the surface of the infected red blood cells and are very thorough and convincing.

      Weaknesses:

      A minor weakness of the paper is that the effects of fever on the stiffness of infected red blood cells were not measured. This can be easily done in the laboratory by measuring how the passage of infected red blood cells through a bed of tiny metal balls is delayed under fever-like temperatures.

    1. Reviewer #3 (Public review):

      Summary:

      The manuscript by Chen et al examines the structure of the inactive LRRK2 bound to microtubules using cryo-EM tomography. Mutations in this protein have been shown to be linked to Parkinson's Disease. It is already shown that the active-like conformation of LRRK2 binds to the MT lattice, but this investigation shows that full-length LRRk2 can oligomerize on MTs in its autoinhibited state with different helical parameters than were observed with active-like state. The structural studies suggest that the autoinhibited state is less stable on MTs.

      Strengths:

      The protein of interest is very important biomedically and a novel conformational binding to microtubules in proposed

      The authors have addressed my original critique.

    1. Reviewer #3 (Public review):

      Summary:

      The authors build and analyze recurrent neural network (RNN) models of brain-computer interface (BCI) multi-task learning, developing a valuable theoretical understanding of learning-related neural population phenomena ("memory traces" and "uniform shifts") that have been reported in recent experimental studies of BCI and motor learning. The authors find that both phenomena emerge in their RNN models, and both correlate in some manner to learning-related behavioral phenomena ("savings" and "forgetting"). The authors also reveal that RNN training details, in particular, incorporating a task-indicating contextual input, can impact these population-level signatures of learning in RNN activity and their relation to those behavioral phenomena.

      Strengths:

      The text is well written, and the figures are clearly composed to convey the core concepts and findings. The RNN studies are elegant in their ability to recapitulate the memory trace and uniform shift phenomena, and further allow evaluations of novel scenarios that were not tested in the original corpus of the modeled animal experiments. The authors assess the sensitivity of their results to multiple approaches to RNN training, including training connectivity within a model of motor cortex, training only an upstream model that provides inputs to the motor cortex model, and providing task-indicating contextual inputs.

      Weaknesses:

      (1) It is unclear to what extent these RNN models operate in regimes relevant to biological neural networks (e.g., motor cortex), even at the neural-population level of abstraction studied here. Can the authors speak to how sensitive their results are to details that might speak to these operating regimes (e.g., signal-to-noise ratios or dimensionality of the RNN activities)?

      (2) The work could be further strengthened by analyses demonstrating a more direct link between the neural population phenomena (memory trace and uniform shift) and the behavioral phenomena (savings, forgetting, etc). While in animal experiments, it can be exceedingly difficult to demonstrate links beyond correlative effects, the promise of a model is the relative tractability of implementing manipulations that might establish something closer to a causal link between phenomena. Is it the case that the memory trace is a task-dependent, mean-preserving rotation of the across-target task-relevant activity space? And that the uniform shift is a translation (non-mean-preserving) of that space? If so, could the authors design regularization schemes that specifically target each of these effects, enabling a more direct test of the functional role the effects play in driving behavioral phenomena?

      Minor Comments:

      The current study is based on BCI learning of center-out tasks, analogous to the Losey et al. task that initially reported the memory trace phenomena. However, a rather different behavioral task - involving arm movements through curl force fields - was employed by the Sun, O'Shea, et al. study that originally reported the uniform shift phenomena. How should readers interpret the current study's findings related to the uniform shift? To what extent might the behavioral implications of the uniform shift depend on the demands of the task, e.g., the biomechanics, day-to-day experiencing of different curl-field perturbations, etc.?

    1. Reviewer #3 (Public review):

      Summary:

      In this well-written manuscript, Unitt and colleagues propose a new, hierarchical nomenclature system for the pathogen Neisseria gonorrhoeae. The proposed nomenclature addresses a longstanding problem in N. gonorrhoeae genomics, namely that the highly recombinant population complicates typing schemes based on only a few loci and that previous typing systems, even those based on the core genome, group strains at only one level of genomic divergence without a system for clustering sequence types together. In this work, the authors have revised the core genome MLST scheme for N. gonorrhoeae and devised life identification numbers (LIN) codes to describe the N. gonorrhoeae population structure.

      Strengths:

      The LIN codes proposed in this manuscript are congruent with previous typing methods for Neisseria gonorrhoeae, like cgMLST groups, Ng-STAR, and NG-MAST. Importantly, they improve upon many of these methods as the LIN codes are also congruent with the phylogeny and represent monophyletic lineages/sublineages.

      The LIN code assignment has been implemented in PubMLST, allowing other researchers to assign LIN codes to new assemblies and put genomes of interest in context with global datasets.

      Weaknesses:

      The authors correctly highlight that cgMLST-based clusters can be fused due to "intermediate isolates" generated through processes like horizontal gene transfer. However, the LIN codes proposed here are also based on single linkage clustering of cgMLST at multiple levels. It is unclear if future recombination or sequencing of previously unsampled diversity within N. gonorrhoeae merges together higher-level clusters, and if so, how this will impact the stability of the nomenclature.

      The authors have defined higher resolution thresholds for the LIN code scheme. However, they do not investigate how these levels correspond to previously identified transmission clusters from genomic epidemiology studies. It would be useful for future users of the scheme to know the relevant LIN code thresholds for these investigations.

    1. Reviewer #3 (Public review):

      Summary:

      The manuscript by Atchou et al. investigates the role of the microtubule cytoskeleton in sporozoites of Plasmodium berghei, including possible functions of microtubule post-translational modifications (tyrosination and polyglutamylation) in the development of sporozoites in the liver. They also assessed the development of sporozoites in the mosquito. Using cell culture models and in vivo infections with parasites that contain tubulin mutants deficient in certain PTMs, they show that may aspects of the life cycle progression are impaired. The main conclusion is that microtubule PTMs play a major role in the differentiation processes of the parasites.

      However, there are a number of major and minor points of criticism that relate to the interpretation of some of the data.

      Comments:

      (1) The first paragraph of "Results" almost suggests that the presence of a subpellicular MT-array in sporozoites is a new discovery. This is not the case, see e.g. the recent publication by Ferreira et al. (Nature Communications, 2023).

      (2) Why were HeLa cells and not hepatocytes (as in Figure 3) used for measuring infection rates of the mutants in Figure 5H and 5L? As I understand, HeLa cells are not natural host cells for invading sporozoites. HeLa cells are epithelial cells derived from a cervical tumour. I am not an expert in Plasmodium biology, but is a HeLa infection an accepted surrogate model for liver stage development?

      (3) The tubulin staining in Figures 1A and 1B is confusing and doesn't seem to make sense. Whereas in 1A the antibody nicely stains host and parasite tubulin, in 1B, only parasite tubulin is visible. If the same antibody and the same host cells have been used, HeLa cytoplasmic microtubules should be visible in 1B. In fact, they should be the predominant antigen. The same applies to Figure 2, where host microtubules are also not visible.

      (4) In Figures 2A and B, the host nuclei appear to have very different sizes in the DMSO controls and in the drug-treated cells. For example, in the 20 µM (-) image (bottom right), the nuclei are much larger than in the DMSO (-) control (top left). If this is the case, expansion microscopy hasn't worked reproducibly, and therefore, quantification of fluorescence is problematic. The scalebar is the same for all panels.

