- Apr 2024
-
library.scholarcy.com library.scholarcy.com
-
N30 SEP szczyt.Pik N30 odzwierciedla integrację czuciową [60] zarówno w pętlach korowych, jak i podkorowych, w tym w zwojach podstawy, wzgórzu, obszarach przedruchowych, dodatkowym obszarze motorycznym i pierwotnej korze ruchowej [60, 77,78,79]. Pik ten odzwierciedla SMI [60]. Zmiany w N30 odzwierciedlają deficyty somatosensorycznej sieci synaptycznej w odpowiedzi na bodźce sensoryczne [79]. Techniki lokalizacji źródłowej zlokalizowały generatory neuronowe N30 w czterech różnych lokalizacjach, w tym w przeciwległej pierwotnej korze somatosensorycznej, korze przedczołowej, zakręcie obręczy i obustronnej wtórnej korze somatosensorycznej [80]. Ogólnie rzecz biorąc, kora przedczołowa jest źródłem neuronalnym o największej aktywności podczas opóźnienia N30 [80]. Ze względu na swoje nadrzędne zaangażowanie w SMI, szczyt N30 SEP dostarcza bezcennych informacji dotyczących aktywności neuronalnej w tych regionach podczas procesów związanych z SMI.Wyniki obecnego badania wykazały, że N30 zmniejszył się u osób z ADHD i wzrósł w neurotypowych kontrolach po uczeniu się motorycznym. Wyniki kontroli są zgodne z wcześniejszymi pracami, w których odnotowano wzrost akwizycji posilnikowej N30 [42, 44]. Wzrost ten jest związany ze zwiększoną pobudliwością w szlakach związanych z uczeniem się motorycznym [44]. Jednak odkrycia związane z grupą ADHD są nowe. Jednym z wyjaśnień zmniejszenia N30 widocznego u osób z ADHD, w porównaniu z grupą kontrolną neurotypową, może być wynik dysfunkcyjnej struktury neuronalnej i obwodów przedczołowych regionów mózgu związanych z ADHD, takich jak hipoaktywacja w sieciach czołowo-prążkowiowych [81]. Może to prowadzić do osłabienia wczesnych procesów SMI. Istotną cechą neuronalną związaną z ADHD jest zmieniona aktywność neuronalna w przedczołowych obszarach mózgu, która jest często odnotowywana jako wykazująca hipoaktywację, wśród innych unikalnych cech neuronalnych [19, 82, 83]. Zmniejszenie N30 u osób z ADHD w obecnej pracy może być wynikiem zmienionej łączności w obrębie i między regionami mózgu, które współpracują z regionami przedczołowymi, takimi jak sieć czołowo-prążkowiowa [84].
Zmiany w czołowej sieci somatosensorycznej u młodysch dorosłych z ADHD, sugerujące deficyt w integracji czuciowej.
-
-
library.scholarcy.com library.scholarcy.com
-
Pośrednicząca rola GWMR była wyraźniejsza u dzieci z ADHD w porównaniu z neurotypowymi rówieśnikami. Wcześniejsze odkrycia wykazały, że młodzi dorośli z wyższym BMI wykazują różne nieprawidłowości w mózgu, w tym zwiększoną mielinizację wewnątrzkorową w regionach zaangażowanych w przetwarzanie somatosensoryczne i kontrolę hamującą (Dong i in., 2021). Rozszerzamy te ustalenia, pokazując, że niski GWMR w lewym IFC, obustronnym ACC, MCC i wyspie częściowo odpowiadał za upośledzoną kontrolę interferencji u dzieci z ADHD. Może to wynikać z konsekwencji nieprawidłowości strukturalnych dla podstawowych funkcji mózgu. IFC, ACC i MCC stanowią część poznawczej sieci kontrolnej i są rekrutowane w obliczu wymagań hamujących (Niendam i in., 2012). Dowody z obrazowania źródłowego sugerują, że w szczególności ACC przyczynia się do wydajności behawioralnej w zadaniu Flankera poprzez swoją rolę w monitorowaniu i wykrywaniu konfliktów wywołanych przez nieprzystające bodźce (Siemann i in., 2016). Jednak pośredniczący efekt GWMR może rozciągać się na inne funkcje poznawcze, biorąc pod uwagę, że ACC zaproponowano optymalizację alokacji kontroli poznawczej w oparciu o ocenę ogólnej oczekiwanej wartości kontroli (Shenhav i in., 2016). Wyspa charakteryzuje się niezależną od zadania hiperaktywacją, która często rozszerza się do ACC i prawdopodobnie odzwierciedla autonomiczną odpowiedź układu nerwowego na wyzwanie poznawcze (Gasquoine, 2014).
