21 Matching Annotations
  1. Mar 2022
    1. Weltweit wittert die Atomlobby Morgenluft angesichts der weiter steigenden CO2-Emissionen und empfiehlt sich für den Klimaschutz. Sicher seien die Reaktoren der 4. Generation (wurde von den Generationen davor aber auch immer behauptet!) und das Problem Atommüll würden sie auch lösen. Sowieso seien abgebrannte Brennstäbe kein Müll, sondern Wertstoff, den tiefengeologisch endzulagern Ressourcenverschwendung sei.
    1. Versprochen werden kleine Einheiten, die mit weniger aufwändigen Sicherheitseinrichtungen entscheidend sicherer sein sollen als die hergebrachten Meiler. Unkaputtbar sozusagen und ohne Entsorgungsprobleme. Versprochen werden Reaktoren, in denen die Physik unkontrollierte Kernschmelzen verhindert. Und in denen sich langlebige radioaktive Zerfallsprodukte zuverlässig in solche verwandeln, die ihre Gefährlichkeit in überschaubaren Zeiträumen verlieren. Doch diese so genannten Mikroreaktoren hat nicht Bill Gates erfunden, der die neuesten dieser Blütenträume in den USA finanziert. Revolutionäre Reaktorkonzepte existieren in ungezählten Varianten seit mehr als 30 Jahren. Auf dem Papier, neuerdings auch in Blechmodellen. „Walk-away“-Reaktoren tauften sie die PR-gewandten Amerikaner damals. Selbst beim schlimmsten denkbaren Unfall, versprach einer ihrer Protagonisten, „können Sie nach Hause gehen, ein Nickerchen einlegen und sich später darum kümmern. Ohne die geringste Sorge, ohne Panik“. Bis heute fehlt weltweit die Probe aufs Exempel, die technischen Wunderwerke sind geblieben was sie immer schon waren: ungedeckte Wechsel auf eine ferne Zukunft.

      SMR Reaktoren

  2. Jan 2022
    1. Das kommt darauf an, womit man sie vergleicht. Pro Kilowattstunde Atomstrom fallen laut dem Weltklimarat IPCC 3,7 bis 110 Gramm CO2 an. Diese gigantische Spanne kommt unter anderem dadurch zustande, dass die Endlagerung des Atommülls noch ein ungelöstes Riesenproblem ist, was auch Ungewissheiten bei der CO2-Bilanz mit sich bringt. Das Umweltbundesamt nutzt den Mittelwert von 55 Gramm CO2 pro Kilowattstunde.

      55g CO2/kWh laut Umweltbundesamt

    1. Moreover, the LCOE comparison between nuclear energy and renewable energy does not take into account that pre-construction preparations and building a standardised nuclear power plant will take at least 7-10 years. Even by the earliest commissioning date, the LCOE for renewables is expected to have diminished considerably. To carry-out a fair comparison, it is recommended to estimate the LCOE for renewable energies close to the commissioning year of the nuclear power plant.

      Sehr gutes Argument. Die Kosten von Solar und Wind schätzen, wenn das Atomkraftwerk ONLINE geht.

    2. In a liberalized market, financing on nuclear power can be more difficult due to uncertainties on future electricity prices that result in higher cost of capital, thus making nuclear power projects less attractive for investors. Long-term power purchase agreements can shield investors from power market volatility, especially from a large share of intermittent renewable sources. In the absence of a significant carbon price, governments have to continue providing policy incentives that improve the NPV of low-carbon investments and mitigate the market risks (NEA, 2015). In the United States, nuclear power plants are experiencing lower electricity prices, which can result in unprofitable conditions. Six nuclear plants are scheduled to shut-down by 2025 for economic reasons and five other nuclear plants have requested state-level price support (EIA, 2018c)

      Weitere Subventionen auch in den USA. Sechs Reaktoren werden bis 2025 abgeschaltet weitere fünf bitten um wirtschaftliche Beihilfe für den Elektrizitäts Preis.

    3. No utility can accept unlimited liability for the costs of nuclear accidents and permanent storage of nuclear waste. Hence, any new nuclear build project has to rely at least on the latter form of state support.

      Kein Versorgungsunternehmen kann eine unbegrenzte Haftung der Kosten für nukleare Unfälle und die Endlagerung von Atommüll übernehmen. Daher ist jedes Neubauprojekt zumindest auf die letztgenannte Form der staatlichen Unterstützung angewiesen.

    4. Sudden ad-hoc tightening of safety regulations and changing political environments can also result in construction delays. During the construction time, funds must be made available without revenues from electricity generation, and the interest cost on loans during the construction period is relatively high. If there is an extension on the building period, total investment costs will rise due to construction interest. Moreover, the planned investment costs also depend on the extent to which the risks of cost overruns are included. The risks of construction delays and cost-overruns are crucial for financing considerations. Most plants under construction have strong government involvement or are often government-sponsored, as few utilities are able to develop new nuclear plants without a sort of government guarantee or long-term power purchase agreement (NEA, 2015).