      (5) I don't quite follow the argument that spindles and the LSPMB are dynamic structures (e.g., lines 145, 174). That is a trivial statement for the spindle, as it is always dynamic, but beyond that, it has only been shown that the structure is sensitive to oryzalin. That says little about any "natural" dynamic behaviour. Any microtubule structure can be destroyed by a particular physical or chemical treatment, but that doesn't mean all structures are dynamic. It also depends on the definition of "dynamic" in a particular context, for example, the time scale of dynamic behaviour (changes within seconds, minutes, or hours).

      (6) I am not sure what part in the story EB1 plays. The data are only shown in the Supplements and don't seem to be of particular relevance. EB1 is a ubiquitous protein associated with microtubule plus ends. The statement (line 192) that it "may play a broader role..." is unsubstantiated and cannot be based merely on the observation that it is expressed in a particular life cycle stage.

      (7) Line 196 onwards: The antibody IN105 is better known in the field as polyE. Maybe that should be added in Materials and Methods. Also, the antibody T9028 against tyrosinated tubulin is poorly validated in the literature and rarely used. Usually, researchers in this field use the monoclonal antibody YL1/2. I am not sure why this unusual antibody was chosen in this study. In fact, has its specificity against tyrosinated α-tubulin from Plasmodium berghei ever been shown? The original antigen was human and had the sequence EGEEY. The Plasmodium sequence is YEADY and hence very different. It is stated that the LSPMB is both polyglutamylated and tyrosinated. This is unusual because polyglutamylated microtubules are usually indicative of stable microtubules, whereas tyrosinated microtubules are found on freshly polymerised and dynamic microtubules. However, a co-localisation within the same cell has not been attempted. This is, however, possible since polyE is a rabbit antibody and T9028 is a mouse antibody. I suspect that differences or gradients along the LSPMB would have been noticed. Also, in lines 207/208, it is said that tyrosination disappears after hepatocyte invasion, which is shown in Figure 3. However, in Figure 3A, quite a lot of positive signals for tyrosination are visible in the 54 and 56 hpi panels.

      (8) In line 229, it is stated that tyrosination "has previously been associated with stable microtubule in motility". This statement is not correct. In fact, none of the cited references that apparently support this statement show that this is the case. On the contrary, stable microtubules, such as flagellar axonemes, are almost completely detyrosinated. Therefore, tyrosination is a marker for dynamic microtubules, whereas detyrosinated microtubules are indicative of stable microtubules. This is an established fact, and it is odd that the authors claim the opposite.

      (9) Line 236 onwards: Concerning the generation of tubulin mutants, I think it is necessary to demonstrate successful replacement of the wild-type allele by the mutant allele. I am sure the authors have done this by amplification and subsequent sequencing of the genomic locus using PCR primers outside the plasmid sequences. I suggest including this information, e.g., by displaying the chromatograph trace in a supplementary figure. Or are the sequences displayed in Figure S3B already derived from sequenced genomic DNA? This is not described in the Legend or in Materials and Methods. The left PCR products obtained for Figure S3 B would be a suitable template for sequencing.

      (10) It is also important to be aware of the fact that glutamylation also occurs on β-tubulin. This signal will also be detected by polyE (IN105). Therefore, it is surprising that IN105 immunofluorescence is negative on the C-term Δ cells (Figure S3 D). Is there anything known about confirmed polyglutamylation sites on both α- and β-tubulins in Plasmodium, e.g., by MS? In Toxoplasma, both α- and β-tubulin have been shown to be polyglutamylated.

      (11) Figure S3 is very confusing. In the legend, certain intron deletions are mentioned. How does this relate to posttranslational tubulin modifications? The corresponding section in Results (lines 288-292) is also not very helpful in understanding this.

      (12) Figure 4E doesn't look like brightfield microscopy but like some sort of fluorescent imaging. In Figure 4C, were the control (NoΔ) cells with an integrated cassette, but no mutations, or non-transgenic cells?

      (13) It is difficult to understand why the TyΔ and the CtΔ mutants still show quite a strong signal using the anti-tyrosination antibody. If the mutants have replaced all wild-type alleles, the signal should be completely absent, unless the antibody (see my comment above concerning T9028) cross-reacts with detyrosinated microtubules. Therefore, the quantitation in Figures 5F and 5G is actually indicative of something that shouldn't be like that. The quantitation of 5F is at odds with the microscopy image in 5D. If this image is representative, the anti-Ty staining in TyΔ is as strong as in the control NoΔ.

      (14) The statement that the failure of CtΔ mutants to generate viable sporozoites is due to the lack of microtubule PTMs (lines 295-296) is speculative. The lack of the entire C-terminal tail could have a number of consequences, such as impaired microtubule assembly or failure to recruit and bind associated proteins. This is not necessarily linked to PTMs. Also, it has been shown in yeast that for microtubules to form properly and exquisite regulation (proteostasis) of the ratio between α- and β-tubulin is essential (Wethekam and Moore, 2023). I am not sure, but according to Materials and Methods (line 423), the gene cassettes for replacing the wild-type tubulin gene with the mutant versions contain a selectable marker gene for pyrimethamine selection. Are there qPCR data that show that expression levels of mutant α-tubulin are more or less the same as the wild-type levels?

      (15) In the Discussion, my impression is that two recent studies, the superb Expansion Microscopy study by Bertiaux et al. (2021) and the cryo-EM study by Ferreira et al. (2023), are not sufficiently recognised (although they are cited elsewhere in the manuscript). The latter study includes a detailed description of the microtubule cytoskeleton in sporozoites. However, the present study clearly expands the knowledge about the structure of the cytoskeleton in liver stage parasites and is one of the few studies addressing the distribution and function of microtubule post-translational modifications in Plasmodium.

      (16) I somewhat disagree with the statement of a co-occurrence of polyglutamylated and tyrosinated microtubules. I think the resolution is too low to reach that conclusion. As this is a bold claim, and would be contrary to what is known from other organisms, it would require a more rigorous validation. Given the apparent problems with the anti-Ty antibody (signal in the TyΔ mutant), one should be very cautious with this claim.

      (17) In the Discussion (lines 311 and 377), it is again claimed that tyrosinated microtubules are "a well-known marker of stable microtubules". This statement is completely incorrect, and I am surprised by this serious mistake. A few lines later, the authors say that polyglutamylated is "commonly associated with dynamic microtubule behaviour". Again, this is completely incorrect and is the opposite of what is firmly established in the literature. Polyglutamylation and detyrosination are markers of stable microtubules.

      (18) In line 339, the authors interpret the residual antibody staining after the introduction of the mutant tubulin as a compensatory mechanism. There is no evidence for this. More likely explanations are firstly the quality of the anti-Ty-antibody used (see comment above), and the fact that also β-tubulin carries C-terminal polyglutamylation sites, which haven't been investigated in this study. PTMs on β-tubulin are not compensatory, but normal PTMs, at least in all other organisms where microtubule PTMs have been investigated.

    1. Reviewer #3 (Public review):

      Asthma is a complex disease that includes endogenous epithelial, immune and neural components that respond to environmental stimuli. Small airborne particles with diameters in the range of 2.5 micrometers or less, so-called PM2.5, are thought to contribute to some forms of asthma. These forms of asthma may have neutrophils, eosinophils and macrophages in bronchoalveolar lavage. Here, Wang and colleagues build on a recent model that incorporated PM2.5 which was found to have a neutrophilic component. Wang altered the model to provide an extra kick via the incorporation of ovalbumin. The major strength of this work is that silencing TRPV1-expressing neurons either pharmacologically or genetically, modulated inflammation and the motility of neutrophils. By examining bronchoalveolar lavage fluid, they found not only that levels of a number of cytokines were increased, but also that artemin, a protein that supports neuronal development and function, was elevated, which did not occur in nociceptor- ablated mice. Their data strengthens links between pollutants, immune and neural interactions.