Związek kontroli Hamowania z mielinizacją i stosunekiem istoty szarej do białej . Zwiększona mielinizacja może powodować hiperaktywność struktur
-
Niski GWMR, który znaleźliśmy u dzieci z ADHD, odzwierciedla bardziej podobną intensywność sygnału istoty szarej i białej. Podobny wzorzec stwierdzono w korze przed- i postcentralnej, a także w częściach kory czołowej u dzieci wykazujących problemy psychiczne i niskie zdolności poznawcze (Norbom i in., 2019). Indywidualne różnice w psychopatologii mogą być wrażliwe na GWMR, ponieważ jest odwrotnie proporcjonalny do wewnątrzkorowej mieliny i zawartości wody na bazie mieliny odpowiednio na obrazach T1 i T2. Wyższe kory asocjacyjne są mniej zmielinizowane w porównaniu z pierwotnymi korami asocjacyjnymi (Glasser i in., 2013). Badania śledzące GWMR w różnym wieku wykazały, że trwa mielinizacja wewnątrzkorowa, która rozciąga się poza okres dojrzewania (Grydeland i in., 2013), z przedłużającym się spadkiem GWMR w korze asocjacyjnej, w szczególności charakteryzującym normalne strukturalne dojrzewanie mózgu (Lewis i in., 2018; Westlye i in., 2010). Niski GWMR w IFC i IPL wskazuje na nietypowo wysoką mielinizację wewnątrzkorową u dzieci z ADHD. Regionalna specyfika i kierunek współczynników sprawiają, że efekt nadrabiania zaległości jest prawdopodobny, ale kontrola zakłóceń nadal różniła się między grupami w okresie obserwacji. Jest to dodatkowo poparte wynikami stosunku T1/T2 wskazującymi na wzrost mielinizacji wewnątrzkorowej wraz z wiekiem, ale odwrotny związek z ogólnymi zdolnościami poznawczymi w regionach, w tym w korze czołowej i ciemieniowej (Norbom i in., 2020).
Wyższy poziom mieliny w korze czołowej i ciemieniowej jako kompensacja deficytu w ADHD
-
Nietypowo wysoki poziom mieliny wewnątrzkorowej może powodować szkodliwy wpływ na sprawność poznawczą ze względu na jej zdolność do hamowania tworzenia synaps i zmniejszania plastyczności neuronów (Snaidero i Simons, 2017). Ponadto deficyty w kontroli zakłóceń mogą być również związane ze zmienioną aktywnością sieci, biorąc pod uwagę, że łączność funkcjonalna jest wyższa między obszarami o podobnych wewnątrzkorowych poziomach mieliny (Huntenburg i in., 2017). Dzieci z ADHD wykazywały niski GWMR w IFC i IPL, ale niski GWMR jest oczekiwany tylko dla pierwotnej kory asocjacyjnej w tej grupie wiekowej (Glasser i in., 2013) Związek między aktywnością sieci a podobną mielinizacją wewnątrzkorową może częściowo wyjaśniać profile nadmiernej łączności związanej z ADHD podczas zadania Flankera (Michelini i in., 2019).
Wysoki poziom mieliny może powodować zakłócenia w aktywności sieci u dzieci z ADHD
-
- Nov 2023
-
article-summarizer.scholarcy.com article-summarizer.scholarcy.com
-
Aby lepiej zrozumieć nieprawidłową organizację sieci mózgowej u pacjentów z ADHD, przeanalizowaliśmy strukturę rdzenia skroniowego i obwodowego i zbadaliśmy, czy rdzeń skroniowy i regiony obwodowe były spójne między grupami. Używając 20% punktu odcięcia, stwierdziliśmy, że dynamiczna sieć mózgowa pacjentów z ADHD i zdrowych ludzi ma zarówno konsekwentnie zidentyfikowany rdzeń skroniowy, jak i spójną strukturę obwodową skroniową (Figura 7A); jednak każda grupa ma również swój własny specyficzny rdzeń skroniowy i obszar peryferyjny skroniowy (Figura 7B i C). Warto zauważyć, że istnieją dwa węzły, prawy grzbietowo-boczny górny zakręt czołowy i lewy przyśrodkowy zakręt czołowy oczodołowy, które są uważane za rdzeń skroniowy w grupie kontrolnej, podczas gdy u pacjentów z ADHD są to skroniowe węzły obwodowe. Ponadto odkryliśmy również, że płat czołowy pacjentów z ADHD wykazywał tendencję do zmniejszania się węzłów rdzeniowych i zwiększania węzłów obwodowych, co jest dokładnie odwrotne u zdrowych ludzi (Figura 7D). Specyficzne regiony mózgu zawarte w sieci rdzeniowo-obwodowej skroniowej grupy pacjentów i grupy kontrolnej przedstawiono w Tabeli 4.Unikalny rdzeń skroniowy lub obwodowy region mózgu u pacjentów z ADHD.Unikalny rdzeń skroniowy lub obwodowy region mózgu w grupie kontrolnej.Węzeł rdzenia skroniowego w grupie kontrolnej, który staje się skroniowym węzłem obwodowym w grupie ADHD.