      Nur wenige Atomkraftwerke wurden ohne die Hilfe (finanziell) der jeweiligen Regierungen gebaut

    5. Overall, FOAK plants tend to be typically 30% more expensive than a subsequent plant of the same design (MIT, 2018), and costs are also higher when the firm/industry needs to re-learn all the know-how. A paper from Berthélemy and Escobar Rangel (2015) shows that there are positive learning effects when the same nuclear model is built by the same Architect-Engineer.

      Kosten Ersparnisse sind vor allen dann zu erwarten, wenn für den gleichen Reactor Typ auch der gleiche Architekt zuständig ist.

    6. The long idle period implied high additional cost to re-learn all of the expertise and know-how that is required.

      Langer Stillstand lässt die Kosten noch weiter steigen. Da die Expertise nicht mehr vorhanden ist und sehr viel Wissen wieder aufgebaut werden muss.

    7. For example, a scarcity of qualified welders has been reported in newspaper articles, regarding the ongoing EPR projects in western Europe.

      Ein Beispiel für explodierende Kosten ist der Mangel an ausgebildeten Schweißern.

    8. However, disclosed cost information by East Asian nuclear power construction firms is less detailed and transparent than the case of their western counterparts.

      Kosten Details sind bei den chinesischen Atomkraftwerken unklar. Insgesamt sind die Kosten bei weitem nicht so detailliert aufgeführt wie unserer.

    9. High-labour costs in western countries prompted a more modular construction approach with partial outsourcing to lower-wage countries. This enhanced the complexity of project planning and quality insurance.

      Ein Nachteil der modularen Bauweise: aufgrund der hohen Lohnkosten wird der Bau dieser Teile ausgelagert. Allerdings steigt damit die Komplexität der Projektplanung und der Qualitäts Sicherung.

    1. Reactor uranium requirements projected to increase by 75% by 2040As of 1 January 2019, a total of 450 commercial nuclear reactors were connected to the grid globally, with a net generating capacity of 396GWe requiring about 59,200tU annually. “Taking into account changes in policies announced in several countries and revised nuclear programmes, world nuclear capacity is projected to grow to between 354GWe net in the low demand case and about 626GWe net in the high demand case by 2040. The low case represents a decrease of about 11% from 2018 nuclear generating capacity, while the high case represents an increase of about 58%.”Accordingly, world annual reactor-related uranium requirements (excluding mixed oxide fuel - mox) are projected to rise to between 56,640 tU and 100,225 tU by 2040. Nuclear capacity projections vary considerably from region to region. “The East Asia region is projected to experience the largest increase, which, by 2040, could result in increases of more than 24% and 138% over 2018 capacity in the low and high cases, respectively.”Nuclear capacity in non-EU member countries on the European continent is also projected to increase considerably, with 66GWe of capacity projected by 2040 in the high case (increases of about 50% over 2018 capacity). Other regions projected to experience significant nuclear capacity growth include the Middle East, Central and Southern Asia, with more modest growth projected in Africa, Central and South America, and the South-eastern Asia regions. For North America, the projections see nuclear generating capacity decreasing by 2040 in both the low and high cases, depending largely on future electricity demand, lifetime extension of existing reactors and government policies with respect to greenhouse gas emissions.“The reality of financial losses in several reactors in the United States has resulted in a larger number of premature shutdowns to be assumed. In the European Union, nuclear capacity in 2040 is projected to decrease by 52% in the low case scenario and decrease by 8% in the high case, if actual policies are maintained.”The report identifies key factors influencing future nuclear energy capacity as projected electricity demand, the economic competitiveness of nuclear power plants, as well as funding arrangements for such capital-intensive projects, proposed waste management strategies and public acceptance of nuclear energy. “The extent to which nuclear energy is seen to be beneficial in climate change mitigation could contribute to even greater projected growth in nuclear capacity and, consequently, in uranium demand.”

      Red Book: Wieviel Uran jetzt verbraucht wird und in Zukunft.

      Interessant für die Mengenberechnung

    1. There is no such thing as a zero- or close-to-zero emission nuclear power plant. Even existing plants emit due to the continuous mining and refining of uranium needed for the plant. Emissions from new nuclear are 78 to 178 g-CO2/kWh, not close to 0. Of this, 64 to 102 g-CO2/kWh over 100 years are emissions from the background grid while consumers wait 10 to 19 years for nuclear to come online or be refurbished, relative to 2 to 5 years for wind or solar. In addition, all nuclear plants emit 4.4 g-CO2e/kWh from the water vapor and heat they release. This contrasts with solar panels and wind turbines, which reduce heat or water vapor fluxes to the air by about 2.2 g-CO2e/kWh for a net difference from this factor alone of 6.6 g-CO2e/kWh.