      Comments on revisions:

      The manuscript has been revised extensively, including the addition of new experiments, such as intravital microscopy. Did the comments from the reviewers, manifest by additional experiments and modifying how some of the data was presented, result in any changes in the hypotheses or the interpretation of such?

    1. Reviewer #3 (Public review):

      Genetically encoded calcium indicators (GECIs) are essential tools in neurobiology and physiology. Technological constraints in targeting and kinetics of previous versions of GECIs have limited their application at the subcellular level. Chen et al. present a set of novel tools that overcome many of these limitations. Through systematic testing in the Drosophila NMJ, they demonstrate improved targeting of GCaMP variants to synaptic compartments and report enhanced brightness and temporal fidelity using members of the GCaMP8 series. These advancements are likely to facilitate more precise investigation of synaptic physiology.

      This is a comprehensive and detailed manuscript that introduces and validates new GECI tools optimized for the study of neurotransmission and neuronal excitability. These tools are likely to be highly impactful across neuroscience subfields. The authors are commended for publicly sharing their imaging software.

      This manuscript could be improved by further testing the GECIs across physiologically relevant ranges of activity, including at high frequency and over long imaging sessions. The authors provide a custom software package (CaFire) for Ca2+ imaging analysis; however, to improve clarity and utility for future users, we recommend providing references to existing Ca2+ imaging tools for context and elaborating on some conceptual and methodological aspects, with more guidance for broader usability. These enhancements would strengthen this already strong manuscript.

    1. Reviewer #3 (Public review):

      Summary:

      The authors use a combination of a head-fixed grooming paradigm, single-photon mesoscale, and wide-field-of-view two-photon calcium imaging to characterize cortical activity patterns during evoked grooming. Previous work has shown that grooming behavior does not require cortex, but that there are neuronal representations of grooming in motor cortex. The authors extend these findings by showing cortex-wide activation patterns at the meso-scale that relate to distinct grooming elements. This activation is strongest at grooming onset, but declines over the course of extended grooming periods. They also find similar activity patterns during licking/drinking behavior. Two-photon imaging further revealed that individual neurons across the cortex are preferentially activated by grooming. While their activity also declines after grooming onset, they remain active throughout grooming periods. This work extends previous findings by revealing that grooming and other subcortically-generated behaviors may be represented not only in motor cortex, but across dorsal cortex, both on the mesoscale and single neuron levels. These findings may lead to further investigation into the role of cortical activity during subcortically generated behaviors.

      Strengths:

      (1) Detailed characterization of grooming behavior in a head-fixed paradigm.

      (2) Combination of single photon mesoscale and two-photon wide field-of-view imaging to characterize grooming (and licking)-related activity across dorsal cortex on multiple levels

      Weaknesses:

      (1) The behavior observed in the head-fixed grooming paradigm only partially resembles spontaneous grooming, lacking typical elements of the syntactic chain, while additionally evoking non-typical behaviors, resembling unilateral reaches, making the interpretation of the observations and their relevance to natural behaviors difficult. Furthermore, the nature of the non-typical movements (which may be cortex-dependent while typical grooming is not) is not explored.

      (2) Two important findings in relation to the neural representations of individual grooming behaviors remain unclear:

      a) The authors state that individual grooming behaviors did not have distinct neuronal representations (except unilateral grooming; Figure 4G) - it remains unclear how this fits with the observation of distinct activation maps during the different grooming behaviors. Should this differential activation not also correspond to distinct activation patterns of 'grooming' neurons across the cortex? Or do they mean that the activity in the 'grooming' neurons is not consistent across grooming instances and therefore no distinct representation can be detected?

      b) The authors state that the 'typical' grooming behaviors do not have consistent activation patterns across animals (Figure 3 and supplements). It remains, therefore, unclear what the averaged activation maps really represent. Furthermore, this observation leaves several open questions: Are the activation patterns consistent in individual animals? Do differences across animals emerge due to differences in their behavior? And most importantly, can the actual behavior be decoded from the activation patterns?

      (3) Multiple statements/conclusions are not supported by quantification of the data, but only by qualitative assessments, e.g.: lines 433-435: "In general, the maximally activated networks involved in licking and unilateral grooming behaviors 'appeared' to be the most consistent across animals compared to the bilateral grooming movements (Figure 3G)."; 436-437: "Averaged cortical activation maps associated with licking and elliptical behaviors were 'qualitatively similar' between evoked and spontaneous sessions, where the water drop was not applied".; 480-482: "The unique explained variance maps for the licking behavior 'differed' in the drinking context compared to the grooming context (Figure 3-figure supplement 3F)." The lack of quantification leaves the significance of these observations unclear.

      (4) It remains unclear what the ongoing activity in 'grooming' neurons represents, since there is no detailed analysis of the relationship between activity and the detailed kinematics of the grooming movements.

      The authors show that neuronal representations of grooming and other subcortical behaviors can be found across dorsal cortex and that these representations are at least to some degree specific to distinct behavioral elements. While this study does not reveal functional insights into the role of cortical representations of subcortically-generated behaviors, it is a step towards more in-depth studies. In the future, it will be important to determine whether these representations are efference copies or sensory-driven, or whether they affect the behavior, and if so, under which circumstances.

    1. Reviewer #3 (Public review):

      Summary:

      This study used transcranial direct current stimulation administered using small 'high definition' electrodes to modulate neural activity within the non-human primate prefrontal cortex during both wakefulness and anaesthesia. Functional magnetic resonance imaging (fMRI) was used to assess neuromodulatory effects of stimulation. The authors report on modification of brain dynamics during and following anodal and cathodal stimulation during wakefulness and following anodal stimulation at two intensities (1 mA, 2 mA) during anaesthesia. This study provides some support that prefrontal direct current stimulation can alter neural activity patterns across wakefulness and sedation in monkeys.

      Strengths and Weaknesses:

      A key strength of this work is the use of fMRI-based methods to track changes in brain activity with good spatial precision. Another strength is the exploration of stimulation effects across wakefulness and sedation, which has the potential to provide novel information on the impact of electrical stimulation across states of consciousness. The authors should be commended for undertaking this challenging and important work.

      The lack of a sham stimulation condition is a limitation of the study, as it somewhat restricts the certainty with which the results can be attributed to the active stimulation as opposed to other external factors such as drowsiness or fatigue as a result of the experimental procedure? Nevertheless, I acknowledge the demanding nature of performing this work in non-human primates and that only runs with high fixation rates were included, which should have helped reduce any fatigue-related effects.

      In the anaesthesia condition, the authors investigated the effects of two intensities of stimulation (1 mA and 2 mA). However, it is possible that the initial 1 mA stimulation block might have caused some level of plasticity-related changes in neural activity that could have potentially interfered with the following 2 mA block due to the lack of a sufficient wash-out period. This potentially limits the findings from the 2 mA block as they cannot be interpreted as completely separate to the initial 1 mA stimulation period, given that they were administered consecutively. However, I do acknowledge the author's point that differences between the 1 mA post-stimulation and baseline conditions were not significantly different, which provides some evidence against this possibility.