Różnice w rdzeniu skoroniowym (funkcje wykonawcze) i grzebio- boczny (ogarnąć co to dokładnie oznacza)
-
Jak widać na rysunku 3, porównując średnią elastyczność, spójność i rozłączność RSN między obiema grupami, stwierdziliśmy, że elastyczność i spójność były istotnie różne w sieci uwagi (elastyczność: t(90) = 2,621, p (FDR) = 010,90; kohezja: t(2) = 780,0117, p (FDR) = 90,3), DMN (elastyczność: t(304) = 001,90, p (FDR) = 3,086; spójność: t(0117) = 90,2, p (FDR) = 512,014) i sieć podkorowa (elastyczność: t(90) = 2,863, p (FDR) = 0117,<>; kohezja: t(<>) = <>,<>, p (FDR) = <>,<>). Ponadto, w porównaniu z osobami zdrowymi, u pacjentów z ADHD zaobserwowano tendencję do wzrostu zarówno elastyczności, jak i spójności. Jednak rozłączność nie wykazała różnicy między obiema grupami w żadnym z RSN. Wszystkie te wyniki uzyskano podczas kontroli wielokrotnych porównań (FDR).Aby zrozumieć, czy elastyczność, spójność i rozłączność są związane z nasileniem objawów ADHD, zbadaliśmy ich korelacje z wynikami Skali Samooceny Dorosłych (ASRS) na poziomie całego mózgu i RSN / regionów mózgu, które znacznie różniły się między grupami. Nie stwierdzono istotnych korelacji na poziomie całego mózgu ani między różnymi RSN. Jednak wyniki elastyczności prawego grzbietowo-bocznego górnego zakrętu czołowego (r = 284,006, p = 222,034) i lewego górnego zakrętu czołowego oczodołu górnego (r = 5,237, p = 023,246) były istotnie dodatnio skorelowane z wynikami ASRS (ryc. 018). W przypadku kohezji, na poziomie węzła, zarówno prawy grzbietowo-boczny górny zakręt czołowy (r = 6,<>, p = <>,<>), jak i prawy przyśrodkowy górny zakręt czołowy (r = <>,<>, p = <>,<>) były istotnie dodatnio skorelowane z wynikami ASRS (ryc. <>).
Sieć DMN, Sieć uwagi i SIeć podkorowa różni grupy kontrolne i grupę z ADHD pod względem elastyczności i spójności (ogarnąć co to dokładnie znaczy)
-
Po drugie, na poziomie RSN zarówno u pacjentów, jak i osób zdrowych, obszary rdzenia skroniowego są związane z procesami wzrokowymi i motorycznymi, podczas gdy skroniowe obszary peryferyjne są zaangażowane w DMN, kontrolę uwagi i funkcje wykonawcze. Odkrycie to jest zgodne z wnioskami z poprzednich badań (Betzel i in., 2017; Harlalka i in., 2019). Jednak w różnych typach badań proporcja struktury czasowej rdzeń-obwód w każdym RSN jest różna (Telesford i in., 2016). Proporcja węzłów rdzeniowych i węzłów obwodowych w różnych RSN odzwierciedla wpływ ADHD na funkcje RSN, a funkcje te mogą być niezbędne do utrzymania normalnej fizjologicznej aktywności mózgu w spoczynku.