      CO2 Ausstoß

    2. Uranium mining causes lung cancer in large numbers of miners because uranium mines contain natural radon gas, some of whose decay products are carcinogenic. A study of 4,000 uranium miners between 1950 and 2000 found that 405 (10 percent) died of lung cancer, a rate six times that expected based on smoking rates alone. 61 others died of mining related lung diseases. Clean, renewable energy does not have this risk because (a) it does not require the continuous mining of any material, only one-time mining to produce the energy generators; and (b) the mining does not carry the same lung cancer risk that uranium mining does.

      Uranabbau vs. seltene erden

    3. To date, 1.5% of all nuclear power plants ever built have melted down to some degree.

      Zu viele Kernschmelzen!

    4. Many claim that France’s 1974 Messmer plan resulted in the building of its 58 reactors in 15 years. This is not true. The planning for several of these nuclear reactors began long before. For example, the Fessenheim reactor obtained its construction permit in 1967 and was planned starting years before. In addition, 10 of the reactors were completed between 1991-2000. As such, the whole planning-to-operation time for these reactors was at least 32 years, not 15. That of any individual reactor was 10 to 19 years.

      Argument gegen die Französiche Schnelligkeit bei der Umsetzung der Atomenergie.

    5. The planning-to-operation (PTO) times of all nuclear plants ever built have been 10-19 years or more.

      Starkes Argument.

    6. The time lag between planning and operation of a nuclear reactor includes the times to identify a site, obtain a site permit, purchase or lease the land, obtain a construction permit, obtain financing and insurance for construction, install transmission, negotiate a power purchase agreement, obtain permits, build the plant, connect it to transmission, and obtain a final operating license.

      Was muss alles geplant werden? Soziale Probleme nicht eingerechnet

    1. Nuclear Fuel Most nuclear reactors use “enriched” uranium, meaning the fuel has a higher concentration of uranium-235 (U-235) isotopes, which are easier to split to produce energy. When it is mined, uranium ore averages less than 1% U-235.9 Milling and enrichment processes crush the ore, use solvents to extract uranium oxide (U3O8, i.e., yellowcake), and chemically convert it to uranium hexafluoride (UF6), which is enriched to increase the U-235 concentration in the fuel. Finally, a fuel fabricator converts UF6 into UO2 powder that is pressed into pellets with 3%-5% U-235 concentrations.10 Uranium can be enriched by gaseous diffusion or gas centrifuge. Both concentrate the slightly lighter U-235 molecules from a gas containing mostly U-238, the former with membrane filters and the latter by spinning. Other technologies are currently in development, with laser enrichment processes closest to commercial viability.11 In 2019, 79 metric tons (mt) of U3O8 were extracted from 6 mines in the U.S.12 The highest grade ore in the U.S. average less than 1% uranium, some Canadian ore is more than 15% uranium.13,14 1% of uranium available at reasonable cost is found in the U.S. The largest deposits are in Australia (28%), Kazakhstan (15%), Canada (9%), and Russia (8%).14 U.S. nuclear plants purchased 22,135 mt of uranium in 2020. Fuel was imported mostly from Canada (22%), Kazakhstan (22%), Russia (15%) and Australia (11%).15 Globally, nuclear power reactors are forecast to require 68,269 mt of uranium in 2021.4

      Abhängigkeiten durch Uran Abbau

    1. Supporting Research and Development: Through Atomic Energy Canada Limited (AECL), the federal government funds the Federal Nuclear Science & Technology (FNST) program, which serves the collective interests of 14 federal departments and agencies in the areas of health, nuclear safety and security, energy and the environment while maintaining necessary capabilities and expertise at Canadian Nuclear Laboratories (CNL). The FNST program has a funding commitment of $76 million per year for a period of 10 years, from 2015 to 2025. In addition, the federal government is investing $1.2 billion over ten years to revitalize AECL’s Chalk River Laboratories to transform it in to a world-class, state-of-the-art nuclear science and technology campus. For more information, visit AECL or CNL’s websites. The federal government has also announced investments in SMR technology development and deployment across Canada, including: A $50.5 million investment for Moltex Energy Canada Inc. to develop a technology that will produce emissions-free energy through recycling existing spent nuclear fuel. A $5 million investment in NB Power, and more than $500,000 to the University of New Brunswick in support of SMR development and deployment in the province. A $20 million investment in Terrestrial Energy that will enable an innovative Ontario technology company to take a critical step toward commercializing its cutting-edge SMR technology, creating significant environmental and economic benefits for Canada. These commitments complement Ontario’s investment of $26 billion to extend the life of Ontario’s nuclear reactor fleet past the middle of the century, enabling ramped up supply chains well suited to seizing the SMR opportunity

      Hier sieht man, wie intransparent Atomenergie gefördert wird.