      The different electrode placement for the two anaesthetised monkeys (i.e., Monkey R: F3/O2 montage, Monkey N: F4/O1 montage) is potentially problematic, as it might have resulted in stimulation over different brain regions. Electric field models of brain current flow for the monkeys would really be needed to understand with reasonable certainty, however, I recognise that these models are generally designed for human studies making their integration into non-human primate studies challenging.

      Finally, the sample size is obviously small. However, I realise this is often a limitation in non-human primate research, which can be both expensive and labour intensive.

      Assessment:

      This manuscript presents some novel insights into the effects of transcranial direct current stimulation on functional brain dynamics in awake and anaesthetised monkeys using MRI-based connectivity indices. Overall, the study presents several interesting and potentially impactful findings regarding stimulation-induced changes in brain activity. There are some limitations, such as the small sample size, lack of a sham stimulation control, and lack of electric field models, which, if included, would have, in my view, further helped improve the rigour of the study. Nevertheless, the manuscript presents several important findings, which warrant further analysis in future work.

    1. Reviewer #3 (Public review):

      Summary:

      The authors sought to determine, at the level of individual presubiculum pyramidal cells, how allocentric spatial information from retrosplenial cortex was integrated with egocentric information from the anterior thalamic nuclei. Employing a dual opsin optogenetic approach with patch clamp electrophysiology, Richevaux and colleagues found that around three quarters of layer 3 pyramidal cells in presubiculum receive monosynaptic input from both brain regions. While some interesting questions remain (e.g. the role of inhibitory interneurons in gating the information flow and through different layers of presubiculum, this paper provides valuable insights into the microcircuitry of this brain region and the role that it may play in spatial navigation.

      Strengths:

      One of the main strengths of this manuscript was that the dual opsin approach allowed the direct comparison of different inputs within an individual neuron, helping to control for what might otherwise have been an important source of variation. The experiments were well-executed and the data rigorously analysed. The conclusions were appropriate to the experimental questions and were well-supported by the results. These data will help to inform in vivo experiments aimed at understanding the contribution of different brain regions in spatial navigation and could be valuable for computational modelling.

      Weaknesses:

      Some attempts were made to gain mechanistic insights into how inhibitory neurotransmission may affect processing in presubiuclum (e.g. figure 5) but these experiments were a little underpowered and the analysis carried out could have been more comprehensively undertaken, as was done for other experiments in the manuscript.

      Comments on revised version:

      The authors have addressed all of my comments and I have nothing further to add. Well done for an interesting and valuable contribution!

    1. Reviewer #3 (Public review):

      Summary:

      The authors present a new computational method (OPT) for predicting off-target probe binding in the commercial 10X Xenium spatial transcriptomics platform. They identified 28 genes in the 10x xenium human breast cancer gene panel (280 genes) that are not accurately detected at the single-molecule level. They validated the predicted off-target binding using reference data from single-cell RNA-seq and 3'-sequencing-based Visium RNA-seq. This work provides a practical resource and will serve as a valuable reference for future data interpretation.

      Strengths:

      (1) Provides a toolbox for the community to identify off-target probes.

      (2) Validates the predictions using single-cell RNA-seq and sequencing-based Visium RNA-seq datasets.

      Weaknesses:

      (1) Does not apply the OPT method to the most widely used Xenium gene panels (e.g., pan-Human, pan-Mouse panels with ~5,000 genes each).

      (2) Lacks clarity on how the confidence level of off-target predictions is calculated.

    1. Reviewer #3 (Public review):

      Kim, Lognon et al. present an important finding on pro-locomotor effects of optogenetic activation of the A13 region, which they identify as a dopamine-containing area of the medial zona incerta that undergoes profound remodeling in terms of afferent and efferent connectivity after administration of 6-OHDA to the MFB. The authors claim to address a model of PD-related gait dysfunction, a contentious problem that can be difficult to treat by dopaminergic medication or DBS in conventional targets. They make use of an impressive array of technologies to gain insight into the role of A13 remodeling in the 6-OHDA model of PD. The evidence provided is solid and the paper is well written, but there are several general issues that reduce the value of the paper in its current form, and a number of specific, more minor ones. Also some suggestions, that may improve the paper compared to its recent form, come to mind.

      The most fundamental issue that needs to be addressed is the relation of the structural to the behavioral findings. It would be very interesting to see whether the structural heterogeneity in afferent/effects projections induced by 6-OHDA is related to the degree of symptom severity and motor improvement during A13 stimulation.

      The authors provide extensive interrogation of large-scale changes in the organization of the A13 region afferent and efferent distributions. It remains unclear how many animals were included to produce Fig 4 and 5. Fig S5 suggests that only 3 animals were used, is that correct? Please provide details about the heterogeneity between animals. Please provide a table detailing how many animals were used for which experiment. Were the same animals used for several experiments?

      While the authors provide evidence that photoactivation of the A13 is sufficient in driving locomotion in the OFT, this pro-locomotor effect seems to be independent of 6-OHDA induced pathophysiology. Only in the pole test do they find that there seems to be a difference between Sham vs 6-OHDA concerning effects of photoactivation of the A13. Because of these behavioral findings, optogenic activation of A13 may represent a gain of function rather than disease-specific rescue. This needs to be highlighted more explicitly in the title, abstract and conclusion.

      The authors claim that A13 may be a possible target for DBS to treat gait dysfunction. However, the experimental evidence provided (imparticular lack of disease-specific changes in the OFT) seem insufficient to draw such conclusions. It needs to be highlighted that optogenetic activation does not necessarily have the same effects as DBS (see the recent review from Neumann et al. in Brain: https://pubmed.ncbi.nlm.nih.gov/37450573/). This is important because ZI-DBS so far had very mixed clinical effects. The authors should provide plausible reasons for these discrepancies. Is cell-specificity, that only optogenetic interventions can achieve, necessary? Can new forms of cyclic burst DBS achieve similar specificity (Spix et al, Science 2021)? Please comment.

      In a recent study, Jeon et al (Topographic connectivity and cellular profiling reveal detailed input pathways and functionally distinct cell types in the subthalamic nucleus, 2022, Cell Reports) provided evidence on the topographically graded organization of STN afferents and McElvain et al. (Specific populations of basal ganglia output neurons target distinct brain stem areas while collateralizing throughout the diencephalon, 2021, Neuron) have shown similar topographical resolution for SNr efferents. Can a similar topographical organization of efferents and afferents be derived for the A13/ ZI in total?

      In conclusion, this is an interesting study that can be improved taking into consideration the points mentioned above.

    1. Reviewer #3 (Public review):

      Summary:

      The authors aim to identify the peripheral end-organ origin in the fly's wing of all sensory neurons in the anterior dorsomedial nerve. They reconstruct the neurons and their downstream partners in an electron microscopy volume of a female ventral nerve cord, analyse the resulting connectome, and identify their origin with a review of the literature and imaging of genetic driver lines. While some of the neurons were already known through previous work, the authors expand on the identification and create a near-complete map of the wing mechanosensory neurons at synapse resolution.

      Strengths:

      The authors elegantly combine electron microscopy, neuron morphology, connectomics, and light microscopy methods to bridge the gap between fly wing sensory neuron anatomy and ventral nerve cord morphology. Further, they use EM ultrastructural observations to make predictions on the signaling modality of some of the sensory neurons and thus their function in flight.