Funkcje poszczególnych struktur czołowych, które różnią ADHD i grupy kontrolne
-
Aby zbadać rolę, jaką regiony mózgu odgrywają w utrzymaniu normalnej aktywności fizjologicznej, przeanalizowaliśmy strukturę rdzenia skroniowego i obwodowego. Po pierwsze, na poziomie węzłów chłonnych ważnym odkryciem jest to, że osoby z ADHD wykazują rosnące regiony rdzenia i zmniejszające się regiony obwodowe w płacie czołowym, w przeciwieństwie do cech osób zdrowych. Co ciekawsze, prawy grzbietowo-boczny górny zakręt czołowy i lewy przyśrodkowy zakręt czołowy oczodołowy są uważane za skroniowe węzły rdzeniowe u zdrowych ludzi, podczas gdy w grupie ADHD służą jako obwód skroniowy. Regiony rdzenia czasowego są uważane za krytyczne dla wykonywania stabilnych funkcji, podczas gdy regiony peryferyjne są uważane za związane z elastyczną adaptacją (Cai i in., 2018; Telesford i in., 2016). W badaniu podłużnym pojedynczego osobnika w spoczynku wykazano, że średnia elastyczność płata czołowego jest stosunkowo niska (Betzel i in., 2017). Nieprawidłowości te po raz kolejny udowadniają, że płat czołowy pacjentów z ADHD rzeczywiście wykazuje stan nieuporządkowany i niestabilny. Stany te mogą wskazywać, że niektóre obszary mózgu pacjentów z ADHD mają problemy z przetwarzaniem informacji, co prowadzi do braku prawidłowego funkcjonowania.
Charakterystyka płatów czołowy u ludzi z ADHD znacznie różni ich od grup kontrolnych.
-
Na poziomie węzła prawy grzbietowo-boczny górny zakręt czołowy i prawy przyśrodkowy górny zakręt czołowy różniły się istotnie między obiema grupami i oba były dodatnio skorelowane z wynikami skali. Wyniki te sugerują, że różnice w dynamicznej rekonstrukcji społeczności pacjentów z ADHD objawiają się głównie różnicami w skoordynowanym ruchu (spójności) obszarów mózgu, a mózgi pacjentów wykazują częstsze sparowane ruchy. Spójność i rozłączność mogą dostarczyć bardziej szczegółowych informacji na temat dynamicznych zmian w sieci. Te dwa wskaźniki zostały wykorzystane w badaniach nad rekonstrukcją sieci autyzmu i dostarczyły wiarygodnych wyników, wskazujących, że choroba wpływa również na sposób, w jaki węzły zmieniają społeczności (Harlalka i in., 2019). Rozróżnienie między tymi typami przebudowy sieci pozwala lepiej zrozumieć, w jaki sposób choroba wpływa na procesy neurofizjologiczne w mózgu, które towarzyszą zmianom poznawczym.
Różnice w sieciach mogą wyjasniać objawy jak w spektrum autyzmy
-
Zbadaliśmy również różnice w elastyczności między obiema grupami na poziomie węzła. W szczególności regiony mózgu o znaczących różnicach w elastyczności obejmowały prawy grzbietowo-boczny górny zakręt czołowy, lewy górny zakręt czołowy oczodołu, lewy przyśrodkowy zakręt czołowy oczodołowy i prawy przyśrodkowy górny zakręt czołowy. Wcześniejsze badania wykazały, że u pacjentów z ADHD występuje zaburzenie połączenia między tymi regionami mózgu a innymi regionami mózgu (Li i in., 2014). Najwyraźniej wszystkie te obszary znajdują się w płacie czołowym. Płat czołowy był jednym z najwcześniejszych obszarów związanych z objawami ADHD. W szczególności grzbietowo-boczna kora przedczołowa, która jest związana z planowaniem, pamięcią roboczą i przetwarzaniem uwagi, jest najczęściej zgłaszanym obszarem funkcjonalnym ADHD
Płaty czołowe najbardziej wykazywały zmiany w elestyczności w stosunku do innych deficytów - (Dalej opis co to może oznaczać)
-
-
article-summarizer.scholarcy.com article-summarizer.scholarcy.com
-
Kora oczodołowo-czołowa (OFC), ciało migdałowate i kora skroniowa (głównie górna bruzda skroniowa-STS) okazały się podstawowymi elementami tak zwanego "mózgu społecznego" na początku lat 1990. (Brothers, 1990). Następnie wykazano, że inne obszary, takie jak przyśrodkowa kora przedczołowa (mPFC) i przednia kora zakrętu obręczy (ACC), są podstawowe dla funkcjonowania społecznego i dlatego zostały włączone do początkowego rdzenia (Frith i Frith, 2006; Bickart i in., 2014).
Struktury, które do tej pory zostały włączone do modulacji umiejętności społecznych.
-