9 Matching Annotations
 Sep 2020

wwwsciencedirectcom.ezproxy.neu.edu wwwsciencedirectcom.ezproxy.neu.edu

The impact of global warming on population health is a growing concern. Solar energy workers often work in very hot weather; where OSHA supports that there exist some hazards attempting to the health and safety of the workforce. Among the heatrelated effects defined as a consequence of exposures to hot environments are, dehydration, heat exhaustion, heat stroke, and death. In order to ensure the safety of the solar workforce, the present study aims to provide with relevant information that could contribute to the development or improvement of safety procedures.The research paper briefly outlines the relation between sunny environments, heat load, heatrelated occupational and safety, natural hazards, and climate change conditions. Followed by the description of the assessment method and safety limits. The assessment of levels of heat stress was based on a
direct relation of results to health (not necessarily worker productivity however)

he PSH,1 at present year, counts with a tower of 36 m height, a control room and a field of 29 heliostats. The total of the installed heliostats can be separated in two sizes, as follows: 12 heliostats of 36 m2 (each one having 25 flat mirrors of 1.2 m × 1.2 m); 17 heliostats of 37.44 m2 (each one with 32 flat mirrors of 1.3 m × 0.9 m). The total reflectingarea is close to 1,070 m2. The heliostats installed on the field allow reaching a theoretical solar radiation concentration factor of 25, which corresponds to a thermal power of approximat
method, control

exposure limits are determined by the following equations (NIOSH, 2016):(4)ÂRAL[Â°CWBGT]=59.914.1log10M<math><mrow is="true"><mi mathvariant="normal" is="true">R</mi><mi mathvariant="normal" is="true">A</mi><mi mathvariant="normal" is="true">L</mi><mo stretchy="false" is="true">[</mo><mi is="true">Â</mi><mi is="true">°</mi><mi mathvariant="normal" is="true">C</mi><mo is="true"></mo><mi mathvariant="normal" is="true">W</mi><mi mathvariant="normal" is="true">B</mi><mi mathvariant="normal" is="true">G</mi><mi mathvariant="normal" is="true">T</mi><mo stretchy="false" is="true">]</mo><mo is="true">=</mo><mn is="true">59.9</mn><mo is="true"></mo><mn is="true">14.1</mn><mi mathvariant="normal" is="true">l</mi><mi mathvariant="normal" is="true">o</mi><mi mathvariant="normal" is="true">g</mi><mn is="true">10</mn><mi mathvariant="normal" is="true">M</mi></mrow></math>(5)Â
regressional analysis of exposure limits

Table 3. WBGT exposed levels in °C at different work intensities and rest/ work periods for an average worker with light clothing.
worker productivity relation to the WBGT heat stress levels using work intensity and rest relation

Table 2. Reference values for WBGT (°C) at corresponding work intensity.
foundational research to base heat stress on productivity analysis: reference values for WBGT to work intensity

WBGT (°C)Recommendations
heat stress recommendation by WBGT outdoor activity  used for foundational research of heat stress

The WBGT index, described by the ISO 7243, resides in the value weighting of these environmental factors defined by the drybulb temperature (T<math><mrow is="true"><mi mathvariant="normal" is="true">T</mi></mrow></math>), natural wetbulb (static) temperature (Tnw<math><mrow is="true"><msub is="true"><mi mathvariant="normal" is="true">T</mi><mrow is="true"><mi mathvariant="normal" is="true">n</mi><mi mathvariant="normal" is="true">w</mi></mrow></msub></mrow></math>) and black–globe temperature (Tg<math><mrow is="true"><msub is="true"><mi mathvariant="normal" is="true">T</mi><mi mathvariant="normal" is="true">g</mi></msub></mrow></math>). These variables are used to estimate the WBGT index with solar load (1) and WBGT index without solar load (2) (Blazejczyk et al., 2014, Brauer, 2006, Epstein and Moran, 2006, Kjellstrom et al., 2009a, NIOSH, 2016):(1)WBGTout=0.7Tnw+0.2Tg+0.1T<math><mrow is="true"><msub is="true"><mrow is="true"><mi mathvariant="normal" is="true">W</mi><mi mathvariant="normal" is="true">B</mi><mi mathvariant="normal" is="true">G</mi><mi mathvariant="normal" is="true">T</mi></mrow><mrow is="true"><mi mathvariant="normal" is="true">o</mi><mi mathvariant="normal" is="true">u</mi><mi mathvariant="normal" is="true">t</mi></mrow></msub><mo is="true">=</mo><mn is="true">0.7</mn><msub is="true"><mi mathvariant="normal" is="true">T</mi><mrow is="true"><mi mathvariant="normal" is="true">n</mi><mi mathvariant="normal" is="true">w</mi></mrow></msub><mo is="true">+</mo><mn is="true">0.2</mn><msub is="true"><mi mathvariant="normal" is="true">T</mi><mi mathvariant="normal" is="true">g</mi></msub><mo is="true">+</mo><mn is="true">0.1</mn><mi mathvariant="normal" is="true">T</mi></mrow></math>(2)WBGTin=0.7Tnw+0.3Tg<math><mrow is="true"><msub is="true"><mrow is="true"><mi mathvariant="normal" is="true">W</mi><mi mathvariant="normal" is="true">B</mi><mi mathvariant="normal" is="true">G</mi><mi mathvariant="normal" is="true">T</mi></mrow><mrow is="true"><mi mathvariant="normal" is="true">i</mi><mi mathvariant="normal" is="true">n</mi></mrow></msub><mo is="true">=</mo><mn is="true">0.7</mn><msub is="true"><mi mathvariant="normal" is="true">T</mi><mrow is="true"><mi mathvariant="normal" is="true">n</mi><mi mathvariant="normal" is="true">w</mi></mrow></msub><mo is="true">+</mo><mn is="true">0.3</mn><msub is="true"><mi mathvariant="normal" is="true">T</mi><mi mathvariant="normal" is="true">g</mi></msub></mrow></math>
methodology  defining estimations and relation between wet bulb globe temperature index to give estimation of level of heat stress

1.1. Physiological response to heat exposure
divided into subsections of each variable that is affected by heat exposure

The periods of high levels of atmospheric heat could end in a modification of the population lifestyle (Lundgren et al., 2013). There exists the big dilemma between those countries who can adapt fast to environmental changes and some others who cannot (Oncel, 2017). The World Health Organization (WHO) revealed that the effects of climate disturbances will cost 320,000 lives per year by 2020 due to natural disasters, high temperatures and diseases (Mekhilef et al., 2011). With changes in the climate that have impact in human lives, the need for a better understanding is increasingly important (Leon 2008 cited by NIOSH, 2016).High levels of GHG emissions have encouraged countries to develop and implement alternatives resources for power generation (Comodi et al., 2016).According to the 2016 Renewable global Status report (REN21, 2017), the global
research context on climate change analysis