      The work is as comprehensive as state-of-the-art methods allow to create a near-complete map of the wing mechanosensory neurons. This work will be of importance to the field of fly connectomics and modelling of fly behavior, as well as a useful resource to the Drosophila research community.

      Through this comprehensive mapping of neurons to the connectome, the authors create a lot of hypotheses on neuronal function, partially already confirmed with the literature and partially to be tested in the future. The authors achieved their aim of mapping the periphery of the fly's wing to axonal projections in the ventral nerve cord, beautifully laying out their results to support their mapping.

      The authors identify the neurons in a previously published connectome of a male fly ventral nerve cord to enable cross-individual analysis of connections. Further, together with their companion paper, Dhawan et al. 2025, describing the haltere sensory neurons in the same EM dataset, they cover the entire mechanosensory space involved in Drosophila flight.

      Weaknesses:

      The connectomic data are only available upon request; the inclusion of a connectivity table of the reconstructed neurons would aid analysis reproducibility and cross-dataset comparisons.

    1. Reviewer #3 (Public review):

      Summary:

      This study found that ADF serotonergic neurons have a significant role in extending lifespan mediated by HIF-1, as well as serotonin receptor SER-7 in the GABAergic RIS interneurons. The author focuses on the sufficiency and necessity of components from the central nervous system and how they contribute to aging upon hypoxia.

      Previous work from the lab has identified that the stabilization of HIF-1 in neurons is sufficient to extend lifespan through the serotonin receptor, SER-7, which subsequently activates fmo-2 in the intestine and leads to lifespan extension. Building on this, the author sought to determine which serotonergic neurons are involved and found that serotonin signaling in ADF neurons is required for lifespan extension mediated by HIF-1.

      The author next tested which subset of neurons requires Ser-7 expression to rescue hypoxic response. They found that ser-7 expression in multiple neurons is sufficient to induce fmo-2, with the top candidate being the RIS neuron. Ablation of the RIS neuron did not extend lifespan, suggesting that ser-7 expression in the RIS neuron is required for lifespan extension, positioning it as a key component in the longevity signaling pathway.

      The author also investigated neurotransmitters and found that GABA and tyramine are important components in this circuit. They showed that the tyramine receptor called tyra-3 is required for vhl-1-mediated longevity. Given that tyra-3 is expressed in oxygen- and carbon dioxide-sensing neurons, the author demonstrated that these sensing neurons work downstream of serotonin signaling. Lastly, the author screened neuropeptide/receptor binding pairs and identified NLP-17 as playing a role in hypoxia-mediated longevity.

      Originality and Significance:

      This research is significant in that it uncovers components that are sufficient and necessary for lifespan extension via the hypoxic response. It provides comprehensive data supporting longevity induced by HIF-1-mediated hypoxic response, in conjunction with fmo-2, a longevity gene, as demonstrated in previous work from the lab. Moreover, it provides a number of new transgenic worm tools for C. elegans and aging communities.

      Data and Methodology:

      (1) The experiments were thoroughly conducted, especially the generations of strains using different neuron-type promoters and crossing into mutant strains to demonstrate sufficiency and necessity.

      (2) Some figure legends from the text do not match what the data show. (Figure 6E, F, G).

      (3) The lifespan graph legends are confusing and could use some revamping for better clarification.

      Conclusions:

      This study provides insights into how hypoxic response regulates aging in a cell non-autonomous manner, outlining a potential circuit involving neurons, neurotransmitters, and neuropeptides.

    1. Reviewer #3 (Public review):

      Summary:

      In this work, the authors aim to improve neural encoding models for naturalistic video stimuli by integrating temporally aligned multimodal features derived from a deep learning model (VALOR) to predict fMRI responses during movie viewing.

      Strengths:

      The major strength of the study lies in its systematic comparison across unimodal and multimodal models using large-scale, high-resolution fMRI datasets. The VALOR model demonstrates improved predictive accuracy and cross-dataset generalization. The model also reveals inherent semantic dimensions of cortical organization and can be used to evaluate the integration timescale of predictive coding.

      This study demonstrates the utility of modern multimodal pretrained models for improving brain encoding in naturalistic contexts. While not conceptually novel, the application is technically sound, and the data and modeling pipeline may serve as a valuable benchmark for future studies.

      Weaknesses:

      The overall framework of using data-driven features derived from pretrained AI models to predict neural response has been well studied and accepted by the field of neuroAI for over a decade. The demonstrated improvements in prediction accuracy, generalization, and semantic mapping are largely attributable to the richer temporal and multimodal representations provided by the VALOR model, not a novel neural modeling framework per se. As such, the work may be viewed as an incremental application of recent advances in multimodal AI to a well-established neural encoding pipeline, rather than a conceptual advance in modeling neural mechanisms.

      Several key claims are overstated or lack sufficient justification:

      (1) Lines 95-96: The authors claim that "cortical areas share a common space," citing references [22-24]. However, these references primarily support the notion that different modalities or representations can be aligned in a common embedding space from a modeling perspective, rather than providing direct evidence that cortical areas themselves are aligned in a shared neural representational space.

      (2) The authors discuss semantic annotation as if it is still a critical component of encoding models. However, recent advances in AI-based encoding methods rely on features derived from large-scale pretrained models (e.g., CLIP, GPT), which automatically capture semantic structure without requiring explicit annotation. While the manuscript does not systematically address this transition, it is important to clarify that the use of such pretrained models is now standard in the field and should not be positioned as an innovation of the present work. Additionally, the citation of Huth et al. (2012, Neuron) to justify the use of WordNet-based annotation omits the important methodological shift in Huth et al. (2016, Nature), which moved away from manual semantic labeling altogether.

      Since the 2012 dataset is used primarily to enable comparison in study 3, the emphasis should not be placed on reiterating the disadvantages of semantic annotation, which have already been addressed in prior work. Instead, the manuscript's strength lies in its direct comparison between data-driven feature representations and semantic annotation based on WordNet categories. The authors should place greater emphasis on analyzing and discussing the differences revealed by these two approaches, rather than focusing mainly on the general advantage of automated semantic mapping.

      (3) The authors use subject-specific encoding models trained on the HCP dataset to predict group-level mean responses in an independent in-house dataset. While this analysis is framed as testing model generalization, it is important to clarify that it is not assessing traditional out-of-distribution (OOD) generalization, where the same subject is tested on novel stimuli, but rather evaluating which encoding model's feature space contains more stimulus-specific and cross-subject-consistent information that can transfer across datasets.

      Within this setup, the finding that VALOR outperforms CLIP, AlexNet, and WordNet is somewhat expected. VALOR encodes rich spatiotemporal information from videos, making it more aligned with movie-based neural responses. CLIP and AlexNet are static image-based models and thus lack temporal context, while WordNet only provides coarse categorical labels with no stimulus-specific detail. Therefore, the results primarily reflect the advantage of temporally-aware features in capturing shared neural dynamics, rather than revealing surprising model generalization. A direct comparison to pure video-based models, such as Video Swin Transformers or other more recent video models, would help strengthen the argument.

      Moreover, while WordNet-based encoding models perform reasonably well within-subject in the HCP dataset, their generalization to group-level responses in the Short Fun Movies (SFM) dataset is markedly poorer. This could indicate that these models capture a considerable amount of subject-specific variance, which fails to translate to consistent group-level activity. This observation highlights the importance of distinguishing between encoding models that capture stimulus-driven representations and those that overfit to individual heterogeneities.

    1. Reviewer #3 (Public review):

      Summary:

      This manuscript presents a series of experiments that further investigate the roles of the BLA and PRH in sensory preconditioning, with a particular focus on understanding their differential involvement in the association of S1 and S2 with shock.

      Strengths:

      The motivation for the study is clearly articulated, and the experimental designs are thoughtfully constructed. I especially appreciate the inclusion of Table 1, which makes the designs easy to follow. The results are clearly presented, and the statistical analyses are rigorous. My comments below mainly concern areas where the writing could be improved to help readers more easily grasp the logic behind the experiments.

      Weaknesses:

      (1) Lines 56-58: The two previous findings should be more clearly summarized. Specifically, it's unclear whether the "mediated S2-shock" association occurred during Stage 2 or Stage 3. I assume the authors mean Stage 2, but Stage 2 alone would not yet involve "fear of S2," making this expression a bit confusing.

      (2) Line 61: The phrase "Pavlovian fear conditioning" is ambiguous in this context. I assume it refers to S1-shock or S2-shock conditioning. If so, it would be clearer to state this explicitly.

      (3) Regarding the distinction between having or not having Stage 1 S2-S1 pairings, is "novel vs. familiar" the most accurate way to frame this? This terminology could be misleading, especially since one might wonder why S2 couldn't just be presented alone on Stage 1 if novelty is the critical factor. Would "outcome relevance" or "predictability" be more appropriate descriptors? If the authors choose to retain the "novel vs. familiar" framing, I suggest providing a clear explanation of this rationale before introducing the predictions around Line 118.

      (4) Line 121: This statement should refer to S1, not S2.

      (5) Line 124: This one should refer to S2, not S1.

      (6) Additionally, the rationale for Experiment 4 is not introduced before the Results section. While it is understandable that Experiment 4 functions as a follow-up to Experiment 3, it would be helpful to briefly explain the reasoning behind its inclusion.

    1. Reviewer #3 (Public review):

      Summary:

      Krwawicz et al., present evidence that expression of DNMTs in E. coli results in (1) introduction of alkylation damage that is repaired by AlkB; (2) confers hypersensitivity to alkylating agents such as MMS (and exacerbated by loss of AlkB); (3) confers hypersensitivity to oxidative stress (H2O2 exposure); (4) results in a modest increase in ROS in the absence of exogenous H2O2 exposure; and (5) results in the production of oxidation products of 5mC, namely 5hmC and 5fC, leading to cellular toxicity. The findings reported here have interesting implications for the concept that such genotoxic and potentially mutagenic consequences of DNMT expression (resulting in 5mC) could be selectively disadvantageous for certain organisms. The other aspect of this work which is important for understanding the biological endpoints of genotoxic stress is the notion that DNA damage per se somehow induces elevated levels of ROS.

      Strengths:

      The manuscript is well-written, and the experiments have been carefully executed providing data that support the authors' proposed model presented in Fig. 7 (Discussion, sources of DNA damage due to DNMT expression).

      Weaknesses:

      (1) The authors have established an informative system relying on expression of DNMTs to gauge the effects of such expression and subsequent induction of 3mC and 5mC on cell survival and sensitivity to an alkylating agent (MMS) and exogenous oxidative stress (H2O2 exposure). The authors state (p4) that Fig. 2 shows that "Cells expressing either M.SssI or M.MpeI showed increased sensitivity to MMS treatment compared to WT C2523, supporting the conclusion that the expression of DNMTs increased the levels of alkylation damage." This is a confusing statement and requires revision as Fig. 2 does ALL cells shown in Fig. 2 are expressing DNMTs and have been treated with MMS. It is the absence of AlkB and the expression of DNMTs that that causes the MMS sensitivity.

      (2) It would be important to know whether the increased sensitivity (toxicity) to DNMT expression and MMS is also accompanied by substantial increases in mutagenicity. The authors should explain in the text why mutation frequencies were not also measured in these experiments.

      (3) Materials and Methods. ROS production monitoring. The "Total Reactive Oxygen Species (ROS) Assay Kit" has not been adequately described. Who is the Vendor? What is the nature of the ROS probes employed in this assay? Which specific ROS correspond to "total ROS"?

      (4) The demonstration (Fig. 4) that DNMT expression results in elevated ROS and its further synergistic increase when cells are also exposed to H2O2 is the basis for the authors' discussion of DNA damage-induced increases in cellular ROS. S. cerevisiae does not possess DNMTs/5mC, yet exposure to MMS also results in substantial increases in intracellular ROS (Rowe et al, (2008) Free Rad. Biol. Med. 45:1167-1177. PMC2643028). The authors should be aware of previous studies that have linked DNA damage to intracellular increases in ROS in other organisms and should comment on this in the text.

      Comments for the revised manuscript:

      In this revised manuscript, the authors have satisfactorily addressed the issues raised in the review of the original submission and have significantly improved these studies.

    1. Reviewer #3 (Public review):

      This manuscript presents a study combining molecular dynamics simulations and Hedgehog (Hh) pathway assays to investigate cholesterol translocation pathways to Smoothened (SMO), a G protein-coupled receptor central to Hedgehog signal transduction. The authors identify and characterize two putative cholesterol access routes to the transmembrane domain (TMD) of SMO and propose a model whereby cholesterol traverses through the TMD to the cysteine-rich domain (CRD), which is presented as the primary site of SMO activation.

      The MD simulations and biochemical experiments are carefully executed and provide useful data. However, the manuscript is significantly weakened by a narrow and selective interpretation of the literature, overstatement of certain conclusions, and a lack of appropriate engagement with alternative models that are well-supported by published data-including data from prior work by several of the coauthors of this manuscript. In its current form, the manuscript gives a biased impression of the field and overemphasizes the role of the CRD in cholesterol-mediated SMO activation. Below, I provide specific points where revisions are needed to ensure a more accurate and comprehensive treatment of the biology.

      Major Comments:

      (1) Overstatement of the CRD as the Orthosteric Site of SMO Activation

      The manuscript repeatedly implies or states that the CRD is the orthosteric site of SMO activation, without adequate acknowledgment of alternative models. To give just a few examples (of many in this manuscript):

      a) "PTCH is proposed to modulate the Hh signal by decreasing the ability of membrane cholesterol to access SMO's extracellular cysteine-rich domain (CRD)" (p. 3).

      b) "In recent years there has been a vigorous debate on the orthosteric site of SMO" (p. 3).

      c) "cholesterol must travel through the SMO TMD to reach the orthosteric site in the CRD" (p. 4).

      d) "we observe cholesterol moving along TM6 to the TMD-CRD interface (common pathway, Fig. 1d) to access the orthosteric binding site in the CRD" (p. 6).

      While the second quote in this list at least acknowledges a debate, the surrounding text suggests that this debate has been entirely resolved in favor of the CRD model. This is misleading and not reflective of the views of other investigators in the field (see, for example, a recent comprehensive review from Zhang and Beachy, Nature Reviews Molecular and Cell Biology 2023, which makes the point that both the CRD and 7TM sites are critical for cholesterol activation of SMO as well as PTCH-mediated regulation of SMO-cholesterol interactions).

      In contrast, a large body of literature supports a dual-site model in which both the CRD and the TMD are bona fide cholesterol-binding sites essential for SMO activation. Examples include:

      a) Byrne et al., Nature 2016: point mutation of the CRD cholesterol binding site impairs-but does not abolish-SMO activation by cholesterol (SMO D99A, Y134F, and combination mutants - Fig 3 of the 2016 study).

      b) Myers et al., Dev Cell 2013 and PNAS 2017: CRD deletion mutants retain responsiveness to PTCH regulation and cholesterol mimetics (similar Hh responsiveness of a CRD deletion mutant is also observed in Fig 4 Byrne et al, Nature 2016).

      c) Deshpande et al., Nature 2019: mutation of residues in the TMD cholesterol binding site blocks SMO activation entirely, strongly implicating the TMD as a required site, in contrast to the partial effects of mutating or deleting the CRD site.

      Qi et al., Nature 2019, and Deshpande et al., Nature 2019, both reported cholesterol binding at the TMD site based on high-resolution structural data. Oddly, Deshpande et al., Nature 2019, is not cited in the discussion of TMD binding on p. 3, despite being one of the first papers to describe cholesterol in the TMD site and its necessity for activation (the authors only cite it regarding activation of SMO by synthetic small molecules).

      Kinnebrew et al., Sci Adv 2022 report that CRD deletion abolished PTCH regulation, which is seemingly at odds with several studies above (e.g., Byrne et al, Nature 2016; Myers et al, Dev Cell 2013); but this difference may reflect the use of an N-terminal GFP fusion to SMO in the Kinnebrew et al 2022, which could alter SMO activation properties by sterically hindering activation at the TMD site by cholesterol (but not synthetic SMO agonists like SAG); in contrast, the earlier work by Byrne et al is not subject to this caveat because it used an untagged, unmodified form of SMO.

      Although overexpression of PTCH1 and SMO (wild-type or mutant) has been noted as a caveat in studies of CRD-independent SMO activation by cholesterol, this reviewer points out that several of the studies listed above include experiments with endogenous PTCH1 and low-level SMO expression, demonstrating that SMO can clearly undergo activation by cholesterol (as well as regulation by PTCH1) in a manner that does not require the CRD.

      Recommendation:

      The authors should revise the manuscript to provide a more balanced overview of the field and explicitly acknowledge that the CRD is not the sole activation site. Instead, a dual-site model is more consistent with available structural, mutational, and functional data. In addition, the authors should reframe their interpretation of their MD studies to reflect this broader and more accurate view of how cholesterol binds and activates SMO.

      (2) Bias in Presentation of Translocation Pathways

      The manuscript presents the model of cholesterol translocation through SMO to the CRD as the predominant (if not sole) mechanism of activation. Statements such as: "Cholesterol traverses SMO to ultimately reach the CRD binding site" (p. 6) suggest an exclusivity that is not supported by prior literature in the field. Indeed, the authors' own MD data presented here demonstrate more stable cholesterol binding at the TMD than at the CRD (p 17), and binding of cholesterol to the TMD site is essential for SMO activation. As such, it is appropriate to acknowledge that cholesterol may activate SMO by translocating through the TM5/6 tunnel, then binding to the TMD site, as this is a likely route of SMO activation in addition to the CRD translocation route they highlight in their discussion.

      The authors describe two possible translocation pathways (Pathway 1: TM2/3 entry to TMD; Pathway 2: TM5/6 entry and direct CRD transfer), but do not sufficiently acknowledge that their own empirical data support Pathway 2 as more relevant. Indeed, because their experimental data suggest Pathway 2 is more strongly linked to SMO activation, this pathway should be weighted more heavily in the authors' discussion. In addition, Pathway 2 is linked to cholesterol binding to both the TMD and CRD sites (the former because the TMD binding site is at the terminus of the hydrophobic tunnel, the latter via the translocation pathway described in the present manuscript), so it is appropriate that Pathway 2 figure more prominently than Pathway 1 into the authors' discussion.

      The authors also claim that "there is no experimental structure with cholesterol in the inner leaflet region of SMO TMD" (p 16). However, a structural study of apo-SMO from the Manglik and Cheng labs (Zhang et al., Nat Comm, 2022) identified a cholesterol molecule docked at the TM5/6 interface and also proposed a "squeezing" mechanism by which cholesterol could enter the TM5/6 pocket from the membrane. The authors do not take this SMO conformation into account in their models, nor do they discuss the possibility that conformational dynamics at the TM5/6 interface could facilitate cholesterol flipping and translocation into the hydrophobic conduit, even though both possibilities have precedent in the 2022 empirical cryoEM structural analysis.

      Recommendation:

      The authors should avoid oversimplification of the SMO cholesterol activation process, either by tempering these claims or broadening their discussion to better reflect the complexity and multiplicity of cholesterol access and activation routes for SMO, and consider the 2022 apo-SMO cryoEM structure in their analysis of the TM5/6 translocation pathway.

      (3) Alternative Possibility: Direct Membrane Access to CRD

      The possibility that the CRD extracts cholesterol directly from the membrane outer leaflet is not considered. While the crystal structures place the CRD in a stable pose above the membrane, multiple cryo-EM studies suggest that the CRD is dynamic and adopts a variety of conformations, raising the possibility that the stability of the CRD in the crystal structures is a result of crystal packing and that the CRD may be far more dynamic under more physiological conditions.

      Recommendation:

      The authors should explicitly acknowledge and evaluate this potential mechanism and, if feasible, assess its plausibility through MD simulations.

      (4) Inconsistent Framing of Study Scope and Limitations

      The discussion contains some contradictory and misleading language. For example, the authors state that "In this study we only focused on the cholesterol movement from the membrane to CRD binding site." and then several sentences later state that "We outline the entire translocation mechanism from a kinetic and thermodynamic perspective.". These statements are at odds. The former appropriately (albeit briefly) notes the limited scope of the modeling, while the latter overstates the generality of the findings.

      In addition, the authors' narrow focus on the CRD site constitutes a major caveat to the entire work. It should be acknowledged much earlier in the manuscript, preferably in the introduction, rather than mentioned as an aside in the penultimate paragraph of the conclusion.

      Recommendation:<br /> The authors should clarify the scope of the study and expand the discussion of its limitations. They should explicitly acknowledge that the study models one of several cholesterol access routes and that the findings do not rule out alternative pathways.

      Summary:

      This study has the potential to make a useful contribution to our understanding of cholesterol translocation and SMO activation. However, in its current form, the manuscript presents an overly narrow and, at times, misleading view of the literature and biological models; as such, it is not nearly as impactful as it could be. I strongly encourage the authors to revise the manuscript to include:

      (1) A more balanced discussion of the CRD vs. TMD binding sites.

      (2) Acknowledgment of alternative cholesterol access pathways.

      (3) More comprehensive citation of prior structural and functional studies.

      (4) Clarification of assumptions and scope.

      Of note, the above suggestions require little to no additional MD simulations or experimental studies, but would significantly enhance the rigor and impact of the work.

    1. Reviewer #3 (Public review):

      Summary:

      This study addresses the role of MIRO1 in vascular smooth muscle cell proliferation, proposing a link between MIRO1 loss and altered growth due to disrupted mitochondrial dynamics and function. While the findings are potentially useful for understanding the importance of mitochondrial positioning and function in this specific cell type within health and disease contexts, the evidence presented appears incomplete, with key bioenergetic and mechanistic claims lacking adequate support.

      Strengths:

      (1) The study focuses on an important regulatory protein, MIRO1, and its role in vascular smooth muscle cell (VSMC) proliferation, a relatively underexplored context.

      (2) It explores the link between smooth muscle cell growth, mitochondrial dynamics, and bioenergetics, which is a potentially significant area for both basic and translational biology.

      (3) The use of both in vivo and in vitro systems provides a potentially useful experimental framework to interrogate MIRO1 function in this context.

      Weaknesses:

      (1) The central claim that MIRO1 loss impairs mitochondrial bioenergetics is not convincingly demonstrated, with only modest changes in respiratory parameters and no direct evidence of functional respiratory chain deficiency.

      (2) The proposed link between MIRO1 and respiratory supercomplex assembly or function is speculative, lacking mechanistic detail and supported by incomplete or inconsistent biochemical data.

      (3) Key mitochondrial assays are either insufficiently controlled or poorly interpreted, undermining the strength of the conclusions regarding oxidative phosphorylation.

      (4) The study does not adequately assess mitochondrial content or biogenesis, which could confound interpretations of changes in respiratory activity.

      (5) Overall, the evidence for a direct impact of MIRO1 on mitochondrial respiratory function in the experimental setting is weak, and the conclusions overreach the data.

    1. Reviewer #3 (Public review):

      Summary:

      Metabolons are multisubunit complexes that promote the physical association of sequential enzymes within a metabolic pathway. Such complexes are proposed to increase metabolic flux and efficiency by channeling reaction intermediates between enzymes. The TCA cycle enzymes malate dehydrogenase (MDH1) and citrate synthase (CIT1) have been linked to metabolon formation, yet the conditions under which these enzymes interact, and whether such interactions are dynamic in response to metabolic cues, remain unclear, particularly in the native cellular context. This study uses a nanoBIT protein-protein interaction assay to map the dynamic behavior of the MDH1-CIT1 interaction in response to multiple metabolic stimuli and challenges in yeast. Beyond mapping these interactions in real time, the authors also performed GC-MS metabolomics to map whole-cell metabolite alterations across experimental conditions. Finally, the authors use microscale thermophoresis to determine components that alter the MDH1-CIT1 interaction in vitro. Collectively, the authors synthesize their collected data into a model in which the MDH1-CIT1 metabolon dissociates in conditions of low respiratory flux, and is stimulated during conditions of high respiratory flux. While their data largely support these models, some key exceptions are found that suggest this model is likely oversimplified and will require further work to understand the complexities associated with MDH1-CIT1 interaction dynamics. Nonetheless, the authors put forth an interesting and timely toolkit to begin to understand the interaction kinetics and dynamics of key metabolic enzymes that should serve as a platform to begin disentangling these important yet understudied aspects of metabolic regulation.

      Strengths:

      (1) The authors address an important question: how do metabolon-associated protein-protein interactions change across altered metabolic conditions?

      (2) The development and validation of the MDH1-CIT1 nanoBIT assay provides an important tool to allow the quantification of this protein-protein interaction in vivo. Importantly, the authors demonstrate that the assay allows kinetic and real time assessment of these protein interactions, which reveal interesting and dynamic behavior across conditions.

      (3) The use of classic biochemical techniques to confirm that pH and various metabolites can alter the MDH1-CIT1 interaction in vitro is rigorous and supports the model put forth by the authors.

      Weaknesses:

      (1) Some of the data collected seem to be merely reported rather than synthesized and interpreted for the reader. This is particularly true for data that seem to reflect more complex trends, such as the GC-MS experiments that map metabolites across multiple experiments, or treatments that show somewhat counterintuitive results, such as the antimycin A treatment, which promotes rather than disrupts the MDH1-CIT1 interaction.

      (2) Some of the assertions put forth in the manuscript are not substantiated by the data presented, and the authors are at times overly reliant on previous findings from the literature to support their claims. This is particularly notable for claims about "TCA cycle flux"; the authors do not perform flux analysis anywhere in their study and should be cautious when insinuating correlations between their observations and "flux".

      (3) The manuscript presentation could be improved. For figures, at times, the axes do not have intuitive labels (example, Figure 1A), data points and details about the number of samples analyzed are missing (bar graphs and box plots), and molecular weight markers are not reported on western blots. The authors refer to the figures out of order in the text, which makes the manuscript challenging to navigate as a reader.

    1. Reviewer #3 (Public review):

      Summary:

      The authors present a new method for detecting and identifying proline hydroxylation sites within the proteome. This tool utilizes traditional LC-MS technology with optimized parameters, combined with HILIC-based separation techniques. The authors show that they pick up known hydroxy-proline sites and also validate a new site discovered through their pipeline.

      Strengths:

      The manuscript utilizes state-of-the-art mass spectrometric techniques with optimized collision parameters to ensure proper detection of the immonium ions, which is an advance compared to other similar approaches before. The use of synthetic control peptides on the HILIC separation step clearly demonstrates the ability of the method to reliably distinguish hydroxy-proline from oxidized methionine - containing peptides. Using this method, they identify a site on CDCA2, which they go on to validate in vitro and also study its role in regulation of mitotic progression in an associated manuscript.

      Weaknesses:

      Despite the authors' claim about the specificity of this method in picking up the intended peptides, there is a good amount of potential false positives that also happen to get picked (owing to the limitations of MS-based readout), and the authors' criteria for downstream filtering of such peptides require further clarification. In the same vein, greater and more diverse cell-based validation approach will be helpful to substantiate the claims regarding enrichment of peptides in the described pathway analyses.

    1. Reviewer #3 (Public review):

      Summary:

      Type II IRES, such as those from encephalomyocarditis virus (EMCV) and foot-and-mouth disease virus (FMDV), mediate cap-independent translation initiation by using the full complement of eukaryotic initiation factors (eIFs), except the cap-binding protein eIF4E. The molecular details of how IRES type II interacts with the ribosome and initiation factors to promote recruitment have remained unclear. Das and Hussain used cryo-electron microscopy to determine the structure of a translation initiation complex assembled on the EMCV IRES. The structure reveals a direct interaction between the IRES and the 40S ribosomal subunit, offering mechanistic insight into how type II IRES elements recruit the ribosome.

      Strengths:

      The structure reveals a direct interaction between the IRES and the 40S ribosomal subunit, offering mechanistic insight into how type II IRES elements recruit the ribosome.

      Weaknesses:

      While this reviewer acknowledges the technical challenges inherent in determining the structure of such a highly flexible complex, the overall resolution remains insufficient to fully support the authors' conclusions, particularly given that cryo-EM is the sole experimental approach presented in the manuscript.

      The study is biologically significant; however, the authors should improve the resolution or include complementary biochemical validation.

    1. Reviewer #3 (Public review):

      Bru et al. investigated how inorganic phosphate (Pi) is buffered in cells using S. cerevisiae as a model. Pi is stored in cells in the form of polyphosphates in acidocalcisomes. In S. cerevisiae, the vacuole, which is the yeast lysosome, also fulfills the function of Pi storage organelle. Therefore, yeast is an ideal system to study Pi storage and mobilization.

      They can recapitulate in their previously established system, using isolated yeast vacuoles, findings from their own and other groups. They integrate the available data and propose a working model of feedback loops to control the level of Pi on the cellular level.

      This is a solid study, in which the biological significance of their findings is not entirely clear. The data analysis and statistical significance need to be improved and included, respectively. The manuscript would have benefited from rigorously testing the model, which would also have increased the impact of the study.